Coverage Report

Created: 2026-02-14 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/zlib/inftrees.c
Line
Count
Source
1
/* inftrees.c -- generate Huffman trees for efficient decoding
2
 * Copyright (C) 1995-2025 Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
#ifdef MAKEFIXED
7
#  ifndef BUILDFIXED
8
#    define BUILDFIXED
9
#  endif
10
#endif
11
#ifdef BUILDFIXED
12
#  define Z_ONCE
13
#endif
14
15
#include "zutil.h"
16
#include "inftrees.h"
17
#include "inflate.h"
18
19
5.67M
#define MAXBITS 15
20
21
const char inflate_copyright[] =
22
   " inflate 1.3.1.2 Copyright 1995-2025 Mark Adler ";
23
/*
24
  If you use the zlib library in a product, an acknowledgment is welcome
25
  in the documentation of your product. If for some reason you cannot
26
  include such an acknowledgment, I would appreciate that you keep this
27
  copyright string in the executable of your product.
28
 */
29
30
/*
31
   Build a set of tables to decode the provided canonical Huffman code.
32
   The code lengths are lens[0..codes-1].  The result starts at *table,
33
   whose indices are 0..2^bits-1.  work is a writable array of at least
34
   lens shorts, which is used as a work area.  type is the type of code
35
   to be generated, CODES, LENS, or DISTS.  On return, zero is success,
36
   -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
37
   on return points to the next available entry's address.  bits is the
38
   requested root table index bits, and on return it is the actual root
39
   table index bits.  It will differ if the request is greater than the
40
   longest code or if it is less than the shortest code.
41
 */
42
int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
43
                                unsigned codes, code FAR * FAR *table,
44
116k
                                unsigned FAR *bits, unsigned short FAR *work) {
45
116k
    unsigned len;               /* a code's length in bits */
46
116k
    unsigned sym;               /* index of code symbols */
47
116k
    unsigned min, max;          /* minimum and maximum code lengths */
48
116k
    unsigned root;              /* number of index bits for root table */
49
116k
    unsigned curr;              /* number of index bits for current table */
50
116k
    unsigned drop;              /* code bits to drop for sub-table */
51
116k
    int left;                   /* number of prefix codes available */
52
116k
    unsigned used;              /* code entries in table used */
53
116k
    unsigned huff;              /* Huffman code */
54
116k
    unsigned incr;              /* for incrementing code, index */
55
116k
    unsigned fill;              /* index for replicating entries */
56
116k
    unsigned low;               /* low bits for current root entry */
57
116k
    unsigned mask;              /* mask for low root bits */
58
116k
    code here;                  /* table entry for duplication */
59
116k
    code FAR *next;             /* next available space in table */
60
116k
    const unsigned short FAR *base = NULL;  /* base value table to use */
61
116k
    const unsigned short FAR *extra = NULL; /* extra bits table to use */
62
116k
    unsigned match = 0;         /* use base and extra for symbol >= match */
63
116k
    unsigned short count[MAXBITS+1];    /* number of codes of each length */
64
116k
    unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
65
116k
    static const unsigned short lbase[31] = { /* Length codes 257..285 base */
66
116k
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
67
116k
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
68
116k
    static const unsigned short lext[31] = { /* Length codes 257..285 extra */
69
116k
        16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
70
116k
        19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 64, 204};
71
116k
    static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
72
116k
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
73
116k
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
74
116k
        8193, 12289, 16385, 24577, 0, 0};
75
116k
    static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
76
116k
        16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
77
116k
        23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
78
116k
        28, 28, 29, 29, 64, 64};
79
80
    /*
81
       Process a set of code lengths to create a canonical Huffman code.  The
82
       code lengths are lens[0..codes-1].  Each length corresponds to the
83
       symbols 0..codes-1.  The Huffman code is generated by first sorting the
84
       symbols by length from short to long, and retaining the symbol order
85
       for codes with equal lengths.  Then the code starts with all zero bits
86
       for the first code of the shortest length, and the codes are integer
87
       increments for the same length, and zeros are appended as the length
88
       increases.  For the deflate format, these bits are stored backwards
89
       from their more natural integer increment ordering, and so when the
90
       decoding tables are built in the large loop below, the integer codes
91
       are incremented backwards.
92
93
       This routine assumes, but does not check, that all of the entries in
94
       lens[] are in the range 0..MAXBITS.  The caller must assure this.
