Coverage Report

Created: 2024-06-18 06:05

/src/leptonica/src/adaptmap.c
Line
Count
Source (jump to first uncovered line)
1
/*====================================================================*
2
 -  Copyright (C) 2001 Leptonica.  All rights reserved.
3
 -
4
 -  Redistribution and use in source and binary forms, with or without
5
 -  modification, are permitted provided that the following conditions
6
 -  are met:
7
 -  1. Redistributions of source code must retain the above copyright
8
 -     notice, this list of conditions and the following disclaimer.
9
 -  2. Redistributions in binary form must reproduce the above
10
 -     copyright notice, this list of conditions and the following
11
 -     disclaimer in the documentation and/or other materials
12
 -     provided with the distribution.
13
 -
14
 -  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15
 -  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16
 -  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17
 -  A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ANY
18
 -  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19
 -  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20
 -  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21
 -  PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22
 -  OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23
 -  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24
 -  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25
 *====================================================================*/
26
27
/*!
28
 * \file adaptmap.c
29
 * <pre>
30
 *
31
 *  -------------------------------------------------------------------
32
 *
33
 *  Image binarization algorithms are found in:
34
 *     grayquant.c:   standard, simple, general grayscale quantization
35
 *     adaptmap.c:    local adaptive; mostly gray-to-gray in preparation
36
 *                    for binarization
37
 *     binarize.c:    special binarization methods, locally adaptive.
38
 *     pageseg.c:     locally adaptive cleaning operation with several options
39
 *
40
 *  -------------------------------------------------------------------
41
 *
42
 *      Clean background to white using background normalization
43
 *          PIX       *pixCleanBackgroundToWhite()
44
 *
45
 *      Adaptive background normalization (top-level functions)
46
 *          PIX       *pixBackgroundNormSimple()     8 and 32 bpp
47
 *          PIX       *pixBackgroundNorm()           8 and 32 bpp
48
 *          PIX       *pixBackgroundNormMorph()      8 and 32 bpp
49
 *
50
 *      Arrays of inverted background values for normalization (16 bpp)
51
 *          l_int32    pixBackgroundNormGrayArray()   8 bpp input
52
 *          l_int32    pixBackgroundNormRGBArrays()   32 bpp input
53
 *          l_int32    pixBackgroundNormGrayArrayMorph()   8 bpp input
54
 *          l_int32    pixBackgroundNormRGBArraysMorph()   32 bpp input
55
 *
56
 *      Measurement of local background
57
 *          l_int32    pixGetBackgroundGrayMap()        8 bpp
58
 *          l_int32    pixGetBackgroundRGBMap()         32 bpp
59
 *          l_int32    pixGetBackgroundGrayMapMorph()   8 bpp
60
 *          l_int32    pixGetBackgroundRGBMapMorph()    32 bpp
61
 *          l_int32    pixFillMapHoles()
62
 *          PIX       *pixExtendByReplication()         8 bpp
63
 *          l_int32    pixSmoothConnectedRegions()      8 bpp
64
 *
65
 *      Measurement of local foreground
66
 *          l_int32    pixGetForegroundGrayMap()        8 bpp
67
 *
68
 *      Generate inverted background map for each component
69
 *          PIX       *pixGetInvBackgroundMap()   16 bpp
70
 *
71
 *      Apply inverse background map to image
72
 *          PIX       *pixApplyInvBackgroundGrayMap()   8 bpp
73
 *          PIX       *pixApplyInvBackgroundRGBMap()    32 bpp
74
 *
75
 *      Apply variable map
76
 *          PIX       *pixApplyVariableGrayMap()        8 bpp
77
 *
78
 *      Non-adaptive (global) mapping
79
 *          PIX       *pixGlobalNormRGB()               32 bpp or cmapped
80
 *          PIX       *pixGlobalNormNoSatRGB()          32 bpp
81
 *
82
 *      Adaptive threshold spread normalization
83
 *          l_int32    pixThresholdSpreadNorm()         8 bpp
84
 *
85
 *      Adaptive background normalization (flexible adaptaption)
86
 *          PIX       *pixBackgroundNormFlex()          8 bpp
87
 *
88
 *      Adaptive contrast normalization
89
 *          PIX             *pixContrastNorm()          8 bpp
90
 *          static l_int32   pixMinMaxTiles()
91
 *          static l_int32   pixSetLowContrast()
92
 *          static PIX      *pixLinearTRCTiled()
93
 *          static l_int32  *iaaGetLinearTRC()
94
 *
95
 *      Adaptive normalization with MinMax conversion of RGB to gray,
96
 *      contrast enhancement and optional 2x upscale binarization
97
 *          PIX             *pixBackgroundNormTo1MinMax()
98
 *          PIX             *pixConvertTo8MinMax()
99
 *          static l_int32  *pixSelectiveContrastMod()
100
 *
101
 *  Background normalization is done by generating a reduced map (or set
102
 *  of maps) representing the estimated background value of the
103
 *  input image, and using this to shift the pixel values so that
104
 *  this background value is set to some constant value.
105
 *
106
 *  Specifically, normalization has 3 steps:
107
 *    (1) Generate a background map at a reduced scale.
