/src/leptonica/src/pix3.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*====================================================================* |
2 | | - Copyright (C) 2001 Leptonica. All rights reserved. |
3 | | - |
4 | | - Redistribution and use in source and binary forms, with or without |
5 | | - modification, are permitted provided that the following conditions |
6 | | - are met: |
7 | | - 1. Redistributions of source code must retain the above copyright |
8 | | - notice, this list of conditions and the following disclaimer. |
9 | | - 2. Redistributions in binary form must reproduce the above |
10 | | - copyright notice, this list of conditions and the following |
11 | | - disclaimer in the documentation and/or other materials |
12 | | - provided with the distribution. |
13 | | - |
14 | | - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
15 | | - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
16 | | - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
17 | | - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY |
18 | | - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | | - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | | - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | | - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | | - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
23 | | - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
24 | | - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | | *====================================================================*/ |
26 | | |
27 | | /*! |
28 | | * \file pix3.c |
29 | | * <pre> |
30 | | * |
31 | | * This file has these operations: |
32 | | * |
33 | | * (1) Mask-directed operations |
34 | | * (2) Full-image bit-logical operations |
35 | | * (3) Foreground pixel counting operations on 1 bpp images |
36 | | * (4) Average and variance of pixel values |
37 | | * (5) Mirrored tiling of a smaller image |
38 | | * |
39 | | * |
40 | | * Masked operations |
41 | | * l_int32 pixSetMasked() |
42 | | * l_int32 pixSetMaskedGeneral() |
43 | | * l_int32 pixCombineMasked() |
44 | | * l_int32 pixCombineMaskedGeneral() |
45 | | * l_int32 pixPaintThroughMask() |
46 | | * l_int32 pixCopyWithBoxa() -- this is boxa-directed |
47 | | * PIX *pixPaintSelfThroughMask() |
48 | | * PIX *pixMakeMaskFromVal() |
49 | | * PIX *pixMakeMaskFromLUT() |
50 | | * PIX *pixMakeArbMaskFromRGB() |
51 | | * PIX *pixSetUnderTransparency() |
52 | | * PIX *pixMakeAlphaFromMask() |
53 | | * l_int32 pixGetColorNearMaskBoundary() |
54 | | * PIX *pixDisplaySelectedPixels() -- for debugging |
55 | | * |
56 | | * One and two-image boolean operations on arbitrary depth images |
57 | | * PIX *pixInvert() |
58 | | * PIX *pixOr() |
59 | | * PIX *pixAnd() |
60 | | * PIX *pixXor() |
61 | | * PIX *pixSubtract() |
62 | | * |
63 | | * Foreground pixel counting in 1 bpp images |
64 | | * l_int32 pixZero() |
65 | | * l_int32 pixForegroundFraction() |
66 | | * NUMA *pixaCountPixels() |
67 | | * l_int32 pixCountPixels() |
68 | | * l_int32 pixCountPixelsInRect() |
69 | | * NUMA *pixCountByRow() |
70 | | * NUMA *pixCountByColumn() |
71 | | * NUMA *pixCountPixelsByRow() |
72 | | * NUMA *pixCountPixelsByColumn() |
73 | | * l_int32 pixCountPixelsInRow() |
74 | | * NUMA *pixGetMomentByColumn() |
75 | | * l_int32 pixThresholdPixelSum() |
76 | | * l_int32 *makePixelSumTab8() |
77 | | * l_int32 *makePixelCentroidTab8() |
78 | | * |
79 | | * Average of pixel values in gray images |
80 | | * NUMA *pixAverageByRow() |
81 | | * NUMA *pixAverageByColumn() |
82 | | * l_int32 pixAverageInRect() |
83 | | * |
84 | | * Average of pixel values in RGB images |
85 | | * l_int32 pixAverageInRectRGB() |
86 | | * |
87 | | * Variance of pixel values in gray images |
88 | | * NUMA *pixVarianceByRow() |
89 | | * NUMA *pixVarianceByColumn() |
90 | | * l_int32 pixVarianceInRect() |
91 | | * |
92 | | * Average of absolute value of pixel differences in gray images |
93 | | * NUMA *pixAbsDiffByRow() |
94 | | * NUMA *pixAbsDiffByColumn() |
95 | | * l_int32 pixAbsDiffInRect() |
96 | | * l_int32 pixAbsDiffOnLine() |
97 | | * |
98 | | * Count of pixels with specific value |
99 | | * l_int32 pixCountArbInRect() |
100 | | * |
101 | | * Mirrored tiling |
102 | | * PIX *pixMirroredTiling() |
103 | | * |
104 | | * Representative tile near but outside region |
105 | | * l_int32 pixFindRepCloseTile() |
106 | | * |
107 | | * Static helper function |
108 | | * static BOXA *findTileRegionsForSearch() |
109 | | * </pre> |
110 | | */ |
111 | | |
112 | | #ifdef HAVE_CONFIG_H |
113 | | #include <config_auto.h> |
114 | | #endif /* HAVE_CONFIG_H */ |
115 | | |
116 | | #include <string.h> |
117 | | #include <math.h> |
118 | | #include "allheaders.h" |
119 | | |
120 | | static BOXA *findTileRegionsForSearch(BOX *box, l_int32 w, l_int32 h, |
121 | | l_int32 searchdir, l_int32 mindist, |
122 | | l_int32 tsize, l_int32 ntiles); |
123 | | |
124 | | #ifndef NO_CONSOLE_IO |
125 | | #define EQUAL_SIZE_WARNING 0 |
126 | | #endif /* ~NO_CONSOLE_IO */ |
127 | | |
128 | | /*-------------------------------------------------------------* |
129 | | * Masked operations * |
130 | | *-------------------------------------------------------------*/ |
131 | | /*! |
132 | | * \brief pixSetMasked() |
133 | | * |
134 | | * \param[in] pixd 1, 2, 4, 8, 16 or 32 bpp; or colormapped |
135 | | * \param[in] pixm [optional] 1 bpp mask; no operation if NULL |
136 | | * \param[in] val value to set at each masked pixel |
137 | | * \return 0 if OK; 1 on error |
138 | | * |
139 | | * <pre> |
140 | | * Notes: |
141 | | * (1) In-place operation. |
142 | | * (2) NOTE: For cmapped images, this calls pixSetMaskedCmap(). |
143 | | * %val must be the 32-bit color representation of the RGB pixel. |
144 | | * It is not the index into the colormap! |
145 | | * (2) If pixm == NULL, a warning is given. |
146 | | * (3) This is an implicitly aligned operation, where the UL |
147 | | * corners of pixd and pixm coincide. A warning is |
148 | | * issued if the two image sizes differ significantly, |
149 | | * but the operation proceeds. |
150 | | * (4) Each pixel in pixd that co-locates with an ON pixel |
151 | | * in pixm is set to the specified input value. |
152 | | * Other pixels in pixd are not changed. |
153 | | * (5) You can visualize this as painting the color through |
154 | | * the mask, as a stencil. |
155 | | * (6) If you do not want to have the UL corners aligned, |
156 | | * use the function pixSetMaskedGeneral(), which requires |
157 | | * you to input the UL corner of pixm relative to pixd. |
158 | | * (7) Implementation details: see comments in pixPaintThroughMask() |
159 | | * for when we use rasterop to do the painting. |
160 | | * </pre> |
161 | | */ |
162 | | l_ok |
163 | | pixSetMasked(PIX *pixd, |
164 | | PIX *pixm, |
165 | | l_uint32 val) |
166 | 666 | { |
167 | 666 | l_int32 wd, hd, wm, hm, w, h, d, wpld, wplm; |
168 | 666 | l_int32 i, j, rval, gval, bval; |
169 | 666 | l_uint32 *datad, *datam, *lined, *linem; |
170 | | |
171 | 666 | if (!pixd) |
172 | 0 | return ERROR_INT("pixd not defined", __func__, 1); |
173 | 666 | if (!pixm) { |
174 | 0 | L_WARNING("no mask; nothing to do\n", __func__); |
175 | 0 | return 0; |
176 | 0 | } |
177 | 666 | if (pixGetColormap(pixd)) { |
178 | 0 | extractRGBValues(val, &rval, &gval, &bval); |
179 | 0 | return pixSetMaskedCmap(pixd, pixm, 0, 0, rval, gval, bval); |
180 | 0 | } |
181 | | |
182 | 666 | if (pixGetDepth(pixm) != 1) |
183 | 0 | return ERROR_INT("pixm not 1 bpp", __func__, 1); |
184 | 666 | d = pixGetDepth(pixd); |
185 | 666 | if (d == 1) |
186 | 0 | val &= 1; |
187 | 666 | else if (d == 2) |
188 | 0 | val &= 3; |
189 | 666 | else if (d == 4) |
190 | 0 | val &= 0x0f; |
191 | 666 | else if (d == 8) |
192 | 0 | val &= 0xff; |
193 | 666 | else if (d == 16) |
194 | 666 | val &= 0xffff; |
195 | 0 | else if (d != 32) |
196 | 0 | return ERROR_INT("pixd not 1, 2, 4, 8, 16 or 32 bpp", __func__, 1); |
197 | 666 | pixGetDimensions(pixm, &wm, &hm, NULL); |
198 | | |
199 | | /* If d == 1, use rasterop; it's about 25x faster */ |
200 | 666 | if (d == 1) { |
201 | 0 | if (val == 0) { |
202 | 0 | PIX *pixmi = pixInvert(NULL, pixm); |
203 | 0 | pixRasterop(pixd, 0, 0, wm, hm, PIX_MASK, pixmi, 0, 0); |
204 | 0 | pixDestroy(&pixmi); |
205 | 0 | } else { /* val == 1 */ |
206 | 0 | pixRasterop(pixd, 0, 0, wm, hm, PIX_PAINT, pixm, 0, 0); |
207 | 0 | } |
208 | 0 | return 0; |
209 | 0 | } |
210 | | |
211 | | /* For d < 32, use rasterop for val == 0 (black); ~3x faster. */ |
212 | 666 | if (d < 32 && val == 0) { |
213 | 0 | PIX *pixmd = pixUnpackBinary(pixm, d, 1); |
214 | 0 | pixRasterop(pixd, 0, 0, wm, hm, PIX_MASK, pixmd, 0, 0); |
215 | 0 | pixDestroy(&pixmd); |
216 | 0 | return 0; |
217 | 0 | } |
218 | | |
219 | | /* For d < 32, use rasterop for val == maxval (white); ~3x faster. */ |
220 | 666 | if (d < 32 && val == ((1 << d) - 1)) { |
221 | 0 | PIX *pixmd = pixUnpackBinary(pixm, d, 0); |
222 | 0 | pixRasterop(pixd, 0, 0, wm, hm, PIX_PAINT, pixmd, 0, 0); |
223 | 0 | pixDestroy(&pixmd); |
224 | 0 | return 0; |
225 | 0 | } |
226 | | |
227 | 666 | pixGetDimensions(pixd, &wd, &hd, &d); |
228 | 666 | w = L_MIN(wd, wm); |
229 | 666 | h = L_MIN(hd, hm); |
230 | 666 | if (L_ABS(wd - wm) > 7 || L_ABS(hd - hm) > 7) /* allow a small tolerance */ |
231 | 666 | L_WARNING("pixd and pixm sizes differ\n", __func__); |
232 | | |
233 | 666 | datad = pixGetData(pixd); |
234 | 666 | datam = pixGetData(pixm); |
235 | 666 | wpld = pixGetWpl(pixd); |
236 | 666 | wplm = pixGetWpl(pixm); |
237 | 95.7k | for (i = 0; i < h; i++) { |
238 | 95.1k | lined = datad + i * wpld; |
239 | 95.1k | linem = datam + i * wplm; |
240 | 5.20M | for (j = 0; j < w; j++) { |
241 | 5.10M | if (GET_DATA_BIT(linem, j)) { |
242 | 4.90M | switch(d) |
243 | 4.90M | { |
244 | 0 | case 2: |
245 | 0 | SET_DATA_DIBIT(lined, j, val); |
246 | 0 | break; |
247 | 0 | case 4: |
248 | 0 | SET_DATA_QBIT(lined, j, val); |
249 | 0 | break; |
250 | 0 | case 8: |
251 | 0 | SET_DATA_BYTE(lined, j, val); |
252 | 0 | break; |
253 | 4.90M | case 16: |
254 | 4.90M | SET_DATA_TWO_BYTES(lined, j, val); |
255 | 4.90M | break; |
256 | 0 | case 32: |
257 | 0 | *(lined + j) = val; |
258 | 0 | break; |
259 | 0 | default: |
260 | 0 | return ERROR_INT("shouldn't get here", __func__, 1); |
261 | 4.90M | } |
262 | 4.90M | } |
263 | 5.10M | } |
264 | 95.1k | } |
265 | | |
266 | 666 | return 0; |
267 | 666 | } |
268 | | |
269 | | |
270 | | /*! |
271 | | * \brief pixSetMaskedGeneral() |
272 | | * |
273 | | * \param[in] pixd 8, 16 or 32 bpp |
274 | | * \param[in] pixm [optional] 1 bpp mask; no operation if null |
275 | | * \param[in] val value to set at each masked pixel |
276 | | * \param[in] x, y location of UL corner of pixm relative to pixd; |
277 | | * can be negative |
278 | | * \return 0 if OK; 1 on error |
279 | | * |
280 | | * <pre> |
281 | | * Notes: |
282 | | * (1) This is an in-place operation. |
283 | | * (2) Alignment is explicit. If you want the UL corners of |
284 | | * the two images to be aligned, use pixSetMasked(). |
285 | | * (3) A typical use would be painting through the foreground |
286 | | * of a small binary mask pixm, located somewhere on a |
287 | | * larger pixd. Other pixels in pixd are not changed. |
288 | | * (4) You can visualize this as painting the color through |
289 | | * the mask, as a stencil. |
290 | | * (5) This uses rasterop to handle clipping and different depths of pixd. |
291 | | * (6) If pixd has a colormap, you should call pixPaintThroughMask(). |
292 | | * (7) Why is this function here, if pixPaintThroughMask() does the |
293 | | * same thing, and does it more generally? I've retained it here |
294 | | * to show how one can paint through a mask using only full |
295 | | * image rasterops, rather than pixel peeking in pixm and poking |
296 | | * in pixd. It's somewhat baroque, but I found it amusing. |
297 | | * </pre> |
298 | | */ |
299 | | l_ok |
300 | | pixSetMaskedGeneral(PIX *pixd, |
301 | | PIX *pixm, |
302 | | l_uint32 val, |
303 | | l_int32 x, |
304 | | l_int32 y) |
305 | 0 | { |
306 | 0 | l_int32 wm, hm, d; |
307 | 0 | PIX *pixmu, *pixc; |
308 | |
|
309 | 0 | if (!pixd) |
310 | 0 | return ERROR_INT("pixd not defined", __func__, 1); |
311 | 0 | if (!pixm) /* nothing to do */ |
312 | 0 | return 0; |
313 | | |
314 | 0 | d = pixGetDepth(pixd); |
315 | 0 | if (d != 8 && d != 16 && d != 32) |
316 | 0 | return ERROR_INT("pixd not 8, 16 or 32 bpp", __func__, 1); |
317 | 0 | if (pixGetDepth(pixm) != 1) |
318 | 0 | return ERROR_INT("pixm not 1 bpp", __func__, 1); |
319 | | |
320 | | /* Unpack binary to depth d, with inversion: 1 --> 0, 0 --> 0xff... */ |
321 | 0 | if ((pixmu = pixUnpackBinary(pixm, d, 1)) == NULL) |
322 | 0 | return ERROR_INT("pixmu not made", __func__, 1); |
323 | | |
324 | | /* Clear stenciled pixels in pixd */ |
325 | 0 | pixGetDimensions(pixm, &wm, &hm, NULL); |
326 | 0 | pixRasterop(pixd, x, y, wm, hm, PIX_SRC & PIX_DST, pixmu, 0, 0); |
327 | | |
328 | | /* Generate image with requisite color */ |
329 | 0 | if ((pixc = pixCreateTemplate(pixmu)) == NULL) { |
330 | 0 | pixDestroy(&pixmu); |
331 | 0 | return ERROR_INT("pixc not made", __func__, 1); |
332 | 0 | } |
333 | 0 | pixSetAllArbitrary(pixc, val); |
334 | | |
335 | | /* Invert stencil mask, and paint color color into stencil */ |
336 | 0 | pixInvert(pixmu, pixmu); |
337 | 0 | pixAnd(pixmu, pixmu, pixc); |
338 | | |
339 | | /* Finally, repaint stenciled pixels, with val, in pixd */ |
340 | 0 | pixRasterop(pixd, x, y, wm, hm, PIX_SRC | PIX_DST, pixmu, 0, 0); |
341 | |
|
342 | 0 | pixDestroy(&pixmu); |
343 | 0 | pixDestroy(&pixc); |
344 | 0 | return 0; |
345 | 0 | } |
346 | | |
347 | | |
348 | | /*! |
349 | | * \brief pixCombineMasked() |
350 | | * |
351 | | * \param[in] pixd 1 bpp, 8 bpp gray or 32 bpp rgb; no cmap |
352 | | * \param[in] pixs 1 bpp, 8 bpp gray or 32 bpp rgb; no cmap |
353 | | * \param[in] pixm [optional] 1 bpp mask; no operation if NULL |
354 | | * \return 0 if OK; 1 on error |
355 | | * |
356 | | * <pre> |
357 | | * Notes: |
358 | | * (1) In-place operation; pixd is changed. |
359 | | * (2) This sets each pixel in pixd that co-locates with an ON |
360 | | * pixel in pixm to the corresponding value of pixs. |
361 | | * (3) pixs and pixd must be the same depth and not colormapped. |
362 | | * (4) All three input pix are aligned at the UL corner, and the |
363 | | * operation is clipped to the intersection of all three images. |
364 | | * (5) If pixm == NULL, it's a no-op. |
365 | | * (6) Implementation: see notes in pixCombineMaskedGeneral(). |
366 | | * For 8 bpp selective masking, you might guess that it |
367 | | * would be faster to generate an 8 bpp version of pixm, |
368 | | * using pixConvert1To8(pixm, 0, 255), and then use a |
369 | | * general combine operation |
370 | | * d = (d & ~m) | (s & m) |
371 | | * on a word-by-word basis. Not always. The word-by-word |
372 | | * combine takes a time that is independent of the mask data. |
373 | | * If the mask is relatively sparse, the byte-check method |
374 | | * is actually faster! |
375 | | * </pre> |
376 | | */ |
377 | | l_ok |
378 | | pixCombineMasked(PIX *pixd, |
379 | | PIX *pixs, |
380 | | PIX *pixm) |
381 | 666 | { |
382 | 666 | l_int32 w, h, d, ws, hs, ds, wm, hm, dm, wmin, hmin; |
383 | 666 | l_int32 wpl, wpls, wplm, i, j, val; |
384 | 666 | l_uint32 *data, *datas, *datam, *line, *lines, *linem; |
385 | 666 | PIX *pixt; |
386 | | |
387 | 666 | if (!pixm) /* nothing to do */ |
388 | 0 | return 0; |
389 | 666 | if (!pixd) |
390 | 0 | return ERROR_INT("pixd not defined", __func__, 1); |
391 | 666 | if (!pixs) |
392 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
393 | 666 | pixGetDimensions(pixd, &w, &h, &d); |
394 | 666 | pixGetDimensions(pixs, &ws, &hs, &ds); |
395 | 666 | pixGetDimensions(pixm, &wm, &hm, &dm); |
396 | 666 | if (d != ds) |
397 | 0 | return ERROR_INT("pixs and pixd depths differ", __func__, 1); |
398 | 666 | if (dm != 1) |
399 | 0 | return ERROR_INT("pixm not 1 bpp", __func__, 1); |
400 | 666 | if (d != 1 && d != 8 && d != 32) |
401 | 0 | return ERROR_INT("pixd not 1, 8 or 32 bpp", __func__, 1); |
402 | 666 | if (pixGetColormap(pixd) || pixGetColormap(pixs)) |
403 | 0 | return ERROR_INT("pixs and/or pixd is cmapped", __func__, 1); |
404 | | |
405 | | /* For d = 1, use rasterop. pixt is the part from pixs, under |
406 | | * the fg of pixm, that is to be combined with pixd. We also |
407 | | * use pixt to remove all fg of pixd that is under the fg of pixm. |
408 | | * Then pixt and pixd are combined by ORing. */ |
409 | 666 | wmin = L_MIN(w, L_MIN(ws, wm)); |
410 | 666 | hmin = L_MIN(h, L_MIN(hs, hm)); |
411 | 666 | if (d == 1) { |
412 | 0 | pixt = pixAnd(NULL, pixs, pixm); |
413 | 0 | pixRasterop(pixd, 0, 0, wmin, hmin, PIX_DST & PIX_NOT(PIX_SRC), |
414 | 0 | pixm, 0, 0); |
415 | 0 | pixRasterop(pixd, 0, 0, wmin, hmin, PIX_SRC | PIX_DST, pixt, 0, 0); |
416 | 0 | pixDestroy(&pixt); |
417 | 0 | return 0; |
418 | 0 | } |
419 | | |
420 | 666 | data = pixGetData(pixd); |
421 | 666 | datas = pixGetData(pixs); |
422 | 666 | datam = pixGetData(pixm); |
423 | 666 | wpl = pixGetWpl(pixd); |
424 | 666 | wpls = pixGetWpl(pixs); |
425 | 666 | wplm = pixGetWpl(pixm); |
426 | 666 | if (d == 8) { |
427 | 90.4k | for (i = 0; i < hmin; i++) { |
428 | 89.7k | line = data + i * wpl; |
429 | 89.7k | lines = datas + i * wpls; |
430 | 89.7k | linem = datam + i * wplm; |
431 | 2.02M | for (j = 0; j < wmin; j++) { |
432 | 1.93M | if (GET_DATA_BIT(linem, j)) { |
433 | 344k | val = GET_DATA_BYTE(lines, j); |
434 | 344k | SET_DATA_BYTE(line, j, val); |
435 | 344k | } |
436 | 1.93M | } |
437 | 89.7k | } |
438 | 666 | } else { /* d == 32 */ |
439 | 0 | for (i = 0; i < hmin; i++) { |
440 | 0 | line = data + i * wpl; |
441 | 0 | lines = datas + i * wpls; |
442 | 0 | linem = datam + i * wplm; |
443 | 0 | for (j = 0; j < wmin; j++) { |
