Line | Count | Source (jump to first uncovered line) |
1 | | //--------------------------------------------------------------------------------- |
2 | | // |
3 | | // Little Color Management System |
4 | | // Copyright (c) 1998-2024 Marti Maria Saguer |
5 | | // |
6 | | // Permission is hereby granted, free of charge, to any person obtaining |
7 | | // a copy of this software and associated documentation files (the "Software"), |
8 | | // to deal in the Software without restriction, including without limitation |
9 | | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
10 | | // and/or sell copies of the Software, and to permit persons to whom the Software |
11 | | // is furnished to do so, subject to the following conditions: |
12 | | // |
13 | | // The above copyright notice and this permission notice shall be included in |
14 | | // all copies or substantial portions of the Software. |
15 | | // |
16 | | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
17 | | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
18 | | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
19 | | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
20 | | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
21 | | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
22 | | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
23 | | // |
24 | | //--------------------------------------------------------------------------------- |
25 | | // |
26 | | |
27 | | #include "lcms2_internal.h" |
28 | | |
29 | | |
30 | | //---------------------------------------------------------------------------------- |
31 | | |
32 | | // Optimization for 8 bits, Shaper-CLUT (3 inputs only) |
33 | | typedef struct { |
34 | | |
35 | | cmsContext ContextID; |
36 | | |
37 | | const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer. |
38 | | |
39 | | cmsUInt16Number rx[256], ry[256], rz[256]; |
40 | | cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data |
41 | | |
42 | | |
43 | | } Prelin8Data; |
44 | | |
45 | | |
46 | | // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs) |
47 | | typedef struct { |
48 | | |
49 | | cmsContext ContextID; |
50 | | |
51 | | // Number of channels |
52 | | cmsUInt32Number nInputs; |
53 | | cmsUInt32Number nOutputs; |
54 | | |
55 | | _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance |
56 | | cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS]; |
57 | | |
58 | | _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid |
59 | | const cmsInterpParams* CLUTparams; // (not-owned pointer) |
60 | | |
61 | | |
62 | | _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer) |
63 | | cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer) |
64 | | |
65 | | |
66 | | } Prelin16Data; |
67 | | |
68 | | |
69 | | // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed |
70 | | |
71 | | typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits! |
72 | | |
73 | 19.6k | #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5)) |
74 | | |
75 | | typedef struct { |
76 | | |
77 | | cmsContext ContextID; |
78 | | |
79 | | cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0) |
80 | | cmsS1Fixed14Number Shaper1G[256]; |
81 | | cmsS1Fixed14Number Shaper1B[256]; |
82 | | |
83 | | cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that) |
84 | | cmsS1Fixed14Number Off[3]; |
85 | | |
86 | | cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255 |
87 | | cmsUInt16Number Shaper2G[16385]; |
88 | | cmsUInt16Number Shaper2B[16385]; |
89 | | |
90 | | } MatShaper8Data; |
91 | | |
92 | | // Curves, optimization is shared between 8 and 16 bits |
93 | | typedef struct { |
94 | | |
95 | | cmsContext ContextID; |
96 | | |
97 | | cmsUInt32Number nCurves; // Number of curves |
98 | | cmsUInt32Number nElements; // Elements in curves |
99 | | cmsUInt16Number** Curves; // Points to a dynamically allocated array |
100 | | |
101 | | } Curves16Data; |
102 | | |
103 | | |
104 | | // Simple optimizations ---------------------------------------------------------------------------------------------------------- |
105 | | |
106 | | |
107 | | // Remove an element in linked chain |
108 | | static |
109 | | void _RemoveElement(cmsStage** head) |
110 | 3.10k | { |
111 | 3.10k | cmsStage* mpe = *head; |
112 | 3.10k | cmsStage* next = mpe ->Next; |
113 | 3.10k | *head = next; |
114 | 3.10k | cmsStageFree(mpe); |
115 | 3.10k | } |
116 | | |
117 | | // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer. |
118 | | static |
119 | | cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp) |
120 | 3.79k | { |
121 | 3.79k | cmsStage** pt = &Lut ->Elements; |
122 | 3.79k | cmsBool AnyOpt = FALSE; |
123 | | |
124 | 21.7k | while (*pt != NULL) { |
125 | | |
126 | 18.0k | if ((*pt) ->Implements == UnaryOp) { |
127 | 1.01k | _RemoveElement(pt); |
128 | 1.01k | AnyOpt = TRUE; |
129 | 1.01k | } |
130 | 16.9k | else |
131 | 16.9k | pt = &((*pt) -> Next); |
132 | 18.0k | } |
133 | | |
134 | 3.79k | return AnyOpt; |
135 | 3.79k | } |
136 | | |
137 | | // Same, but only if two adjacent elements are found |
138 | | static |
139 | | cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2) |
140 | 22.7k | { |
141 | 22.7k | cmsStage** pt1; |
142 | 22.7k | cmsStage** pt2; |
143 | 22.7k | cmsBool AnyOpt = FALSE; |
144 | | |
145 | 22.7k | pt1 = &Lut ->Elements; |
146 | 22.7k | if (*pt1 == NULL) return AnyOpt; |
147 | | |
148 | 95.7k | while (*pt1 != NULL) { |
149 | | |
150 | 94.7k | pt2 = &((*pt1) -> Next); |
151 | 94.7k | if (*pt2 == NULL) return AnyOpt; |
152 | | |
153 | 73.0k | if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) { |
154 | 1.02k | _RemoveElement(pt2); |
155 | 1.02k | _RemoveElement(pt1); |
156 | 1.02k | AnyOpt = TRUE; |
157 | 1.02k | } |
158 | 72.0k | else |
159 | 72.0k | pt1 = &((*pt1) -> Next); |
160 | 73.0k | } |
161 | | |
162 | 1.01k | return AnyOpt; |
163 | 22.7k | } |
164 | | |
165 | | |
166 | | static |
167 | | cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b) |
168 | 27 | { |
169 | 27 | return fabs(b - a) < 0.00001f; |
170 | 27 | } |
171 | | |
172 | | static |
173 | | cmsBool isFloatMatrixIdentity(const cmsMAT3* a) |
174 | 21 | { |
175 | 21 | cmsMAT3 Identity; |
176 | 21 | int i, j; |
177 | | |
178 | 21 | _cmsMAT3identity(&Identity); |
179 | | |
180 | 22 | for (i = 0; i < 3; i++) |
181 | 28 | for (j = 0; j < 3; j++) |
182 | 27 | if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE; |
183 | | |
184 | 0 | return TRUE; |
185 | 21 | } |
186 | | |
187 | | // if two adjacent matrices are found, multiply them. |
188 | | static |
189 | | cmsBool _MultiplyMatrix(cmsPipeline* Lut) |
190 | 3.79k | { |
191 | 3.79k | cmsStage** pt1; |
192 | 3.79k | cmsStage** pt2; |
193 | 3.79k | cmsStage* chain; |
194 | 3.79k | cmsBool AnyOpt = FALSE; |
195 | | |
196 | 3.79k | pt1 = &Lut->Elements; |
197 | 3.79k | if (*pt1 == NULL) return AnyOpt; |
198 | | |
199 | 13.5k | while (*pt1 != NULL) { |
200 | | |
201 | 13.5k | pt2 = &((*pt1)->Next); |
202 | 13.5k | if (*pt2 == NULL) return AnyOpt; |
203 | | |
204 | 10.2k | if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) { |
205 | | |
206 | | // Get both matrices |
207 | 546 | _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1); |
208 | 546 | _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2); |
209 | 546 | cmsMAT3 res; |
210 | | |
211 | | // Input offset and output offset should be zero to use this optimization |
212 | 546 | if (m1->Offset != NULL || m2 ->Offset != NULL || |
213 | 546 | cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 || |
214 | 546 | cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3) |
215 | 525 | return FALSE; |
216 | | |
217 | | // Multiply both matrices to get the result |
218 | 21 | _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double); |
219 | | |
220 | | // Get the next in chain after the matrices |
221 | 21 | chain = (*pt2)->Next; |
222 | | |
223 | | // Remove both matrices |
224 | 21 | _RemoveElement(pt2); |
225 | 21 | _RemoveElement(pt1); |
226 | | |
227 | | // Now what if the result is a plain identity? |
228 | 21 | if (!isFloatMatrixIdentity(&res)) { |
229 | | |
230 | | // We can not get rid of full matrix |
231 | 21 | cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL); |
232 | 21 | if (Multmat == NULL) return FALSE; // Should never happen |
233 | | |
234 | | // Recover the chain |
235 | 21 | Multmat->Next = chain; |
236 | 21 | *pt1 = Multmat; |
237 | 21 | } |
238 | | |
239 | 21 | AnyOpt = TRUE; |
240 | 21 | } |
241 | 9.74k | else |
242 | 9.74k | pt1 = &((*pt1)->Next); |
243 | 10.2k | } |
244 | | |
245 | 0 | return AnyOpt; |
246 | 3.78k | } |
247 | | |
248 | | |
249 | | // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed |
250 | | // by a v4 to v2 and vice-versa. The elements are then discarded. |
251 | | static |
252 | | cmsBool PreOptimize(cmsPipeline* Lut) |
253 | 2.74k | { |
254 | 2.74k | cmsBool AnyOpt = FALSE, Opt; |
255 | | |
256 | 3.79k | do { |
257 | | |
258 | 3.79k | Opt = FALSE; |
259 | | |
260 | | // Remove all identities |
261 | 3.79k | Opt |= _Remove1Op(Lut, cmsSigIdentityElemType); |
262 | | |
263 | | // Remove XYZ2Lab followed by Lab2XYZ |
264 | 3.79k | Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType); |
