Line | Count | Source (jump to first uncovered line) |
1 | | //--------------------------------------------------------------------------------- |
2 | | // |
3 | | // Little Color Management System |
4 | | // Copyright (c) 1998-2024 Marti Maria Saguer |
5 | | // |
6 | | // Permission is hereby granted, free of charge, to any person obtaining |
7 | | // a copy of this software and associated documentation files (the "Software"), |
8 | | // to deal in the Software without restriction, including without limitation |
9 | | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
10 | | // and/or sell copies of the Software, and to permit persons to whom the Software |
11 | | // is furnished to do so, subject to the following conditions: |
12 | | // |
13 | | // The above copyright notice and this permission notice shall be included in |
14 | | // all copies or substantial portions of the Software. |
15 | | // |
16 | | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
17 | | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
18 | | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
19 | | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
20 | | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
21 | | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
22 | | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
23 | | // |
24 | | //--------------------------------------------------------------------------------- |
25 | | // |
26 | | |
27 | | #include "lcms2_internal.h" |
28 | | |
29 | | // This module incorporates several interpolation routines, for 1 to 8 channels on input and |
30 | | // up to 65535 channels on output. The user may change those by using the interpolation plug-in |
31 | | |
32 | | // Some people may want to compile as C++ with all warnings on, in this case make compiler silent |
33 | | #ifdef _MSC_VER |
34 | | # if (_MSC_VER >= 1400) |
35 | | # pragma warning( disable : 4365 ) |
36 | | # endif |
37 | | #endif |
38 | | |
39 | | // Interpolation routines by default |
40 | | static cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags); |
41 | | |
42 | | // This is the default factory |
43 | | _cmsInterpPluginChunkType _cmsInterpPluginChunk = { NULL }; |
44 | | |
45 | | // The interpolation plug-in memory chunk allocator/dup |
46 | | void _cmsAllocInterpPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) |
47 | 24 | { |
48 | 24 | void* from; |
49 | | |
50 | 24 | _cmsAssert(ctx != NULL); |
51 | | |
52 | 24 | if (src != NULL) { |
53 | 0 | from = src ->chunks[InterpPlugin]; |
54 | 0 | } |
55 | 24 | else { |
56 | 24 | static _cmsInterpPluginChunkType InterpPluginChunk = { NULL }; |
57 | | |
58 | 24 | from = &InterpPluginChunk; |
59 | 24 | } |
60 | | |
61 | 24 | _cmsAssert(from != NULL); |
62 | 24 | ctx ->chunks[InterpPlugin] = _cmsSubAllocDup(ctx ->MemPool, from, sizeof(_cmsInterpPluginChunkType)); |
63 | 24 | } |
64 | | |
65 | | |
66 | | // Main plug-in entry |
67 | | cmsBool _cmsRegisterInterpPlugin(cmsContext ContextID, cmsPluginBase* Data) |
68 | 24 | { |
69 | 24 | cmsPluginInterpolation* Plugin = (cmsPluginInterpolation*) Data; |
70 | 24 | _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); |
71 | | |
72 | 24 | if (Data == NULL) { |
73 | | |
74 | 24 | ptr ->Interpolators = NULL; |
75 | 24 | return TRUE; |
76 | 24 | } |
77 | | |
78 | | // Set replacement functions |
79 | 0 | ptr ->Interpolators = Plugin ->InterpolatorsFactory; |
80 | 0 | return TRUE; |
81 | 24 | } |
82 | | |
83 | | |
84 | | // Set the interpolation method |
85 | | cmsBool _cmsSetInterpolationRoutine(cmsContext ContextID, cmsInterpParams* p) |
86 | 0 | { |
87 | 0 | _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); |
88 | |
|
89 | 0 | p ->Interpolation.Lerp16 = NULL; |
90 | | |
91 | | // Invoke factory, possibly in the Plug-in |
92 | 0 | if (ptr ->Interpolators != NULL) |
93 | 0 | p ->Interpolation = ptr->Interpolators(p -> nInputs, p ->nOutputs, p ->dwFlags); |
94 | | |
95 | | // If unsupported by the plug-in, go for the LittleCMS default. |
96 | | // If happens only if an extern plug-in is being used |
97 | 0 | if (p ->Interpolation.Lerp16 == NULL) |
98 | 0 | p ->Interpolation = DefaultInterpolatorsFactory(p ->nInputs, p ->nOutputs, p ->dwFlags); |
99 | | |
100 | | // Check for valid interpolator (we just check one member of the union) |
101 | 0 | if (p ->Interpolation.Lerp16 == NULL) { |
102 | 0 | return FALSE; |
103 | 0 | } |
104 | | |
105 | 0 | return TRUE; |
106 | 0 | } |
107 | | |
108 | | |
109 | | // This function precalculates as many parameters as possible to speed up the interpolation. |
110 | | cmsInterpParams* _cmsComputeInterpParamsEx(cmsContext ContextID, |
111 | | const cmsUInt32Number nSamples[], |
112 | | cmsUInt32Number InputChan, cmsUInt32Number OutputChan, |
113 | | const void *Table, |
114 | | cmsUInt32Number dwFlags) |
115 | 0 | { |
116 | 0 | cmsInterpParams* p; |
117 | 0 | cmsUInt32Number i; |
118 | | |
119 | | // Check for maximum inputs |
120 | 0 | if (InputChan > MAX_INPUT_DIMENSIONS) { |
121 | 0 | cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", InputChan, MAX_INPUT_DIMENSIONS); |
122 | 0 | return NULL; |
123 | 0 | } |
124 | | |
125 | | // Creates an empty object |
126 | 0 | p = (cmsInterpParams*) _cmsMallocZero(ContextID, sizeof(cmsInterpParams)); |
127 | 0 | if (p == NULL) return NULL; |
128 | | |
129 | | // Keep original parameters |
130 | 0 | p -> dwFlags = dwFlags; |
131 | 0 | p -> nInputs = InputChan; |
132 | 0 | p -> nOutputs = OutputChan; |
133 | 0 | p ->Table = Table; |
134 | 0 | p ->ContextID = ContextID; |
135 | | |
136 | | // Fill samples per input direction and domain (which is number of nodes minus one) |
137 | 0 | for (i=0; i < InputChan; i++) { |
138 | |
|
139 | 0 | p -> nSamples[i] = nSamples[i]; |
140 | 0 | p -> Domain[i] = nSamples[i] - 1; |