444 | 0 | if (GET_DATA_BIT(linem, j)) |
445 | 0 | line[j] = lines[j]; |
446 | 0 | } |
447 | 0 | } |
448 | 0 | } |
449 | | |
450 | 666 | return 0; |
451 | 666 | } |
452 | | |
453 | | |
454 | | /*! |
455 | | * \brief pixCombineMaskedGeneral() |
456 | | * |
457 | | * \param[in] pixd 1 bpp, 8 bpp gray or 32 bpp rgb |
458 | | * \param[in] pixs 1 bpp, 8 bpp gray or 32 bpp rgb |
459 | | * \param[in] pixm [optional] 1 bpp mask |
460 | | * \param[in] x, y origin of pixs and pixm relative to pixd; can be negative |
461 | | * \return 0 if OK; 1 on error |
462 | | * |
463 | | * <pre> |
464 | | * Notes: |
465 | | * (1) In-place operation; pixd is changed. |
466 | | * (2) This is a generalized version of pixCombinedMasked(), where |
467 | | * the source and mask can be placed at the same (arbitrary) |
468 | | * location relative to pixd. |
469 | | * (3) pixs and pixd must be the same depth and not colormapped. |
470 | | * (4) The UL corners of both pixs and pixm are aligned with |
471 | | * the point (x, y) of pixd, and the operation is clipped to |
472 | | * the intersection of all three images. |
473 | | * (5) If pixm == NULL, it's a no-op. |
474 | | * (6) Implementation. There are two ways to do these. In the first, |
475 | | * we use rasterop, ORing the part of pixs under the mask |
476 | | * with pixd (which has been appropriately cleared there first). |
477 | | * In the second, the mask is used one pixel at a time to |
478 | | * selectively replace pixels of pixd with those of pixs. |
479 | | * Here, we use rasterop for 1 bpp and pixel-wise replacement |
480 | | * for 8 and 32 bpp. To use rasterop for 8 bpp, for example, |
481 | | * we must first generate an 8 bpp version of the mask. |
482 | | * The code is simple: |
483 | | * |
484 | | * Pix *pixm8 = pixConvert1To8(NULL, pixm, 0, 255); |
485 | | * Pix *pixt = pixAnd(NULL, pixs, pixm8); |
486 | | * pixRasterop(pixd, x, y, wmin, hmin, PIX_DST & PIX_NOT(PIX_SRC), |
487 | | * pixm8, 0, 0); |
488 | | * pixRasterop(pixd, x, y, wmin, hmin, PIX_SRC | PIX_DST, |
489 | | * pixt, 0, 0); |
490 | | * pixDestroy(&pixt); |
491 | | * pixDestroy(&pixm8); |
492 | | * </pre> |
493 | | */ |
494 | | l_ok |
495 | | pixCombineMaskedGeneral(PIX *pixd, |
496 | | PIX *pixs, |
497 | | PIX *pixm, |
498 | | l_int32 x, |
499 | | l_int32 y) |
500 | 0 | { |
501 | 0 | l_int32 d, w, h, ws, hs, ds, wm, hm, dm, wmin, hmin; |
502 | 0 | l_int32 wpl, wpls, wplm, i, j, val; |
503 | 0 | l_uint32 *data, *datas, *datam, *line, *lines, *linem; |
504 | 0 | PIX *pixt; |
505 | |
|
506 | 0 | if (!pixm) /* nothing to do */ |
507 | 0 | return 0; |
508 | 0 | if (!pixd) |
509 | 0 | return ERROR_INT("pixd not defined", __func__, 1); |
510 | 0 | if (!pixs) |
511 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
512 | 0 | pixGetDimensions(pixd, &w, &h, &d); |
513 | 0 | pixGetDimensions(pixs, &ws, &hs, &ds); |
514 | 0 | pixGetDimensions(pixm, &wm, &hm, &dm); |
515 | 0 | if (d != ds) |
516 | 0 | return ERROR_INT("pixs and pixd depths differ", __func__, 1); |
517 | 0 | if (dm != 1) |
518 | 0 | return ERROR_INT("pixm not 1 bpp", __func__, 1); |
519 | 0 | if (d != 1 && d != 8 && d != 32) |
520 | 0 | return ERROR_INT("pixd not 1, 8 or 32 bpp", __func__, 1); |
521 | 0 | if (pixGetColormap(pixd) || pixGetColormap(pixs)) |
522 | 0 | return ERROR_INT("pixs and/or pixd is cmapped", __func__, 1); |
523 | | |
524 | | /* For d = 1, use rasterop. pixt is the part from pixs, under |
525 | | * the fg of pixm, that is to be combined with pixd. We also |
526 | | * use pixt to remove all fg of pixd that is under the fg of pixm. |
527 | | * Then pixt and pixd are combined by ORing. */ |
528 | 0 | wmin = L_MIN(ws, wm); |
529 | 0 | hmin = L_MIN(hs, hm); |
530 | 0 | if (d == 1) { |
531 | 0 | pixt = pixAnd(NULL, pixs, pixm); |
532 | 0 | pixRasterop(pixd, x, y, wmin, hmin, PIX_DST & PIX_NOT(PIX_SRC), |
533 | 0 | pixm, 0, 0); |
534 | 0 | pixRasterop(pixd, x, y, wmin, hmin, PIX_SRC | PIX_DST, pixt, 0, 0); |
535 | 0 | pixDestroy(&pixt); |
536 | 0 | return 0; |
537 | 0 | } |
538 | | |
539 | 0 | wpl = pixGetWpl(pixd); |
540 | 0 | data = pixGetData(pixd); |
541 | 0 | wpls = pixGetWpl(pixs); |
542 | 0 | datas = pixGetData(pixs); |
543 | 0 | wplm = pixGetWpl(pixm); |
544 | 0 | datam = pixGetData(pixm); |
545 | |
|
546 | 0 | for (i = 0; i < hmin; i++) { |
547 | 0 | if (y + i < 0 || y + i >= h) continue; |
548 | 0 | line = data + (y + i) * wpl; |
549 | 0 | lines = datas + i * wpls; |
550 | 0 | linem = datam + i * wplm; |
551 | 0 | for (j = 0; j < wmin; j++) { |
552 | 0 | if (x + j < 0 || x + j >= w) continue; |
553 | 0 | if (GET_DATA_BIT(linem, j)) { |
554 | 0 | switch (d) |
555 | 0 | { |
556 | 0 | case 8: |
557 | 0 | val = GET_DATA_BYTE(lines, j); |
558 | 0 | SET_DATA_BYTE(line, x + j, val); |
559 | 0 | break; |
560 | 0 | case 32: |
561 | 0 | *(line + x + j) = *(lines + j); |
562 | 0 | break; |
563 | 0 | default: |
564 | 0 | return ERROR_INT("shouldn't get here", __func__, 1); |
565 | 0 | } |
566 | 0 | } |
567 | 0 | } |
568 | 0 | } |
569 | | |
570 | 0 | return 0; |
571 | 0 | } |
572 | | |
573 | | |
574 | | /*! |
575 | | * \brief pixPaintThroughMask() |
576 | | * |
577 | | * \param[in] pixd 1, 2, 4, 8, 16 or 32 bpp; or colormapped |
578 | | * \param[in] pixm [optional] 1 bpp mask |
579 | | * \param[in] x, y origin of pixm relative to pixd; can be negative |
580 | | * \param[in] val pixel value to set at each masked pixel |
581 | | * \return 0 if OK; 1 on error |
582 | | * |
583 | | * <pre> |
584 | | * Notes: |
585 | | * (1) In-place operation. Calls pixSetMaskedCmap() for colormapped |
586 | | * images. |
587 | | * (2) For 1, 2, 4, 8 and 16 bpp gray, we take the appropriate |
588 | | * number of least significant bits of val. |
589 | | * (3) If pixm == NULL, it's a no-op. |
590 | | * (4) The mask origin is placed at (x,y) on pixd, and the |
591 | | * operation is clipped to the intersection of rectangles. |
592 | | * (5) For rgb, the components in val are in the canonical locations, |
593 | | * with red in location COLOR_RED, etc. |
594 | | * (6) Implementation detail 1: |
595 | | * For painting with val == 0 or val == maxval, you can use rasterop. |
596 | | * If val == 0, invert the mask so that it's 0 over the region |
597 | | * into which you want to write, and use PIX_SRC & PIX_DST to |
598 | | * clear those pixels. To write with val = maxval (all 1's), |
599 | | * use PIX_SRC | PIX_DST to set all bits under the mask. |
600 | | * (7) Implementation detail 2: |
601 | | * The rasterop trick can be used for depth > 1 as well. |
602 | | * For val == 0, generate the mask for depth d from the binary |
603 | | * mask using |
604 | | * pixmd = pixUnpackBinary(pixm, d, 1); |
605 | | * and use pixRasterop() with PIX_MASK. For val == maxval, |
606 | | * pixmd = pixUnpackBinary(pixm, d, 0); |
607 | | * and use pixRasterop() with PIX_PAINT. |
608 | | * But note that if d == 32 bpp, it is about 3x faster to use |
609 | | * the general implementation (not pixRasterop()). |
610 | | * (8) Implementation detail 3: |
611 | | * It might be expected that the switch in the inner loop will |
612 | | * cause large branching delays and should be avoided. |
613 | | * This is not the case, because the entrance is always the |
614 | | * same and the compiler can correctly predict the jump. |
615 | | * </pre> |
616 | | */ |
617 | | l_ok |
618 | | pixPaintThroughMask(PIX *pixd, |
619 | | PIX *pixm, |
620 | | l_int32 x, |
621 | | l_int32 y, |
622 | | l_uint32 val) |
623 | 0 | { |
624 | 0 | l_int32 d, w, h, wm, hm, wpl, wplm, i, j, rval, gval, bval; |
625 | 0 | l_uint32 *data, *datam, *line, *linem; |
626 | |
|
627 | 0 | if (!pixm) /* nothing to do */ |
628 | 0 | return 0; |
629 | 0 | if (!pixd) |
630 | 0 | return ERROR_INT("pixd not defined", __func__, 1); |
631 | 0 | if (pixGetColormap(pixd)) { |
632 | 0 | extractRGBValues(val, &rval, &gval, &bval); |
633 | 0 | return pixSetMaskedCmap(pixd, pixm, x, y, rval, gval, bval); |
634 | 0 | } |
635 | | |
636 | 0 | if (pixGetDepth(pixm) != 1) |
637 | 0 | return ERROR_INT("pixm not 1 bpp", __func__, 1); |
638 | 0 | d = pixGetDepth(pixd); |
639 | 0 | if (d == 1) |
640 | 0 | val &= 1; |
641 | 0 | else if (d == 2) |
642 | 0 | val &= 3; |
643 | 0 | else if (d == 4) |
644 | 0 | val &= 0x0f; |
645 | 0 | else if (d == 8) |
646 | 0 | val &= 0xff; |
647 | 0 | else if (d == 16) |
648 | 0 | val &= 0xffff; |
649 | 0 | else if (d != 32) |
650 | 0 | return ERROR_INT("pixd not 1, 2, 4, 8, 16 or 32 bpp", __func__, 1); |
651 | 0 | pixGetDimensions(pixm, &wm, &hm, NULL); |
652 | | |
653 | | /* If d == 1, use rasterop; it's about 25x faster. */ |
654 | 0 | if (d == 1) { |
655 | 0 | if (val == 0) { |
656 | 0 | PIX *pixmi = pixInvert(NULL, pixm); |
657 | 0 | pixRasterop(pixd, x, y, wm, hm, PIX_MASK, pixmi, 0, 0); |
658 | 0 | pixDestroy(&pixmi); |
659 | 0 | } else { /* val == 1 */ |
660 | 0 | pixRasterop(pixd, x, y, wm, hm, PIX_PAINT, pixm, 0, 0); |
661 | 0 | } |
662 | 0 | return 0; |
663 | 0 | } |
664 | | |
665 | | /* For d < 32, use rasterop if val == 0 (black); ~3x faster. */ |
666 | 0 | if (d < 32 && val == 0) { |
667 | 0 | PIX *pixmd = pixUnpackBinary(pixm, d, 1); |
668 | 0 | pixRasterop(pixd, x, y, wm, hm, PIX_MASK, pixmd, 0, 0); |
669 | 0 | pixDestroy(&pixmd); |
670 | 0 | return 0; |
671 | 0 | } |
672 | | |
673 | | /* For d < 32, use rasterop if val == maxval (white); ~3x faster. */ |
674 | 0 | if (d < 32 && val == ((1 << d) - 1)) { |
675 | 0 | PIX *pixmd = pixUnpackBinary(pixm, d, 0); |
676 | 0 | pixRasterop(pixd, x, y, wm, hm, PIX_PAINT, pixmd, 0, 0); |
677 | 0 | pixDestroy(&pixmd); |
678 | 0 | return 0; |
679 | 0 | } |
680 | | |
681 | | /* All other cases */ |
682 | 0 | pixGetDimensions(pixd, &w, &h, NULL); |
683 | 0 | wpl = pixGetWpl(pixd); |
684 | 0 | data = pixGetData(pixd); |
685 | 0 | wplm = pixGetWpl(pixm); |
686 | 0 | datam = pixGetData(pixm); |
687 | 0 | for (i = 0; i < hm; i++) { |
688 | 0 | if (y + i < 0 || y + i >= h) continue; |
689 | 0 | line = data + (y + i) * wpl; |
690 | 0 | linem = datam + i * wplm; |
691 | 0 | for (j = 0; j < wm; j++) { |
692 | 0 | if (x + j < 0 || x + j >= w) continue; |
693 | 0 | if (GET_DATA_BIT(linem, j)) { |
694 | 0 | switch (d) |
695 | 0 | { |
696 | 0 | case 2: |
697 | 0 | SET_DATA_DIBIT(line, x + j, val); |
698 | 0 | break; |
699 | 0 | case 4: |
700 | 0 | SET_DATA_QBIT(line, x + j, val); |
701 | 0 | break; |
702 | 0 | case 8: |
703 | 0 | SET_DATA_BYTE(line, x + j, val); |
704 | 0 | break; |
705 | 0 | case 16: |
706 | 0 | SET_DATA_TWO_BYTES(line, x + j, val); |
707 | 0 | break; |
708 | 0 | case 32: |
709 | 0 | *(line + x + j) = val; |
710 | 0 | break; |
711 | 0 | default: |
712 | 0 | return ERROR_INT("shouldn't get here", __func__, 1); |
713 | 0 | } |
714 | 0 | } |
715 | 0 | } |
716 | 0 | } |
717 | | |
718 | 0 | return 0; |
719 | 0 | } |
720 | | |
721 | | |
722 | | /*! |
723 | | * \brief pixCopyWithBoxa() |
724 | | * |
725 | | * \param[in] pixs all depths; cmap ok |
726 | | * \param[in] boxa e.g., from components of a photomask |
727 | | * \param[in] background L_SET_WHITE or L_SET_BLACK |
728 | | * \return pixd or NULL on error |
729 | | * |
730 | | * <pre> |
731 | | * Notes: |
732 | | * (1) Pixels from pixs are copied ("blitted") through each box into pixd. |
733 | | * (2) Pixels not copied are preset to either white or black. |
734 | | * (3) This fast and simple implementation can use rasterop because |
735 | | * each region to be copied is rectangular. |
736 | | * (4) A much slower implementation that doesn't use rasterop would make |
737 | | * a 1 bpp mask from the boxa and then copy, pixel by pixel, |
738 | | * through the mask: |
739 | | * pixGetDimensions(pixs, &w, &h, NULL); |
740 | | * pixm = pixCreate(w, h, 1); |
741 | | * pixm = pixMaskBoxa(pixm, pixm, boxa); |
742 | | * pixd = pixCreateTemplate(pixs); |
743 | | * pixSetBlackOrWhite(pixd, background); |
744 | | * pixCombineMasked(pixd, pixs, pixm); |
745 | | * pixDestroy(&pixm); |
746 | | * </pre> |
747 | | */ |
748 | | PIX * |
749 | | pixCopyWithBoxa(PIX *pixs, |
750 | | BOXA *boxa, |
751 | | l_int32 background) |
752 | 0 | { |
753 | 0 | l_int32 i, n, x, y, w, h; |
754 | 0 | PIX *pixd; |
755 | |
|
756 | 0 | if (!pixs) |
757 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
758 | 0 | if (!boxa) |
759 | 0 | return (PIX *)ERROR_PTR("boxa not defined", __func__, NULL); |
760 | 0 | if (background != L_SET_WHITE && background != L_SET_BLACK) |
761 | 0 | return (PIX *)ERROR_PTR("invalid background", __func__, NULL); |
762 | | |
763 | 0 | pixd = pixCreateTemplate(pixs); |
764 | 0 | pixSetBlackOrWhite(pixd, background); |
765 | 0 | n = boxaGetCount(boxa); |
766 | 0 | for (i = 0; i < n; i++) { |
767 | 0 | boxaGetBoxGeometry(boxa, i, &x, &y, &w, &h); |
768 | 0 | pixRasterop(pixd, x, y, w, h, PIX_SRC, pixs, x, y); |
769 | 0 | } |
770 | 0 | return pixd; |
771 | 0 | } |
772 | | |
773 | | |
774 | | /*! |
775 | | * \brief pixPaintSelfThroughMask() |
776 | | * |
777 | | * \param[in] pixd 8 bpp gray or 32 bpp rgb; not colormapped |
778 | | * \param[in] pixm 1 bpp mask |
779 | | * \param[in] x, y origin of pixm relative to pixd; must not be negative |
780 | | * \param[in] searchdir L_HORIZ, L_VERT or L_BOTH_DIRECTIONS |
781 | | * \param[in] mindist min distance of nearest tile edge to box; >= 0 |
782 | | * \param[in] tilesize requested size for tiling; may be reduced |
783 | | * \param[in] ntiles number of tiles tested in each row/column |
784 | | * \param[in] distblend distance outside the fg used for blending with pixs |
785 | | * \return 0 if OK; 1 on error |
786 | | * |
787 | | * <pre> |
788 | | * Notes: |
789 | | * (1) In-place operation; pixd is changed. |
790 | | * (2) If pixm == NULL, it's a no-op. |
791 | | * (3) The mask origin is placed at (x,y) on pixd, and the |
792 | | * operation is clipped to the intersection of pixd and the |
793 | | * fg of the mask. |
794 | | * (4) %tsize is the the requested size for tiling. The actual |
795 | | * actual size for each c.c. will be bounded by the minimum |
796 | | * dimension of the c.c. |
797 | | * (5) For %mindist, %searchdir and %ntiles, see pixFindRepCloseTile(). |
798 | | * They determine the set of possible tiles that can be used |
799 | | * to build a larger mirrored tile to paint onto pixd through |
800 | | * the c.c. of pixm. |
801 | | * (6) %distblend is used for alpha blending. It is only applied |
802 | | * if there is exactly one c.c. in the mask. Use distblend == 0 |
803 | | * to skip blending and just paint through the 1 bpp mask. |
804 | | * (7) To apply blending to more than 1 component, call this function |
805 | | * repeatedly with %pixm, %x and %y representing one component of |
806 | | * the mask each time. This would be done as follows, for an |
807 | | * underlying image pixs and mask pixm of components to fill: |
808 | | * Boxa *boxa = pixConnComp(pixm, &pixa, 8); |
809 | | * n = boxaGetCount(boxa); |
810 | | * for (i = 0; i < n; i++) { |
811 | | * Pix *pix = pixaGetPix(pixa, i, L_CLONE); |
812 | | * Box *box = pixaGetBox(pixa, i, L_CLONE); |
813 | | * boxGetGeometry(box, &bx, &by, &bw, &bh); |
814 | | * pixPaintSelfThroughMask(pixs, pix, bx, by, searchdir, |
815 | | * mindist, tilesize, ntiles, distblend); |
816 | | * pixDestroy(&pix); |
817 | | * boxDestroy(&box); |
818 | | * } |
819 | | * pixaDestroy(&pixa); |
820 | | * boxaDestroy(&boxa); |
821 | | * (8) If no tiles can be found, this falls back to estimating the |
822 | | * color near the boundary of the region to be textured. |
823 | | * (9) This can be used to replace the pixels in some regions of |
824 | | * an image by selected neighboring pixels. The mask represents |
825 | | * the pixels to be replaced. For each connected component in |
826 | | * the mask, this function selects up to two tiles of neighboring |
827 | | * pixels to be used for replacement of pixels represented by |
828 | | * the component (i.e., under the FG of that component in the mask). |
829 | | * After selection, mirror replication is used to generate an |
830 | | * image that is large enough to cover the component. Alpha |
831 | | * blending can also be used outside of the component, but near the |
832 | | * edge, to blur the transition between painted and original pixels. |
833 | | * </pre> |
834 | | */ |
835 | | l_ok |
836 | | pixPaintSelfThroughMask(PIX *pixd, |
837 | | PIX *pixm, |
838 | | l_int32 x, |
839 | | l_int32 y, |
840 | | l_int32 searchdir, |
841 | | l_int32 mindist, |
842 | | l_int32 tilesize, |
843 | | l_int32 ntiles, |
844 | | l_int32 distblend) |
845 | 0 | { |
846 | 0 | l_int32 w, h, d, wm, hm, dm, i, n, bx, by, bw, bh, edgeblend, retval, minside; |
847 | 0 | l_uint32 pixval; |
848 | 0 | BOX *box, *boxv, *boxh; |
849 | 0 | BOXA *boxa; |
850 | 0 | PIX *pixf, *pixv, *pixh, *pix1, *pix2, *pix3, *pix4, *pix5; |
851 | 0 | PIXA *pixa; |
852 | |
|
853 | 0 | if (!pixm) /* nothing to do */ |
854 | 0 | return 0; |
855 | 0 | if (!pixd) |
856 | 0 | return ERROR_INT("pixd not defined", __func__, 1); |
857 | 0 | if (pixGetColormap(pixd) != NULL) |
858 | 0 | return ERROR_INT("pixd has colormap", __func__, 1); |
859 | 0 | pixGetDimensions(pixd, &w, &h, &d); |
860 | 0 | if (d != 8 && d != 32) |
861 | 0 | return ERROR_INT("pixd not 8 or 32 bpp", __func__, 1); |
862 | 0 | pixGetDimensions(pixm, &wm, &hm, &dm); |
863 | 0 | if (dm != 1) |
864 | 0 | return ERROR_INT("pixm not 1 bpp", __func__, 1); |
865 | 0 | if (x < 0 || y < 0) |
866 | 0 | return ERROR_INT("x and y must be non-negative", __func__, 1); |
867 | 0 | if (searchdir != L_HORIZ && searchdir != L_VERT && |
868 | 0 | searchdir != L_BOTH_DIRECTIONS) |
869 | 0 | return ERROR_INT("invalid searchdir", __func__, 1); |
870 | 0 | if (tilesize < 2) |
871 | 0 | return ERROR_INT("tilesize must be >= 2", __func__, 1); |
872 | 0 | if (distblend < 0) |
873 | 0 | return ERROR_INT("distblend must be >= 0", __func__, 1); |
874 | | |
875 | | /* Embed mask in full sized mask */ |
876 | 0 | if (wm < w || hm < h) { |
877 | 0 | pixf = pixCreate(w, h, 1); |