265 | | |
266 | | // Remove Lab2XYZ followed by XYZ2Lab |
267 | 3.79k | Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType); |
268 | | |
269 | | // Remove V4 to V2 followed by V2 to V4 |
270 | 3.79k | Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4); |
271 | | |
272 | | // Remove V2 to V4 followed by V4 to V2 |
273 | 3.79k | Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2); |
274 | | |
275 | | // Remove float pcs Lab conversions |
276 | 3.79k | Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab); |
277 | | |
278 | | // Remove float pcs Lab conversions |
279 | 3.79k | Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ); |
280 | | |
281 | | // Simplify matrix. |
282 | 3.79k | Opt |= _MultiplyMatrix(Lut); |
283 | | |
284 | 3.79k | if (Opt) AnyOpt = TRUE; |
285 | | |
286 | 3.79k | } while (Opt); |
287 | | |
288 | 2.74k | return AnyOpt; |
289 | 2.74k | } |
290 | | |
291 | | static |
292 | | void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[], |
293 | | CMSREGISTER cmsUInt16Number Output[], |
294 | | CMSREGISTER const struct _cms_interp_struc* p) |
295 | 156 | { |
296 | 156 | Output[0] = Input[0]; |
297 | | |
298 | 156 | cmsUNUSED_PARAMETER(p); |
299 | 156 | } |
300 | | |
301 | | static |
302 | | void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[], |
303 | | CMSREGISTER cmsUInt16Number Output[], |
304 | | CMSREGISTER const void* D) |
305 | 59 | { |
306 | 59 | Prelin16Data* p16 = (Prelin16Data*) D; |
307 | 59 | cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS]; |
308 | 59 | cmsUInt16Number StageDEF[cmsMAXCHANNELS]; |
309 | 59 | cmsUInt32Number i; |
310 | | |
311 | 215 | for (i=0; i < p16 ->nInputs; i++) { |
312 | | |
313 | 156 | p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]); |
314 | 156 | } |
315 | | |
316 | 59 | p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams); |
317 | | |
318 | 236 | for (i=0; i < p16 ->nOutputs; i++) { |
319 | | |
320 | 177 | p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]); |
321 | 177 | } |
322 | 59 | } |
323 | | |
324 | | |
325 | | static |
326 | | void PrelinOpt16free(cmsContext ContextID, void* ptr) |
327 | 309 | { |
328 | 309 | Prelin16Data* p16 = (Prelin16Data*) ptr; |
329 | | |
330 | 309 | _cmsFree(ContextID, p16 ->EvalCurveOut16); |
331 | 309 | _cmsFree(ContextID, p16 ->ParamsCurveOut16); |
332 | | |
333 | 309 | _cmsFree(ContextID, p16); |
334 | 309 | } |
335 | | |
336 | | static |
337 | | void* Prelin16dup(cmsContext ContextID, const void* ptr) |
338 | 116 | { |
339 | 116 | Prelin16Data* p16 = (Prelin16Data*) ptr; |
340 | 116 | Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data)); |
341 | | |
342 | 116 | if (Duped == NULL) return NULL; |
343 | | |
344 | 116 | Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16)); |
345 | 116 | Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*)); |
346 | | |
347 | 116 | return Duped; |
348 | 116 | } |
349 | | |
350 | | |
351 | | static |
352 | | Prelin16Data* PrelinOpt16alloc(cmsContext ContextID, |
353 | | const cmsInterpParams* ColorMap, |
354 | | cmsUInt32Number nInputs, cmsToneCurve** In, |
355 | | cmsUInt32Number nOutputs, cmsToneCurve** Out ) |
356 | 193 | { |
357 | 193 | cmsUInt32Number i; |
358 | 193 | Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data)); |
359 | 193 | if (p16 == NULL) return NULL; |
360 | | |
361 | 193 | p16 ->nInputs = nInputs; |
362 | 193 | p16 ->nOutputs = nOutputs; |
363 | | |
364 | | |
365 | 1.12k | for (i=0; i < nInputs; i++) { |
366 | | |
367 | 935 | if (In == NULL) { |
368 | 935 | p16 -> ParamsCurveIn16[i] = NULL; |
369 | 935 | p16 -> EvalCurveIn16[i] = Eval16nop1D; |
370 | | |
371 | 935 | } |
372 | 0 | else { |
373 | 0 | p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams; |
374 | 0 | p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16; |
375 | 0 | } |
376 | 935 | } |
377 | | |
378 | 193 | p16 ->CLUTparams = ColorMap; |
379 | 193 | p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16; |
380 | | |
381 | | |
382 | 193 | p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16)); |
383 | 193 | if (p16->EvalCurveOut16 == NULL) |
384 | 0 | { |
385 | 0 | _cmsFree(ContextID, p16); |
386 | 0 | return NULL; |
387 | 0 | } |
388 | | |
389 | 193 | p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* )); |
390 | 193 | if (p16->ParamsCurveOut16 == NULL) |
391 | 0 | { |
392 | |
|
393 | 0 | _cmsFree(ContextID, p16->EvalCurveOut16); |
394 | 0 | _cmsFree(ContextID, p16); |
395 | 0 | return NULL; |
396 | 0 | } |
397 | | |
398 | 772 | for (i=0; i < nOutputs; i++) { |
399 | | |
400 | 579 | if (Out == NULL) { |
401 | 0 | p16 ->ParamsCurveOut16[i] = NULL; |
402 | 0 | p16 -> EvalCurveOut16[i] = Eval16nop1D; |
403 | 0 | } |
404 | 579 | else { |
405 | | |
406 | 579 | p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams; |
407 | 579 | p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16; |
408 | 579 | } |
409 | 579 | } |
410 | | |
411 | 193 | return p16; |
412 | 193 | } |
413 | | |
414 | | |
415 | | |
416 | | // Resampling --------------------------------------------------------------------------------- |
417 | | |
418 | 0 | #define PRELINEARIZATION_POINTS 4096 |
419 | | |
420 | | // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for |
421 | | // almost any transform. We use floating point precision and then convert from floating point to 16 bits. |
422 | | static |
423 | | cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[], |
424 | | CMSREGISTER cmsUInt16Number Out[], |
425 | | CMSREGISTER void* Cargo) |
426 | 177M | { |
427 | 177M | cmsPipeline* Lut = (cmsPipeline*) Cargo; |
428 | 177M | cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; |
429 | 177M | cmsUInt32Number i; |
430 | | |
431 | 177M | _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS); |
432 | 177M | _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS); |
433 | | |
434 | | // From 16 bit to floating point |
435 | 763M | for (i=0; i < Lut ->InputChannels; i++) |
436 | 585M | InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0); |
437 | | |
438 | | // Evaluate in floating point |
439 | 177M | cmsPipelineEvalFloat(InFloat, OutFloat, Lut); |
440 | | |
441 | | // Back to 16 bits representation |
442 | 711M | for (i=0; i < Lut ->OutputChannels; i++) |
443 | 533M | Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0); |
444 | | |
445 | | // Always succeed |
446 | 177M | return TRUE; |
447 | 177M | } |
448 | | |
449 | | // Try to see if the curves of a given MPE are linear |
450 | | static |
451 | | cmsBool AllCurvesAreLinear(cmsStage* mpe) |
452 | 193 | { |
453 | 193 | cmsToneCurve** Curves; |
454 | 193 | cmsUInt32Number i, n; |
455 | | |
456 | 193 | Curves = _cmsStageGetPtrToCurveSet(mpe); |
457 | 193 | if (Curves == NULL) return FALSE; |
458 | | |
459 | 193 | n = cmsStageOutputChannels(mpe); |
460 | | |
461 | 193 | for (i=0; i < n; i++) { |
462 | 193 | if (!cmsIsToneCurveLinear(Curves[i])) return FALSE; |
463 | 193 | } |
464 | | |
465 | 0 | return TRUE; |
466 | 193 | } |
467 | | |
468 | | // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose |
469 | | // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels |
470 | | static |
471 | | cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[], |
472 | | cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn) |
473 | 75 | { |
474 | 75 | _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data; |
475 | 75 | cmsInterpParams* p16 = Grid ->Params; |
476 | 75 | cmsFloat64Number px, py, pz, pw; |
477 | 75 | int x0, y0, z0, w0; |
478 | 75 | int i, index; |
479 | | |
480 | 75 | if (CLUT -> Type != cmsSigCLutElemType) { |
481 | 0 | cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage"); |
482 | 0 | return FALSE; |
483 | 0 | } |
484 | | |
485 | 75 | if (nChannelsIn == 4) { |
486 | | |
487 | 27 | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; |
488 | 27 | py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; |
489 | 27 | pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; |
490 | 27 | pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0; |
491 | | |
492 | 27 | x0 = (int) floor(px); |
493 | 27 | y0 = (int) floor(py); |
494 | 27 | z0 = (int) floor(pz); |
495 | 27 | w0 = (int) floor(pw); |
496 | | |
497 | 27 | if (((px - x0) != 0) || |
498 | 27 | ((py - y0) != 0) || |
499 | 27 | ((pz - z0) != 0) || |
500 | 27 | ((pw - w0) != 0)) return FALSE; // Not on exact node |
501 | | |
502 | 27 | index = (int) p16 -> opta[3] * x0 + |
503 | 27 | (int) p16 -> opta[2] * y0 + |
504 | 27 | (int) p16 -> opta[1] * z0 + |
505 | 27 | (int) p16 -> opta[0] * w0; |
506 | 27 | } |
507 | 48 | else |
508 | 48 | if (nChannelsIn == 3) { |
509 | | |
510 | 42 | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; |
511 | 42 | py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; |
512 | 42 | pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; |
513 | | |
514 | 42 | x0 = (int) floor(px); |
515 | 42 | y0 = (int) floor(py); |
516 | 42 | z0 = (int) floor(pz); |
517 | | |
518 | 42 | if (((px - x0) != 0) || |
519 | 42 | ((py - y0) != 0) || |
520 | 42 | ((pz - z0) != 0)) return FALSE; // Not on exact node |
521 | | |
522 | 29 | index = (int) p16 -> opta[2] * x0 + |
523 | 29 | (int) p16 -> opta[1] * y0 + |