141 | 0 | } |
142 | | |
143 | | // Compute factors to apply to each component to index the grid array |
144 | 0 | p -> opta[0] = p -> nOutputs; |
145 | 0 | for (i=1; i < InputChan; i++) |
146 | 0 | p ->opta[i] = p ->opta[i-1] * nSamples[InputChan-i]; |
147 | | |
148 | |
|
149 | 0 | if (!_cmsSetInterpolationRoutine(ContextID, p)) { |
150 | 0 | cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported interpolation (%d->%d channels)", InputChan, OutputChan); |
151 | 0 | _cmsFree(ContextID, p); |
152 | 0 | return NULL; |
153 | 0 | } |
154 | | |
155 | | // All seems ok |
156 | 0 | return p; |
157 | 0 | } |
158 | | |
159 | | |
160 | | // This one is a wrapper on the anterior, but assuming all directions have same number of nodes |
161 | | cmsInterpParams* CMSEXPORT _cmsComputeInterpParams(cmsContext ContextID, cmsUInt32Number nSamples, |
162 | | cmsUInt32Number InputChan, cmsUInt32Number OutputChan, const void* Table, cmsUInt32Number dwFlags) |
163 | 0 | { |
164 | 0 | int i; |
165 | 0 | cmsUInt32Number Samples[MAX_INPUT_DIMENSIONS]; |
166 | | |
167 | | // Fill the auxiliary array |
168 | 0 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
169 | 0 | Samples[i] = nSamples; |
170 | | |
171 | | // Call the extended function |
172 | 0 | return _cmsComputeInterpParamsEx(ContextID, Samples, InputChan, OutputChan, Table, dwFlags); |
173 | 0 | } |
174 | | |
175 | | |
176 | | // Free all associated memory |
177 | | void CMSEXPORT _cmsFreeInterpParams(cmsInterpParams* p) |
178 | 0 | { |
179 | 0 | if (p != NULL) _cmsFree(p ->ContextID, p); |
180 | 0 | } |
181 | | |
182 | | |
183 | | // Inline fixed point interpolation |
184 | | cmsINLINE CMS_NO_SANITIZE cmsUInt16Number LinearInterp(cmsS15Fixed16Number a, cmsS15Fixed16Number l, cmsS15Fixed16Number h) |
185 | 0 | { |
186 | 0 | cmsUInt32Number dif = (cmsUInt32Number) (h - l) * a + 0x8000; |
187 | 0 | dif = (dif >> 16) + l; |
188 | 0 | return (cmsUInt16Number) (dif); |
189 | 0 | } |
190 | | |
191 | | |
192 | | // Linear interpolation (Fixed-point optimized) |
193 | | static |
194 | | void LinLerp1D(CMSREGISTER const cmsUInt16Number Value[], |
195 | | CMSREGISTER cmsUInt16Number Output[], |
196 | | CMSREGISTER const cmsInterpParams* p) |
197 | 0 | { |
198 | 0 | cmsUInt16Number y1, y0; |
199 | 0 | int cell0, rest; |
200 | 0 | int val3; |
201 | 0 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; |
202 | | |
203 | | // if last value or just one point |
204 | 0 | if (Value[0] == 0xffff || p->Domain[0] == 0) { |
205 | |
|
206 | 0 | Output[0] = LutTable[p -> Domain[0]]; |
207 | 0 | } |
208 | 0 | else |
209 | 0 | { |
210 | 0 | val3 = p->Domain[0] * Value[0]; |
211 | 0 | val3 = _cmsToFixedDomain(val3); // To fixed 15.16 |
212 | |
|
213 | 0 | cell0 = FIXED_TO_INT(val3); // Cell is 16 MSB bits |
214 | 0 | rest = FIXED_REST_TO_INT(val3); // Rest is 16 LSB bits |
215 | |
|
216 | 0 | y0 = LutTable[cell0]; |
217 | 0 | y1 = LutTable[cell0 + 1]; |
218 | |
|
219 | 0 | Output[0] = LinearInterp(rest, y0, y1); |
220 | 0 | } |
221 | 0 | } |
222 | | |
223 | | // To prevent out of bounds indexing |
224 | | cmsINLINE cmsFloat32Number fclamp(cmsFloat32Number v) |
225 | 0 | { |
226 | 0 | return ((v < 1.0e-9f) || isnan(v)) ? 0.0f : (v > 1.0f ? 1.0f : v); |
227 | 0 | } |
228 | | |
229 | | // Floating-point version of 1D interpolation |
230 | | static |
231 | | void LinLerp1Dfloat(const cmsFloat32Number Value[], |
232 | | cmsFloat32Number Output[], |
233 | | const cmsInterpParams* p) |
234 | 0 | { |
235 | 0 | cmsFloat32Number y1, y0; |
236 | 0 | cmsFloat32Number val2, rest; |
237 | 0 | int cell0, cell1; |
238 | 0 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
239 | |
|
240 | 0 | val2 = fclamp(Value[0]); |
241 | | |
242 | | // if last value... |
243 | 0 | if (val2 == 1.0 || p->Domain[0] == 0) { |
244 | 0 | Output[0] = LutTable[p -> Domain[0]]; |
245 | 0 | } |
246 | 0 | else |
247 | 0 | { |
248 | 0 | val2 *= p->Domain[0]; |
249 | |
|
250 | 0 | cell0 = (int)floor(val2); |
251 | 0 | cell1 = (int)ceil(val2); |
252 | | |
253 | | // Rest is 16 LSB bits |
254 | 0 | rest = val2 - cell0; |
255 | |
|
256 | 0 | y0 = LutTable[cell0]; |
257 | 0 | y1 = LutTable[cell1]; |
258 | |
|
259 | 0 | Output[0] = y0 + (y1 - y0) * rest; |
260 | 0 | } |
261 | 0 | } |
262 | | |
263 | | |
264 | | |
265 | | // Eval gray LUT having only one input channel |
266 | | static CMS_NO_SANITIZE |
267 | | void Eval1Input(CMSREGISTER const cmsUInt16Number Input[], |
268 | | CMSREGISTER cmsUInt16Number Output[], |
269 | | CMSREGISTER const cmsInterpParams* p16) |
270 | 0 | { |
271 | 0 | cmsS15Fixed16Number fk; |
272 | 0 | cmsS15Fixed16Number k0, k1, rk, K0, K1; |
273 | 0 | int v; |
274 | 0 | cmsUInt32Number OutChan; |
275 | 0 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
276 | | |
277 | | |
278 | | // if last value... |
279 | 0 | if (Input[0] == 0xffff || p16->Domain[0] == 0) { |
280 | |
|
281 | 0 | cmsUInt32Number y0 = p16->Domain[0] * p16->opta[0]; |
282 | | |
283 | 0 | for (OutChan = 0; OutChan < p16->nOutputs; OutChan++) { |
284 | 0 | Output[OutChan] = LutTable[y0 + OutChan]; |
285 | 0 | } |
286 | 0 | } |
287 | 0 | else |
288 | 0 | { |
289 | |
|
290 | 0 | v = Input[0] * p16->Domain[0]; |
291 | 0 | fk = _cmsToFixedDomain(v); |
292 | |
|
293 | 0 | k0 = FIXED_TO_INT(fk); |
294 | 0 | rk = (cmsUInt16Number)FIXED_REST_TO_INT(fk); |
295 | |
|
296 | 0 | k1 = k0 + (Input[0] != 0xFFFFU ? 1 : 0); |
297 | |
|
298 | 0 | K0 = p16->opta[0] * k0; |
299 | 0 | K1 = p16->opta[0] * k1; |
300 | |
|
301 | 0 | for (OutChan = 0; OutChan < p16->nOutputs; OutChan++) { |
302 | |
|
303 | 0 | Output[OutChan] = LinearInterp(rk, LutTable[K0 + OutChan], LutTable[K1 + OutChan]); |
304 | 0 | } |
305 | 0 | } |
306 | 0 | } |
307 | | |
308 | | |
309 | | |
310 | | // Eval gray LUT having only one input channel |
311 | | static |