878 | 0 | pixRasterop(pixf, x, y, wm, hm, PIX_SRC, pixm, 0, 0); |
879 | 0 | } else { |
880 | 0 | pixf = pixCopy(NULL, pixm); |
881 | 0 | } |
882 | | |
883 | | /* Get connected components of mask */ |
884 | 0 | boxa = pixConnComp(pixf, &pixa, 8); |
885 | 0 | if ((n = pixaGetCount(pixa)) == 0) { |
886 | 0 | L_WARNING("no fg in mask\n", __func__); |
887 | 0 | pixDestroy(&pixf); |
888 | 0 | pixaDestroy(&pixa); |
889 | 0 | boxaDestroy(&boxa); |
890 | 0 | return 1; |
891 | 0 | } |
892 | 0 | boxaDestroy(&boxa); |
893 | | |
894 | | /* For each c.c., generate one or two representative tiles for |
895 | | * texturizing and apply through the mask. The input 'tilesize' |
896 | | * is the requested value. Note that if there is exactly one |
897 | | * component, and blending at the edge is requested, an alpha mask |
898 | | * is generated, which is larger than the bounding box of the c.c. */ |
899 | 0 | edgeblend = (n == 1 && distblend > 0) ? 1 : 0; |
900 | 0 | if (distblend > 0 && n > 1) |
901 | 0 | L_WARNING("%d components; can not blend at edges\n", __func__, n); |
902 | 0 | retval = 0; |
903 | 0 | for (i = 0; i < n; i++) { |
904 | 0 | if (edgeblend) { |
905 | 0 | pix1 = pixMakeAlphaFromMask(pixf, distblend, &box); |
906 | 0 | } else { |
907 | 0 | pix1 = pixaGetPix(pixa, i, L_CLONE); |
908 | 0 | box = pixaGetBox(pixa, i, L_CLONE); |
909 | 0 | } |
910 | 0 | boxGetGeometry(box, &bx, &by, &bw, &bh); |
911 | 0 | minside = L_MIN(bw, bh); |
912 | |
|
913 | 0 | boxh = boxv = NULL; |
914 | 0 | if (searchdir == L_HORIZ || searchdir == L_BOTH_DIRECTIONS) { |
915 | 0 | pixFindRepCloseTile(pixd, box, L_HORIZ, mindist, |
916 | 0 | L_MIN(minside, tilesize), ntiles, &boxh, 0); |
917 | 0 | } |
918 | 0 | if (searchdir == L_VERT || searchdir == L_BOTH_DIRECTIONS) { |
919 | 0 | pixFindRepCloseTile(pixd, box, L_VERT, mindist, |
920 | 0 | L_MIN(minside, tilesize), ntiles, &boxv, 0); |
921 | 0 | } |
922 | 0 | if (!boxh && !boxv) { |
923 | 0 | L_WARNING("tile region not selected; paint color near boundary\n", |
924 | 0 | __func__); |
925 | 0 | pixDestroy(&pix1); |
926 | 0 | pix1 = pixaGetPix(pixa, i, L_CLONE); |
927 | 0 | pixaGetBoxGeometry(pixa, i, &bx, &by, NULL, NULL); |
928 | 0 | retval = pixGetColorNearMaskBoundary(pixd, pixm, box, distblend, |
929 | 0 | &pixval, 0); |
930 | 0 | pixSetMaskedGeneral(pixd, pix1, pixval, bx, by); |
931 | 0 | pixDestroy(&pix1); |
932 | 0 | boxDestroy(&box); |
933 | 0 | continue; |
934 | 0 | } |
935 | | |
936 | | /* Extract the selected squares from pixd */ |
937 | 0 | pixh = (boxh) ? pixClipRectangle(pixd, boxh, NULL) : NULL; |
938 | 0 | pixv = (boxv) ? pixClipRectangle(pixd, boxv, NULL) : NULL; |
939 | 0 | if (pixh && pixv) |
940 | 0 | pix2 = pixBlend(pixh, pixv, 0, 0, 0.5); |
941 | 0 | else if (pixh) |
942 | 0 | pix2 = pixClone(pixh); |
943 | 0 | else /* pixv */ |
944 | 0 | pix2 = pixClone(pixv); |
945 | 0 | pixDestroy(&pixh); |
946 | 0 | pixDestroy(&pixv); |
947 | 0 | boxDestroy(&boxh); |
948 | 0 | boxDestroy(&boxv); |
949 | | |
950 | | /* Generate an image the size of the b.b. of the c.c., |
951 | | * possibly extended by the blending distance, which |
952 | | * is then either painted through the c.c. mask or |
953 | | * blended using the alpha mask for that c.c. */ |
954 | 0 | pix3 = pixMirroredTiling(pix2, bw, bh); |
955 | 0 | if (edgeblend) { |
956 | 0 | pix4 = pixClipRectangle(pixd, box, NULL); |
957 | 0 | pix5 = pixBlendWithGrayMask(pix4, pix3, pix1, 0, 0); |
958 | 0 | pixRasterop(pixd, bx, by, bw, bh, PIX_SRC, pix5, 0, 0); |
959 | 0 | pixDestroy(&pix4); |
960 | 0 | pixDestroy(&pix5); |
961 | 0 | } else { |
962 | 0 | pixCombineMaskedGeneral(pixd, pix3, pix1, bx, by); |
963 | 0 | } |
964 | 0 | pixDestroy(&pix1); |
965 | 0 | pixDestroy(&pix2); |
966 | 0 | pixDestroy(&pix3); |
967 | 0 | boxDestroy(&box); |
968 | 0 | } |
969 | |
|
970 | 0 | pixaDestroy(&pixa); |
971 | 0 | pixDestroy(&pixf); |
972 | 0 | return retval; |
973 | 0 | } |
974 | | |
975 | | |
976 | | /*! |
977 | | * \brief pixMakeMaskFromVal() |
978 | | * |
979 | | * \param[in] pixs 2, 4 or 8 bpp; can be colormapped |
980 | | * \param[in] val pixel value |
981 | | * \return pixd 1 bpp mask, or NULL on error |
982 | | * |
983 | | * <pre> |
984 | | * Notes: |
985 | | * (1) This generates a 1 bpp mask image, where a 1 is written in |
986 | | * the mask for each pixel in pixs that has a value %val. |
987 | | * (2) If no pixels have the value, an empty mask is generated. |
988 | | * </pre> |
989 | | */ |
990 | | PIX * |
991 | | pixMakeMaskFromVal(PIX *pixs, |
992 | | l_int32 val) |
993 | 0 | { |
994 | 0 | l_int32 w, h, d, i, j, sval, wpls, wpld; |
995 | 0 | l_uint32 *datas, *datad, *lines, *lined; |
996 | 0 | PIX *pixd; |
997 | |
|
998 | 0 | if (!pixs) |
999 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
1000 | 0 | pixGetDimensions(pixs, &w, &h, &d); |
1001 | 0 | if (d != 2 && d != 4 && d != 8) |
1002 | 0 | return (PIX *)ERROR_PTR("pix not 2, 4 or 8 bpp", __func__, NULL); |
1003 | | |
1004 | 0 | pixd = pixCreate(w, h, 1); |
1005 | 0 | pixCopyResolution(pixd, pixs); |
1006 | 0 | pixCopyInputFormat(pixd, pixs); |
1007 | 0 | datas = pixGetData(pixs); |
1008 | 0 | datad = pixGetData(pixd); |
1009 | 0 | wpls = pixGetWpl(pixs); |
1010 | 0 | wpld = pixGetWpl(pixd); |
1011 | 0 | for (i = 0; i < h; i++) { |
1012 | 0 | lines = datas + i * wpls; |
1013 | 0 | lined = datad + i * wpld; |
1014 | 0 | for (j = 0; j < w; j++) { |
1015 | 0 | if (d == 2) |
1016 | 0 | sval = GET_DATA_DIBIT(lines, j); |
1017 | 0 | else if (d == 4) |
1018 | 0 | sval = GET_DATA_QBIT(lines, j); |
1019 | 0 | else /* d == 8 */ |
1020 | 0 | sval = GET_DATA_BYTE(lines, j); |
1021 | 0 | if (sval == val) |
1022 | 0 | SET_DATA_BIT(lined, j); |
1023 | 0 | } |
1024 | 0 | } |
1025 | |
|
1026 | 0 | return pixd; |
1027 | 0 | } |
1028 | | |
1029 | | |
1030 | | /*! |
1031 | | * \brief pixMakeMaskFromLUT() |
1032 | | * |
1033 | | * \param[in] pixs 2, 4 or 8 bpp; can be colormapped |
1034 | | * \param[in] tab 256-entry LUT; 1 means to write to mask |
1035 | | * \return pixd 1 bpp mask, or NULL on error |
1036 | | * |
1037 | | * <pre> |
1038 | | * Notes: |
1039 | | * (1) This generates a 1 bpp mask image, where a 1 is written in |
1040 | | * the mask for each pixel in pixs that has a value corresponding |
1041 | | * to a 1 in the LUT. |
1042 | | * (2) The LUT should be of size 256. |
1043 | | * </pre> |
1044 | | */ |
1045 | | PIX * |
1046 | | pixMakeMaskFromLUT(PIX *pixs, |
1047 | | l_int32 *tab) |
1048 | 0 | { |
1049 | 0 | l_int32 w, h, d, i, j, val, wpls, wpld; |
1050 | 0 | l_uint32 *datas, *datad, *lines, *lined; |
1051 | 0 | PIX *pixd; |
1052 | |
|
1053 | 0 | if (!pixs) |
1054 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
1055 | 0 | if (!tab) |
1056 | 0 | return (PIX *)ERROR_PTR("tab not defined", __func__, NULL); |
1057 | 0 | pixGetDimensions(pixs, &w, &h, &d); |
1058 | 0 | if (d != 2 && d != 4 && d != 8) |
1059 | 0 | return (PIX *)ERROR_PTR("pix not 2, 4 or 8 bpp", __func__, NULL); |
1060 | | |
1061 | 0 | pixd = pixCreate(w, h, 1); |
1062 | 0 | pixCopyResolution(pixd, pixs); |
1063 | 0 | pixCopyInputFormat(pixd, pixs); |
1064 | 0 | datas = pixGetData(pixs); |
1065 | 0 | datad = pixGetData(pixd); |
1066 | 0 | wpls = pixGetWpl(pixs); |
1067 | 0 | wpld = pixGetWpl(pixd); |
1068 | 0 | for (i = 0; i < h; i++) { |
1069 | 0 | lines = datas + i * wpls; |
1070 | 0 | lined = datad + i * wpld; |
1071 | 0 | for (j = 0; j < w; j++) { |
1072 | 0 | if (d == 2) |
1073 | 0 | val = GET_DATA_DIBIT(lines, j); |
1074 | 0 | else if (d == 4) |
1075 | 0 | val = GET_DATA_QBIT(lines, j); |
1076 | 0 | else /* d == 8 */ |
1077 | 0 | val = GET_DATA_BYTE(lines, j); |
1078 | 0 | if (tab[val] == 1) |
1079 | 0 | SET_DATA_BIT(lined, j); |
1080 | 0 | } |
1081 | 0 | } |
1082 | |
|
1083 | 0 | return pixd; |
1084 | 0 | } |
1085 | | |
1086 | | |
1087 | | /*! |
1088 | | * \brief pixMakeArbMaskFromRGB() |
1089 | | * |
1090 | | * \param[in] pixs 32 bpp RGB |
1091 | | * \param[in] rc, gc, bc arithmetic factors; can be negative |
1092 | | * \param[in] thresh lower threshold on weighted sum of components |
1093 | | * \return pixd 1 bpp mask, or NULL on error |
1094 | | * |
1095 | | * <pre> |
1096 | | * Notes: |
1097 | | * (1) This generates a 1 bpp mask image, where a 1 is written in |
1098 | | * the mask for each pixel in pixs that satisfies |
1099 | | * rc * rval + gc * gval + bc * bval > thresh |
1100 | | * where rval is the red component, etc. |
1101 | | * (2) Unlike with pixConvertToGray(), there are no constraints |
1102 | | * on the color coefficients, which can be negative. For |
1103 | | * example, a mask that discriminates against red and in favor |
1104 | | * of blue will have rc < 0.0 and bc > 0.0. |
1105 | | * (3) To make the result independent of intensity (the 'V' in HSV), |
1106 | | * select coefficients so that %thresh = 0. Then the result |
1107 | | * is not changed when all components are multiplied by the |
1108 | | * same constant (as long as nothing saturates). This can be |
1109 | | * useful if, for example, the illumination is not uniform. |
1110 | | * </pre> |
1111 | | */ |
1112 | | PIX * |
1113 | | pixMakeArbMaskFromRGB(PIX *pixs, |
1114 | | l_float32 rc, |
1115 | | l_float32 gc, |
1116 | | l_float32 bc, |
1117 | | l_float32 thresh) |
1118 | 0 | { |
1119 | 0 | PIX *pix1, *pix2; |
1120 | |
|
1121 | 0 | if (!pixs || pixGetDepth(pixs) != 32) |
1122 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 32 bpp", __func__, NULL); |
1123 | 0 | if (thresh >= 255.0) thresh = 254.0; /* avoid 8 bit overflow */ |
1124 | |
|
1125 | 0 | if ((pix1 = pixConvertRGBToGrayArb(pixs, rc, gc, bc)) == NULL) |
1126 | 0 | return (PIX *)ERROR_PTR("pix1 not made", __func__, NULL); |
1127 | 0 | pix2 = pixThresholdToBinary(pix1, thresh + 1); |
1128 | 0 | pixInvert(pix2, pix2); |
1129 | 0 | pixDestroy(&pix1); |
1130 | 0 | return pix2; |
1131 | 0 | } |
1132 | | |
1133 | | |
1134 | | /*! |
1135 | | * \brief pixSetUnderTransparency() |
1136 | | * |
1137 | | * \param[in] pixs 32 bpp rgba |
1138 | | * \param[in] val 32 bit unsigned color to use where alpha == 0 |
1139 | | * \param[in] debug displays layers of pixs |
1140 | | * \return pixd 32 bpp rgba, or NULL on error |
1141 | | * |
1142 | | * <pre> |
1143 | | * Notes: |
1144 | | * (1) This sets the r, g and b components under every fully |
1145 | | * transparent alpha component to %val. The alpha components |
1146 | | * are unchanged. |
1147 | | * (2) Full transparency is denoted by alpha == 0. Setting |
1148 | | * all pixels to a constant %val where alpha is transparent |
1149 | | * can improve compressibility by reducing the entropy. |
1150 | | * (3) The visual result depends on how the image is displayed. |
1151 | | * (a) For display devices that respect the use of the alpha |
1152 | | * layer, this will not affect the appearance. |
1153 | | * (b) For typical leptonica operations, alpha is ignored, |
1154 | | * so there will be a change in appearance because this |
1155 | | * resets the rgb values in the fully transparent region. |
1156 | | * (4) pixRead() and pixWrite() will, by default, read and write |
1157 | | * 4-component (rgba) pix in png format. To ignore the alpha |
1158 | | * component after reading, or omit it on writing, pixSetSpp(..., 3). |
1159 | | * (5) Here are some examples: |
1160 | | * * To convert all fully transparent pixels in a 4 component |
1161 | | * (rgba) png file to white: |
1162 | | * pixs = pixRead(<infile>); |
1163 | | * pixd = pixSetUnderTransparency(pixs, 0xffffff00, 0); |
1164 | | * * To write pixd with the alpha component: |
1165 | | * pixWrite(<outfile>, pixd, IFF_PNG); |
1166 | | * * To write and rgba image without the alpha component, first do: |
1167 | | * pixSetSpp(pixd, 3); |
1168 | | * If you later want to use the alpha, spp must be reset to 4. |
1169 | | * * (fancier) To remove the alpha by blending the image over |
1170 | | * a white background: |
1171 | | * pixRemoveAlpha() |
1172 | | * This changes all pixel values where the alpha component is |
1173 | | * not opaque (255). |
1174 | | * (6) Caution. rgb images in leptonica typically have value 0 in |
1175 | | * the alpha channel, which is fully transparent. If spp for |
1176 | | * such an image were changed from 3 to 4, the image becomes |
1177 | | * fully transparent, and this function will set each pixel to %val. |
1178 | | * If you really want to set every pixel to the same value, |
1179 | | * use pixSetAllArbitrary(). |
1180 | | * (7) This is useful for compressing an RGBA image where the part |
1181 | | * of the image that is fully transparent is random junk; compression |
1182 | | * is typically improved by setting that region to a constant. |
1183 | | * For rendering as a 3 component RGB image over a uniform |
1184 | | * background of arbitrary color, use pixAlphaBlendUniform(). |
1185 | | * </pre> |
1186 | | */ |
1187 | | PIX * |
1188 | | pixSetUnderTransparency(PIX *pixs, |
1189 | | l_uint32 val, |
1190 | | l_int32 debug) |
1191 | 0 | { |
1192 | 0 | PIX *pixg, *pixm, *pixt, *pixd; |
1193 | |
|
1194 | 0 | if (!pixs || pixGetDepth(pixs) != 32) |
1195 | 0 | return (PIX *)ERROR_PTR("pixs not defined or not 32 bpp", |
1196 | 0 | __func__, NULL); |
1197 | | |
1198 | 0 | if (pixGetSpp(pixs) != 4) { |
1199 | 0 | L_WARNING("no alpha channel; returning a copy\n", __func__); |
1200 | 0 | return pixCopy(NULL, pixs); |
1201 | 0 | } |
1202 | | |
1203 | | /* Make a mask from the alpha component with ON pixels |
1204 | | * wherever the alpha component is fully transparent (0). |
1205 | | * The hard way: |
1206 | | * l_int32 *lut = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32)); |
1207 | | * lut[0] = 1; |
1208 | | * pixg = pixGetRGBComponent(pixs, L_ALPHA_CHANNEL); |
1209 | | * pixm = pixMakeMaskFromLUT(pixg, lut); |
1210 | | * LEPT_FREE(lut); |
1211 | | * But there's an easier way to set pixels in a mask where |
1212 | | * the alpha component is 0 ... */ |
1213 | 0 | pixg = pixGetRGBComponent(pixs, L_ALPHA_CHANNEL); |
1214 | 0 | pixm = pixThresholdToBinary(pixg, 1); |
1215 | |
|
1216 | 0 | if (debug) { |
1217 | 0 | pixt = pixDisplayLayersRGBA(pixs, 0xffffff00, 600); |
1218 | 0 | pixDisplay(pixt, 0, 0); |
1219 | 0 | pixDestroy(&pixt); |
1220 | 0 | } |
1221 | |
|
1222 | 0 | pixd = pixCopy(NULL, pixs); |
1223 | 0 | pixSetMasked(pixd, pixm, (val & 0xffffff00)); |
1224 | 0 | pixDestroy(&pixg); |
1225 | 0 | pixDestroy(&pixm); |
1226 | 0 | return pixd; |
1227 | 0 | } |
1228 | | |
1229 | | |
1230 | | /*! |
1231 | | * \brief pixMakeAlphaFromMask() |
1232 | | * |
1233 | | * \param[in] pixs 1 bpp |
1234 | | * \param[in] dist blending distance; typically 10 - 30 |
1235 | | * \param[out] pbox [optional] use NULL to get the full size |
1236 | | * \return pixd (8 bpp gray, or NULL on error |
1237 | | * |
1238 | | * <pre> |
1239 | | * Notes: |
1240 | | * (1) This generates a 8 bpp alpha layer that is opaque (256) |
1241 | | * over the FG of pixs, and goes transparent linearly away |
1242 | | * from the FG pixels, decaying to 0 (transparent) is an |
1243 | | * 8-connected distance given by %dist. If %dist == 0, |
1244 | | * this does a simple conversion from 1 to 8 bpp. |
1245 | | * (2) If &box == NULL, this returns an alpha mask that is the |
1246 | | * full size of pixs. Otherwise, the returned mask pixd covers |
1247 | | * just the FG pixels of pixs, expanded by %dist in each |
1248 | | * direction (if possible), and the returned box gives the |
1249 | | * location of the returned mask relative to pixs. |
1250 | | * (3) This is useful for painting through a mask and allowing |
1251 | | * blending of the painted image with an underlying image |
1252 | | * in the mask background for pixels near foreground mask pixels. |
1253 | | * For example, with an underlying rgb image pix1, an overlaying |
1254 | | * image rgb pix2, binary mask pixm, and dist > 0, this |
1255 | | * blending is achieved with: |
1256 | | * pix3 = pixMakeAlphaFromMask(pixm, dist, &box); |
1257 | | * boxGetGeometry(box, &x, &y, NULL, NULL); |
1258 | | * pix4 = pixBlendWithGrayMask(pix1, pix2, pix3, x, y); |
1259 | | * </pre> |
1260 | | */ |
1261 | | PIX * |
1262 | | pixMakeAlphaFromMask(PIX *pixs, |
1263 | | l_int32 dist, |
1264 | | BOX **pbox) |
1265 | 0 | { |
1266 | 0 | l_int32 w, h; |
1267 | 0 | BOX *box1, *box2; |
1268 | 0 | PIX *pix1, *pixd; |
1269 | |
|
1270 | 0 | if (pbox) *pbox = NULL; |
1271 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
1272 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); |
1273 | 0 | if (dist < 0) |
1274 | 0 | return (PIX *)ERROR_PTR("dist must be >= 0", __func__, NULL); |
1275 | | |
1276 | | /* If requested, extract just the region to be affected by the mask */ |
1277 | 0 | if (pbox) { |
1278 | 0 | pixClipToForeground(pixs, NULL, &box1); |
1279 | 0 | if (!box1) { |
1280 | 0 | L_WARNING("no ON pixels in mask\n", __func__); |
1281 | 0 | return pixCreateTemplate(pixs); /* all background (0) */ |
1282 | 0 | } |
1283 | | |
1284 | 0 | boxAdjustSides(box1, box1, -dist, dist, -dist, dist); |
1285 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
1286 | 0 | box2 = boxClipToRectangle(box1, w, h); |
1287 | 0 | *pbox = box2; |
1288 | 0 | pix1 = pixClipRectangle(pixs, box2, NULL); |
1289 | 0 | boxDestroy(&box1); |
1290 | 0 | } else { |
1291 | 0 | pix1 = pixCopy(NULL, pixs); |
1292 | 0 | } |
1293 | | |
1294 | 0 | if (dist == 0) { |
1295 | 0 | pixd = pixConvert1To8(NULL, pix1, 0, 255); |
1296 | 0 | pixDestroy(&pix1); |
1297 | 0 | return pixd; |
1298 | 0 | } |
1299 | | |
1300 | | /* Blur the boundary of the input mask */ |
1301 | 0 | pixInvert(pix1, pix1); |
1302 | 0 | pixd = pixDistanceFunction(pix1, 8, 8, L_BOUNDARY_FG); |
1303 | 0 | pixMultConstantGray(pixd, 256.0f / dist); |
1304 | 0 | pixInvert(pixd, pixd); |
1305 | 0 | pixDestroy(&pix1); |
1306 | 0 | return pixd; |
1307 | 0 | } |
1308 | | |
1309 | | |
1310 | | /*! |
1311 | | * \brief pixGetColorNearMaskBoundary() |
1312 | | * |
1313 | | * \param[in] pixs 32 bpp rgb |
