Coverage Report

Created: 2026-02-14 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjxl/lib/jxl/enc_modular.cc
Line
Count
Source
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
#include "lib/jxl/enc_modular.h"
7
8
#include <jxl/cms_interface.h>
9
#include <jxl/memory_manager.h>
10
#include <jxl/types.h>
11
12
#include <algorithm>
13
#include <array>
14
#include <cmath>
15
#include <cstddef>
16
#include <cstdint>
17
#include <cstdlib>
18
#include <cstring>
19
#include <limits>
20
#include <memory>
21
#include <tuple>
22
#include <utility>
23
#include <vector>
24
25
#include "lib/jxl/ac_strategy.h"
26
#include "lib/jxl/base/bits.h"
27
#include "lib/jxl/base/common.h"
28
#include "lib/jxl/base/compiler_specific.h"
29
#include "lib/jxl/base/data_parallel.h"
30
#include "lib/jxl/base/printf_macros.h"
31
#include "lib/jxl/base/rect.h"
32
#include "lib/jxl/base/status.h"
33
#include "lib/jxl/chroma_from_luma.h"
34
#include "lib/jxl/common.h"
35
#include "lib/jxl/compressed_dc.h"
36
#include "lib/jxl/dec_ans.h"
37
#include "lib/jxl/dec_modular.h"
38
#include "lib/jxl/enc_ans.h"
39
#include "lib/jxl/enc_ans_params.h"
40
#include "lib/jxl/enc_aux_out.h"
41
#include "lib/jxl/enc_bit_writer.h"
42
#include "lib/jxl/enc_cache.h"
43
#include "lib/jxl/enc_fields.h"
44
#include "lib/jxl/enc_gaborish.h"
45
#include "lib/jxl/enc_modular_simd.h"
46
#include "lib/jxl/enc_params.h"
47
#include "lib/jxl/enc_patch_dictionary.h"
48
#include "lib/jxl/enc_quant_weights.h"
49
#include "lib/jxl/fields.h"
50
#include "lib/jxl/frame_dimensions.h"
51
#include "lib/jxl/frame_header.h"
52
#include "lib/jxl/image.h"
53
#include "lib/jxl/image_metadata.h"
54
#include "lib/jxl/image_ops.h"
55
#include "lib/jxl/memory_manager_internal.h"
56
#include "lib/jxl/modular/encoding/context_predict.h"
57
#include "lib/jxl/modular/encoding/dec_ma.h"
58
#include "lib/jxl/modular/encoding/enc_encoding.h"
59
#include "lib/jxl/modular/encoding/enc_ma.h"
60
#include "lib/jxl/modular/encoding/encoding.h"
61
#include "lib/jxl/modular/encoding/ma_common.h"
62
#include "lib/jxl/modular/modular_image.h"
63
#include "lib/jxl/modular/options.h"
64
#include "lib/jxl/modular/transform/enc_rct.h"
65
#include "lib/jxl/modular/transform/enc_transform.h"
66
#include "lib/jxl/modular/transform/squeeze.h"
67
#include "lib/jxl/modular/transform/squeeze_params.h"
68
#include "lib/jxl/modular/transform/transform.h"
69
#include "lib/jxl/pack_signed.h"
70
#include "lib/jxl/passes_state.h"
71
#include "lib/jxl/quant_weights.h"
72
#include "modular/options.h"
73
74
namespace jxl {
75
76
namespace {
77
// constexpr bool kPrintTree = false;
78
79
// Squeeze default quantization factors
80
// these quantization factors are for -Q 50  (other qualities simply scale the
81
// factors; things are rounded down and obviously cannot get below 1)
82
const float squeeze_quality_factor =
83
    0.35;  // for easy tweaking of the quality range (decrease this number for
84
           // higher quality)
85
const float squeeze_luma_factor =
86
    1.1;  // for easy tweaking of the balance between luma (or anything
87
          // non-chroma) and chroma (decrease this number for higher quality
88
          // luma)
89
const float squeeze_quality_factor_xyb = 4.0f;
90
const float squeeze_quality_factor_y = 1.5f;
91
92
const float squeeze_xyb_qtable[3][16] = {
93
    {163.84, 81.92, 40.96, 20.48, 10.24, 5.12, 2.56, 1.28, 0.64, 0.32, 0.16,
94
     0.08, 0.04, 0.02, 0.01, 0.005},  // Y
95
    {1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5,
96
     0.5},  // X
97
    {2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5,
98
     0.5},  // B-Y
99
};
100
101
const float squeeze_luma_qtable[16] = {163.84, 81.92, 40.96, 20.48, 10.24, 5.12,
102
                                       2.56,   1.28,  0.64,  0.32,  0.16,  0.08,
103
                                       0.04,   0.02,  0.01,  0.005};
104
// for 8-bit input, the range of YCoCg chroma is -255..255 so basically this
105
// does 4:2:0 subsampling (two most fine grained layers get quantized away)
106
const float squeeze_chroma_qtable[16] = {
107
    1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5, 0.5};
108
109
// Merges the trees in `trees` using nodes that decide on stream_id, as defined
110
// by `tree_splits`.
111
Status MergeTrees(const std::vector<Tree>& trees,
112
                  const std::vector<size_t>& tree_splits, size_t begin,
113
0
                  size_t end, Tree* tree) {
114
0
  JXL_ENSURE(trees.size() + 1 == tree_splits.size());
115
0
  JXL_ENSURE(end > begin);
116
0
  JXL_ENSURE(end <= trees.size());
117
0
  if (end == begin + 1) {
118
    // Insert the tree, adding the opportune offset to all child nodes.
119
    // This will make the leaf IDs wrong, but subsequent roundtripping will fix
120
    // them.
121
0
    size_t sz = tree->size();
122
0
    tree->insert(tree->end(), trees[begin].begin(), trees[begin].end());
123
0
    for (size_t i = sz; i < tree->size(); i++) {
124
0
      (*tree)[i].lchild += sz;
125
0
      (*tree)[i].rchild += sz;
126
0
    }
127
0
    return true;
128
0
  }
129
0
  size_t mid = (begin + end) / 2;
130
0
  size_t splitval = tree_splits[mid] - 1;
131
0
  size_t cur = tree->size();
132
0
  tree->emplace_back(1 /*stream_id*/, static_cast<int>(splitval), 0, 0,
133
0
                     Predictor::Zero, 0, 1);
134
0
  (*tree)[cur].lchild = tree->size();
135
0
  JXL_RETURN_IF_ERROR(MergeTrees(trees, tree_splits, mid, end, tree));
136
0
  (*tree)[cur].rchild = tree->size();
137
0
  JXL_RETURN_IF_ERROR(MergeTrees(trees, tree_splits, begin, mid, tree));
138
0
  return true;
139
0
}
140
141
0
void QuantizeChannel(Channel& ch, const int q) {
142
0
  if (q == 1) return;
143
0
  for (size_t y = 0; y < ch.plane.ysize(); y++) {
144
0
    pixel_type* row = ch.plane.Row(y);
145
0
    for (size_t x = 0; x < ch.plane.xsize(); x++) {
146
0
      if (row[x] < 0) {
147
0
        row[x] = -((-row[x] + q / 2) / q) * q;
148
0
      } else {
149
0
        row[x] = ((row[x] + q / 2) / q) * q;
150
0
      }
151
0
    }
152
0
  }
153
0
}
154
155
// convert binary32 float that corresponds to custom [bits]-bit float (with
156
// [exp_bits] exponent bits) to a [bits]-bit integer representation that should
157
// fit in pixel_type
158
Status float_to_int(const float* const row_in, pixel_type* const row_out,
159
                    size_t xsize, unsigned int bits, unsigned int exp_bits,
160
0
                    bool fp, double dfactor) {
161
0
  JXL_ENSURE(sizeof(pixel_type) * 8 >= bits);
162
0
  if (!fp) {
163
0
    if (bits > 22) {
164
0
      for (size_t x = 0; x < xsize; ++x) {
165
0
        row_out[x] = row_in[x] * dfactor + (row_in[x] < 0 ? -0.5 : 0.5);
166
0
      }
167
0
    } else {
168
0
      float factor = dfactor;
169
0
      for (size_t x = 0; x < xsize; ++x) {
170
0
        row_out[x] = row_in[x] * factor + (row_in[x] < 0 ? -0.5f : 0.5f);
171
0
      }
172
0
    }
173
0
    return true;
174
0
  }
175
0
  if (bits == 32 && fp) {
176
0
    JXL_ENSURE(exp_bits == 8);
177
0
    memcpy(static_cast<void*>(row_out), static_cast<const void*>(row_in),
178
0
           4 * xsize);
179
0
    return true;
180
0
  }
181
182
0
  JXL_ENSURE(bits > 0);
183
0
  int exp_bias = (1 << (exp_bits - 1)) - 1;
184
0
  int max_exp = (1 << exp_bits) - 1;
185
0
  uint32_t sign = (1u << (bits - 1));
186
0
  int mant_bits = bits - exp_bits - 1;
187
0
  int mant_shift = 23 - mant_bits;
188
0
  for (size_t x = 0; x < xsize; ++x) {
189
0
    uint32_t f;
190
0
    memcpy(&f, &row_in[x], 4);
191
0
    int signbit = (f >> 31);
192
0
    f &= 0x7fffffff;
193
0
    if (f == 0) {
194
0
      row_out[x] = (signbit ? sign : 0);
195
0
      continue;
196
0
    }
197
0
    int exp = (f >> 23) - 127;
198
0
    int mantissa = (f & 0x007fffff);
199
    // broke up the binary32 into its parts, now reassemble into
200
    // arbitrary float
201
0
    if (exp == 128) {
202
      // NaN or infinity
203
0
      f = (signbit ? sign : 0);
204
0
      f |= ((1 << exp_bits) - 1) << mant_bits;
205
0
      f |= mantissa >> mant_shift;
206
0
      row_out[x] = static_cast<pixel_type>(f);
207
0
      continue;
208
0
    }
209
0
    exp += exp_bias;
210
0
    if (exp <= 0) {  // will become a subnormal number
211
      // add implicit leading 1 to mantissa
212
0
      mantissa |= 0x00800000;
213
0
      if (exp < -mant_bits) {
214
0
        return JXL_FAILURE(
215
0
            "Invalid float number: %g cannot be represented with %i "
216
0
            "exp_bits and %i mant_bits (exp %i)",
217
0
            row_in[x], exp_bits, mant_bits, exp);
218
0
      }
219
0
      mantissa >>= 1 - exp;
220
0
      exp = 0;
221
0
    }
222
    // exp should be representable in exp_bits, otherwise input was
223
    // invalid; max_exp is NaN or infinity
224
0
    if (exp >= max_exp) return JXL_FAILURE("Invalid float exponent");
225
0
    if (mantissa & ((1 << mant_shift) - 1)) {
226
0
      return JXL_FAILURE("%g is losing precision (mant: %x)", row_in[x],
227
0
                         mantissa);
228
0
    }
229
0
    mantissa >>= mant_shift;
230
0
    f = (signbit ? sign : 0);
231
0
    f |= (exp << mant_bits);
232
0
    f |= mantissa;
233
0
    row_out[x] = static_cast<pixel_type>(f);
234
0
  }
235
0
  return true;
236
0
}
237
238
0
float EstimateWPCost(const Image& img, size_t i) {
239
0
  size_t extra_bits = 0;
240
0
  float histo_cost = 0;
241
0
  HybridUintConfig config;
242
0
  int32_t cutoffs[] = {-500, -392, -255, -191, -127, -95, -63, -47, -31,
243
0
                       -23,  -15,  -11,  -7,   -4,   -3,  -1,  0,   1,
244
0
                       3,    5,    7,    11,   15,   23,  31,  47,  63,
245
0
                       95,   127,  191,  255,  392,  500};
246
0
  constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1;
247
0
  Histogram histo[nc] = {};
248
0
  weighted::Header wp_header;
249
0
  PredictorMode(i, &wp_header);
250
0
  for (const Channel& ch : img.channel) {
251
0
    const ptrdiff_t onerow = ch.plane.PixelsPerRow();
252
0
    weighted::State wp_state(wp_header, ch.w, ch.h);
253
0
    Properties properties(1);
254
0
    for (size_t y = 0; y < ch.h; y++) {
255
0
      const pixel_type* JXL_RESTRICT r = ch.Row(y);
256
0
      for (size_t x = 0; x < ch.w; x++) {
257
0
        size_t offset = 0;
258
0
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
259
0
        pixel_type_w top = (y ? *(r + x - onerow) : left);
260
0
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
261
0
        pixel_type_w topright =
262
0
            (x + 1 < ch.w && y ? *(r + x + 1 - onerow) : top);
263
0
        pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top);
264
0
        pixel_type guess = wp_state.Predict</*compute_properties=*/true>(
265
0
            x, y, ch.w, top, left, topright, topleft, toptop, &properties,
266
0
            offset);
267
0
        size_t ctx = 0;
268
0
        for (int c : cutoffs) {
269
0
          ctx += (c >= properties[0]) ? 1 : 0;
270
0
        }
271
0
        pixel_type res = r[x] - guess;
272
0
        uint32_t token;
273
0
        uint32_t nbits;
274
0
        uint32_t bits;
275
0
        config.Encode(PackSigned(res), &token, &nbits, &bits);
276
0
        histo[ctx].Add(token);
277
0
        extra_bits += nbits;
278
0
        wp_state.UpdateErrors(r[x], x, y, ch.w);
279
0
      }
280
0
    }
281
0
    for (auto& h : histo) {
282
0