312 | | void Eval1InputFloat(const cmsFloat32Number Value[], |
313 | | cmsFloat32Number Output[], |
314 | | const cmsInterpParams* p) |
315 | 0 | { |
316 | 0 | cmsFloat32Number y1, y0; |
317 | 0 | cmsFloat32Number val2, rest; |
318 | 0 | int cell0, cell1; |
319 | 0 | cmsUInt32Number OutChan; |
320 | 0 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
321 | |
|
322 | 0 | val2 = fclamp(Value[0]); |
323 | | |
324 | | // if last value... |
325 | 0 | if (val2 == 1.0 || p->Domain[0] == 0) { |
326 | |
|
327 | 0 | cmsUInt32Number start = p->Domain[0] * p->opta[0]; |
328 | |
|
329 | 0 | for (OutChan = 0; OutChan < p->nOutputs; OutChan++) { |
330 | 0 | Output[OutChan] = LutTable[start + OutChan]; |
331 | 0 | } |
332 | 0 | } |
333 | 0 | else |
334 | 0 | { |
335 | 0 | val2 *= p->Domain[0]; |
336 | |
|
337 | 0 | cell0 = (int)floor(val2); |
338 | 0 | cell1 = (int)ceil(val2); |
339 | | |
340 | | // Rest is 16 LSB bits |
341 | 0 | rest = val2 - cell0; |
342 | |
|
343 | 0 | cell0 *= p->opta[0]; |
344 | 0 | cell1 *= p->opta[0]; |
345 | |
|
346 | 0 | for (OutChan = 0; OutChan < p->nOutputs; OutChan++) { |
347 | |
|
348 | 0 | y0 = LutTable[cell0 + OutChan]; |
349 | 0 | y1 = LutTable[cell1 + OutChan]; |
350 | |
|
351 | 0 | Output[OutChan] = y0 + (y1 - y0) * rest; |
352 | 0 | } |
353 | 0 | } |
354 | 0 | } |
355 | | |
356 | | // Bilinear interpolation (16 bits) - cmsFloat32Number version |
357 | | static |
358 | | void BilinearInterpFloat(const cmsFloat32Number Input[], |
359 | | cmsFloat32Number Output[], |
360 | | const cmsInterpParams* p) |
361 | | |
362 | 0 | { |
363 | 0 | # define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) |
364 | 0 | # define DENS(i,j) (LutTable[(i)+(j)+OutChan]) |
365 | |
|
366 | 0 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
367 | 0 | cmsFloat32Number px, py; |
368 | 0 | int x0, y0, |
369 | 0 | X0, Y0, X1, Y1; |
370 | 0 | int TotalOut, OutChan; |
371 | 0 | cmsFloat32Number fx, fy, |
372 | 0 | d00, d01, d10, d11, |
373 | 0 | dx0, dx1, |
374 | 0 | dxy; |
375 | |
|
376 | 0 | TotalOut = p -> nOutputs; |
377 | 0 | px = fclamp(Input[0]) * p->Domain[0]; |
378 | 0 | py = fclamp(Input[1]) * p->Domain[1]; |
379 | |
|
380 | 0 | x0 = (int) _cmsQuickFloor(px); fx = px - (cmsFloat32Number) x0; |
381 | 0 | y0 = (int) _cmsQuickFloor(py); fy = py - (cmsFloat32Number) y0; |
382 | |
|
383 | 0 | X0 = p -> opta[1] * x0; |
384 | 0 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[1]); |
385 | |
|
386 | 0 | Y0 = p -> opta[0] * y0; |
387 | 0 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[0]); |
388 | |
|
389 | 0 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
390 | |
|
391 | 0 | d00 = DENS(X0, Y0); |
392 | 0 | d01 = DENS(X0, Y1); |
393 | 0 | d10 = DENS(X1, Y0); |
394 | 0 | d11 = DENS(X1, Y1); |
395 | |
|
396 | 0 | dx0 = LERP(fx, d00, d10); |
397 | 0 | dx1 = LERP(fx, d01, d11); |
398 | |
|
399 | 0 | dxy = LERP(fy, dx0, dx1); |
400 | |
|
401 | 0 | Output[OutChan] = dxy; |
402 | 0 | } |
403 | | |
404 | |
|
405 | 0 | # undef LERP |
406 | 0 | # undef DENS |
407 | 0 | } |
408 | | |
409 | | // Bilinear interpolation (16 bits) - optimized version |
410 | | static CMS_NO_SANITIZE |
411 | | void BilinearInterp16(CMSREGISTER const cmsUInt16Number Input[], |
412 | | CMSREGISTER cmsUInt16Number Output[], |
413 | | CMSREGISTER const cmsInterpParams* p) |
414 | | |
415 | 0 | { |
416 | 0 | #define DENS(i,j) (LutTable[(i)+(j)+OutChan]) |
417 | 0 | #define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))) |
418 | |
|
419 | 0 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; |
420 | 0 | int OutChan, TotalOut; |
421 | 0 | cmsS15Fixed16Number fx, fy; |
422 | 0 | CMSREGISTER int rx, ry; |
423 | 0 | int x0, y0; |
424 | 0 | CMSREGISTER int X0, X1, Y0, Y1; |
425 | |
|
426 | 0 | int d00, d01, d10, d11, |
427 | 0 | dx0, dx1, |
428 | 0 | dxy; |
429 | |
|
430 | 0 | TotalOut = p -> nOutputs; |
431 | |
|
432 | 0 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); |
433 | 0 | x0 = FIXED_TO_INT(fx); |
434 | 0 | rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain |
435 | | |
436 | |
|
437 | 0 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); |
438 | 0 | y0 = FIXED_TO_INT(fy); |
439 | 0 | ry = FIXED_REST_TO_INT(fy); |
440 | | |
441 | |
|
442 | 0 | X0 = p -> opta[1] * x0; |
443 | 0 | X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[1]); |
444 | |
|
445 | 0 | Y0 = p -> opta[0] * y0; |
446 | 0 | Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[0]); |
447 | |
|
448 | 0 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
449 | |
|
450 | 0 | d00 = DENS(X0, Y0); |
451 | 0 | d01 = DENS(X0, Y1); |
452 | 0 | d10 = DENS(X1, Y0); |
453 | 0 | d11 = DENS(X1, Y1); |
454 | |
|
455 | 0 | dx0 = LERP(rx, d00, d10); |
456 | 0 | dx1 = LERP(rx, d01, d11); |
457 | |
|
458 | 0 | dxy = LERP(ry, dx0, dx1); |
459 | |
|
460 | 0 | Output[OutChan] = (cmsUInt16Number) dxy; |
461 | 0 | } |
462 | | |
463 | |
|
464 | 0 | # undef LERP |
465 | 0 | # undef DENS |
466 | 0 | } |
467 | | |
468 | | |
469 | | // Trilinear interpolation (16 bits) - cmsFloat32Number version |
470 | | static |
471 | | void TrilinearInterpFloat(const cmsFloat32Number Input[], |
472 | | cmsFloat32Number Output[], |
473 | | const cmsInterpParams* p) |
474 | | |
475 | 0 | { |
476 | 0 | # define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) |
477 | 0 | # define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
478 | |
|
479 | 0 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
480 | 0 | cmsFloat32Number px, py, pz; |
481 | 0 | int x0, y0, z0, |
482 | 0 | X0, Y0, Z0, X1, Y1, Z1; |
483 | 0 | int TotalOut, OutChan; |
484 | |
|
485 | 0 | cmsFloat32Number fx, fy, fz, |
486 | 0 | d000, d001, d010, d011, |
487 | 0 | d100, d101, d110, d111, |
488 | 0 | dx00, dx01, dx10, dx11, |
489 | 0 | dxy0, dxy1, dxyz; |
490 | |
|
