/src/libjxl/lib/jxl/enc_patch_dictionary.cc
Line | Count | Source |
1 | | // Copyright (c) the JPEG XL Project Authors. All rights reserved. |
2 | | // |
3 | | // Use of this source code is governed by a BSD-style |
4 | | // license that can be found in the LICENSE file. |
5 | | |
6 | | #include "lib/jxl/enc_patch_dictionary.h" |
7 | | |
8 | | #include <jxl/cms_interface.h> |
9 | | #include <jxl/memory_manager.h> |
10 | | #include <jxl/types.h> |
11 | | |
12 | | #include <algorithm> |
13 | | #include <atomic> |
14 | | #include <cmath> |
15 | | #include <cstdint> |
16 | | #include <cstdlib> |
17 | | #include <utility> |
18 | | #include <vector> |
19 | | |
20 | | #include "lib/jxl/base/common.h" |
21 | | #include "lib/jxl/base/compiler_specific.h" |
22 | | #include "lib/jxl/base/data_parallel.h" |
23 | | #include "lib/jxl/base/override.h" |
24 | | #include "lib/jxl/base/printf_macros.h" |
25 | | #include "lib/jxl/base/random.h" |
26 | | #include "lib/jxl/base/rect.h" |
27 | | #include "lib/jxl/base/span.h" |
28 | | #include "lib/jxl/base/status.h" |
29 | | #include "lib/jxl/common.h" |
30 | | #include "lib/jxl/dec_cache.h" |
31 | | #include "lib/jxl/dec_frame.h" |
32 | | #include "lib/jxl/dec_patch_dictionary.h" |
33 | | #include "lib/jxl/enc_ans.h" |
34 | | #include "lib/jxl/enc_ans_params.h" |
35 | | #include "lib/jxl/enc_aux_out.h" |
36 | | #include "lib/jxl/enc_bit_writer.h" |
37 | | #include "lib/jxl/enc_cache.h" |
38 | | #include "lib/jxl/enc_debug_image.h" |
39 | | #include "lib/jxl/enc_dot_dictionary.h" |
40 | | #include "lib/jxl/enc_frame.h" |
41 | | #include "lib/jxl/enc_params.h" |
42 | | #include "lib/jxl/frame_header.h" |
43 | | #include "lib/jxl/image.h" |
44 | | #include "lib/jxl/image_bundle.h" |
45 | | #include "lib/jxl/image_ops.h" |
46 | | #include "lib/jxl/modular/options.h" |
47 | | #include "lib/jxl/pack_signed.h" |
48 | | #include "lib/jxl/patch_dictionary_internal.h" |
49 | | |
50 | | namespace jxl { |
51 | | |
52 | | static constexpr size_t kPatchFrameReferenceId = 3; |
53 | | |
54 | | // static |
55 | | Status PatchDictionaryEncoder::Encode(const PatchDictionary& pdic, |
56 | | BitWriter* writer, LayerType layer, |
57 | 0 | AuxOut* aux_out) { |
58 | 0 | JXL_ENSURE(pdic.HasAny()); |
59 | 0 | JxlMemoryManager* memory_manager = writer->memory_manager(); |
60 | 0 | std::vector<std::vector<Token>> tokens(1); |
61 | |
|
62 | 0 | auto add_num = [&](int context, size_t num) { |
63 | 0 | tokens[0].emplace_back(context, static_cast<uint32_t>(num)); |
64 | 0 | }; |
65 | 0 | size_t num_ref_patch = 0; |
66 | 0 | for (size_t i = 0; i < pdic.positions_.size();) { |
67 | 0 | size_t ref_pos_idx = pdic.positions_[i].ref_pos_idx; |
68 | 0 | while (i < pdic.positions_.size() && |
69 | 0 | pdic.positions_[i].ref_pos_idx == ref_pos_idx) { |
70 | 0 | i++; |
71 | 0 | } |
72 | 0 | num_ref_patch++; |
73 | 0 | } |
74 | 0 | add_num(kNumRefPatchContext, num_ref_patch); |
75 | 0 | size_t blend_pos = 0; |
76 | 0 | size_t blending_stride = pdic.blendings_stride_; |
77 | | // blending_stride == num_ec + 1; num_ec > 1 => |
78 | 0 | bool choose_alpha = (blending_stride > 1 + 1); |
79 | 0 | for (size_t i = 0; i < pdic.positions_.size();) { |
80 | 0 | size_t i_start = i; |
81 | 0 | size_t ref_pos_idx = pdic.positions_[i].ref_pos_idx; |
82 | 0 | const auto& ref_pos = pdic.ref_positions_[ref_pos_idx]; |
83 | 0 | while (i < pdic.positions_.size() && |
84 | 0 | pdic.positions_[i].ref_pos_idx == ref_pos_idx) { |
85 | 0 | i++; |
86 | 0 | } |
87 | 0 | size_t num = i - i_start; |
88 | 0 | JXL_ENSURE(num > 0); |
89 | 0 | add_num(kReferenceFrameContext, ref_pos.ref); |
90 | 0 | add_num(kPatchReferencePositionContext, ref_pos.x0); |
91 | 0 | add_num(kPatchReferencePositionContext, ref_pos.y0); |
92 | 0 | add_num(kPatchSizeContext, ref_pos.xsize - 1); |
93 | 0 | add_num(kPatchSizeContext, ref_pos.ysize - 1); |
94 | 0 | add_num(kPatchCountContext, num - 1); |
95 | 0 | for (size_t j = i_start; j < i; j++) { |
96 | 0 | const PatchPosition& pos = pdic.positions_[j]; |
97 | 0 | if (j == i_start) { |
98 | 0 | add_num(kPatchPositionContext, pos.x); |
99 | 0 | add_num(kPatchPositionContext, pos.y); |
100 | 0 | } else { |
101 | 0 | add_num(kPatchOffsetContext, |
102 | 0 | PackSigned(pos.x - pdic.positions_[j - 1].x)); |
103 | 0 | add_num(kPatchOffsetContext, |
104 | 0 | PackSigned(pos.y - pdic.positions_[j - 1].y)); |
105 | 0 | } |
106 | 0 | for (size_t k = 0; k < blending_stride; ++k, ++blend_pos) { |
107 | 0 | const PatchBlending& info = pdic.blendings_[blend_pos]; |
108 | 0 | add_num(kPatchBlendModeContext, static_cast<uint32_t>(info.mode)); |
109 | 0 | if (UsesAlpha(info.mode) && choose_alpha) { |
110 | 0 | add_num(kPatchAlphaChannelContext, info.alpha_channel); |
111 | 0 | } |
112 | 0 | if (UsesClamp(info.mode)) { |
113 | 0 | add_num(kPatchClampContext, TO_JXL_BOOL(info.clamp)); |
114 | 0 | } |