95
       1..MAXBITS is interpreted as that code length.  zero means that that
96
       symbol does not occur in this code.
97
98
       The codes are sorted by computing a count of codes for each length,
99
       creating from that a table of starting indices for each length in the
100
       sorted table, and then entering the symbols in order in the sorted
101
       table.  The sorted table is work[], with that space being provided by
102
       the caller.
103
104
       The length counts are used for other purposes as well, i.e. finding
105
       the minimum and maximum length codes, determining if there are any
106
       codes at all, checking for a valid set of lengths, and looking ahead
107
       at length counts to determine sub-table sizes when building the
108
       decoding tables.
109
     */
110
111
    /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
112
1.98M
    for (len = 0; len <= MAXBITS; len++)
113
1.86M
        count[len] = 0;
114
12.2M
    for (sym = 0; sym < codes; sym++)
115
12.1M
        count[lens[sym]]++;
116
117
    /* bound code lengths, force root to be within code lengths */
118
116k
    root = *bits;
119
981k
    for (max = MAXBITS; max >= 1; max--)
120
980k
        if (count[max] != 0) break;
121
116k
    if (root > max) root = max;
122
116k
    if (max == 0) {                     /* no symbols to code at all */
123
557
        here.op = (unsigned char)64;    /* invalid code marker */
124
557
        here.bits = (unsigned char)1;
125
557
        here.val = (unsigned short)0;
126
557
        *(*table)++ = here;             /* make a table to force an error */
127
557
        *(*table)++ = here;
128
557
        *bits = 1;
129
557
        return 0;     /* no symbols, but wait for decoding to report error */
130
557
    }
131
235k
    for (min = 1; min < max; min++)
132
231k
        if (count[min] != 0) break;
133
116k
    if (root < min) root = min;
134
135
    /* check for an over-subscribed or incomplete set of lengths */
136
116k
    left = 1;
137
1.85M
    for (len = 1; len <= MAXBITS; len++) {
138
1.73M
        left <<= 1;
139
1.73M
        left -= count[len];
140
1.73M
        if (left < 0) return -1;        /* over-subscribed */
141
1.73M
    }
142
115k
    if (left > 0 && (type == CODES || max != 1))
143
1.46k
        return -1;                      /* incomplete set */
144
145
    /* generate offsets into symbol table for each length for sorting */
146
114k
    offs[1] = 0;
147
1.71M
    for (len = 1; len < MAXBITS; len++)
148
1.60M
        offs[len + 1] = offs[len] + count[len];
149
150
    /* sort symbols by length, by symbol order within each length */
151
12.1M
    for (sym = 0; sym < codes; sym++)
152
11.9M
        if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
153
154
    /*
155
       Create and fill in decoding tables.  In this loop, the table being
156
       filled is at next and has curr index bits.  The code being used is huff
157
       with length len.  That code is converted to an index by dropping drop
158
       bits off of the bottom.  For codes where len is less than drop + curr,
159
       those top drop + curr - len bits are incremented through all values to
160
       fill the table with replicated entries.
161
162
       root is the number of index bits for the root table.  When len exceeds
163
       root, sub-tables are created pointed to by the root entry with an index
164
       of the low root bits of huff.  This is saved in low to check for when a
165
       new sub-table should be started.  drop is zero when the root table is
166
       being filled, and drop is root when sub-tables are being filled.
167
168
       When a new sub-table is needed, it is necessary to look ahead in the
169
       code lengths to determine what size sub-table is needed.  The length
170
       counts are used for this, and so count[] is decremented as codes are
171
       entered in the tables.
172
173
       used keeps track of how many table entries have been allocated from the
174
       provided *table space.  It is checked for LENS and DIST tables against
175
       the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
176
       the initial root table size constants.  See the comments in inftrees.h
177
       for more information.
178
179
       sym increments through all symbols, and the loop terminates when
180
       all codes of length max, i.e. all codes, have been processed.  This
181
       routine permits incomplete codes, so another loop after this one fills
182
       in the rest of the decoding tables with invalid code markers.