      histo_cost += h.ShannonEntropy();
283
0
      h.Clear();
284
0
    }
285
0
  }
286
0
  return histo_cost + extra_bits;
287
0
}
288
289
bool do_transform(Image& image, const Transform& tr,
290
                  const weighted::Header& wp_header,
291
0
                  jxl::ThreadPool* pool = nullptr, bool force_jxlart = false) {
292
0
  Transform t = tr;
293
0
  bool did_it = true;
294
0
  if (force_jxlart) {
295
0
    if (!t.MetaApply(image)) return false;
296
0
  } else {
297
0
    did_it = TransformForward(t, image, wp_header, pool);
298
0
  }
299
0
  if (did_it) image.transform.push_back(t);
300
0
  return did_it;
301
0
}
302
303
StatusOr<bool> maybe_do_transform(Image& image, const Transform& tr,
304
                                  const CompressParams& cparams,
305
                                  const weighted::Header& wp_header,
306
                                  float cost_before,
307
                                  jxl::ThreadPool* pool = nullptr,
308
0
                                  bool force_jxlart = false) {
309
0
  if (force_jxlart || cparams.speed_tier >= SpeedTier::kSquirrel) {
310
0
    return do_transform(image, tr, wp_header, pool, force_jxlart);
311
0
  }
312
0
  bool did_it = do_transform(image, tr, wp_header, pool);
313
0
  if (did_it) {
314
0
    JXL_ASSIGN_OR_RETURN(float cost_after, EstimateCost(image));
315
0
    JXL_DEBUG_V(7, "Cost before: %f  cost after: %f", cost_before, cost_after);
316
0
    if (cost_after > cost_before) {
317
0
      Transform t = image.transform.back();
318
0
      if (!t.Inverse(image, wp_header, pool)) {
319
0
        return false;
320
0
      }
321
0
      image.transform.pop_back();
322
0
      did_it = false;
323
0
    }
324
0
  }
325
0
  return did_it;
326
0
}
327
328
Status try_palettes(Image& gi, int& max_bitdepth, int& maxval,
329
                    const CompressParams& cparams_,
330
                    float channel_colors_percent,
331
0
                    jxl::ThreadPool* pool = nullptr) {
332
0
  float cost_before = 0.f;
333
0
  size_t did_palette = 0;
334
0
  float nb_pixels = gi.channel[0].w * gi.channel[0].h;
335
0
  int nb_chans = gi.channel.size() - gi.nb_meta_channels;
336
  // arbitrary estimate: 4.8 bpp for 8-bit RGB
337
0
  float arbitrary_bpp_estimate = 0.2f * gi.bitdepth * nb_chans;
338
339
0
  if (cparams_.palette_colors != 0 || cparams_.lossy_palette) {
340
    // when not estimating, assume some arbitrary bpp
341
0
    if (cparams_.speed_tier <= SpeedTier::kSquirrel) {
342
0
      JXL_ASSIGN_OR_RETURN(cost_before, EstimateCost(gi));
343
0
    } else {
344
0
      cost_before = nb_pixels * arbitrary_bpp_estimate;
345
0
    }
346
    // all-channel palette (e.g. RGBA)
347
0
    if (nb_chans > 1) {
348
0
      Transform maybe_palette(TransformId::kPalette);
349
0
      maybe_palette.begin_c = gi.nb_meta_channels;
350
0
      maybe_palette.num_c = nb_chans;
351
      // Heuristic choice of max colors for a palette:
352
      // max_colors = nb_pixels * estimated_bpp_without_palette * 0.0005 +
353
      //              + nb_pixels / 128 + 128
354
      //       (estimated_bpp_without_palette = cost_before / nb_pixels)
355
      // Rationale: small image with large palette is not effective;
356
      // also if the entropy (estimated bpp) is low (e.g. mostly solid/gradient
357
      // areas), palette is less useful and may even be counterproductive.
358
0
      maybe_palette.nb_colors = std::min(
359
0
          static_cast<int>(cost_before * 0.0005f + nb_pixels / 128 + 128),
360
0
          std::abs(cparams_.palette_colors));
361
0
      maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
362
0
      maybe_palette.lossy_palette =
363
0
          (cparams_.lossy_palette && maybe_palette.num_c == 3);
364
0
      if (maybe_palette.lossy_palette) {
365
0
        maybe_palette.predictor = Predictor::Average4;
366
0
      }
367
      // TODO(veluca): use a custom weighted header if using the weighted
368
      // predictor.
369
0
      JXL_ASSIGN_OR_RETURN(
370
0
          did_palette,
371
0
          maybe_do_transform(gi, maybe_palette, cparams_, weighted::Header(),
372
0
                             cost_before, pool, cparams_.options.zero_tokens));
373
0
    }
374
    // all-minus-one-channel palette (RGB with separate alpha, or CMY with
375
    // separate K)
376
0
    if (!did_palette && nb_chans > 3) {
377
0
      Transform maybe_palette_3(TransformId::kPalette);
378
0
      maybe_palette_3.begin_c = gi.nb_meta_channels;
379
0
      maybe_palette_3.num_c = nb_chans - 1;
380
0
      maybe_palette_3.nb_colors = std::min(
381
0
          static_cast<int>(cost_before * 0.0005f + nb_pixels / 128 + 128),
382
0
          std::abs(cparams_.palette_colors));
383
0
      maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0;
384
0
      maybe_palette_3.lossy_palette = cparams_.lossy_palette;
385
0
      if (maybe_palette_3.lossy_palette) {
386
0
        maybe_palette_3.predictor = Predictor::Average4;
387
0
      }
388
0
      JXL_ASSIGN_OR_RETURN(
389
0
          did_palette,
390
0
          maybe_do_transform(gi, maybe_palette_3, cparams_, weighted::Header(),
391
0
                             cost_before, pool, cparams_.options.zero_tokens));
392
0
    }
393
0
  }
394
395
0
  if (channel_colors_percent > 0) {
396
    // single channel palette (like FLIF's ChannelCompact)
397
0
    size_t nb_channels = gi.channel.size() - gi.nb_meta_channels - did_palette;
398
0
    int orig_bitdepth = max_bitdepth;
399
0
    max_bitdepth = 0;
400
0
    if (nb_channels > 0 && (did_palette || cost_before == 0)) {
401
0
      if (cparams_.speed_tier < SpeedTier::kSquirrel) {
402
0
        JXL_ASSIGN_OR_RETURN(cost_before, EstimateCost(gi));
403
0
      } else {
404
0
        cost_before = 0;
405
0
      }
406
0
    }
407
0
    for (size_t i = did_palette; i < nb_channels + did_palette; i++) {
408
0
      int32_t min;
409
0
      int32_t max;
410
0
      compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
411
0
      int64_t colors = static_cast<int64_t>(max) - min + 1;
412
0
      JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max);
413
0
      Transform maybe_palette_1(TransformId::kPalette);
414
0
      maybe_palette_1.begin_c = i + gi.nb_meta_channels;
415
0
      maybe_palette_1.num_c = 1;
416
      // simple heuristic: if less than X percent of the values in the range
417
      // actually occur, it is probably worth it to do a compaction
418
      // (but only if the channel palette is less than 6% the size of the
419
      // image itself)
420
0
      maybe_palette_1.nb_colors =
421
0
          std::min(static_cast<int>(nb_pixels / 16),
422
0
                   static_cast<int>(channel_colors_percent / 100. * colors));
423
0
      JXL_ASSIGN_OR_RETURN(
424
0
          bool did_ch_palette,
425
0
          maybe_do_transform(gi, maybe_palette_1, cparams_, weighted::Header(),
426
0
                             cost_before, pool));
427
0
      if (did_ch_palette) {
428
        // effective bit depth is lower, adjust quantization accordingly
429
0
        compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
430
0
        if (max < maxval) maxval = max;
431
0
        int ch_bitdepth =
432
0
            (max > 0 ? CeilLog2Nonzero(static_cast<uint32_t>(max)) : 0);
433
0
        if (ch_bitdepth > max_bitdepth) max_bitdepth = ch_bitdepth;
434
0
      } else {
435
0
        max_bitdepth = orig_bitdepth;
436
0
      }
437
0
    }
438
0
  }
439
0
  return true;
440
0
}
441
442
}  // namespace
443
444
StatusOr<std::unique_ptr<ModularFrameEncoder>> ModularFrameEncoder::Create(
445
    JxlMemoryManager* memory_manager, const FrameHeader& frame_header,
446
0
    const CompressParams& cparams_orig, bool streaming_mode) {
447
0
  auto self = std::unique_ptr<ModularFrameEncoder>(
448
0
      new ModularFrameEncoder(memory_manager));
449
0
  JXL_RETURN_IF_ERROR(self->Init(frame_header, cparams_orig, streaming_mode));
450
0
  return self;
451
0
}
452
453
ModularFrameEncoder::ModularFrameEncoder(JxlMemoryManager* memory_manager)
454
0
    : memory_manager_(memory_manager) {}
455
456
Status ModularFrameEncoder::Init(const FrameHeader& frame_header,
457
                                 const CompressParams& cparams_orig,
458
0
                                 bool streaming_mode) {
459
0
  frame_dim_ = frame_header.ToFrameDimensions();
460
0
  cparams_ = cparams_orig;
461
462
0
  size_t num_streams =
463
0
      ModularStreamId::Num(frame_dim_, frame_header.passes.num_passes);
464
465
  // Progressive lossless only benefits from levels 2 and higher
466
  // Lower levels of faster decoding can outperform higher tiers
467
  // depending on the PC
468
0
  if (cparams_.responsive == 1 && cparams_.IsLossless() &&
469
0
      cparams_.decoding_speed_tier == 1) {
470
0
    cparams_.decoding_speed_tier = 2;
471
0
  }
472
0
  if (cparams_.responsive == 1 && cparams_.IsLossless()) {
473
    // RCT selection seems bugged with Squeeze, YCoCg works well.
474
0
    if (cparams_.colorspace < 0) {
475
0
      cparams_.colorspace = 6;
476
0
    }
477
0
  }
478
479
0
  if (cparams_.ModularPartIsLossless()) {
480
0
    const auto disable_wp = [this] () {
481
0
        cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kNoWP;
482
0
        if (cparams_.options.predictor == Predictor::Weighted) {
483
          // Predictor::Best turns to Predictor::Gradient anyways.
484
0
          cparams_.options.predictor = Predictor::Gradient;
485
0
        }
486
0
    };
487
0
    switch (cparams_.decoding_speed_tier) {
488
0
      case 0:
489
0
        cparams_.options.fast_decode_multiplier = 1.001f;
490
0
        break;
491
0
      case 1:  // No Weighted predictor
492
0
        cparams_.options.fast_decode_multiplier = 1.005f;
493
0
        disable_wp();
494
0
        break;
495
0
      case 2: {  // No Weighted predictor and Group size 0 defined in
496
                 // enc_frame.cc
497
0
        cparams_.options.fast_decode_multiplier = 1.015f;
498
0
        disable_wp();
499
0
        break;
500
0
      }
501
0
      case 3: {  // Gradient only, Group size 0, and Fast MA tree
502
0
        cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kGradientOnly;
503
0
        cparams_.options.predictor = Predictor::Gradient;
504
0
        break;
505
0
      }
506
0
      default: {  // Gradient only, Group size 0, and No MA tree
507
0
        cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kGradientOnly;
508
0
        cparams_.options.predictor = Predictor::Gradient;
509
0
        cparams_.options.nb_repeats = 0;
510
        // Disabling MA Trees sometimes doesn't increase decode speed
511
        // depending on PC
512
0
        break;
513
0
      }
514
0
    }
515
0
  }
516
517
0
  for (size_t i = 0; i < num_streams; ++i) {
518
0
    stream_images_.emplace_back(memory_manager_);
519
0
  }
520
521
  // use a sensible default if nothing explicit is specified:
522
  // Squeeze for lossy, no squeeze for lossless
523
0
  if (cparams_.responsive < 0) {
524
0
    if (cparams_.ModularPartIsLossless()) {
525
0
      cparams_.responsive = 0;
526
0
    } else {
527
0
      cparams_.responsive = 1;
528
0
    }
529
0
  }
530
531
0
  cparams_.options.splitting_heuristics_node_threshold =
532
0
      75 + 14 * static_cast<int>(cparams_.speed_tier) +
533
0
      10 * cparams_.decoding_speed_tier;
534
535
0
  {
536
    // Set properties.
