/src/libjpeg-turbo/jddctmgr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jddctmgr.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1994-1996, Thomas G. Lane. |
6 | | * Modified 2002-2010 by Guido Vollbeding. |
7 | | * libjpeg-turbo Modifications: |
8 | | * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
9 | | * Copyright (C) 2010, 2015, 2022, D. R. Commander. |
10 | | * Copyright (C) 2013, MIPS Technologies, Inc., California. |
11 | | * For conditions of distribution and use, see the accompanying README.ijg |
12 | | * file. |
13 | | * |
14 | | * This file contains the inverse-DCT management logic. |
15 | | * This code selects a particular IDCT implementation to be used, |
16 | | * and it performs related housekeeping chores. No code in this file |
17 | | * is executed per IDCT step, only during output pass setup. |
18 | | * |
19 | | * Note that the IDCT routines are responsible for performing coefficient |
20 | | * dequantization as well as the IDCT proper. This module sets up the |
21 | | * dequantization multiplier table needed by the IDCT routine. |
22 | | */ |
23 | | |
24 | | #define JPEG_INTERNALS |
25 | | #include "jinclude.h" |
26 | | #include "jpeglib.h" |
27 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
28 | | #include "jsimddct.h" |
29 | | #include "jpegapicomp.h" |
30 | | |
31 | | |
32 | | /* |
33 | | * The decompressor input side (jdinput.c) saves away the appropriate |
34 | | * quantization table for each component at the start of the first scan |
35 | | * involving that component. (This is necessary in order to correctly |
36 | | * decode files that reuse Q-table slots.) |
37 | | * When we are ready to make an output pass, the saved Q-table is converted |
38 | | * to a multiplier table that will actually be used by the IDCT routine. |
39 | | * The multiplier table contents are IDCT-method-dependent. To support |
40 | | * application changes in IDCT method between scans, we can remake the |
41 | | * multiplier tables if necessary. |
42 | | * In buffered-image mode, the first output pass may occur before any data |
43 | | * has been seen for some components, and thus before their Q-tables have |
44 | | * been saved away. To handle this case, multiplier tables are preset |
45 | | * to zeroes; the result of the IDCT will be a neutral gray level. |
46 | | */ |
47 | | |
48 | | |
49 | | /* Private subobject for this module */ |
50 | | |
51 | | typedef struct { |
52 | | struct jpeg_inverse_dct pub; /* public fields */ |
53 | | |
54 | | /* This array contains the IDCT method code that each multiplier table |
55 | | * is currently set up for, or -1 if it's not yet set up. |
56 | | * The actual multiplier tables are pointed to by dct_table in the |
57 | | * per-component comp_info structures. |
58 | | */ |
59 | | int cur_method[MAX_COMPONENTS]; |
60 | | } my_idct_controller; |
61 | | |
62 | | typedef my_idct_controller *my_idct_ptr; |
63 | | |
64 | | |
65 | | /* Allocated multiplier tables: big enough for any supported variant */ |
66 | | |
67 | | typedef union { |
68 | | ISLOW_MULT_TYPE islow_array[DCTSIZE2]; |
69 | | #ifdef DCT_IFAST_SUPPORTED |
70 | | IFAST_MULT_TYPE ifast_array[DCTSIZE2]; |
71 | | #endif |
72 | | #ifdef DCT_FLOAT_SUPPORTED |
73 | | FLOAT_MULT_TYPE float_array[DCTSIZE2]; |
74 | | #endif |
75 | | } multiplier_table; |
76 | | |
77 | | |
78 | | /* The current scaled-IDCT routines require ISLOW-style multiplier tables, |
