Coverage Report

Created: 2025-07-01 06:33

/src/lcms/src/cmsgamma.c
Line
Count
Source (jump to first uncovered line)
1
//---------------------------------------------------------------------------------
2
//
3
//  Little Color Management System
4
//  Copyright (c) 1998-2024 Marti Maria Saguer
5
//
6
// Permission is hereby granted, free of charge, to any person obtaining
7
// a copy of this software and associated documentation files (the "Software"),
8
// to deal in the Software without restriction, including without limitation
9
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
// and/or sell copies of the Software, and to permit persons to whom the Software
11
// is furnished to do so, subject to the following conditions:
12
//
13
// The above copyright notice and this permission notice shall be included in
14
// all copies or substantial portions of the Software.
15
//
16
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23
//
24
//---------------------------------------------------------------------------------
25
//
26
#include "lcms2_internal.h"
27
28
// Tone curves are powerful constructs that can contain curves specified in diverse ways.
29
// The curve is stored in segments, where each segment can be sampled or specified by parameters.
30
// a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
31
// each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
32
// each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
33
// the plug-in should provide the type id, how many parameters each type has, and a pointer to
34
// a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
35
// be called with the type id as a negative value, and a sampled version of the reversed curve
36
// will be built.
37
38
// ----------------------------------------------------------------- Implementation
39
// Maxim number of nodes
40
0
#define MAX_NODES_IN_CURVE   4097
41
0
#define MINUS_INF            (-1E22F)
42
0
#define PLUS_INF             (+1E22F)
43
44
// The list of supported parametric curves
45
typedef struct _cmsParametricCurvesCollection_st {
46
47
    cmsUInt32Number nFunctions;                                     // Number of supported functions in this chunk
48
    cmsInt32Number  FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN];        // The identification types
49
    cmsUInt32Number ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN];       // Number of parameters for each function
50
51
    cmsParametricCurveEvaluator Evaluator;                          // The evaluator
52
53
    struct _cmsParametricCurvesCollection_st* Next; // Next in list
54
55
} _cmsParametricCurvesCollection;
56
57
// This is the default (built-in) evaluator
58
static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R);
59
60
// The built-in list
61
static _cmsParametricCurvesCollection DefaultCurves = {
62
    10,                                      // # of curve types
63
    { 1, 2, 3, 4, 5, 6, 7, 8, 108, 109 },    // Parametric curve ID
64
    { 1, 3, 4, 5, 7, 4, 5, 5,   1,   1 },    // Parameters by type
65
    DefaultEvalParametricFn,                 // Evaluator
66
    NULL                                     // Next in chain
67
};
68
69
// Duplicates the zone of memory used by the plug-in in the new context
70
static
71
void DupPluginCurvesList(struct _cmsContext_struct* ctx, 
72
                                               const struct _cmsContext_struct* src)
73
0
{
74
0
   _cmsCurvesPluginChunkType newHead = { NULL };
75
0
   _cmsParametricCurvesCollection*  entry;
76
0
   _cmsParametricCurvesCollection*  Anterior = NULL;
77
0
   _cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin];
78
79
0
    _cmsAssert(head != NULL);
80
81
    // Walk the list copying all nodes
82
0
   for (entry = head->ParametricCurves;
83
0
        entry != NULL;
84
0
        entry = entry ->Next) {
85
86
0
            _cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection));
87
   
88
0
            if (newEntry == NULL) 
89
0
                return;
90
91
            // We want to keep the linked list order, so this is a little bit tricky
92
0
            newEntry -> Next = NULL;
93
0
            if (Anterior)
94
0
                Anterior -> Next = newEntry;
95
     
96
0
            Anterior = newEntry;
97
98
0
            if (newHead.ParametricCurves == NULL)
99
0
                newHead.ParametricCurves = newEntry;
100
0
    }
101
102
0
  ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType));
103
0
}
104
105
// The allocator have to follow the chain
106
void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx, 
107
                                const struct _cmsContext_struct* src)
108
0
{
109
0
    _cmsAssert(ctx != NULL);
110
111
0
    if (src != NULL) {
112
113
        // Copy all linked list
114
0
       DupPluginCurvesList(ctx, src);
115
0
    }
116
0
    else {
117
0
        static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL };
118
0
        ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType));
119
0
    }
120
0
}
121
122
123
// The linked list head
124
_cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL };
125
126
// As a way to install new parametric curves
127
cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data)
128
0
{
129
0
    _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
130
0
    cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data;
131
0
    _cmsParametricCurvesCollection* fl;
132
133
0
    if (Data == NULL) {
134
135
0
          ctx -> ParametricCurves =  NULL;
136
0
          return TRUE;
137
0
    }
138
139
0
    fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection));
140
0
    if (fl == NULL) return FALSE;
141
142
    // Copy the parameters
143
0
    fl ->Evaluator  = Plugin ->Evaluator;
144
0
    fl ->nFunctions = Plugin ->nFunctions;
145
146
    // Make sure no mem overwrites
147
0
    if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN)
148
0
        fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN;
149
150
    // Copy the data
151
0
    memmove(fl->FunctionTypes,  Plugin ->FunctionTypes,   fl->nFunctions * sizeof(cmsUInt32Number));
152
0
    memmove(fl->ParameterCount, Plugin ->ParameterCount,  fl->nFunctions * sizeof(cmsUInt32Number));
153
154
    // Keep linked list
155
0
    fl ->Next = ctx->ParametricCurves;
156
0
    ctx->ParametricCurves = fl;
157
158
    // All is ok
159
0
    return TRUE;
160
0
}
161
162
163
// Search in type list, return position or -1 if not found
164
static
165
int IsInSet(int Type, _cmsParametricCurvesCollection* c)
166
0
{
167
0
    int i;
168
169
0
    for (i=0; i < (int) c ->nFunctions; i++)
170
0
        if (abs(Type) == c ->FunctionTypes[i]) return i;
171
172
0
    return -1;
173
0
}
174
175
176
// Search for the collection which contains a specific type
177
static
178
_cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index)
179
0
{
180
0
    _cmsParametricCurvesCollection* c;
181
0
    int Position;
182
0
    _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
183
184
0
    for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) {
185
186
0
        Position = IsInSet(Type, c);
187
188
0
        if (Position != -1) {
189
0
            if (index != NULL)
190
0
                *index = Position;
191
0
            return c;
192
0
        }
193
0
    }
194
    // If none found, revert for defaults
195
0
    for (c = &DefaultCurves; c != NULL; c = c ->Next) {
196
197
0
        Position = IsInSet(Type, c);
198
199
0
        if (Position != -1) {
200
0
            if (index != NULL)
201
0
                *index = Position;
202
0
            return c;
203
0
        }
204
0
    }
205
206
0
    return NULL;
207
0
}
208
209
// Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
210
// no optimization curve is computed. nSegments may also be zero in the inverse case, where only the
211
// optimization curve is given. Both features simultaneously is an error
212
static
213
cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsUInt32Number nEntries,
214
                                      cmsUInt32Number nSegments, const cmsCurveSegment* Segments,
215
                                      const cmsUInt16Number* Values)
216
0
{
217
0
    cmsToneCurve* p;
218
0
    cmsUInt32Number i;
219
220
    // We allow huge tables, which are then restricted for smoothing operations
221
0
    if (nEntries > 65530) {
222
0
        cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries");
223
0
        return NULL;
224
0
    }
225
226
0
    if (nEntries == 0 && nSegments == 0) {
227
0
        cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table");
228
0
        return NULL;
229
0
    }
230
231
    // Allocate all required pointers, etc.
