/src/leptonica/src/rotateam.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*====================================================================* |
2 | | - Copyright (C) 2001 Leptonica. All rights reserved. |
3 | | - |
4 | | - Redistribution and use in source and binary forms, with or without |
5 | | - modification, are permitted provided that the following conditions |
6 | | - are met: |
7 | | - 1. Redistributions of source code must retain the above copyright |
8 | | - notice, this list of conditions and the following disclaimer. |
9 | | - 2. Redistributions in binary form must reproduce the above |
10 | | - copyright notice, this list of conditions and the following |
11 | | - disclaimer in the documentation and/or other materials |
12 | | - provided with the distribution. |
13 | | - |
14 | | - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
15 | | - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
16 | | - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
17 | | - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY |
18 | | - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | | - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | | - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | | - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | | - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
23 | | - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
24 | | - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | | *====================================================================*/ |
26 | | |
27 | | |
28 | | /*! |
29 | | * \file rotateam.c |
30 | | * <pre> |
31 | | * |
32 | | * Grayscale and color rotation for area mapping (== interpolation) |
33 | | * |
34 | | * Rotation about the image center |
35 | | * PIX *pixRotateAM() |
36 | | * PIX *pixRotateAMColor() |
37 | | * PIX *pixRotateAMGray() |
38 | | * static void rotateAMColorLow() |
39 | | * static void rotateAMGrayLow() |
40 | | * |
41 | | * Rotation about the UL corner of the image |
42 | | * PIX *pixRotateAMCorner() |
43 | | * PIX *pixRotateAMColorCorner() |
44 | | * PIX *pixRotateAMGrayCorner() |
45 | | * static void rotateAMColorCornerLow() |
46 | | * static void rotateAMGrayCornerLow() |
47 | | * |
48 | | * Faster color rotation about the image center |
49 | | * PIX *pixRotateAMColorFast() |
50 | | * static void rotateAMColorFastLow() |
51 | | * |
52 | | * Rotations are measured in radians; clockwise is positive. |
53 | | * |
54 | | * The basic area mapping grayscale rotation works on 8 bpp images. |
55 | | * For color, the same method is applied to each color separately. |
56 | | * This can be done in two ways: (1) as here, computing each dest |
57 | | * rgb pixel from the appropriate four src rgb pixels, or (2) separating |
58 | | * the color image into three 8 bpp images, rotate each of these, |
59 | | * and then combine the result. Method (1) is about 2.5x faster. |
60 | | * We have also implemented a fast approximation for color area-mapping |
61 | | * rotation (pixRotateAMColorFast()), which is about 25% faster |
62 | | * than the standard color rotator. If you need the extra speed, |
63 | | * use it. |
64 | | * |
65 | | * Area mapping works as follows. For each dest |
66 | | * pixel you find the 4 source pixels that it partially |
67 | | * covers. You then compute the dest pixel value as |
68 | | * the area-weighted average of those 4 source pixels. |
69 | | * We make two simplifying approximations: |
70 | | * |
71 | | * ~ For simplicity, compute the areas as if the dest |
72 | | * pixel were translated but not rotated. |
73 | | * |
74 | | * ~ Compute area overlaps on a discrete sub-pixel grid. |
75 | | * Because we are using 8 bpp images with 256 levels, |
76 | | * it is convenient to break each pixel into a |
77 | | * 16x16 sub-pixel grid, and count the number of |
78 | | * overlapped sub-pixels. |
79 | | * |
80 | | * It is interesting to note that the digital filter that |
81 | | * implements the area mapping algorithm for rotation |
82 | | * is identical to the digital filter used for linear |
83 | | * interpolation when arbitrarily scaling grayscale images. |
84 | | * |
85 | | * The advantage of area mapping over pixel sampling |
86 | | * in grayscale rotation is that the former naturally |
87 | | * blurs sharp edges ("anti-aliasing"), so that stair-step |
88 | | * artifacts are not introduced. The disadvantage is that |
89 | | * it is significantly slower. |
90 | | * |
91 | | * But it is still pretty fast. With standard 3 GHz hardware, |
92 | | * the anti-aliased (area-mapped) color rotation speed is |
93 | | * about 15 million pixels/sec. |
94 | | * |
95 | | * The function pixRotateAMColorFast() is about 10-20% faster |
96 | | * than pixRotateAMColor(). The quality is slightly worse, |
97 | | * and if you make many successive small rotations, with a |
98 | | * total angle of 360 degrees, it has been noted that the |
99 | | * center wanders -- it seems to be doing a 1 pixel translation |
100 | | * in addition to the rotation. |
101 | | * |
102 | | * Consider again the comparison of image quality between sampling |
103 | | * and area mapping. With sampling, sharp edges such as found in |
104 | | * text images remain sharp. However, sampling artifacts such as |
105 | | * characters randomly bouncing up and down by one pixel, or |
106 | | * one pixel horizontal shear lines going through a line of text |
107 | | * (causing the characters to look like badly rendered italic), |