115 | 0 | } |
116 | 0 | } |
117 | 0 | } |
118 | | |
119 | 0 | EntropyEncodingData codes; |
120 | 0 | JXL_ASSIGN_OR_RETURN( |
121 | 0 | size_t cost, BuildAndEncodeHistograms(memory_manager, HistogramParams(), |
122 | 0 | kNumPatchDictionaryContexts, tokens, |
123 | 0 | &codes, writer, layer, aux_out)); |
124 | 0 | (void)cost; |
125 | 0 | JXL_RETURN_IF_ERROR(WriteTokens(tokens[0], codes, 0, writer, layer, aux_out)); |
126 | 0 | return true; |
127 | 0 | } |
128 | | |
129 | | // static |
130 | | Status PatchDictionaryEncoder::SubtractFrom(const PatchDictionary& pdic, |
131 | 0 | Image3F* opsin) { |
132 | | // TODO(veluca): this can likely be optimized knowing it runs on full images. |
133 | 0 | for (size_t y = 0; y < opsin->ysize(); y++) { |
134 | 0 | float* JXL_RESTRICT rows[3] = { |
135 | 0 | opsin->PlaneRow(0, y), |
136 | 0 | opsin->PlaneRow(1, y), |
137 | 0 | opsin->PlaneRow(2, y), |
138 | 0 | }; |
139 | 0 | size_t blending_stride = pdic.blendings_stride_; |
140 | 0 | for (size_t pos_idx : pdic.GetPatchesForRow(y)) { |
141 | 0 | const size_t blending_idx = pos_idx * blending_stride; |
142 | 0 | const PatchPosition& pos = pdic.positions_[pos_idx]; |
143 | 0 | const PatchReferencePosition& ref_pos = |
144 | 0 | pdic.ref_positions_[pos.ref_pos_idx]; |
145 | 0 | const PatchBlendMode mode = pdic.blendings_[blending_idx].mode; |
146 | 0 | size_t by = pos.y; |
147 | 0 | size_t bx = pos.x; |
148 | 0 | size_t xsize = ref_pos.xsize; |
149 | 0 | JXL_ENSURE(y >= by); |
150 | 0 | JXL_ENSURE(y < by + ref_pos.ysize); |
151 | 0 | size_t iy = y - by; |
152 | 0 | size_t ref = ref_pos.ref; |
153 | 0 | const float* JXL_RESTRICT ref_rows[3] = { |
154 | 0 | pdic.reference_frames_->at(ref).frame->color()->ConstPlaneRow( |
155 | 0 | 0, ref_pos.y0 + iy) + |
156 | 0 | ref_pos.x0, |
157 | 0 | pdic.reference_frames_->at(ref).frame->color()->ConstPlaneRow( |
158 | 0 | 1, ref_pos.y0 + iy) + |
159 | 0 | ref_pos.x0, |
160 | 0 | pdic.reference_frames_->at(ref).frame->color()->ConstPlaneRow( |
161 | 0 | 2, ref_pos.y0 + iy) + |
162 | 0 | ref_pos.x0, |
163 | 0 | }; |
164 | 0 | for (size_t ix = 0; ix < xsize; ix++) { |
165 | 0 | for (size_t c = 0; c < 3; c++) { |
166 | 0 | if (mode == PatchBlendMode::kAdd) { |
167 | 0 | rows[c][bx + ix] -= ref_rows[c][ix]; |
168 | 0 | } else if (mode == PatchBlendMode::kReplace) { |
169 | 0 | rows[c][bx + ix] = 0; |
170 | 0 | } else if (mode == PatchBlendMode::kNone) { |
171 | | // Nothing to do. |
172 | 0 | } else { |
173 | 0 | return JXL_UNREACHABLE("blending mode %u not yet implemented", |
174 | 0 | static_cast<uint32_t>(mode)); |
175 | 0 | } |
176 | 0 | } |
177 | 0 | } |
178 | 0 | } |
179 | 0 | } |
180 | 0 | return true; |
181 | 0 | } |
182 | | |
183 | | namespace { |
184 | | |
185 | | struct PatchColorspaceInfo { |
186 | | float kChannelDequant[3]; |
187 | | float kChannelWeights[3]; |
188 | | |
189 | 0 | explicit PatchColorspaceInfo(bool is_xyb) { |
190 | 0 | if (is_xyb) { |
191 | 0 | kChannelDequant[0] = 0.01615; |
192 | 0 | kChannelDequant[1] = 0.08875; |
193 | 0 | kChannelDequant[2] = 0.1922; |
194 | 0 | kChannelWeights[0] = 30.0; |
195 | 0 | kChannelWeights[1] = 3.0; |
196 | 0 | kChannelWeights[2] = 1.0; |
197 | 0 | } else { |
198 | 0 | kChannelDequant[0] = 20.0f / 255; |
199 | 0 | kChannelDequant[1] = 22.0f / 255; |
200 | 0 | kChannelDequant[2] = 20.0f / 255; |
201 | 0 | kChannelWeights[0] = 0.017 * 255; |
202 | 0 | kChannelWeights[1] = 0.02 * 255; |
203 | 0 | kChannelWeights[2] = 0.017 * 255; |
204 | 0 | } |
205 | 0 | } |
206 | | |
207 | 0 | float ScaleForQuantization(float val, size_t c) { |
208 | 0 | return val / kChannelDequant[c]; |
209 | 0 | } |
210 | | |
211 | 0 | int Quantize(float val, size_t c) { |
212 | 0 | float scaled = ScaleForQuantization(val, c); |
213 | | // Clamping allows values outside of target range (int8_t); caller should |
214 | | // deal with out-of-range values. |
215 | 0 | scaled = jxl::Clamp1(scaled, -32768.0f, 32767.0f); |
216 | 0 | return std::trunc(scaled); |
217 | 0 | } |
218 | | |
219 | 0 | bool is_similar_v(const Color& v1, const Color& v2, float threshold) { |
220 | 0 | float distance = 0; |
221 | 0 | for (size_t c = 0; c < 3; c++) { |
222 | 0 | distance += std::abs(v1[c] - v2[c]) * kChannelWeights[c]; |
223 | 0 | } |
224 | 0 | return distance <= threshold; |
225 | 0 | } |
226 | | }; |
227 | | |
228 | | using XY = std::pair<int32_t, int32_t>; |
229 | | constexpr const size_t kPatchSide = 4; |
230 | | |
231 | | StatusOr<std::vector<PatchInfo>> FindTextLikePatches( |
232 | | const CompressParams& cparams, const Image3F& opsin, |
233 | | const PassesEncoderState* JXL_RESTRICT state, ThreadPool* pool, |
234 | 0 | AuxOut* aux_out, bool is_xyb) { |
235 | 0 | std::vector<PatchInfo> info; |
236 | 0 | if (state->cparams.patches == Override::kOff) return info; |
237 | 0 | const auto& frame_dim = state->shared.frame_dim; |