79 | | * so be sure to compile that code if either ISLOW or SCALING is requested. |
80 | | */ |
81 | | #ifdef DCT_ISLOW_SUPPORTED |
82 | | #define PROVIDE_ISLOW_TABLES |
83 | | #else |
84 | | #ifdef IDCT_SCALING_SUPPORTED |
85 | | #define PROVIDE_ISLOW_TABLES |
86 | | #endif |
87 | | #endif |
88 | | |
89 | | |
90 | | /* |
91 | | * Prepare for an output pass. |
92 | | * Here we select the proper IDCT routine for each component and build |
93 | | * a matching multiplier table. |
94 | | */ |
95 | | |
96 | | METHODDEF(void) |
97 | | start_pass(j_decompress_ptr cinfo) |
98 | 0 | { |
99 | 0 | my_idct_ptr idct = (my_idct_ptr)cinfo->idct; |
100 | 0 | int ci, i; |
101 | 0 | jpeg_component_info *compptr; |
102 | 0 | int method = 0; |
103 | 0 | _inverse_DCT_method_ptr method_ptr = NULL; |
104 | 0 | JQUANT_TBL *qtbl; |
105 | |
|
106 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
107 | 0 | ci++, compptr++) { |
108 | | /* Select the proper IDCT routine for this component's scaling */ |
109 | 0 | switch (compptr->_DCT_scaled_size) { |
110 | 0 | #ifdef IDCT_SCALING_SUPPORTED |
111 | 0 | case 1: |
112 | 0 | method_ptr = _jpeg_idct_1x1; |
113 | 0 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
114 | 0 | break; |
115 | 0 | case 2: |
116 | | #ifdef WITH_SIMD |
117 | | if (jsimd_can_idct_2x2()) |
118 | | method_ptr = jsimd_idct_2x2; |
119 | | else |
120 | | #endif |
121 | 0 | method_ptr = _jpeg_idct_2x2; |
122 | 0 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
123 | 0 | break; |
124 | 0 | case 3: |
125 | 0 | method_ptr = _jpeg_idct_3x3; |
126 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
127 | 0 | break; |
128 | 0 | case 4: |
129 | | #ifdef WITH_SIMD |
130 | | if (jsimd_can_idct_4x4()) |
131 | | method_ptr = jsimd_idct_4x4; |
132 | | else |
133 | | #endif |
134 | 0 | method_ptr = _jpeg_idct_4x4; |
135 | 0 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
136 | 0 | break; |
137 | 0 | case 5: |
138 | 0 | method_ptr = _jpeg_idct_5x5; |
139 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
140 | 0 | break; |
141 | 0 | case 6: |
142 | | #if defined(WITH_SIMD) && defined(__mips__) |
143 | | if (jsimd_can_idct_6x6()) |
144 | | method_ptr = jsimd_idct_6x6; |
145 | | else |
146 | | #endif |
147 | 0 | method_ptr = _jpeg_idct_6x6; |
148 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
149 | 0 | break; |
150 | 0 | case 7: |
151 | 0 | method_ptr = _jpeg_idct_7x7; |
152 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
153 | 0 | break; |
154 | 0 | #endif |
155 | 0 | case DCTSIZE: |
156 | 0 | switch (cinfo->dct_method) { |
157 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
158 | 0 | case JDCT_ISLOW: |
159 | | #ifdef WITH_SIMD |
160 | | if (jsimd_can_idct_islow()) |
161 | | method_ptr = jsimd_idct_islow; |
162 | | else |
163 | | #endif |
164 | 0 | method_ptr = _jpeg_idct_islow; |
165 | 0 | method = JDCT_ISLOW; |
166 | 0 | break; |
167 | 0 | #endif |
168 | 0 | #ifdef DCT_IFAST_SUPPORTED |
169 | 0 | case JDCT_IFAST: |
170 | | #ifdef WITH_SIMD |
171 | | if (jsimd_can_idct_ifast()) |
172 | | method_ptr = jsimd_idct_ifast; |
173 | | else |
174 | | #endif |
175 | 0 | method_ptr = _jpeg_idct_ifast; |
176 | 0 | method = JDCT_IFAST; |
177 | 0 | break; |
178 | 0 | #endif |
179 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
180 | 0 | case JDCT_FLOAT: |
181 | | #ifdef WITH_SIMD |
182 | | if (jsimd_can_idct_float()) |
183 | | method_ptr = jsimd_idct_float; |
184 | | else |
185 | | #endif |