108 | | * are highly visible. It does not help to sample the source pixel |
109 | | * with the largest area covering each dest pixel; the result has |
110 | | * the same ugly sampling artifacts. |
111 | | * |
112 | | * With area mapping, these annoying artifacts are avoided, but the |
113 | | * blurring of edges makes small text a bit more difficult to read. |
114 | | * However, if you are willing to do more computation, you can have |
115 | | * the best of both worlds: no sampling artifacts and sharp edges. |
116 | | * Use area mapping to avoid sampling issues, and follow it with |
117 | | * unsharp masking. Experiment with the sharpening parameters. |
118 | | * I have found that a small amount of sharpening is sufficient to |
119 | | * restore the sharp edges in text; e.g., |
120 | | * pix2 = pixUnsharpMasking(pix1, 1, 0.3); |
121 | | * </pre> |
122 | | */ |
123 | | |
124 | | #ifdef HAVE_CONFIG_H |
125 | | #include <config_auto.h> |
126 | | #endif /* HAVE_CONFIG_H */ |
127 | | |
128 | | #include <string.h> |
129 | | #include <math.h> /* required for sin and tan */ |
130 | | #include "allheaders.h" |
131 | | |
132 | | static void rotateAMColorLow(l_uint32 *datad, l_int32 w, l_int32 h, |
133 | | l_int32 wpld, l_uint32 *datas, l_int32 wpls, |
134 | | l_float32 angle, l_uint32 colorval); |
135 | | static void rotateAMGrayLow(l_uint32 *datad, l_int32 w, l_int32 h, |
136 | | l_int32 wpld, l_uint32 *datas, l_int32 wpls, |
137 | | l_float32 angle, l_uint8 grayval); |
138 | | static void rotateAMColorCornerLow(l_uint32 *datad, l_int32 w, l_int32 h, |
139 | | l_int32 wpld, l_uint32 *datas, |
140 | | l_int32 wpls, l_float32 angle, |
141 | | l_uint32 colorval); |
142 | | static void rotateAMGrayCornerLow(l_uint32 *datad, l_int32 w, l_int32 h, |
143 | | l_int32 wpld, l_uint32 *datas, l_int32 wpls, |
144 | | l_float32 angle, l_uint8 grayval); |
145 | | |
146 | | static void rotateAMColorFastLow(l_uint32 *datad, l_int32 w, l_int32 h, |
147 | | l_int32 wpld, l_uint32 *datas, l_int32 wpls, |
148 | | l_float32 angle, l_uint32 colorval); |
149 | | |
150 | | static const l_float32 MinAngleToRotate = 0.001f; /* radians; ~0.06 deg */ |
151 | | |
152 | | |
153 | | /*------------------------------------------------------------------* |
154 | | * Rotation about the center * |
155 | | *------------------------------------------------------------------*/ |
156 | | /*! |
157 | | * \brief pixRotateAM() |
158 | | * |
159 | | * \param[in] pixs 2, 4, 8 bpp gray or colormapped, or 32 bpp RGB |
160 | | * \param[in] angle radians; clockwise is positive |
161 | | * \param[in] incolor L_BRING_IN_WHITE, L_BRING_IN_BLACK |
162 | | * \return pixd, or NULL on error |
163 | | * |
164 | | * <pre> |
165 | | * Notes: |
166 | | * (1) Rotates about image center. |
167 | | * (2) A positive angle gives a clockwise rotation. |
168 | | * (3) Brings in either black or white pixels from the boundary. |
169 | | * </pre> |
170 | | */ |
171 | | PIX * |
172 | | pixRotateAM(PIX *pixs, |
173 | | l_float32 angle, |
174 | | l_int32 incolor) |
175 | 0 | { |
176 | 0 | l_int32 d; |
177 | 0 | l_uint32 fillval; |
178 | 0 | PIX *pixt1, *pixt2, *pixd; |
179 | |
|
180 | 0 | if (!pixs) |
181 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
182 | 0 | if (pixGetDepth(pixs) == 1) |
183 | 0 | return (PIX *)ERROR_PTR("pixs is 1 bpp", __func__, NULL); |
184 | | |
185 | 0 | if (L_ABS(angle) < MinAngleToRotate) |
186 | 0 | return pixClone(pixs); |
187 | | |
188 | | /* Remove cmap if it exists, and unpack to 8 bpp if necessary */ |
189 | 0 | pixt1 = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC); |
190 | 0 | d = pixGetDepth(pixt1); |
191 | 0 | if (d < 8) |
192 | 0 | pixt2 = pixConvertTo8(pixt1, FALSE); |
193 | 0 | else |
194 | 0 | pixt2 = pixClone(pixt1); |
195 | 0 | d = pixGetDepth(pixt2); |
196 | | |
197 | | /* Compute actual incoming color */ |
198 | 0 | fillval = 0; |
199 | 0 | if (incolor == L_BRING_IN_WHITE) { |
200 | 0 | if (d == 8) |
201 | 0 | fillval = 255; |
202 | 0 | else /* d == 32 */ |
203 | 0 | fillval = 0xffffff00; |
204 | 0 | } |
205 | |
|
206 | 0 | if (d == 8) |
207 | 0 | pixd = pixRotateAMGray(pixt2, angle, fillval); |
208 | 0 | else /* d == 32 */ |
209 | 0 | pixd = pixRotateAMColor(pixt2, angle, fillval); |
210 | |
|
211 | 0 | pixDestroy(&pixt1); |
212 | 0 | pixDestroy(&pixt2); |
213 | 0 | return pixd; |
214 | 0 | } |
215 | | |
216 | | |
217 | | /*! |
218 | | * \brief pixRotateAMColor() |
219 | | * |
220 | | * \param[in] pixs 32 bpp |
221 | | * \param[in] angle radians; clockwise is positive |
222 | | * \param[in] colorval e.g., 0 to bring in BLACK, 0xffffff00 for WHITE |
223 | | * \return pixd, or NULL on error |
224 | | * |
225 | | * <pre> |
226 | | * Notes: |
227 | | * (1) Rotates about image center. |
228 | | * (2) A positive angle gives a clockwise rotation. |
229 | | * (3) Specify the color to be brought in from outside the image. |
230 | | * </pre> |
231 | | */ |
232 | | PIX * |
233 | | pixRotateAMColor(PIX *pixs, |
234 | | l_float32 angle, |
235 | | l_uint32 colorval) |
236 | 0 | { |
237 | 0 | l_int32 w, h, wpls, wpld; |
238 | 0 | l_uint32 *datas, *datad; |
239 | 0 | PIX *pix1, *pix2, *pixd; |
240 | |
|
241 | 0 | if (!pixs) |
242 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
243 | 0 | if (pixGetDepth(pixs) != 32) |
244 | 0 | return (PIX *)ERROR_PTR("pixs must be 32 bpp", __func__, NULL); |
245 | | |
246 | 0 | if (L_ABS(angle) < MinAngleToRotate) |
247 | 0 | return pixClone(pixs); |
248 | | |
249 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