238 | 0 | JxlMemoryManager* memory_manager = opsin.memory_manager(); |
239 | |
|
240 | 0 | PatchColorspaceInfo pci(is_xyb); |
241 | 0 | float kSimilarThreshold = 0.8f; |
242 | |
|
243 | 0 | auto is_similar_impl = [&pci](const XY& p1, const XY& p2, |
244 | 0 | const float* JXL_RESTRICT rows[3], |
245 | 0 | size_t stride, float threshold) { |
246 | 0 | size_t offset1 = p1.second * stride + p1.first; |
247 | 0 | Color v1{rows[0][offset1], rows[1][offset1], rows[2][offset1]}; |
248 | 0 | size_t offset2 = p2.second * stride + p2.first; |
249 | 0 | Color v2{rows[0][offset2], rows[1][offset2], rows[2][offset2]}; |
250 | 0 | return pci.is_similar_v(v1, v2, threshold); |
251 | 0 | }; |
252 | |
|
253 | 0 | std::atomic<uint32_t> screenshot_area_seeds{0}; |
254 | 0 | const size_t opsin_stride = opsin.PixelsPerRow(); |
255 | 0 | const float* JXL_RESTRICT opsin_rows[3] = {opsin.ConstPlaneRow(0, 0), |
256 | 0 | opsin.ConstPlaneRow(1, 0), |
257 | 0 | opsin.ConstPlaneRow(2, 0)}; |
258 | 0 | const auto pick = [&opsin_rows, opsin_stride](const XY& p) -> Color { |
259 | 0 | size_t offset = p.second * opsin_stride + p.first; |
260 | 0 | return {opsin_rows[0][offset], opsin_rows[1][offset], |
261 | 0 | opsin_rows[2][offset]}; |
262 | 0 | }; |
263 | 0 | const auto is_same_color = [&opsin_rows, opsin_stride]( |
264 | 0 | const XY& p, const Color& c) -> size_t { |
265 | 0 | const size_t offset = p.second * opsin_stride + p.first; |
266 | 0 | for (size_t i = 0; i < c.size(); ++i) { |
267 | 0 | if (std::fabs(c[i] - opsin_rows[i][offset]) > 1e-4) { |
268 | 0 | return 0; |
269 | 0 | } |
270 | 0 | } |
271 | 0 | return 1; |
272 | 0 | }; |
273 | |
|
274 | 0 | auto is_similar = [&](const XY& p1, const XY& p2) { |
275 | 0 | return is_similar_impl(p1, p2, opsin_rows, opsin_stride, kSimilarThreshold); |
276 | 0 | }; |
277 | | |
278 | | // Look for kPatchSide size squares, naturally aligned, that all have the same |
279 | | // pixel values. |
280 | 0 | JXL_ASSIGN_OR_RETURN( |
281 | 0 | ImageB is_screenshot_like, |
282 | 0 | ImageB::Create(memory_manager, DivCeil(frame_dim.xsize, kPatchSide), |
283 | 0 | DivCeil(frame_dim.ysize, kPatchSide))); |
284 | 0 | ZeroFillImage(&is_screenshot_like); |
285 | 0 | const size_t pw = frame_dim.xsize / kPatchSide; |
286 | 0 | const size_t ph = frame_dim.ysize / kPatchSide; |
287 | |
|
288 | 0 | const auto flat_patch = [&](const XY& o, const Color& base) -> bool { |
289 | 0 | for (size_t iy = 0; iy < kPatchSide; iy++) { |
290 | 0 | for (size_t ix = 0; ix < kPatchSide; ix++) { |
291 | 0 | XY p = {static_cast<int32_t>(o.first + ix), |
292 | 0 | static_cast<int32_t>(o.second + iy)}; |
293 | 0 | if (!is_same_color(p, base)) { |
294 | 0 | return false; |
295 | 0 | } |
296 | 0 | } |
297 | 0 | } |
298 | 0 | return true; |
299 | 0 | }; |
300 | | |
301 | | // TODO(eustas): should do this in 2 phases: |
302 | | // 1) if patches are not enabled do sampling run for has_screenshot_areas |
303 | | // 2) if patches forced or not disables + has_screenshot_areas do |
304 | | // SIMDified full scan for is_screenshot_like |
305 | 0 | const auto process_row = [&](const uint32_t py, |
306 | 0 | size_t /* thread */) -> Status { |
307 | 0 | uint32_t found = 0; |
308 | 0 | for (size_t px = 1; px <= pw - 2; px++) { |
309 | 0 | XY o = {static_cast<uint32_t>(px * kPatchSide), |
310 | 0 | static_cast<uint32_t>(py * kPatchSide)}; |
311 | 0 | Color base = pick(o); |
312 | 0 | if (!flat_patch(o, base)) continue; |
313 | 0 | size_t num_same = 0; |
314 | 0 | for (size_t y = (py - 1) * kPatchSide; y <= (py + 1) * kPatchSide; |
315 | 0 | y += kPatchSide) { |
316 | 0 | for (size_t x = (px - 1) * kPatchSide; x <= (px + 1) * kPatchSide; |
317 | 0 | x += kPatchSide) { |
318 | 0 | XY p = {static_cast<uint32_t>(x), static_cast<uint32_t>(y)}; |
319 | 0 | num_same += is_same_color(p, base); |
320 | 0 | } |
321 | 0 | } |
322 | | // Too few equal pixels nearby. |
323 | 0 | if (num_same < 8) continue; |
324 | 0 | is_screenshot_like.Row(py)[px] = 1; |
325 | 0 | found++; |
326 | 0 | } |
327 | 0 | screenshot_area_seeds.fetch_add(found); |
328 | 0 | return true; |
329 | 0 | }; |
330 | 0 | bool can_have_seeds = ((pw >= 3) && (ph >= 3)); |
331 | 0 | if (can_have_seeds) { |
332 | 0 | JXL_RETURN_IF_ERROR(RunOnPool(pool, 1, ph - 2, ThreadPool::NoInit, |
333 | 0 | process_row, "IsScreenshotLike")); |
334 | 0 | } |
335 | | |
336 | | // TODO(veluca): also parallelize the rest of this function. |
337 | 0 | if (WantDebugOutput(cparams)) { |
338 | 0 | JXL_RETURN_IF_ERROR( |
339 | 0 | DumpPlaneNormalized(cparams, "screenshot_like", is_screenshot_like)); |
340 | 0 | } |
341 | | |
342 | 0 | constexpr int kSearchRadius = 1; |
343 | |
|
344 | 0 | size_t num_seeds = screenshot_area_seeds.load(); |
345 | 0 | if (!ApplyOverride(state->cparams.patches, (num_seeds > 0))) { |
346 | 0 | return info; |
347 | 0 | } |
348 | | |