524 | 29 | (int) p16 -> opta[0] * z0; |
525 | 29 | } |
526 | 6 | else |
527 | 6 | if (nChannelsIn == 1) { |
528 | | |
529 | 6 | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; |
530 | | |
531 | 6 | x0 = (int) floor(px); |
532 | | |
533 | 6 | if (((px - x0) != 0)) return FALSE; // Not on exact node |
534 | | |
535 | 6 | index = (int) p16 -> opta[0] * x0; |
536 | 6 | } |
537 | 0 | else { |
538 | 0 | cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn); |
539 | 0 | return FALSE; |
540 | 0 | } |
541 | | |
542 | 248 | for (i = 0; i < (int) nChannelsOut; i++) |
543 | 186 | Grid->Tab.T[index + i] = Value[i]; |
544 | | |
545 | 62 | return TRUE; |
546 | 75 | } |
547 | | |
548 | | // Auxiliary, to see if two values are equal or very different |
549 | | static |
550 | | cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] ) |
551 | 355 | { |
552 | 355 | cmsUInt32Number i; |
553 | | |
554 | 600 | for (i=0; i < n; i++) { |
555 | | |
556 | 537 | if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided |
557 | 320 | if (White1[i] != White2[i]) return FALSE; |
558 | 320 | } |
559 | 63 | return TRUE; |
560 | 355 | } |
561 | | |
562 | | |
563 | | // Locate the node for the white point and fix it to pure white in order to avoid scum dot. |
564 | | static |
565 | | cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace) |
566 | 681 | { |
567 | 681 | cmsUInt16Number *WhitePointIn, *WhitePointOut; |
568 | 681 | cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS]; |
569 | 681 | cmsUInt32Number i, nOuts, nIns; |
570 | 681 | cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL; |
571 | | |
572 | 681 | if (!_cmsEndPointsBySpace(EntryColorSpace, |
573 | 681 | &WhitePointIn, NULL, &nIns)) return FALSE; |
574 | | |
575 | 355 | if (!_cmsEndPointsBySpace(ExitColorSpace, |
576 | 355 | &WhitePointOut, NULL, &nOuts)) return FALSE; |
577 | | |
578 | | // It needs to be fixed? |
579 | 355 | if (Lut ->InputChannels != nIns) return FALSE; |
580 | 355 | if (Lut ->OutputChannels != nOuts) return FALSE; |
581 | | |
582 | 355 | cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut); |
583 | | |
584 | 355 | if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match |
585 | | |
586 | | // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations |
587 | 75 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin)) |
588 | 75 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT)) |
589 | 75 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin)) |
590 | 56 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT)) |
591 | 0 | return FALSE; |
592 | | |
593 | | // We need to interpolate white points of both, pre and post curves |
594 | 75 | if (PreLin) { |
595 | |
|
596 | 0 | cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin); |
597 | |
|
598 | 0 | for (i=0; i < nIns; i++) { |
599 | 0 | WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]); |
600 | 0 | } |
601 | 0 | } |
602 | 75 | else { |
603 | 315 | for (i=0; i < nIns; i++) |
604 | 240 | WhiteIn[i] = WhitePointIn[i]; |
605 | 75 | } |
606 | | |
607 | | // If any post-linearization, we need to find how is represented white before the curve, do |
608 | | // a reverse interpolation in this case. |
609 | 75 | if (PostLin) { |
610 | | |
611 | 19 | cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin); |
612 | | |
613 | 76 | for (i=0; i < nOuts; i++) { |
614 | | |
615 | 57 | cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]); |
616 | 57 | if (InversePostLin == NULL) { |
617 | 0 | WhiteOut[i] = WhitePointOut[i]; |
618 | |
|
619 | 57 | } else { |
620 | | |
621 | 57 | WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]); |
622 | 57 | cmsFreeToneCurve(InversePostLin); |
623 | 57 | } |
624 | 57 | } |
625 | 19 | } |
626 | 56 | else { |
627 | 224 | for (i=0; i < nOuts; i++) |
628 | 168 | WhiteOut[i] = WhitePointOut[i]; |
629 | 56 | } |
630 | | |
631 | | // Ok, proceed with patching. May fail and we don't care if it fails |
632 | 75 | PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns); |
633 | | |
634 | 75 | return TRUE; |
635 | 75 | } |
636 | | |
637 | | // ----------------------------------------------------------------------------------------------------------------------------------------------- |
638 | | // This function creates simple LUT from complex ones. The generated LUT has an optional set of |
639 | | // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables. |
640 | | // These curves have to exist in the original LUT in order to be used in the simplified output. |
641 | | // Caller may also use the flags to allow this feature. |
642 | | // LUTS with all curves will be simplified to a single curve. Parametric curves are lost. |
643 | | // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified |
644 | | // ----------------------------------------------------------------------------------------------------------------------------------------------- |
645 | | |
646 | | static |
647 | | cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
648 | 1.33k | { |
649 | 1.33k | cmsPipeline* Src = NULL; |
650 | 1.33k | cmsPipeline* Dest = NULL; |
651 | 1.33k | cmsStage* CLUT; |
652 | 1.33k | cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL; |
653 | 1.33k | cmsUInt32Number nGridPoints; |
654 | 1.33k | cmsColorSpaceSignature ColorSpace, OutputColorSpace; |
655 | 1.33k | cmsStage *NewPreLin = NULL; |
656 | 1.33k | cmsStage *NewPostLin = NULL; |
657 | 1.33k | _cmsStageCLutData* DataCLUT; |
658 | 1.33k | cmsToneCurve** DataSetIn; |
659 | 1.33k | cmsToneCurve** DataSetOut; |
660 | 1.33k | Prelin16Data* p16; |
661 | | |
662 | | // This is a lossy optimization! does not apply in floating-point cases |
663 | 1.33k | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; |
664 | | |
665 | 1.33k | ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat)); |
666 | 1.33k | OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat)); |
667 | | |
668 | | // Color space must be specified |
669 | 1.33k | if (ColorSpace == (cmsColorSpaceSignature)0 || |
670 | 1.33k | OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE; |
671 | | |
672 | | // For empty LUTs, 2 points are enough |
673 | 922 | if (cmsPipelineStageCount(*Lut) == 0) |
674 | 0 | nGridPoints = 2; |
675 | 922 | else |
676 | 922 | { |
677 | 922 | nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); |
678 | | |
679 | | // Lab16 as input cannot be optimized by a CLUT due to centering issues, thanks to Mike Chaney for discovering this. |
680 | 922 | if (!(*dwFlags & cmsFLAGS_FORCE_CLUT) && (ColorSpace == cmsSigLabData) && (T_BYTES(*InputFormat) == 2)) return FALSE; |
681 | 922 | } |
682 | | |
683 | 907 | Src = *Lut; |
684 | | |
685 | | // Allocate an empty LUT |
686 | 907 | Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); |
687 | 907 | if (!Dest) return FALSE; |
688 | | |
689 | | // Prelinearization tables are kept unless indicated by flags |
690 | 907 | if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) { |
691 | | |
692 | | // Get a pointer to the prelinearization element |
693 | 0 | cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src); |
694 | | |
695 | | // Check if suitable |
696 | 0 | if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) { |
697 | | |
698 | | // Maybe this is a linear tram, so we can avoid the whole stuff |
699 | 0 | if (!AllCurvesAreLinear(PreLin)) { |
700 | | |
701 | | // All seems ok, proceed. |
702 | 0 | NewPreLin = cmsStageDup(PreLin); |
703 | 0 | if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin)) |
704 | 0 | goto Error; |
705 | | |
706 | | // Remove prelinearization. Since we have duplicated the curve |
707 | | // in destination LUT, the sampling should be applied after this stage. |
708 | 0 | cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin); |
709 | 0 | } |
710 | 0 | } |
711 | 0 | } |
712 | | |
713 | | // Allocate the CLUT |
714 | 907 | CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL); |
715 | 907 | if (CLUT == NULL) goto Error; |
716 | | |
717 | | // Add the CLUT to the destination LUT |
718 | 770 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) { |
719 | 0 | goto Error; |
720 | 0 | } |
721 | | |
722 | | // Postlinearization tables are kept unless indicated by flags |
723 | 770 | if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) { |
724 | | |
725 | | // Get a pointer to the postlinearization if present |
726 | 231 | cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src); |
727 | | |
728 | | // Check if suitable |
729 | 231 | if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) { |
730 | | |
731 | | // Maybe this is a linear tram, so we can avoid the whole stuff |
732 | 193 | if (!AllCurvesAreLinear(PostLin)) { |
733 | | |
734 | | // All seems ok, proceed. |
735 | 193 | NewPostLin = cmsStageDup(PostLin); |
736 | 193 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin)) |
737 | 0 | goto Error; |
738 | | |
739 | | // In destination LUT, the sampling should be applied after this stage. |
740 | 193 | cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin); |
741 | 193 | } |
742 | 193 | } |
743 | 231 | } |
744 | | |
745 | | // Now its time to do the sampling. We have to ignore pre/post linearization |