1314 | | * \param[in] pixm 1 bpp mask, full image |
1315 | | * \param[in] box region of mask; typically b.b. of a component |
1316 | | * \param[in] dist distance into BG from mask boundary to use |
1317 | | * \param[out] pval average pixel value |
1318 | | * \param[in] debug 1 to output mask images |
1319 | | * \return 0 if OK, 1 on error. |
1320 | | * |
1321 | | * <pre> |
1322 | | * Notes: |
1323 | | * (1) This finds the average color in a set of pixels that are |
1324 | | * roughly a distance %dist from the c.c. boundary and in the |
1325 | | * background of the mask image. |
1326 | | * </pre> |
1327 | | */ |
1328 | | l_ok |
1329 | | pixGetColorNearMaskBoundary(PIX *pixs, |
1330 | | PIX *pixm, |
1331 | | BOX *box, |
1332 | | l_int32 dist, |
1333 | | l_uint32 *pval, |
1334 | | l_int32 debug) |
1335 | 0 | { |
1336 | 0 | char op[64]; |
1337 | 0 | l_int32 empty, bx, by; |
1338 | 0 | l_float32 rval, gval, bval; |
1339 | 0 | BOX *box1, *box2; |
1340 | 0 | PIX *pix1, *pix2, *pix3; |
1341 | |
|
1342 | 0 | if (!pval) |
1343 | 0 | return ERROR_INT("&pval not defined", __func__, 1); |
1344 | 0 | *pval = 0xffffff00; /* white */ |
1345 | 0 | if (!pixs || pixGetDepth(pixs) != 32) |
1346 | 0 | return ERROR_INT("pixs undefined or not 32 bpp", __func__, 1); |
1347 | 0 | if (!pixm || pixGetDepth(pixm) != 1) |
1348 | 0 | return ERROR_INT("pixm undefined or not 1 bpp", __func__, 1); |
1349 | 0 | if (!box) |
1350 | 0 | return ERROR_INT("box not defined", __func__, 1); |
1351 | 0 | if (dist < 0) |
1352 | 0 | return ERROR_INT("dist must be >= 0", __func__, 1); |
1353 | | |
1354 | | /* Clip mask piece, expanded beyond %box by (%dist + 5) on each side. |
1355 | | * box1 is the region requested; box2 is the actual region retrieved, |
1356 | | * which is clipped to %pixm */ |
1357 | 0 | box1 = boxAdjustSides(NULL, box, -dist - 5, dist + 5, -dist - 5, dist + 5); |
1358 | 0 | pix1 = pixClipRectangle(pixm, box1, &box2); |
1359 | | |
1360 | | /* Expand FG by %dist into the BG */ |
1361 | 0 | if (dist == 0) { |
1362 | 0 | pix2 = pixCopy(NULL, pix1); |
1363 | 0 | } else { |
1364 | 0 | snprintf(op, sizeof(op), "d%d.%d", 2 * dist, 2 * dist); |
1365 | 0 | pix2 = pixMorphSequence(pix1, op, 0); |
1366 | 0 | } |
1367 | | |
1368 | | /* Expand again by 5 pixels on all sides (dilate 11x11) and XOR, |
1369 | | * getting the annulus of FG pixels between %dist and %dist + 5 */ |
1370 | 0 | pix3 = pixCopy(NULL, pix2); |
1371 | 0 | pixDilateBrick(pix3, pix3, 11, 11); |
1372 | 0 | pixXor(pix3, pix3, pix2); |
1373 | 0 | pixZero(pix3, &empty); |
1374 | 0 | if (!empty) { |
1375 | | /* Scan the same region in %pixs, to get average under FG in pix3 */ |
1376 | 0 | boxGetGeometry(box2, &bx, &by, NULL, NULL); |
1377 | 0 | pixGetAverageMaskedRGB(pixs, pix3, bx, by, 1, L_MEAN_ABSVAL, |
1378 | 0 | &rval, &gval, &bval); |
1379 | 0 | composeRGBPixel((l_int32)(rval + 0.5), (l_int32)(gval + 0.5), |
1380 | 0 | (l_int32)(bval + 0.5), pval); |
1381 | 0 | } else { |
1382 | 0 | L_WARNING("no pixels found\n", __func__); |
1383 | 0 | } |
1384 | |
|
1385 | 0 | if (debug) { |
1386 | 0 | lept_rmdir("masknear"); /* erase previous images */ |
1387 | 0 | lept_mkdir("masknear"); |
1388 | 0 | pixWriteDebug("/tmp/masknear/input.png", pix1, IFF_PNG); |
1389 | 0 | pixWriteDebug("/tmp/masknear/adjusted.png", pix2, IFF_PNG); |
1390 | 0 | pixWriteDebug("/tmp/masknear/outerfive.png", pix3, IFF_PNG); |
1391 | 0 | lept_stderr("Input box; with adjusted sides; clipped\n"); |
1392 | 0 | boxPrintStreamInfo(stderr, box); |
1393 | 0 | boxPrintStreamInfo(stderr, box1); |
1394 | 0 | boxPrintStreamInfo(stderr, box2); |
1395 | 0 | } |
1396 | |
|
1397 | 0 | pixDestroy(&pix1); |
1398 | 0 | pixDestroy(&pix2); |
1399 | 0 | pixDestroy(&pix3); |
1400 | 0 | boxDestroy(&box1); |
1401 | 0 | boxDestroy(&box2); |
1402 | 0 | return 0; |
1403 | 0 | } |
1404 | | |
1405 | | |
1406 | | /*! |
1407 | | * \brief pixDisplaySelectedPixels() |
1408 | | * |
1409 | | * \param[in] pixs [optional] any depth |
1410 | | * \param[in] pixm 1 bpp mask, aligned UL corner with %pixs |
1411 | | * \param[in] sel [optional] pattern to paint at each pixel in pixm |
1412 | | * \param[in] val rgb rendering of pattern |
1413 | | * \return pixd, or NULL on error |
1414 | | * |
1415 | | * <pre> |
1416 | | * Notes: |
1417 | | * (1) For every fg pixel in %pixm, this paints the pattern in %sel |
1418 | | * in color %val on a copy of %pixs. |
1419 | | * (2) The implementation is to dilate %pixm by %sel, and then |
1420 | | * paint through the dilated mask onto %pixs. |
1421 | | * (3) If %pixs == NULL, it paints on a white image. |
1422 | | * (4) If %sel == NULL, it paints only the pixels in the input %pixm. |
1423 | | * (5) This visualization would typically be used in debugging. |
1424 | | * </pre> |
1425 | | */ |
1426 | | PIX * |
1427 | | pixDisplaySelectedPixels(PIX *pixs, |
1428 | | PIX *pixm, |
1429 | | SEL *sel, |
1430 | | l_uint32 val) |
1431 | 0 | { |
1432 | 0 | l_int32 w, h; |
1433 | 0 | PIX *pix1, *pix2; |
1434 | |
|
1435 | 0 | if (!pixm || pixGetDepth(pixm) != 1) |
1436 | 0 | return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, NULL); |
1437 | | |
1438 | 0 | if (pixs) { |
1439 | 0 | pix1 = pixConvertTo32(pixs); |
1440 | 0 | } else { |
1441 | 0 | pixGetDimensions(pixm, &w, &h, NULL); |
1442 | 0 | pix1 = pixCreate(w, h, 32); |
1443 | 0 | pixSetAll(pix1); |
1444 | 0 | } |
1445 | |
|
1446 | 0 | if (sel) |
1447 | 0 | pix2 = pixDilate(NULL, pixm, sel); |
1448 | 0 | else |
1449 | 0 | pix2 = pixClone(pixm); |
1450 | 0 | pixSetMasked(pix1, pix2, val); |
1451 | 0 | pixDestroy(&pix2); |
1452 | 0 | return pix1; |
1453 | 0 | } |
1454 | | |
1455 | | |
1456 | | /*-------------------------------------------------------------* |
1457 | | * One and two-image boolean ops on arbitrary depth images * |
1458 | | *-------------------------------------------------------------*/ |
1459 | | /*! |
1460 | | * \brief pixInvert() |
1461 | | * |
1462 | | * \param[in] pixd [optional]; this can be null, equal to pixs, |
1463 | | * or different from pixs |
1464 | | * \param[in] pixs |
1465 | | * \return pixd, or NULL on error |
1466 | | * |
1467 | | * <pre> |
1468 | | * Notes: |
1469 | | * (1) This inverts pixs, for all pixel depths. |
1470 | | * (2) There are 3 cases: |
1471 | | * (a) pixd == null, ~src --> new pixd |
1472 | | * (b) pixd == pixs, ~src --> src (in-place) |
1473 | | * (c) pixd != pixs, ~src --> input pixd |
1474 | | * (3) For clarity, if the case is known, use these patterns: |
1475 | | * (a) pixd = pixInvert(NULL, pixs); |
1476 | | * (b) pixInvert(pixs, pixs); |
1477 | | * (c) pixInvert(pixd, pixs); |
1478 | | * </pre> |
1479 | | */ |
1480 | | PIX * |
1481 | | pixInvert(PIX *pixd, |
1482 | | PIX *pixs) |
1483 | 666 | { |
1484 | 666 | if (!pixs) |
1485 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
1486 | | |
1487 | | /* Prepare pixd for in-place operation */ |
1488 | 666 | if ((pixd = pixCopy(pixd, pixs)) == NULL) |
1489 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
1490 | | |
1491 | 666 | pixRasterop(pixd, 0, 0, pixGetWidth(pixd), pixGetHeight(pixd), |
1492 | 666 | PIX_NOT(PIX_DST), NULL, 0, 0); /* invert pixd */ |
1493 | | |
1494 | 666 | return pixd; |
1495 | 666 | } |
1496 | | |
1497 | | |
1498 | | /*! |
1499 | | * \brief pixOr() |
1500 | | * |
1501 | | * \param[in] pixd [optional]; this can be null, equal to pixs1, |
1502 | | * different from pixs1 |
1503 | | * \param[in] pixs1 can be == pixd |
1504 | | * \param[in] pixs2 must be != pixd |
1505 | | * \return pixd always |
1506 | | * |
1507 | | * <pre> |
1508 | | * Notes: |
1509 | | * (1) This gives the union of two images with equal depth, |
1510 | | * aligning them to the UL corner. pixs1 and pixs2 |
1511 | | * need not have the same width and height. |
1512 | | * (2) There are 3 cases: |
1513 | | * (a) pixd == null, (src1 | src2) --> new pixd |
1514 | | * (b) pixd == pixs1, (src1 | src2) --> src1 (in-place) |
1515 | | * (c) pixd != pixs1, (src1 | src2) --> input pixd |
1516 | | * (3) For clarity, if the case is known, use these patterns: |
1517 | | * (a) pixd = pixOr(NULL, pixs1, pixs2); |
1518 | | * (b) pixOr(pixs1, pixs1, pixs2); |
1519 | | * (c) pixOr(pixd, pixs1, pixs2); |
1520 | | * (4) The size of the result is determined by pixs1. |
1521 | | * (5) The depths of pixs1 and pixs2 must be equal. |
1522 | | * (6) Note carefully that the order of pixs1 and pixs2 only matters |
1523 | | * for the in-place case. For in-place, you must have |
1524 | | * pixd == pixs1. Setting pixd == pixs2 gives an incorrect |
1525 | | * result: the copy puts pixs1 image data in pixs2, and |
1526 | | * the rasterop is then between pixs2 and pixs2 (a no-op). |
1527 | | * </pre> |
1528 | | */ |
1529 | | PIX * |
1530 | | pixOr(PIX *pixd, |
1531 | | PIX *pixs1, |
1532 | | PIX *pixs2) |
1533 | 0 | { |
1534 | 0 | if (!pixs1) |
1535 | 0 | return (PIX *)ERROR_PTR("pixs1 not defined", __func__, pixd); |
1536 | 0 | if (!pixs2) |
1537 | 0 | return (PIX *)ERROR_PTR("pixs2 not defined", __func__, pixd); |
1538 | 0 | if (pixd == pixs2) |
1539 | 0 | return (PIX *)ERROR_PTR("cannot have pixs2 == pixd", __func__, pixd); |
1540 | 0 | if (pixGetDepth(pixs1) != pixGetDepth(pixs2)) |
1541 | 0 | return (PIX *)ERROR_PTR("depths of pixs* unequal", __func__, pixd); |
1542 | | |
1543 | | #if EQUAL_SIZE_WARNING |
1544 | | if (!pixSizesEqual(pixs1, pixs2)) |
1545 | | L_WARNING("pixs1 and pixs2 not equal sizes\n", __func__); |
1546 | | #endif /* EQUAL_SIZE_WARNING */ |
1547 | | |
1548 | | /* Prepare pixd to be a copy of pixs1 */ |
1549 | 0 | if ((pixd = pixCopy(pixd, pixs1)) == NULL) |
1550 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, pixd); |
1551 | | |
1552 | | /* src1 | src2 --> dest */ |
1553 | 0 | pixRasterop(pixd, 0, 0, pixGetWidth(pixd), pixGetHeight(pixd), |
1554 | 0 | PIX_SRC | PIX_DST, pixs2, 0, 0); |
1555 | |
|
1556 | 0 | return pixd; |
1557 | 0 | } |
1558 | | |
1559 | | |
1560 | | /*! |
1561 | | * \brief pixAnd() |
1562 | | * |
1563 | | * \param[in] pixd [optional]; this can be null, equal to pixs1, |
1564 | | * different from pixs1 |
1565 | | * \param[in] pixs1 can be == pixd |
1566 | | * \param[in] pixs2 must be != pixd |
1567 | | * \return pixd always |
1568 | | * |
1569 | | * <pre> |
1570 | | * Notes: |
1571 | | * (1) This gives the intersection of two images with equal depth, |
1572 | | * aligning them to the the UL corner. pixs1 and pixs2 |
1573 | | * need not have the same width and height. |
1574 | | * (2) There are 3 cases: |
1575 | | * (a) pixd == null, (src1 & src2) --> new pixd |
1576 | | * (b) pixd == pixs1, (src1 & src2) --> src1 (in-place) |
1577 | | * (c) pixd != pixs1, (src1 & src2) --> input pixd |
1578 | | * (3) For clarity, if the case is known, use these patterns: |
1579 | | * (a) pixd = pixAnd(NULL, pixs1, pixs2); |
1580 | | * (b) pixAnd(pixs1, pixs1, pixs2); |
1581 | | * (c) pixAnd(pixd, pixs1, pixs2); |
1582 | | * (4) The size of the result is determined by pixs1. |
1583 | | * (5) The depths of pixs1 and pixs2 must be equal. |
1584 | | * (6) Note carefully that the order of pixs1 and pixs2 only matters |
1585 | | * for the in-place case. For in-place, you must have |
1586 | | * pixd == pixs1. Setting pixd == pixs2 gives an incorrect |
1587 | | * result: the copy puts pixs1 image data in pixs2, and |
1588 | | * the rasterop is then between pixs2 and pixs2 (a no-op). |
1589 | | * </pre> |
1590 | | */ |
1591 | | PIX * |
1592 | | pixAnd(PIX *pixd, |
1593 | | PIX *pixs1, |
1594 | | PIX *pixs2) |
1595 | 0 | { |
1596 | 0 | if (!pixs1) |
1597 | 0 | return (PIX *)ERROR_PTR("pixs1 not defined", __func__, pixd); |
1598 | 0 | if (!pixs2) |
1599 | 0 | return (PIX *)ERROR_PTR("pixs2 not defined", __func__, pixd); |
1600 | 0 | if (pixd == pixs2) |
1601 | 0 | return (PIX *)ERROR_PTR("cannot have pixs2 == pixd", __func__, pixd); |
1602 | 0 | if (pixGetDepth(pixs1) != pixGetDepth(pixs2)) |
1603 | 0 | return (PIX *)ERROR_PTR("depths of pixs* unequal", __func__, pixd); |
1604 | | |
1605 | | #if EQUAL_SIZE_WARNING |
1606 | | if (!pixSizesEqual(pixs1, pixs2)) |
1607 | | L_WARNING("pixs1 and pixs2 not equal sizes\n", __func__); |
1608 | | #endif /* EQUAL_SIZE_WARNING */ |
1609 | | |
1610 | | /* Prepare pixd to be a copy of pixs1 */ |
1611 | 0 | if ((pixd = pixCopy(pixd, pixs1)) == NULL) |
1612 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, pixd); |
1613 | | |
1614 | | /* src1 & src2 --> dest */ |
1615 | 0 | pixRasterop(pixd, 0, 0, pixGetWidth(pixd), pixGetHeight(pixd), |
1616 | 0 | PIX_SRC & PIX_DST, pixs2, 0, 0); |
1617 | |
|
1618 | 0 | return pixd; |
1619 | 0 | } |
1620 | | |
1621 | | |
1622 | | /*! |
1623 | | * \brief pixXor() |
1624 | | * |
1625 | | * \param[in] pixd [optional]; this can be null, equal to pixs1, |
1626 | | * different from pixs1 |
1627 | | * \param[in] pixs1 can be == pixd |
1628 | | * \param[in] pixs2 must be != pixd |
1629 | | * \return pixd always |
1630 | | * |
1631 | | * <pre> |
1632 | | * Notes: |
1633 | | * (1) This gives the XOR of two images with equal depth, |
1634 | | * aligning them to the the UL corner. pixs1 and pixs2 |
1635 | | * need not have the same width and height. |
1636 | | * (2) There are 3 cases: |
1637 | | * (a) pixd == null, (src1 ^ src2) --> new pixd |
1638 | | * (b) pixd == pixs1, (src1 ^ src2) --> src1 (in-place) |
1639 | | * (c) pixd != pixs1, (src1 ^ src2) --> input pixd |
1640 | | * (3) For clarity, if the case is known, use these patterns: |
1641 | | * (a) pixd = pixXor(NULL, pixs1, pixs2); |
1642 | | * (b) pixXor(pixs1, pixs1, pixs2); |
1643 | | * (c) pixXor(pixd, pixs1, pixs2); |
1644 | | * (4) The size of the result is determined by pixs1. |
1645 | | * (5) The depths of pixs1 and pixs2 must be equal. |
1646 | | * (6) Note carefully that the order of pixs1 and pixs2 only matters |
1647 | | * for the in-place case. For in-place, you must have |
1648 | | * pixd == pixs1. Setting pixd == pixs2 gives an incorrect |
1649 | | * result: the copy puts pixs1 image data in pixs2, and |
1650 | | * the rasterop is then between pixs2 and pixs2 (a no-op). |
1651 | | * </pre> |
1652 | | */ |
1653 | | PIX * |
1654 | | pixXor(PIX *pixd, |
1655 | | PIX *pixs1, |
1656 | | PIX *pixs2) |
1657 | 0 | { |
1658 | 0 | if (!pixs1) |
1659 | 0 | return (PIX *)ERROR_PTR("pixs1 not defined", __func__, pixd); |
1660 | 0 | if (!pixs2) |
1661 | 0 | return (PIX *)ERROR_PTR("pixs2 not defined", __func__, pixd); |
1662 | 0 | if (pixd == pixs2) |
1663 | 0 | return (PIX *)ERROR_PTR("cannot have pixs2 == pixd", __func__, pixd); |
1664 | 0 | if (pixGetDepth(pixs1) != pixGetDepth(pixs2)) |
1665 | 0 | return (PIX *)ERROR_PTR("depths of pixs* unequal", __func__, pixd); |
1666 | | |
1667 | | #if EQUAL_SIZE_WARNING |
1668 | | if (!pixSizesEqual(pixs1, pixs2)) |
1669 | | L_WARNING("pixs1 and pixs2 not equal sizes\n", __func__); |
1670 | | #endif /* EQUAL_SIZE_WARNING */ |
1671 | | |
1672 | | /* Prepare pixd to be a copy of pixs1 */ |
1673 | 0 | if ((pixd = pixCopy(pixd, pixs1)) == NULL) |
1674 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, pixd); |
1675 | | |
1676 | | /* src1 ^ src2 --> dest */ |
1677 | 0 | pixRasterop(pixd, 0, 0, pixGetWidth(pixd), pixGetHeight(pixd), |
1678 | 0 | PIX_SRC ^ PIX_DST, pixs2, 0, 0); |
1679 | |
|
1680 | 0 | return pixd; |
1681 | 0 | } |
1682 | | |
1683 | | |
1684 | | /*! |
1685 | | * \brief pixSubtract() |
1686 | | * |
1687 | | * \param[in] pixd [optional]; this can be null, equal to pixs1, |
1688 | | * equal to pixs2, or different from both pixs1 and pixs2 |
1689 | | * \param[in] pixs1 can be == pixd |
1690 | | * \param[in] pixs2 can be == pixd |
1691 | | * \return pixd always |
1692 | | * |
1693 | | * <pre> |
1694 | | * Notes: |
1695 | | * (1) This gives the set subtraction of two images with equal depth, |
1696 | | * aligning them to the the UL corner. pixs1 and pixs2 |
1697 | | * need not have the same width and height. |
1698 | | * (2) Source pixs2 is always subtracted from source pixs1. |
1699 | | * The result is |
1700 | | * pixs1 \ pixs2 = pixs1 & (~pixs2) |
1701 | | * (3) There are 4 cases: |
1702 | | * (a) pixd == null, (src1 - src2) --> new pixd |
1703 | | * (b) pixd == pixs1, (src1 - src2) --> src1 (in-place) |
1704 | | * (c) pixd == pixs2, (src1 - src2) --> src2 (in-place) |
1705 | | * (d) pixd != pixs1 && pixd != pixs2), |
1706 | | * (src1 - src2) --> input pixd |
1707 | | * (4) For clarity, if the case is known, use these patterns: |
1708 | | * (a) pixd = pixSubtract(NULL, pixs1, pixs2); |
1709 | | * (b) pixSubtract(pixs1, pixs1, pixs2); |
1710 | | * (c) pixSubtract(pixs2, pixs1, pixs2); |
1711 | | * (d) pixSubtract(pixd, pixs1, pixs2); |
1712 | | * (5) The size of the result is determined by pixs1. |
1713 | | * (6) The depths of pixs1 and pixs2 must be equal. |
1714 | | * </pre> |
1715 | | */ |
1716 | | PIX * |
1717 | | pixSubtract(PIX *pixd, |
1718 | | PIX *pixs1, |
1719 | | PIX *pixs2) |
1720 | 0 | { |
1721 | 0 | l_int32 w, h; |
1722 | |
|
1723 | 0 | if (!pixs1) |
1724 | 0 | return (PIX *)ERROR_PTR("pixs1 not defined", __func__, pixd); |
1725 | 0 | if (!pixs2) |
1726 | 0 | return (PIX *)ERROR_PTR("pixs2 not defined", __func__, pixd); |
1727 | 0 | if (pixGetDepth(pixs1) != pixGetDepth(pixs2)) |
1728 | 0 | return (PIX *)ERROR_PTR("depths of pixs* unequal", __func__, pixd); |
1729 | | |
1730 | | #if EQUAL_SIZE_WARNING |
1731 | | if (!pixSizesEqual(pixs1, pixs2)) |
1732 | | L_WARNING("pixs1 and pixs2 not equal sizes\n", __func__); |
1733 | | #endif /* EQUAL_SIZE_WARNING */ |
1734 | | |
1735 | 0 | pixGetDimensions(pixs1, &w, &h, NULL); |
1736 | 0 | if (!pixd) { |
1737 | 0 | pixd = pixCopy(NULL, pixs1); |
1738 | 0 | pixRasterop(pixd, 0, 0, w, h, PIX_DST & PIX_NOT(PIX_SRC), |
1739 | 0 | pixs2, 0, 0); /* src1 & (~src2) */ |
1740 | 0 | } else if (pixd == pixs1) { |
1741 | 0 | pixRasterop(pixd, 0, 0, w, h, PIX_DST & PIX_NOT(PIX_SRC), |
1742 | 0 | pixs2, 0, 0); /* src1 & (~src2) */ |
1743 | 0 | } else if (pixd == pixs2) { |
1744 | 0 | pixRasterop(pixd, 0, 0, w, h, PIX_NOT(PIX_DST) & PIX_SRC, |