491 | 0 | TotalOut = p -> nOutputs; |
492 | | |
493 | | // We need some clipping here |
494 | 0 | px = fclamp(Input[0]) * p->Domain[0]; |
495 | 0 | py = fclamp(Input[1]) * p->Domain[1]; |
496 | 0 | pz = fclamp(Input[2]) * p->Domain[2]; |
497 | |
|
498 | 0 | x0 = (int) floor(px); fx = px - (cmsFloat32Number) x0; // We need full floor functionality here |
499 | 0 | y0 = (int) floor(py); fy = py - (cmsFloat32Number) y0; |
500 | 0 | z0 = (int) floor(pz); fz = pz - (cmsFloat32Number) z0; |
501 | |
|
502 | 0 | X0 = p -> opta[2] * x0; |
503 | 0 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[2]); |
504 | |
|
505 | 0 | Y0 = p -> opta[1] * y0; |
506 | 0 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[1]); |
507 | |
|
508 | 0 | Z0 = p -> opta[0] * z0; |
509 | 0 | Z1 = Z0 + (fclamp(Input[2]) >= 1.0 ? 0 : p->opta[0]); |
510 | |
|
511 | 0 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
512 | |
|
513 | 0 | d000 = DENS(X0, Y0, Z0); |
514 | 0 | d001 = DENS(X0, Y0, Z1); |
515 | 0 | d010 = DENS(X0, Y1, Z0); |
516 | 0 | d011 = DENS(X0, Y1, Z1); |
517 | |
|
518 | 0 | d100 = DENS(X1, Y0, Z0); |
519 | 0 | d101 = DENS(X1, Y0, Z1); |
520 | 0 | d110 = DENS(X1, Y1, Z0); |
521 | 0 | d111 = DENS(X1, Y1, Z1); |
522 | | |
523 | |
|
524 | 0 | dx00 = LERP(fx, d000, d100); |
525 | 0 | dx01 = LERP(fx, d001, d101); |
526 | 0 | dx10 = LERP(fx, d010, d110); |
527 | 0 | dx11 = LERP(fx, d011, d111); |
528 | |
|
529 | 0 | dxy0 = LERP(fy, dx00, dx10); |
530 | 0 | dxy1 = LERP(fy, dx01, dx11); |
531 | |
|
532 | 0 | dxyz = LERP(fz, dxy0, dxy1); |
533 | |
|
534 | 0 | Output[OutChan] = dxyz; |
535 | 0 | } |
536 | | |
537 | |
|
538 | 0 | # undef LERP |
539 | 0 | # undef DENS |
540 | 0 | } |
541 | | |
542 | | // Trilinear interpolation (16 bits) - optimized version |
543 | | static CMS_NO_SANITIZE |
544 | | void TrilinearInterp16(CMSREGISTER const cmsUInt16Number Input[], |
545 | | CMSREGISTER cmsUInt16Number Output[], |
546 | | CMSREGISTER const cmsInterpParams* p) |
547 | | |
548 | 0 | { |
549 | 0 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
550 | 0 | #define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))) |
551 | |
|
552 | 0 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; |
553 | 0 | int OutChan, TotalOut; |
554 | 0 | cmsS15Fixed16Number fx, fy, fz; |
555 | 0 | CMSREGISTER int rx, ry, rz; |
556 | 0 | int x0, y0, z0; |
557 | 0 | CMSREGISTER int X0, X1, Y0, Y1, Z0, Z1; |
558 | 0 | int d000, d001, d010, d011, |
559 | 0 | d100, d101, d110, d111, |
560 | 0 | dx00, dx01, dx10, dx11, |
561 | 0 | dxy0, dxy1, dxyz; |
562 | |
|
563 | 0 | TotalOut = p -> nOutputs; |
564 | |
|
565 | 0 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); |
566 | 0 | x0 = FIXED_TO_INT(fx); |
567 | 0 | rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain |
568 | | |
569 | |
|
570 | 0 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); |
571 | 0 | y0 = FIXED_TO_INT(fy); |
572 | 0 | ry = FIXED_REST_TO_INT(fy); |
573 | |
|
574 | 0 | fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); |
575 | 0 | z0 = FIXED_TO_INT(fz); |
576 | 0 | rz = FIXED_REST_TO_INT(fz); |
577 | | |
578 | |
|
579 | 0 | X0 = p -> opta[2] * x0; |
580 | 0 | X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[2]); |
581 | |
|
582 | 0 | Y0 = p -> opta[1] * y0; |
583 | 0 | Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[1]); |
584 | |
|
585 | 0 | Z0 = p -> opta[0] * z0; |
586 | 0 | Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta[0]); |
587 | |
|
588 | 0 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
589 | |
|
590 | 0 | d000 = DENS(X0, Y0, Z0); |
591 | 0 | d001 = DENS(X0, Y0, Z1); |
592 | 0 | d010 = DENS(X0, Y1, Z0); |
593 | 0 | d011 = DENS(X0, Y1, Z1); |
594 | |
|
595 | 0 | d100 = DENS(X1, Y0, Z0); |
596 | 0 | d101 = DENS(X1, Y0, Z1); |
597 | 0 | d110 = DENS(X1, Y1, Z0); |
598 | 0 | d111 = DENS(X1, Y1, Z1); |
599 | | |
600 | |
|
601 | 0 | dx00 = LERP(rx, d000, d100); |
602 | 0 | dx01 = LERP(rx, d001, d101); |
603 | 0 | dx10 = LERP(rx, d010, d110); |
604 | 0 | dx11 = LERP(rx, d011, d111); |
605 | |
|
606 | 0 | dxy0 = LERP(ry, dx00, dx10); |
607 | 0 | dxy1 = LERP(ry, dx01, dx11); |
608 | |
|
609 | 0 | dxyz = LERP(rz, dxy0, dxy1); |
610 | |
|
611 | 0 | Output[OutChan] = (cmsUInt16Number) dxyz; |
612 | 0 | } |
613 | | |
614 | |
|
615 | 0 | # undef LERP |
616 | 0 | # undef DENS |
617 | 0 | } |
618 | | |
619 | | |
620 | | // Tetrahedral interpolation, using Sakamoto algorithm. |
621 | 0 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
622 | | static |
623 | | void TetrahedralInterpFloat(const cmsFloat32Number Input[], |
624 | | cmsFloat32Number Output[], |
625 | | const cmsInterpParams* p) |
626 | 0 | { |
627 | 0 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
628 | 0 | cmsFloat32Number px, py, pz; |
629 | 0 | int x0, y0, z0, |
630 | 0 | X0, Y0, Z0, X1, Y1, Z1; |
631 | 0 | cmsFloat32Number rx, ry, rz; |
632 | 0 | cmsFloat32Number c0, c1=0, c2=0, c3=0; |
633 | 0 | int OutChan, TotalOut; |
634 | |
|
635 | 0 | TotalOut = p -> nOutputs; |
636 | | |
637 | | // We need some clipping here |
638 | 0 | px = fclamp(Input[0]) * p->Domain[0]; |
639 | 0 | py = fclamp(Input[1]) * p->Domain[1]; |
640 | 0 | pz = fclamp(Input[2]) * p->Domain[2]; |
641 | |
|
642 | 0 | x0 = (int) floor(px); rx = (px - (cmsFloat32Number) x0); // We need full floor functionality here |
643 | 0 | y0 = (int) floor(py); ry = (py - (cmsFloat32Number) y0); |
644 | 0 | z0 = (int) floor(pz); rz = (pz - (cmsFloat32Number) z0); |
645 | | |
646 | |
|
647 | 0 | X0 = p -> opta[2] * x0; |
648 | 0 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[2]); |
649 | |
|
650 | 0 | Y0 = p -> opta[1] * y0; |
651 | 0 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[1]); |
652 | |
|
653 | 0 | Z0 = p -> opta[0] * z0; |
654 | 0 | Z1 = Z0 + (fclamp(Input[2]) >= 1.0 ? 0 : p->opta[0]); |