250 | 0 | datas = pixGetData(pixs); |
251 | 0 | wpls = pixGetWpl(pixs); |
252 | 0 | pixd = pixCreateTemplate(pixs); |
253 | 0 | datad = pixGetData(pixd); |
254 | 0 | wpld = pixGetWpl(pixd); |
255 | |
|
256 | 0 | rotateAMColorLow(datad, w, h, wpld, datas, wpls, angle, colorval); |
257 | 0 | if (pixGetSpp(pixs) == 4) { |
258 | 0 | pix1 = pixGetRGBComponent(pixs, L_ALPHA_CHANNEL); |
259 | 0 | pix2 = pixRotateAMGray(pix1, angle, 255); /* bring in opaque */ |
260 | 0 | pixSetRGBComponent(pixd, pix2, L_ALPHA_CHANNEL); |
261 | 0 | pixDestroy(&pix1); |
262 | 0 | pixDestroy(&pix2); |
263 | 0 | } |
264 | |
|
265 | 0 | return pixd; |
266 | 0 | } |
267 | | |
268 | | |
269 | | /*! |
270 | | * \brief pixRotateAMGray() |
271 | | * |
272 | | * \param[in] pixs 8 bpp |
273 | | * \param[in] angle radians; clockwise is positive |
274 | | * \param[in] grayval 0 to bring in BLACK, 255 for WHITE |
275 | | * \return pixd, or NULL on error |
276 | | * |
277 | | * <pre> |
278 | | * Notes: |
279 | | * (1) Rotates about image center. |
280 | | * (2) A positive angle gives a clockwise rotation. |
281 | | * (3) Specify the grayvalue to be brought in from outside the image. |
282 | | * </pre> |
283 | | */ |
284 | | PIX * |
285 | | pixRotateAMGray(PIX *pixs, |
286 | | l_float32 angle, |
287 | | l_uint8 grayval) |
288 | 0 | { |
289 | 0 | l_int32 w, h, wpls, wpld; |
290 | 0 | l_uint32 *datas, *datad; |
291 | 0 | PIX *pixd; |
292 | |
|
293 | 0 | if (!pixs) |
294 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
295 | 0 | if (pixGetDepth(pixs) != 8) |
296 | 0 | return (PIX *)ERROR_PTR("pixs must be 8 bpp", __func__, NULL); |
297 | | |
298 | 0 | if (L_ABS(angle) < MinAngleToRotate) |
299 | 0 | return pixClone(pixs); |
300 | | |
301 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
302 | 0 | datas = pixGetData(pixs); |
303 | 0 | wpls = pixGetWpl(pixs); |
304 | 0 | pixd = pixCreateTemplate(pixs); |
305 | 0 | datad = pixGetData(pixd); |
306 | 0 | wpld = pixGetWpl(pixd); |
307 | |
|
308 | 0 | rotateAMGrayLow(datad, w, h, wpld, datas, wpls, angle, grayval); |
309 | |
|
310 | 0 | return pixd; |
311 | 0 | } |
312 | | |
313 | | |
314 | | static void |
315 | | rotateAMColorLow(l_uint32 *datad, |
316 | | l_int32 w, |
317 | | l_int32 h, |
318 | | l_int32 wpld, |
319 | | l_uint32 *datas, |
320 | | l_int32 wpls, |
321 | | l_float32 angle, |
322 | | l_uint32 colorval) |
323 | 0 | { |
324 | 0 | l_int32 i, j, xcen, ycen, wm2, hm2; |
325 | 0 | l_int32 xdif, ydif, xpm, ypm, xp, yp, xf, yf; |
326 | 0 | l_int32 rval, gval, bval; |
327 | 0 | l_uint32 word00, word01, word10, word11; |
328 | 0 | l_uint32 *lines, *lined; |
329 | 0 | l_float32 sina, cosa; |
330 | |
|
331 | 0 | xcen = w / 2; |
332 | 0 | wm2 = w - 2; |
333 | 0 | ycen = h / 2; |
334 | 0 | hm2 = h - 2; |
335 | 0 | sina = 16.f * sin(angle); |
336 | 0 | cosa = 16.f * cos(angle); |
337 | |
|
338 | 0 | for (i = 0; i < h; i++) { |
339 | 0 | ydif = ycen - i; |
340 | 0 | lined = datad + i * wpld; |
341 | 0 | for (j = 0; j < w; j++) { |
342 | 0 | xdif = xcen - j; |
343 | 0 | xpm = (l_int32)(-xdif * cosa - ydif * sina); |
344 | 0 | ypm = (l_int32)(-ydif * cosa + xdif * sina); |
345 | 0 | xp = xcen + (xpm >> 4); |
346 | 0 | yp = ycen + (ypm >> 4); |
347 | 0 | xf = xpm & 0x0f; |
348 | 0 | yf = ypm & 0x0f; |
349 | | |
350 | | /* if off the edge, write input colorval */ |
351 | 0 | if (xp < 0 || yp < 0 || xp > wm2 || yp > hm2) { |
352 | 0 | *(lined + j) = colorval; |
353 | 0 | continue; |
354 | 0 | } |
355 | | |
356 | 0 | lines = datas + yp * wpls; |
357 | | |
358 | | /* do area weighting. Without this, we would |
359 | | * simply do: |
360 | | * *(lined + j) = *(lines + xp); |
361 | | * which is faster but gives lousy results! |
362 | | */ |
363 | 0 | word00 = *(lines + xp); |
364 | 0 | word10 = *(lines + xp + 1); |
365 | 0 | word01 = *(lines + wpls + xp); |
366 | 0 | word11 = *(lines + wpls + xp + 1); |
367 | 0 | rval = ((16 - xf) * (16 - yf) * ((word00 >> L_RED_SHIFT) & 0xff) + |
368 | 0 | xf * (16 - yf) * ((word10 >> L_RED_SHIFT) & 0xff) + |
369 | 0 | (16 - xf) * yf * ((word01 >> L_RED_SHIFT) & 0xff) + |
370 | 0 | xf * yf * ((word11 >> L_RED_SHIFT) & 0xff) + 128) / 256; |
371 | 0 | gval = ((16 - xf) * (16 - yf) * ((word00 >> L_GREEN_SHIFT) & 0xff) + |
372 | 0 | xf * (16 - yf) * ((word10 >> L_GREEN_SHIFT) & 0xff) + |
373 | 0 | (16 - xf) * yf * ((word01 >> L_GREEN_SHIFT) & 0xff) + |
374 | 0 | xf * yf * ((word11 >> L_GREEN_SHIFT) & 0xff) + 128) / 256; |
375 | 0 | bval = ((16 - xf) * (16 - yf) * ((word00 >> L_BLUE_SHIFT) & 0xff) + |
376 | 0 | xf * (16 - yf) * ((word10 >> L_BLUE_SHIFT) & 0xff) + |
377 | 0 | (16 - xf) * yf * ((word01 >> L_BLUE_SHIFT) & 0xff) + |
378 | 0 | xf * yf * ((word11 >> L_BLUE_SHIFT) & 0xff) + 128) / 256; |
379 | 0 | composeRGBPixel(rval, gval, bval, lined + j); |
380 | 0 | } |
381 | 0 | } |
382 | 0 | } |
383 | | |
384 | | |
385 | | static void |
386 | | rotateAMGrayLow(l_uint32 *datad, |
387 | | l_int32 w, |
388 | | l_int32 h, |
389 | | l_int32 wpld, |
390 | | l_uint32 *datas, |
391 | | l_int32 wpls, |
392 | | l_float32 angle, |
393 | | l_uint8 grayval) |
394 | 0 | { |
395 | 0 | l_int32 i, j, xcen, ycen, wm2, hm2; |
396 | 0 | l_int32 xdif, ydif, xpm, ypm, xp, yp, xf, yf; |
397 | 0 | l_int32 v00, v01, v10, v11; |
398 | 0 | l_uint8 val; |
399 | 0 | l_uint32 *lines, *lined; |
400 | 0 | l_float32 sina, cosa; |
401 | |
|
402 | 0 | xcen = w / 2; |
403 | 0 | wm2 = w - 2; |
404 | 0 | ycen = h / 2; |
405 | 0 | hm2 = h - 2; |
406 | 0 | sina = 16.f * sin(angle); |