746 | | // The source LUT without pre/post curves is passed as parameter. |
747 | 770 | if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) { |
748 | 137 | Error: |
749 | | // Ops, something went wrong, Restore stages |
750 | 137 | if (KeepPreLin != NULL) { |
751 | 0 | if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) { |
752 | 0 | _cmsAssert(0); // This never happens |
753 | 0 | } |
754 | 0 | } |
755 | 137 | if (KeepPostLin != NULL) { |
756 | 0 | if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) { |
757 | 0 | _cmsAssert(0); // This never happens |
758 | 0 | } |
759 | 0 | } |
760 | 137 | cmsPipelineFree(Dest); |
761 | 137 | return FALSE; |
762 | 137 | } |
763 | | |
764 | | // Done. |
765 | | |
766 | 770 | if (KeepPreLin != NULL) cmsStageFree(KeepPreLin); |
767 | 770 | if (KeepPostLin != NULL) cmsStageFree(KeepPostLin); |
768 | 770 | cmsPipelineFree(Src); |
769 | | |
770 | 770 | DataCLUT = (_cmsStageCLutData*) CLUT ->Data; |
771 | | |
772 | 770 | if (NewPreLin == NULL) DataSetIn = NULL; |
773 | 0 | else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves; |
774 | | |
775 | 770 | if (NewPostLin == NULL) DataSetOut = NULL; |
776 | 193 | else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves; |
777 | | |
778 | | |
779 | 770 | if (DataSetIn == NULL && DataSetOut == NULL) { |
780 | | |
781 | 577 | _cmsPipelineSetOptimizationParameters(Dest, (_cmsPipelineEval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL); |
782 | 577 | } |
783 | 193 | else { |
784 | | |
785 | 193 | p16 = PrelinOpt16alloc(Dest ->ContextID, |
786 | 193 | DataCLUT ->Params, |
787 | 193 | Dest ->InputChannels, |
788 | 193 | DataSetIn, |
789 | 193 | Dest ->OutputChannels, |
790 | 193 | DataSetOut); |
791 | | |
792 | 193 | _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); |
793 | 193 | } |
794 | | |
795 | | |
796 | | // Don't fix white on absolute colorimetric |
797 | 770 | if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) |
798 | 28 | *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; |
799 | | |
800 | 770 | if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { |
801 | | |
802 | 681 | FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace); |
803 | 681 | } |
804 | | |
805 | 770 | *Lut = Dest; |
806 | 770 | return TRUE; |
807 | | |
808 | 0 | cmsUNUSED_PARAMETER(Intent); |
809 | 0 | } |
810 | | |
811 | | |
812 | | // ----------------------------------------------------------------------------------------------------------------------------------------------- |
813 | | // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on |
814 | | // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works |
815 | | // for RGB transforms. See the paper for more details |
816 | | // ----------------------------------------------------------------------------------------------------------------------------------------------- |
817 | | |
818 | | |
819 | | // Normalize endpoints by slope limiting max and min. This assures endpoints as well. |
820 | | // Descending curves are handled as well. |
821 | | static |
822 | | void SlopeLimiting(cmsToneCurve* g) |
823 | 0 | { |
824 | 0 | int BeginVal, EndVal; |
825 | 0 | int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2% |
826 | 0 | int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98% |
827 | 0 | cmsFloat64Number Val, Slope, beta; |
828 | 0 | int i; |
829 | |
|
830 | 0 | if (cmsIsToneCurveDescending(g)) { |
831 | 0 | BeginVal = 0xffff; EndVal = 0; |
832 | 0 | } |
833 | 0 | else { |
834 | 0 | BeginVal = 0; EndVal = 0xffff; |
835 | 0 | } |
836 | | |
837 | | // Compute slope and offset for begin of curve |
838 | 0 | Val = g ->Table16[AtBegin]; |
839 | 0 | Slope = (Val - BeginVal) / AtBegin; |
840 | 0 | beta = Val - Slope * AtBegin; |
841 | |
|
842 | 0 | for (i=0; i < AtBegin; i++) |
843 | 0 | g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); |
844 | | |
845 | | // Compute slope and offset for the end |
846 | 0 | Val = g ->Table16[AtEnd]; |
847 | 0 | Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases |
848 | 0 | beta = Val - Slope * AtEnd; |
849 | |
|
850 | 0 | for (i = AtEnd; i < (int) g ->nEntries; i++) |
851 | 0 | g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); |
852 | 0 | } |
853 | | |
854 | | |
855 | | // Precomputes tables for 8-bit on input devicelink. |
856 | | static |
857 | | Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3]) |
858 | 0 | { |
859 | 0 | int i; |
860 | 0 | cmsUInt16Number Input[3]; |
861 | 0 | cmsS15Fixed16Number v1, v2, v3; |
862 | 0 | Prelin8Data* p8; |
863 | |
|
864 | 0 | p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data)); |
865 | 0 | if (p8 == NULL) return NULL; |
866 | | |
867 | | // Since this only works for 8 bit input, values comes always as x * 257, |
868 | | // we can safely take msb byte (x << 8 + x) |
869 | | |
870 | 0 | for (i=0; i < 256; i++) { |
871 | |
|
872 | 0 | if (G != NULL) { |
873 | | |
874 | | // Get 16-bit representation |
875 | 0 | Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i)); |
876 | 0 | Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i)); |
877 | 0 | Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i)); |
878 | 0 | } |
879 | 0 | else { |
880 | 0 | Input[0] = FROM_8_TO_16(i); |
881 | 0 | Input[1] = FROM_8_TO_16(i); |
882 | 0 | Input[2] = FROM_8_TO_16(i); |
883 | 0 | } |
884 | | |
885 | | |
886 | | // Move to 0..1.0 in fixed domain |
887 | 0 | v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0])); |
888 | 0 | v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1])); |
889 | 0 | v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2])); |
890 | | |
891 | | // Store the precalculated table of nodes |
892 | 0 | p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1)); |
893 | 0 | p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2)); |
894 | 0 | p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3)); |
895 | | |
896 | | // Store the precalculated table of offsets |
897 | 0 | p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1); |
898 | 0 | p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2); |
899 | 0 | p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3); |
900 | 0 | } |
901 | |
|
902 | 0 | p8 ->ContextID = ContextID; |
903 | 0 | p8 ->p = p; |
904 | |
|
905 | 0 | return p8; |
906 | 0 | } |
907 | | |
908 | | static |
909 | | void Prelin8free(cmsContext ContextID, void* ptr) |
910 | 0 | { |
911 | 0 | _cmsFree(ContextID, ptr); |
912 | 0 | } |
913 | | |
914 | | static |
915 | | void* Prelin8dup(cmsContext ContextID, const void* ptr) |
916 | 0 | { |
917 | 0 | return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data)); |
918 | 0 | } |
919 | | |
920 | | |
921 | | |
922 | | // A optimized interpolation for 8-bit input. |
923 | 0 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
924 | | static CMS_NO_SANITIZE |
925 | | void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[], |
926 | | CMSREGISTER cmsUInt16Number Output[], |
927 | | CMSREGISTER const void* D) |
928 | 0 | { |
929 | |
|
930 | 0 | cmsUInt8Number r, g, b; |
931 | 0 | cmsS15Fixed16Number rx, ry, rz; |
932 | 0 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; |
933 | 0 | int OutChan; |
934 | 0 | CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; |
935 | 0 | Prelin8Data* p8 = (Prelin8Data*) D; |
936 | 0 | CMSREGISTER const cmsInterpParams* p = p8 ->p; |
937 | 0 | int TotalOut = (int) p -> nOutputs; |
938 | 0 | const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table; |
939 | |
|
940 | 0 | r = (cmsUInt8Number) (Input[0] >> 8); |
941 | 0 | g = (cmsUInt8Number) (Input[1] >> 8); |
942 | 0 | b = (cmsUInt8Number) (Input[2] >> 8); |
943 | |
|
944 | 0 | X0 = (cmsS15Fixed16Number) p8->X0[r]; |
945 | 0 | Y0 = (cmsS15Fixed16Number) p8->Y0[g]; |
946 | 0 | Z0 = (cmsS15Fixed16Number) p8->Z0[b]; |
947 | |
|
948 | 0 | rx = p8 ->rx[r]; |
949 | 0 | ry = p8 ->ry[g]; |
950 | 0 | rz = p8 ->rz[b]; |
951 | |
|
952 | 0 | X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]); |
953 | 0 | Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]); |
954 | 0 | Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]); |
955 | | |
956 | | |
957 | | // These are the 6 Tetrahedral |
958 | 0 | for (OutChan=0; OutChan < TotalOut; OutChan++) { |
959 | |
|
960 | 0 | c0 = DENS(X0, Y0, Z0); |
961 | |
|
962 | 0 | if (rx >= ry && ry >= rz) |
963 | 0 | { |
964 | 0 | c1 = DENS(X1, Y0, Z0) - c0; |
965 | 0 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
966 | 0 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
967 | 0 | } |
968 | 0 | else |
969 | 0 | if (rx >= rz && rz >= ry) |
970 | 0 | { |
971 | 0 | c1 = DENS(X1, Y0, Z0) - c0; |
972 | 0 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
973 | 0 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
974 | 0 | } |
975 | 0 | else |
976 | 0 | if (rz >= rx && rx >= ry) |
977 | 0 | { |
978 | 0 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
979 | 0 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
980 | 0 | c3 = DENS(X0, Y0, Z1) - c0; |
981 | 0 | } |
982 | 0 | else |
983 | 0 | if (ry >= rx && rx >= rz) |
984 | 0 | { |
985 | 0 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
986 | 0 | c2 = DENS(X0, Y1, Z0) - c0; |