232
0
    p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve));
233
0
    if (!p) return NULL;
234
235
    // In this case, there are no segments
236
0
    if (nSegments == 0) {
237
0
        p ->Segments = NULL;
238
0
        p ->Evals = NULL;
239
0
    }
240
0
    else {
241
0
        p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment));
242
0
        if (p ->Segments == NULL) goto Error;
243
244
0
        p ->Evals    = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator));
245
0
        if (p ->Evals == NULL) goto Error;
246
0
    }
247
248
0
    p -> nSegments = nSegments;
249
250
    // This 16-bit table contains a limited precision representation of the whole curve and is kept for
251
    // increasing xput on certain operations.
252
0
    if (nEntries == 0) {
253
0
        p ->Table16 = NULL;
254
0
    }
255
0
    else {
256
0
       p ->Table16 = (cmsUInt16Number*)  _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number));
257
0
       if (p ->Table16 == NULL) goto Error;
258
0
    }
259
260
0
    p -> nEntries  = nEntries;
261
262
    // Initialize members if requested
263
0
    if (Values != NULL && (nEntries > 0)) {
264
265
0
        for (i=0; i < nEntries; i++)
266
0
            p ->Table16[i] = Values[i];
267
0
    }
268
269
    // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it
270
    // is placed in advance to maximize performance.
271
0
    if (Segments != NULL && (nSegments > 0)) {
272
273
0
        _cmsParametricCurvesCollection *c;
274
275
0
        p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*));
276
0
        if (p ->SegInterp == NULL) goto Error;
277
278
0
        for (i=0; i < nSegments; i++) {
279
280
            // Type 0 is a special marker for table-based curves
281
0
            if (Segments[i].Type == 0)
282
0
                p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT);
283
284
0
            memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment));
285
286
0
            if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL)
287
0
                p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints);
288
0
            else
289
0
                p ->Segments[i].SampledPoints = NULL;
290
291
292
0
            c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL);
293
0
            if (c != NULL)
294
0
                    p ->Evals[i] = c ->Evaluator;
295
0
        }
296
0
    }
297
298
0
    p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS);
299
0
    if (p->InterpParams != NULL)
300
0
        return p;
301
302
0
Error:
303
0
    for (i=0; i < nSegments; i++) {
304
0
        if (p ->Segments && p ->Segments[i].SampledPoints) _cmsFree(ContextID, p ->Segments[i].SampledPoints);
305
0
        if (p ->SegInterp && p ->SegInterp[i]) _cmsFree(ContextID, p ->SegInterp[i]);
306
0
    }
307
0
    if (p -> SegInterp) _cmsFree(ContextID, p -> SegInterp);
308
0
    if (p -> Segments) _cmsFree(ContextID, p -> Segments);
309
0
    if (p -> Evals) _cmsFree(ContextID, p -> Evals);
310
0
    if (p ->Table16) _cmsFree(ContextID, p ->Table16);
311
0
    _cmsFree(ContextID, p);
312
0
    return NULL;
313
0
}
314
315
316
// Generates a sigmoidal function with desired steepness.