349 | | // Search for "similar enough" pixels near the screenshot-like areas. |
350 | 0 | JXL_ASSIGN_OR_RETURN( |
351 | 0 | ImageB is_background, |
352 | 0 | ImageB::Create(memory_manager, frame_dim.xsize, frame_dim.ysize)); |
353 | 0 | ZeroFillImage(&is_background); |
354 | 0 | JXL_ASSIGN_OR_RETURN( |
355 | 0 | Image3F background, |
356 | 0 | Image3F::Create(memory_manager, frame_dim.xsize, frame_dim.ysize)); |
357 | 0 | ZeroFillImage(&background); |
358 | 0 | constexpr size_t kDistanceLimit = 50; |
359 | 0 | float* JXL_RESTRICT background_rows[3] = { |
360 | 0 | background.PlaneRow(0, 0), |
361 | 0 | background.PlaneRow(1, 0), |
362 | 0 | background.PlaneRow(2, 0), |
363 | 0 | }; |
364 | 0 | const size_t background_stride = background.PixelsPerRow(); |
365 | 0 | uint8_t* JXL_RESTRICT is_background_row = is_background.Row(0); |
366 | 0 | const size_t is_background_stride = is_background.PixelsPerRow(); |
367 | 0 | const auto is_bg = [&](const XY& p) -> uint8_t& { |
368 | 0 | return is_background_row[p.second * is_background_stride + p.first]; |
369 | 0 | }; |
370 | 0 | std::vector<std::pair<XY, XY>> queue; |
371 | 0 | queue.reserve(2 * num_seeds * kPatchSide * kPatchSide); |
372 | 0 | size_t queue_front = 0; |
373 | | // TODO(eustas): coalesce neighbours, leave only border. |
374 | 0 | if (can_have_seeds) { |
375 | 0 | for (size_t py = 1; py < ph - 1; py++) { |
376 | 0 | uint8_t* JXL_RESTRICT screenshot_row = is_screenshot_like.Row(py); |
377 | 0 | for (size_t px = 1; px < pw - 1; px++) { |
378 | 0 | if (!screenshot_row[px]) continue; |
379 | 0 | for (size_t y = py * kPatchSide; y < (py + 1) * kPatchSide; ++y) { |
380 | 0 | for (size_t x = px * kPatchSide; x < (px + 1) * kPatchSide; ++x) { |
381 | 0 | XY p = {static_cast<uint32_t>(x), static_cast<uint32_t>(y)}; |
382 | 0 | queue.emplace_back(p, p); |
383 | 0 | is_bg(p) = 1; |
384 | 0 | } |
385 | 0 | } |
386 | 0 | } |
387 | 0 | } |
388 | 0 | } |
389 | 0 | while (queue_front < queue.size()) { |
390 | 0 | XY cur = queue[queue_front].first; |
391 | 0 | XY src = queue[queue_front].second; |
392 | 0 | queue_front++; |
393 | 0 | Color src_color; |
394 | 0 | for (size_t c = 0; c < 3; c++) { |
395 | 0 | float clr = opsin_rows[c][src.second * opsin_stride + src.first]; |
396 | 0 | src_color[c] = clr; |
397 | 0 | background_rows[c][cur.second * background_stride + cur.first] = clr; |
398 | 0 | } |
399 | 0 | for (int dx = -kSearchRadius; dx <= kSearchRadius; dx++) { |
400 | 0 | for (int dy = -kSearchRadius; dy <= kSearchRadius; dy++) { |
401 | 0 | XY next{cur.first + dx, cur.second + dy}; |
402 | 0 | if (next.first < 0 || next.second < 0 || |
403 | 0 | static_cast<uint32_t>(next.first) >= frame_dim.xsize || |
404 | 0 | static_cast<uint32_t>(next.second) >= frame_dim.ysize) { |
405 | 0 | continue; |
406 | 0 | } |
407 | 0 | uint8_t& bg = is_bg(next); |
408 | 0 | if (bg) continue; |
409 | 0 | if (static_cast<uint32_t>( |
410 | 0 | std::abs(next.first - static_cast<int>(src.first)) + |
411 | 0 | std::abs(next.second - static_cast<int>(src.second))) > |
412 | 0 | kDistanceLimit) { |
413 | 0 | continue; |
414 | 0 | } |
415 | 0 | if (is_similar(src, next)) { |
416 | 0 | queue.emplace_back(next, src); |
417 | 0 | bg = 1; |
418 | 0 | } |
419 | 0 | } |
420 | 0 | } |
421 | 0 | } |
422 | 0 | queue.clear(); |
423 | |
|
424 | 0 | ImageF ccs; |
425 | 0 | Rng rng(0); |
426 | 0 | bool paint_ccs = false; |
427 | 0 | if (WantDebugOutput(cparams)) { |
428 | 0 | JXL_RETURN_IF_ERROR( |
429 | 0 | DumpPlaneNormalized(cparams, "is_background", is_background)); |
430 | 0 | if (is_xyb) { |
431 | 0 | JXL_RETURN_IF_ERROR(DumpXybImage(cparams, "background", background)); |
432 | 0 | } else { |
433 | 0 | JXL_RETURN_IF_ERROR(DumpImage(cparams, "background", background)); |
434 | 0 | } |
435 | 0 | JXL_ASSIGN_OR_RETURN( |
436 | 0 | ccs, ImageF::Create(memory_manager, frame_dim.xsize, frame_dim.ysize)); |
437 | 0 | ZeroFillImage(&ccs); |
438 | 0 | paint_ccs = true; |
439 | 0 | } |
440 | | |
441 | 0 | constexpr float kVerySimilarThreshold = 0.03f; |
442 | 0 | constexpr float kHasSimilarThreshold = 0.03f; |
443 | |
|
444 | 0 | const float* JXL_RESTRICT const_background_rows[3] = { |
445 | 0 | background_rows[0], background_rows[1], background_rows[2]}; |
446 | 0 | auto is_similar_b = [&](std::pair<int, int> p1, std::pair<int, int> p2) { |
447 | 0 | return is_similar_impl(p1, p2, const_background_rows, background_stride, |
448 | 0 | kVerySimilarThreshold); |
449 | 0 | }; |
450 | |
|
451 | 0 | constexpr int kMinPeak = 2; |
452 | 0 | constexpr int kHasSimilarRadius = 2; |
453 | | |
454 | | // Find small CC outside the "similar enough" areas, compute bounding boxes, |
455 | | // and run heuristics to exclude some patches. |
456 | 0 | JXL_ASSIGN_OR_RETURN( |
457 | 0 | ImageB visited, |
458 | 0 | ImageB::Create(memory_manager, frame_dim.xsize, frame_dim.ysize)); |
459 | 0 | ZeroFillImage(&visited); |