987 | 0 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
988 | 0 | } |
989 | 0 | else |
990 | 0 | if (ry >= rz && rz >= rx) |
991 | 0 | { |
992 | 0 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
993 | 0 | c2 = DENS(X0, Y1, Z0) - c0; |
994 | 0 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
995 | 0 | } |
996 | 0 | else |
997 | 0 | if (rz >= ry && ry >= rx) |
998 | 0 | { |
999 | 0 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
1000 | 0 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
1001 | 0 | c3 = DENS(X0, Y0, Z1) - c0; |
1002 | 0 | } |
1003 | 0 | else { |
1004 | 0 | c1 = c2 = c3 = 0; |
1005 | 0 | } |
1006 | |
|
1007 | 0 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
1008 | 0 | Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16)); |
1009 | |
|
1010 | 0 | } |
1011 | 0 | } |
1012 | | |
1013 | | #undef DENS |
1014 | | |
1015 | | |
1016 | | // Curves that contain wide empty areas are not optimizeable |
1017 | | static |
1018 | | cmsBool IsDegenerated(const cmsToneCurve* g) |
1019 | 0 | { |
1020 | 0 | cmsUInt32Number i, Zeros = 0, Poles = 0; |
1021 | 0 | cmsUInt32Number nEntries = g ->nEntries; |
1022 | |
|
1023 | 0 | for (i=0; i < nEntries; i++) { |
1024 | |
|
1025 | 0 | if (g ->Table16[i] == 0x0000) Zeros++; |
1026 | 0 | if (g ->Table16[i] == 0xffff) Poles++; |
1027 | 0 | } |
1028 | |
|
1029 | 0 | if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables |
1030 | 0 | if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros |
1031 | 0 | if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles |
1032 | | |
1033 | 0 | return FALSE; |
1034 | 0 | } |
1035 | | |
1036 | | // -------------------------------------------------------------------------------------------------------------- |
1037 | | // We need xput over here |
1038 | | |
1039 | | static |
1040 | | cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
1041 | 649 | { |
1042 | 649 | cmsPipeline* OriginalLut; |
1043 | 649 | cmsUInt32Number nGridPoints; |
1044 | 649 | cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS]; |
1045 | 649 | cmsUInt32Number t, i; |
1046 | 649 | cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS]; |
1047 | 649 | cmsBool lIsSuitable, lIsLinear; |
1048 | 649 | cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL; |
1049 | 649 | cmsStage* OptimizedCLUTmpe; |
1050 | 649 | cmsColorSpaceSignature ColorSpace, OutputColorSpace; |
1051 | 649 | cmsStage* OptimizedPrelinMpe; |
1052 | 649 | cmsToneCurve** OptimizedPrelinCurves; |
1053 | 649 | _cmsStageCLutData* OptimizedPrelinCLUT; |
1054 | | |
1055 | | |
1056 | | // This is a lossy optimization! does not apply in floating-point cases |
1057 | 649 | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; |
1058 | | |
1059 | | // Only on chunky RGB |
1060 | 649 | if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE; |
1061 | 64 | if (T_PLANAR(*InputFormat)) return FALSE; |
1062 | | |
1063 | 64 | if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE; |
1064 | 64 | if (T_PLANAR(*OutputFormat)) return FALSE; |
1065 | | |
1066 | | // On 16 bits, user has to specify the feature |
1067 | 64 | if (!_cmsFormatterIs8bit(*InputFormat)) { |
1068 | 64 | if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE; |
1069 | 64 | } |
1070 | | |
1071 | 0 | OriginalLut = *Lut; |
1072 | | |
1073 | 0 | ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat)); |
1074 | 0 | OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat)); |
1075 | | |
1076 | | // Color space must be specified |
1077 | 0 | if (ColorSpace == (cmsColorSpaceSignature)0 || |
1078 | 0 | OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE; |
1079 | | |
1080 | 0 | nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); |
1081 | | |
1082 | | // Empty gamma containers |
1083 | 0 | memset(Trans, 0, sizeof(Trans)); |
1084 | 0 | memset(TransReverse, 0, sizeof(TransReverse)); |
1085 | | |
1086 | | // If the last stage of the original lut are curves, and those curves are |
1087 | | // degenerated, it is likely the transform is squeezing and clipping |
1088 | | // the output from previous CLUT. We cannot optimize this case |
1089 | 0 | { |
1090 | 0 | cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut); |
1091 | |
|
1092 | 0 | if (last == NULL) goto Error; |
1093 | 0 | if (cmsStageType(last) == cmsSigCurveSetElemType) { |
1094 | |
|
1095 | 0 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last); |
1096 | 0 | for (i = 0; i < Data->nCurves; i++) { |
1097 | 0 | if (IsDegenerated(Data->TheCurves[i])) |
1098 | 0 | goto Error; |
1099 | 0 | } |
1100 | 0 | } |
1101 | 0 | } |
1102 | | |
1103 | 0 | for (t = 0; t < OriginalLut ->InputChannels; t++) { |
1104 | 0 | Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL); |
1105 | 0 | if (Trans[t] == NULL) goto Error; |
1106 | 0 | } |
1107 | | |
1108 | | // Populate the curves |
1109 | 0 | for (i=0; i < PRELINEARIZATION_POINTS; i++) { |
1110 | |
|
1111 | 0 | v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); |
1112 | | |
1113 | | // Feed input with a gray ramp |
1114 | 0 | for (t=0; t < OriginalLut ->InputChannels; t++) |
1115 | 0 | In[t] = v; |
1116 | | |
1117 | | // Evaluate the gray value |
1118 | 0 | cmsPipelineEvalFloat(In, Out, OriginalLut); |
1119 | | |
1120 | | // Store result in curve |
1121 | 0 | for (t=0; t < OriginalLut ->InputChannels; t++) |
1122 | 0 | { |
1123 | 0 | if (Trans[t]->Table16 != NULL) |
1124 | 0 | Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0); |
1125 | 0 | } |
1126 | 0 | } |
1127 | | |
1128 | | // Slope-limit the obtained curves |
1129 | 0 | for (t = 0; t < OriginalLut ->InputChannels; t++) |
1130 | 0 | SlopeLimiting(Trans[t]); |
1131 | | |
1132 | | // Check for validity. lIsLinear is here for debug purposes |
1133 | 0 | lIsSuitable = TRUE; |
1134 | 0 | lIsLinear = TRUE; |
1135 | 0 | for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) { |
1136 | | |
1137 | | // Exclude if already linear |
1138 | 0 | if (!cmsIsToneCurveLinear(Trans[t])) |
1139 | 0 | lIsLinear = FALSE; |
1140 | | |
1141 | | // Exclude if non-monotonic |
1142 | 0 | if (!cmsIsToneCurveMonotonic(Trans[t])) |
1143 | 0 | lIsSuitable = FALSE; |
1144 | |
|
1145 | 0 | if (IsDegenerated(Trans[t])) |
1146 | 0 | lIsSuitable = FALSE; |
1147 | 0 | } |
1148 | | |
1149 | | // If it is not suitable, just quit |
1150 | 0 | if (!lIsSuitable) goto Error; |
1151 | | |
1152 | | // Invert curves if possible |
1153 | 0 | for (t = 0; t < OriginalLut ->InputChannels; t++) { |
1154 | 0 | TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]); |
1155 | 0 | if (TransReverse[t] == NULL) goto Error; |
1156 | 0 | } |
1157 | | |
1158 | | // Now inset the reversed curves at the begin of transform |
1159 | 0 | LutPlusCurves = cmsPipelineDup(OriginalLut); |
1160 | 0 | if (LutPlusCurves == NULL) goto Error; |
1161 | | |
1162 | 0 | if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse))) |
1163 | 0 | goto Error; |
1164 | | |
1165 | | // Create the result LUT |
1166 | 0 | OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels); |
1167 | 0 | if (OptimizedLUT == NULL) goto Error; |
1168 | | |
1169 | 0 | OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans); |
1170 | | |
1171 | | // Create and insert the curves at the beginning |
1172 | 0 | if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe)) |
1173 | 0 | goto Error; |
1174 | | |
1175 | | // Allocate the CLUT for result |
1176 | 0 | OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL); |
1177 | | |
1178 | | // Add the CLUT to the destination LUT |
1179 | 0 | if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe)) |
1180 | 0 | goto Error; |
1181 | | |
1182 | | // Resample the LUT |
1183 | 0 | if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error; |
1184 | | |
1185 | | // Free resources |
1186 | 0 | for (t = 0; t < OriginalLut ->InputChannels; t++) { |
1187 | |
|
1188 | 0 | if (Trans[t]) cmsFreeToneCurve(Trans[t]); |
1189 | 0 | if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); |
1190 | 0 | } |
1191 | |
|
1192 | 0 | cmsPipelineFree(LutPlusCurves); |
1193 | | |
1194 | |
|
1195 | 0 | OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe); |
1196 | 0 | OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data; |
1197 | | |
1198 | | // Set the evaluator if 8-bit |
1199 | 0 | if (_cmsFormatterIs8bit(*InputFormat)) { |
1200 | |
|
1201 | 0 | Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID, |
1202 | 0 | OptimizedPrelinCLUT ->Params, |
1203 | 0 | OptimizedPrelinCurves); |
1204 | 0 | if (p8 == NULL) return FALSE; |
1205 | | |
1206 | 0 | _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup); |
1207 | |
|
1208 | 0 | } |
1209 | 0 | else |
1210 | 0 | { |
1211 | 0 | Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID, |
1212 | 0 | OptimizedPrelinCLUT ->Params, |
1213 | 0 | 3, OptimizedPrelinCurves, 3, NULL); |
1214 | 0 | if (p16 == NULL) return FALSE; |
1215 | | |
1216 | 0 | _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); |
1217 | |
|
1218 | 0 | } |
1219 | | |
1220 | | // Don't fix white on absolute colorimetric |
1221 | 0 | if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) |
1222 | 0 | *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; |
1223 | |
|
1224 | 0 | if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { |
1225 | |
|
1226 | 0 | if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) { |
1227 | |
|
1228 | 0 | return FALSE; |
1229 | 0 | } |
1230 | 0 | } |
1231 | | |
1232 | | // And return the obtained LUT |
1233 | | |
1234 | 0 | cmsPipelineFree(OriginalLut); |
1235 | 0 | *Lut = OptimizedLUT; |
1236 | 0 | return TRUE; |
1237 | | |
1238 | 0 | Error: |
1239 | |
|
1240 | 0 | for (t = 0; t < OriginalLut ->InputChannels; t++) { |
1241 | |
|
1242 | 0 | if (Trans[t]) cmsFreeToneCurve(Trans[t]); |
1243 | 0 | if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); |
1244 | 0 | } |
1245 | |
|
1246 | 0 | if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves); |
1247 | 0 | if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT); |
1248 | |
|
1249 | 0 | return FALSE; |
1250 | | |
1251 | 0 | cmsUNUSED_PARAMETER(Intent); |
1252 | 0 | cmsUNUSED_PARAMETER(lIsLinear); |
1253 | 0 | } |
1254 | | |
1255 | | |
1256 | | // Curves optimizer ------------------------------------------------------------------------------------------------------------------ |
1257 | | |
1258 | | static |
1259 | | void CurvesFree(cmsContext ContextID, void* ptr) |
1260 | 0 | { |
1261 | 0 | Curves16Data* Data = (Curves16Data*) ptr; |
1262 | 0 | cmsUInt32Number i; |
1263 | |
|
1264 | 0 | for (i=0; i < Data -> nCurves; i++) { |
1265 | |
|
1266 | 0 | _cmsFree(ContextID, Data ->Curves[i]); |
1267 | 0 | } |
1268 | |
|
1269 | 0 | _cmsFree(ContextID, Data ->Curves); |
1270 | 0 | _cmsFree(ContextID, ptr); |
1271 | 0 | } |
1272 | | |
1273 | | static |
1274 | | void* CurvesDup(cmsContext ContextID, const void* ptr) |
1275 | 0 | { |
1276 | 0 | Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data)); |
1277 | 0 | cmsUInt32Number i; |
1278 | |
|
1279 | 0 | if (Data == NULL) return NULL; |
1280 | | |
1281 | 0 | Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*)); |
1282 | |
|
1283 | 0 | for (i=0; i < Data -> nCurves; i++) { |
1284 | 0 | Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number)); |
1285 | 0 | } |
1286 | |
|
1287 | 0 | return (void*) Data; |
1288 | 0 | } |
1289 | | |
1290 | | // Precomputes tables for 8-bit on input devicelink. |
1291 | | static |
1292 | | Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G) |
1293 | 0 | { |
1294 | 0 | cmsUInt32Number i, j; |
1295 | 0 | Curves16Data* c16; |
1296 | |
|
1297 | 0 | c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data)); |
1298 | 0 | if (c16 == NULL) return NULL; |
1299 | | |
1300 | 0 | c16 ->nCurves = nCurves; |
1301 | 0 | c16 ->nElements = nElements; |
1302 | |
|
1303 | 0 | c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*)); |
1304 | 0 | if (c16->Curves == NULL) { |
1305 | 0 | _cmsFree(ContextID, c16); |
1306 | 0 | return NULL; |
1307 | 0 | } |
1308 | | |
1309 | 0 | for (i=0; i < nCurves; i++) { |
1310 | |
|
1311 | 0 | c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number)); |
1312 | |
|
1313 | 0 | if (c16->Curves[i] == NULL) { |
1314 | |
|
1315 | 0 | for (j=0; j < i; j++) { |
1316 | 0 | _cmsFree(ContextID, c16->Curves[j]); |
1317 | 0 | } |
1318 | 0 | _cmsFree(ContextID, c16->Curves); |
1319 | 0 | _cmsFree(ContextID, c16); |
1320 | 0 | return NULL; |
1321 | 0 | } |
1322 | | |
1323 | 0 | if (nElements == 256U) { |
1324 | |
|
1325 | 0 | for (j=0; j < nElements; j++) { |
1326 | |
|
1327 | 0 | c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j)); |
1328 | 0 | } |
1329 | 0 | } |
1330 | 0 | else { |
1331 | |
|
1332 | 0 | for (j=0; j < nElements; j++) { |
1333 | 0 | c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j); |
1334 | 0 | } |
1335 | 0 | } |
1336 | 0 | } |
1337 | | |
1338 | 0 | return c16; |
1339 | 0 | } |
1340 | | |
1341 | | static |
1342 | | void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[], |
1343 | | CMSREGISTER cmsUInt16Number Out[], |
1344 | | CMSREGISTER const void* D) |
1345 | 0 | { |
1346 | 0 | Curves16Data* Data = (Curves16Data*) D; |
1347 | 0 | int x; |
1348 | 0 | cmsUInt32Number i; |
1349 | |
|
1350 | 0 | for (i=0; i < Data ->nCurves; i++) { |
1351 | |
|
1352 | 0 | x = (In[i] >> 8); |
1353 | 0 | Out[i] = Data -> Curves[i][x]; |
1354 | 0 | } |
1355 | 0 | } |
1356 | | |
1357 | | |
1358 | | static |
1359 | | void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[], |
1360 | | CMSREGISTER cmsUInt16Number Out[], |
1361 | | CMSREGISTER const void* D) |
1362 | 0 | { |
1363 | 0 | Curves16Data* Data = (Curves16Data*) D; |
1364 | 0 | cmsUInt32Number i; |
1365 | |
|
1366 | 0 | for (i=0; i < Data ->nCurves; i++) { |
1367 | 0 | Out[i] = Data -> Curves[i][In[i]]; |
1368 | 0 | } |
1369 | 0 | } |
1370 | | |
1371 | | |
1372 | | static |
1373 | | void FastIdentity16(CMSREGISTER const cmsUInt16Number In[], |
1374 | | CMSREGISTER cmsUInt16Number Out[], |
1375 | | CMSREGISTER const void* D) |
1376 | 0 | { |
1377 | 0 | cmsPipeline* Lut = (cmsPipeline*) D; |
1378 | 0 | cmsUInt32Number i; |
1379 | |
|
1380 | 0 | for (i=0; i < Lut ->InputChannels; i++) { |
1381 | 0 | Out[i] = In[i]; |
1382 | 0 | } |
1383 | 0 | } |
1384 | | |
1385 | | |
1386 | | // If the target LUT holds only curves, the optimization procedure is to join all those |
1387 | | // curves together. That only works on curves and does not work on matrices. |
1388 | | static |
1389 | | cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
1390 | 685 | { |
1391 | 685 | cmsToneCurve** GammaTables = NULL; |
1392 | 685 | cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; |
1393 | 685 | cmsUInt32Number i, j; |
1394 | 685 | cmsPipeline* Src = *Lut; |
1395 | 685 | cmsPipeline* Dest = NULL; |
1396 | 685 | cmsStage* mpe; |
1397 | 685 | cmsStage* ObtainedCurves = NULL; |
1398 | | |
1399 | | |
1400 | | // This is a lossy optimization! does not apply in floating-point cases |
1401 | 685 | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; |
1402 | | |
1403 | | // Only curves in this LUT? |
1404 | 685 | for (mpe = cmsPipelineGetPtrToFirstStage(Src); |
1405 | 1.13k | mpe != NULL; |
1406 | 1.13k | mpe = cmsStageNext(mpe)) { |
1407 | 1.13k | if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE; |
1408 | 1.13k | } |
1409 | | |
1410 | | // Allocate an empty LUT |
1411 | 0 | Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); |
1412 | 0 | if (Dest == NULL) return FALSE; |
1413 | | |
1414 | | // Create target curves |
1415 | 0 | GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*)); |
1416 | 0 | if (GammaTables == NULL) goto Error; |
1417 | | |
1418 | 0 | for (i=0; i < Src ->InputChannels; i++) { |
1419 | 0 | GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL); |
1420 | 0 | if (GammaTables[i] == NULL) goto Error; |
1421 | 0 | } |
1422 | | |
1423 | | // Compute 16 bit result by using floating point |
1424 | 0 | for (i=0; i < PRELINEARIZATION_POINTS; i++) { |
1425 | |
|
1426 | 0 | for (j=0; j < Src ->InputChannels; j++) |
1427 | 0 | InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); |
1428 | |
|
1429 | 0 | cmsPipelineEvalFloat(InFloat, OutFloat, Src); |
1430 | |
|
1431 | 0 | for (j=0; j < Src ->InputChannels; j++) |
1432 | 0 | GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0); |
1433 | 0 | } |
1434 | |
|
1435 | 0 | ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables); |
1436 | 0 | if (ObtainedCurves == NULL) goto Error; |
1437 | | |
1438 | 0 | for (i=0; i < Src ->InputChannels; i++) { |
1439 | 0 | cmsFreeToneCurve(GammaTables[i]); |
1440 | 0 | GammaTables[i] = NULL; |
1441 | 0 | } |
1442 | |
|
1443 | 0 | if (GammaTables != NULL) { |
1444 | 0 | _cmsFree(Src->ContextID, GammaTables); |
1445 | 0 | GammaTables = NULL; |
1446 | 0 | } |
1447 | | |
1448 | | // Maybe the curves are linear at the end |
1449 | 0 | if (!AllCurvesAreLinear(ObtainedCurves)) { |
1450 | 0 | _cmsStageToneCurvesData* Data; |
1451 | |
|
1452 | 0 | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves)) |
1453 | 0 | goto Error; |
1454 | 0 | Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves); |
1455 | 0 | ObtainedCurves = NULL; |
1456 | | |
1457 | | // If the curves are to be applied in 8 bits, we can save memory |
1458 | 0 | if (_cmsFormatterIs8bit(*InputFormat)) { |
1459 | 0 | Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves); |
1460 | |
|
1461 | 0 | if (c16 == NULL) goto Error; |
1462 | 0 | *dwFlags |= cmsFLAGS_NOCACHE; |
1463 | 0 | _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup); |
1464 | |
|
1465 | 0 | } |
1466 | 0 | else { |
1467 | 0 | Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves); |
1468 | |
|
1469 | 0 | if (c16 == NULL) goto Error; |
1470 | 0 | *dwFlags |= cmsFLAGS_NOCACHE; |
1471 | 0 | _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup); |
1472 | 0 | } |
1473 | 0 | } |
1474 | 0 | else { |
1475 | | |
1476 | | // LUT optimizes to nothing. Set the identity LUT |
1477 | 0 | cmsStageFree(ObtainedCurves); |
1478 | 0 | ObtainedCurves = NULL; |
1479 | |
|
1480 | 0 | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels))) |
1481 | 0 | goto Error; |
1482 | | |
1483 | 0 | *dwFlags |= cmsFLAGS_NOCACHE; |
1484 | 0 | _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL); |
1485 | 0 | } |
1486 | | |
1487 | | // We are done. |
1488 | 0 | cmsPipelineFree(Src); |
1489 | 0 | *Lut = Dest; |
1490 | 0 | return TRUE; |
1491 | | |
1492 | 0 | Error: |
1493 | |
|