317
cmsINLINE double sigmoid_base(double k, double t)
318
0
{
319
0
    return (1.0 / (1.0 + exp(-k * t))) - 0.5;
320
0
}
321
322
cmsINLINE double inverted_sigmoid_base(double k, double t)
323
0
{
324
0
    return -log((1.0 / (t + 0.5)) - 1.0) / k;
325
0
}
326
327
cmsINLINE double sigmoid_factory(double k, double t)
328
0
{
329
0
    double correction = 0.5 / sigmoid_base(k, 1);
330
331
0
    return correction * sigmoid_base(k, 2.0 * t - 1.0) + 0.5;
332
0
}
333
334
cmsINLINE double inverse_sigmoid_factory(double k, double t)
335
0
{
336
0
    double correction = 0.5 / sigmoid_base(k, 1);
337
338
0
    return (inverted_sigmoid_base(k, (t - 0.5) / correction) + 1.0) / 2.0;
339
0
}
340
341
342
// Parametric Fn using floating point
343
static
344
cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R)
345
0
{
346
0
    cmsFloat64Number e, Val, disc;
347
348
0
    switch (Type) {
349
350
   // X = Y ^ Gamma
351
0
    case 1:
352
0
        if (R < 0) {
353
354
0
            if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
355
0
                Val = R;
356
0
            else
357
0
                Val = 0;
358
0
        }
359
0
        else
360
0
            Val = pow(R, Params[0]);
361
0
        break;
362
363
    // Type 1 Reversed: X = Y ^1/gamma
364
0
    case -1:
365
0
        if (R < 0) {
366
367
0
            if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
368
0
                Val = R;
369
0
            else
370
0
                Val = 0;
371
0
        }
372
0
        else
373
0
        {
374
0
            if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
375
0
                Val = PLUS_INF;
376
0
            else
377
0
                Val = pow(R, 1 / Params[0]);
378
0
        }
379
0
        break;
380
381
    // CIE 122-1966
382
    // Y = (aX + b)^Gamma  | X >= -b/a
383
    // Y = 0               | else
384
0
    case 2:
385
0
    {
386
387
0
        if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
388
0
        {
389
0
            Val = 0;
390
0
        }
391
0
        else
392
0
        {
393
0
            disc = -Params[2] / Params[1];
394
395
0
            if (R >= disc) {
396
397
0
                e = Params[1] * R + Params[2];
398
399
0
                if (e > 0)
400
0
                    Val = pow(e, Params[0]);
401
0
                else
402
0
                    Val = 0;
403
0
            }
404
0
            else
405
0
                Val = 0;
406
0
        }
407
0
    }
408
0
    break;
409
410
     // Type 2 Reversed
411
     // X = (Y ^1/g  - b) / a
412
0
     case -2:
413
0
     {
414
0
         if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
415
0
             fabs(Params[1]) < MATRIX_DET_TOLERANCE)
416
0
         {
417
0
             Val = 0;
418
0
         }
419
0
         else
420
0
         {
421
0
             if (R < 0)
422
0
                 Val = 0;
423
0
             else
424
0
                 Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
425
426
0
             if (Val < 0)
427
0
                 Val = 0;
428
0
         }
429
0
     }         
430
0
     break;
431
432
433
    // IEC 61966-3
434
    // Y = (aX + b)^Gamma + c | X <= -b/a
435
    // Y = c                  | else
436
0
    case 3:
437
0
    {
438
0
        if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
439
0
        {
440
0
            Val = 0;
441
0
        }
442
0
        else
443
0
        {
444
0
            disc = -Params[2] / Params[1];
445
0
            if (disc < 0)
446
0
                disc = 0;
447
448
0
            if (R >= disc) {
449
450
0
                e = Params[1] * R + Params[2];
451
452
0
                if (e > 0)
453
0
                    Val = pow(e, Params[0]) + Params[3];
454
0
                else
455
0
                    Val = 0;
456
0
            }
457
0
            else
458
0
                Val = Params[3];
459
0
        }
460
0
    }
461
0
    break;
462
463
464
    // Type 3 reversed
465
    // X=((Y-c)^1/g - b)/a      | (Y>=c)
466
    // X=-b/a                   | (Y<c)
467
0
    case -3:
468
0
    {
469
0
        if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
470
0
            fabs(Params[1]) < MATRIX_DET_TOLERANCE)
471
0
        {
472
0
            Val = 0;
473
0
        }
474
0
        else
475
0
        {
476
0
            if (R >= Params[3]) {
477
478
0
                e = R - Params[3];
479
480
0
                if (e > 0)
481
0
                    Val = (pow(e, 1 / Params[0]) - Params[2]) / Params[1];
482
0
                else
483
0
                    Val = 0;
484
0
            }
485
0
            else {
486
0
                Val = -Params[2] / Params[1];
487
0
            }
488
0
        }
489
0
    }
490
0
    break;
491
492
493
    // IEC 61966-2.1 (sRGB)
494
    // Y = (aX + b)^Gamma | X >= d
495
    // Y = cX             | X < d
496
0
    case 4:
497
0
        if (R >= Params[4]) {
498
499
0
            e = Params[1]*R + Params[2];
500
501
0
            if (e > 0)
502
0
                Val = pow(e, Params[0]);
503
0
            else
504
0
                Val = 0;
505
0
        }
506
0
        else
507
0
            Val = R * Params[3];
508
0
        break;
509
510
    // Type 4 reversed
511
    // X=((Y^1/g-b)/a)    | Y >= (ad+b)^g
512
    // X=Y/c              | Y< (ad+b)^g
513
0
    case -4:
514
0
    {
515
516
0
        e = Params[1] * Params[4] + Params[2];
517
0
        if (e < 0)
518
0
            disc = 0;
519
0
        else
520
0
            disc = pow(e, Params[0]);
521
522
0
        if (R >= disc) {
523
524
0
            if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
525
0
                fabs(Params[1]) < MATRIX_DET_TOLERANCE)
526
527
0
                Val = 0;
528
529
0
            else
530
0
                Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
531
0
        }
532
0
        else {
533
534
0
            if (fabs(Params[3]) < MATRIX_DET_TOLERANCE)
535
0
                Val = 0;
536
0
            else
537
0
                Val = R / Params[3];
538
0
        }
539
540
0
    }
541
0
    break;
542
543
544
    // Y = (aX + b)^Gamma + e | X >= d
545
    // Y = cX + f             | X < d
546
0
    case 5:
547
0
        if (R >= Params[4]) {
548
549
0
            e = Params[1]*R + Params[2];
550
551
0
            if (e > 0)
552
0
                Val = pow(e, Params[0]) + Params[5];
553
0
            else
554
0
                Val = Params[5];
555
0
        }
556
0
        else
557
0
            Val = R*Params[3] + Params[6];
558
0
        break;
559
560
561
    // Reversed type 5
562
    // X=((Y-e)1/g-b)/a   | Y >=(ad+b)^g+e), cd+f
563
    // X=(Y-f)/c          | else
564
0
    case -5:
565
0
    {
566
0
        disc = Params[3] * Params[4] + Params[6];
567
0
        if (R >= disc) {
568
569
0
            e = R - Params[5];
570
0
            if (e < 0)
571
0
                Val = 0;
572
0
            else
573
0
            {
574
0
                if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
575
0