537
0
    std::vector<uint32_t> prop_order;
538
0
    if (cparams_.responsive) {
539
      // Properties in order of their likelihood of being useful for Squeeze
540
      // residuals.
541
0
      prop_order = {0, 1, 4, 5, 6, 7, 8, 15, 9, 10, 11, 12, 13, 14, 2, 3};
542
0
    } else {
543
      // Same, but for the non-Squeeze case.
544
0
      prop_order = {0, 1, 15, 9, 10, 11, 12, 13, 14, 2, 3, 4, 5, 6, 7, 8};
545
      // if few groups, don't use group as a property
546
0
      if (num_streams < 30 && cparams_.speed_tier > SpeedTier::kTortoise &&
547
0
          cparams_orig.ModularPartIsLossless()) {
548
0
        prop_order.erase(prop_order.begin() + 1);
549
0
      }
550
0
    }
551
0
    int max_properties = std::min<int>(
552
0
        cparams_.options.max_properties,
553
0
        static_cast<int>(
554
0
            frame_header.nonserialized_metadata->m.num_extra_channels) +
555
0
            (frame_header.encoding == FrameEncoding::kModular ? 2 : -1));
556
0
    switch (cparams_.speed_tier) {
557
0
      case SpeedTier::kHare:
558
0
        cparams_.options.splitting_heuristics_properties.assign(
559
0
            prop_order.begin(), prop_order.begin() + 4);
560
0
        cparams_.options.max_property_values = 48;
561
0
        cparams_.options.nb_repeats *= 0.5f;
562
0
        break;
563
0
      case SpeedTier::kWombat:
564
0
        cparams_.options.splitting_heuristics_properties.assign(
565
0
            prop_order.begin(), prop_order.begin() + 5);
566
0
        cparams_.options.max_property_values = 64;
567
0
        cparams_.options.nb_repeats *= 0.7f;
568
0
        break;
569
0
      case SpeedTier::kSquirrel:
570
0
        cparams_.options.splitting_heuristics_properties.assign(
571
0
            prop_order.begin(), prop_order.begin() + 7);
572
0
        cparams_.options.max_property_values = 96;
573
0
        break;
574
0
      case SpeedTier::kKitten:
575
0
        cparams_.options.splitting_heuristics_properties.assign(
576
0
            prop_order.begin(), prop_order.begin() + 10);
577
0
        cparams_.options.max_property_values = 128;
578
0
        cparams_.options.nb_repeats *= 1.1f;
579
0
        break;
580
0
      case SpeedTier::kGlacier:
581
0
      case SpeedTier::kTortoise:
582
0
        cparams_.options.splitting_heuristics_properties = prop_order;
583
0
        cparams_.options.max_property_values = 256;
584
0
        cparams_.options.nb_repeats *= 1.3f;
585
0
        break;
586
0
      default:
587
0
        cparams_.options.splitting_heuristics_properties.assign(
588
0
            prop_order.begin(), prop_order.begin() + 3);
589
0
        cparams_.options.max_property_values = 32;
590
0
        cparams_.options.nb_repeats *= 0.3f;
591
0
        break;
592
0
    }
593
0
    if (cparams_.speed_tier > SpeedTier::kTortoise) {
594
      // Gradient in previous channels.
595
0
      for (int i = 0; i < max_properties; i++) {
596
0
        cparams_.options.splitting_heuristics_properties.push_back(
597
0
            kNumNonrefProperties + i * 4 + 3);
598
0
      }
599
0
    } else {
600
      // All the extra properties in Tortoise mode.
601
0
      for (int i = 0; i < max_properties * 4; i++) {
602
0
        cparams_.options.splitting_heuristics_properties.push_back(
603
0
            kNumNonrefProperties + i);
604
0
      }
605
0
    }
606
0
  }
607
0
  cparams_.options.nb_repeats = std::min(1.0f, cparams_.options.nb_repeats);
608
609
0
  if ((cparams_.options.predictor == Predictor::Average0 ||
610
0
       cparams_.options.predictor == Predictor::Average1 ||
611
0
       cparams_.options.predictor == Predictor::Average2 ||
612
0
       cparams_.options.predictor == Predictor::Average3 ||
613
0
       cparams_.options.predictor == Predictor::Average4 ||
614
0
       cparams_.options.predictor == Predictor::Weighted) &&
615
0
      !cparams_.ModularPartIsLossless()) {
616
    // Lossy + Average/Weighted predictors does not work, so switch to default
617
    // predictors.
618
0
    cparams_.options.predictor = kUndefinedPredictor;
619
0
  }
620
621
0
  if (cparams_.options.predictor == kUndefinedPredictor) {
622
    // no explicit predictor(s) given, set a good default
623
0
    if ((cparams_.speed_tier <= SpeedTier::kGlacier ||
624
0
         cparams_.modular_mode == false) &&
625
0
        cparams_.IsLossless() && cparams_.responsive == JXL_FALSE) {
626
      // TODO(veluca): allow all predictors that don't break residual
627
      // multipliers in lossy mode.
628
0
      cparams_.options.predictor = Predictor::Variable;
629
0
    } else if (cparams_.responsive || cparams_.lossy_palette) {
630
      // zero predictor for Squeeze residues and lossy palette indices
631
      // TODO: Try adding 'Squeezed' predictor set, with the most
632
      // common predictors used by Variable in squeezed images, including none.
633
0
      cparams_.options.predictor = Predictor::Zero;
634
0
    } else if (!cparams_.IsLossless()) {
635
      // If not responsive and lossy. TODO(veluca): use near_lossless instead?
636
0
      cparams_.options.predictor = Predictor::Gradient;
637
0
    } else if (cparams_.speed_tier < SpeedTier::kFalcon) {
638
      // try median and weighted predictor for anything else
639
0
      cparams_.options.predictor = Predictor::Best;
640
0
    } else if (cparams_.speed_tier == SpeedTier::kFalcon) {
641
      // just weighted predictor in falcon mode
642
0
      cparams_.options.predictor = Predictor::Weighted;
643
0
    } else if (cparams_.speed_tier > SpeedTier::kFalcon) {
644
      // just gradient predictor in thunder mode
645
0
      cparams_.options.predictor = Predictor::Gradient;
646
0
    }
647
0
  } else {
648
0
    if (cparams_.lossy_palette) cparams_.options.predictor = Predictor::Zero;
649
0
  }
650
0
  if (!cparams_.ModularPartIsLossless()) {
651
0
    if (cparams_.options.predictor == Predictor::Weighted ||
652
0
        cparams_.options.predictor == Predictor::Variable ||
653
0
        cparams_.options.predictor == Predictor::Best)
654
0
      cparams_.options.predictor = Predictor::Zero;
655
0
  }
656
0
  tree_splits_.push_back(0);
657
0
  if (cparams_.modular_mode == false) {
658
0
    JXL_ASSIGN_OR_RETURN(ModularStreamId qt0, ModularStreamId::QuantTable(0));
659
0
    cparams_.options.fast_decode_multiplier = 1.0f;
660
0
    tree_splits_.push_back(ModularStreamId::VarDCTDC(0).ID(frame_dim_));
661
0
    tree_splits_.push_back(ModularStreamId::ModularDC(0).ID(frame_dim_));
662
0
    tree_splits_.push_back(ModularStreamId::ACMetadata(0).ID(frame_dim_));
663
0
    tree_splits_.push_back(qt0.ID(frame_dim_));
664
0
    tree_splits_.push_back(ModularStreamId::ModularAC(0, 0).ID(frame_dim_));
665
0
    ac_metadata_size.resize(frame_dim_.num_dc_groups);
666
0
    extra_dc_precision.resize(frame_dim_.num_dc_groups);
667
0
  }
668
0
  tree_splits_.push_back(num_streams);
669
0
  cparams_.options.max_chan_size = frame_dim_.group_dim;
670
0
  cparams_.options.group_dim = frame_dim_.group_dim;
671
672
  // TODO(veluca): figure out how to use different predictor sets per channel.
673
0
  stream_options_.resize(num_streams, cparams_.options);
674
675
0
  stream_options_[0] = cparams_.options;
676
0
  if (cparams_.speed_tier == SpeedTier::kFalcon) {
677
0
    stream_options_[0].tree_kind = ModularOptions::TreeKind::kWPFixedDC;
678
0
  } else if (cparams_.speed_tier == SpeedTier::kThunder) {
679
0
    stream_options_[0].tree_kind = ModularOptions::TreeKind::kGradientFixedDC;
680
0
  }
681
0
  stream_options_[0].histogram_params =
682
0
      HistogramParams::ForModular(cparams_, {}, streaming_mode);
683
0
  return true;
684
0
}
685
686
Status ModularFrameEncoder::ComputeEncodingData(
687
    const FrameHeader& frame_header, const ImageMetadata& metadata,
688
    Image3F* JXL_RESTRICT color, const std::vector<ImageF>& extra_channels,
689
    const Rect& group_rect, const FrameDimensions& patch_dim,
690
    const Rect& frame_area_rect, PassesEncoderState* JXL_RESTRICT enc_state,
691
    const JxlCmsInterface& cms, ThreadPool* pool, AuxOut* aux_out,
692
0
    bool do_color) {
693
0
  JxlMemoryManager* memory_manager = enc_state->memory_manager();
694
0
  JXL_DEBUG_V(6, "Computing modular encoding data for frame %s",
695
0
              frame_header.DebugString().c_str());
696
697
0
  bool groupwise = enc_state->streaming_mode;
698
699
0
  if (do_color && frame_header.loop_filter.gab && !groupwise) {
700
0
    float w = 0.9908511000000001f;
701
0
    float weights[3] = {w, w, w};
702
0
    JXL_RETURN_IF_ERROR(GaborishInverse(color, Rect(*color), weights, pool));
703
0
  }
704
705
0
  if (do_color && metadata.bit_depth.bits_per_sample <= 16 &&
706
0
      cparams_.speed_tier < SpeedTier::kCheetah &&
707
0
      cparams_.decoding_speed_tier < 2 && !groupwise) {
708
0
    JXL_RETURN_IF_ERROR(FindBestPatchDictionary(
709
0
        *color, enc_state, cms, nullptr, aux_out,
710
0
        cparams_.color_transform == ColorTransform::kXYB));
711
0
    JXL_RETURN_IF_ERROR(PatchDictionaryEncoder::SubtractFrom(
712
0
        enc_state->shared.image_features.patches, color));
713
0
  }
714
715
0
  if (cparams_.custom_splines.HasAny()) {
716
0
    PassesSharedState& shared = enc_state->shared;
717
0
    ImageFeatures& image_features = shared.image_features;
718
0
    image_features.splines = cparams_.custom_splines;
719
0
  }
720
721
  // Convert ImageBundle to modular Image object
722
0
  const size_t xsize = patch_dim.xsize;
723
0
  const size_t ysize = patch_dim.ysize;
724
725
0
  int nb_chans = 3;
726
0
  if (metadata.color_encoding.IsGray() &&
727
0
      cparams_.color_transform == ColorTransform::kNone) {
728
0
    nb_chans = 1;
729
0
  }
730
0
  if (!do_color) nb_chans = 0;
731
732
0
  nb_chans += extra_channels.size();
733
734
0
  bool fp = metadata.bit_depth.floating_point_sample &&
735
0
            cparams_.color_transform != ColorTransform::kXYB;
736
737
  // bits_per_sample is just metadata for XYB images.