407 | 0 | cosa = 16.f * cos(angle); |
408 | |
|
409 | 0 | for (i = 0; i < h; i++) { |
410 | 0 | ydif = ycen - i; |
411 | 0 | lined = datad + i * wpld; |
412 | 0 | for (j = 0; j < w; j++) { |
413 | 0 | xdif = xcen - j; |
414 | 0 | xpm = (l_int32)(-xdif * cosa - ydif * sina); |
415 | 0 | ypm = (l_int32)(-ydif * cosa + xdif * sina); |
416 | 0 | xp = xcen + (xpm >> 4); |
417 | 0 | yp = ycen + (ypm >> 4); |
418 | 0 | xf = xpm & 0x0f; |
419 | 0 | yf = ypm & 0x0f; |
420 | | |
421 | | /* if off the edge, write input grayval */ |
422 | 0 | if (xp < 0 || yp < 0 || xp > wm2 || yp > hm2) { |
423 | 0 | SET_DATA_BYTE(lined, j, grayval); |
424 | 0 | continue; |
425 | 0 | } |
426 | | |
427 | 0 | lines = datas + yp * wpls; |
428 | | |
429 | | /* do area weighting. Without this, we would |
430 | | * simply do: |
431 | | * SET_DATA_BYTE(lined, j, GET_DATA_BYTE(lines, xp)); |
432 | | * which is faster but gives lousy results! |
433 | | */ |
434 | 0 | v00 = (16 - xf) * (16 - yf) * GET_DATA_BYTE(lines, xp); |
435 | 0 | v10 = xf * (16 - yf) * GET_DATA_BYTE(lines, xp + 1); |
436 | 0 | v01 = (16 - xf) * yf * GET_DATA_BYTE(lines + wpls, xp); |
437 | 0 | v11 = xf * yf * GET_DATA_BYTE(lines + wpls, xp + 1); |
438 | 0 | val = (l_uint8)((v00 + v01 + v10 + v11 + 128) / 256); |
439 | 0 | SET_DATA_BYTE(lined, j, val); |
440 | 0 | } |
441 | 0 | } |
442 | 0 | } |
443 | | |
444 | | |
445 | | /*------------------------------------------------------------------* |
446 | | * Rotation about the UL corner * |
447 | | *------------------------------------------------------------------*/ |
448 | | /*! |
449 | | * \brief pixRotateAMCorner() |
450 | | * |
451 | | * \param[in] pixs 1, 2, 4, 8 bpp gray or colormapped, or 32 bpp RGB |
452 | | * \param[in] angle radians; clockwise is positive |
453 | | * \param[in] incolor L_BRING_IN_WHITE, L_BRING_IN_BLACK |
454 | | * \return pixd, or NULL on error |
455 | | * |
456 | | * <pre> |
457 | | * Notes: |
458 | | * (1) Rotates about the UL corner of the image. |
459 | | * (2) A positive angle gives a clockwise rotation. |
460 | | * (3) Brings in either black or white pixels from the boundary. |
461 | | * </pre> |
462 | | */ |
463 | | PIX * |
464 | | pixRotateAMCorner(PIX *pixs, |
465 | | l_float32 angle, |
466 | | l_int32 incolor) |
467 | 0 | { |
468 | 0 | l_int32 d; |
469 | 0 | l_uint32 fillval; |
470 | 0 | PIX *pixt1, *pixt2, *pixd; |
471 | |
|
472 | 0 | if (!pixs) |
473 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
474 | | |
475 | 0 | if (L_ABS(angle) < MinAngleToRotate) |
476 | 0 | return pixClone(pixs); |
477 | | |
478 | | /* Remove cmap if it exists, and unpack to 8 bpp if necessary */ |
479 | 0 | pixt1 = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC); |
480 | 0 | d = pixGetDepth(pixt1); |
481 | 0 | if (d < 8) |
482 | 0 | pixt2 = pixConvertTo8(pixt1, FALSE); |
483 | 0 | else |
484 | 0 | pixt2 = pixClone(pixt1); |
485 | 0 | d = pixGetDepth(pixt2); |
486 | | |
487 | | /* Compute actual incoming color */ |
488 | 0 | fillval = 0; |
489 | 0 | if (incolor == L_BRING_IN_WHITE) { |
490 | 0 | if (d == 8) |
491 | 0 | fillval = 255; |
492 | 0 | else /* d == 32 */ |
493 | 0 | fillval = 0xffffff00; |
494 | 0 | } |
495 | |
|
496 | 0 | if (d == 8) |
497 | 0 | pixd = pixRotateAMGrayCorner(pixt2, angle, fillval); |
498 | 0 | else /* d == 32 */ |
499 | 0 | pixd = pixRotateAMColorCorner(pixt2, angle, fillval); |
500 | |
|
501 | 0 | pixDestroy(&pixt1); |
502 | 0 | pixDestroy(&pixt2); |
503 | 0 | return pixd; |
504 | 0 | } |
505 | | |
506 | | |
507 | | /*! |
508 | | * \brief pixRotateAMColorCorner() |
509 | | * |
510 | | * \param[in] pixs |
511 | | * \param[in] angle radians; clockwise is positive |
512 | | * \param[in] fillval e.g., 0 to bring in BLACK, 0xffffff00 for WHITE |
513 | | * \return pixd, or NULL on error |
514 | | * |
515 | | * <pre> |
516 | | * Notes: |
517 | | * (1) Rotates the image about the UL corner. |
518 | | * (2) A positive angle gives a clockwise rotation. |
519 | | * (3) Specify the color to be brought in from outside the image. |
520 | | * </pre> |
521 | | */ |
522 | | PIX * |
523 | | pixRotateAMColorCorner(PIX *pixs, |
524 | | l_float32 angle, |
525 | | l_uint32 fillval) |
526 | 0 | { |
527 | 0 | l_int32 w, h, wpls, wpld; |
528 | 0 | l_uint32 *datas, *datad; |
529 | 0 | PIX *pix1, *pix2, *pixd; |
530 | |
|
531 | 0 | if (!pixs) |
532 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
533 | 0 | if (pixGetDepth(pixs) != 32) |
534 | 0 | return (PIX *)ERROR_PTR("pixs must be 32 bpp", __func__, NULL); |
535 | | |
536 | 0 | if (L_ABS(angle) < MinAngleToRotate) |
537 | 0 | return pixClone(pixs); |
538 | | |
539 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
540 | 0 | datas = pixGetData(pixs); |
541 | 0 | wpls = pixGetWpl(pixs); |
542 | 0 | pixd = pixCreateTemplate(pixs); |
543 | 0 | datad = pixGetData(pixd); |
544 | 0 | wpld = pixGetWpl(pixd); |
545 | |
|
546 | 0 | rotateAMColorCornerLow(datad, w, h, wpld, datas, wpls, angle, fillval); |
547 | 0 | if (pixGetSpp(pixs) == 4) { |
548 | 0 | pix1 = pixGetRGBComponent(pixs, L_ALPHA_CHANNEL); |
549 | 0 | pix2 = pixRotateAMGrayCorner(pix1, angle, 255); /* bring in opaque */ |
550 | 0 | pixSetRGBComponent(pixd, pix2, L_ALPHA_CHANNEL); |
551 | 0 | pixDestroy(&pix1); |
552 | 0 | pixDestroy(&pix2); |
553 | 0 | } |
554 | |
|
555 | 0 | return pixd; |
556 | 0 | } |
557 | | |
558 | | |
559 | | /*! |
560 | | * \brief pixRotateAMGrayCorner() |
561 | | * |
562 | | * \param[in] pixs |
563 | | * \param[in] angle radians; clockwise is positive |