655 | |
|
656 | 0 | for (OutChan=0; OutChan < TotalOut; OutChan++) { |
657 | | |
658 | | // These are the 6 Tetrahedral |
659 | |
|
660 | 0 | c0 = DENS(X0, Y0, Z0); |
661 | |
|
662 | 0 | if (rx >= ry && ry >= rz) { |
663 | |
|
664 | 0 | c1 = DENS(X1, Y0, Z0) - c0; |
665 | 0 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
666 | 0 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
667 | |
|
668 | 0 | } |
669 | 0 | else |
670 | 0 | if (rx >= rz && rz >= ry) { |
671 | |
|
672 | 0 | c1 = DENS(X1, Y0, Z0) - c0; |
673 | 0 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
674 | 0 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
675 | |
|
676 | 0 | } |
677 | 0 | else |
678 | 0 | if (rz >= rx && rx >= ry) { |
679 | |
|
680 | 0 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
681 | 0 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
682 | 0 | c3 = DENS(X0, Y0, Z1) - c0; |
683 | |
|
684 | 0 | } |
685 | 0 | else |
686 | 0 | if (ry >= rx && rx >= rz) { |
687 | |
|
688 | 0 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
689 | 0 | c2 = DENS(X0, Y1, Z0) - c0; |
690 | 0 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
691 | |
|
692 | 0 | } |
693 | 0 | else |
694 | 0 | if (ry >= rz && rz >= rx) { |
695 | |
|
696 | 0 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
697 | 0 | c2 = DENS(X0, Y1, Z0) - c0; |
698 | 0 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
699 | |
|
700 | 0 | } |
701 | 0 | else |
702 | 0 | if (rz >= ry && ry >= rx) { |
703 | |
|
704 | 0 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
705 | 0 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
706 | 0 | c3 = DENS(X0, Y0, Z1) - c0; |
707 | |
|
708 | 0 | } |
709 | 0 | else { |
710 | 0 | c1 = c2 = c3 = 0; |
711 | 0 | } |
712 | |
|
713 | 0 | Output[OutChan] = c0 + c1 * rx + c2 * ry + c3 * rz; |
714 | 0 | } |
715 | |
|
716 | 0 | } |
717 | | |
718 | | #undef DENS |
719 | | |
720 | | static CMS_NO_SANITIZE |
721 | | void TetrahedralInterp16(CMSREGISTER const cmsUInt16Number Input[], |
722 | | CMSREGISTER cmsUInt16Number Output[], |
723 | | CMSREGISTER const cmsInterpParams* p) |
724 | 0 | { |
725 | 0 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p -> Table; |
726 | 0 | cmsS15Fixed16Number fx, fy, fz; |
727 | 0 | cmsS15Fixed16Number rx, ry, rz; |
728 | 0 | int x0, y0, z0; |
729 | 0 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; |
730 | 0 | cmsUInt32Number X0, X1, Y0, Y1, Z0, Z1; |
731 | 0 | cmsUInt32Number TotalOut = p -> nOutputs; |
732 | |
|
733 | 0 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); |
734 | 0 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); |
735 | 0 | fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); |
736 | |
|
737 | 0 | x0 = FIXED_TO_INT(fx); |
738 | 0 | y0 = FIXED_TO_INT(fy); |
739 | 0 | z0 = FIXED_TO_INT(fz); |
740 | |
|
741 | 0 | rx = FIXED_REST_TO_INT(fx); |
742 | 0 | ry = FIXED_REST_TO_INT(fy); |
743 | 0 | rz = FIXED_REST_TO_INT(fz); |
744 | |
|
745 | 0 | X0 = p -> opta[2] * x0; |
746 | 0 | X1 = (Input[0] == 0xFFFFU ? 0 : p->opta[2]); |
747 | |
|
748 | 0 | Y0 = p -> opta[1] * y0; |
749 | 0 | Y1 = (Input[1] == 0xFFFFU ? 0 : p->opta[1]); |
750 | |
|
751 | 0 | Z0 = p -> opta[0] * z0; |
752 | 0 | Z1 = (Input[2] == 0xFFFFU ? 0 : p->opta[0]); |
753 | | |
754 | 0 | LutTable += X0+Y0+Z0; |
755 | | |
756 | | // Output should be computed as x = ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest)) |
757 | | // which expands as: x = (Rest + ((Rest+0x7fff)/0xFFFF) + 0x8000)>>16 |
758 | | // This can be replaced by: t = Rest+0x8001, x = (t + (t>>16))>>16 |
759 | | // at the cost of being off by one at 7fff and 17ffe. |
760 | |
|
761 | 0 | if (rx >= ry) { |
762 | 0 | if (ry >= rz) { |
763 | 0 | Y1 += X1; |
764 | 0 | Z1 += Y1; |
765 | 0 | for (; TotalOut; TotalOut--) { |
766 | 0 | c1 = LutTable[X1]; |
767 | 0 | c2 = LutTable[Y1]; |
768 | 0 | c3 = LutTable[Z1]; |
769 | 0 | c0 = *LutTable++; |
770 | 0 | c3 -= c2; |
771 | 0 | c2 -= c1; |
772 | 0 | c1 -= c0; |
773 | 0 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
774 | 0 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
775 | 0 | } |
776 | 0 | } else if (rz >= rx) { |
777 | 0 | X1 += Z1; |
778 | 0 | Y1 += X1; |
779 | 0 | for (; TotalOut; TotalOut--) { |
780 | 0 | c1 = LutTable[X1]; |
781 | 0 | c2 = LutTable[Y1]; |
782 | 0 | c3 = LutTable[Z1]; |
783 | 0 | c0 = *LutTable++; |
784 | 0 | c2 -= c1; |
785 | 0 | c1 -= c3; |
786 | 0 | c3 -= c0; |
787 | 0 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
788 | 0 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
789 | 0 | } |
790 | 0 | } else { |
791 | 0 | Z1 += X1; |
792 | 0 | Y1 += Z1; |
793 | 0 | for (; TotalOut; TotalOut--) { |
794 | 0 | c1 = LutTable[X1]; |
795 | 0 | c2 = LutTable[Y1]; |
796 | 0 | c3 = LutTable[Z1]; |
797 | 0 | c0 = *LutTable++; |
798 | 0 | c2 -= c3; |
799 | 0 | c3 -= c1; |
800 | 0 | c1 -= c0; |
801 | 0 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
802 | 0 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
803 | 0 | } |
804 | 0 | } |
805 | 0 | } else { |
806 | 0 | if (rx >= rz) { |
807 | 0 | X1 += Y1; |
808 | 0 | Z1 += X1; |
809 | 0 | for (; TotalOut; TotalOut--) { |
810 | 0 | c1 = LutTable[X1]; |
811 | 0 | c2 = LutTable[Y1]; |
812 | 0 | c3 = LutTable[Z1]; |
813 | 0 | c0 = *LutTable++; |
814 | 0 | c3 -= c1; |
815 | 0 | c1 -= c2; |
816 | 0 | c2 -= c0; |
817 | 0 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
818 | 0 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
819 | 0 | } |
820 | 0 | } else if (ry >= rz) { |
821 | 0 | Z1 += Y1; |
822 | 0 | X1 += Z1; |
823 | 0 | for (; TotalOut; TotalOut--) { |
824 | 0 | c1 = LutTable[X1]; |
825 | 0 | c2 = LutTable[Y1]; |
826 | 0 | c3 = LutTable[Z1]; |
827 | 0 | c0 = *LutTable++; |
828 | 0 | c1 -= c3; |
829 | 0 | c3 -= c2; |
830 | 0 | c2 -= c0; |