738
0
  if (metadata.bit_depth.bits_per_sample >= 32 && do_color &&
739
0
      cparams_.color_transform != ColorTransform::kXYB) {
740
0
    if (metadata.bit_depth.bits_per_sample == 32 && fp == false) {
741
0
      return JXL_FAILURE("uint32_t not supported in enc_modular");
742
0
    } else if (metadata.bit_depth.bits_per_sample > 32) {
743
0
      return JXL_FAILURE("bits_per_sample > 32 not supported");
744
0
    }
745
0
  }
746
747
  // in the non-float case, there is an implicit 0 sign bit
748
0
  int max_bitdepth =
749
0
      do_color ? metadata.bit_depth.bits_per_sample + (fp ? 0 : 1) : 0;
750
0
  Image& gi = stream_images_[0];
751
0
  JXL_ASSIGN_OR_RETURN(
752
0
      gi, Image::Create(memory_manager, xsize, ysize,
753
0
                        metadata.bit_depth.bits_per_sample, nb_chans));
754
0
  int c = 0;
755
0
  if (cparams_.color_transform == ColorTransform::kXYB &&
756
0
      cparams_.modular_mode == true) {
757
0
    float enc_factors[3] = {65536.0f, 4096.0f, 4096.0f};
758
0
    if (cparams_.butteraugli_distance > 0 && !cparams_.responsive) {
759
      // quantize XYB here and then treat it as a lossless image
760
0
      enc_factors[0] *= 1.f / (1.f + 23.f * cparams_.butteraugli_distance);
761
0
      enc_factors[1] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance);
762
0
      enc_factors[2] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance);
763
0
      cparams_.butteraugli_distance = 0;
764
0
    }
765
0
    if (cparams_.manual_xyb_factors.size() == 3) {
766
0
      JXL_RETURN_IF_ERROR(DequantMatricesSetCustomDC(
767
0
          memory_manager, &enc_state->shared.matrices,
768
0
          cparams_.manual_xyb_factors.data()));
769
      // TODO(jon): update max_bitdepth in this case
770
0
    } else {
771
0
      JXL_RETURN_IF_ERROR(DequantMatricesSetCustomDC(
772
0
          memory_manager, &enc_state->shared.matrices, enc_factors));
773
0
      max_bitdepth = 12;
774
0
    }
775
0
  }
776
0
  pixel_type maxval = gi.bitdepth < 32 ? (1u << gi.bitdepth) - 1 : 0;
777
0
  if (do_color) {
778
0
    for (; c < 3; c++) {
779
0
      if (metadata.color_encoding.IsGray() &&
780
0
          cparams_.color_transform == ColorTransform::kNone &&
781
0
          c != (cparams_.color_transform == ColorTransform::kXYB ? 1 : 0))
782
0
        continue;
783
0
      int c_out = c;
784
      // XYB is encoded as YX(B-Y)
785
0
      if (cparams_.color_transform == ColorTransform::kXYB && c < 2)
786
0
        c_out = 1 - c_out;
787
0
      double factor = maxval;
788
0
      if (cparams_.color_transform == ColorTransform::kXYB)
789
0
        factor = enc_state->shared.matrices.InvDCQuant(c);
790
0
      if (c == 2 && cparams_.color_transform == ColorTransform::kXYB) {
791
0
        JXL_ENSURE(!fp);
792
0
        for (size_t y = 0; y < ysize; ++y) {
793
0
          const float* const JXL_RESTRICT row_in = color->PlaneRow(c, y);
794
0
          pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y);
795
0
          pixel_type* const JXL_RESTRICT row_Y = gi.channel[0].Row(y);
796
0
          for (size_t x = 0; x < xsize; ++x) {
797
            // TODO(eustas): check if std::roundf is appropriate
798
0
            row_out[x] = row_in[x] * factor + 0.5f;
799
0
            row_out[x] -= row_Y[x];
800
0
          }
801
0
        }
802
0
      } else {
803
0
        int bits = metadata.bit_depth.bits_per_sample;
804
0
        int exp_bits = metadata.bit_depth.exponent_bits_per_sample;
805
0
        gi.channel[c_out].hshift = frame_header.chroma_subsampling.HShift(c);
806
0
        gi.channel[c_out].vshift = frame_header.chroma_subsampling.VShift(c);
807
0
        size_t xsize_shifted = DivCeil(xsize, 1 << gi.channel[c_out].hshift);
808
0
        size_t ysize_shifted = DivCeil(ysize, 1 << gi.channel[c_out].vshift);
809
0
        JXL_RETURN_IF_ERROR(
810
0
            gi.channel[c_out].shrink(xsize_shifted, ysize_shifted));
811
0
        const auto process_row = [&](const int task,
812
0
                                     const int thread) -> Status {
813
0
          const size_t y = task;
814
0
          const float* const JXL_RESTRICT row_in =
815
0
              color->PlaneRow(c, y + group_rect.y0()) + group_rect.x0();
816
0
          pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y);
817
0
          JXL_RETURN_IF_ERROR(float_to_int(row_in, row_out, xsize_shifted, bits,
818
0
                                           exp_bits, fp, factor));
819
0
          return true;
820
0
        };
821
0
        JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, ysize_shifted,
822
0
                                      ThreadPool::NoInit, process_row,
823
0
                                      "float2int"));
824
0
      }
825
0
    }
826
0
    if (metadata.color_encoding.IsGray() &&
827
0
        cparams_.color_transform == ColorTransform::kNone)
828
0
      c = 1;
829
0
  }
830
831
0
  for (size_t ec = 0; ec < extra_channels.size(); ec++, c++) {
832
0
    const ExtraChannelInfo& eci = metadata.extra_channel_info[ec];
833
0
    size_t ecups = frame_header.extra_channel_upsampling[ec];
834
0
    JXL_RETURN_IF_ERROR(
835
0
        gi.channel[c].shrink(DivCeil(patch_dim.xsize_upsampled, ecups),
836
0
                             DivCeil(patch_dim.ysize_upsampled, ecups)));
837
0
    gi.channel[c].hshift = gi.channel[c].vshift =
838
0
        CeilLog2Nonzero(ecups) - CeilLog2Nonzero(frame_header.upsampling);
839
840
0
    int bits = eci.bit_depth.bits_per_sample;
841
0
    int exp_bits = eci.bit_depth.exponent_bits_per_sample;
842
0
    bool ec_fp = eci.bit_depth.floating_point_sample;
843
0
    double factor = (ec_fp ? 1 : ((1u << eci.bit_depth.bits_per_sample) - 1));
844
0
    if (bits + (ec_fp ? 0 : 1) > max_bitdepth) {
845
0
      max_bitdepth = bits + (ec_fp ? 0 : 1);
846
0
    }
847
0
    const auto process_row = [&](const int task, const int thread) -> Status {
848
0
      const size_t y = task;
849
0
      const float* const JXL_RESTRICT row_in =
850
0
          extra_channels[ec].Row(y + group_rect.y0()) + group_rect.x0();
851
0
      pixel_type* const JXL_RESTRICT row_out = gi.channel[c].Row(y);
852
0
      JXL_RETURN_IF_ERROR(float_to_int(row_in, row_out,
853
0
                                       gi.channel[c].plane.xsize(), bits,
854
0
                                       exp_bits, ec_fp, factor));
855
0
      return true;
856
0
    };
857
0
    JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, gi.channel[c].plane.ysize(),
858
0
                                  ThreadPool::NoInit, process_row,
859
0
                                  "float2int"));
860
0
  }
861
0
  JXL_ENSURE(c == nb_chans);
862
863
0
  int level_max_bitdepth = (cparams_.level == 5 ? 16 : 32);
864
0
  if (max_bitdepth > level_max_bitdepth) {
865
0
    return JXL_FAILURE(
866
0
        "Bitdepth too high for level %i (need %i bits, have only %i in this "
867
0
        "level)",
868
0
        cparams_.level, max_bitdepth, level_max_bitdepth);
869
0
  }
870
871
  // Set options and apply transformations
872
0
  if (!cparams_.ModularPartIsLossless()) {
873
0
    if (cparams_.palette_colors != 0) {
874
0
      JXL_DEBUG_V(3, "Lossy encode, not doing palette transforms");
875
0
    }
876
0
    if (cparams_.color_transform == ColorTransform::kXYB) {
877
0
      cparams_.channel_colors_pre_transform_percent = 0;
878
0
    }
879
0
    cparams_.channel_colors_percent = 0;
880
0
    cparams_.palette_colors = 0;
881
0
    cparams_.lossy_palette = false;
882
0
  }
883
884
  // Global palette transforms
885
0
  float channel_colors_percent = 0;
886
0
  if (!cparams_.lossy_palette &&
887
0
      (cparams_.speed_tier <= SpeedTier::kThunder ||
888
0
       (do_color && metadata.bit_depth.bits_per_sample > 8))) {
889
0
    channel_colors_percent = cparams_.channel_colors_pre_transform_percent;
890
0
  }
891
0
  if (!groupwise) {
892
0
    JXL_RETURN_IF_ERROR(try_palettes(gi, max_bitdepth, maxval, cparams_,
893
0
                                     channel_colors_percent, pool));
894
0
  }
895
896
  // don't do an RCT if we're short on bits
897
0
  if (cparams_.color_transform == ColorTransform::kNone && do_color &&
898
0
      gi.channel.size() - gi.nb_meta_channels >= 3 &&
899
0
      max_bitdepth + 1 < level_max_bitdepth) {
900
0
    if (cparams_.colorspace < 0 && (!cparams_.ModularPartIsLossless() ||
901
0
                                    cparams_.speed_tier > SpeedTier::kHare)) {
902
0
      Transform ycocg{TransformId::kRCT};
903
0
      ycocg.rct_type = 6;
904
0
      ycocg.begin_c = gi.nb_meta_channels;
905
0
      do_transform(gi, ycocg, weighted::Header(), pool);
906
0
      max_bitdepth++;
907
0
    } else if (cparams_.colorspace > 0) {
908
0
      Transform sg(TransformId::kRCT);
909
0
      sg.begin_c = gi.nb_meta_channels;
910
0
      sg.rct_type = cparams_.colorspace;
911
0
      do_transform(gi, sg, weighted::Header(), pool);
912
0
      max_bitdepth++;
913
0
    }
914
0
  }
915
916
0
  if (cparams_.move_to_front_from_channel > 0) {
917
0
    for (size_t tgt = 0;
918
0
         tgt + cparams_.move_to_front_from_channel < gi.channel.size(); tgt++) {
919
0
      size_t pos = cparams_.move_to_front_from_channel;
920
0
      while (pos > 0) {
921
0
        Transform move(TransformId::kRCT);
922
0
        if (pos == 1) {
923
0
          move.begin_c = tgt;
924
0
          move.rct_type = 28;  // RGB -> GRB
925
0
          pos -= 1;
926
0
        } else {
927
0
          move.begin_c = tgt + pos - 2;
928
0
          move.rct_type = 14;  // RGB -> BRG
929
0
          pos -= 2;
930
0
        }
931
0
        do_transform(gi, move, weighted::Header(), pool);
932
0
      }
933
0
    }
934
0
  }
935
936
  // don't do squeeze if we don't have some spare bits
937
0
  if (!groupwise && cparams_.responsive && !gi.channel.empty() &&
938
0
      max_bitdepth + 2 < level_max_bitdepth) {
939
0
    Transform t(TransformId::kSqueeze);
940
    // Check if default squeeze parameters are ok.
941
0
    std::vector<SqueezeParams> params;
942
0
    DefaultSqueezeParameters(&params, gi);
943
    // If image is smaller than group_dim, then default squeeze parameters
944
    // are not going too far. Else, channel size don't turn zero. Thus we only
945
    // check if tile does not go to zero-dim.
946
0
    size_t shift_cap = 7 + frame_header.group_size_shift;
947
0
    size_t hshift = 0;
948
0
    size_t vshift = 0;
949
0
    for (size_t i = 0; i < params.size(); ++i) {
950
0
      if (params[i].horizontal) {
951
0
        hshift++;
952
0
      } else {
953
0
        vshift++;
954
0
      }
955
0
      size_t dc_boost = (std::min(hshift, vshift) >= 3) ? 3 : 0;
956
      // In case we squeeze too much, truncate squeeze script.