186 | 0 | method_ptr = _jpeg_idct_float; |
187 | 0 | method = JDCT_FLOAT; |
188 | 0 | break; |
189 | 0 | #endif |
190 | 0 | default: |
191 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
192 | 0 | break; |
193 | 0 | } |
194 | 0 | break; |
195 | 0 | #ifdef IDCT_SCALING_SUPPORTED |
196 | 0 | case 9: |
197 | 0 | method_ptr = _jpeg_idct_9x9; |
198 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
199 | 0 | break; |
200 | 0 | case 10: |
201 | 0 | method_ptr = _jpeg_idct_10x10; |
202 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
203 | 0 | break; |
204 | 0 | case 11: |
205 | 0 | method_ptr = _jpeg_idct_11x11; |
206 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
207 | 0 | break; |
208 | 0 | case 12: |
209 | | #if defined(WITH_SIMD) && defined(__mips__) |
210 | | if (jsimd_can_idct_12x12()) |
211 | | method_ptr = jsimd_idct_12x12; |
212 | | else |
213 | | #endif |
214 | 0 | method_ptr = _jpeg_idct_12x12; |
215 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
216 | 0 | break; |
217 | 0 | case 13: |
218 | 0 | method_ptr = _jpeg_idct_13x13; |
219 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
220 | 0 | break; |
221 | 0 | case 14: |
222 | 0 | method_ptr = _jpeg_idct_14x14; |
223 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
224 | 0 | break; |
225 | 0 | case 15: |
226 | 0 | method_ptr = _jpeg_idct_15x15; |
227 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
228 | 0 | break; |
229 | 0 | case 16: |
230 | 0 | method_ptr = _jpeg_idct_16x16; |
231 | 0 | method = JDCT_ISLOW; /* jidctint uses islow-style table */ |
232 | 0 | break; |
233 | 0 | #endif |
234 | 0 | default: |
235 | 0 | ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->_DCT_scaled_size); |
236 | 0 | break; |
237 | 0 | } |
238 | 0 | idct->pub._inverse_DCT[ci] = method_ptr; |
239 | | /* Create multiplier table from quant table. |
240 | | * However, we can skip this if the component is uninteresting |
241 | | * or if we already built the table. Also, if no quant table |
242 | | * has yet been saved for the component, we leave the |
243 | | * multiplier table all-zero; we'll be reading zeroes from the |
244 | | * coefficient controller's buffer anyway. |
245 | | */ |
246 | 0 | if (!compptr->component_needed || idct->cur_method[ci] == method) |
247 | 0 | continue; |
248 | 0 | qtbl = compptr->quant_table; |
249 | 0 | if (qtbl == NULL) /* happens if no data yet for component */ |
250 | 0 | continue; |
251 | 0 | idct->cur_method[ci] = method; |
252 | 0 | switch (method) { |
253 | 0 | #ifdef PROVIDE_ISLOW_TABLES |
254 | 0 | case JDCT_ISLOW: |
255 | 0 | { |
256 | | /* For LL&M IDCT method, multipliers are equal to raw quantization |
257 | | * coefficients, but are stored as ints to ensure access efficiency. |
258 | | */ |
259 | 0 | ISLOW_MULT_TYPE *ismtbl = (ISLOW_MULT_TYPE *)compptr->dct_table; |
260 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
261 | 0 | ismtbl[i] = (ISLOW_MULT_TYPE)qtbl->quantval[i]; |
262 | 0 | } |
263 | 0 | } |
264 | 0 | break; |
265 | 0 | #endif |
266 | 0 | #ifdef DCT_IFAST_SUPPORTED |
267 | 0 | case JDCT_IFAST: |
268 | 0 | { |
269 | | /* For AA&N IDCT method, multipliers are equal to quantization |
270 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
271 | | * scalefactor[0] = 1 |
272 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
273 | | * For integer operation, the multiplier table is to be scaled by |
274 | | * IFAST_SCALE_BITS. |
275 | | */ |