1494 | 0 | if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves); |
1495 | 0 | if (GammaTables != NULL) { |
1496 | 0 | for (i=0; i < Src ->InputChannels; i++) { |
1497 | 0 | if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]); |
1498 | 0 | } |
1499 | |
|
1500 | 0 | _cmsFree(Src ->ContextID, GammaTables); |
1501 | 0 | } |
1502 | |
|
1503 | 0 | if (Dest != NULL) cmsPipelineFree(Dest); |
1504 | 0 | return FALSE; |
1505 | | |
1506 | 0 | cmsUNUSED_PARAMETER(Intent); |
1507 | 0 | cmsUNUSED_PARAMETER(InputFormat); |
1508 | 0 | cmsUNUSED_PARAMETER(OutputFormat); |
1509 | 0 | cmsUNUSED_PARAMETER(dwFlags); |
1510 | 0 | } |
1511 | | |
1512 | | // ------------------------------------------------------------------------------------------------------------------------------------- |
1513 | | // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles |
1514 | | |
1515 | | |
1516 | | static |
1517 | | void FreeMatShaper(cmsContext ContextID, void* Data) |
1518 | 82 | { |
1519 | 82 | if (Data != NULL) _cmsFree(ContextID, Data); |
1520 | 82 | } |
1521 | | |
1522 | | static |
1523 | | void* DupMatShaper(cmsContext ContextID, const void* Data) |
1524 | 46 | { |
1525 | 46 | return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data)); |
1526 | 46 | } |
1527 | | |
1528 | | |
1529 | | // A fast matrix-shaper evaluator for 8 bits. This is a bit tricky since I'm using 1.14 signed fixed point |
1530 | | // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits, |
1531 | | // in total about 50K, and the performance boost is huge! |
1532 | | static CMS_NO_SANITIZE |
1533 | | void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[], |
1534 | | CMSREGISTER cmsUInt16Number Out[], |
1535 | | CMSREGISTER const void* D) |
1536 | 0 | { |
1537 | 0 | MatShaper8Data* p = (MatShaper8Data*) D; |
1538 | 0 | cmsS1Fixed14Number l1, l2, l3, r, g, b; |
1539 | 0 | cmsUInt32Number ri, gi, bi; |
1540 | | |
1541 | | // In this case (and only in this case!) we can use this simplification since |
1542 | | // In[] is assured to come from a 8 bit number. (a << 8 | a) |
1543 | 0 | ri = In[0] & 0xFFU; |
1544 | 0 | gi = In[1] & 0xFFU; |
1545 | 0 | bi = In[2] & 0xFFU; |
1546 | | |
1547 | | // Across first shaper, which also converts to 1.14 fixed point |
1548 | 0 | r = p->Shaper1R[ri]; |
1549 | 0 | g = p->Shaper1G[gi]; |
1550 | 0 | b = p->Shaper1B[bi]; |
1551 | | |
1552 | | // Evaluate the matrix in 1.14 fixed point |
1553 | 0 | l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14; |
1554 | 0 | l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14; |
1555 | 0 | l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14; |
1556 | | |
1557 | | // Now we have to clip to 0..1.0 range |
1558 | 0 | ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1); |
1559 | 0 | gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2); |
1560 | 0 | bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3); |
1561 | | |
1562 | | // And across second shaper, |
1563 | 0 | Out[0] = p->Shaper2R[ri]; |
1564 | 0 | Out[1] = p->Shaper2G[gi]; |
1565 | 0 | Out[2] = p->Shaper2B[bi]; |
1566 | |
|
1567 | 0 | } |
1568 | | |
1569 | | // This table converts from 8 bits to 1.14 after applying the curve |
1570 | | static |
1571 | | void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve) |
1572 | 108 | { |
1573 | 108 | int i; |
1574 | 108 | cmsFloat32Number R, y; |
1575 | | |
1576 | 27.7k | for (i=0; i < 256; i++) { |
1577 | | |
1578 | 27.6k | R = (cmsFloat32Number) (i / 255.0); |
1579 | 27.6k | y = cmsEvalToneCurveFloat(Curve, R); |
1580 | | |
1581 | 27.6k | if (y < 131072.0) |
1582 | 19.3k | Table[i] = DOUBLE_TO_1FIXED14(y); |
1583 | 8.28k | else |
1584 | 8.28k | Table[i] = 0x7fffffff; |
1585 | 27.6k | } |
1586 | 108 | } |
1587 | | |
1588 | | // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve |
1589 | | static |
1590 | | void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput) |
1591 | 108 | { |
1592 | 108 | int i; |
1593 | 108 | cmsFloat32Number R, Val; |
1594 | | |
1595 | 1.76M | for (i=0; i < 16385; i++) { |
1596 | | |
1597 | 1.76M | R = (cmsFloat32Number) (i / 16384.0); |
1598 | 1.76M | Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0 |
1599 | | |
1600 | 1.76M | if (Val < 0) |
1601 | 0 | Val = 0; |
1602 | | |
1603 | 1.76M | if (Val > 1.0) |
1604 | 0 | Val = 1.0; |
1605 | | |
1606 | 1.76M | if (Is8BitsOutput) { |
1607 | | |
1608 | | // If 8 bits output, we can optimize further by computing the / 257 part. |
1609 | | // first we compute the resulting byte and then we store the byte times |
1610 | | // 257. This quantization allows to round very quick by doing a >> 8, but |
1611 | | // since the low byte is always equal to msb, we can do a & 0xff and this works! |
1612 | 1.76M | cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0); |
1613 | 1.76M | cmsUInt8Number b = FROM_16_TO_8(w); |
1614 | | |
1615 | 1.76M | Table[i] = FROM_8_TO_16(b); |
1616 | 1.76M | } |
1617 | 0 | else Table[i] = _cmsQuickSaturateWord(Val * 65535.0); |
1618 | 1.76M | } |
1619 | 108 | } |
1620 | | |
1621 | | // Compute the matrix-shaper structure |
1622 | | static |
1623 | | cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat) |
1624 | 36 | { |
1625 | 36 | MatShaper8Data* p; |
1626 | 36 | int i, j; |
1627 | 36 | cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat); |
1628 | | |
1629 | | // Allocate a big chuck of memory to store precomputed tables |
1630 | 36 | p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data)); |
1631 | 36 | if (p == NULL) return FALSE; |
1632 | | |
1633 | 36 | p -> ContextID = Dest -> ContextID; |
1634 | | |
1635 | | // Precompute tables |
1636 | 36 | FillFirstShaper(p ->Shaper1R, Curve1[0]); |
1637 | 36 | FillFirstShaper(p ->Shaper1G, Curve1[1]); |
1638 | 36 | FillFirstShaper(p ->Shaper1B, Curve1[2]); |
1639 | | |
1640 | 36 | FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits); |
1641 | 36 | FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits); |
1642 | 36 | FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits); |
1643 | | |
1644 | | // Convert matrix to nFixed14. Note that those values may take more than 16 bits |
1645 | 144 | for (i=0; i < 3; i++) { |
1646 | 432 | for (j=0; j < 3; j++) { |
1647 | 324 | p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]); |
1648 | 324 | } |
1649 | 108 | } |
1650 | | |
1651 | 144 | for (i=0; i < 3; i++) { |
1652 | | |
1653 | 108 | if (Off == NULL) { |
1654 | 108 | p ->Off[i] = 0; |
1655 | 108 | } |
1656 | 0 | else { |
1657 | 0 | p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]); |
1658 | 0 | } |
1659 | 108 | } |
1660 | | |
1661 | | // Mark as optimized for faster formatter |
1662 | 36 | if (Is8Bits) |
1663 | 36 | *OutputFormat |= OPTIMIZED_SH(1); |
1664 | | |
1665 | | // Fill function pointers |
1666 | 36 | _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper); |
1667 | 36 | return TRUE; |
1668 | 36 | } |
1669 | | |
1670 | | // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast! |
1671 | | static |
1672 | | cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
1673 | 685 | { |
1674 | 685 | cmsStage* Curve1, *Curve2; |
1675 | 685 | cmsStage* Matrix1, *Matrix2; |
1676 | 685 | cmsMAT3 res; |
1677 | 685 | cmsBool IdentityMat; |
1678 | 685 | cmsPipeline* Dest, *Src; |
1679 | 685 | cmsFloat64Number* Offset; |
1680 | | |
1681 | | // Only works on RGB to RGB |
1682 | 685 | if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE; |
1683 | | |
1684 | | // Only works on 8 bit input |
1685 | 290 | if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE; |
1686 | | |
1687 | | // Seems suitable, proceed |
1688 | 146 | Src = *Lut; |
1689 | | |
1690 | | // Check for: |
1691 | | // |
1692 | | // shaper-matrix-matrix-shaper |
1693 | | // shaper-matrix-shaper |
1694 | | // |
1695 | | // Both of those constructs are possible (first because abs. colorimetric). |
1696 | | // additionally, In the first case, the input matrix offset should be zero. |
1697 | | |
1698 | 146 | IdentityMat = FALSE; |
1699 | 146 | if (cmsPipelineCheckAndRetreiveStages(Src, 4, |
1700 | 146 | cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, |
1701 | 146 | &Curve1, &Matrix1, &Matrix2, &Curve2)) { |
1702 | | |
1703 | | // Get both matrices |
1704 | 5 | _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1); |
1705 | 5 | _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2); |
1706 | | |
1707 | | // Only RGB to RGB |
1708 | 5 | if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3 || |
1709 | 5 | Matrix2->InputChannels != 3 || Matrix2->OutputChannels != 3) return FALSE; |
1710 | | |
1711 | | // Input offset should be zero |
1712 | 5 | if (Data1->Offset != NULL) return FALSE; |
1713 | | |
1714 | | // Multiply both matrices to get the result |
1715 | 0 | _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double); |
1716 | | |
1717 | | // Only 2nd matrix has offset, or it is zero |
1718 | 0 | Offset = Data2->Offset; |
1719 | | |
1720 | | // Now the result is in res + Data2 -> Offset. Maybe is a plain identity? |
1721 | 0 | if (_cmsMAT3isIdentity(&res) && Offset == NULL) { |
1722 | | |
1723 | | // We can get rid of full matrix |
1724 | 0 | IdentityMat = TRUE; |
1725 | 0 | } |
1726 | |
|
1727 | 0 | } |
1728 | 141 | else { |