1745 | 0 | pixs1, 0, 0); /* src1 & (~src2) */ |
1746 | 0 | } else { /* pixd != pixs1 && pixd != pixs2 */ |
1747 | 0 | pixCopy(pixd, pixs1); /* sizes pixd to pixs1 if unequal */ |
1748 | 0 | pixRasterop(pixd, 0, 0, w, h, PIX_DST & PIX_NOT(PIX_SRC), |
1749 | 0 | pixs2, 0, 0); /* src1 & (~src2) */ |
1750 | 0 | } |
1751 | |
|
1752 | 0 | return pixd; |
1753 | 0 | } |
1754 | | |
1755 | | |
1756 | | /*-------------------------------------------------------------* |
1757 | | * Pixel counting * |
1758 | | *-------------------------------------------------------------*/ |
1759 | | /*! |
1760 | | * \brief pixZero() |
1761 | | * |
1762 | | * \param[in] pix all depths; colormap OK |
1763 | | * \param[out] pempty 1 if all bits in image data field are 0; 0 otherwise |
1764 | | * \return 0 if OK; 1 on error |
1765 | | * |
1766 | | * <pre> |
1767 | | * Notes: |
1768 | | * (1) For a binary image, if there are no fg (black) pixels, empty = 1. |
1769 | | * (2) For a grayscale image, if all pixels are black (0), empty = 1. |
1770 | | * (3) For an RGB image, if all 4 components in every pixel is 0 |
1771 | | * (i.e. opaque black), empty = 1. |
1772 | | * (4) For a colormapped image, pixel values are 0. The colormap |
1773 | | * is ignored. |
1774 | | * </pre> |
1775 | | */ |
1776 | | l_ok |
1777 | | pixZero(PIX *pix, |
1778 | | l_int32 *pempty) |
1779 | 88 | { |
1780 | 88 | l_int32 w, h, wpl, i, j, fullwords, endbits; |
1781 | 88 | l_uint32 endmask; |
1782 | 88 | l_uint32 *data, *line; |
1783 | | |
1784 | 88 | if (!pempty) |
1785 | 0 | return ERROR_INT("&empty not defined", __func__, 1); |
1786 | 88 | *pempty = 1; |
1787 | 88 | if (!pix) |
1788 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
1789 | | |
1790 | 88 | w = pixGetWidth(pix) * pixGetDepth(pix); /* in bits */ |
1791 | 88 | h = pixGetHeight(pix); |
1792 | 88 | wpl = pixGetWpl(pix); |
1793 | 88 | data = pixGetData(pix); |
1794 | 88 | fullwords = w / 32; |
1795 | 88 | endbits = w & 31; |
1796 | 88 | endmask = (endbits == 0) ? 0 : (0xffffffffU << (32 - endbits)); |
1797 | | |
1798 | 813 | for (i = 0; i < h; i++) { |
1799 | 789 | line = data + wpl * i; |
1800 | 1.21k | for (j = 0; j < fullwords; j++) |
1801 | 442 | if (*line++) { |
1802 | 12 | *pempty = 0; |
1803 | 12 | return 0; |
1804 | 12 | } |
1805 | 777 | if (endbits) { |
1806 | 562 | if (*line & endmask) { |
1807 | 52 | *pempty = 0; |
1808 | 52 | return 0; |
1809 | 52 | } |
1810 | 562 | } |
1811 | 777 | } |
1812 | | |
1813 | 24 | return 0; |
1814 | 88 | } |
1815 | | |
1816 | | |
1817 | | /*! |
1818 | | * \brief pixForegroundFraction() |
1819 | | * |
1820 | | * \param[in] pix 1 bpp |
1821 | | * \param[out] pfract fraction of ON pixels |
1822 | | * \return 0 if OK; 1 on error |
1823 | | */ |
1824 | | l_ok |
1825 | | pixForegroundFraction(PIX *pix, |
1826 | | l_float32 *pfract) |
1827 | 0 | { |
1828 | 0 | l_int32 w, h, count; |
1829 | |
|
1830 | 0 | if (!pfract) |
1831 | 0 | return ERROR_INT("&fract not defined", __func__, 1); |
1832 | 0 | *pfract = 0.0; |
1833 | 0 | if (!pix || pixGetDepth(pix) != 1) |
1834 | 0 | return ERROR_INT("pix not defined or not 1 bpp", __func__, 1); |
1835 | | |
1836 | 0 | pixCountPixels(pix, &count, NULL); |
1837 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
1838 | 0 | *pfract = (l_float32)count / (l_float32)(w * h); |
1839 | 0 | return 0; |
1840 | 0 | } |
1841 | | |
1842 | | |
1843 | | /*! |
1844 | | * \brief pixaCountPixels() |
1845 | | * |
1846 | | * \param[in] pixa array of 1 bpp pix |
1847 | | * \return na of ON pixels in each pix, or NULL on error |
1848 | | */ |
1849 | | NUMA * |
1850 | | pixaCountPixels(PIXA *pixa) |
1851 | 0 | { |
1852 | 0 | l_int32 d, i, n, count; |
1853 | 0 | l_int32 *tab; |
1854 | 0 | NUMA *na; |
1855 | 0 | PIX *pix; |
1856 | |
|
1857 | 0 | if (!pixa) |
1858 | 0 | return (NUMA *)ERROR_PTR("pix not defined", __func__, NULL); |
1859 | | |
1860 | 0 | if ((n = pixaGetCount(pixa)) == 0) |
1861 | 0 | return numaCreate(1); |
1862 | | |
1863 | 0 | pix = pixaGetPix(pixa, 0, L_CLONE); |
1864 | 0 | d = pixGetDepth(pix); |
1865 | 0 | pixDestroy(&pix); |
1866 | 0 | if (d != 1) |
1867 | 0 | return (NUMA *)ERROR_PTR("pixa not 1 bpp", __func__, NULL); |
1868 | | |
1869 | 0 | if ((na = numaCreate(n)) == NULL) |
1870 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
1871 | 0 | tab = makePixelSumTab8(); |
1872 | 0 | for (i = 0; i < n; i++) { |
1873 | 0 | pix = pixaGetPix(pixa, i, L_CLONE); |
1874 | 0 | pixCountPixels(pix, &count, tab); |
1875 | 0 | numaAddNumber(na, count); |
1876 | 0 | pixDestroy(&pix); |
1877 | 0 | } |
1878 | |
|
1879 | 0 | LEPT_FREE(tab); |
1880 | 0 | return na; |
1881 | 0 | } |
1882 | | |
1883 | | |
1884 | | /*! |
1885 | | * \brief pixCountPixels() |
1886 | | * |
1887 | | * \param[in] pixs 1 bpp |
1888 | | * \param[out] pcount count of ON pixels |
1889 | | * \param[in] tab8 [optional] 8-bit pixel lookup table |
1890 | | * \return 0 if OK; 1 on error |
1891 | | */ |
1892 | | l_ok |
1893 | | pixCountPixels(PIX *pixs, |
1894 | | l_int32 *pcount, |
1895 | | l_int32 *tab8) |
1896 | 0 | { |
1897 | 0 | l_uint32 endmask; |
1898 | 0 | l_int32 w, h, wpl, i, j; |
1899 | 0 | l_int32 fullwords, endbits, sum; |
1900 | 0 | l_int32 *tab; |
1901 | 0 | l_uint32 *data; |
1902 | |
|
1903 | 0 | if (!pcount) |
1904 | 0 | return ERROR_INT("&count not defined", __func__, 1); |
1905 | 0 | *pcount = 0; |
1906 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
1907 | 0 | return ERROR_INT("pixs not defined or not 1 bpp", __func__, 1); |
1908 | | |
1909 | 0 | tab = (tab8) ? tab8 : makePixelSumTab8(); |
1910 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
1911 | 0 | wpl = pixGetWpl(pixs); |
1912 | 0 | data = pixGetData(pixs); |
1913 | 0 | fullwords = w >> 5; |
1914 | 0 | endbits = w & 31; |
1915 | 0 | endmask = (endbits == 0) ? 0 : (0xffffffffU << (32 - endbits)); |
1916 | |
|
1917 | 0 | sum = 0; |
1918 | 0 | for (i = 0; i < h; i++, data += wpl) { |
1919 | 0 | for (j = 0; j < fullwords; j++) { |
1920 | 0 | l_uint32 word = data[j]; |
1921 | 0 | if (word) { |
1922 | 0 | sum += tab[word & 0xff] + |
1923 | 0 | tab[(word >> 8) & 0xff] + |
1924 | 0 | tab[(word >> 16) & 0xff] + |
1925 | 0 | tab[(word >> 24) & 0xff]; |
1926 | 0 | } |
1927 | 0 | } |
1928 | 0 | if (endbits) { |
1929 | 0 | l_uint32 word = data[j] & endmask; |
1930 | 0 | if (word) { |
1931 | 0 | sum += tab[word & 0xff] + |
1932 | 0 | tab[(word >> 8) & 0xff] + |
1933 | 0 | tab[(word >> 16) & 0xff] + |
1934 | 0 | tab[(word >> 24) & 0xff]; |
1935 | 0 | } |
1936 | 0 | } |
1937 | 0 | } |
1938 | 0 | *pcount = sum; |
1939 | |
|
1940 | 0 | if (!tab8) LEPT_FREE(tab); |
1941 | 0 | return 0; |
1942 | 0 | } |
1943 | | |
1944 | | |
1945 | | /*! |
1946 | | * \brief pixCountPixelsInRect() |
1947 | | * |
1948 | | * \param[in] pixs 1 bpp |
1949 | | * \param[in] box (can be null) |
1950 | | * \param[out] pcount count of ON pixels |
1951 | | * \param[in] tab8 [optional] 8-bit pixel lookup table |
1952 | | * \return 0 if OK; 1 on error |
1953 | | */ |
1954 | | l_ok |
1955 | | pixCountPixelsInRect(PIX *pixs, |
1956 | | BOX *box, |
1957 | | l_int32 *pcount, |
1958 | | l_int32 *tab8) |
1959 | 0 | { |
1960 | 0 | l_int32 w, h, bx, by, bw, bh; |
1961 | 0 | BOX *box1; |
1962 | 0 | PIX *pix1; |
1963 | |
|
1964 | 0 | if (!pcount) |
1965 | 0 | return ERROR_INT("&count not defined", __func__, 1); |
1966 | 0 | *pcount = 0; |
1967 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
1968 | 0 | return ERROR_INT("pixs not defined or not 1 bpp", __func__, 1); |
1969 | | |
1970 | 0 | if (box) { |
1971 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
1972 | 0 | if ((box1 = boxClipToRectangle(box, w, h)) == NULL) |
1973 | 0 | return ERROR_INT("box1 not made", __func__, 1); |
1974 | 0 | boxGetGeometry(box1, &bx, &by, &bw, &bh); |
1975 | 0 | pix1 = pixCreate(bw, bh, 1); |
1976 | 0 | pixRasterop(pix1, 0, 0, bw, bh, PIX_SRC, pixs, bx, by); |
1977 | 0 | pixCountPixels(pix1, pcount, tab8); |
1978 | 0 | pixDestroy(&pix1); |
1979 | 0 | boxDestroy(&box1); |
1980 | 0 | } else { |
1981 | 0 | pixCountPixels(pixs, pcount, tab8); |
1982 | 0 | } |
1983 | | |
1984 | 0 | return 0; |
1985 | 0 | } |
1986 | | |
1987 | | |
1988 | | /*! |
1989 | | * \brief pixCountByRow() |
1990 | | * |
1991 | | * \param[in] pix 1 bpp |
1992 | | * \param[in] box [optional] clipping box for count; can be null |
1993 | | * \return na of number of ON pixels by row, or NULL on error |
1994 | | * |
1995 | | * <pre> |
1996 | | * Notes: |
1997 | | * (1) To resample for a bin size different from 1, use |
1998 | | * numaUniformSampling() on the result of this function. |
1999 | | * </pre> |
2000 | | */ |
2001 | | NUMA * |
2002 | | pixCountByRow(PIX *pix, |
2003 | | BOX *box) |
2004 | 0 | { |
2005 | 0 | l_int32 i, j, w, h, wpl, count, xstart, xend, ystart, yend, bw, bh; |
2006 | 0 | l_uint32 *line, *data; |
2007 | 0 | NUMA *na; |
2008 | |
|
2009 | 0 | if (!pix || pixGetDepth(pix) != 1) |
2010 | 0 | return (NUMA *)ERROR_PTR("pix undefined or not 1 bpp", __func__, NULL); |
2011 | 0 | if (!box) |
2012 | 0 | return pixCountPixelsByRow(pix, NULL); |
2013 | | |
2014 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
2015 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
2016 | 0 | &bw, &bh) == 1) |
2017 | 0 | return (NUMA *)ERROR_PTR("invalid clipping box", __func__, NULL); |
2018 | | |
2019 | 0 | if ((na = numaCreate(bh)) == NULL) |
2020 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
2021 | 0 | numaSetParameters(na, ystart, 1); |
2022 | 0 | data = pixGetData(pix); |
2023 | 0 | wpl = pixGetWpl(pix); |
2024 | 0 | for (i = ystart; i < yend; i++) { |
2025 | 0 | count = 0; |
2026 | 0 | line = data + i * wpl; |
2027 | 0 | for (j = xstart; j < xend; j++) { |
2028 | 0 | if (GET_DATA_BIT(line, j)) |
2029 | 0 | count++; |
2030 | 0 | } |
2031 | 0 | numaAddNumber(na, count); |
2032 | 0 | } |
2033 | |
|
2034 | 0 | return na; |
2035 | 0 | } |
2036 | | |
2037 | | |
2038 | | /*! |
2039 | | * \brief pixCountByColumn() |
2040 | | * |
2041 | | * \param[in] pix 1 bpp |
2042 | | * \param[in] box [optional] clipping box for count; can be null |
2043 | | * \return na of number of ON pixels by column, or NULL on error |
2044 | | * |
2045 | | * <pre> |
2046 | | * Notes: |
2047 | | * (1) To resample for a bin size different from 1, use |
2048 | | * numaUniformSampling() on the result of this function. |
2049 | | * </pre> |
2050 | | */ |
2051 | | NUMA * |
2052 | | pixCountByColumn(PIX *pix, |
2053 | | BOX *box) |
2054 | 0 | { |
2055 | 0 | l_int32 i, j, w, h, wpl, count, xstart, xend, ystart, yend, bw, bh; |
2056 | 0 | l_uint32 *line, *data; |
2057 | 0 | NUMA *na; |
2058 | |
|
2059 | 0 | if (!pix || pixGetDepth(pix) != 1) |
2060 | 0 | return (NUMA *)ERROR_PTR("pix undefined or not 1 bpp", __func__, NULL); |
2061 | 0 | if (!box) |
2062 | 0 | return pixCountPixelsByColumn(pix); |
2063 | | |
2064 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
2065 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
2066 | 0 | &bw, &bh) == 1) |
2067 | 0 | return (NUMA *)ERROR_PTR("invalid clipping box", __func__, NULL); |
2068 | | |
2069 | 0 | if ((na = numaCreate(bw)) == NULL) |
2070 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
2071 | 0 | numaSetParameters(na, xstart, 1); |
2072 | 0 | data = pixGetData(pix); |
2073 | 0 | wpl = pixGetWpl(pix); |
2074 | 0 | for (j = xstart; j < xend; j++) { |
2075 | 0 | count = 0; |
2076 | 0 | for (i = ystart; i < yend; i++) { |
2077 | 0 | line = data + i * wpl; |
2078 | 0 | if (GET_DATA_BIT(line, j)) |
2079 | 0 | count++; |
2080 | 0 | } |
2081 | 0 | numaAddNumber(na, count); |
2082 | 0 | } |
2083 | |
|
2084 | 0 | return na; |
2085 | 0 | } |
2086 | | |
2087 | | |
2088 | | /*! |
2089 | | * \brief pixCountPixelsByRow() |
2090 | | * |
2091 | | * \param[in] pix 1 bpp |
2092 | | * \param[in] tab8 [optional] 8-bit pixel lookup table |
2093 | | * \return na of counts, or NULL on error |
2094 | | */ |
2095 | | NUMA * |
2096 | | pixCountPixelsByRow(PIX *pix, |
2097 | | l_int32 *tab8) |
2098 | 0 | { |
2099 | 0 | l_int32 h, i, count; |
2100 | 0 | l_int32 *tab; |
2101 | 0 | NUMA *na; |
2102 | |
|
2103 | 0 | if (!pix || pixGetDepth(pix) != 1) |
2104 | 0 | return (NUMA *)ERROR_PTR("pix undefined or not 1 bpp", __func__, NULL); |
2105 | | |
2106 | 0 | h = pixGetHeight(pix); |
2107 | 0 | if ((na = numaCreate(h)) == NULL) |
2108 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
2109 | | |
2110 | 0 | tab = (tab8) ? tab8 : makePixelSumTab8(); |
2111 | 0 | for (i = 0; i < h; i++) { |
2112 | 0 | pixCountPixelsInRow(pix, i, &count, tab); |
2113 | 0 | numaAddNumber(na, count); |
2114 | 0 | } |
2115 | |
|
2116 | 0 | if (!tab8) LEPT_FREE(tab); |
2117 | 0 | return na; |
2118 | 0 | } |
2119 | | |
2120 | | |
2121 | | /*! |
2122 | | * \brief pixCountPixelsByColumn() |
2123 | | * |
2124 | | * \param[in] pix 1 bpp |
2125 | | * \return na of counts in each column, or NULL on error |
2126 | | */ |
2127 | | NUMA * |
2128 | | pixCountPixelsByColumn(PIX *pix) |
2129 | 0 | { |
2130 | 0 | l_int32 i, j, w, h, wpl; |
2131 | 0 | l_uint32 *line, *data; |
2132 | 0 | l_float32 *array; |
2133 | 0 | NUMA *na; |
2134 | |
|
2135 | 0 | if (!pix || pixGetDepth(pix) != 1) |
2136 | 0 | return (NUMA *)ERROR_PTR("pix undefined or not 1 bpp", __func__, NULL); |
2137 | | |
2138 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
2139 | 0 | if ((na = numaCreate(w)) == NULL) |
2140 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
2141 | 0 | numaSetCount(na, w); |
2142 | 0 | array = numaGetFArray(na, L_NOCOPY); |
2143 | 0 | data = pixGetData(pix); |
2144 | 0 | wpl = pixGetWpl(pix); |
2145 | 0 | for (i = 0; i < h; i++) { |
2146 | 0 | line = data + wpl * i; |
2147 | 0 | for (j = 0; j < w; j++) { |
2148 | 0 | if (GET_DATA_BIT(line, j)) |
2149 | 0 | array[j] += 1.0; |
2150 | 0 | } |
2151 | 0 | } |
2152 | |
|
2153 | 0 | return na; |
2154 | 0 | } |
2155 | | |
2156 | | |
2157 | | /*! |
2158 | | * \brief pixCountPixelsInRow() |
2159 | | * |
2160 | | * \param[in] pix 1 bpp |
2161 | | * \param[in] row number |
2162 | | * \param[out] pcount sum of ON pixels in raster line |
2163 | | * \param[in] tab8 [optional] 8-bit pixel lookup table |
2164 | | * \return 0 if OK; 1 on error |
2165 | | */ |
2166 | | l_ok |
2167 | | pixCountPixelsInRow(PIX *pix, |
2168 | | l_int32 row, |
2169 | | l_int32 *pcount, |
2170 | | l_int32 *tab8) |
2171 | 0 | { |
2172 | 0 | l_uint32 word, endmask; |
2173 | 0 | l_int32 j, w, h, wpl; |
2174 | 0 | l_int32 fullwords, endbits, sum; |
2175 | 0 | l_int32 *tab; |
2176 | 0 | l_uint32 *line; |
2177 | |
|
2178 | 0 | if (!pcount) |
2179 | 0 | return ERROR_INT("&count not defined", __func__, 1); |
2180 | 0 | *pcount = 0; |
2181 | 0 | if (!pix || pixGetDepth(pix) != 1) |
2182 | 0 | return ERROR_INT("pix not defined or not 1 bpp", __func__, 1); |
2183 | | |
2184 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
2185 | 0 | if (row < 0 || row >= h) |
2186 | 0 | return ERROR_INT("row out of bounds", __func__, 1); |
2187 | 0 | wpl = pixGetWpl(pix); |
2188 | 0 | line = pixGetData(pix) + row * wpl; |
2189 | 0 | fullwords = w >> 5; |
2190 | 0 | endbits = w & 31; |
2191 | 0 | endmask = (endbits == 0) ? 0 : (0xffffffffU << (32 - endbits)); |
2192 | |
|
2193 | 0 | tab = (tab8) ? tab8 : makePixelSumTab8(); |
2194 | 0 | sum = 0; |
2195 | 0 | for (j = 0; j < fullwords; j++) { |
2196 | 0 | word = line[j]; |
2197 | 0 | if (word) { |
2198 | 0 | sum += tab[word & 0xff] + |
2199 | 0 | tab[(word >> 8) & 0xff] + |
2200 | 0 | tab[(word >> 16) & 0xff] + |
2201 | 0 | tab[(word >> 24) & 0xff]; |
2202 | 0 | } |
2203 | 0 | } |
2204 | 0 | if (endbits) { |
2205 | 0 | word = line[j] & endmask; |
2206 | 0 | if (word) { |
2207 | 0 | sum += tab[word & 0xff] + |
2208 | 0 | tab[(word >> 8) & 0xff] + |
2209 | 0 | tab[(word >> 16) & 0xff] + |
2210 | 0 | tab[(word >> 24) & 0xff]; |
2211 | 0 | } |
2212 | 0 | } |
2213 | 0 | *pcount = sum; |
2214 | |
|
2215 | 0 | if (!tab8) LEPT_FREE(tab); |
2216 | 0 | return 0; |
2217 | 0 | } |
2218 | | |
2219 | | |
2220 | | /*! |
2221 | | * \brief pixGetMomentByColumn() |
2222 | | * |
2223 | | * \param[in] pix 1 bpp |
2224 | | * \param[in] order of moment, either 1 or 2 |
2225 | | * \return na of first moment of fg pixels, by column, or NULL on error |
2226 | | */ |
2227 | | NUMA * |
2228 | | pixGetMomentByColumn(PIX *pix, |
2229 | | l_int32 order) |
2230 | 0 | { |
2231 | 0 | l_int32 i, j, w, h, wpl; |
2232 | 0 | l_uint32 *line, *data; |
2233 | 0 | l_float32 *array; |
2234 | 0 | NUMA *na; |
2235 | |
|
2236 | 0 | if (!pix || pixGetDepth(pix) != 1) |
2237 | 0 | return (NUMA *)ERROR_PTR("pix undefined or not 1 bpp", __func__, NULL); |
2238 | 0 | if (order != 1 && order != 2) |
2239 | 0 | return (NUMA *)ERROR_PTR("order of moment not 1 or 2", __func__, NULL); |
2240 | | |
2241 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
2242 | 0 | if ((na = numaCreate(w)) == NULL) |
2243 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
2244 | 0 | numaSetCount(na, w); |
2245 | 0 | array = numaGetFArray(na, L_NOCOPY); |
2246 | 0 | data = pixGetData(pix); |
2247 | 0 | wpl = pixGetWpl(pix); |
2248 | 0 | for (i = 0; i < h; i++) { |
2249 | 0 | line = data + wpl * i; |
2250 | 0 | for (j = 0; j < w; j++) { |
2251 | 0 | if (GET_DATA_BIT(line, j)) { |
2252 | 0 | if (order == 1) |
2253 | 0 | array[j] += i; |
2254 | 0 | else /* order == 2 */ |
2255 | 0 | array[j] += i * i; |
2256 | 0 | } |
2257 | 0 | } |
2258 | 0 | } |
2259 | |
|
2260 | 0 | return na; |
2261 | 0 | } |
2262 | | |
2263 | | |
2264 | | /*! |
2265 | | * \brief pixThresholdPixelSum() |
2266 | | * |
2267 | | * \param[in] pix 1 bpp |
2268 | | * \param[in] thresh threshold |
2269 | | * \param[out] pabove 1 if above threshold; |
2270 | | * 0 if equal to or less than threshold |
2271 | | * \param[in] tab8 [optional] 8-bit pixel lookup table |
2272 | | * \return 0 if OK; 1 on error |
2273 | | * |
2274 | | * <pre> |
2275 | | * Notes: |
2276 | | * (1) This sums the ON pixels and returns immediately if the count |