                    fabs(Params[1]) < MATRIX_DET_TOLERANCE)
576
577
0
                    Val = 0;
578
0
                else
579
0
                    Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
580
0
            }
581
0
        }
582
0
        else {
583
0
            if (fabs(Params[3]) < MATRIX_DET_TOLERANCE)
584
0
                Val = 0;
585
0
            else
586
0
                Val = (R - Params[6]) / Params[3];
587
0
        }
588
589
0
    }
590
0
    break;
591
592
593
    // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf
594
    // Type 6 is basically identical to type 5 without d
595
596
    // Y = (a * X + b) ^ Gamma + c
597
0
    case 6:
598
0
        e = Params[1]*R + Params[2];
599
600
        // On gamma 1.0, don't clamp
601
0
        if (Params[0] == 1.0) {
602
0
            Val = e + Params[3];
603
0
        }
604
0
        else {
605
0
            if (e < 0)
606
0
                Val = Params[3];
607
0
            else
608
0
                Val = pow(e, Params[0]) + Params[3];
609
0
        }
610
0
        break;
611
612
    // ((Y - c) ^1/Gamma - b) / a
613
0
    case -6:
614
0
    {
615
0
        if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
616
0
            fabs(Params[1]) < MATRIX_DET_TOLERANCE)
617
0
        {
618
0
            Val = 0;
619
0
        }
620
0
        else
621
0
        {
622
0
            e = R - Params[3];
623
0
            if (e < 0)
624
0
                Val = 0;
625
0
            else
626
0
                Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
627
0
        }
628
0
    }
629
0
    break;
630
631
632
    // Y = a * log (b * X^Gamma + c) + d
633
0
    case 7:
634
635
0
       e = Params[2] * pow(R, Params[0]) + Params[3];
636
0
       if (e <= 0)
637
0
           Val = Params[4];
638
0
       else
639
0
           Val = Params[1]*log10(e) + Params[4];
640
0
       break;
641
642
    // (Y - d) / a = log(b * X ^Gamma + c)
643
    // pow(10, (Y-d) / a) = b * X ^Gamma + c
644
    // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
645
0
    case -7:
646
0
    {
647
0
        if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
648
0
            fabs(Params[1]) < MATRIX_DET_TOLERANCE ||
649
0
            fabs(Params[2]) < MATRIX_DET_TOLERANCE)
650
0
        {
651
0
            Val = 0;
652
0
        }
653
0
        else
654
0
        {
655
0
            Val = pow((pow(10.0, (R - Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]);
656
0
        }
657
0
    }
658
0
    break;
659
660
661
   //Y = a * b^(c*X+d) + e
662
0
   case 8:
663
0
       Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]);
664
0
       break;
665
666
667
   // Y = (log((y-e) / a) / log(b) - d ) / c
668
   // a=0, b=1, c=2, d=3, e=4,
669
0
   case -8:
670
671
0
       disc = R - Params[4];
672
0
       if (disc < 0) Val = 0;
673
0
       else
674
0
       {
675
0
           if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
676
0
               fabs(Params[2]) < MATRIX_DET_TOLERANCE)
677
0
           {
678
0
               Val = 0;
679
0
           }
680
0
           else
681
0
           {
682
0
               Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2];
683
0
           }
684
0
       }
685
0
       break;
686
687
688
   // S-Shaped: (1 - (1-x)^1/g)^1/g
689
0
   case 108:
690
0
       if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
691
0
           Val = 0;
692
0
       else
693
0
           Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]);
694
0
      break;
695
696
    // y = (1 - (1-x)^1/g)^1/g
697
    // y^g = (1 - (1-x)^1/g)
698
    // 1 - y^g = (1-x)^1/g
699
    // (1 - y^g)^g = 1 - x
700
    // 1 - (1 - y^g)^g
701
0
    case -108:
702
0
        Val = 1 - pow(1 - pow(R, Params[0]), Params[0]);
703
0
        break;
704
705
    // Sigmoidals
706
0
    case 109:
707
0
        Val = sigmoid_factory(Params[0], R);
708
0
        break;
709
710
0
    case -109:
711
0
        Val = inverse_sigmoid_factory(Params[0], R);
712
0
        break;
713
714
0
    default:
715
        // Unsupported parametric curve. Should never reach here
716
0
        return 0;
717
0
    }
718
719
0
    return Val;
720
0
}
721
722
// Evaluate a segmented function for a single value. Return -Inf if no valid segment found .
723
// If fn type is 0, perform an interpolation on the table
724
static
725
cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R)
726
0
{
727
0
    int i;
728
0
    cmsFloat32Number Out32;
729
0
    cmsFloat64Number Out;
730
731
0
    for (i = (int) g->nSegments - 1; i >= 0; --i) {
732
733
        // Check for domain
734
0
        if ((R > g->Segments[i].x0) && (R <= g->Segments[i].x1)) {
735
736
            // Type == 0 means segment is sampled
737
0
            if (g->Segments[i].Type == 0) {
738
739
0
                cmsFloat32Number R1 = (cmsFloat32Number)(R - g->Segments[i].x0) / (g->Segments[i].x1 - g->Segments[i].x0);
740
741
                // Setup the table (TODO: clean that)
742
0
                g->SegInterp[i]->Table = g->Segments[i].SampledPoints;
743
744
0
                g->SegInterp[i]->Interpolation.LerpFloat(&R1, &Out32, g->SegInterp[i]);
745
0
                Out = (cmsFloat64Number) Out32;
746
747
0
            }
748
0
            else {
749
0
                Out = g->Evals[i](g->Segments[i].Type, g->Segments[i].Params, R);
750
0
            }
751
752
0
            if (isinf(Out))
753
0
                return PLUS_INF;
754
0
            else
755
0
            {
756
0
                if (isinf(-Out))
757
0
                    return MINUS_INF;
758
0
            }
759
760
0
            return Out;
761
0
        }
762
0
    }
763
764
0
    return MINUS_INF;
765
0
}
766
767
// Access to estimated low-res table
768
cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve* t)
769
0
{
770
0
    _cmsAssert(t != NULL);
771
0
    return t ->nEntries;
772
0
}
773
774
const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(const cmsToneCurve* t)
775
0
{
776
0
    _cmsAssert(t != NULL);
777
0
    return t ->Table16;
778
0
}
779
780
781
// Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the
782
// floating point description empty.
783
cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsUInt32Number nEntries, const cmsUInt16Number Values[])
784
0
{
785
0
    return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values);
786
0
}
787
788
static
789
cmsUInt32Number EntriesByGamma(cmsFloat64Number Gamma)
790
0
{
791
0
    if (fabs(Gamma - 1.0) < 0.001) return 2;
792
0
    return 4096;
793
0
}
794
795
796
// Create a segmented gamma, fill the table
797
cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID,
798
                                                   cmsUInt32Number nSegments, const cmsCurveSegment Segments[])
799
0
{
800
0
    cmsUInt32Number i;
801
0
    cmsFloat64Number R, Val;
802
0
    cmsToneCurve* g;
803
0
    cmsUInt32Number nGridPoints = 4096;
804
805
0
    _cmsAssert(Segments != NULL);
806
807
    // Optimizatin for identity curves.