564 | | * \param[in] grayval 0 to bring in BLACK, 255 for WHITE |
565 | | * \return pixd, or NULL on error |
566 | | * |
567 | | * <pre> |
568 | | * Notes: |
569 | | * (1) Rotates the image about the UL corner. |
570 | | * (2) A positive angle gives a clockwise rotation. |
571 | | * (3) Specify the grayvalue to be brought in from outside the image. |
572 | | * </pre> |
573 | | */ |
574 | | PIX * |
575 | | pixRotateAMGrayCorner(PIX *pixs, |
576 | | l_float32 angle, |
577 | | l_uint8 grayval) |
578 | 0 | { |
579 | 0 | l_int32 w, h, wpls, wpld; |
580 | 0 | l_uint32 *datas, *datad; |
581 | 0 | PIX *pixd; |
582 | |
|
583 | 0 | if (!pixs) |
584 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
585 | 0 | if (pixGetDepth(pixs) != 8) |
586 | 0 | return (PIX *)ERROR_PTR("pixs must be 8 bpp", __func__, NULL); |
587 | | |
588 | 0 | if (L_ABS(angle) < MinAngleToRotate) |
589 | 0 | return pixClone(pixs); |
590 | | |
591 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
592 | 0 | datas = pixGetData(pixs); |
593 | 0 | wpls = pixGetWpl(pixs); |
594 | 0 | pixd = pixCreateTemplate(pixs); |
595 | 0 | datad = pixGetData(pixd); |
596 | 0 | wpld = pixGetWpl(pixd); |
597 | |
|
598 | 0 | rotateAMGrayCornerLow(datad, w, h, wpld, datas, wpls, angle, grayval); |
599 | |
|
600 | 0 | return pixd; |
601 | 0 | } |
602 | | |
603 | | |
604 | | static void |
605 | | rotateAMColorCornerLow(l_uint32 *datad, |
606 | | l_int32 w, |
607 | | l_int32 h, |
608 | | l_int32 wpld, |
609 | | l_uint32 *datas, |
610 | | l_int32 wpls, |
611 | | l_float32 angle, |
612 | | l_uint32 colorval) |
613 | 0 | { |
614 | 0 | l_int32 i, j, wm2, hm2; |
615 | 0 | l_int32 xpm, ypm, xp, yp, xf, yf; |
616 | 0 | l_int32 rval, gval, bval; |
617 | 0 | l_uint32 word00, word01, word10, word11; |
618 | 0 | l_uint32 *lines, *lined; |
619 | 0 | l_float32 sina, cosa; |
620 | |
|
621 | 0 | wm2 = w - 2; |
622 | 0 | hm2 = h - 2; |
623 | 0 | sina = 16.f * sin(angle); |
624 | 0 | cosa = 16.f * cos(angle); |
625 | |
|
626 | 0 | for (i = 0; i < h; i++) { |
627 | 0 | lined = datad + i * wpld; |
628 | 0 | for (j = 0; j < w; j++) { |
629 | 0 | xpm = (l_int32)(j * cosa + i * sina); |
630 | 0 | ypm = (l_int32)(i * cosa - j * sina); |
631 | 0 | xp = xpm >> 4; |
632 | 0 | yp = ypm >> 4; |
633 | 0 | xf = xpm & 0x0f; |
634 | 0 | yf = ypm & 0x0f; |
635 | | |
636 | | /* if off the edge, write input colorval */ |
637 | 0 | if (xp < 0 || yp < 0 || xp > wm2 || yp > hm2) { |
638 | 0 | *(lined + j) = colorval; |
639 | 0 | continue; |
640 | 0 | } |
641 | | |
642 | 0 | lines = datas + yp * wpls; |
643 | | |
644 | | /* do area weighting. Without this, we would |
645 | | * simply do: |
646 | | * *(lined + j) = *(lines + xp); |
647 | | * which is faster but gives lousy results! |
648 | | */ |
649 | 0 | word00 = *(lines + xp); |
650 | 0 | word10 = *(lines + xp + 1); |
651 | 0 | word01 = *(lines + wpls + xp); |
652 | 0 | word11 = *(lines + wpls + xp + 1); |
653 | 0 | rval = ((16 - xf) * (16 - yf) * ((word00 >> L_RED_SHIFT) & 0xff) + |
654 | 0 | xf * (16 - yf) * ((word10 >> L_RED_SHIFT) & 0xff) + |
655 | 0 | (16 - xf) * yf * ((word01 >> L_RED_SHIFT) & 0xff) + |
656 | 0 | xf * yf * ((word11 >> L_RED_SHIFT) & 0xff) + 128) / 256; |
657 | 0 | gval = ((16 - xf) * (16 - yf) * ((word00 >> L_GREEN_SHIFT) & 0xff) + |
658 | 0 | xf * (16 - yf) * ((word10 >> L_GREEN_SHIFT) & 0xff) + |
659 | 0 | (16 - xf) * yf * ((word01 >> L_GREEN_SHIFT) & 0xff) + |
660 | 0 | xf * yf * ((word11 >> L_GREEN_SHIFT) & 0xff) + 128) / 256; |
661 | 0 | bval = ((16 - xf) * (16 - yf) * ((word00 >> L_BLUE_SHIFT) & 0xff) + |
662 | 0 | xf * (16 - yf) * ((word10 >> L_BLUE_SHIFT) & 0xff) + |
663 | 0 | (16 - xf) * yf * ((word01 >> L_BLUE_SHIFT) & 0xff) + |
664 | 0 | xf * yf * ((word11 >> L_BLUE_SHIFT) & 0xff) + 128) / 256; |
665 | 0 | composeRGBPixel(rval, gval, bval, lined + j); |
666 | 0 | } |
667 | 0 | } |
668 | 0 | } |
669 | | |
670 | | |
671 | | static void |
672 | | rotateAMGrayCornerLow(l_uint32 *datad, |
673 | | l_int32 w, |
674 | | l_int32 h, |
675 | | l_int32 wpld, |
676 | | l_uint32 *datas, |
677 | | l_int32 wpls, |
678 | | l_float32 angle, |
679 | | l_uint8 grayval) |
680 | 0 | { |
681 | 0 | l_int32 i, j, wm2, hm2; |
682 | 0 | l_int32 xpm, ypm, xp, yp, xf, yf; |
683 | 0 | l_int32 v00, v01, v10, v11; |
684 | 0 | l_uint8 val; |
685 | 0 | l_uint32 *lines, *lined; |
686 | 0 | l_float32 sina, cosa; |
687 | |
|
688 | 0 | wm2 = w - 2; |
689 | 0 | hm2 = h - 2; |
690 | 0 | sina = 16.f * sin(angle); |
691 | 0 | cosa = 16.f * cos(angle); |
692 | |
|
693 | 0 | for (i = 0; i < h; i++) { |
694 | 0 | lined = datad + i * wpld; |
695 | 0 | for (j = 0; j < w; j++) { |
696 | 0 | xpm = (l_int32)(j * cosa + i * sina); |
697 | 0 | ypm = (l_int32)(i * cosa - j * sina); |
698 | 0 | xp = xpm >> 4; |
699 | 0 | yp = ypm >> 4; |
700 | 0 | xf = xpm & 0x0f; |
701 | 0 | yf = ypm & 0x0f; |
702 | | |
703 | | /* if off the edge, write input grayval */ |
704 | 0 | if (xp < 0 || yp < 0 || xp > wm2 || yp > hm2) { |
705 | 0 | SET_DATA_BYTE(lined, j, grayval); |
706 | 0 | continue; |
707 | 0 | } |
708 | | |
709 | 0 | lines = datas + yp * wpls; |
710 | | |
711 | | /* do area weighting. Without this, we would |
712 | | * simply do: |
713 | | * SET_DATA_BYTE(lined, j, GET_DATA_BYTE(lines, xp)); |
714 | | * which is faster but gives lousy results! |
715 | | */ |
716 | 0 | v00 = (16 - xf) * (16 - yf) * GET_DATA_BYTE(lines, xp); |
717 | 0 | v10 = xf * (16 - yf) * GET_DATA_BYTE(lines, xp + 1); |
718 | 0 | v01 = (16 - xf) * yf * GET_DATA_BYTE(lines + wpls, xp); |