831 | 0 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
832 | 0 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
833 | 0 | } |
834 | 0 | } else { |
835 | 0 | Y1 += Z1; |
836 | 0 | X1 += Y1; |
837 | 0 | for (; TotalOut; TotalOut--) { |
838 | 0 | c1 = LutTable[X1]; |
839 | 0 | c2 = LutTable[Y1]; |
840 | 0 | c3 = LutTable[Z1]; |
841 | 0 | c0 = *LutTable++; |
842 | 0 | c1 -= c2; |
843 | 0 | c2 -= c3; |
844 | 0 | c3 -= c0; |
845 | 0 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
846 | 0 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
847 | 0 | } |
848 | 0 | } |
849 | 0 | } |
850 | 0 | } |
851 | | |
852 | | |
853 | 0 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
854 | | static CMS_NO_SANITIZE |
855 | | void Eval4Inputs(CMSREGISTER const cmsUInt16Number Input[], |
856 | | CMSREGISTER cmsUInt16Number Output[], |
857 | | CMSREGISTER const cmsInterpParams* p16) |
858 | 0 | { |
859 | 0 | const cmsUInt16Number* LutTable; |
860 | 0 | cmsS15Fixed16Number fk; |
861 | 0 | cmsS15Fixed16Number k0, rk; |
862 | 0 | int K0, K1; |
863 | 0 | cmsS15Fixed16Number fx, fy, fz; |
864 | 0 | cmsS15Fixed16Number rx, ry, rz; |
865 | 0 | int x0, y0, z0; |
866 | 0 | cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; |
867 | 0 | cmsUInt32Number i; |
868 | 0 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; |
869 | 0 | cmsUInt32Number OutChan; |
870 | 0 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
871 | | |
872 | |
|
873 | 0 | fk = _cmsToFixedDomain((int) Input[0] * p16 -> Domain[0]); |
874 | 0 | fx = _cmsToFixedDomain((int) Input[1] * p16 -> Domain[1]); |
875 | 0 | fy = _cmsToFixedDomain((int) Input[2] * p16 -> Domain[2]); |
876 | 0 | fz = _cmsToFixedDomain((int) Input[3] * p16 -> Domain[3]); |
877 | |
|
878 | 0 | k0 = FIXED_TO_INT(fk); |
879 | 0 | x0 = FIXED_TO_INT(fx); |
880 | 0 | y0 = FIXED_TO_INT(fy); |
881 | 0 | z0 = FIXED_TO_INT(fz); |
882 | |
|
883 | 0 | rk = FIXED_REST_TO_INT(fk); |
884 | 0 | rx = FIXED_REST_TO_INT(fx); |
885 | 0 | ry = FIXED_REST_TO_INT(fy); |
886 | 0 | rz = FIXED_REST_TO_INT(fz); |
887 | |
|
888 | 0 | K0 = p16 -> opta[3] * k0; |
889 | 0 | K1 = K0 + (Input[0] == 0xFFFFU ? 0 : p16->opta[3]); |
890 | |
|
891 | 0 | X0 = p16 -> opta[2] * x0; |
892 | 0 | X1 = X0 + (Input[1] == 0xFFFFU ? 0 : p16->opta[2]); |
893 | |
|
894 | 0 | Y0 = p16 -> opta[1] * y0; |
895 | 0 | Y1 = Y0 + (Input[2] == 0xFFFFU ? 0 : p16->opta[1]); |
896 | |
|
897 | 0 | Z0 = p16 -> opta[0] * z0; |
898 | 0 | Z1 = Z0 + (Input[3] == 0xFFFFU ? 0 : p16->opta[0]); |
899 | |
|
900 | 0 | LutTable = (cmsUInt16Number*) p16 -> Table; |
901 | 0 | LutTable += K0; |
902 | |
|
903 | 0 | for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { |
904 | |
|
905 | 0 | c0 = DENS(X0, Y0, Z0); |
906 | |
|
907 | 0 | if (rx >= ry && ry >= rz) { |
908 | |
|
909 | 0 | c1 = DENS(X1, Y0, Z0) - c0; |
910 | 0 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
911 | 0 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
912 | |
|
913 | 0 | } |
914 | 0 | else |
915 | 0 | if (rx >= rz && rz >= ry) { |
916 | |
|
917 | 0 | c1 = DENS(X1, Y0, Z0) - c0; |
918 | 0 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
919 | 0 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
920 | |
|
921 | 0 | } |
922 | 0 | else |
923 | 0 | if (rz >= rx && rx >= ry) { |
924 | |
|
925 | 0 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
926 | 0 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
927 | 0 | c3 = DENS(X0, Y0, Z1) - c0; |
928 | |
|
929 | 0 | } |
930 | 0 | else |
931 | 0 | if (ry >= rx && rx >= rz) { |
932 | |
|
933 | 0 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
934 | 0 | c2 = DENS(X0, Y1, Z0) - c0; |
935 | 0 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
936 | |
|
937 | 0 | } |
938 | 0 | else |
939 | 0 | if (ry >= rz && rz >= rx) { |
940 | |
|
941 | 0 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
942 | 0 | c2 = DENS(X0, Y1, Z0) - c0; |
943 | 0 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
944 | |
|
945 | 0 | } |
946 | 0 | else |
947 | 0 | if (rz >= ry && ry >= rx) { |
948 | |
|
949 | 0 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
950 | 0 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
951 | 0 | c3 = DENS(X0, Y0, Z1) - c0; |
952 | |
|
953 | 0 | } |
954 | 0 | else { |
955 | 0 | c1 = c2 = c3 = 0; |
956 | 0 | } |
957 | |
|
958 | 0 | Rest = c1 * rx + c2 * ry + c3 * rz; |
959 | |
|
960 | 0 | Tmp1[OutChan] = (cmsUInt16Number)(c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))); |
961 | 0 | } |
962 | | |
963 | |
|
964 | 0 | LutTable = (cmsUInt16Number*) p16 -> Table; |
965 | 0 | LutTable += K1; |
966 | |
|
967 | 0 | for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { |
968 | |
|
969 | 0 | c0 = DENS(X0, Y0, Z0); |
970 | |
|
971 | 0 | if (rx >= ry && ry >= rz) { |
972 | |
|
973 | 0 | c1 = DENS(X1, Y0, Z0) - c0; |
974 | 0 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
975 | 0 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
976 | |
|
977 | 0 | } |
978 | 0 | else |
979 | 0 | if (rx >= rz && rz >= ry) { |
980 | |
|
981 | 0 | c1 = DENS(X1, Y0, Z0) - c0; |
982 | 0 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
983 | 0 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
984 | |
|
985 | 0 | } |
986 | 0 | else |
987 | 0 | if (rz >= rx && rx >= ry) { |
988 | |
|
989 | 0 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
990 | 0 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
991 | 0 | c3 = DENS(X0, Y0, Z1) - c0; |
992 | |
|
993 | 0 | } |
994 | 0 | else |
995 | 0 | if (ry >= rx && rx >= rz) { |
996 | |
|
997 | 0 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
998 | 0 | c2 = DENS(X0, Y1, Z0) - c0; |
999 | 0 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
1000 | |
|
1001 | 0 | } |
1002 | 0 | else |
1003 | 0 | if (ry >= rz && rz >= rx) { |
1004 | |