2277 | | * goes above threshold. It is therefore more efficient |
2278 | | * for matching images (by running this function on the xor of |
2279 | | * the 2 images) than using pixCountPixels(), which counts all |
2280 | | * pixels before returning. |
2281 | | * </pre> |
2282 | | */ |
2283 | | l_ok |
2284 | | pixThresholdPixelSum(PIX *pix, |
2285 | | l_int32 thresh, |
2286 | | l_int32 *pabove, |
2287 | | l_int32 *tab8) |
2288 | 0 | { |
2289 | 0 | l_uint32 word, endmask; |
2290 | 0 | l_int32 *tab; |
2291 | 0 | l_int32 w, h, wpl, i, j; |
2292 | 0 | l_int32 fullwords, endbits, sum; |
2293 | 0 | l_uint32 *line, *data; |
2294 | |
|
2295 | 0 | if (!pabove) |
2296 | 0 | return ERROR_INT("&above not defined", __func__, 1); |
2297 | 0 | *pabove = 0; |
2298 | 0 | if (!pix || pixGetDepth(pix) != 1) |
2299 | 0 | return ERROR_INT("pix not defined or not 1 bpp", __func__, 1); |
2300 | | |
2301 | 0 | tab = (tab8) ? tab8 : makePixelSumTab8(); |
2302 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
2303 | 0 | wpl = pixGetWpl(pix); |
2304 | 0 | data = pixGetData(pix); |
2305 | 0 | fullwords = w >> 5; |
2306 | 0 | endbits = w & 31; |
2307 | 0 | endmask = 0xffffffff << (32 - endbits); |
2308 | |
|
2309 | 0 | sum = 0; |
2310 | 0 | for (i = 0; i < h; i++) { |
2311 | 0 | line = data + wpl * i; |
2312 | 0 | for (j = 0; j < fullwords; j++) { |
2313 | 0 | word = line[j]; |
2314 | 0 | if (word) { |
2315 | 0 | sum += tab[word & 0xff] + |
2316 | 0 | tab[(word >> 8) & 0xff] + |
2317 | 0 | tab[(word >> 16) & 0xff] + |
2318 | 0 | tab[(word >> 24) & 0xff]; |
2319 | 0 | } |
2320 | 0 | } |
2321 | 0 | if (endbits) { |
2322 | 0 | word = line[j] & endmask; |
2323 | 0 | if (word) { |
2324 | 0 | sum += tab[word & 0xff] + |
2325 | 0 | tab[(word >> 8) & 0xff] + |
2326 | 0 | tab[(word >> 16) & 0xff] + |
2327 | 0 | tab[(word >> 24) & 0xff]; |
2328 | 0 | } |
2329 | 0 | } |
2330 | 0 | if (sum > thresh) { |
2331 | 0 | *pabove = 1; |
2332 | 0 | if (!tab8) LEPT_FREE(tab); |
2333 | 0 | return 0; |
2334 | 0 | } |
2335 | 0 | } |
2336 | | |
2337 | 0 | if (!tab8) LEPT_FREE(tab); |
2338 | 0 | return 0; |
2339 | 0 | } |
2340 | | |
2341 | | |
2342 | | /*! |
2343 | | * \brief makePixelSumTab8() |
2344 | | * |
2345 | | * \return table of 256 l_int32. |
2346 | | * |
2347 | | * <pre> |
2348 | | * Notes: |
2349 | | * (1) This table of integers gives the number of 1 bits |
2350 | | * in the 8 bit index. |
2351 | | * </pre> |
2352 | | */ |
2353 | | l_int32 * |
2354 | | makePixelSumTab8(void) |
2355 | 0 | { |
2356 | 0 | l_uint8 byte; |
2357 | 0 | l_int32 i; |
2358 | 0 | l_int32 *tab; |
2359 | |
|
2360 | 0 | tab = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32)); |
2361 | 0 | for (i = 0; i < 256; i++) { |
2362 | 0 | byte = (l_uint8)i; |
2363 | 0 | tab[i] = (byte & 0x1) + |
2364 | 0 | ((byte >> 1) & 0x1) + |
2365 | 0 | ((byte >> 2) & 0x1) + |
2366 | 0 | ((byte >> 3) & 0x1) + |
2367 | 0 | ((byte >> 4) & 0x1) + |
2368 | 0 | ((byte >> 5) & 0x1) + |
2369 | 0 | ((byte >> 6) & 0x1) + |
2370 | 0 | ((byte >> 7) & 0x1); |
2371 | 0 | } |
2372 | 0 | return tab; |
2373 | 0 | } |
2374 | | |
2375 | | |
2376 | | /*! |
2377 | | * \brief makePixelCentroidTab8() |
2378 | | * |
2379 | | * \return table of 256 l_int32. |
2380 | | * |
2381 | | * <pre> |
2382 | | * Notes: |
2383 | | * (1) This table of integers gives the centroid weight of the 1 bits |
2384 | | * in the 8 bit index. In other words, if sumtab is obtained by |
2385 | | * makePixelSumTab8, and centroidtab is obtained by |
2386 | | * makePixelCentroidTab8, then, for 1 <= i <= 255, |
2387 | | * centroidtab[i] / (float)sumtab[i] |
2388 | | * is the centroid of the 1 bits in the 8-bit index i, where the |
2389 | | * MSB is considered to have position 0 and the LSB is considered |
2390 | | * to have position 7. |
2391 | | * </pre> |
2392 | | */ |
2393 | | l_int32 * |
2394 | | makePixelCentroidTab8(void) |
2395 | 0 | { |
2396 | 0 | l_int32 i; |
2397 | 0 | l_int32 *tab; |
2398 | |
|
2399 | 0 | tab = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32)); |
2400 | 0 | tab[0] = 0; |
2401 | 0 | tab[1] = 7; |
2402 | 0 | for (i = 2; i < 4; i++) { |
2403 | 0 | tab[i] = tab[i - 2] + 6; |
2404 | 0 | } |
2405 | 0 | for (i = 4; i < 8; i++) { |
2406 | 0 | tab[i] = tab[i - 4] + 5; |
2407 | 0 | } |
2408 | 0 | for (i = 8; i < 16; i++) { |
2409 | 0 | tab[i] = tab[i - 8] + 4; |
2410 | 0 | } |
2411 | 0 | for (i = 16; i < 32; i++) { |
2412 | 0 | tab[i] = tab[i - 16] + 3; |
2413 | 0 | } |
2414 | 0 | for (i = 32; i < 64; i++) { |
2415 | 0 | tab[i] = tab[i - 32] + 2; |
2416 | 0 | } |
2417 | 0 | for (i = 64; i < 128; i++) { |
2418 | 0 | tab[i] = tab[i - 64] + 1; |
2419 | 0 | } |
2420 | 0 | for (i = 128; i < 256; i++) { |
2421 | 0 | tab[i] = tab[i - 128]; |
2422 | 0 | } |
2423 | 0 | return tab; |
2424 | 0 | } |
2425 | | |
2426 | | |
2427 | | /*-------------------------------------------------------------* |
2428 | | * Average of pixel values in gray images * |
2429 | | *-------------------------------------------------------------*/ |
2430 | | /*! |
2431 | | * \brief pixAverageByRow() |
2432 | | * |
2433 | | * \param[in] pix 8 or 16 bpp; no colormap |
2434 | | * \param[in] box [optional] clipping box for sum; can be null |
2435 | | * \param[in] type L_WHITE_IS_MAX, L_BLACK_IS_MAX |
2436 | | * \return na of pixel averages by row, or NULL on error |
2437 | | * |
2438 | | * <pre> |
2439 | | * Notes: |
2440 | | * (1) To resample for a bin size different from 1, use |
2441 | | * numaUniformSampling() on the result of this function. |
2442 | | * (2) If type == L_BLACK_IS_MAX, black pixels get the maximum |
2443 | | * value (0xff for 8 bpp, 0xffff for 16 bpp) and white get 0. |
2444 | | * </pre> |
2445 | | */ |
2446 | | NUMA * |
2447 | | pixAverageByRow(PIX *pix, |
2448 | | BOX *box, |
2449 | | l_int32 type) |
2450 | 0 | { |
2451 | 0 | l_int32 i, j, w, h, d, wpl, xstart, xend, ystart, yend, bw, bh; |
2452 | 0 | l_uint32 *line, *data; |
2453 | 0 | l_float64 norm, sum; |
2454 | 0 | NUMA *na; |
2455 | |
|
2456 | 0 | if (!pix) |
2457 | 0 | return (NUMA *)ERROR_PTR("pix not defined", __func__, NULL); |
2458 | 0 | pixGetDimensions(pix, &w, &h, &d); |
2459 | 0 | if (d != 8 && d != 16) |
2460 | 0 | return (NUMA *)ERROR_PTR("pix not 8 or 16 bpp", __func__, NULL); |
2461 | 0 | if (type != L_WHITE_IS_MAX && type != L_BLACK_IS_MAX) |
2462 | 0 | return (NUMA *)ERROR_PTR("invalid type", __func__, NULL); |
2463 | 0 | if (pixGetColormap(pix) != NULL) |
2464 | 0 | return (NUMA *)ERROR_PTR("pix colormapped", __func__, NULL); |
2465 | | |
2466 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
2467 | 0 | &bw, &bh) == 1) |
2468 | 0 | return (NUMA *)ERROR_PTR("invalid clipping box", __func__, NULL); |
2469 | | |
2470 | 0 | norm = 1. / (l_float32)bw; |
2471 | 0 | if ((na = numaCreate(bh)) == NULL) |
2472 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
2473 | 0 | numaSetParameters(na, ystart, 1); |
2474 | 0 | data = pixGetData(pix); |
2475 | 0 | wpl = pixGetWpl(pix); |
2476 | 0 | for (i = ystart; i < yend; i++) { |
2477 | 0 | sum = 0.0; |
2478 | 0 | line = data + i * wpl; |
2479 | 0 | if (d == 8) { |
2480 | 0 | for (j = xstart; j < xend; j++) |
2481 | 0 | sum += GET_DATA_BYTE(line, j); |
2482 | 0 | if (type == L_BLACK_IS_MAX) |
2483 | 0 | sum = bw * 255 - sum; |
2484 | 0 | } else { /* d == 16 */ |
2485 | 0 | for (j = xstart; j < xend; j++) |
2486 | 0 | sum += GET_DATA_TWO_BYTES(line, j); |
2487 | 0 | if (type == L_BLACK_IS_MAX) |
2488 | 0 | sum = bw * 0xffff - sum; |
2489 | 0 | } |
2490 | 0 | numaAddNumber(na, (l_float32)(norm * sum)); |
2491 | 0 | } |
2492 | |
|
2493 | 0 | return na; |
2494 | 0 | } |
2495 | | |
2496 | | |
2497 | | /*! |
2498 | | * \brief pixAverageByColumn() |
2499 | | * |
2500 | | * \param[in] pix 8 or 16 bpp; no colormap |
2501 | | * \param[in] box [optional] clipping box for sum; can be null |
2502 | | * \param[in] type L_WHITE_IS_MAX, L_BLACK_IS_MAX |
2503 | | * \return na of pixel averages by column, or NULL on error |
2504 | | * |
2505 | | * <pre> |
2506 | | * Notes: |
2507 | | * (1) To resample for a bin size different from 1, use |
2508 | | * numaUniformSampling() on the result of this function. |
2509 | | * (2) If type == L_BLACK_IS_MAX, black pixels get the maximum |
2510 | | * value (0xff for 8 bpp, 0xffff for 16 bpp) and white get 0. |
2511 | | * </pre> |
2512 | | */ |
2513 | | NUMA * |
2514 | | pixAverageByColumn(PIX *pix, |
2515 | | BOX *box, |
2516 | | l_int32 type) |
2517 | 0 | { |
2518 | 0 | l_int32 i, j, w, h, d, wpl, xstart, xend, ystart, yend, bw, bh; |
2519 | 0 | l_uint32 *line, *data; |
2520 | 0 | l_float32 norm, sum; |
2521 | 0 | NUMA *na; |
2522 | |
|
2523 | 0 | if (!pix) |
2524 | 0 | return (NUMA *)ERROR_PTR("pix not defined", __func__, NULL); |
2525 | 0 | pixGetDimensions(pix, &w, &h, &d); |
2526 | |
|
2527 | 0 | if (d != 8 && d != 16) |
2528 | 0 | return (NUMA *)ERROR_PTR("pix not 8 or 16 bpp", __func__, NULL); |
2529 | 0 | if (type != L_WHITE_IS_MAX && type != L_BLACK_IS_MAX) |
2530 | 0 | return (NUMA *)ERROR_PTR("invalid type", __func__, NULL); |
2531 | 0 | if (pixGetColormap(pix) != NULL) |
2532 | 0 | return (NUMA *)ERROR_PTR("pix colormapped", __func__, NULL); |
2533 | | |
2534 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
2535 | 0 | &bw, &bh) == 1) |
2536 | 0 | return (NUMA *)ERROR_PTR("invalid clipping box", __func__, NULL); |
2537 | | |
2538 | 0 | if ((na = numaCreate(bw)) == NULL) |
2539 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
2540 | 0 | numaSetParameters(na, xstart, 1); |
2541 | 0 | norm = 1.f / (l_float32)bh; |
2542 | 0 | data = pixGetData(pix); |
2543 | 0 | wpl = pixGetWpl(pix); |
2544 | 0 | for (j = xstart; j < xend; j++) { |
2545 | 0 | sum = 0.0; |
2546 | 0 | if (d == 8) { |
2547 | 0 | for (i = ystart; i < yend; i++) { |
2548 | 0 | line = data + i * wpl; |
2549 | 0 | sum += GET_DATA_BYTE(line, j); |
2550 | 0 | } |
2551 | 0 | if (type == L_BLACK_IS_MAX) |
2552 | 0 | sum = bh * 255 - sum; |
2553 | 0 | } else { /* d == 16 */ |
2554 | 0 | for (i = ystart; i < yend; i++) { |
2555 | 0 | line = data + i * wpl; |
2556 | 0 | sum += GET_DATA_TWO_BYTES(line, j); |
2557 | 0 | } |
2558 | 0 | if (type == L_BLACK_IS_MAX) |
2559 | 0 | sum = bh * 0xffff - sum; |
2560 | 0 | } |
2561 | 0 | numaAddNumber(na, (l_float32)(norm * sum)); |
2562 | 0 | } |
2563 | |
|
2564 | 0 | return na; |
2565 | 0 | } |
2566 | | |
2567 | | |
2568 | | /*! |
2569 | | * \brief pixAverageInRect() |
2570 | | * |
2571 | | * \param[in] pixs 1, 2, 4, 8 bpp; not cmapped |
2572 | | * \param[in] pixm [optional] 1 bpp mask; if null, use all pixels |
2573 | | * \param[in] box [optional] if null, use entire image |
2574 | | * \param[in] minval ignore values less than this |
2575 | | * \param[in] maxval ignore values greater than this |
2576 | | * \param[in] subsamp subsample factor: integer; use 1 for all pixels |
2577 | | * \param[out] pave average of pixel values under consideration |
2578 | | * \return 0 if OK; 1 on error; 2 if all pixels are filtered out |
2579 | | * |
2580 | | * <pre> |
2581 | | * Notes: |
2582 | | * (1) The average is computed with 4 optional filters: a rectangle, |
2583 | | * a mask, a contiguous set of range values, and subsampling. |
2584 | | * In practice you might use only one or two of these. |
2585 | | * (2) The mask %pixm is a blocking mask: only count pixels in the bg. |
2586 | | * If it exists, alignment is assumed at UL corner and computation |
2587 | | * is over the minimum intersection of %pixs and %pixm. |
2588 | | * If you want the average of pixels under the mask fg, invert it. |
2589 | | * (3) Set the range limits %minval = 0 and %maxval = 255 to use |
2590 | | * all non-masked pixels (regardless of value) in the average. |
2591 | | * (4) If no pixels are used in the averaging, the returned average |
2592 | | * value is 0 and the function returns 2. This is not an error, |
2593 | | * but it says to disregard the returned average value. |
2594 | | * (5) For example, to average all pixels in a given clipping rect %box, |
2595 | | * pixAverageInRect(pixs, NULL, box, 0, 255, 1, &aveval); |
2596 | | * </pre> |
2597 | | */ |
2598 | | l_ok |
2599 | | pixAverageInRect(PIX *pixs, |
2600 | | PIX *pixm, |
2601 | | BOX *box, |
2602 | | l_int32 minval, |
2603 | | l_int32 maxval, |
2604 | | l_int32 subsamp, |
2605 | | l_float32 *pave) |
2606 | 0 | { |
2607 | 0 | l_int32 w, h, d, wpls, wm, hm, dm, wplm, val, count; |
2608 | 0 | l_int32 i, j, xstart, xend, ystart, yend; |
2609 | 0 | l_uint32 *datas, *datam = NULL, *lines, *linem = NULL; |
2610 | 0 | l_float64 sum; |
2611 | |
|
2612 | 0 | if (!pave) |
2613 | 0 | return ERROR_INT("&ave not defined", __func__, 1); |
2614 | 0 | *pave = 0; |
2615 | 0 | if (!pixs) |
2616 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
2617 | 0 | if (pixGetColormap(pixs) != NULL) |
2618 | 0 | return ERROR_INT("pixs is colormapped", __func__, 1); |
2619 | 0 | pixGetDimensions(pixs, &w, &h, &d); |
2620 | 0 | if (d != 1 && d != 2 && d != 4 && d != 8) |
2621 | 0 | return ERROR_INT("pixs not 1, 2, 4 or 8 bpp", __func__, 1); |
2622 | 0 | if (pixm) { |
2623 | 0 | pixGetDimensions(pixm, &wm, &hm, &dm); |
2624 | 0 | if (dm != 1) |
2625 | 0 | return ERROR_INT("pixm not 1 bpp", __func__, 1); |
2626 | 0 | w = L_MIN(w, wm); |
2627 | 0 | h = L_MIN(h, hm); |
2628 | 0 | } |
2629 | 0 | if (subsamp < 1) |
2630 | 0 | return ERROR_INT("subsamp must be >= 1", __func__, 1); |
2631 | | |
2632 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
2633 | 0 | NULL, NULL) == 1) |
2634 | 0 | return ERROR_INT("invalid clipping box", __func__, 1); |
2635 | | |
2636 | 0 | datas = pixGetData(pixs); |
2637 | 0 | wpls = pixGetWpl(pixs); |
2638 | 0 | if (pixm) { |
2639 | 0 | datam = pixGetData(pixm); |
2640 | 0 | wplm = pixGetWpl(pixm); |
2641 | 0 | } |
2642 | 0 | sum = 0.0; |
2643 | 0 | count = 0; |
2644 | 0 | for (i = ystart; i < yend; i += subsamp) { |
2645 | 0 | lines = datas + i * wpls; |
2646 | 0 | if (pixm) |
2647 | 0 | linem = datam + i * wplm; |
2648 | 0 | for (j = xstart; j < xend; j += subsamp) { |
2649 | 0 | if (pixm && (GET_DATA_BIT(linem, j) == 1)) |
2650 | 0 | continue; |
2651 | 0 | if (d == 1) |
2652 | 0 | val = GET_DATA_BIT(lines, j); |
2653 | 0 | else if (d == 2) |
2654 | 0 | val = GET_DATA_DIBIT(lines, j); |
2655 | 0 | else if (d == 4) |
2656 | 0 | val = GET_DATA_QBIT(lines, j); |
2657 | 0 | else /* d == 8 */ |
2658 | 0 | val = GET_DATA_BYTE(lines, j); |
2659 | 0 | if (val >= minval && val <= maxval) { |
2660 | 0 | sum += val; |
2661 | 0 | count++; |
2662 | 0 | } |
2663 | 0 | } |
2664 | 0 | } |
2665 | |
|
2666 | 0 | if (count == 0) |
2667 | 0 | return 2; /* not an error; don't use the average value (0.0) */ |
2668 | 0 | *pave = sum / (l_float32)count; |
2669 | 0 | return 0; |
2670 | 0 | } |
2671 | | |
2672 | | |
2673 | | /*-------------------------------------------------------------* |
2674 | | * Average of pixel values in RGB images * |
2675 | | *-------------------------------------------------------------*/ |
2676 | | /*! |
2677 | | * \brief pixAverageInRectRGB() |
2678 | | * |
2679 | | * \param[in] pixs rgb; not cmapped |
2680 | | * \param[in] pixm [optional] 1 bpp mask; if null, use all pixels |
2681 | | * \param[in] box [optional] if null, use entire image |
2682 | | * \param[in] subsamp subsample factor: integer; use 1 for all pixels |
2683 | | * \param[out] pave average color of pixel values under consideration, |
2684 | | * in format 0xrrggbb00. |
2685 | | * \return 0 if OK; 1 on error; 2 if all pixels are filtered out |
2686 | | * |
2687 | | * <pre> |
2688 | | * Notes: |
2689 | | * (1) The average is computed with 3 optional filters: a rectangle, |
2690 | | * a mask, and subsampling. |
2691 | | * In practice you might use only one or two of these. |
2692 | | * (2) The mask %pixm is a blocking mask: only count pixels in the bg. |
2693 | | * If it exists, alignment is assumed at UL corner and computation |
2694 | | * is over the minimum intersection of %pixs and %pixm. |
2695 | | * If you want the average of pixels under the mask fg, invert it. |
2696 | | * (3) If no pixels are used in the averaging, the returned average |
2697 | | * value is 0 and the function returns 2. This is not an error, |
2698 | | * but it says to disregard the returned average value. |
2699 | | * (4) For example, to average all pixels in a given clipping rect %box, |
2700 | | * pixAverageInRectRGB(pixs, NULL, box, 1, &aveval); |
2701 | | * </pre> |
2702 | | */ |
2703 | | l_ok |
2704 | | pixAverageInRectRGB(PIX *pixs, |
2705 | | PIX *pixm, |
2706 | | BOX *box, |
2707 | | l_int32 subsamp, |
2708 | | l_uint32 *pave) |
2709 | 0 | { |
2710 | 0 | l_int32 w, h, wpls, wm, hm, dm, wplm, i, j, xstart, xend, ystart, yend; |
2711 | 0 | l_int32 rval, gval, bval, rave, gave, bave, count; |
2712 | 0 | l_uint32 *datas, *datam = NULL, *lines, *linem = NULL; |
2713 | 0 | l_uint32 pixel; |
2714 | 0 | l_float64 rsum, gsum, bsum; |
2715 | |
|
2716 | 0 | if (!pave) |
2717 | 0 | return ERROR_INT("&ave not defined", __func__, 1); |
2718 | 0 | *pave = 0; |
2719 | 0 | if (!pixs || pixGetDepth(pixs) != 32) |
2720 | 0 | return ERROR_INT("pixs undefined or not 32 bpp", __func__, 1); |
2721 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2722 | 0 | if (pixm) { |
2723 | 0 | pixGetDimensions(pixm, &wm, &hm, &dm); |
2724 | 0 | if (dm != 1) |
2725 | 0 | return ERROR_INT("pixm not 1 bpp", __func__, 1); |
2726 | 0 | w = L_MIN(w, wm); |
2727 | 0 | h = L_MIN(h, hm); |
2728 | 0 | } |
2729 | 0 | if (subsamp < 1) |
2730 | 0 | return ERROR_INT("subsamp must be >= 1", __func__, 1); |
2731 | | |
2732 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
2733 | 0 | NULL, NULL) == 1) |
2734 | 0 | return ERROR_INT("invalid clipping box", __func__, 1); |
2735 | | |
2736 | 0 | datas = pixGetData(pixs); |
2737 | 0 | wpls = pixGetWpl(pixs); |
2738 | 0 | if (pixm) { |
2739 | 0 | datam = pixGetData(pixm); |
2740 | 0 | wplm = pixGetWpl(pixm); |
2741 | 0 | } |