183
     */
184
185
    /* set up for code type */
186
114k
    switch (type) {
187
39.0k
    case CODES:
188
39.0k
        match = 20;
189
39.0k
        break;
190
37.9k
    case LENS:
191
37.9k
        base = lbase;
192
37.9k
        extra = lext;
193
37.9k
        match = 257;
194
37.9k
        break;
195
37.3k
    case DISTS:
196
37.3k
        base = dbase;
197
37.3k
        extra = dext;
198
114k
    }
199
200
    /* initialize state for loop */
201
114k
    huff = 0;                   /* starting code */
202
114k
    sym = 0;                    /* starting code symbol */
203
114k
    len = min;                  /* starting code length */
204
114k
    next = *table;              /* current table to fill in */
205
114k
    curr = root;                /* current table index bits */
206
114k
    drop = 0;                   /* current bits to drop from code for index */
207
114k
    low = (unsigned)(-1);       /* trigger new sub-table when len > root */
208
114k
    used = 1U << root;          /* use root table entries */
209
114k
    mask = used - 1;            /* mask for comparing low */
210
211
    /* check available table space */
212
114k
    if ((type == LENS && used > ENOUGH_LENS) ||
213
114k
        (type == DISTS && used > ENOUGH_DISTS))
214
0
        return 1;
215
216
    /* process all codes and make table entries */
217
3.14M
    for (;;) {
218
        /* create table entry */
219
3.14M
        here.bits = (unsigned char)(len - drop);
220
3.14M
        if (work[sym] + 1U < match) {
221
1.84M
            here.op = (unsigned char)0;
222
1.84M
            here.val = work[sym];
223
1.84M
        }
224
1.29M
        else if (work[sym] >= match) {
225
1.25M
            here.op = (unsigned char)(extra[work[sym] - match]);
226
1.25M
            here.val = base[work[sym] - match];
227
1.25M
        }
228
37.9k
        else {
229
37.9k
            here.op = (unsigned char)(32 + 64);         /* end of block */
230
37.9k
            here.val = 0;
231
37.9k
        }
232
233
        /* replicate for those indices with low len bits equal to huff */
234
3.14M
        incr = 1U << (len - drop);
235
3.14M
        fill = 1U << curr;
236
3.14M
        min = fill;                 /* save offset to next table */
237
22.2M
        do {
238
22.2M
            fill -= incr;
239
22.2M
            next[(huff >> drop) + fill] = here;
240
22.2M
        } while (fill != 0);
241
242
        /* backwards increment the len-bit code huff */
243
3.14M
        incr = 1U << (len - 1);
244
6.16M
        while (huff & incr)
245
3.02M
            incr >>= 1;
246
3.14M
        if (incr != 0) {
247
3.02M
            huff &= incr - 1;
248
3.02M
            huff += incr;
249
3.02M
        }
250
113k
        else
251
113k
            huff = 0;
252
253
        /* go to next symbol, update count, len */
254
3.14M
        sym++;
255
3.14M
        if (--(count[len]) == 0) {
256
705k
            if (len == max) break;
257
591k
            len = lens[work[sym]];
258
591k
        }
259
260
        /* create new sub-table if needed */
261
3.02M
        if (len > root && (huff & mask) != low) {
262
            /* if first time, transition to sub-tables */
263
221k
            if (drop == 0)
264
66.9k
                drop = root;
265
266
            /* increment past last table */
267
221k
            next += min;            /* here min is 1 << curr */
268
269
            /* determine length of next table */
270
221k
            curr = len - drop;
271
221k
            left = (int)(1 << curr);
272
288k
            while (curr + drop < max) {
273
178k
                left -= count[curr + drop];
274
178k
                if (left <= 0) break;
275
66.8k
                curr++;
276
66.8k
                left <<= 1;
277
66.8k
            }
278
279
            /* check for enough space */
280
221k
            used += 1U << curr;
281
221k
            if ((type == LENS && used > ENOUGH_LENS) ||
282
221k
                (type == DISTS && used > ENOUGH_DISTS))
283
0
                return 1;
284
285
            /* point entry in root table to sub-table */
286
221k
            low = huff & mask;
287
221k
            (*table)[low].op = (unsigned char)curr;
288
221k
            (*table)[low].bits = (unsigned char)root;
289
221k
            (*table)[low].val = (unsigned short)(next - *table);
290
221k
        }
291
3.02M
    }
292
293
    /* fill in remaining table entry if code is incomplete (guaranteed to have
294
       at most one remaining entry, since if the code is incomplete, the
295
       maximum code length that was allowed to get this far is one bit) */
296
114k
    if (huff != 0) {
297
669
        here.op = (unsigned char)64;            /* invalid code marker */
298
669
        here.bits = (unsigned char)(len - drop);
299
669
        here.val = (unsigned short)0;
300
669
        next[huff] = here;
301
669
    }
302
303
    /* set return parameters */
304
114k
    *table += used;
305
114k
    *bits = root;
306
114k
    return 0;
307
114k
}
308
309
#ifdef BUILDFIXED
310
/*
311
  If this is compiled with BUILDFIXED defined, and if inflate will be used in
312
  multiple threads, and if atomics are not available, then inflate() must be
313
  called with a fixed block (e.g. 0x03 0x00) to initialize the tables and must
314
  return before any other threads are allowed to call inflate.