808
0
    if (nSegments == 1 && Segments[0].Type == 1) {
809
810
0
        nGridPoints = EntriesByGamma(Segments[0].Params[0]);
811
0
    }
812
813
0
    g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL);
814
0
    if (g == NULL) return NULL;
815
816
    // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries
817
    // for performance reasons. This table would normally not be used except on 8/16 bits transforms.
818
0
    for (i = 0; i < nGridPoints; i++) {
819
820
0
        R   = (cmsFloat64Number) i / (nGridPoints-1);
821
822
0
        Val = EvalSegmentedFn(g, R);
823
824
        // Round and saturate
825
0
        g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0);
826
0
    }
827
828
0
    return g;
829
0
}
830
831
// Use a segmented curve to store the floating point table
832
cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[])
833
0
{
834
0
    cmsCurveSegment Seg[3];
835
836
    // Do some housekeeping
837
0
    if (nEntries == 0 || values == NULL)
838
0
        return NULL;
839
840
    // A segmented tone curve should have function segments in the first and last positions
841
    // Initialize segmented curve part up to 0 to constant value = samples[0]
842
0
    Seg[0].x0 = MINUS_INF;
843
0
    Seg[0].x1 = 0;
844
0
    Seg[0].Type = 6;
845
846
0
    Seg[0].Params[0] = 1;
847
0
    Seg[0].Params[1] = 0;
848
0
    Seg[0].Params[2] = 0;
849
0
    Seg[0].Params[3] = values[0];
850
0
    Seg[0].Params[4] = 0;
851
852
    // From zero to 1
853
0
    Seg[1].x0 = 0;
854
0
    Seg[1].x1 = 1.0;
855
0
    Seg[1].Type = 0;
856
857
0
    Seg[1].nGridPoints = nEntries;
858
0
    Seg[1].SampledPoints = (cmsFloat32Number*) values;
859
860
    // Final segment is constant = lastsample
861
0
    Seg[2].x0 = 1.0;
862
0
    Seg[2].x1 = PLUS_INF;
863
0
    Seg[2].Type = 6;
864
    
865
0
    Seg[2].Params[0] = 1;
866
0
    Seg[2].Params[1] = 0;
867
0
    Seg[2].Params[2] = 0;
868
0
    Seg[2].Params[3] = values[nEntries-1];
869
0
    Seg[2].Params[4] = 0;
870
    
871
872
0
    return cmsBuildSegmentedToneCurve(ContextID, 3, Seg);
873
0
}
874
875
// Parametric curves
876
//
877
// Parameters goes as: Curve, a, b, c, d, e, f
878
// Type is the ICC type +1
879
// if type is negative, then the curve is analytically inverted
880
cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[])
881
0
{
882
0
    cmsCurveSegment Seg0;
883
0
    int Pos = 0;
884
0
    cmsUInt32Number size;
885
0
    _cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos);
886
887
0
    _cmsAssert(Params != NULL);
888
889
0
    if (c == NULL) {
890
0
        cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type);
891
0
        return NULL;
892
0
    }
893
894
0
    memset(&Seg0, 0, sizeof(Seg0));
895
896
0
    Seg0.x0   = MINUS_INF;
897
0
    Seg0.x1   = PLUS_INF;
898
0
    Seg0.Type = Type;
899
900
0
    size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number);
901
0
    memmove(Seg0.Params, Params, size);
902
903
0
    return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0);
904
0
}
905
906
907
908
// Build a gamma table based on gamma constant
909
cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma)
910
0
{
911
0
    return cmsBuildParametricToneCurve(ContextID, 1, &Gamma);
912
0
}
913
914
915
// Free all memory taken by the gamma curve
916
void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve)
917
0
{
918
0
    cmsContext ContextID;
919
920
0
    if (Curve == NULL) return;
921
922
0
    ContextID = Curve ->InterpParams->ContextID;
923
924
0
    _cmsFreeInterpParams(Curve ->InterpParams);
925
926
0
    if (Curve -> Table16)
927
0
        _cmsFree(ContextID, Curve ->Table16);
928
929
0
    if (Curve ->Segments) {
930
931
0
        cmsUInt32Number i;
932
933
0
        for (i=0; i < Curve ->nSegments; i++) {
934
935
0
            if (Curve ->Segments[i].SampledPoints) {
936
0
                _cmsFree(ContextID, Curve ->Segments[i].SampledPoints);
937
0
            }
938
939
0
            if (Curve ->SegInterp[i] != 0)
940
0
                _cmsFreeInterpParams(Curve->SegInterp[i]);
941
0
        }
942
943
0
        _cmsFree(ContextID, Curve ->Segments);
944
0
        _cmsFree(ContextID, Curve ->SegInterp);
945
0
    }
946
947
0
    if (Curve -> Evals)
948
0
        _cmsFree(ContextID, Curve -> Evals);
949
950
0
    _cmsFree(ContextID, Curve);
951
0
}
952
953
// Utility function, free 3 gamma tables
954
void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3])
955
0
{
956
957
0
    _cmsAssert(Curve != NULL);
958
959
0
    if (Curve[0] != NULL) cmsFreeToneCurve(Curve[0]);
960
0
    if (Curve[1] != NULL) cmsFreeToneCurve(Curve[1]);
961
0
    if (Curve[2] != NULL) cmsFreeToneCurve(Curve[2]);
962
963
0
    Curve[0] = Curve[1] = Curve[2] = NULL;
964
0
}
965
966
967
// Duplicate a gamma table
968
cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In)
969
0
{
970
0
    if (In == NULL) return NULL;
971
972
0
    return  AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16);
973
0
}
974
975
// Joins two curves for X and Y. Curves should be monotonic.