957
0
      if (std::max(hshift, vshift) > shift_cap + dc_boost) {
958
0
        params.resize(i - 1);
959
0
        t.squeezes = params;
960
0
        break;
961
0
      }
962
0
    }
963
0
    do_transform(gi, t, weighted::Header(), pool);
964
0
    max_bitdepth += 2;
965
0
  }
966
967
0
  if (max_bitdepth + 1 > level_max_bitdepth) {
968
    // force no group RCTs if we don't have a spare bit
969
0
    cparams_.colorspace = 0;
970
0
  }
971
0
  JXL_ENSURE(max_bitdepth <= level_max_bitdepth);
972
973
0
  if (!cparams_.ModularPartIsLossless()) {
974
0
    quants_.resize(gi.channel.size(), 1);
975
0
    float quantizer = 0.25f;
976
0
    if (!cparams_.responsive) {
977
0
      JXL_DEBUG_V(1,
978
0
                  "Warning: lossy compression without Squeeze "
979
0
                  "transform is just color quantization.");
980
0
      quantizer *= 0.1f;
981
0
    }
982
0
    float bitdepth_correction = 1.f;
983
0
    if (cparams_.color_transform != ColorTransform::kXYB) {
984
0
      bitdepth_correction = maxval / 255.f;
985
0
    }
986
0
    std::vector<float> quantizers;
987
0
    for (size_t i = 0; i < 3; i++) {
988
0
      float dist = cparams_.butteraugli_distance;
989
0
      quantizers.push_back(quantizer * powf(dist, 1.2) * bitdepth_correction);
990
0
    }
991
0
    for (size_t i = 0; i < extra_channels.size(); i++) {
992
0
      int ec_bitdepth =
993
0
          metadata.extra_channel_info[i].bit_depth.bits_per_sample;
994
0
      pixel_type ec_maxval = ec_bitdepth < 32 ? (1u << ec_bitdepth) - 1 : 0;
995
0
      bitdepth_correction = ec_maxval / 255.f;
996
0
      float dist = 0;
997
0
      if (i < cparams_.ec_distance.size()) dist = cparams_.ec_distance[i];
998
0
      if (dist < 0) dist = cparams_.butteraugli_distance;
999
0
      quantizers.push_back(quantizer * dist * bitdepth_correction);
1000
0
    }
1001
0
    if (cparams_.options.nb_repeats == 0) {
1002
0
      return JXL_FAILURE("nb_repeats = 0 not supported with modular lossy!");
1003
0
    }
1004
0
    for (uint32_t i = gi.nb_meta_channels; i < gi.channel.size(); i++) {
1005
0
      Channel& ch = gi.channel[i];
1006
0
      int shift = ch.hshift + ch.vshift;  // number of pixel halvings
1007
0
      if (shift > 16) shift = 16;
1008
0
      if (shift > 0) shift--;
1009
0
      int component = (do_color ? 0 : 3) + ch.component;
1010
0
      int q;
1011
0
      if (cparams_.color_transform == ColorTransform::kXYB && component < 3) {
1012
0
        q = quantizers[component] * squeeze_quality_factor_xyb *
1013
0
            squeeze_xyb_qtable[component][shift];
1014
0
        if (component == 0) q *= squeeze_quality_factor_y;
1015
0
      } else {
1016
0
        if (cparams_.colorspace != 0 && component > 0 && component < 3) {
1017
0
          q = quantizers[component] * squeeze_quality_factor *
1018
0
              squeeze_chroma_qtable[shift];
1019
0
        } else {
1020
0
          q = quantizers[component] * squeeze_quality_factor *
1021
0
              squeeze_luma_factor * squeeze_luma_qtable[shift];
1022
0
        }
1023
0
      }
1024
0
      if (q < 1) q = 1;
1025
0
      QuantizeChannel(gi.channel[i], q);
1026
0
      quants_[i] = q;
1027
0
    }
1028
0
  }
1029
1030
  // Fill other groups.
1031
  // DC
1032
0
  for (size_t group_id = 0; group_id < patch_dim.num_dc_groups; group_id++) {
1033
0
    const size_t rgx = group_id % patch_dim.xsize_dc_groups;
1034
0
    const size_t rgy = group_id / patch_dim.xsize_dc_groups;
1035
0
    const Rect rect(rgx * patch_dim.dc_group_dim, rgy * patch_dim.dc_group_dim,
1036
0
                    patch_dim.dc_group_dim, patch_dim.dc_group_dim);
1037
0
    size_t gx = rgx + frame_area_rect.x0() / 2048;
1038
0
    size_t gy = rgy + frame_area_rect.y0() / 2048;
1039
0
    size_t real_group_id = gy * frame_dim_.xsize_dc_groups + gx;
1040
    // minShift==3 because (frame_dim.dc_group_dim >> 3) == frame_dim.group_dim
1041
    // maxShift==1000 is infinity
1042
0
    stream_params_.push_back(
1043
0
        GroupParams{rect, 3, 1000, ModularStreamId::ModularDC(real_group_id)});
1044
0
  }
1045
  // AC global -> nothing.
1046
  // AC
1047
0
  for (size_t group_id = 0; group_id < patch_dim.num_groups; group_id++) {
1048
0
    const size_t rgx = group_id % patch_dim.xsize_groups;
1049
0
    const size_t rgy = group_id / patch_dim.xsize_groups;
1050
0
    const Rect mrect(rgx * patch_dim.group_dim, rgy * patch_dim.group_dim,
1051
0
                     patch_dim.group_dim, patch_dim.group_dim);
1052
0
    size_t gx = rgx + frame_area_rect.x0() / (frame_dim_.group_dim);
1053
0
    size_t gy = rgy + frame_area_rect.y0() / (frame_dim_.group_dim);
1054
0
    size_t real_group_id = gy * frame_dim_.xsize_groups + gx;
1055
0
    for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses();
1056
0
         i++) {
1057
0
      int maxShift;
1058
0
      int minShift;
1059
0
      frame_header.passes.GetDownsamplingBracket(i, minShift, maxShift);
1060
0
      stream_params_.push_back(
1061
0
          GroupParams{mrect, minShift, maxShift,
1062
0
                      ModularStreamId::ModularAC(real_group_id, i)});
1063
0
    }
1064
0
  }
1065
  // if there's only one group, everything ends up in GlobalModular
1066
  // in that case, also try RCTs/WP params for the one group
1067
0
  if (stream_params_.size() == 2) {
1068
0
    stream_params_.push_back(GroupParams{Rect(0, 0, xsize, ysize), 0, 1000,
1069
0
                                         ModularStreamId::Global()});
1070
0
  }
1071
0
  gi_channel_.resize(stream_images_.size());
1072
1073
0
  const auto process_row = [&](const uint32_t i,
1074
0
                               size_t /* thread */) -> Status {
1075
0
    size_t stream = stream_params_[i].id.ID(frame_dim_);
1076
0
    if (stream != 0) {
1077
0
      stream_options_[stream] = stream_options_[0];
1078
0
    }
1079
0
    JXL_RETURN_IF_ERROR(PrepareStreamParams(
1080
0
        stream_params_[i].rect, cparams_, stream_params_[i].minShift,
1081
0
        stream_params_[i].maxShift, stream_params_[i].id, do_color, groupwise));
1082
0
    return true;
1083
0
  };
1084
0
  JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, stream_params_.size(),
1085
0
                                ThreadPool::NoInit, process_row,
1086
0
                                "ChooseParams"));
1087
0
  {
1088
    // Clear out channels that have been copied to groups.
1089
0
    Image& full_image = stream_images_[0];
1090
0
    size_t ch = full_image.nb_meta_channels;
1091
0
    for (; ch < full_image.channel.size(); ch++) {
1092
0
      Channel& fc = full_image.channel[ch];
1093
0
      if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break;
1094
0
    }
1095
0
    for (; ch < full_image.channel.size(); ch++) {
1096
      // TODO(eustas): shrink / assign channel to keep size consistency
1097
0
      full_image.channel[ch].plane = ImageI();
1098
0
    }
1099
0
  }
1100
1101
0
  JXL_RETURN_IF_ERROR(ValidateChannelDimensions(gi, stream_options_[0]));
1102
0
  return true;
1103
0
}
1104
1105
0
Status ModularFrameEncoder::ComputeTree(ThreadPool* pool) {
1106
0
  std::vector<ModularMultiplierInfo> multiplier_info;
1107
0
  if (!quants_.empty()) {
1108
0
    for (uint32_t stream_id = 0; stream_id < stream_images_.size();
1109
0
         stream_id++) {
1110
      // skip non-modular stream_ids
1111
0
      if (stream_id > 0 && gi_channel_[stream_id].empty()) continue;
1112
0
      const Image& image = stream_images_[stream_id];
1113
0
      const ModularOptions& options = stream_options_[stream_id];
1114
0
      for (uint32_t i = image.nb_meta_channels; i < image.channel.size(); i++) {
1115
0
        if (image.channel[i].w > options.max_chan_size ||
1116
0
            image.channel[i].h > options.max_chan_size) {
1117
0
          continue;
1118
0
        }
1119
0
        if (stream_id > 0 && gi_channel_[stream_id].empty()) continue;
1120
0
        size_t ch_id = stream_id == 0
1121
0
                           ? i
1122
0
                           : gi_channel_[stream_id][i - image.nb_meta_channels];
1123
0
        uint32_t q = quants_[ch_id];
1124
        // Inform the tree splitting heuristics that each channel in each group
1125
        // used this quantization factor. This will produce a tree with the
1126
        // given multipliers.
1127
0
        if (multiplier_info.empty() ||
1128
0
            multiplier_info.back().range[1][0] != stream_id ||
1129
0
            multiplier_info.back().multiplier != q) {
1130
0
          StaticPropRange range;
1131
0
          range[0] = {{i, i + 1}};
1132
0
          range[1] = {{stream_id, stream_id + 1}};
1133
0
          multiplier_info.push_back({range, q});
1134
0
        } else {
1135
          // Previous channel in the same group had the same quantization
1136
          // factor. Don't provide two different ranges, as that creates
1137
          // unnecessary nodes.
1138
0
          multiplier_info.back().range[0][1] = i + 1;
1139
0
        }
1140
0
      }
1141
0
    }
1142
    // Merge group+channel settings that have the same channels and quantization
1143
    // factors, to avoid unnecessary nodes.
1144
0
    std::sort(multiplier_info.begin(), multiplier_info.end(),
1145
0
              [](ModularMultiplierInfo a, ModularMultiplierInfo b) {
1146
0
                return std::make_tuple(a.range, a.multiplier) <
1147
0
                       std::make_tuple(b.range, b.multiplier);
1148
0
              });
1149
0
    size_t new_num = 1;
1150
0
    for (size_t i = 1; i < multiplier_info.size(); i++) {
1151
0
      ModularMultiplierInfo& prev = multiplier_info[new_num - 1];
1152
0
      ModularMultiplierInfo& cur = multiplier_info[i];
1153
0
      if (prev.range[0] == cur.range[0] && prev.multiplier == cur.multiplier &&
1154
0
          prev.range[1][1] == cur.range[1][0]) {
1155
0
        prev.range[1][1] = cur.range[1][1];
1156
0
      } else {
1157
0
        multiplier_info[new_num++] = multiplier_info[i];
1158
0
      }
1159
0
    }
1160
0
    multiplier_info.resize(new_num);
1161
0
  }
1162
1163
0
  if (!cparams_.custom_fixed_tree.empty()) {
1164
0
    tree_ = cparams_.custom_fixed_tree;
1165
0
  } else if (cparams_.speed_tier < SpeedTier::kFalcon ||
1166
0
             !cparams_.modular_mode) {
1167
    // Avoid creating a tree with leaves that don't correspond to any pixels.
1168
0
    std::vector<size_t> useful_splits;
1169
0
    useful_splits.reserve(tree_splits_.size());
1170
0
    for (size_t chunk = 0; chunk < tree_splits_.size() - 1; chunk++) {
1171
0
      bool has_pixels = false;
1172
0
      size_t start = tree_splits_[chunk];
1173
0
      size_t stop = tree_splits_[chunk + 1];
1174
0
      for (size_t i = start; i < stop; i++) {
1175
0
        if (!stream_images_[i].empty()) has_pixels = true;
1176
0
      }
1177
0
      if (has_pixels) {
1178
0
        useful_splits.push_back(tree_splits_[chunk]);
1179
0
      }
1180
0
    }
1181
    // Don't do anything if modular mode does not have any pixels in this image
1182
0
    if (useful_splits.empty()) return true;
1183
0
    useful_splits.push_back(tree_splits_.back());
1184
1185
0
    std::vector<Tree> trees(useful_splits.size() - 1);
1186
0
    const auto process_chunk = [&](const uint32_t chunk,
1187
0
                                   size_t /* thread */) -> Status {
1188
      // TODO(veluca): parallelize more.