315
 */
316
317
static code *lenfix, *distfix;
318
static code fixed[544];
319
320
/* State for z_once(). */
321
local z_once_t built = Z_ONCE_INIT;
322
323
local void buildtables(void) {
324
    unsigned sym, bits;
325
    static code *next;
326
    unsigned short lens[288], work[288];
327
328
    /* literal/length table */
329
    sym = 0;
330
    while (sym < 144) lens[sym++] = 8;
331
    while (sym < 256) lens[sym++] = 9;
332
    while (sym < 280) lens[sym++] = 7;
333
    while (sym < 288) lens[sym++] = 8;
334
    next = fixed;
335
    lenfix = next;
336
    bits = 9;
337
    inflate_table(LENS, lens, 288, &(next), &(bits), work);
338
339
    /* distance table */
340
    sym = 0;
341
    while (sym < 32) lens[sym++] = 5;
342
    distfix = next;
343
    bits = 5;
344
    inflate_table(DISTS, lens, 32, &(next), &(bits), work);
345
}
346
#else /* !BUILDFIXED */
347
#  include "inffixed.h"
348
#endif /* BUILDFIXED */
349
350
/*
351
   Return state with length and distance decoding tables and index sizes set to
352
   fixed code decoding.  Normally this returns fixed tables from inffixed.h.
353
   If BUILDFIXED is defined, then instead this routine builds the tables the
354
   first time it's called, and returns those tables the first time and
355
   thereafter.  This reduces the size of the code by about 2K bytes, in
356
   exchange for a little execution time.  However, BUILDFIXED should not be
357
   used for threaded applications if atomics are not available, as it will
358
   not be thread-safe.
359
 */
360
2.91M
void inflate_fixed(struct inflate_state FAR *state) {
361
#ifdef BUILDFIXED
362
    z_once(&built, buildtables);
363
#endif /* BUILDFIXED */
364
2.91M
    state->lencode = lenfix;
365
2.91M
    state->lenbits = 9;
366
2.91M
    state->distcode = distfix;
367
2.91M
    state->distbits = 5;
368
2.91M
}
369
370
#ifdef MAKEFIXED
371
#include <stdio.h>
372
373
/*
374
   Write out the inffixed.h that will be #include'd above.  Defining MAKEFIXED
375
   also defines BUILDFIXED, so the tables are built on the fly.  main() writes
376
   those tables to stdout, which would directed to inffixed.h. Compile this
377
   along with zutil.c:
378
379
       cc -DMAKEFIXED -o fix inftrees.c zutil.c
380
       ./fix > inffixed.h
381
 */
382
int main(void) {
383
    unsigned low, size;
384
    struct inflate_state state;
385
386
    inflate_fixed(&state);
387
    puts("/* inffixed.h -- table for decoding fixed codes");
388
    puts(" * Generated automatically by makefixed().");
389
    puts(" */");
390
    puts("");
391
    puts("/* WARNING: this file should *not* be used by applications.");
392
    puts("   It is part of the implementation of this library and is");
393
    puts("   subject to change. Applications should only use zlib.h.");
394
    puts(" */");
395
    puts("");
396
    size = 1U << 9;
397
    printf("static const code lenfix[%u] = {", size);
398
    low = 0;
399
    for (;;) {
400
        if ((low % 7) == 0) printf("\n    ");
401
        printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op,
402
               state.lencode[low].bits, state.lencode[low].val);
403
        if (++low == size) break;
404
        putchar(',');
405
    }
406
    puts("\n};");
407
    size = 1U << 5;
408
    printf("\nstatic const code distfix[%u] = {", size);
409
    low = 0;
410
    for (;;) {
411
        if ((low % 6) == 0) printf("\n    ");
412
        printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits,
413
               state.distcode[low].val);
414
        if (++low == size) break;
415
        putchar(',');
416
    }
417
    puts("\n};");
418
    return 0;
419
}
420
#endif /* MAKEFIXED */