276 | 0 | IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *)compptr->dct_table; |
277 | 0 | #define CONST_BITS 14 |
278 | 0 | static const INT16 aanscales[DCTSIZE2] = { |
279 | | /* precomputed values scaled up by 14 bits */ |
280 | 0 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
281 | 0 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
282 | 0 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
283 | 0 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
284 | 0 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
285 | 0 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
286 | 0 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
287 | 0 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
288 | 0 | }; |
289 | 0 | SHIFT_TEMPS |
290 | |
|
291 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
292 | 0 | ifmtbl[i] = (IFAST_MULT_TYPE) |
293 | 0 | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
294 | 0 | (JLONG)aanscales[i]), |
295 | 0 | CONST_BITS - IFAST_SCALE_BITS); |
296 | 0 | } |
297 | 0 | } |
298 | 0 | break; |
299 | 0 | #endif |
300 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
301 | 0 | case JDCT_FLOAT: |
302 | 0 | { |
303 | | /* For float AA&N IDCT method, multipliers are equal to quantization |
304 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
305 | | * scalefactor[0] = 1 |
306 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
307 | | */ |
308 | 0 | FLOAT_MULT_TYPE *fmtbl = (FLOAT_MULT_TYPE *)compptr->dct_table; |
309 | 0 | int row, col; |
310 | 0 | static const double aanscalefactor[DCTSIZE] = { |
311 | 0 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
312 | 0 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
313 | 0 | }; |
314 | |
|
315 | 0 | i = 0; |
316 | 0 | for (row = 0; row < DCTSIZE; row++) { |
317 | 0 | for (col = 0; col < DCTSIZE; col++) { |
318 | 0 | fmtbl[i] = (FLOAT_MULT_TYPE) |
319 | 0 | ((double)qtbl->quantval[i] * |
320 | 0 | aanscalefactor[row] * aanscalefactor[col]); |
321 | 0 | i++; |
322 | 0 | } |
323 | 0 | } |
324 | 0 | } |
325 | 0 | break; |
326 | 0 | #endif |
327 | 0 | default: |
328 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
329 | 0 | break; |
330 | 0 | } |
331 | 0 | } |
332 | 0 | } |
333 | | |
334 | | |
335 | | /* |
336 | | * Initialize IDCT manager. |
337 | | */ |
338 | | |
339 | | GLOBAL(void) |
340 | | _jinit_inverse_dct(j_decompress_ptr cinfo) |
341 | 0 | { |
342 | 0 | my_idct_ptr idct; |
343 | 0 | int ci; |
344 | 0 | jpeg_component_info *compptr; |
345 | |
|
346 | 0 | if (cinfo->data_precision != BITS_IN_JSAMPLE) |
347 | 0 | ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
348 | |
|
349 | 0 | idct = (my_idct_ptr) |
350 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
351 | 0 | sizeof(my_idct_controller)); |
352 | 0 | cinfo->idct = (struct jpeg_inverse_dct *)idct; |
353 | 0 | idct->pub.start_pass = start_pass; |
354 | |
|
355 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
356 | 0 | ci++, compptr++) { |
357 | | /* Allocate and pre-zero a multiplier table for each component */ |
358 | 0 | compptr->dct_table = |
359 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
360 | 0 | sizeof(multiplier_table)); |
361 | 0 | memset(compptr->dct_table, 0, sizeof(multiplier_table)); |
362 | | /* Mark multiplier table not yet set up for any method */ |
363 | 0 | idct->cur_method[ci] = -1; |
364 | 0 | } |
365 | 0 | } Unexecuted instantiation: j12init_inverse_dct Unexecuted instantiation: jinit_inverse_dct |