976
// We want to get
977
//
978
//      y = Y^-1(X(t))
979
//
980
cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
981
                                      const cmsToneCurve* X,
982
                                      const cmsToneCurve* Y, cmsUInt32Number nResultingPoints)
983
0
{
984
0
    cmsToneCurve* out = NULL;
985
0
    cmsToneCurve* Yreversed = NULL;
986
0
    cmsFloat32Number t, x;
987
0
    cmsFloat32Number* Res = NULL;
988
0
    cmsUInt32Number i;
989
990
991
0
    _cmsAssert(X != NULL);
992
0
    _cmsAssert(Y != NULL);
993
994
0
    Yreversed = cmsReverseToneCurveEx(nResultingPoints, Y);
995
0
    if (Yreversed == NULL) goto Error;
996
997
0
    Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number));
998
0
    if (Res == NULL) goto Error;
999
1000
    //Iterate
1001
0
    for (i=0; i <  nResultingPoints; i++) {
1002
1003
0
        t = (cmsFloat32Number) i / (cmsFloat32Number)(nResultingPoints-1);
1004
0
        x = cmsEvalToneCurveFloat(X,  t);
1005
0
        Res[i] = cmsEvalToneCurveFloat(Yreversed, x);
1006
0
    }
1007
1008
    // Allocate space for output
1009
0
    out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res);
1010
1011
0
Error:
1012
1013
0
    if (Res != NULL) _cmsFree(ContextID, Res);
1014
0
    if (Yreversed != NULL) cmsFreeToneCurve(Yreversed);
1015
1016
0
    return out;
1017
0
}
1018
1019
1020
1021
// Get the surrounding nodes. This is tricky on non-monotonic tables
1022
static
1023
int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p)
1024
0
{
1025
0
    int i;
1026
0
    int y0, y1;
1027
1028
    // A 1 point table is not allowed
1029
0
    if (p -> Domain[0] < 1) return -1;
1030
1031
    // Let's see if ascending or descending.
1032
0
    if (LutTable[0] < LutTable[p ->Domain[0]]) {
1033
1034
        // Table is overall ascending
1035
0
        for (i = (int) p->Domain[0] - 1; i >= 0; --i) {
1036
1037
0
            y0 = LutTable[i];
1038
0
            y1 = LutTable[i+1];
1039
1040
0
            if (y0 <= y1) { // Increasing
1041
0
                if (In >= y0 && In <= y1) return i;
1042
0
            }
1043
0
            else
1044
0
                if (y1 < y0) { // Decreasing
1045
0
                    if (In >= y1 && In <= y0) return i;
1046
0
                }
1047
0
        }
1048
0
    }
1049
0
    else {
1050
        // Table is overall descending
1051
0
        for (i=0; i < (int) p -> Domain[0]; i++) {
1052
1053
0
            y0 = LutTable[i];
1054
0
            y1 = LutTable[i+1];
1055
1056
0
            if (y0 <= y1) { // Increasing
1057
0
                if (In >= y0 && In <= y1) return i;
1058
0
            }
1059
0
            else
1060
0
                if (y1 < y0) { // Decreasing
1061
0
                    if (In >= y1 && In <= y0) return i;
1062
0
                }
1063
0
        }
1064
0
    }
1065
1066
0
    return -1;
1067
0
}
1068
1069
// Reverse a gamma table
1070
cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsUInt32Number nResultSamples, const cmsToneCurve* InCurve)
1071
0
{
1072
0
    cmsToneCurve *out;
1073
0
    cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2;
1074
0
    int i, j;
1075
0
    int Ascending;
1076
1077
0
    _cmsAssert(InCurve != NULL);
1078
1079
    // Try to reverse it analytically whatever possible
1080
 
1081
0
    if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 && 
1082
        /* InCurve -> Segments[0].Type <= 5 */ 
1083
0
        GetParametricCurveByType(InCurve ->InterpParams->ContextID, InCurve ->Segments[0].Type, NULL) != NULL) {
1084
1085
0
        return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID,
1086
0
                                       -(InCurve -> Segments[0].Type),
1087
0
                                       InCurve -> Segments[0].Params);
1088
0
    }
1089
1090
    // Nope, reverse the table.
1091
0
    out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL);
1092
0
    if (out == NULL)
1093
0
        return NULL;
1094
1095
    // We want to know if this is an ascending or descending table
1096
0
    Ascending = !cmsIsToneCurveDescending(InCurve);
1097
1098
    // Iterate across Y axis
1099
0
    for (i=0; i < (int) nResultSamples; i++) {
1100
1101
0
        y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1);
1102
1103
        // Find interval in which y is within.
1104
0
        j = GetInterval(y, InCurve->Table16, InCurve->InterpParams);
1105
0
        if (j >= 0) {
1106
1107
1108
            // Get limits of interval
1109
0
            x1 = InCurve ->Table16[j];
1110
0
            x2 = InCurve ->Table16[j+1];
1111
1112
0
            y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1);
1113
0
            y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1);
1114
1115
            // If collapsed, then use any
1116
0
            if (x1 == x2) {
1117
1118
0
                out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1);
1119
0
                continue;
1120
1121
0
            } else {
1122
1123
                // Interpolate
1124
0
                a = (y2 - y1) / (x2 - x1);
1125
0
                b = y2 - a * x2;
1126
0
            }
1127
0
        }
1128
1129
0
        out ->Table16[i] = _cmsQuickSaturateWord(a* y + b);
1130
0
    }
1131
1132
1133
0
    return out;
1134
0
}
1135
1136
// Reverse a gamma table
1137
cmsToneCurve* CMSEXPORT cmsReverseToneCurve(const cmsToneCurve* InGamma)
1138
0
{
1139
0
    _cmsAssert(InGamma != NULL);
1140
1141
0
    return cmsReverseToneCurveEx(4096, InGamma);
1142
0
}
1143
1144
// From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite
1145
// differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press.
1146
//
1147
// Smoothing and interpolation with second differences.
1148
//
1149
//   Input:  weights (w), data (y): vector from 1 to m.
1150
//   Input:  smoothing parameter (lambda), length (m).
1151
//   Output: smoothed vector (z): vector from 1 to m.