2742 | 0 | rsum = gsum = bsum = 0.0; |
2743 | 0 | count = 0; |
2744 | 0 | for (i = ystart; i < yend; i += subsamp) { |
2745 | 0 | lines = datas + i * wpls; |
2746 | 0 | if (pixm) |
2747 | 0 | linem = datam + i * wplm; |
2748 | 0 | for (j = xstart; j < xend; j += subsamp) { |
2749 | 0 | if (pixm && (GET_DATA_BIT(linem, j) == 1)) |
2750 | 0 | continue; |
2751 | 0 | pixel = *(lines + j); |
2752 | 0 | extractRGBValues(pixel, &rval, &gval, &bval); |
2753 | 0 | rsum += rval; |
2754 | 0 | gsum += gval; |
2755 | 0 | bsum += bval; |
2756 | 0 | count++; |
2757 | 0 | } |
2758 | 0 | } |
2759 | |
|
2760 | 0 | if (count == 0) |
2761 | 0 | return 2; /* not an error */ |
2762 | 0 | rave = (l_uint32)(rsum / (l_float64)count); |
2763 | 0 | gave = (l_uint32)(gsum / (l_float64)count); |
2764 | 0 | bave = (l_uint32)(bsum / (l_float64)count); |
2765 | 0 | composeRGBPixel(rave, gave, bave, pave); |
2766 | 0 | return 0; |
2767 | 0 | } |
2768 | | |
2769 | | |
2770 | | /*------------------------------------------------------------------* |
2771 | | * Variance of pixel values in gray images * |
2772 | | *------------------------------------------------------------------*/ |
2773 | | /*! |
2774 | | * \brief pixVarianceByRow() |
2775 | | * |
2776 | | * \param[in] pix 8 or 16 bpp; no colormap |
2777 | | * \param[in] box [optional] clipping box for variance; can be null |
2778 | | * \return na of rmsdev by row, or NULL on error |
2779 | | * |
2780 | | * <pre> |
2781 | | * Notes: |
2782 | | * (1) To resample for a bin size different from 1, use |
2783 | | * numaUniformSampling() on the result of this function. |
2784 | | * (2) We are actually computing the RMS deviation in each row. |
2785 | | * This is the square root of the variance. |
2786 | | * </pre> |
2787 | | */ |
2788 | | NUMA * |
2789 | | pixVarianceByRow(PIX *pix, |
2790 | | BOX *box) |
2791 | 0 | { |
2792 | 0 | l_int32 i, j, w, h, d, wpl, xstart, xend, ystart, yend, bw, bh, val; |
2793 | 0 | l_uint32 *line, *data; |
2794 | 0 | l_float64 sum1, sum2, norm, ave, var, rootvar; |
2795 | 0 | NUMA *na; |
2796 | |
|
2797 | 0 | if (!pix) |
2798 | 0 | return (NUMA *)ERROR_PTR("pix not defined", __func__, NULL); |
2799 | 0 | pixGetDimensions(pix, &w, &h, &d); |
2800 | 0 | if (d != 8 && d != 16) |
2801 | 0 | return (NUMA *)ERROR_PTR("pix not 8 or 16 bpp", __func__, NULL); |
2802 | 0 | if (pixGetColormap(pix) != NULL) |
2803 | 0 | return (NUMA *)ERROR_PTR("pix colormapped", __func__, NULL); |
2804 | | |
2805 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
2806 | 0 | &bw, &bh) == 1) |
2807 | 0 | return (NUMA *)ERROR_PTR("invalid clipping box", __func__, NULL); |
2808 | | |
2809 | 0 | if ((na = numaCreate(bh)) == NULL) |
2810 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
2811 | 0 | numaSetParameters(na, ystart, 1); |
2812 | 0 | norm = 1. / (l_float32)bw; |
2813 | 0 | data = pixGetData(pix); |
2814 | 0 | wpl = pixGetWpl(pix); |
2815 | 0 | for (i = ystart; i < yend; i++) { |
2816 | 0 | sum1 = sum2 = 0.0; |
2817 | 0 | line = data + i * wpl; |
2818 | 0 | for (j = xstart; j < xend; j++) { |
2819 | 0 | if (d == 8) |
2820 | 0 | val = GET_DATA_BYTE(line, j); |
2821 | 0 | else /* d == 16 */ |
2822 | 0 | val = GET_DATA_TWO_BYTES(line, j); |
2823 | 0 | sum1 += val; |
2824 | 0 | sum2 += (l_float64)(val) * val; |
2825 | 0 | } |
2826 | 0 | ave = norm * sum1; |
2827 | 0 | var = norm * sum2 - ave * ave; |
2828 | 0 | rootvar = sqrt(var); |
2829 | 0 | numaAddNumber(na, (l_float32)rootvar); |
2830 | 0 | } |
2831 | |
|
2832 | 0 | return na; |
2833 | 0 | } |
2834 | | |
2835 | | |
2836 | | /*! |
2837 | | * \brief pixVarianceByColumn() |
2838 | | * |
2839 | | * \param[in] pix 8 or 16 bpp; no colormap |
2840 | | * \param[in] box [optional] clipping box for variance; can be null |
2841 | | * \return na of rmsdev by column, or NULL on error |
2842 | | * |
2843 | | * <pre> |
2844 | | * Notes: |
2845 | | * (1) To resample for a bin size different from 1, use |
2846 | | * numaUniformSampling() on the result of this function. |
2847 | | * (2) We are actually computing the RMS deviation in each row. |
2848 | | * This is the square root of the variance. |
2849 | | * </pre> |
2850 | | */ |
2851 | | NUMA * |
2852 | | pixVarianceByColumn(PIX *pix, |
2853 | | BOX *box) |
2854 | 0 | { |
2855 | 0 | l_int32 i, j, w, h, d, wpl, xstart, xend, ystart, yend, bw, bh, val; |
2856 | 0 | l_uint32 *line, *data; |
2857 | 0 | l_float64 sum1, sum2, norm, ave, var, rootvar; |
2858 | 0 | NUMA *na; |
2859 | |
|
2860 | 0 | if (!pix) |
2861 | 0 | return (NUMA *)ERROR_PTR("pix not defined", __func__, NULL); |
2862 | 0 | pixGetDimensions(pix, &w, &h, &d); |
2863 | 0 | if (d != 8 && d != 16) |
2864 | 0 | return (NUMA *)ERROR_PTR("pix not 8 or 16 bpp", __func__, NULL); |
2865 | 0 | if (pixGetColormap(pix) != NULL) |
2866 | 0 | return (NUMA *)ERROR_PTR("pix colormapped", __func__, NULL); |
2867 | | |
2868 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
2869 | 0 | &bw, &bh) == 1) |
2870 | 0 | return (NUMA *)ERROR_PTR("invalid clipping box", __func__, NULL); |
2871 | | |
2872 | 0 | if ((na = numaCreate(bw)) == NULL) |
2873 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
2874 | 0 | numaSetParameters(na, xstart, 1); |
2875 | 0 | norm = 1. / (l_float32)bh; |
2876 | 0 | data = pixGetData(pix); |
2877 | 0 | wpl = pixGetWpl(pix); |
2878 | 0 | for (j = xstart; j < xend; j++) { |
2879 | 0 | sum1 = sum2 = 0.0; |
2880 | 0 | for (i = ystart; i < yend; i++) { |
2881 | 0 | line = data + wpl * i; |
2882 | 0 | if (d == 8) |
2883 | 0 | val = GET_DATA_BYTE(line, j); |
2884 | 0 | else /* d == 16 */ |
2885 | 0 | val = GET_DATA_TWO_BYTES(line, j); |
2886 | 0 | sum1 += val; |
2887 | 0 | sum2 += (l_float64)(val) * val; |
2888 | 0 | } |
2889 | 0 | ave = norm * sum1; |
2890 | 0 | var = norm * sum2 - ave * ave; |
2891 | 0 | rootvar = sqrt(var); |
2892 | 0 | numaAddNumber(na, (l_float32)rootvar); |
2893 | 0 | } |
2894 | |
|
2895 | 0 | return na; |
2896 | 0 | } |
2897 | | |
2898 | | |
2899 | | /*! |
2900 | | * \brief pixVarianceInRect() |
2901 | | * |
2902 | | * \param[in] pix 1, 2, 4, 8 bpp; not cmapped |
2903 | | * \param[in] box [optional] if null, use entire image |
2904 | | * \param[out] prootvar sqrt variance of pixel values in region |
2905 | | * \return 0 if OK; 1 on error |
2906 | | */ |
2907 | | l_ok |
2908 | | pixVarianceInRect(PIX *pix, |
2909 | | BOX *box, |
2910 | | l_float32 *prootvar) |
2911 | 0 | { |
2912 | 0 | l_int32 w, h, d, wpl, i, j, xstart, xend, ystart, yend, bw, bh, val; |
2913 | 0 | l_uint32 *data, *line; |
2914 | 0 | l_float64 sum1, sum2, norm, ave, var; |
2915 | |
|
2916 | 0 | if (!prootvar) |
2917 | 0 | return ERROR_INT("&rootvar not defined", __func__, 1); |
2918 | 0 | *prootvar = 0.0; |
2919 | 0 | if (!pix) |
2920 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
2921 | 0 | pixGetDimensions(pix, &w, &h, &d); |
2922 | 0 | if (d != 1 && d != 2 && d != 4 && d != 8) |
2923 | 0 | return ERROR_INT("pix not 1, 2, 4 or 8 bpp", __func__, 1); |
2924 | 0 | if (pixGetColormap(pix) != NULL) |
2925 | 0 | return ERROR_INT("pix is colormapped", __func__, 1); |
2926 | | |
2927 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
2928 | 0 | &bw, &bh) == 1) |
2929 | 0 | return ERROR_INT("invalid clipping box", __func__, 1); |
2930 | | |
2931 | 0 | wpl = pixGetWpl(pix); |
2932 | 0 | data = pixGetData(pix); |
2933 | 0 | sum1 = sum2 = 0.0; |
2934 | 0 | for (i = ystart; i < yend; i++) { |
2935 | 0 | line = data + i * wpl; |
2936 | 0 | for (j = xstart; j < xend; j++) { |
2937 | 0 | if (d == 1) { |
2938 | 0 | val = GET_DATA_BIT(line, j); |
2939 | 0 | sum1 += val; |
2940 | 0 | sum2 += (l_float64)(val) * val; |
2941 | 0 | } else if (d == 2) { |
2942 | 0 | val = GET_DATA_DIBIT(line, j); |
2943 | 0 | sum1 += val; |
2944 | 0 | sum2 += (l_float64)(val) * val; |
2945 | 0 | } else if (d == 4) { |
2946 | 0 | val = GET_DATA_QBIT(line, j); |
2947 | 0 | sum1 += val; |
2948 | 0 | sum2 += (l_float64)(val) * val; |
2949 | 0 | } else { /* d == 8 */ |
2950 | 0 | val = GET_DATA_BYTE(line, j); |
2951 | 0 | sum1 += val; |
2952 | 0 | sum2 += (l_float64)(val) * val; |
2953 | 0 | } |
2954 | 0 | } |
2955 | 0 | } |
2956 | 0 | norm = 1.0 / ((l_float64)(bw) * bh); |
2957 | 0 | ave = norm * sum1; |
2958 | 0 | var = norm * sum2 - ave * ave; |
2959 | 0 | *prootvar = (l_float32)sqrt(var); |
2960 | 0 | return 0; |
2961 | 0 | } |
2962 | | |
2963 | | |
2964 | | /*---------------------------------------------------------------------* |
2965 | | * Average of absolute value of pixel differences in gray images * |
2966 | | *---------------------------------------------------------------------*/ |
2967 | | /*! |
2968 | | * \brief pixAbsDiffByRow() |
2969 | | * |
2970 | | * \param[in] pix 8 bpp; no colormap |
2971 | | * \param[in] box [optional] clipping box for region; can be null |
2972 | | * \return na of abs val pixel difference averages by row, or NULL on error |
2973 | | * |
2974 | | * <pre> |
2975 | | * Notes: |
2976 | | * (1) This is an average over differences of adjacent pixels along |
2977 | | * each row. |
2978 | | * (2) To resample for a bin size different from 1, use |
2979 | | * numaUniformSampling() on the result of this function. |
2980 | | * </pre> |
2981 | | */ |
2982 | | NUMA * |
2983 | | pixAbsDiffByRow(PIX *pix, |
2984 | | BOX *box) |
2985 | 0 | { |
2986 | 0 | l_int32 i, j, w, h, wpl, xstart, xend, ystart, yend, bw, bh, val0, val1; |
2987 | 0 | l_uint32 *line, *data; |
2988 | 0 | l_float64 norm, sum; |
2989 | 0 | NUMA *na; |
2990 | |
|
2991 | 0 | if (!pix || pixGetDepth(pix) != 8) |
2992 | 0 | return (NUMA *)ERROR_PTR("pix undefined or not 8 bpp", __func__, NULL); |
2993 | 0 | if (pixGetColormap(pix) != NULL) |
2994 | 0 | return (NUMA *)ERROR_PTR("pix colormapped", __func__, NULL); |
2995 | | |
2996 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
2997 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
2998 | 0 | &bw, &bh) == 1) |
2999 | 0 | return (NUMA *)ERROR_PTR("invalid clipping box", __func__, NULL); |
3000 | 0 | if (bw < 2) |
3001 | 0 | return (NUMA *)ERROR_PTR("row width must be >= 2", __func__, NULL); |
3002 | | |
3003 | 0 | norm = 1. / (l_float32)(bw - 1); |
3004 | 0 | if ((na = numaCreate(bh)) == NULL) |
3005 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
3006 | 0 | numaSetParameters(na, ystart, 1); |
3007 | 0 | data = pixGetData(pix); |
3008 | 0 | wpl = pixGetWpl(pix); |
3009 | 0 | for (i = ystart; i < yend; i++) { |
3010 | 0 | sum = 0.0; |
3011 | 0 | line = data + i * wpl; |
3012 | 0 | val0 = GET_DATA_BYTE(line, xstart); |
3013 | 0 | for (j = xstart + 1; j < xend; j++) { |
3014 | 0 | val1 = GET_DATA_BYTE(line, j); |
3015 | 0 | sum += L_ABS(val1 - val0); |
3016 | 0 | val0 = val1; |
3017 | 0 | } |
3018 | 0 | numaAddNumber(na, (l_float32)(norm * sum)); |
3019 | 0 | } |
3020 | |
|
3021 | 0 | return na; |
3022 | 0 | } |
3023 | | |
3024 | | |
3025 | | /*! |
3026 | | * \brief pixAbsDiffByColumn() |
3027 | | * |
3028 | | * \param[in] pix 8 bpp; no colormap |
3029 | | * \param[in] box [optional] clipping box for region; can be null |
3030 | | * \return na of abs val pixel difference averages by column, |
3031 | | * or NULL on error |
3032 | | * |
3033 | | * <pre> |
3034 | | * Notes: |
3035 | | * (1) This is an average over differences of adjacent pixels along |
3036 | | * each column. |
3037 | | * (2) To resample for a bin size different from 1, use |
3038 | | * numaUniformSampling() on the result of this function. |
3039 | | * </pre> |
3040 | | */ |
3041 | | NUMA * |
3042 | | pixAbsDiffByColumn(PIX *pix, |
3043 | | BOX *box) |
3044 | 0 | { |
3045 | 0 | l_int32 i, j, w, h, wpl, xstart, xend, ystart, yend, bw, bh, val0, val1; |
3046 | 0 | l_uint32 *line, *data; |
3047 | 0 | l_float64 norm, sum; |
3048 | 0 | NUMA *na; |
3049 | |
|
3050 | 0 | if (!pix || pixGetDepth(pix) != 8) |
3051 | 0 | return (NUMA *)ERROR_PTR("pix undefined or not 8 bpp", __func__, NULL); |
3052 | 0 | if (pixGetColormap(pix) != NULL) |
3053 | 0 | return (NUMA *)ERROR_PTR("pix colormapped", __func__, NULL); |
3054 | | |
3055 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
3056 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
3057 | 0 | &bw, &bh) == 1) |
3058 | 0 | return (NUMA *)ERROR_PTR("invalid clipping box", __func__, NULL); |
3059 | 0 | if (bh < 2) |
3060 | 0 | return (NUMA *)ERROR_PTR("column height must be >= 2", __func__, NULL); |
3061 | | |
3062 | 0 | norm = 1. / (l_float32)(bh - 1); |
3063 | 0 | if ((na = numaCreate(bw)) == NULL) |
3064 | 0 | return (NUMA *)ERROR_PTR("na not made", __func__, NULL); |
3065 | 0 | numaSetParameters(na, xstart, 1); |
3066 | 0 | data = pixGetData(pix); |
3067 | 0 | wpl = pixGetWpl(pix); |
3068 | 0 | for (j = xstart; j < xend; j++) { |
3069 | 0 | sum = 0.0; |
3070 | 0 | line = data + ystart * wpl; |
3071 | 0 | val0 = GET_DATA_BYTE(line, j); |
3072 | 0 | for (i = ystart + 1; i < yend; i++) { |
3073 | 0 | line = data + i * wpl; |
3074 | 0 | val1 = GET_DATA_BYTE(line, j); |
3075 | 0 | sum += L_ABS(val1 - val0); |
3076 | 0 | val0 = val1; |
3077 | 0 | } |
3078 | 0 | numaAddNumber(na, (l_float32)(norm * sum)); |
3079 | 0 | } |
3080 | |
|
3081 | 0 | return na; |
3082 | 0 | } |
3083 | | |
3084 | | |
3085 | | /*! |
3086 | | * \brief pixAbsDiffInRect() |
3087 | | * |
3088 | | * \param[in] pix 8 bpp; not cmapped |
3089 | | * \param[in] box [optional] if null, use entire image |
3090 | | * \param[in] dir differences along L_HORIZONTAL_LINE or L_VERTICAL_LINE |
3091 | | * \param[out] pabsdiff average of abs diff pixel values in region |
3092 | | * \return 0 if OK; 1 on error |
3093 | | * |
3094 | | * <pre> |
3095 | | * Notes: |
3096 | | * (1) This gives the average over the abs val of differences of |
3097 | | * adjacent pixels values, along either each |
3098 | | * row: dir == L_HORIZONTAL_LINE |
3099 | | * column: dir == L_VERTICAL_LINE |
3100 | | * </pre> |
3101 | | */ |
3102 | | l_ok |
3103 | | pixAbsDiffInRect(PIX *pix, |
3104 | | BOX *box, |
3105 | | l_int32 dir, |
3106 | | l_float32 *pabsdiff) |
3107 | 0 | { |
3108 | 0 | l_int32 w, h, wpl, i, j, xstart, xend, ystart, yend, bw, bh, val0, val1; |
3109 | 0 | l_uint32 *data, *line; |
3110 | 0 | l_float64 norm, sum; |
3111 | |
|
3112 | 0 | if (!pabsdiff) |
3113 | 0 | return ERROR_INT("&absdiff not defined", __func__, 1); |
3114 | 0 | *pabsdiff = 0.0; |
3115 | 0 | if (!pix || pixGetDepth(pix) != 8) |
3116 | 0 | return ERROR_INT("pix undefined or not 8 bpp", __func__, 1); |
3117 | 0 | if (dir != L_HORIZONTAL_LINE && dir != L_VERTICAL_LINE) |
3118 | 0 | return ERROR_INT("invalid direction", __func__, 1); |
3119 | 0 | if (pixGetColormap(pix) != NULL) |
3120 | 0 | return ERROR_INT("pix is colormapped", __func__, 1); |
3121 | | |
3122 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
3123 | 0 | if (boxClipToRectangleParams(box, w, h, &xstart, &ystart, &xend, ¥d, |
3124 | 0 | &bw, &bh) == 1) |
3125 | 0 | return ERROR_INT("invalid clipping box", __func__, 1); |
3126 | | |
3127 | 0 | wpl = pixGetWpl(pix); |
3128 | 0 | data = pixGetData(pix); |
3129 | 0 | if (dir == L_HORIZONTAL_LINE) { |
3130 | 0 | norm = 1. / (l_float32)(bh * (bw - 1)); |
3131 | 0 | sum = 0.0; |
3132 | 0 | for (i = ystart; i < yend; i++) { |
3133 | 0 | line = data + i * wpl; |
3134 | 0 | val0 = GET_DATA_BYTE(line, xstart); |
3135 | 0 | for (j = xstart + 1; j < xend; j++) { |
3136 | 0 | val1 = GET_DATA_BYTE(line, j); |
3137 | 0 | sum += L_ABS(val1 - val0); |
3138 | 0 | val0 = val1; |
3139 | 0 | } |
3140 | 0 | } |
3141 | 0 | } else { /* vertical line */ |
3142 | 0 | norm = 1. / (l_float32)(bw * (bh - 1)); |
3143 | 0 | sum = 0.0; |
3144 | 0 | for (j = xstart; j < xend; j++) { |
3145 | 0 | line = data + ystart * wpl; |
3146 | 0 | val0 = GET_DATA_BYTE(line, j); |
3147 | 0 | for (i = ystart + 1; i < yend; i++) { |
3148 | 0 | line = data + i * wpl; |
3149 | 0 | val1 = GET_DATA_BYTE(line, j); |
3150 | 0 | sum += L_ABS(val1 - val0); |
3151 | 0 | val0 = val1; |
3152 | 0 | } |
3153 | 0 | } |
3154 | 0 | } |
3155 | 0 | *pabsdiff = (l_float32)(norm * sum); |
3156 | 0 | return 0; |
3157 | 0 | } |
3158 | | |
3159 | | |
3160 | | /*! |
3161 | | * \brief pixAbsDiffOnLine() |
3162 | | * |
3163 | | * \param[in] pix 8 bpp; not cmapped |
3164 | | * \param[in] x1, y1 first point; x1 <= x2, y1 <= y2 |
3165 | | * \param[in] x2, y2 first point |
3166 | | * \param[out] pabsdiff average of abs diff pixel values on line |
3167 | | * \return 0 if OK; 1 on error |
3168 | | * |
3169 | | * <pre> |
3170 | | * Notes: |
3171 | | * (1) This gives the average over the abs val of differences of |
3172 | | * adjacent pixels values, along a line that is either horizontal |
3173 | | * or vertical. |
3174 | | * (2) If horizontal, require x1 < x2; if vertical, require y1 < y2. |
3175 | | * </pre> |
3176 | | */ |
3177 | | l_ok |
3178 | | pixAbsDiffOnLine(PIX *pix, |
3179 | | l_int32 x1, |
3180 | | l_int32 y1, |
3181 | | l_int32 x2, |
3182 | | l_int32 y2, |
3183 | | l_float32 *pabsdiff) |
3184 | 0 | { |
3185 | 0 | l_int32 w, h, i, j, dir, size, sum; |
3186 | 0 | l_uint32 val0, val1; |
3187 | |
|
3188 | 0 | if (!pabsdiff) |
3189 | 0 | return ERROR_INT("&absdiff not defined", __func__, 1); |
3190 | 0 | *pabsdiff = 0.0; |
3191 | 0 | if (!pix || pixGetDepth(pix) != 8) |
3192 | 0 | return ERROR_INT("pix undefined or not 8 bpp", __func__, 1); |
3193 | 0 | if (y1 == y2) { |
3194 | 0 | dir = L_HORIZONTAL_LINE; |
3195 | 0 | } else if (x1 == x2) { |
3196 | 0 | dir = L_VERTICAL_LINE; |
3197 | 0 | } else { |
3198 | 0 | return ERROR_INT("line is neither horiz nor vert", __func__, 1); |
3199 | 0 | } |
3200 | 0 | if (pixGetColormap(pix) != NULL) |
3201 | 0 | return ERROR_INT("pix is colormapped", __func__, 1); |
3202 | | |
3203 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
3204 | 0 | sum = 0; |
3205 | 0 | if (dir == L_HORIZONTAL_LINE) { |
3206 | 0 | x1 = L_MAX(x1, 0); |
3207 | 0 | x2 = L_MIN(x2, w - 1); |
3208 | 0 | if (x1 >= x2) |
3209 | 0 | return ERROR_INT("x1 >= x2", __func__, 1); |
3210 | 0 | size = x2 - x1; |