460 | 0 | uint8_t* JXL_RESTRICT visited_row = visited.Row(0); |
461 | 0 | const size_t visited_stride = visited.PixelsPerRow(); |
462 | 0 | std::vector<std::pair<uint32_t, uint32_t>> cc; |
463 | 0 | std::vector<std::pair<uint32_t, uint32_t>> stack; |
464 | 0 | for (size_t y = 0; y < frame_dim.ysize; y++) { |
465 | 0 | for (size_t x = 0; x < frame_dim.xsize; x++) { |
466 | 0 | if (is_background_row[y * is_background_stride + x]) continue; |
467 | 0 | cc.clear(); |
468 | 0 | stack.clear(); |
469 | 0 | stack.emplace_back(static_cast<uint32_t>(x), static_cast<uint32_t>(y)); |
470 | 0 | size_t min_x = x; |
471 | 0 | size_t max_x = x; |
472 | 0 | size_t min_y = y; |
473 | 0 | size_t max_y = y; |
474 | 0 | std::pair<uint32_t, uint32_t> reference; |
475 | 0 | bool found_border = false; |
476 | 0 | bool all_similar = true; |
477 | 0 | while (!stack.empty()) { |
478 | 0 | std::pair<uint32_t, uint32_t> cur = stack.back(); |
479 | 0 | stack.pop_back(); |
480 | 0 | if (visited_row[cur.second * visited_stride + cur.first]) continue; |
481 | 0 | visited_row[cur.second * visited_stride + cur.first] = 1; |
482 | 0 | if (cur.first < min_x) min_x = cur.first; |
483 | 0 | if (cur.first > max_x) max_x = cur.first; |
484 | 0 | if (cur.second < min_y) min_y = cur.second; |
485 | 0 | if (cur.second > max_y) max_y = cur.second; |
486 | 0 | if (paint_ccs) { |
487 | 0 | cc.push_back(cur); |
488 | 0 | } |
489 | 0 | for (int dx = -kSearchRadius; dx <= kSearchRadius; dx++) { |
490 | 0 | for (int dy = -kSearchRadius; dy <= kSearchRadius; dy++) { |
491 | 0 | if (dx == 0 && dy == 0) continue; |
492 | 0 | int next_first = static_cast<int32_t>(cur.first) + dx; |
493 | 0 | int next_second = static_cast<int32_t>(cur.second) + dy; |
494 | 0 | if (next_first < 0 || next_second < 0 || |
495 | 0 | static_cast<uint32_t>(next_first) >= frame_dim.xsize || |
496 | 0 | static_cast<uint32_t>(next_second) >= frame_dim.ysize) { |
497 | 0 | continue; |
498 | 0 | } |
499 | 0 | std::pair<uint32_t, uint32_t> next{next_first, next_second}; |
500 | 0 | if (!is_background_row[next.second * is_background_stride + |
501 | 0 | next.first]) { |
502 | 0 | stack.push_back(next); |
503 | 0 | } else { |
504 | 0 | if (!found_border) { |
505 | 0 | reference = next; |
506 | 0 | found_border = true; |
507 | 0 | } else { |
508 | 0 | if (!is_similar_b(next, reference)) all_similar = false; |
509 | 0 | } |
510 | 0 | } |
511 | 0 | } |
512 | 0 | } |
513 | 0 | } |
514 | 0 | if (!found_border || !all_similar || max_x - min_x >= kMaxPatchSize || |
515 | 0 | max_y - min_y >= kMaxPatchSize) { |
516 | 0 | continue; |
517 | 0 | } |
518 | 0 | size_t bpos = background_stride * reference.second + reference.first; |
519 | 0 | Color ref = {background_rows[0][bpos], background_rows[1][bpos], |
520 | 0 | background_rows[2][bpos]}; |
521 | 0 | bool has_similar = false; |
522 | 0 | for (size_t iy = std::max<int>( |
523 | 0 | static_cast<int32_t>(min_y) - kHasSimilarRadius, 0); |
524 | 0 | iy < std::min(max_y + kHasSimilarRadius + 1, frame_dim.ysize); |
525 | 0 | iy++) { |
526 | 0 | for (size_t ix = std::max<int>( |
527 | 0 | static_cast<int32_t>(min_x) - kHasSimilarRadius, 0); |
528 | 0 | ix < std::min(max_x + kHasSimilarRadius + 1, frame_dim.xsize); |
529 | 0 | ix++) { |
530 | 0 | size_t opos = opsin_stride * iy + ix; |
531 | 0 | Color px = {opsin_rows[0][opos], opsin_rows[1][opos], |
532 | 0 | opsin_rows[2][opos]}; |
533 | 0 | if (pci.is_similar_v(ref, px, kHasSimilarThreshold)) { |
534 | 0 | has_similar = true; |
535 | 0 | } |
536 | 0 | } |
537 | 0 | } |
538 | 0 | if (!has_similar) continue; |
539 | 0 | info.emplace_back(); |
540 | 0 | info.back().second.emplace_back(static_cast<uint32_t>(min_x), |
541 | 0 | static_cast<uint32_t>(min_y)); |
542 | 0 | QuantizedPatch& patch = info.back().first; |
543 | 0 | patch.xsize = max_x - min_x + 1; |
544 | 0 | patch.ysize = max_y - min_y + 1; |
545 | 0 | bool too_big = false; |
546 | 0 | bool too_small = true; |
547 | 0 | for (size_t c : {1, 0, 2}) { |
548 | 0 | for (size_t iy = min_y; iy <= max_y; iy++) { |
549 | 0 | for (size_t ix = min_x; ix <= max_x; ix++) { |
550 | 0 | size_t offset = (iy - min_y) * patch.xsize + ix - min_x; |
551 | 0 | float fval = opsin_rows[c][iy * opsin_stride + ix] - ref[c]; |
552 | 0 | patch.fpixels[c][offset] = fval; |
553 | 0 | int val = pci.Quantize(patch.fpixels[c][offset], c); |
554 | 0 | int8_t qval = static_cast<int8_t>(val); |
555 | 0 | patch.pixels[c][offset] = qval; |
556 | 0 | too_big |= (val != static_cast<int>(qval)); |
557 | 0 | too_small &= (val < kMinPeak) && (val > -kMinPeak); |
558 | 0 | } |
559 | 0 | } |
560 | 0 | } |
561 | 0 | if (too_small || too_big) { |
562 | 0 | info.pop_back(); |
563 | 0 | continue; |
564 | 0 | } |
565 | 0 | if (paint_ccs) { |
566 | 0 | float cc_color = rng.UniformF(0.5, 1.0); |
567 | 0 | for (std::pair<uint32_t, uint32_t> p : cc) { |