1729 | | |
1730 | 141 | if (cmsPipelineCheckAndRetreiveStages(Src, 3, |
1731 | 141 | cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, |
1732 | 141 | &Curve1, &Matrix1, &Curve2)) { |
1733 | | |
1734 | 36 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1); |
1735 | | |
1736 | 36 | if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3) return FALSE; |
1737 | | |
1738 | | // Copy the matrix to our result |
1739 | 36 | memcpy(&res, Data->Double, sizeof(res)); |
1740 | | |
1741 | | // Preserve the Odffset (may be NULL as a zero offset) |
1742 | 36 | Offset = Data->Offset; |
1743 | | |
1744 | 36 | if (_cmsMAT3isIdentity(&res) && Offset == NULL) { |
1745 | | |
1746 | | // We can get rid of full matrix |
1747 | 0 | IdentityMat = TRUE; |
1748 | 0 | } |
1749 | 36 | } |
1750 | 105 | else |
1751 | 105 | return FALSE; // Not optimizeable this time |
1752 | | |
1753 | 141 | } |
1754 | | |
1755 | | // Allocate an empty LUT |
1756 | 36 | Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); |
1757 | 36 | if (!Dest) return FALSE; |
1758 | | |
1759 | | // Assamble the new LUT |
1760 | 36 | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1))) |
1761 | 0 | goto Error; |
1762 | | |
1763 | 36 | if (!IdentityMat) { |
1764 | | |
1765 | 36 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset))) |
1766 | 0 | goto Error; |
1767 | 36 | } |
1768 | | |
1769 | 36 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2))) |
1770 | 0 | goto Error; |
1771 | | |
1772 | | // If identity on matrix, we can further optimize the curves, so call the join curves routine |
1773 | 36 | if (IdentityMat) { |
1774 | |
|
1775 | 0 | OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags); |
1776 | 0 | } |
1777 | 36 | else { |
1778 | 36 | _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1); |
1779 | 36 | _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2); |
1780 | | |
1781 | | // In this particular optimization, cache does not help as it takes more time to deal with |
1782 | | // the cache than with the pixel handling |
1783 | 36 | *dwFlags |= cmsFLAGS_NOCACHE; |
1784 | | |
1785 | | // Setup the optimizarion routines |
1786 | 36 | SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat); |
1787 | 36 | } |
1788 | | |
1789 | 36 | cmsPipelineFree(Src); |
1790 | 36 | *Lut = Dest; |
1791 | 36 | return TRUE; |
1792 | 0 | Error: |
1793 | | // Leave Src unchanged |
1794 | 0 | cmsPipelineFree(Dest); |
1795 | 0 | return FALSE; |
1796 | 36 | } |
1797 | | |
1798 | | |
1799 | | // ------------------------------------------------------------------------------------------------------------------------------------- |
1800 | | // Optimization plug-ins |
1801 | | |
1802 | | // List of optimizations |
1803 | | typedef struct _cmsOptimizationCollection_st { |
1804 | | |
1805 | | _cmsOPToptimizeFn OptimizePtr; |
1806 | | |
1807 | | struct _cmsOptimizationCollection_st *Next; |
1808 | | |
1809 | | } _cmsOptimizationCollection; |
1810 | | |
1811 | | |
1812 | | // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling |
1813 | | static _cmsOptimizationCollection DefaultOptimization[] = { |
1814 | | |
1815 | | { OptimizeByJoiningCurves, &DefaultOptimization[1] }, |
1816 | | { OptimizeMatrixShaper, &DefaultOptimization[2] }, |
1817 | | { OptimizeByComputingLinearization, &DefaultOptimization[3] }, |
1818 | | { OptimizeByResampling, NULL } |
1819 | | }; |
1820 | | |
1821 | | // The linked list head |
1822 | | _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL }; |
1823 | | |
1824 | | |
1825 | | // Duplicates the zone of memory used by the plug-in in the new context |
1826 | | static |
1827 | | void DupPluginOptimizationList(struct _cmsContext_struct* ctx, |
1828 | | const struct _cmsContext_struct* src) |
1829 | 0 | { |
1830 | 0 | _cmsOptimizationPluginChunkType newHead = { NULL }; |
1831 | 0 | _cmsOptimizationCollection* entry; |
1832 | 0 | _cmsOptimizationCollection* Anterior = NULL; |
1833 | 0 | _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin]; |
1834 | |
|
1835 | 0 | _cmsAssert(ctx != NULL); |
1836 | 0 | _cmsAssert(head != NULL); |
1837 | | |
1838 | | // Walk the list copying all nodes |
1839 | 0 | for (entry = head->OptimizationCollection; |
1840 | 0 | entry != NULL; |
1841 | 0 | entry = entry ->Next) { |
1842 | |
|
1843 | 0 | _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection)); |
1844 | | |
1845 | 0 | if (newEntry == NULL) |
1846 | 0 | return; |
1847 | | |
1848 | | // We want to keep the linked list order, so this is a little bit tricky |
1849 | 0 | newEntry -> Next = NULL; |
1850 | 0 | if (Anterior) |
1851 | 0 | Anterior -> Next = newEntry; |
1852 | | |
1853 | 0 | Anterior = newEntry; |
1854 | |
|
1855 | 0 | if (newHead.OptimizationCollection == NULL) |
1856 | 0 | newHead.OptimizationCollection = newEntry; |
1857 | 0 | } |
1858 | | |
1859 | 0 | ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType)); |
1860 | 0 | } |
1861 | | |
1862 | | void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx, |
1863 | | const struct _cmsContext_struct* src) |
1864 | 0 | { |
1865 | 0 | if (src != NULL) { |
1866 | | |
1867 | | // Copy all linked list |
1868 | 0 | DupPluginOptimizationList(ctx, src); |
1869 | 0 | } |
1870 | 0 | else { |
1871 | 0 | static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL }; |
1872 | 0 | ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType)); |
1873 | 0 | } |
1874 | 0 | } |
1875 | | |
1876 | | |
1877 | | // Register new ways to optimize |
1878 | | cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data) |
1879 | 0 | { |
1880 | 0 | cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data; |
1881 | 0 | _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); |
1882 | 0 | _cmsOptimizationCollection* fl; |
1883 | |
|
1884 | 0 | if (Data == NULL) { |
1885 | |
|
1886 | 0 | ctx->OptimizationCollection = NULL; |
1887 | 0 | return TRUE; |
1888 | 0 | } |
1889 | | |
1890 | | // Optimizer callback is required |
1891 | 0 | if (Plugin ->OptimizePtr == NULL) return FALSE; |
1892 | | |
1893 | 0 | fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection)); |
1894 | 0 | if (fl == NULL) return FALSE; |
1895 | | |
1896 | | // Copy the parameters |
1897 | 0 | fl ->OptimizePtr = Plugin ->OptimizePtr; |
1898 | | |
1899 | | // Keep linked list |
1900 | 0 | fl ->Next = ctx->OptimizationCollection; |
1901 | | |
1902 | | // Set the head |
1903 | 0 | ctx ->OptimizationCollection = fl; |
1904 | | |
1905 | | // All is ok |
1906 | 0 | return TRUE; |
1907 | 0 | } |
1908 | | |
1909 | | // The entry point for LUT optimization |
1910 | | cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID, |
1911 | | cmsPipeline** PtrLut, |
1912 | | cmsUInt32Number Intent, |
1913 | | cmsUInt32Number* InputFormat, |
1914 | | cmsUInt32Number* OutputFormat, |
1915 | | cmsUInt32Number* dwFlags) |
1916 | 2.76k | { |
1917 | 2.76k | _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); |
1918 | 2.76k | _cmsOptimizationCollection* Opts; |
1919 | 2.76k | cmsBool AnySuccess = FALSE; |
1920 | 2.76k | cmsStage* mpe; |
1921 | | |
1922 | | // A CLUT is being asked, so force this specific optimization |
1923 | 2.76k | if (*dwFlags & cmsFLAGS_FORCE_CLUT) { |
1924 | | |
1925 | 683 | PreOptimize(*PtrLut); |
1926 | 683 | return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags); |
1927 | 683 | } |
1928 | | |
1929 | | // Anything to optimize? |
1930 | 2.08k | if ((*PtrLut) ->Elements == NULL) { |
1931 | 0 | _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); |
1932 | 0 | return TRUE; |
1933 | 0 | } |
1934 | | |
1935 | | // Named color pipelines cannot be optimized |
1936 | 2.08k | for (mpe = cmsPipelineGetPtrToFirstStage(*PtrLut); |
1937 | 14.3k | mpe != NULL; |
1938 | 12.2k | mpe = cmsStageNext(mpe)) { |
1939 | 12.2k | if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE; |
1940 | 12.2k | } |
1941 | | |
1942 | | // Try to get rid of identities and trivial conversions. |
1943 | 2.06k | AnySuccess = PreOptimize(*PtrLut); |
1944 | | |
1945 | | // After removal do we end with an identity? |
1946 | 2.06k | if ((*PtrLut) ->Elements == NULL) { |
1947 | 1 | _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); |
1948 | 1 | return TRUE; |
1949 | 1 | } |
1950 | | |
1951 | | // Do not optimize, keep all precision |
1952 | 2.06k | if (*dwFlags & cmsFLAGS_NOOPTIMIZE) |
1953 | 1.38k | return FALSE; |
1954 | | |
1955 | | // Try plug-in optimizations |
1956 | 685 | for (Opts = ctx->OptimizationCollection; |
1957 | 685 | Opts != NULL; |
1958 | 685 | Opts = Opts ->Next) { |
1959 | | |
1960 | | // If one schema succeeded, we are done |
1961 | 0 | if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { |
1962 | |
|
1963 | 0 | return TRUE; // Optimized! |
1964 | 0 | } |
1965 | 0 | } |
1966 | | |
1967 | | // Try built-in optimizations |
1968 | 685 | for (Opts = DefaultOptimization; |
1969 | 3.04k | Opts != NULL; |
1970 | 2.66k | Opts = Opts ->Next) { |
1971 | | |
1972 | 2.66k | if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { |
1973 | | |
1974 | 305 | return TRUE; |
1975 | 305 | } |
1976 | 2.66k | } |
1977 | | |
1978 | | // Only simple optimizations succeeded |
1979 | 380 | return AnySuccess; |
1980 | 685 | } |
1981 | | |
1982 | | |
1983 | | |