1152
1153
static
1154
cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[], 
1155
                cmsFloat32Number z[], cmsFloat32Number lambda, int m)
1156
0
{
1157
0
    int i, i1, i2;
1158
0
    cmsFloat32Number *c, *d, *e;
1159
0
    cmsBool st;
1160
1161
0
    if (m < 4 || lambda < MATRIX_DET_TOLERANCE) return FALSE;
1162
1163
0
    c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1164
0
    d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1165
0
    e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1166
1167
0
    if (c != NULL && d != NULL && e != NULL) {
1168
1169
1170
0
    d[1] = w[1] + lambda;
1171
0
    c[1] = -2 * lambda / d[1];
1172
0
    e[1] = lambda /d[1];
1173
0
    z[1] = w[1] * y[1];
1174
0
    d[2] = w[2] + 5 * lambda - d[1] * c[1] *  c[1];
1175
0
    c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2];
1176
0
    e[2] = lambda / d[2];
1177
0
    z[2] = w[2] * y[2] - c[1] * z[1];
1178
1179
0
    for (i = 3; i < m - 1; i++) {
1180
0
        i1 = i - 1; i2 = i - 2;
1181
0
        d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1182
0
        c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i];
1183
0
        e[i] = lambda / d[i];
1184
0
        z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2];
1185
0
    }
1186
1187
0
    i1 = m - 2; i2 = m - 3;
1188
1189
0
    d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1190
0
    c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
1191
0
    z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
1192
0
    i1 = m - 1; i2 = m - 2;
1193
1194
0
    d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1195
0
    z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m];
1196
0
    z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m];
1197
1198
0
    for (i = m - 2; 1<= i; i--)
1199
0
        z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2];
1200
1201
0
      st = TRUE;
1202
0
    }
1203
0
    else st = FALSE;
1204
1205
0
    if (c != NULL) _cmsFree(ContextID, c);
1206
0
    if (d != NULL) _cmsFree(ContextID, d);
1207
0
    if (e != NULL) _cmsFree(ContextID, e);
1208
1209
0
    return st;
1210
0
}
1211
1212
// Smooths a curve sampled at regular intervals.
1213
cmsBool  CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda)
1214
0
{
1215
0
    cmsBool SuccessStatus = TRUE;
1216
0
    cmsFloat32Number *w, *y, *z;
1217
0
    cmsUInt32Number i, nItems, Zeros, Poles;
1218
0
    cmsBool notCheck = FALSE;
1219
1220
0
    if (Tab != NULL && Tab->InterpParams != NULL)
1221
0
    {
1222
0
        cmsContext ContextID = Tab->InterpParams->ContextID;
1223
1224
0
        if (!cmsIsToneCurveLinear(Tab)) // Only non-linear curves need smoothing
1225
0
        {
1226
0
            nItems = Tab->nEntries;
1227
0
            if (nItems < MAX_NODES_IN_CURVE)
1228
0
            {
1229
                // Allocate one more item than needed
1230
0
                w = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1231
0
                y = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1232
0
                z = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1233
1234
0
                if (w != NULL && y != NULL && z != NULL) // Ensure no memory allocation failure
1235
0
                {
1236
0
                    memset(w, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1237
0
                    memset(y, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1238
0
                    memset(z, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1239
1240
0
                    for (i = 0; i < nItems; i++)
1241
0
                    {
1242
0
                        y[i + 1] = (cmsFloat32Number)Tab->Table16[i];
1243
0
                        w[i + 1] = 1.0;
1244
0
                    }
1245
1246
0
                    if (lambda < 0)
1247
0
                    {
1248
0
                        notCheck = TRUE;
1249
0
                        lambda = -lambda;
1250
0
                    }
1251
1252
0
                    if (smooth2(ContextID, w, y, z, (cmsFloat32Number)lambda, (int)nItems))
1253
0
                    {
1254
                        // Do some reality - checking...
1255
1256
0
                        Zeros = Poles = 0;
1257
0
                        for (i = nItems; i > 1; --i)
1258
0
                        {
1259
0
                            if (z[i] == 0.) Zeros++;
1260
0
                            if (z[i] >= 65535.) Poles++;
1261
0
                            if (z[i] < z[i - 1])
1262
0
                            {
1263
0
                                cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic.");
1264
0
                                SuccessStatus = notCheck;
1265
0
                                break;
1266
0
                            }
1267
0
                        }
1268
1269
0
                        if (SuccessStatus && Zeros > (nItems / 3))
1270
0
                        {
1271
0
                            cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros.");
1272
0
                            SuccessStatus = notCheck;
1273
0
                        }
1274
1275
0
                        if (SuccessStatus && Poles > (nItems / 3))
1276
0
                        {
1277
0
                            cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles.");
1278
0
                            SuccessStatus = notCheck;
1279
0
                        }
1280
1281
0
                        if (SuccessStatus) // Seems ok
1282
0
                        {
1283
0
                            for (i = 0; i < nItems; i++)
1284
0
                            {
1285
                                // Clamp to cmsUInt16Number
1286
0
                                Tab->Table16[i] = _cmsQuickSaturateWord(z[i + 1]);
1287
0
                            }
1288
0
                        }
1289
0
                    }
1290
0
                    else // Could not smooth
1291
0
                    {
1292
0
                        cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Function smooth2 failed.");
1293
0
                        SuccessStatus = FALSE;
1294
0
                    }
1295
0
                }
1296
0
                else // One or more buffers could not be allocated
1297
0
                {
1298
0
                    cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Could not allocate memory.");
1299
0
                    SuccessStatus = FALSE;
1300
0
                }
1301
1302
0
                if (z != NULL)
1303
0
                    _cmsFree(ContextID, z);
1304
1305
0
                if (y != NULL)
1306
0
                    _cmsFree(ContextID, y);
1307
1308
0
                if (w != NULL)
1309
0
                    _cmsFree(ContextID, w);
1310
0
            }
1311
0
            else // too many items in the table
1312
0
            {
1313
0
                cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Too many points.");
1314
0
                SuccessStatus = FALSE;
1315
0
            }
1316
0
        }
1317
0
    }
1318
0
    else // Tab parameter or Tab->InterpParams is NULL
1319
0
    {
1320
        // Can't signal an error here since the ContextID is not known at this point
1321
0
        SuccessStatus = FALSE;
1322
0
    }
1323
1324
0
    return SuccessStatus;
1325
0
}
1326
1327
// Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting
1328
// in a linear table. This way assures it is linear in 12 bits, which should be enough in most cases.