1189
0
      uint32_t start = useful_splits[chunk];
1190
0
      uint32_t stop = useful_splits[chunk + 1];
1191
0
      while (start < stop && stream_images_[start].empty()) ++start;
1192
0
      while (start < stop && stream_images_[stop - 1].empty()) --stop;
1193
1194
0
      if (stream_options_[start].tree_kind ==
1195
0
          ModularOptions::TreeKind::kLearn) {
1196
0
        JXL_ASSIGN_OR_RETURN(
1197
0
            trees[chunk],
1198
0
            LearnTree(stream_images_.data(), stream_options_.data(), start,
1199
0
                      stop, multiplier_info));
1200
0
      } else {
1201
0
        size_t total_pixels = 0;
1202
0
        for (size_t i = start; i < stop; i++) {
1203
0
          for (const Channel& ch : stream_images_[i].channel) {
1204
0
            total_pixels += ch.w * ch.h;
1205
0
          }
1206
0
        }
1207
0
        total_pixels = std::max<size_t>(total_pixels, 1);
1208
1209
0
        trees[chunk] = PredefinedTree(stream_options_[start].tree_kind,
1210
0
                                      total_pixels, 8, 0);
1211
0
      }
1212
0
      return true;
1213
0
    };
1214
0
    JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, useful_splits.size() - 1,
1215
0
                                  ThreadPool::NoInit, process_chunk,
1216
0
                                  "LearnTrees"));
1217
0
    tree_.clear();
1218
0
    JXL_RETURN_IF_ERROR(
1219
0
        MergeTrees(trees, useful_splits, 0, useful_splits.size() - 1, &tree_));
1220
0
  } else {
1221
    // Fixed tree.
1222
0
    size_t total_pixels = 0;
1223
0
    int max_bitdepth = 0;
1224
0
    for (const Image& img : stream_images_) {
1225
0
      max_bitdepth = std::max(max_bitdepth, img.bitdepth);
1226
0
      for (const Channel& ch : img.channel) {
1227
0
        total_pixels += ch.w * ch.h;
1228
0
      }
1229
0
    }
1230
0
    if (cparams_.speed_tier <= SpeedTier::kFalcon) {
1231
0
      tree_ = PredefinedTree(ModularOptions::TreeKind::kWPFixedDC, total_pixels,
1232
0
                             max_bitdepth, stream_options_[0].max_properties);
1233
0
    } else if (cparams_.speed_tier <= SpeedTier::kThunder) {
1234
0
      tree_ = PredefinedTree(ModularOptions::TreeKind::kGradientFixedDC,
1235
0
                             total_pixels, max_bitdepth,
1236
0
                             stream_options_[0].max_properties);
1237
0
    } else {
1238
0
      tree_ = {PropertyDecisionNode::Leaf(Predictor::Gradient)};
1239
0
    }
1240
0
  }
1241
0
  tree_tokens_.resize(1);
1242
0
  tree_tokens_[0].clear();
1243
0
  Tree decoded_tree;
1244
0
  JXL_RETURN_IF_ERROR(TokenizeTree(tree_, tree_tokens_.data(), &decoded_tree));
1245
0
  JXL_ENSURE(tree_.size() == decoded_tree.size());
1246
0
  tree_ = std::move(decoded_tree);
1247
1248
  /* TODO(szabadka) Add text output callback to cparams
1249
  if (kPrintTree && WantDebugOutput(aux_out)) {
1250
    if (frame_header.dc_level > 0) {
1251
      PrintTree(tree_, aux_out->debug_prefix + "/dc_frame_level" +
1252
                           std::to_string(frame_header.dc_level) + "_tree");
1253
    } else {
1254
      PrintTree(tree_, aux_out->debug_prefix + "/global_tree");
1255
    }
1256
  } */
1257
0
  return true;
1258
0
}
1259
1260
0
Status ModularFrameEncoder::ComputeTokens(ThreadPool* pool) {
1261
0
  size_t num_streams = stream_images_.size();
1262
0
  stream_headers_.resize(num_streams);
1263
0
  tokens_.resize(num_streams);
1264
0
  image_widths_.resize(num_streams);
1265
0
  const auto process_stream = [&](const uint32_t stream_id,
1266
0
                                  size_t /* thread */) -> Status {
1267
0
    tokens_[stream_id].clear();
1268
0
    JXL_RETURN_IF_ERROR(
1269
0
        ModularCompress(stream_images_[stream_id], stream_options_[stream_id],
1270
0
                        stream_id, tree_, stream_headers_[stream_id],
1271
0
                        tokens_[stream_id], &image_widths_[stream_id]));
1272
0
    return true;
1273
0
  };
1274
0
  JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, num_streams, ThreadPool::NoInit,
1275
0
                                process_stream, "ComputeTokens"));
1276
0
  return true;
1277
0
}
1278
1279
Status ModularFrameEncoder::EncodeGlobalInfo(bool streaming_mode,
1280
                                             BitWriter* writer,
1281
0
                                             AuxOut* aux_out) {
1282
0
  JxlMemoryManager* memory_manager = writer->memory_manager();
1283
0
  bool skip_rest = false;
1284
0
  JXL_RETURN_IF_ERROR(
1285
0
      writer->WithMaxBits(1, LayerType::ModularTree, aux_out, [&] {
1286
        // If we are using brotli, or not using modular mode.
1287
0
        if (tree_tokens_.empty() || tree_tokens_[0].empty()) {
1288
0
          writer->Write(1, 0);
1289
0
          skip_rest = true;
1290
0
        } else {
1291
0
          writer->Write(1, 1);
1292
0
        }
1293
0
        return true;
1294
0
      }));
1295
0
  if (skip_rest) return true;
1296
1297
  // Write tree
1298
0
  HistogramParams params =
1299
0
      HistogramParams::ForModular(cparams_, extra_dc_precision, streaming_mode);
1300
0
  {
1301
0
    EntropyEncodingData tree_code;
1302
0
    JXL_ASSIGN_OR_RETURN(
1303
0
        size_t cost, BuildAndEncodeHistograms(
1304
0
                         memory_manager, params, kNumTreeContexts, tree_tokens_,
1305
0
                         &tree_code, writer, LayerType::ModularTree, aux_out));
1306
0
    (void)cost;
1307
0
    JXL_RETURN_IF_ERROR(WriteTokens(tree_tokens_[0], tree_code, 0, writer,
1308
0
                                    LayerType::ModularTree, aux_out));
1309
0
  }
1310
0
  params.streaming_mode = streaming_mode;
1311
0
  params.add_missing_symbols = streaming_mode;
1312
0
  params.image_widths = image_widths_;
1313
  // Write histograms.
1314
0
  JXL_ASSIGN_OR_RETURN(
1315
0
      size_t cost, BuildAndEncodeHistograms(
1316
0
                       memory_manager, params, (tree_.size() + 1) / 2, tokens_,
1317
0
                       &code_, writer, LayerType::ModularGlobal, aux_out));
1318
0
  (void)cost;
1319
0
  return true;
1320
0
}
1321
1322
Status ModularFrameEncoder::EncodeStream(BitWriter* writer, AuxOut* aux_out,
1323
                                         LayerType layer,
1324
0
                                         const ModularStreamId& stream) {
1325
0
  size_t stream_id = stream.ID(frame_dim_);
1326
0
  if (stream_images_[stream_id].channel.empty()) {
1327
0
    JXL_DEBUG_V(10, "Modular stream %" PRIuS " is empty.", stream_id);
1328
0
    return true;  // Image with no channels, header never gets decoded.
1329
0
  }
1330
0
  if (tokens_.empty()) {
1331
0
    JXL_RETURN_IF_ERROR(ModularGenericCompress(
1332
0
        stream_images_[stream_id], stream_options_[stream_id], *writer, aux_out,
1333
0
        layer, stream_id));
1334
0
  } else {
1335
0
    JXL_RETURN_IF_ERROR(
1336
0
        Bundle::Write(stream_headers_[stream_id], writer, layer, aux_out));
1337
0
    JXL_RETURN_IF_ERROR(
1338
0
        WriteTokens(tokens_[stream_id], code_, 0, writer, layer, aux_out));
1339
0
  }
1340
0
  return true;
1341
0
}
1342
1343
0
void ModularFrameEncoder::ClearStreamData(const ModularStreamId& stream) {
1344
0
  size_t stream_id = stream.ID(frame_dim_);
1345
0
  Image empty_image(stream_images_[stream_id].memory_manager());
1346
0
  std::swap(stream_images_[stream_id], empty_image);
1347
0
}
1348
1349
0
void ModularFrameEncoder::ClearModularStreamData() {
1350
0
  for (const auto& group : stream_params_) {
1351
0
    ClearStreamData(group.id);
1352
0
  }
1353
0
  stream_params_.clear();
1354
0
}
1355
1356
size_t ModularFrameEncoder::ComputeStreamingAbsoluteAcGroupId(
1357
    size_t dc_group_id, size_t ac_group_id,
1358
0
    const FrameDimensions& patch_dim) const {
1359
0
  size_t dc_group_x = dc_group_id % frame_dim_.xsize_dc_groups;
1360
0
  size_t dc_group_y = dc_group_id / frame_dim_.xsize_dc_groups;
1361
0
  size_t ac_group_x = ac_group_id % patch_dim.xsize_groups;
1362
0
  size_t ac_group_y = ac_group_id / patch_dim.xsize_groups;
1363
0
  return (dc_group_x * 8 + ac_group_x) +
1364
0
         (dc_group_y * 8 + ac_group_y) * frame_dim_.xsize_groups;
1365
0
}
1366
1367
Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
1368
                                                const CompressParams& cparams,
1369
                                                int minShift, int maxShift,
1370
                                                const ModularStreamId& stream,
1371
0
                                                bool do_color, bool groupwise) {
1372
0
  size_t stream_id = stream.ID(frame_dim_);
1373
0
  if (stream_id == 0 && frame_dim_.num_groups != 1) {
1374
    // If we have multiple groups, then the stream with ID 0 holds the full
1375
    // image and we do not want to apply transforms or in general change the
1376
    // pixel values.
1377
0
    return true;
1378
0
  }
1379
0
  Image& full_image = stream_images_[0];
1380
0
  JxlMemoryManager* memory_manager = full_image.memory_manager();
1381
0
  const size_t xsize = rect.xsize();
1382
0
  const size_t ysize = rect.ysize();
1383
0
  Image& gi = stream_images_[stream_id];
1384
0
  if (stream_id > 0) {
1385
0
    JXL_ASSIGN_OR_RETURN(gi, Image::Create(memory_manager, xsize, ysize,
1386
0
                                           full_image.bitdepth, 0));
1387
    // start at the first bigger-than-frame_dim.group_dim non-metachannel
1388
0
    size_t c = full_image.nb_meta_channels;
1389
0
    if (!groupwise) {
1390
0
      for (; c < full_image.channel.size(); c++) {
1391
0
        Channel& fc = full_image.channel[c];
1392
0
        if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break;
1393
0
      }
1394
0
    }
1395
0
    for (; c < full_image.channel.size(); c++) {
1396
0
      Channel& fc = full_image.channel[c];
1397
0
      int shift = std::min(fc.hshift, fc.vshift);
1398
0
      if (shift > maxShift) continue;
1399
0
      if (shift < minShift) continue;
1400
0
      Rect r(rect.x0() >> fc.hshift, rect.y0() >> fc.vshift,
1401
0
             rect.xsize() >> fc.hshift, rect.ysize() >> fc.vshift, fc.w, fc.h);
1402
0
      if (r.xsize() == 0 || r.ysize() == 0) continue;
1403
0
      gi_channel_[stream_id].push_back(c);
1404
0
      JXL_ASSIGN_OR_RETURN(
1405
0
          Channel gc, Channel::Create(memory_manager, r.xsize(), r.ysize()));
1406
0
      gc.hshift = fc.hshift;
1407
0
      gc.vshift = fc.vshift;
1408
0
      for (size_t y = 0; y < r.ysize(); ++y) {
1409
0
        memcpy(gc.Row(y), r.ConstRow(fc.plane, y),
1410
0
               r.xsize() * sizeof(pixel_type));
1411
0
      }
1412
0
      gi.channel.emplace_back(std::move(gc));
1413
0
    }
1414
1415
0
    if (gi.channel.empty()) return true;
1416
    // Do some per-group transforms
1417
1418
    // Local palette transforms
1419
    // TODO(veluca): make this work with quantize-after-prediction in lossy
1420
    // mode.