|
1005 | 0 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
1006 | 0 | c2 = DENS(X0, Y1, Z0) - c0; |
1007 | 0 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
1008 | |
|
1009 | 0 | } |
1010 | 0 | else |
1011 | 0 | if (rz >= ry && ry >= rx) { |
1012 | |
|
1013 | 0 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
1014 | 0 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
1015 | 0 | c3 = DENS(X0, Y0, Z1) - c0; |
1016 | |
|
1017 | 0 | } |
1018 | 0 | else { |
1019 | 0 | c1 = c2 = c3 = 0; |
1020 | 0 | } |
1021 | |
|
1022 | 0 | Rest = c1 * rx + c2 * ry + c3 * rz; |
1023 | |
|
1024 | 0 | Tmp2[OutChan] = (cmsUInt16Number) (c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))); |
1025 | 0 | } |
1026 | | |
1027 | | |
1028 | |
|
1029 | 0 | for (i=0; i < p16 -> nOutputs; i++) { |
1030 | 0 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
1031 | 0 | } |
1032 | 0 | } |
1033 | | #undef DENS |
1034 | | |
1035 | | |
1036 | | // For more that 3 inputs (i.e., CMYK) |
1037 | | // evaluate two 3-dimensional interpolations and then linearly interpolate between them. |
1038 | | static |
1039 | | void Eval4InputsFloat(const cmsFloat32Number Input[], |
1040 | | cmsFloat32Number Output[], |
1041 | | const cmsInterpParams* p) |
1042 | 0 | { |
1043 | 0 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
1044 | 0 | cmsFloat32Number rest; |
1045 | 0 | cmsFloat32Number pk; |
1046 | 0 | int k0, K0, K1; |
1047 | 0 | const cmsFloat32Number* T; |
1048 | 0 | cmsUInt32Number i; |
1049 | 0 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
1050 | 0 | cmsInterpParams p1; |
1051 | |
|
1052 | 0 | pk = fclamp(Input[0]) * p->Domain[0]; |
1053 | 0 | k0 = _cmsQuickFloor(pk); |
1054 | 0 | rest = pk - (cmsFloat32Number) k0; |
1055 | |
|
1056 | 0 | K0 = p -> opta[3] * k0; |
1057 | 0 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[3]); |
1058 | |
|
1059 | 0 | p1 = *p; |
1060 | 0 | memmove(&p1.Domain[0], &p ->Domain[1], 3*sizeof(cmsUInt32Number)); |
1061 | |
|
1062 | 0 | T = LutTable + K0; |
1063 | 0 | p1.Table = T; |
1064 | |
|
1065 | 0 | TetrahedralInterpFloat(Input + 1, Tmp1, &p1); |
1066 | |
|
1067 | 0 | T = LutTable + K1; |
1068 | 0 | p1.Table = T; |
1069 | 0 | TetrahedralInterpFloat(Input + 1, Tmp2, &p1); |
1070 | |
|
1071 | 0 | for (i=0; i < p -> nOutputs; i++) |
1072 | 0 | { |
1073 | 0 | cmsFloat32Number y0 = Tmp1[i]; |
1074 | 0 | cmsFloat32Number y1 = Tmp2[i]; |
1075 | |
|
1076 | 0 | Output[i] = y0 + (y1 - y0) * rest; |
1077 | 0 | } |
1078 | 0 | } |
1079 | | |
1080 | | #define EVAL_FNS(N,NM) static CMS_NO_SANITIZE \ |
1081 | 0 | void Eval##N##Inputs(CMSREGISTER const cmsUInt16Number Input[], CMSREGISTER cmsUInt16Number Output[], CMSREGISTER const cmsInterpParams* p16)\ |
1082 | 0 | {\ |
1083 | 0 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table;\ |
1084 | 0 | cmsS15Fixed16Number fk;\ |
1085 | 0 | cmsS15Fixed16Number k0, rk;\ |
1086 | 0 | int K0, K1;\ |
1087 | 0 | const cmsUInt16Number* T;\ |
1088 | 0 | cmsUInt32Number i;\ |
1089 | 0 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];\ |
1090 | 0 | cmsInterpParams p1;\ |
1091 | 0 | \ |
1092 | 0 | fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]);\ |
1093 | 0 | k0 = FIXED_TO_INT(fk);\ |
1094 | 0 | rk = FIXED_REST_TO_INT(fk);\ |
1095 | 0 | \ |
1096 | 0 | K0 = p16 -> opta[NM] * k0;\ |
1097 | 0 | K1 = p16 -> opta[NM] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0));\ |
1098 | 0 | \ |
1099 | 0 | p1 = *p16;\ |
1100 | 0 | memmove(&p1.Domain[0], &p16 ->Domain[1], NM*sizeof(cmsUInt32Number));\ |
1101 | 0 | \ |
1102 | 0 | T = LutTable + K0;\ |
1103 | 0 | p1.Table = T;\ |
1104 | 0 | \ |
1105 | 0 | Eval##NM##Inputs(Input + 1, Tmp1, &p1);\ |
1106 | 0 | \ |
1107 | 0 | T = LutTable + K1;\ |
1108 | 0 | p1.Table = T;\ |
1109 | 0 | \ |
1110 | 0 | Eval##NM##Inputs(Input + 1, Tmp2, &p1);\ |
1111 | 0 | \ |
1112 | 0 | for (i=0; i < p16 -> nOutputs; i++) {\ |
1113 | 0 | \ |
1114 | 0 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]);\ |
1115 | 0 | }\ |
1116 | 0 | }\ Unexecuted instantiation: cmsintrp.c:Eval5Inputs Unexecuted instantiation: cmsintrp.c:Eval6Inputs Unexecuted instantiation: cmsintrp.c:Eval7Inputs Unexecuted instantiation: cmsintrp.c:Eval8Inputs Unexecuted instantiation: cmsintrp.c:Eval9Inputs Unexecuted instantiation: cmsintrp.c:Eval10Inputs Unexecuted instantiation: cmsintrp.c:Eval11Inputs Unexecuted instantiation: cmsintrp.c:Eval12Inputs Unexecuted instantiation: cmsintrp.c:Eval13Inputs Unexecuted instantiation: cmsintrp.c:Eval14Inputs Unexecuted instantiation: cmsintrp.c:Eval15Inputs |
1117 | | \ |
1118 | | static void Eval##N##InputsFloat(const cmsFloat32Number Input[], \ |
1119 | | cmsFloat32Number Output[],\ |
1120 | 0 | const cmsInterpParams * p)\ |
1121 | 0 | {\ |
1122 | 0 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table;\ |
1123 | 0 | cmsFloat32Number rest;\ |
1124 | 0 | cmsFloat32Number pk;\ |
1125 | 0 | int k0, K0, K1;\ |
1126 | 0 | const cmsFloat32Number* T;\ |
1127 | 0 | cmsUInt32Number i;\ |
1128 | 0 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];\ |
1129 | 0 | cmsInterpParams p1;\ |
1130 | 0 | \ |
1131 | 0 | pk = fclamp(Input[0]) * p->Domain[0];\ |
1132 | 0 | k0 = _cmsQuickFloor(pk);\ |
1133 | 0 | rest = pk - (cmsFloat32Number) k0;\ |
1134 | 0 | \ |
1135 | 0 | K0 = p -> opta[NM] * k0;\ |
1136 | 0 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[NM]);\ |
1137 | 0 | \ |
1138 | 0 | p1 = *p;\ |
1139 | 0 | memmove(&p1.Domain[0], &p ->Domain[1], NM*sizeof(cmsUInt32Number));\ |
1140 | 0 | \ |
1141 | 0 | T = LutTable + K0;\ |
1142 | 0 | p1.Table = T;\ |
1143 | 0 | \ |
1144 | 0 | Eval##NM##InputsFloat(Input + 1, Tmp1, &p1);\ |
1145 | 0 | \ |
1146 | 0 | T = LutTable + K1;\ |
1147 | 0 | p1.Table = T;\ |
1148 | 0 | \ |
1149 | 0 | Eval##NM##InputsFloat(Input + 1, Tmp2, &p1);\ |
1150 | 0 | \ |