1329
cmsBool CMSEXPORT cmsIsToneCurveLinear(const cmsToneCurve* Curve)
1330
0
{
1331
0
    int i;
1332
0
    int diff;
1333
1334
0
    _cmsAssert(Curve != NULL);
1335
1336
0
    for (i=0; i < (int) Curve ->nEntries; i++) {
1337
1338
0
        diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries));
1339
0
        if (diff > 0x0f)
1340
0
            return FALSE;
1341
0
    }
1342
1343
0
    return TRUE;
1344
0
}
1345
1346
// Same, but for monotonicity
1347
cmsBool  CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t)
1348
0
{
1349
0
    cmsUInt32Number n;
1350
0
    int i, last;
1351
0
    cmsBool lDescending;
1352
1353
0
    _cmsAssert(t != NULL);
1354
1355
    // Degenerated curves are monotonic? Ok, let's pass them
1356
0
    n = t ->nEntries;
1357
0
    if (n < 2) return TRUE;
1358
1359
    // Curve direction
1360
0
    lDescending = cmsIsToneCurveDescending(t);
1361
1362
0
    if (lDescending) {
1363
1364
0
        last = t ->Table16[0];
1365
1366
0
        for (i = 1; i < (int) n; i++) {
1367
1368
0
            if (t ->Table16[i] - last > 2) // We allow some ripple
1369
0
                return FALSE;
1370
0
            else
1371
0
                last = t ->Table16[i];
1372
1373
0
        }
1374
0
    }
1375
0
    else {
1376
1377
0
        last = t ->Table16[n-1];
1378
1379
0
        for (i = (int) n - 2; i >= 0; --i) {
1380
1381
0
            if (t ->Table16[i] - last > 2)
1382
0
                return FALSE;
1383
0
            else
1384
0
                last = t ->Table16[i];
1385
1386
0
        }
1387
0
    }
1388
1389
0
    return TRUE;
1390
0
}
1391
1392
// Same, but for descending tables
1393
cmsBool  CMSEXPORT cmsIsToneCurveDescending(const cmsToneCurve* t)
1394
0
{
1395
0
    _cmsAssert(t != NULL);
1396
1397
0
    return t ->Table16[0] > t ->Table16[t ->nEntries-1];
1398
0
}
1399
1400
1401
// Another info fn: is out gamma table multisegment?
1402
cmsBool  CMSEXPORT cmsIsToneCurveMultisegment(const cmsToneCurve* t)
1403
0
{
1404
0
    _cmsAssert(t != NULL);
1405
1406
0
    return t -> nSegments > 1;
1407
0
}
1408
1409
cmsInt32Number  CMSEXPORT cmsGetToneCurveParametricType(const cmsToneCurve* t)
1410
0
{
1411
0
    _cmsAssert(t != NULL);
1412
1413
0
    if (t -> nSegments != 1) return 0;
1414
0
    return t ->Segments[0].Type;
1415
0
}
1416
1417
// We need accuracy this time
1418
cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsFloat32Number v)
1419
0
{
1420
0
    _cmsAssert(Curve != NULL);
1421
1422
    // Check for 16 bits table. If so, this is a limited-precision tone curve
1423
0
    if (Curve ->nSegments == 0) {
1424
1425
0
        cmsUInt16Number In, Out;
1426
1427
0
        In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0);
1428
0
        Out = cmsEvalToneCurve16(Curve, In);
1429
1430
0
        return (cmsFloat32Number) (Out / 65535.0);
1431
0
    }
1432
1433
0
    return (cmsFloat32Number) EvalSegmentedFn(Curve, v);
1434
0
}
1435
1436
// We need xput over here
1437
cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt16Number v)
1438
0
{
1439
0
    cmsUInt16Number out;
1440
1441
0
    _cmsAssert(Curve != NULL);
1442
1443
0
    Curve ->InterpParams ->Interpolation.Lerp16(&v, &out, Curve ->InterpParams);
1444
0
    return out;
1445
0
}
1446
1447
1448
// Least squares fitting.
1449
// A mathematical procedure for finding the best-fitting curve to a given set of points by
1450
// minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
1451
// The sum of the squares of the offsets is used instead of the offset absolute values because
1452
// this allows the residuals to be treated as a continuous differentiable quantity.
1453
//
1454
// y = f(x) = x ^ g
1455
//
1456
// R  = (yi - (xi^g))
1457
// R2 = (yi - (xi^g))2
1458
// SUM R2 = SUM (yi - (xi^g))2
1459
//
1460
// dR2/dg = -2 SUM x^g log(x)(y - x^g)
1461
// solving for dR2/dg = 0
1462
//
1463
// g = 1/n * SUM(log(y) / log(x))
1464
1465
cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision)
1466
0
{
1467
0
    cmsFloat64Number gamma, sum, sum2;
1468
0
    cmsFloat64Number n, x, y, Std;
1469
0
    cmsUInt32Number i;
1470
1471
0
    _cmsAssert(t != NULL);
1472
1473
0
    sum = sum2 = n = 0;
1474
1475
    // Excluding endpoints
1476
0
    for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) {
1477
1478
0
        x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1);
1479
0
        y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x);
1480
1481
        // Avoid 7% on lower part to prevent
1482
        // artifacts due to linear ramps
1483
1484
0
        if (y > 0. && y < 1. && x > 0.07) {
1485
1486
0
            gamma = log(y) / log(x);
1487
0
            sum  += gamma;
1488
0
            sum2 += gamma * gamma;
1489
0
            n++;
1490
0
        }
1491
0
    }
1492
1493
    // We need enough valid samples
1494
0
    if (n <= 1) return -1.0;
1495
1496
    // Take a look on SD to see if gamma isn't exponential at all
1497
0
    Std = sqrt((n * sum2 - sum * sum) / (n*(n-1)));
1498
1499
0
    if (Std > Precision)
1500
0
        return -1.0;
1501
1502
0
    return (sum / n);   // The mean
1503
0
}
1504
1505
// Retrieve segments on tone curves
1506
1507
const cmsCurveSegment* CMSEXPORT cmsGetToneCurveSegment(cmsInt32Number n, const cmsToneCurve* t)
1508
0
{
1509
0
    _cmsAssert(t != NULL);
1510
1511
0
    if (n < 0 || n >= (cmsInt32Number) t->nSegments) return NULL;
1512
0
    return t->Segments + n;
1513
0
}
1514