1421
0
    if (cparams.butteraugli_distance == 0.f && !cparams.lossy_palette &&
1422
0
        cparams.speed_tier < SpeedTier::kCheetah) {
1423
0
      int max_bitdepth = 0, maxval = 0;  // don't care about that here
1424
0
      float channel_color_percent = 0;
1425
0
      if (!(cparams.responsive &&
1426
0
            (cparams.decoding_speed_tier >= 1 || cparams.IsLossless()))) {
1427
0
        channel_color_percent = cparams.channel_colors_percent;
1428
0
      }
1429
0
      JXL_RETURN_IF_ERROR(try_palettes(gi, max_bitdepth, maxval, cparams,
1430
0
                                       channel_color_percent));
1431
0
    }
1432
0
  }
1433
1434
  // lossless and no specific color transform specified: try Nothing, YCoCg,
1435
  // and 17 RCTs
1436
0
  if (cparams.color_transform == ColorTransform::kNone &&
1437
0
      cparams.IsLossless() && cparams.colorspace < 0 &&
1438
0
      gi.channel.size() - gi.nb_meta_channels >= 3 &&
1439
0
      cparams.responsive == JXL_FALSE && do_color &&
1440
0
      cparams.speed_tier <= SpeedTier::kHare) {
1441
0
    size_t nb_rcts_to_try = 0;
1442
0
    switch (cparams.speed_tier) {
1443
0
      case SpeedTier::kLightning:
1444
0
      case SpeedTier::kThunder:
1445
0
      case SpeedTier::kFalcon:
1446
0
      case SpeedTier::kCheetah:
1447
0
        nb_rcts_to_try = 0;  // Just do global YCoCg
1448
0
        break;
1449
0
      case SpeedTier::kHare:
1450
0
        nb_rcts_to_try = 4;
1451
0
        break;
1452
0
      case SpeedTier::kWombat:
1453
0
        nb_rcts_to_try = 5;
1454
0
        break;
1455
0
      case SpeedTier::kSquirrel:
1456
0
        nb_rcts_to_try = 7;
1457
0
        break;
1458
0
      case SpeedTier::kKitten:
1459
0
        nb_rcts_to_try = 9;
1460
0
        break;
1461
0
      case SpeedTier::kTectonicPlate:
1462
0
      case SpeedTier::kGlacier:
1463
0
      case SpeedTier::kTortoise:
1464
0
        nb_rcts_to_try = 19;
1465
0
        break;
1466
0
    }
1467
0
    float best_cost = std::numeric_limits<float>::max();
1468
0
    size_t best_rct = 0;
1469
0
    bool need_to_restore = (nb_rcts_to_try > 1);
1470
0
    std::vector<Channel> orig;
1471
0
    orig.reserve(3);
1472
    // These should be 19 actually different transforms; the remaining ones
1473
    // are equivalent to one of these (note that the first two are do-nothing
1474
    // and YCoCg) modulo channel reordering (which only matters in the case of
1475
    // MA-with-prev-channels-properties) and/or sign (e.g. RmG vs GmR)
1476
0
    for (int rct_type : {0 * 7 + 0, 0 * 7 + 6, 0 * 7 + 5, 1 * 7 + 3, 3 * 7 + 5,
1477
0
                         5 * 7 + 5, 1 * 7 + 5, 2 * 7 + 5, 1 * 7 + 1, 0 * 7 + 4,
1478
0
                         1 * 7 + 2, 2 * 7 + 1, 2 * 7 + 2, 2 * 7 + 3, 4 * 7 + 4,
1479
0
                         4 * 7 + 5, 0 * 7 + 2, 0 * 7 + 1, 0 * 7 + 3}) {
1480
0
      if (nb_rcts_to_try == 0) break;
1481
0
      nb_rcts_to_try--;
1482
      // no-op rct_type; use as baseline cost
1483
0
      if (rct_type == 0) {
1484
0
        JXL_ASSIGN_OR_RETURN(best_cost, EstimateCost(gi));
1485
0
        for (size_t c = 0; c < 3; ++c) {
1486
0
          Channel& genuine = gi.channel[gi.nb_meta_channels + c];
1487
0
          JXL_ASSIGN_OR_RETURN(
1488
0
              Channel ch,
1489
0
              Channel::Create(genuine.memory_manager(), genuine.w, genuine.h,
1490
0
                              genuine.hshift, genuine.vshift));
1491
0
          orig.emplace_back(std::move(ch));
1492
0
          genuine.plane.Swap(orig[c].plane);
1493
0
        }
1494
0
      } else {
1495
0
        std::array<const Channel*, 3> in = {&orig[0], &orig[1], &orig[2]};
1496
0
        std::array<Channel*, 3> out = {&gi.channel[gi.nb_meta_channels + 0],
1497
0
                                       &gi.channel[gi.nb_meta_channels + 1],
1498
0
                                       &gi.channel[gi.nb_meta_channels + 2]};
1499
0
        JXL_RETURN_IF_ERROR(FwdRct(in, out, rct_type, /* pool */ nullptr));
1500
0
        JXL_ASSIGN_OR_RETURN(float cost, EstimateCost(gi));
1501
0
        if (cost < best_cost) {
1502
0
          best_rct = rct_type;
1503
0
          best_cost = cost;
1504
0
        }
1505
0
      }
1506
0
    }
1507
0
    if (need_to_restore) {
1508
0
      for (size_t c = 0; c < 3; ++c) {
1509
0
        gi.channel[gi.nb_meta_channels + c].plane.Swap(orig[c].plane);
1510
0
      }
1511
0
    }
1512
    // Apply the best RCT to the image for future encoding.
1513
0
    if (best_rct != 0) {
1514
0
      Transform sg(TransformId::kRCT);
1515
0
      sg.begin_c = gi.nb_meta_channels;
1516
0
      sg.rct_type = best_rct;
1517
0
      do_transform(gi, sg, weighted::Header());
1518
0
    }
1519
0
  } else {
1520
    // No need to try anything, just use the default options.
1521
0
  }
1522
0
  size_t nb_wp_modes = 1;
1523
0
  if (cparams.speed_tier <= SpeedTier::kTortoise) {
1524
0
    nb_wp_modes = 5;
1525
0
  } else if (cparams.speed_tier <= SpeedTier::kKitten) {
1526
0
    nb_wp_modes = 2;
1527
0
  }
1528
0
  if (nb_wp_modes > 1 &&
1529
0
      PredictorHasWeighted(stream_options_[stream_id].predictor)) {
1530
0
    float best_cost = std::numeric_limits<float>::max();
1531
0
    stream_options_[stream_id].wp_mode = 0;
1532
0
    for (size_t i = 0; i < nb_wp_modes; i++) {
1533
0
      float cost = EstimateWPCost(gi, i);
1534
0
      if (cost < best_cost) {
1535
0
        best_cost = cost;
1536
0
        stream_options_[stream_id].wp_mode = i;
1537
0
      }
1538
0
    }
1539
0
  }
1540
0
  return true;
1541
0
}
1542
1543
constexpr float q_deadzone = 0.62f;
1544
int QuantizeWP(const int32_t* qrow, size_t onerow, size_t c, size_t x, size_t y,
1545
               size_t w, weighted::State* wp_state, float value,
1546
0
               float inv_factor, bool* has_outliers) {
1547
0
  float svalue = value * inv_factor;
1548
0
  PredictionResult pred =
1549
0
      PredictNoTreeWP(w, qrow + x, onerow, x, y, Predictor::Weighted, wp_state);
1550
0
  svalue -= pred.guess;
1551
0
  if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0;
1552
0
  int residual = 0;
1553
0
  if (svalue > static_cast<float>(std::numeric_limits<int>::max()) ||
1554
0
      svalue < static_cast<float>(std::numeric_limits<int>::min())) {
1555
0
    *has_outliers = true;
1556
0
  } else {
1557
0
    residual = std::round(svalue);
1558
0
  }
1559
0
  if (residual > 2 || residual < -2) residual = std::round(svalue * 0.5f) * 2;
1560
0
  return residual + pred.guess;
1561
0
}
1562
1563
int QuantizeGradient(const int32_t* qrow, size_t onerow, size_t c, size_t x,
1564
0
                     size_t y, size_t w, float value, float inv_factor) {
1565
0
  float svalue = value * inv_factor;
1566
0
  PredictionResult pred =
1567
0
      PredictNoTreeNoWP(w, qrow + x, onerow, x, y, Predictor::Gradient);
1568
0
  svalue -= pred.guess;
1569
0
  if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0;
1570
0
  int residual = std::round(svalue);
1571
0
  if (residual > 2 || residual < -2) residual = std::round(svalue * 0.5f) * 2;
1572
0
  return residual + pred.guess;
1573
0
}
1574
1575
Status ModularFrameEncoder::AddVarDCTDC(const FrameHeader& frame_header,
1576
                                        const Image3F& dc, const Rect& r,
1577
                                        size_t group_index, bool nl_dc,
1578
                                        PassesEncoderState* enc_state,
1579
0
                                        bool jpeg_transcode) {
1580
0
  JxlMemoryManager* memory_manager = dc.memory_manager();
1581
0
  extra_dc_precision[group_index] = nl_dc ? 1 : 0;
1582
0
  float mul = 1 << extra_dc_precision[group_index];
1583
0
  bool has_outliers = false;
1584
1585
0
  size_t stream_id = ModularStreamId::VarDCTDC(group_index).ID(frame_dim_);
1586
0
  stream_options_[stream_id].max_chan_size = 0xFFFFFF;
1587
0
  stream_options_[stream_id].predictor = Predictor::Weighted;
1588
0
  stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kWPOnly;
1589
0
  if (cparams_.speed_tier >= SpeedTier::kSquirrel) {
1590
0
    stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kWPFixedDC;
1591
0
  }
1592
0
  if (cparams_.speed_tier < SpeedTier::kSquirrel && !nl_dc) {
1593
0
    stream_options_[stream_id].predictor =
1594
0
        (cparams_.speed_tier < SpeedTier::kKitten ? Predictor::Variable
1595
0
                                                  : Predictor::Best);
1596
0
    stream_options_[stream_id].wp_tree_mode =
1597
0
        ModularOptions::TreeMode::kDefault;
1598
0
    stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn;
1599
0
  }
1600
0
  if (cparams_.decoding_speed_tier >= 1) {
1601
0
    stream_options_[stream_id].tree_kind =
1602
0
        ModularOptions::TreeKind::kGradientFixedDC;
1603
0
  }
1604
0
  stream_options_[stream_id].histogram_params =
1605
0
      stream_options_[0].histogram_params;
1606
1607
0
  JXL_ASSIGN_OR_RETURN(
1608
0
      stream_images_[stream_id],
1609
0
      Image::Create(memory_manager, r.xsize(), r.ysize(), 8, 3));
1610
0
  const ColorCorrelation& color_correlation = enc_state->shared.cmap.base();
1611
0
  if (nl_dc && stream_options_[stream_id].tree_kind ==
1612
0
                   ModularOptions::TreeKind::kGradientFixedDC) {
1613
0
    JXL_ENSURE(frame_header.chroma_subsampling.Is444());
1614
0
    for (size_t c : {1, 0, 2}) {
1615
0
      float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
1616
0
      float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
1617
0
      float cfl_factor = color_correlation.DCFactors()[c];
1618
0
      for (size_t y = 0; y < r.ysize(); y++) {
1619
0
        int32_t* quant_row =
1620
0
            stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
1621
0
        size_t stride = stream_images_[stream_id]
1622
0
                            .channel[c < 2 ? c ^ 1 : c]
1623
0
                            .plane.PixelsPerRow();
1624
0
        const float* row = r.ConstPlaneRow(dc, c, y);
1625
0
        if (c == 1) {
1626
0
          for (size_t x = 0; x < r.xsize(); x++) {
1627
0
            quant_row[x] = QuantizeGradient(quant_row, stride, c, x, y,
1628
0
                                            r.xsize(), row[x], inv_factor);
1629
0
          }
1630
0
        } else {
1631
0
          int32_t* quant_row_y =
1632
0
              stream_images_[stream_id].channel[0].plane.Row(y);
1633
0
          for (size_t x = 0; x < r.xsize(); x++) {
1634
0
            quant_row[x] = QuantizeGradient(
1635
0
                quant_row, stride, c, x, y, r.xsize(),
1636
0
                row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor);
1637
0
          }
1638
0
        }
1639
0
      }
1640
0
    }
1641
0
  } else if (nl_dc) {
1642
0