568 | 0 | ccs.Row(p.second)[p.first] = cc_color; |
569 | 0 | } |
570 | 0 | } |
571 | 0 | } |
572 | 0 | } |
573 | |
|
574 | 0 | if (paint_ccs) { |
575 | 0 | JXL_ENSURE(WantDebugOutput(cparams)); |
576 | 0 | JXL_RETURN_IF_ERROR(DumpPlaneNormalized(cparams, "ccs", ccs)); |
577 | 0 | } |
578 | 0 | if (info.empty()) { |
579 | 0 | return info; |
580 | 0 | } |
581 | | |
582 | | // Remove duplicates. |
583 | 0 | constexpr size_t kMinPatchOccurrences = 2; |
584 | 0 | std::sort(info.begin(), info.end()); |
585 | 0 | size_t unique = 0; |
586 | 0 | for (size_t i = 1; i < info.size(); i++) { |
587 | 0 | if (info[i].first == info[unique].first) { |
588 | 0 | info[unique].second.insert(info[unique].second.end(), |
589 | 0 | info[i].second.begin(), info[i].second.end()); |
590 | 0 | } else { |
591 | 0 | if (info[unique].second.size() >= kMinPatchOccurrences) { |
592 | 0 | unique++; |
593 | 0 | } |
594 | 0 | info[unique] = info[i]; |
595 | 0 | } |
596 | 0 | } |
597 | 0 | if (info[unique].second.size() >= kMinPatchOccurrences) { |
598 | 0 | unique++; |
599 | 0 | } |
600 | 0 | info.resize(unique); |
601 | |
|
602 | 0 | size_t max_patch_size = 0; |
603 | |
|
604 | 0 | for (const auto& patch : info) { |
605 | 0 | size_t pixels = patch.first.xsize * patch.first.ysize; |
606 | 0 | if (pixels > max_patch_size) max_patch_size = pixels; |
607 | 0 | } |
608 | | |
609 | | // don't use patches if all patches are smaller than this |
610 | 0 | constexpr size_t kMinMaxPatchSize = 20; |
611 | 0 | if (max_patch_size < kMinMaxPatchSize) { |
612 | 0 | info.clear(); |
613 | 0 | } |
614 | |
|
615 | 0 | return info; |
616 | 0 | } |
617 | | |
618 | | } // namespace |
619 | | |
620 | | Status FindBestPatchDictionary(const Image3F& opsin, |
621 | | PassesEncoderState* JXL_RESTRICT state, |
622 | | const JxlCmsInterface& cms, ThreadPool* pool, |
623 | 0 | AuxOut* aux_out, bool is_xyb) { |
624 | 0 | JXL_ASSIGN_OR_RETURN( |
625 | 0 | std::vector<PatchInfo> info, |
626 | 0 | FindTextLikePatches(state->cparams, opsin, state, pool, aux_out, is_xyb)); |
627 | 0 | JxlMemoryManager* memory_manager = opsin.memory_manager(); |
628 | | |
629 | | // TODO(veluca): this doesn't work if both dots and patches are enabled. |
630 | | // For now, since dots and patches are not likely to occur in the same kind of |
631 | | // images, disable dots if some patches were found. |
632 | 0 | if (info.empty() && |
633 | 0 | ApplyOverride( |
634 | 0 | state->cparams.dots, |
635 | 0 | state->cparams.speed_tier <= SpeedTier::kSquirrel && |
636 | 0 | state->cparams.butteraugli_distance >= kMinButteraugliForDots && |
637 | 0 | !state->cparams.disable_perceptual_optimizations)) { |
638 | 0 | Rect rect(0, 0, state->shared.frame_dim.xsize, |
639 | 0 | state->shared.frame_dim.ysize); |
640 | 0 | JXL_ASSIGN_OR_RETURN(info, |
641 | 0 | FindDotDictionary(state->cparams, opsin, rect, |
642 | 0 | state->shared.cmap.base(), pool)); |
643 | 0 | } |
644 | | |
645 | 0 | if (info.empty()) return true; |
646 | | |
647 | 0 | std::sort( |
648 | 0 | info.begin(), info.end(), [&](const PatchInfo& a, const PatchInfo& b) { |
649 | 0 | return a.first.xsize * a.first.ysize > b.first.xsize * b.first.ysize; |
650 | 0 | }); |
651 | |
|
652 | 0 | size_t max_x_size = 0; |
653 | 0 | size_t max_y_size = 0; |
654 | 0 | size_t total_pixels = 0; |
655 | |
|
656 | 0 | for (const auto& patch : info) { |
657 | 0 | size_t pixels = patch.first.xsize * patch.first.ysize; |
658 | 0 | if (max_x_size < patch.first.xsize) max_x_size = patch.first.xsize; |
659 | 0 | if (max_y_size < patch.first.ysize) max_y_size = patch.first.ysize; |
660 | 0 | total_pixels += pixels; |
661 | 0 | } |
662 | | |
663 | | // Bin-packing & conversion of patches. |
664 | 0 | constexpr float kBinPackingSlackness = 1.05f; |
665 | 0 | size_t ref_xsize = std::max<float>(max_x_size, std::sqrt(total_pixels)); |
666 | 0 | size_t ref_ysize = std::max<float>(max_y_size, std::sqrt(total_pixels)); |
667 | 0 | std::vector<std::pair<size_t, size_t>> ref_positions(info.size()); |
668 | | // TODO(veluca): allow partial overlaps of patches that have the same pixels. |
669 | 0 | size_t max_y = 0; |
670 | 0 | do { |
671 | 0 | max_y = 0; |
672 | | // Increase packed image size. |
673 | 0 | ref_xsize = ref_xsize * kBinPackingSlackness + 1; |
674 | 0 | ref_ysize = ref_ysize * kBinPackingSlackness + 1; |
675 | |
|
676 | 0 | JXL_ASSIGN_OR_RETURN(ImageB occupied, |
677 | 0 | ImageB::Create(memory_manager, ref_xsize, ref_ysize)); |
678 | 0 | ZeroFillImage(&occupied); |
679 | 0 | uint8_t* JXL_RESTRICT occupied_rows = occupied.Row(0); |
680 | 0 | size_t occupied_stride = occupied.PixelsPerRow(); |
681 | |
|
682 | 0 | bool success = true; |
683 | | // For every patch... |
684 | 0 | for (size_t patch = 0; patch < info.size(); patch++) { |
685 | 0 | size_t x0 = 0; |
686 | 0 | size_t y0 = 0; |
687 | 0 | size_t xsize = info[patch].first.xsize; |