719 | 0 | v11 = xf * yf * GET_DATA_BYTE(lines + wpls, xp + 1); |
720 | 0 | val = (l_uint8)((v00 + v01 + v10 + v11 + 128) / 256); |
721 | 0 | SET_DATA_BYTE(lined, j, val); |
722 | 0 | } |
723 | 0 | } |
724 | 0 | } |
725 | | |
726 | | |
727 | | /*------------------------------------------------------------------* |
728 | | * Fast RGB color rotation about center * |
729 | | *------------------------------------------------------------------*/ |
730 | | /*! |
731 | | * \brief pixRotateAMColorFast() |
732 | | * |
733 | | * \param[in] pixs |
734 | | * \param[in] angle radians; clockwise is positive |
735 | | * \param[in] colorval e.g., 0 to bring in BLACK, 0xffffff00 for WHITE |
736 | | * \return pixd, or NULL on error |
737 | | * |
738 | | * <pre> |
739 | | * Notes: |
740 | | * (1) This rotates a color image about the image center. |
741 | | * (2) A positive angle gives a clockwise rotation. |
742 | | * (3) It uses area mapping, dividing each pixel into |
743 | | * 16 subpixels. |
744 | | * (4) It is about 10% to 20% faster than the more accurate linear |
745 | | * interpolation function pixRotateAMColor(), |
746 | | * which uses 256 subpixels. |
747 | | * (5) For some reason it shifts the image center. |
748 | | * No attempt is made to rotate the alpha component. |
749 | | * </pre> |
750 | | */ |
751 | | PIX * |
752 | | pixRotateAMColorFast(PIX *pixs, |
753 | | l_float32 angle, |
754 | | l_uint32 colorval) |
755 | 0 | { |
756 | 0 | l_int32 w, h, wpls, wpld; |
757 | 0 | l_uint32 *datas, *datad; |
758 | 0 | PIX *pixd; |
759 | |
|
760 | 0 | if (!pixs) |
761 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
762 | 0 | if (pixGetDepth(pixs) != 32) |
763 | 0 | return (PIX *)ERROR_PTR("pixs must be 32 bpp", __func__, NULL); |
764 | | |
765 | 0 | if (L_ABS(angle) < MinAngleToRotate) |
766 | 0 | return pixClone(pixs); |
767 | | |
768 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
769 | 0 | datas = pixGetData(pixs); |
770 | 0 | wpls = pixGetWpl(pixs); |
771 | 0 | pixd = pixCreateTemplate(pixs); |
772 | 0 | datad = pixGetData(pixd); |
773 | 0 | wpld = pixGetWpl(pixd); |
774 | |
|
775 | 0 | rotateAMColorFastLow(datad, w, h, wpld, datas, wpls, angle, colorval); |
776 | 0 | return pixd; |
777 | 0 | } |
778 | | |
779 | | |
780 | | /*! |
781 | | * \brief rotateAMColorFastLow() |
782 | | * |
783 | | * This is a special simplification of area mapping with division |
784 | | * of each pixel into 16 sub-pixels. The exact coefficients that |
785 | | * should be used are the same as for the 4x linear interpolation |
786 | | * scaling case, and are given there. I tried to approximate these |
787 | | * as weighted coefficients with a maximum sum of 4, which |
788 | | * allows us to do the arithmetic in parallel for the R, G and B |
789 | | * components in a 32 bit pixel. However, there are three reasons |
790 | | * for not doing that: |
791 | | * (1) the loss of accuracy in the parallel implementation |
792 | | * is visually significant |
793 | | * (2) the parallel implementation (described below) is slower |
794 | | * (3) the parallel implementation requires allocation of |
795 | | * a temporary color image |
796 | | * |
797 | | * There are 16 cases for the choice of the subpixel, and |
798 | | * for each, the mapping to the relevant source |
799 | | * pixels is as follows: |
800 | | * |
801 | | * subpixel src pixel weights |
802 | | * -------- ----------------- |
803 | | * 0 sp1 |
804 | | * 1 (3 * sp1 + sp2) / 4 |
805 | | * 2 (sp1 + sp2) / 2 |
806 | | * 3 (sp1 + 3 * sp2) / 4 |
807 | | * 4 (3 * sp1 + sp3) / 4 |
808 | | * 5 (9 * sp1 + 3 * sp2 + 3 * sp3 + sp4) / 16 |
809 | | * 6 (3 * sp1 + 3 * sp2 + sp3 + sp4) / 8 |
810 | | * 7 (3 * sp1 + 9 * sp2 + sp3 + 3 * sp4) / 16 |
811 | | * 8 (sp1 + sp3) / 2 |
812 | | * 9 (3 * sp1 + sp2 + 3 * sp3 + sp4) / 8 |
813 | | * 10 (sp1 + sp2 + sp3 + sp4) / 4 |
814 | | * 11 (sp1 + 3 * sp2 + sp3 + 3 * sp4) / 8 |
815 | | * 12 (sp1 + 3 * sp3) / 4 |
816 | | * 13 (3 * sp1 + sp2 + 9 * sp3 + 3 * sp4) / 16 |
817 | | * 14 (sp1 + sp2 + 3 * sp3 + 3 * sp4) / 8 |
818 | | * 15 (sp1 + 3 * sp2 + 3 * sp3 + 9 * sp4) / 16 |
819 | | * |
820 | | * Another way to visualize this is to consider the area mapping |
821 | | * (or linear interpolation) coefficients for the pixel sp1. |
822 | | * Expressed in fourths, they can be written as asymmetric matrix: |
823 | | * |
824 | | * 4 3 2 1 |
825 | | * 3 2.25 1.5 0.75 |
826 | | * 2 1.5 1 0.5 |
827 | | * 1 0.75 0.5 0.25 |
828 | | * |
829 | | * The coefficients for the three neighboring pixels can be |
830 | | * similarly written. |
831 | | * |
832 | | * This is implemented here, where, for each color component, |
833 | | * we inline its extraction from each participating word, |
834 | | * construct the linear combination, and combine the results |
835 | | * into the destination 32 bit RGB pixel, using the appropriate shifts. |
836 | | * |
837 | | * It is interesting to note that an alternative method, where |
838 | | * we do the arithmetic on the 32 bit pixels directly (after |
839 | | * shifting the components so they won't overflow into each other) |
840 | | * is significantly inferior. Because we have only 8 bits for |
841 | | * internal overflows, which can be distributed as 2, 3, 3, it |
842 | | * is impossible to add these with the correct linear |
843 | | * interpolation coefficients, which require a sum of up to 16. |
844 | | * Rounding off to a sum of 4 causes appreciable visual artifacts |
845 | | * in the rotated image. The code for the inferior method |