    JXL_ENSURE(frame_header.chroma_subsampling.Is444());
1643
0
    for (size_t c : {1, 0, 2}) {
1644
0
      float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
1645
0
      float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
1646
0
      float cfl_factor = color_correlation.DCFactors()[c];
1647
0
      weighted::Header header;
1648
0
      weighted::State wp_state(header, r.xsize(), r.ysize());
1649
0
      for (size_t y = 0; y < r.ysize(); y++) {
1650
0
        int32_t* quant_row =
1651
0
            stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
1652
0
        size_t stride = stream_images_[stream_id]
1653
0
                            .channel[c < 2 ? c ^ 1 : c]
1654
0
                            .plane.PixelsPerRow();
1655
0
        const float* row = r.ConstPlaneRow(dc, c, y);
1656
0
        if (c == 1) {
1657
0
          for (size_t x = 0; x < r.xsize(); x++) {
1658
0
            quant_row[x] =
1659
0
                QuantizeWP(quant_row, stride, c, x, y, r.xsize(), &wp_state,
1660
0
                           row[x], inv_factor, &has_outliers);
1661
0
            wp_state.UpdateErrors(quant_row[x], x, y, r.xsize());
1662
0
          }
1663
0
        } else {
1664
0
          int32_t* quant_row_y =
1665
0
              stream_images_[stream_id].channel[0].plane.Row(y);
1666
0
          for (size_t x = 0; x < r.xsize(); x++) {
1667
0
            quant_row[x] =
1668
0
                QuantizeWP(quant_row, stride, c, x, y, r.xsize(), &wp_state,
1669
0
                           row[x] - quant_row_y[x] * (y_factor * cfl_factor),
1670
0
                           inv_factor, &has_outliers);
1671
0
            wp_state.UpdateErrors(quant_row[x], x, y, r.xsize());
1672
0
          }
1673
0
        }
1674
0
      }
1675
0
    }
1676
0
  } else if (frame_header.chroma_subsampling.Is444()) {
1677
0
    for (size_t c : {1, 0, 2}) {
1678
0
      float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
1679
0
      float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul;
1680
0
      float cfl_factor = color_correlation.DCFactors()[c];
1681
0
      for (size_t y = 0; y < r.ysize(); y++) {
1682
0
        int32_t* quant_row =
1683
0
            stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y);
1684
0
        const float* row = r.ConstPlaneRow(dc, c, y);
1685
0
        if (c == 1) {
1686
0
          for (size_t x = 0; x < r.xsize(); x++) {
1687
0
            quant_row[x] = std::round(row[x] * inv_factor);
1688
0
          }
1689
0
        } else {
1690
0
          int32_t* quant_row_y =
1691
0
              stream_images_[stream_id].channel[0].plane.Row(y);
1692
0
          for (size_t x = 0; x < r.xsize(); x++) {
1693
0
            quant_row[x] =
1694
0
                std::round((row[x] - quant_row_y[x] * (y_factor * cfl_factor)) *
1695
0
                           inv_factor);
1696
0
          }
1697
0
        }
1698
0
      }
1699
0
    }
1700
0
  } else {
1701
0
    for (size_t c : {1, 0, 2}) {
1702
0
      Rect rect(r.x0() >> frame_header.chroma_subsampling.HShift(c),
1703
0
                r.y0() >> frame_header.chroma_subsampling.VShift(c),
1704
0
                r.xsize() >> frame_header.chroma_subsampling.HShift(c),
1705
0
                r.ysize() >> frame_header.chroma_subsampling.VShift(c));
1706
0
      float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul;
1707
0
      size_t ys = rect.ysize();
1708
0
      size_t xs = rect.xsize();
1709
0
      Channel& ch = stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c];
1710
0
      ch.w = xs;
1711
0
      ch.h = ys;
1712
0
      JXL_RETURN_IF_ERROR(ch.shrink());
1713
0
      for (size_t y = 0; y < ys; y++) {
1714
0
        int32_t* quant_row = ch.plane.Row(y);
1715
0
        const float* row = rect.ConstPlaneRow(dc, c, y);
1716
0
        for (size_t x = 0; x < xs; x++) {
1717
0
          quant_row[x] = std::round(row[x] * inv_factor);
1718
0
        }
1719
0
      }
1720
0
    }
1721
0
  }
1722
1723
0
  if (has_outliers) {
1724
0
    return JXL_FAILURE("Unsupported range of DC values");
1725
0
  }
1726
1727
0
  DequantDC(r, &enc_state->shared.dc_storage, &enc_state->shared.quant_dc,
1728
0
            stream_images_[stream_id], enc_state->shared.quantizer.MulDC(),
1729
0
            1.0 / mul, color_correlation.DCFactors(),
1730
0
            frame_header.chroma_subsampling, enc_state->shared.block_ctx_map);
1731
0
  return true;
1732
0
}
1733
1734
Status ModularFrameEncoder::AddACMetadata(const Rect& r, size_t group_index,
1735
                                          bool jpeg_transcode,
1736
0
                                          PassesEncoderState* enc_state) {
1737
0
  JxlMemoryManager* memory_manager = enc_state->memory_manager();
1738
0
  size_t stream_id = ModularStreamId::ACMetadata(group_index).ID(frame_dim_);
1739
0
  stream_options_[stream_id].max_chan_size = 0xFFFFFF;
1740
0
  if (stream_options_[stream_id].predictor != Predictor::Weighted) {
1741
0
    stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kNoWP;
1742
0
  }
1743
0
  if (jpeg_transcode) {
1744
0
    stream_options_[stream_id].tree_kind =
1745
0
        ModularOptions::TreeKind::kJpegTranscodeACMeta;
1746
0
  } else if (cparams_.speed_tier >= SpeedTier::kFalcon) {
1747
0
    stream_options_[stream_id].tree_kind =
1748
0
        ModularOptions::TreeKind::kFalconACMeta;
1749
0
  } else if (cparams_.speed_tier > SpeedTier::kKitten) {
1750
0
    stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kACMeta;
1751
0
  }
1752
  // If we are using a non-constant CfL field, and are in a slow enough mode,
1753
  // re-enable tree computation for it.
1754
0
  if (cparams_.speed_tier < SpeedTier::kSquirrel &&
1755
0
      cparams_.force_cfl_jpeg_recompression) {
1756
0
    stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn;
1757
0
  }
1758
0
  stream_options_[stream_id].histogram_params =
1759
0
      stream_options_[0].histogram_params;
1760
  // YToX, YToB, ACS + QF, EPF
1761
0
  Image& image = stream_images_[stream_id];
1762
0
  JXL_ASSIGN_OR_RETURN(
1763
0
      image, Image::Create(memory_manager, r.xsize(), r.ysize(), 8, 4));
1764
0
  static_assert(kColorTileDimInBlocks == 8, "Color tile size changed");
1765
0
  Rect cr(r.x0() >> 3, r.y0() >> 3, (r.xsize() + 7) >> 3, (r.ysize() + 7) >> 3);
1766
0
  JXL_ASSIGN_OR_RETURN(
1767
0
      image.channel[0],
1768
0
      Channel::Create(memory_manager, cr.xsize(), cr.ysize(), 3, 3));
1769
0
  JXL_ASSIGN_OR_RETURN(
1770
0
      image.channel[1],
1771
0
      Channel::Create(memory_manager, cr.xsize(), cr.ysize(), 3, 3));
1772
0
  JXL_ASSIGN_OR_RETURN(
1773
0
      image.channel[2],
1774
0
      Channel::Create(memory_manager, r.xsize() * r.ysize(), 2, 0, 0));
1775
0
  JXL_RETURN_IF_ERROR(ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytox_map,
1776
0
                                           Rect(image.channel[0].plane),
1777
0
                                           &image.channel[0].plane));
1778
0
  JXL_RETURN_IF_ERROR(ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytob_map,
1779
0
                                           Rect(image.channel[1].plane),
1780
0
                                           &image.channel[1].plane));
1781
0
  size_t num = 0;
1782
0
  for (size_t y = 0; y < r.ysize(); y++) {
1783
0
    AcStrategyRow row_acs = enc_state->shared.ac_strategy.ConstRow(r, y);
1784
0
    const int32_t* row_qf = r.ConstRow(enc_state->shared.raw_quant_field, y);
1785
0
    const uint8_t* row_epf = r.ConstRow(enc_state->shared.epf_sharpness, y);
1786
0
    int32_t* out_acs = image.channel[2].plane.Row(0);
1787
0
    int32_t* out_qf = image.channel[2].plane.Row(1);
1788
0
    int32_t* row_out_epf = image.channel[3].plane.Row(y);
1789
0
    for (size_t x = 0; x < r.xsize(); x++) {
1790
0
      row_out_epf[x] = row_epf[x];
1791
0
      if (!row_acs[x].IsFirstBlock()) continue;
1792
0
      out_acs[num] = row_acs[x].RawStrategy();
1793
0
      out_qf[num] = row_qf[x] - 1;
1794
0
      num++;
1795
0
    }
1796
0
  }
1797
0
  image.channel[2].w = num;
1798
0
  ac_metadata_size[group_index] = num;
1799
0
  return true;
1800
0
}
1801
1802
Status ModularFrameEncoder::EncodeQuantTable(
1803
    JxlMemoryManager* memory_manager, size_t size_x, size_t size_y,
1804
    BitWriter* writer, const QuantEncoding& encoding, size_t idx,
1805
0
    ModularFrameEncoder* modular_frame_encoder) {
1806
0
  JXL_ENSURE(encoding.qraw.qtable);
1807
0
  JXL_ENSURE(size_x * size_y * 3 == encoding.qraw.qtable->size());
1808
0
  JXL_ENSURE(idx < kNumQuantTables);
1809
0
  int* qtable = encoding.qraw.qtable->data();
1810
0
  JXL_RETURN_IF_ERROR(F16Coder::Write(encoding.qraw.qtable_den, writer));
1811
0
  if (modular_frame_encoder) {
1812
0
    JXL_ASSIGN_OR_RETURN(ModularStreamId qt, ModularStreamId::QuantTable(idx));
1813
0
    JXL_RETURN_IF_ERROR(modular_frame_encoder->EncodeStream(
1814
0
        writer, nullptr, LayerType::Header, qt));
1815
0
    return true;
1816
0
  }
1817
0
  JXL_ASSIGN_OR_RETURN(Image image,
1818
0
                       Image::Create(memory_manager, size_x, size_y, 8, 3));
1819
0
  for (size_t c = 0; c < 3; c++) {
1820
0
    for (size_t y = 0; y < size_y; y++) {
1821
0
      int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
1822
0
      for (size_t x = 0; x < size_x; x++) {
1823
0
        row[x] = qtable[c * size_x * size_y + y * size_x + x];
1824
0
      }
1825
0
    }
1826
0
  }
1827
0
  ModularOptions cfopts;
1828
0
  JXL_RETURN_IF_ERROR(ModularGenericCompress(image, cfopts, *writer));
1829
0
  return true;
1830
0
}
1831
1832
Status ModularFrameEncoder::AddQuantTable(size_t size_x, size_t size_y,
1833
                                          const QuantEncoding& encoding,
1834
0
                                          size_t idx) {
1835
0
  JXL_ENSURE(idx < kNumQuantTables);
1836
0
  JXL_ASSIGN_OR_RETURN(ModularStreamId qt, ModularStreamId::QuantTable(idx));
1837
0
  size_t stream_id = qt.ID(frame_dim_);
1838
0
  JXL_ENSURE(encoding.qraw.qtable);
1839
0
  JXL_ENSURE(size_x * size_y * 3 == encoding.qraw.qtable->size());
1840
0
  int* qtable = encoding.qraw.qtable->data();
1841
0
  Image& image = stream_images_[stream_id];
1842
0
  JxlMemoryManager* memory_manager = image.memory_manager();
1843
0
  JXL_ASSIGN_OR_RETURN(image,
1844
0
                       Image::Create(memory_manager, size_x, size_y, 8, 3));
1845
0
  for (size_t c = 0; c < 3; c++) {
1846
0
    for (size_t y = 0; y < size_y; y++) {
1847
0
      int32_t* JXL_RESTRICT row = image.channel[c].Row(y);
1848
0
      for (size_t x = 0; x < size_x; x++) {
1849
0
        row[x] = qtable[c * size_x * size_y + y * size_x + x];
1850
0
      }
1851
0
    }
1852
0
  }
1853
0
  return true;
1854
0
}
1855
}  // namespace jxl