1151 | 0 | for (i=0; i < p -> nOutputs; i++) {\ |
1152 | 0 | \ |
1153 | 0 | cmsFloat32Number y0 = Tmp1[i];\ |
1154 | 0 | cmsFloat32Number y1 = Tmp2[i];\ |
1155 | 0 | \ |
1156 | 0 | Output[i] = y0 + (y1 - y0) * rest;\ |
1157 | 0 | }\ |
1158 | 0 | } Unexecuted instantiation: cmsintrp.c:Eval5InputsFloat Unexecuted instantiation: cmsintrp.c:Eval6InputsFloat Unexecuted instantiation: cmsintrp.c:Eval7InputsFloat Unexecuted instantiation: cmsintrp.c:Eval8InputsFloat Unexecuted instantiation: cmsintrp.c:Eval9InputsFloat Unexecuted instantiation: cmsintrp.c:Eval10InputsFloat Unexecuted instantiation: cmsintrp.c:Eval11InputsFloat Unexecuted instantiation: cmsintrp.c:Eval12InputsFloat Unexecuted instantiation: cmsintrp.c:Eval13InputsFloat Unexecuted instantiation: cmsintrp.c:Eval14InputsFloat Unexecuted instantiation: cmsintrp.c:Eval15InputsFloat |
1159 | | |
1160 | | |
1161 | | /** |
1162 | | * Thanks to Carles Llopis for the templating idea |
1163 | | */ |
1164 | | EVAL_FNS(5, 4) |
1165 | | EVAL_FNS(6, 5) |
1166 | | EVAL_FNS(7, 6) |
1167 | | EVAL_FNS(8, 7) |
1168 | | EVAL_FNS(9, 8) |
1169 | | EVAL_FNS(10, 9) |
1170 | | EVAL_FNS(11, 10) |
1171 | | EVAL_FNS(12, 11) |
1172 | | EVAL_FNS(13, 12) |
1173 | | EVAL_FNS(14, 13) |
1174 | | EVAL_FNS(15, 14) |
1175 | | |
1176 | | |
1177 | | // The default factory |
1178 | | static |
1179 | | cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags) |
1180 | 0 | { |
1181 | |
|
1182 | 0 | cmsInterpFunction Interpolation; |
1183 | 0 | cmsBool IsFloat = (dwFlags & CMS_LERP_FLAGS_FLOAT); |
1184 | 0 | cmsBool IsTrilinear = (dwFlags & CMS_LERP_FLAGS_TRILINEAR); |
1185 | |
|
1186 | 0 | memset(&Interpolation, 0, sizeof(Interpolation)); |
1187 | | |
1188 | | // Safety check |
1189 | 0 | if (nInputChannels >= 4 && nOutputChannels >= MAX_STAGE_CHANNELS) |
1190 | 0 | return Interpolation; |
1191 | | |
1192 | 0 | switch (nInputChannels) { |
1193 | | |
1194 | 0 | case 1: // Gray LUT / linear |
1195 | |
|
1196 | 0 | if (nOutputChannels == 1) { |
1197 | |
|
1198 | 0 | if (IsFloat) |
1199 | 0 | Interpolation.LerpFloat = LinLerp1Dfloat; |
1200 | 0 | else |
1201 | 0 | Interpolation.Lerp16 = LinLerp1D; |
1202 | |
|
1203 | 0 | } |
1204 | 0 | else { |
1205 | |
|
1206 | 0 | if (IsFloat) |
1207 | 0 | Interpolation.LerpFloat = Eval1InputFloat; |
1208 | 0 | else |
1209 | 0 | Interpolation.Lerp16 = Eval1Input; |
1210 | 0 | } |
1211 | 0 | break; |
1212 | | |
1213 | 0 | case 2: // Duotone |
1214 | 0 | if (IsFloat) |
1215 | 0 | Interpolation.LerpFloat = BilinearInterpFloat; |
1216 | 0 | else |
1217 | 0 | Interpolation.Lerp16 = BilinearInterp16; |
1218 | 0 | break; |
1219 | | |
1220 | 0 | case 3: // RGB et al |
1221 | |
|
1222 | 0 | if (IsTrilinear) { |
1223 | |
|
1224 | 0 | if (IsFloat) |
1225 | 0 | Interpolation.LerpFloat = TrilinearInterpFloat; |
1226 | 0 | else |
1227 | 0 | Interpolation.Lerp16 = TrilinearInterp16; |
1228 | 0 | } |
1229 | 0 | else { |
1230 | |
|
1231 | 0 | if (IsFloat) |
1232 | 0 | Interpolation.LerpFloat = TetrahedralInterpFloat; |
1233 | 0 | else { |
1234 | |
|
1235 | 0 | Interpolation.Lerp16 = TetrahedralInterp16; |
1236 | 0 | } |
1237 | 0 | } |
1238 | 0 | break; |
1239 | | |
1240 | 0 | case 4: // CMYK lut |
1241 | |
|
1242 | 0 | if (IsFloat) |
1243 | 0 | Interpolation.LerpFloat = Eval4InputsFloat; |
1244 | 0 | else |
1245 | 0 | Interpolation.Lerp16 = Eval4Inputs; |
1246 | 0 | break; |
1247 | | |
1248 | 0 | case 5: // 5 Inks |
1249 | 0 | if (IsFloat) |
1250 | 0 | Interpolation.LerpFloat = Eval5InputsFloat; |
1251 | 0 | else |
1252 | 0 | Interpolation.Lerp16 = Eval5Inputs; |
1253 | 0 | break; |
1254 | | |
1255 | 0 | case 6: // 6 Inks |
1256 | 0 | if (IsFloat) |
1257 | 0 | Interpolation.LerpFloat = Eval6InputsFloat; |
1258 | 0 | else |
1259 | 0 | Interpolation.Lerp16 = Eval6Inputs; |
1260 | 0 | break; |
1261 | | |
1262 | 0 | case 7: // 7 inks |
1263 | 0 | if (IsFloat) |
1264 | 0 | Interpolation.LerpFloat = Eval7InputsFloat; |
1265 | 0 | else |
1266 | 0 | Interpolation.Lerp16 = Eval7Inputs; |
1267 | 0 | break; |
1268 | | |
1269 | 0 | case 8: // 8 inks |
1270 | 0 | if (IsFloat) |
1271 | 0 | Interpolation.LerpFloat = Eval8InputsFloat; |
1272 | 0 | else |
1273 | 0 | Interpolation.Lerp16 = Eval8Inputs; |
1274 | 0 | break; |
1275 | | |
1276 | 0 | case 9: |
1277 | 0 | if (IsFloat) |
1278 | 0 | Interpolation.LerpFloat = Eval9InputsFloat; |
1279 | 0 | else |
1280 | 0 | Interpolation.Lerp16 = Eval9Inputs; |
1281 | 0 | break; |
1282 | | |
1283 | 0 | case 10: |
1284 | 0 | if (IsFloat) |
1285 | 0 | Interpolation.LerpFloat = Eval10InputsFloat; |
1286 | 0 | else |
1287 | 0 | Interpolation.Lerp16 = Eval10Inputs; |
1288 | 0 | break; |
1289 | | |
1290 | 0 | case 11: |
1291 | 0 | if (IsFloat) |
1292 | 0 | Interpolation.LerpFloat = Eval11InputsFloat; |
1293 | 0 | else |
1294 | 0 | Interpolation.Lerp16 = Eval11Inputs; |
1295 | 0 | break; |
1296 | | |
1297 | 0 | case 12: |
1298 | 0 | if (IsFloat) |
1299 | 0 | Interpolation.LerpFloat = Eval12InputsFloat; |
1300 | 0 | else |
1301 | 0 | Interpolation.Lerp16 = Eval12Inputs; |
1302 | 0 | break; |
1303 | | |
1304 | 0 | case 13: |
1305 | 0 | if (IsFloat) |
1306 | 0 | Interpolation.LerpFloat = Eval13InputsFloat; |
1307 | 0 | else |
1308 | 0 | Interpolation.Lerp16 = Eval13Inputs; |
1309 | 0 | break; |
1310 | | |
1311 | 0 | case 14: |
1312 | 0 | if (IsFloat) |
1313 | 0 | Interpolation.LerpFloat = Eval14InputsFloat; |
1314 | 0 | else |
1315 | 0 | Interpolation.Lerp16 = Eval14Inputs; |
1316 | 0 | break; |
1317 | | |
1318 | 0 | case 15: |
1319 | 0 | if (IsFloat) |
1320 | 0 | Interpolation.LerpFloat = Eval15InputsFloat; |
1321 | 0 | else |
1322 | 0 | Interpolation.Lerp16 = Eval15Inputs; |
1323 | 0 | break; |
1324 | | |
1325 | 0 | default: |
1326 | 0 | Interpolation.Lerp16 = NULL; |
1327 | 0 | } |
1328 | | |
1329 | 0 | return Interpolation; |
1330 | 0 | } |