846 | | * can be found in prog/rotatefastalt.c, for reference. |
847 | | */ |
848 | | static void |
849 | | rotateAMColorFastLow(l_uint32 *datad, |
850 | | l_int32 w, |
851 | | l_int32 h, |
852 | | l_int32 wpld, |
853 | | l_uint32 *datas, |
854 | | l_int32 wpls, |
855 | | l_float32 angle, |
856 | | l_uint32 colorval) |
857 | 0 | { |
858 | 0 | l_int32 i, j, xcen, ycen, wm2, hm2; |
859 | 0 | l_int32 xdif, ydif, xpm, ypm, xp, yp, xf, yf; |
860 | 0 | l_uint32 word1, word2, word3, word4, red, blue, green; |
861 | 0 | l_uint32 *pword, *lines, *lined; |
862 | 0 | l_float32 sina, cosa; |
863 | |
|
864 | 0 | xcen = w / 2; |
865 | 0 | wm2 = w - 2; |
866 | 0 | ycen = h / 2; |
867 | 0 | hm2 = h - 2; |
868 | 0 | sina = 4.f * sin(angle); |
869 | 0 | cosa = 4.f * cos(angle); |
870 | |
|
871 | 0 | for (i = 0; i < h; i++) { |
872 | 0 | ydif = ycen - i; |
873 | 0 | lined = datad + i * wpld; |
874 | 0 | for (j = 0; j < w; j++) { |
875 | 0 | xdif = xcen - j; |
876 | 0 | xpm = (l_int32)(-xdif * cosa - ydif * sina); |
877 | 0 | ypm = (l_int32)(-ydif * cosa + xdif * sina); |
878 | 0 | xp = xcen + (xpm >> 2); |
879 | 0 | yp = ycen + (ypm >> 2); |
880 | 0 | xf = xpm & 0x03; |
881 | 0 | yf = ypm & 0x03; |
882 | | |
883 | | /* if off the edge, write input grayval */ |
884 | 0 | if (xp < 0 || yp < 0 || xp > wm2 || yp > hm2) { |
885 | 0 | *(lined + j) = colorval; |
886 | 0 | continue; |
887 | 0 | } |
888 | | |
889 | 0 | lines = datas + yp * wpls; |
890 | 0 | pword = lines + xp; |
891 | |
|
892 | 0 | switch (xf + 4 * yf) |
893 | 0 | { |
894 | 0 | case 0: |
895 | 0 | *(lined + j) = *pword; |
896 | 0 | break; |
897 | 0 | case 1: |
898 | 0 | word1 = *pword; |
899 | 0 | word2 = *(pword + 1); |
900 | 0 | red = 3 * (word1 >> 24) + (word2 >> 24); |
901 | 0 | green = 3 * ((word1 >> 16) & 0xff) + |
902 | 0 | ((word2 >> 16) & 0xff); |
903 | 0 | blue = 3 * ((word1 >> 8) & 0xff) + |
904 | 0 | ((word2 >> 8) & 0xff); |
905 | 0 | *(lined + j) = ((red << 22) & 0xff000000) | |
906 | 0 | ((green << 14) & 0x00ff0000) | |
907 | 0 | ((blue << 6) & 0x0000ff00); |
908 | 0 | break; |
909 | 0 | case 2: |
910 | 0 | word1 = *pword; |
911 | 0 | word2 = *(pword + 1); |
912 | 0 | red = (word1 >> 24) + (word2 >> 24); |
913 | 0 | green = ((word1 >> 16) & 0xff) + ((word2 >> 16) & 0xff); |
914 | 0 | blue = ((word1 >> 8) & 0xff) + ((word2 >> 8) & 0xff); |
915 | 0 | *(lined + j) = ((red << 23) & 0xff000000) | |
916 | 0 | ((green << 15) & 0x00ff0000) | |
917 | 0 | ((blue << 7) & 0x0000ff00); |
918 | 0 | break; |
919 | 0 | case 3: |
920 | 0 | word1 = *pword; |
921 | 0 | word2 = *(pword + 1); |
922 | 0 | red = (word1 >> 24) + 3 * (word2 >> 24); |
923 | 0 | green = ((word1 >> 16) & 0xff) + |
924 | 0 | 3 * ((word2 >> 16) & 0xff); |
925 | 0 | blue = ((word1 >> 8) & 0xff) + |
926 | 0 | 3 * ((word2 >> 8) & 0xff); |
927 | 0 | *(lined + j) = ((red << 22) & 0xff000000) | |
928 | 0 | ((green << 14) & 0x00ff0000) | |
929 | 0 | ((blue << 6) & 0x0000ff00); |
930 | 0 | break; |
931 | 0 | case 4: |
932 | 0 | word1 = *pword; |
933 | 0 | word3 = *(pword + wpls); |
934 | 0 | red = 3 * (word1 >> 24) + (word3 >> 24); |
935 | 0 | green = 3 * ((word1 >> 16) & 0xff) + |
936 | 0 | ((word3 >> 16) & 0xff); |
937 | 0 | blue = 3 * ((word1 >> 8) & 0xff) + |
938 | 0 | ((word3 >> 8) & 0xff); |
939 | 0 | *(lined + j) = ((red << 22) & 0xff000000) | |
940 | 0 | ((green << 14) & 0x00ff0000) | |
941 | 0 | ((blue << 6) & 0x0000ff00); |
942 | 0 | break; |
943 | 0 | case 5: |
944 | 0 | word1 = *pword; |
945 | 0 | word2 = *(pword + 1); |
946 | 0 | word3 = *(pword + wpls); |
947 | 0 | word4 = *(pword + wpls + 1); |
948 | 0 | red = 9 * (word1 >> 24) + 3 * (word2 >> 24) + |
949 | 0 | 3 * (word3 >> 24) + (word4 >> 24); |
950 | 0 | green = 9 * ((word1 >> 16) & 0xff) + |
951 | 0 | 3 * ((word2 >> 16) & 0xff) + |
952 | 0 | 3 * ((word3 >> 16) & 0xff) + |
953 | 0 | ((word4 >> 16) & 0xff); |
954 | 0 | blue = 9 * ((word1 >> 8) & 0xff) + |
955 | 0 | 3 * ((word2 >> 8) & 0xff) + |
956 | 0 | 3 * ((word3 >> 8) & 0xff) + |
957 | 0 | ((word4 >> 8) & 0xff); |
958 | 0 | *(lined + j) = ((red << 20) & 0xff000000) | |
959 | 0 | ((green << 12) & 0x00ff0000) | |
960 | 0 | ((blue << 4) & 0x0000ff00); |
961 | 0 | break; |
962 | 0 | case 6: |
963 | 0 | word1 = *pword; |
964 | 0 | word2 = *(pword + 1); |
965 | 0 | word3 = *(pword + wpls); |
966 | 0 | word4 = *(pword + wpls + 1); |
967 | 0 | red = 3 * (word1 >> 24) + 3 * (word2 >> 24) + |
968 | 0 | (word3 >> 24) + (word4 >> 24); |
969 | 0 | green = 3 * ((word1 >> 16) & 0xff) + |
970 | 0 | 3 * ((word2 >> 16) & 0xff) + |
971 | 0 | ((word3 >> 16) & 0xff) + |
972 | 0 | ((word4 >> 16) & 0xff); |
973 | 0 | blue = 3 * ((word1 >> 8) & 0xff) + |
974 | 0 | 3 * ((word2 >> 8) & 0xff) + |
975 | 0 | ((word3 >> 8) & 0xff) + |
976 | 0 | ((word4 >> 8) & 0xff); |
977 | 0 | *(lined + j) = ((red << 21) & 0xff000000) | |
978 | 0 | ((green << 13) & 0x00ff0000) | |
979 | 0 | ((blue << 5) & 0x0000ff00); |
980 | 0 | break; |
981 | 0 | case 7: |
982 | 0 | word1 = *pword; |
983 | 0 | word2 = *(pword + 1); |
984 | 0 | word3 = *(pword + wpls); |
985 | 0 | word4 = *(pword + wpls + 1); |
986 | 0 | red = 3 * (word1 >> 24) + 9 * (word2 >> 24) + |
987 | 0 | (word3 >> 24) + 3 * (word4 >> 24); |
988 | 0 | green = 3 * ((word1 >> 16) & 0xff) + |
989 | 0 | 9 * ((word2 >> 16) & 0xff) + |
990 | 0 | ((word3 >> 16) & 0xff) + |
991 | 0 | 3 * ((word4 >> 16) & 0xff); |
992 | 0 | blue = 3 * ((word1 >> 8) & 0xff) + |
993 | 0 | 9 * ((word2 >> 8) & 0xff) + |
994 | 0 | ((word3 >> 8) & 0xff) + |