688 | 0 | size_t ysize = info[patch].first.ysize; |
689 | 0 | bool found = false; |
690 | | // For every possible start position ... |
691 | 0 | for (; y0 + ysize <= ref_ysize; y0++) { |
692 | 0 | x0 = 0; |
693 | 0 | for (; x0 + xsize <= ref_xsize; x0++) { |
694 | 0 | bool has_occupied_pixel = false; |
695 | 0 | size_t x = x0; |
696 | | // Check if it is possible to place the patch in this position in the |
697 | | // reference frame. |
698 | 0 | for (size_t y = y0; y < y0 + ysize; y++) { |
699 | 0 | x = x0; |
700 | 0 | for (; x < x0 + xsize; x++) { |
701 | 0 | if (occupied_rows[y * occupied_stride + x]) { |
702 | 0 | has_occupied_pixel = true; |
703 | 0 | break; |
704 | 0 | } |
705 | 0 | } |
706 | 0 | } // end of positioning check |
707 | 0 | if (!has_occupied_pixel) { |
708 | 0 | found = true; |
709 | 0 | break; |
710 | 0 | } |
711 | 0 | x0 = x; // Jump to next pixel after the occupied one. |
712 | 0 | } |
713 | 0 | if (found) break; |
714 | 0 | } // end of start position checking |
715 | | |
716 | | // We didn't find a possible position: repeat from the beginning with a |
717 | | // larger reference frame size. |
718 | 0 | if (!found) { |
719 | 0 | success = false; |
720 | 0 | break; |
721 | 0 | } |
722 | | |
723 | | // We found a position: mark the corresponding positions in the reference |
724 | | // image as used. |
725 | 0 | ref_positions[patch] = {x0, y0}; |
726 | 0 | for (size_t y = y0; y < y0 + ysize; y++) { |
727 | 0 | for (size_t x = x0; x < x0 + xsize; x++) { |
728 | 0 | occupied_rows[y * occupied_stride + x] = JXL_TRUE; |
729 | 0 | } |
730 | 0 | } |
731 | 0 | max_y = std::max(max_y, y0 + ysize); |
732 | 0 | } |
733 | |
|
734 | 0 | if (success) break; |
735 | 0 | } while (true); |
736 | | |
737 | 0 | JXL_ENSURE(ref_ysize >= max_y); |
738 | | |
739 | 0 | ref_ysize = max_y; |
740 | |
|
741 | 0 | JXL_ASSIGN_OR_RETURN(Image3F reference_frame, |
742 | 0 | Image3F::Create(memory_manager, ref_xsize, ref_ysize)); |
743 | | // TODO(veluca): figure out a better way to fill the image. |
744 | 0 | ZeroFillImage(&reference_frame); |
745 | 0 | std::vector<PatchPosition> positions; |
746 | 0 | std::vector<PatchReferencePosition> pref_positions; |
747 | 0 | std::vector<PatchBlending> blendings; |
748 | 0 | float* JXL_RESTRICT ref_rows[3] = { |
749 | 0 | reference_frame.PlaneRow(0, 0), |
750 | 0 | reference_frame.PlaneRow(1, 0), |
751 | 0 | reference_frame.PlaneRow(2, 0), |
752 | 0 | }; |
753 | 0 | size_t ref_stride = reference_frame.PixelsPerRow(); |
754 | 0 | size_t num_ec = state->shared.metadata->m.num_extra_channels; |
755 | |
|
756 | 0 | for (size_t i = 0; i < info.size(); i++) { |
757 | 0 | PatchReferencePosition ref_pos; |
758 | 0 | ref_pos.xsize = info[i].first.xsize; |
759 | 0 | ref_pos.ysize = info[i].first.ysize; |
760 | 0 | ref_pos.x0 = ref_positions[i].first; |
761 | 0 | ref_pos.y0 = ref_positions[i].second; |
762 | 0 | ref_pos.ref = kPatchFrameReferenceId; |
763 | 0 | for (size_t y = 0; y < ref_pos.ysize; y++) { |
764 | 0 | for (size_t x = 0; x < ref_pos.xsize; x++) { |
765 | 0 | for (size_t c = 0; c < 3; c++) { |
766 | 0 | ref_rows[c][(y + ref_pos.y0) * ref_stride + x + ref_pos.x0] = |
767 | 0 | info[i].first.fpixels[c][y * ref_pos.xsize + x]; |
768 | 0 | } |
769 | 0 | } |
770 | 0 | } |
771 | 0 | for (const auto& pos : info[i].second) { |
772 | 0 | JXL_DEBUG_V(4, "Patch %" PRIuS "x%" PRIuS " at position %u,%u", |
773 | 0 | ref_pos.xsize, ref_pos.ysize, pos.first, pos.second); |
774 | 0 | positions.emplace_back( |
775 | 0 | PatchPosition{pos.first, pos.second, pref_positions.size()}); |
776 | | // Add blending for color channels, ignore other channels. |
777 | 0 | blendings.push_back({PatchBlendMode::kAdd, 0, false}); |
778 | 0 | for (size_t j = 0; j < num_ec; ++j) { |
779 | 0 | blendings.push_back({PatchBlendMode::kNone, 0, false}); |
780 | 0 | } |
781 | 0 | } |
782 | 0 | pref_positions.emplace_back(ref_pos); |
783 | 0 | } |
784 | |
|
785 | 0 | CompressParams cparams = state->cparams; |
786 | | // Recursive application of patches could create very weird issues. |
787 | 0 | cparams.patches = Override::kOff; |
788 | |
|
789 | 0 | if (WantDebugOutput(cparams)) { |
790 | 0 | if (is_xyb) { |
791 | 0 | JXL_RETURN_IF_ERROR( |
792 | 0 | DumpXybImage(cparams, "patch_reference", reference_frame)); |
793 | 0 | } else { |
794 | 0 | JXL_RETURN_IF_ERROR( |
795 | 0 | DumpImage(cparams, "patch_reference", reference_frame)); |
796 | 0 | } |
797 | 0 | } |
798 | | |
799 | 0 | JXL_RETURN_IF_ERROR(RoundtripPatchFrame(&reference_frame, state, |
800 | 0 | kPatchFrameReferenceId, cparams, cms, |
801 | 0 | pool, aux_out, /*subtract=*/true)); |
802 | | |
803 | | // TODO(veluca): this assumes that applying patches is commutative, which is |
804 | | // not true for all blending modes. This code only produces kAdd patches, so |
805 | | // this works out. |
806 | 0 | PatchDictionaryEncoder::SetPositions( |