3211 | 0 | pixGetPixel(pix, x1, y1, &val0); |
3212 | 0 | for (j = x1 + 1; j <= x2; j++) { |
3213 | 0 | pixGetPixel(pix, j, y1, &val1); |
3214 | 0 | sum += L_ABS((l_int32)val1 - (l_int32)val0); |
3215 | 0 | val0 = val1; |
3216 | 0 | } |
3217 | 0 | } else { /* vertical */ |
3218 | 0 | y1 = L_MAX(y1, 0); |
3219 | 0 | y2 = L_MIN(y2, h - 1); |
3220 | 0 | if (y1 >= y2) |
3221 | 0 | return ERROR_INT("y1 >= y2", __func__, 1); |
3222 | 0 | size = y2 - y1; |
3223 | 0 | pixGetPixel(pix, x1, y1, &val0); |
3224 | 0 | for (i = y1 + 1; i <= y2; i++) { |
3225 | 0 | pixGetPixel(pix, x1, i, &val1); |
3226 | 0 | sum += L_ABS((l_int32)val1 - (l_int32)val0); |
3227 | 0 | val0 = val1; |
3228 | 0 | } |
3229 | 0 | } |
3230 | 0 | *pabsdiff = (l_float32)sum / (l_float32)size; |
3231 | 0 | return 0; |
3232 | 0 | } |
3233 | | |
3234 | | |
3235 | | /*-------------------------------------------------------------* |
3236 | | * Count of pixels with specific value * |
3237 | | *-------------------------------------------------------------*/ |
3238 | | /*! |
3239 | | * \brief pixCountArbInRect() |
3240 | | * |
3241 | | * \param[in] pixs 1,2,4,8 bpp; can be colormapped |
3242 | | * \param[in] box [optional] over which count is made; |
3243 | | * use entire image if NULL |
3244 | | * \param[in] val pixel value to count |
3245 | | * \param[in] factor subsampling factor; integer >= 1 |
3246 | | * \param[out] pcount count; estimate it if factor > 1 |
3247 | | * \return na histogram, or NULL on error |
3248 | | * |
3249 | | * <pre> |
3250 | | * Notes: |
3251 | | * (1) If pixs is cmapped, %val is compared to the colormap index; |
3252 | | * otherwise, %val is compared to the grayscale value. |
3253 | | * (2) Set the subsampling %factor > 1 to reduce the amount of computation. |
3254 | | * If %factor > 1, multiply the count by %factor * %factor. |
3255 | | * </pre> |
3256 | | */ |
3257 | | l_int32 |
3258 | | pixCountArbInRect(PIX *pixs, |
3259 | | BOX *box, |
3260 | | l_int32 val, |
3261 | | l_int32 factor, |
3262 | | l_int32 *pcount) |
3263 | 0 | { |
3264 | 0 | l_int32 i, j, bx, by, bw, bh, w, h, d, wpl, pixval; |
3265 | 0 | l_uint32 *data, *line; |
3266 | |
|
3267 | 0 | if (!pcount) |
3268 | 0 | return ERROR_INT("&count not defined", __func__, 1); |
3269 | 0 | *pcount = 0; |
3270 | 0 | if (!pixs) |
3271 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
3272 | 0 | d = pixGetDepth(pixs); |
3273 | 0 | if (d != 1 && d != 2 && d != 4 && d != 8) |
3274 | 0 | return ERROR_INT("pixs not 1, 2, 4 or 8 bpp", __func__, 1); |
3275 | 0 | if (val < 0) |
3276 | 0 | return ERROR_INT("val < 0", __func__, 1); |
3277 | 0 | if (val > (1 << d) - 1) { |
3278 | 0 | L_ERROR("invalid val = %d for depth %d\n", __func__, val, d); |
3279 | 0 | return 1; |
3280 | 0 | } |
3281 | 0 | if (factor < 1) |
3282 | 0 | return ERROR_INT("sampling factor < 1", __func__, 1); |
3283 | | |
3284 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
3285 | 0 | data = pixGetData(pixs); |
3286 | 0 | wpl = pixGetWpl(pixs); |
3287 | 0 | if (!box) { |
3288 | 0 | for (i = 0; i < h; i += factor) { |
3289 | 0 | line = data + i * wpl; |
3290 | 0 | for (j = 0; j < w; j += factor) { |
3291 | 0 | if (d == 8) { |
3292 | 0 | pixval = GET_DATA_BYTE(line, j); |
3293 | 0 | } else if (d == 1) { |
3294 | 0 | pixval = GET_DATA_BIT(line, j); |
3295 | 0 | } else if (d == 2) { |
3296 | 0 | pixval = GET_DATA_DIBIT(line, j); |
3297 | 0 | } else /* d == 4 */ { |
3298 | 0 | pixval = GET_DATA_QBIT(line, j); |
3299 | 0 | } |
3300 | 0 | if (pixval == val) (*pcount)++; |
3301 | 0 | } |
3302 | 0 | } |
3303 | 0 | } else { |
3304 | 0 | boxGetGeometry(box, &bx, &by, &bw, &bh); |
3305 | 0 | for (i = 0; i < bh; i += factor) { |
3306 | 0 | if (by + i < 0 || by + i >= h) continue; |
3307 | 0 | line = data + (by + i) * wpl; |
3308 | 0 | for (j = 0; j < bw; j += factor) { |
3309 | 0 | if (bx + j < 0 || bx + j >= w) continue; |
3310 | 0 | if (d == 8) { |
3311 | 0 | pixval = GET_DATA_BYTE(line, bx + j); |
3312 | 0 | } else if (d == 1) { |
3313 | 0 | pixval = GET_DATA_BIT(line, bx + j); |
3314 | 0 | } else if (d == 2) { |
3315 | 0 | pixval = GET_DATA_DIBIT(line, bx + j); |
3316 | 0 | } else /* d == 4 */ { |
3317 | 0 | pixval = GET_DATA_QBIT(line, bx + j); |
3318 | 0 | } |
3319 | 0 | if (pixval == val) (*pcount)++; |
3320 | 0 | } |
3321 | 0 | } |
3322 | 0 | } |
3323 | |
|
3324 | 0 | if (factor > 1) /* assume pixel color is randomly distributed */ |
3325 | 0 | *pcount = *pcount * factor * factor; |
3326 | 0 | return 0; |
3327 | 0 | } |
3328 | | |
3329 | | |
3330 | | /*-------------------------------------------------------------* |
3331 | | * Mirrored tiling of a smaller image * |
3332 | | *-------------------------------------------------------------*/ |
3333 | | /*! |
3334 | | * \brief pixMirroredTiling() |
3335 | | * |
3336 | | * \param[in] pixs 8 or 32 bpp, small tile; to be replicated |
3337 | | * \param[in] w, h dimensions of output pix |
3338 | | * \return pixd usually larger pix, mirror-tiled with pixs, |
3339 | | * or NULL on error |
3340 | | * |
3341 | | * <pre> |
3342 | | * Notes: |
3343 | | * (1) This uses mirrored tiling, where each row alternates |
3344 | | * with LR flips and every column alternates with TB |
3345 | | * flips, such that the result is a tiling with identical |
3346 | | * 2 x 2 tiles, each of which is composed of these transforms: |
3347 | | * ----------------- |
3348 | | * | 1 | LR | |
3349 | | * ----------------- |
3350 | | * | TB | LR/TB | |
3351 | | * ----------------- |
3352 | | * </pre> |
3353 | | */ |
3354 | | PIX * |
3355 | | pixMirroredTiling(PIX *pixs, |
3356 | | l_int32 w, |
3357 | | l_int32 h) |
3358 | 0 | { |
3359 | 0 | l_int32 wt, ht, d, i, j, nx, ny; |
3360 | 0 | PIX *pixd, *pixsfx, *pixsfy, *pixsfxy, *pix; |
3361 | |
|
3362 | 0 | if (!pixs) |
3363 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
3364 | 0 | pixGetDimensions(pixs, &wt, &ht, &d); |
3365 | 0 | if (wt <= 0 || ht <= 0) |
3366 | 0 | return (PIX *)ERROR_PTR("pixs size illegal", __func__, NULL); |
3367 | 0 | if (d != 8 && d != 32) |
3368 | 0 | return (PIX *)ERROR_PTR("depth not 32 bpp", __func__, NULL); |
3369 | | |
3370 | 0 | if ((pixd = pixCreate(w, h, d)) == NULL) |
3371 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
3372 | 0 | pixCopySpp(pixd, pixs); |
3373 | |
|
3374 | 0 | nx = (w + wt - 1) / wt; |
3375 | 0 | ny = (h + ht - 1) / ht; |
3376 | 0 | pixsfx = pixFlipLR(NULL, pixs); |
3377 | 0 | pixsfy = pixFlipTB(NULL, pixs); |
3378 | 0 | pixsfxy = pixFlipTB(NULL, pixsfx); |
3379 | 0 | for (i = 0; i < ny; i++) { |
3380 | 0 | for (j = 0; j < nx; j++) { |
3381 | 0 | pix = pixs; |
3382 | 0 | if ((i & 1) && !(j & 1)) |
3383 | 0 | pix = pixsfy; |
3384 | 0 | else if (!(i & 1) && (j & 1)) |
3385 | 0 | pix = pixsfx; |
3386 | 0 | else if ((i & 1) && (j & 1)) |
3387 | 0 | pix = pixsfxy; |
3388 | 0 | pixRasterop(pixd, j * wt, i * ht, wt, ht, PIX_SRC, pix, 0, 0); |
3389 | 0 | } |
3390 | 0 | } |
3391 | |
|
3392 | 0 | pixDestroy(&pixsfx); |
3393 | 0 | pixDestroy(&pixsfy); |
3394 | 0 | pixDestroy(&pixsfxy); |
3395 | 0 | return pixd; |
3396 | 0 | } |
3397 | | |
3398 | | |
3399 | | /*! |
3400 | | * \brief pixFindRepCloseTile() |
3401 | | * |
3402 | | * \param[in] pixs 32 bpp rgb |
3403 | | * \param[in] box region of pixs to search around |
3404 | | * \param[in] searchdir L_HORIZ or L_VERT; direction to search |
3405 | | * \param[in] mindist min distance of selected tile edge from box; >= 0 |
3406 | | * \param[in] tsize tile size; > 1; even; typically ~50 |
3407 | | * \param[in] ntiles number of tiles tested in each row/column |
3408 | | * \param[out] pboxtile region of best tile |
3409 | | * \param[in] debug 1 for debug output |
3410 | | * \return 0 if OK, 1 on error |
3411 | | * |
3412 | | * <pre> |
3413 | | * Notes: |
3414 | | * (1) This looks for one or two square tiles with conforming median |
3415 | | * intensity and low variance, that is outside but near the input box. |
3416 | | * (2) %mindist specifies the gap between the box and the |
3417 | | * potential tiles. The tiles are given an overlap of 50%. |
3418 | | * %ntiles specifies the number of tiles that are tested |
3419 | | * beyond %mindist for each row or column. |
3420 | | * (3) For example, if %mindist = 20, %tilesize = 50 and %ntiles = 3, |
3421 | | * a horizontal search to the right will have 3 tiles in each row, |
3422 | | * with left edges at 20, 45 and 70 from the right edge of the |
3423 | | * input %box. The number of rows of tiles is determined by |
3424 | | * the height of %box and %tsize, with the 50% overlap.. |
3425 | | * </pre> |
3426 | | */ |
3427 | | l_ok |
3428 | | pixFindRepCloseTile(PIX *pixs, |
3429 | | BOX *box, |
3430 | | l_int32 searchdir, |
3431 | | l_int32 mindist, |
3432 | | l_int32 tsize, |
3433 | | l_int32 ntiles, |
3434 | | BOX **pboxtile, |
3435 | | l_int32 debug) |
3436 | 0 | { |
3437 | 0 | l_int32 w, h, i, n, bestindex; |
3438 | 0 | l_float32 var_of_mean, median_of_mean, median_of_stdev, mean_val, stdev_val; |
3439 | 0 | l_float32 mindels, bestdelm, delm, dels, mean, stdev; |
3440 | 0 | BOXA *boxa; |
3441 | 0 | NUMA *namean, *nastdev; |
3442 | 0 | PIX *pix, *pixg; |
3443 | 0 | PIXA *pixa; |
3444 | |
|
3445 | 0 | if (!pboxtile) |
3446 | 0 | return ERROR_INT("&boxtile not defined", __func__, 1); |
3447 | 0 | *pboxtile = NULL; |
3448 | 0 | if (!pixs) |
3449 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
3450 | 0 | if (!box) |
3451 | 0 | return ERROR_INT("box not defined", __func__, 1); |
3452 | 0 | if (searchdir != L_HORIZ && searchdir != L_VERT) |
3453 | 0 | return ERROR_INT("invalid searchdir", __func__, 1); |
3454 | 0 | if (mindist < 0) |
3455 | 0 | return ERROR_INT("mindist must be >= 0", __func__, 1); |
3456 | 0 | if (tsize < 2) |
3457 | 0 | return ERROR_INT("tsize must be > 1", __func__, 1); |
3458 | 0 | if (ntiles > 7) { |
3459 | 0 | L_WARNING("ntiles = %d; larger than suggested max of 7\n", |
3460 | 0 | __func__, ntiles); |
3461 | 0 | } |
3462 | | |
3463 | | /* Locate tile regions */ |
3464 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
3465 | 0 | boxa = findTileRegionsForSearch(box, w, h, searchdir, mindist, |
3466 | 0 | tsize, ntiles); |
3467 | 0 | if (!boxa) |
3468 | 0 | return ERROR_INT("no tiles found", __func__, 1); |
3469 | | |
3470 | | /* Generate the tiles and the mean and stdev of intensity */ |
3471 | 0 | pixa = pixClipRectangles(pixs, boxa); |
3472 | 0 | n = pixaGetCount(pixa); |
3473 | 0 | namean = numaCreate(n); |
3474 | 0 | nastdev = numaCreate(n); |
3475 | 0 | for (i = 0; i < n; i++) { |
3476 | 0 | pix = pixaGetPix(pixa, i, L_CLONE); |
3477 | 0 | pixg = pixConvertRGBToGray(pix, 0.33f, 0.34f, 0.33f); |
3478 | 0 | pixGetAverageMasked(pixg, NULL, 0, 0, 1, L_MEAN_ABSVAL, &mean); |
3479 | 0 | pixGetAverageMasked(pixg, NULL, 0, 0, 1, L_STANDARD_DEVIATION, &stdev); |
3480 | 0 | numaAddNumber(namean, mean); |
3481 | 0 | numaAddNumber(nastdev, stdev); |
3482 | 0 | pixDestroy(&pix); |
3483 | 0 | pixDestroy(&pixg); |
3484 | 0 | } |
3485 | | |
3486 | | /* Find the median and variance of the averages. We require |
3487 | | * the best tile to have a mean pixel intensity within a standard |
3488 | | * deviation of the median of mean intensities, and choose the |
3489 | | * tile in that set with the smallest stdev of pixel intensities |
3490 | | * (as a proxy for the tile with least visible structure). |
3491 | | * The median of the stdev is used, for debugging, as a normalizing |
3492 | | * factor for the stdev of intensities within a tile. */ |
3493 | 0 | numaGetStatsUsingHistogram(namean, 256, NULL, NULL, NULL, &var_of_mean, |
3494 | 0 | &median_of_mean, 0.0, NULL, NULL); |
3495 | 0 | numaGetStatsUsingHistogram(nastdev, 256, NULL, NULL, NULL, NULL, |
3496 | 0 | &median_of_stdev, 0.0, NULL, NULL); |
3497 | 0 | mindels = 1000.0; |
3498 | 0 | bestdelm = 1000.0; |
3499 | 0 | bestindex = 0; |
3500 | 0 | for (i = 0; i < n; i++) { |
3501 | 0 | numaGetFValue(namean, i, &mean_val); |
3502 | 0 | numaGetFValue(nastdev, i, &stdev_val); |
3503 | 0 | if (var_of_mean == 0.0) { /* uniform color; any box will do */ |
3504 | 0 | delm = 0.0; /* any value < 1.01 */ |
3505 | 0 | dels = 1.0; /* n'importe quoi */ |
3506 | 0 | } else { |
3507 | 0 | delm = L_ABS(mean_val - median_of_mean) / sqrt(var_of_mean); |
3508 | 0 | dels = stdev_val / median_of_stdev; |
3509 | 0 | } |
3510 | 0 | if (delm < 1.01) { |
3511 | 0 | if (dels < mindels) { |
3512 | 0 | if (debug) { |
3513 | 0 | lept_stderr("i = %d, mean = %7.3f, delm = %7.3f," |
3514 | 0 | " stdev = %7.3f, dels = %7.3f\n", |
3515 | 0 | i, mean_val, delm, stdev_val, dels); |
3516 | 0 | } |
3517 | 0 | mindels = dels; |
3518 | 0 | bestdelm = delm; |
3519 | 0 | bestindex = i; |
3520 | 0 | } |
3521 | 0 | } |
3522 | 0 | } |
3523 | 0 | *pboxtile = boxaGetBox(boxa, bestindex, L_COPY); |
3524 | |
|
3525 | 0 | if (debug) { |
3526 | 0 | L_INFO("median of mean = %7.3f\n", __func__, median_of_mean); |
3527 | 0 | L_INFO("standard dev of mean = %7.3f\n", __func__, sqrt(var_of_mean)); |
3528 | 0 | L_INFO("median of stdev = %7.3f\n", __func__, median_of_stdev); |
3529 | 0 | L_INFO("best tile: index = %d\n", __func__, bestindex); |
3530 | 0 | L_INFO("delta from median in units of stdev = %5.3f\n", |
3531 | 0 | __func__, bestdelm); |
3532 | 0 | L_INFO("stdev as fraction of median stdev = %5.3f\n", |
3533 | 0 | __func__, mindels); |
3534 | 0 | } |
3535 | |
|
3536 | 0 | numaDestroy(&namean); |
3537 | 0 | numaDestroy(&nastdev); |
3538 | 0 | pixaDestroy(&pixa); |
3539 | 0 | boxaDestroy(&boxa); |
3540 | 0 | return 0; |
3541 | 0 | } |
3542 | | |
3543 | | |
3544 | | /*! |
3545 | | * \brief findTileRegionsForSearch() |
3546 | | * |
3547 | | * \param[in] box region of Pix to search around |
3548 | | * \param[in] w, h dimensions of Pix |
3549 | | * \param[in] searchdir L_HORIZ or L_VERT; direction to search |
3550 | | * \param[in] mindist min distance of selected tile edge from box; >= 0 |
3551 | | * \param[in] tsize tile size; > 1; even; typically ~50 |
3552 | | * \param[in] ntiles number of tiles tested in each row/column |
3553 | | * \return boxa if OK, or NULL on error |
3554 | | * |
3555 | | * <pre> |
3556 | | * Notes: |
3557 | | * (1) See calling function pixfindRepCloseTile(). |
3558 | | * </pre> |
3559 | | */ |
3560 | | static BOXA * |
3561 | | findTileRegionsForSearch(BOX *box, |
3562 | | l_int32 w, |
3563 | | l_int32 h, |
3564 | | l_int32 searchdir, |
3565 | | l_int32 mindist, |
3566 | | l_int32 tsize, |
3567 | | l_int32 ntiles) |
3568 | 0 | { |
3569 | 0 | l_int32 bx, by, bw, bh, left, right, top, bot, i, j, nrows, ncols; |
3570 | 0 | l_int32 x0, y0, x, y, w_avail, w_needed, h_avail, h_needed, t_avail; |
3571 | 0 | BOX *box1; |
3572 | 0 | BOXA *boxa; |
3573 | |
|
3574 | 0 | if (!box) |
3575 | 0 | return (BOXA *)ERROR_PTR("box not defined", __func__, NULL); |
3576 | 0 | if (ntiles == 0) |
3577 | 0 | return (BOXA *)ERROR_PTR("no tiles requested", __func__, NULL); |
3578 | | |
3579 | 0 | boxGetGeometry(box, &bx, &by, &bw, &bh); |
3580 | 0 | if (searchdir == L_HORIZ) { |
3581 | | /* Find the tile parameters for the search. Note that the |
3582 | | * tiles are overlapping by 50% in each direction. */ |
3583 | 0 | left = bx; /* distance to left of box */ |
3584 | 0 | right = w - bx - bw + 1; /* distance to right of box */ |
3585 | 0 | w_avail = L_MAX(left, right) - mindist; |
3586 | 0 | if (tsize & 1) tsize++; /* be sure it's even */ |
3587 | 0 | if (w_avail < tsize) { |
3588 | 0 | L_ERROR("tsize = %d, w_avail = %d\n", __func__, tsize, w_avail); |
3589 | 0 | return NULL; |
3590 | 0 | } |
3591 | 0 | w_needed = tsize + (ntiles - 1) * (tsize / 2); |
3592 | 0 | if (w_needed > w_avail) { |
3593 | 0 | t_avail = 1 + 2 * (w_avail - tsize) / tsize; |
3594 | 0 | L_WARNING("ntiles = %d; room for only %d\n", __func__, |
3595 | 0 | ntiles, t_avail); |
3596 | 0 | ntiles = t_avail; |
3597 | 0 | w_needed = tsize + (ntiles - 1) * (tsize / 2); |
3598 | 0 | } |
3599 | 0 | nrows = L_MAX(1, 1 + 2 * (bh - tsize) / tsize); |
3600 | | |
3601 | | /* Generate the tile regions to search */ |
3602 | 0 | boxa = boxaCreate(0); |
3603 | 0 | if (left > right) /* search to left */ |
3604 | 0 | x0 = bx - w_needed; |
3605 | 0 | else /* search to right */ |
3606 | 0 | x0 = bx + bw + mindist; |
3607 | 0 | for (i = 0; i < nrows; i++) { |
3608 | 0 | y = by + i * tsize / 2; |
3609 | 0 | for (j = 0; j < ntiles; j++) { |
3610 | 0 | x = x0 + j * tsize / 2; |
3611 | 0 | box1 = boxCreate(x, y, tsize, tsize); |
3612 | 0 | boxaAddBox(boxa, box1, L_INSERT); |
3613 | 0 | } |
3614 | 0 | } |
3615 | 0 | } else { /* L_VERT */ |
3616 | | /* Find the tile parameters for the search */ |
3617 | 0 | top = by; /* distance above box */ |
3618 | 0 | bot = h - by - bh + 1; /* distance below box */ |
3619 | 0 | h_avail = L_MAX(top, bot) - mindist; |
3620 | 0 | if (h_avail < tsize) { |
3621 | 0 | L_ERROR("tsize = %d, h_avail = %d\n", __func__, tsize, h_avail); |
3622 | 0 | return NULL; |
3623 | 0 | } |
3624 | 0 | h_needed = tsize + (ntiles - 1) * (tsize / 2); |
3625 | 0 | if (h_needed > h_avail) { |
3626 | 0 | t_avail = 1 + 2 * (h_avail - tsize) / tsize; |
3627 | 0 | L_WARNING("ntiles = %d; room for only %d\n", __func__, |
3628 | 0 | ntiles, t_avail); |
3629 | 0 | ntiles = t_avail; |
3630 | 0 | h_needed = tsize + (ntiles - 1) * (tsize / 2); |
3631 | 0 | } |
3632 | 0 | ncols = L_MAX(1, 1 + 2 * (bw - tsize) / tsize); |
3633 | | |
3634 | | /* Generate the tile regions to search */ |
3635 | 0 | boxa = boxaCreate(0); |
3636 | 0 | if (top > bot) /* search above */ |
3637 | 0 | y0 = by - h_needed; |
3638 | 0 | else /* search below */ |
3639 | 0 | y0 = by + bh + mindist; |
3640 | 0 | for (j = 0; j < ncols; j++) { |
3641 | 0 | x = bx + j * tsize / 2; |
3642 | 0 | for (i = 0; i < ntiles; i++) { |
3643 | 0 | y = y0 + i * tsize / 2; |
3644 | 0 | box1 = boxCreate(x, y, tsize, tsize); |
3645 | 0 | boxaAddBox(boxa, box1, L_INSERT); |
3646 | 0 | } |
3647 | 0 | } |
3648 | 0 | } |
3649 | 0 | return boxa; |
3650 | 0 | } |