995 | 0 | 3 * ((word4 >> 8) & 0xff); |
996 | 0 | *(lined + j) = ((red << 20) & 0xff000000) | |
997 | 0 | ((green << 12) & 0x00ff0000) | |
998 | 0 | ((blue << 4) & 0x0000ff00); |
999 | 0 | break; |
1000 | 0 | case 8: |
1001 | 0 | word1 = *pword; |
1002 | 0 | word3 = *(pword + wpls); |
1003 | 0 | red = (word1 >> 24) + (word3 >> 24); |
1004 | 0 | green = ((word1 >> 16) & 0xff) + ((word3 >> 16) & 0xff); |
1005 | 0 | blue = ((word1 >> 8) & 0xff) + ((word3 >> 8) & 0xff); |
1006 | 0 | *(lined + j) = ((red << 23) & 0xff000000) | |
1007 | 0 | ((green << 15) & 0x00ff0000) | |
1008 | 0 | ((blue << 7) & 0x0000ff00); |
1009 | 0 | break; |
1010 | 0 | case 9: |
1011 | 0 | word1 = *pword; |
1012 | 0 | word2 = *(pword + 1); |
1013 | 0 | word3 = *(pword + wpls); |
1014 | 0 | word4 = *(pword + wpls + 1); |
1015 | 0 | red = 3 * (word1 >> 24) + (word2 >> 24) + |
1016 | 0 | 3 * (word3 >> 24) + (word4 >> 24); |
1017 | 0 | green = 3 * ((word1 >> 16) & 0xff) + ((word2 >> 16) & 0xff) + |
1018 | 0 | 3 * ((word3 >> 16) & 0xff) + ((word4 >> 16) & 0xff); |
1019 | 0 | blue = 3 * ((word1 >> 8) & 0xff) + ((word2 >> 8) & 0xff) + |
1020 | 0 | 3 * ((word3 >> 8) & 0xff) + ((word4 >> 8) & 0xff); |
1021 | 0 | *(lined + j) = ((red << 21) & 0xff000000) | |
1022 | 0 | ((green << 13) & 0x00ff0000) | |
1023 | 0 | ((blue << 5) & 0x0000ff00); |
1024 | 0 | break; |
1025 | 0 | case 10: |
1026 | 0 | word1 = *pword; |
1027 | 0 | word2 = *(pword + 1); |
1028 | 0 | word3 = *(pword + wpls); |
1029 | 0 | word4 = *(pword + wpls + 1); |
1030 | 0 | red = (word1 >> 24) + (word2 >> 24) + |
1031 | 0 | (word3 >> 24) + (word4 >> 24); |
1032 | 0 | green = ((word1 >> 16) & 0xff) + ((word2 >> 16) & 0xff) + |
1033 | 0 | ((word3 >> 16) & 0xff) + ((word4 >> 16) & 0xff); |
1034 | 0 | blue = ((word1 >> 8) & 0xff) + ((word2 >> 8) & 0xff) + |
1035 | 0 | ((word3 >> 8) & 0xff) + ((word4 >> 8) & 0xff); |
1036 | 0 | *(lined + j) = ((red << 22) & 0xff000000) | |
1037 | 0 | ((green << 14) & 0x00ff0000) | |
1038 | 0 | ((blue << 6) & 0x0000ff00); |
1039 | 0 | break; |
1040 | 0 | case 11: |
1041 | 0 | word1 = *pword; |
1042 | 0 | word2 = *(pword + 1); |
1043 | 0 | word3 = *(pword + wpls); |
1044 | 0 | word4 = *(pword + wpls + 1); |
1045 | 0 | red = (word1 >> 24) + 3 * (word2 >> 24) + |
1046 | 0 | (word3 >> 24) + 3 * (word4 >> 24); |
1047 | 0 | green = ((word1 >> 16) & 0xff) + 3 * ((word2 >> 16) & 0xff) + |
1048 | 0 | ((word3 >> 16) & 0xff) + 3 * ((word4 >> 16) & 0xff); |
1049 | 0 | blue = ((word1 >> 8) & 0xff) + 3 * ((word2 >> 8) & 0xff) + |
1050 | 0 | ((word3 >> 8) & 0xff) + 3 * ((word4 >> 8) & 0xff); |
1051 | 0 | *(lined + j) = ((red << 21) & 0xff000000) | |
1052 | 0 | ((green << 13) & 0x00ff0000) | |
1053 | 0 | ((blue << 5) & 0x0000ff00); |
1054 | 0 | break; |
1055 | 0 | case 12: |
1056 | 0 | word1 = *pword; |
1057 | 0 | word3 = *(pword + wpls); |
1058 | 0 | red = (word1 >> 24) + 3 * (word3 >> 24); |
1059 | 0 | green = ((word1 >> 16) & 0xff) + |
1060 | 0 | 3 * ((word3 >> 16) & 0xff); |
1061 | 0 | blue = ((word1 >> 8) & 0xff) + |
1062 | 0 | 3 * ((word3 >> 8) & 0xff); |
1063 | 0 | *(lined + j) = ((red << 22) & 0xff000000) | |
1064 | 0 | ((green << 14) & 0x00ff0000) | |
1065 | 0 | ((blue << 6) & 0x0000ff00); |
1066 | 0 | break; |
1067 | 0 | case 13: |
1068 | 0 | word1 = *pword; |
1069 | 0 | word2 = *(pword + 1); |
1070 | 0 | word3 = *(pword + wpls); |
1071 | 0 | word4 = *(pword + wpls + 1); |
1072 | 0 | red = 3 * (word1 >> 24) + (word2 >> 24) + |
1073 | 0 | 9 * (word3 >> 24) + 3 * (word4 >> 24); |
1074 | 0 | green = 3 * ((word1 >> 16) & 0xff) + ((word2 >> 16) & 0xff) + |
1075 | 0 | 9 * ((word3 >> 16) & 0xff) + 3 * ((word4 >> 16) & 0xff); |
1076 | 0 | blue = 3 *((word1 >> 8) & 0xff) + ((word2 >> 8) & 0xff) + |
1077 | 0 | 9 * ((word3 >> 8) & 0xff) + 3 * ((word4 >> 8) & 0xff); |
1078 | 0 | *(lined + j) = ((red << 20) & 0xff000000) | |
1079 | 0 | ((green << 12) & 0x00ff0000) | |
1080 | 0 | ((blue << 4) & 0x0000ff00); |
1081 | 0 | break; |
1082 | 0 | case 14: |
1083 | 0 | word1 = *pword; |
1084 | 0 | word2 = *(pword + 1); |
1085 | 0 | word3 = *(pword + wpls); |
1086 | 0 | word4 = *(pword + wpls + 1); |
1087 | 0 | red = (word1 >> 24) + (word2 >> 24) + |
1088 | 0 | 3 * (word3 >> 24) + 3 * (word4 >> 24); |
1089 | 0 | green = ((word1 >> 16) & 0xff) +((word2 >> 16) & 0xff) + |
1090 | 0 | 3 * ((word3 >> 16) & 0xff) + 3 * ((word4 >> 16) & 0xff); |
1091 | 0 | blue = ((word1 >> 8) & 0xff) + ((word2 >> 8) & 0xff) + |
1092 | 0 | 3 * ((word3 >> 8) & 0xff) + 3 * ((word4 >> 8) & 0xff); |
1093 | 0 | *(lined + j) = ((red << 21) & 0xff000000) | |
1094 | 0 | ((green << 13) & 0x00ff0000) | |
1095 | 0 | ((blue << 5) & 0x0000ff00); |
1096 | 0 | break; |
1097 | 0 | case 15: |
1098 | 0 | word1 = *pword; |
1099 | 0 | word2 = *(pword + 1); |
1100 | 0 | word3 = *(pword + wpls); |
1101 | 0 | word4 = *(pword + wpls + 1); |
1102 | 0 | red = (word1 >> 24) + 3 * (word2 >> 24) + |
1103 | 0 | 3 * (word3 >> 24) + 9 * (word4 >> 24); |
1104 | 0 | green = ((word1 >> 16) & 0xff) + 3 * ((word2 >> 16) & 0xff) + |
1105 | 0 | 3 * ((word3 >> 16) & 0xff) + 9 * ((word4 >> 16) & 0xff); |
1106 | 0 | blue = ((word1 >> 8) & 0xff) + 3 * ((word2 >> 8) & 0xff) + |
1107 | 0 | 3 * ((word3 >> 8) & 0xff) + 9 * ((word4 >> 8) & 0xff); |
1108 | 0 | *(lined + j) = ((red << 20) & 0xff000000) | |
1109 | 0 | ((green << 12) & 0x00ff0000) | |
1110 | 0 | ((blue << 4) & 0x0000ff00); |
1111 | 0 | break; |
1112 | 0 | default: |
1113 | 0 | lept_stderr("shouldn't get here\n"); |
1114 | 0 | break; |
1115 | 0 | } |
1116 | 0 | } |
1117 | 0 | } |
1118 | 0 | } |