807 | 0 | &state->shared.image_features.patches, std::move(positions), |
808 | 0 | std::move(pref_positions), std::move(blendings), num_ec + 1); |
809 | 0 | return true; |
810 | 0 | } |
811 | | |
812 | | Status RoundtripPatchFrame(Image3F* reference_frame, |
813 | | PassesEncoderState* JXL_RESTRICT state, int idx, |
814 | | CompressParams& cparams, const JxlCmsInterface& cms, |
815 | 0 | ThreadPool* pool, AuxOut* aux_out, bool subtract) { |
816 | 0 | JxlMemoryManager* memory_manager = state->memory_manager(); |
817 | 0 | FrameInfo patch_frame_info; |
818 | 0 | cparams.resampling = 1; |
819 | 0 | cparams.ec_resampling = 1; |
820 | 0 | cparams.dots = Override::kOff; |
821 | 0 | cparams.noise = Override::kOff; |
822 | 0 | cparams.modular_mode = true; |
823 | 0 | cparams.responsive = 0; |
824 | 0 | cparams.progressive_dc = 0; |
825 | 0 | cparams.progressive_mode = Override::kOff; |
826 | 0 | cparams.qprogressive_mode = Override::kOff; |
827 | | // Use gradient predictor and not Predictor::Best. |
828 | 0 | cparams.options.predictor = Predictor::Gradient; |
829 | 0 | patch_frame_info.save_as_reference = idx; // always saved. |
830 | 0 | patch_frame_info.frame_type = FrameType::kReferenceOnly; |
831 | 0 | patch_frame_info.save_before_color_transform = true; |
832 | 0 | ImageBundle ib(memory_manager, &state->shared.metadata->m); |
833 | | // TODO(veluca): metadata.color_encoding is a lie: ib is in XYB, but there is |
834 | | // no simple way to express that yet. |
835 | 0 | patch_frame_info.ib_needs_color_transform = false; |
836 | 0 | JXL_RETURN_IF_ERROR(ib.SetFromImage( |
837 | 0 | std::move(*reference_frame), state->shared.metadata->m.color_encoding)); |
838 | 0 | if (!ib.metadata()->extra_channel_info.empty()) { |
839 | | // Add placeholder extra channels to the patch image: patch encoding does |
840 | | // not yet support extra channels, but the codec expects that the amount of |
841 | | // extra channels in frames matches that in the metadata of the codestream. |
842 | 0 | std::vector<ImageF> extra_channels; |
843 | 0 | extra_channels.reserve(ib.metadata()->extra_channel_info.size()); |
844 | 0 | for (size_t i = 0; i < ib.metadata()->extra_channel_info.size(); i++) { |
845 | 0 | JXL_ASSIGN_OR_RETURN( |
846 | 0 | ImageF ch, ImageF::Create(memory_manager, ib.xsize(), ib.ysize())); |
847 | 0 | extra_channels.emplace_back(std::move(ch)); |
848 | | // Must initialize the image with data to not affect blending with |
849 | | // uninitialized memory. |
850 | | // TODO(lode): patches must copy and use the real extra channels instead. |
851 | 0 | ZeroFillImage(&extra_channels.back()); |
852 | 0 | } |
853 | 0 | JXL_RETURN_IF_ERROR(ib.SetExtraChannels(std::move(extra_channels))); |
854 | 0 | } |
855 | 0 | auto special_frame = jxl::make_unique<BitWriter>(memory_manager); |
856 | 0 | AuxOut patch_aux_out; |
857 | 0 | JXL_RETURN_IF_ERROR(EncodeFrame( |
858 | 0 | memory_manager, cparams, patch_frame_info, state->shared.metadata, ib, |
859 | 0 | cms, pool, special_frame.get(), aux_out ? &patch_aux_out : nullptr)); |
860 | 0 | if (aux_out) { |
861 | 0 | for (const auto& l : patch_aux_out.layers) { |
862 | 0 | aux_out->layer(LayerType::Dictionary).Assimilate(l); |
863 | 0 | } |
864 | 0 | } |
865 | 0 | const Span<const uint8_t> encoded = special_frame->GetSpan(); |
866 | 0 | state->special_frames.emplace_back(std::move(special_frame)); |
867 | 0 | if (subtract) { |
868 | 0 | ImageBundle decoded(memory_manager, &state->shared.metadata->m); |
869 | 0 | auto dec_state = jxl::make_unique<PassesDecoderState>(memory_manager); |
870 | 0 | JXL_RETURN_IF_ERROR(dec_state->output_encoding_info.SetFromMetadata( |
871 | 0 | *state->shared.metadata)); |
872 | 0 | const uint8_t* frame_start = encoded.data(); |
873 | 0 | size_t encoded_size = encoded.size(); |
874 | 0 | JXL_RETURN_IF_ERROR(DecodeFrame( |
875 | 0 | dec_state.get(), pool, frame_start, encoded_size, |
876 | 0 | /*frame_header=*/nullptr, &decoded, *state->shared.metadata)); |
877 | 0 | frame_start += decoded.decoded_bytes(); |
878 | 0 | encoded_size -= decoded.decoded_bytes(); |
879 | 0 | size_t ref_xsize = |
880 | 0 | dec_state->shared_storage.reference_frames[idx].frame->color()->xsize(); |
881 | | // if the frame itself uses patches, we need to decode another frame |
882 | 0 | if (!ref_xsize) { |
883 | 0 | JXL_RETURN_IF_ERROR(DecodeFrame( |
884 | 0 | dec_state.get(), pool, frame_start, encoded_size, |
885 | 0 | /*frame_header=*/nullptr, &decoded, *state->shared.metadata)); |
886 | 0 | } |
887 | 0 | JXL_ENSURE(encoded_size == 0); |
888 | 0 | state->shared.reference_frames[idx] = |
889 | 0 | std::move(dec_state->shared_storage.reference_frames[idx]); |
890 | 0 | } else { |
891 | 0 | *state->shared.reference_frames[idx].frame = std::move(ib); |
892 | 0 | } |
893 | 0 | return true; |
894 | 0 | } |
895 | | |
896 | | } // namespace jxl |