108
 *    (2) Make the array of inverted background values by inverting
109
 *        the map.  The result is an array of local multiplicative factors.
110
 *    (3) Apply this inverse background map to the image
111
 *
112
 *  The inverse background arrays can be generated in two different ways here:
113
 *    (1) Remove the 'foreground' pixels and average over the remaining
114
 *        pixels in each tile.  Propagate values into tiles where
115
 *        values have not been assigned, either because there was not
116
 *        enough background in the tile or because the tile is covered
117
 *        by a foreground region described by an image mask.
118
 *        After the background map is made, the inverse map is generated by
119
 *        smoothing over some number of adjacent tiles
120
 *        (block convolution) and then inverting.
121
 *    (2) Remove the foreground pixels using a morphological closing
122
 *        on a subsampled version of the image.  Propagate values
123
 *        into pixels covered by an optional image mask.  Invert the
124
 *        background map without preconditioning by convolutional smoothing.
125
 *
126
 *  Other methods for adaptively normalizing the image are also given here.
127
 *
128
 *  (1) pixThresholdSpreadNorm() computes a local threshold over the image
129
 *      and normalizes the input pixel values so that this computed threshold
130
 *      is a constant across the entire image.
131
 *
132
 *  (2) pixContrastNorm() computes and applies a local TRC so that the
133
 *      local dynamic range is expanded to the full 8 bits, where the
134
 *      darkest pixels are mapped to 0 and the lightest to 255.  This is
135
 *      useful for improving the appearance of pages with very light
136
 *      foreground or very dark background, and where the local TRC
137
 *      function doesn't change rapidly with position.
138
 *
139
 *  Adaptive binarization is done in two steps:
140
 *    (1) Background normalization by some method
141
 *    (2) Global thresholding with a value appropriate to the normalization.
142
 *  There are several high-level functions in leptonica for doing adaptive
143
 *  binarization on grayscale and color images, such as:
144
 *    * pixAdaptThresholdToBinary()   (in grayquant.c)
145
 *    * pixConvertTo1Adaptive()       (in pixconv.c)
146
 *    * pixCleanImage()               (in pageseg.c)
147
 * </pre>
148
 */
149
150
#ifdef HAVE_CONFIG_H
151
#include <config_auto.h>
152
#endif  /* HAVE_CONFIG_H */
153
154
#include "allheaders.h"
155
156
    /* Default input parameters for pixBackgroundNormSimple()
157
     * Notes:
158
     *    (1) mincount must never exceed the tile area (width * height)
159
     *    (2) bgval must be sufficiently below 255 to avoid accidental
160
     *        saturation; otherwise it should be large to avoid
161
     *        shrinking the dynamic range
162
     *    (3) results should otherwise not be sensitive to these values
163
     */
164
static const l_int32  DefaultTileWidth = 10;    /*!< default tile width    */
165
static const l_int32  DefaultTileHeight = 15;   /*!< default tile height   */
166
static const l_int32  DefaultFgThreshold = 60;  /*!< default fg threshold  */
167
static const l_int32  DefaultMinCount = 40;     /*!< default minimum count */
168
static const l_int32  DefaultBgVal = 200;       /*!< default bg value      */
169
static const l_int32  DefaultXSmoothSize = 2;  /*!< default x smooth size */
170
static const l_int32  DefaultYSmoothSize = 1;  /*!< default y smooth size */
171
172
static l_int32 pixMinMaxTiles(PIX *pixs, l_int32 sx, l_int32 sy,
173
                              l_int32 mindiff, l_int32 smoothx, l_int32 smoothy,
174
                              PIX **ppixmin, PIX **ppixmax);
175
static l_int32 pixSetLowContrast(PIX *pixs1, PIX *pixs2, l_int32 mindiff);
176
static PIX *pixLinearTRCTiled(PIX *pixd, PIX *pixs, l_int32 sx, l_int32 sy,
177
                              PIX *pixmin, PIX *pixmax);
178
static l_int32 *iaaGetLinearTRC(l_int32 **iaa, l_int32 diff);
179
180
static l_ok pixSelectiveContrastMod(PIX *pixs, l_int32 contrast);
181
182
#ifndef  NO_CONSOLE_IO
183
#define  DEBUG_GLOBAL    0    /*!< set to 1 to debug pixGlobalNormNoSatRGB() */
184
#endif  /* ~NO_CONSOLE_IO */
185
186
/*------------------------------------------------------------------*
187
 *      Clean background to white using background normalization    *
188
 *------------------------------------------------------------------*/
189
/*!
190
 * \brief   pixCleanBackgroundToWhite()
191
 *
192
 * \param[in]    pixs       8 bpp grayscale or 32 bpp rgb
193
 * \param[in]    pixim      [optional] 1 bpp 'image' mask; can be null
194
 * \param[in]    pixg       [optional] 8 bpp grayscale version; can be null
195
 * \param[in]    gamma      gamma correction; must be > 0.0; typically ~1.0
196
 * \param[in]    blackval   dark value to set to black (0)
197
 * \param[in]    whiteval   light value to set to white (255)
198
 * \return  pixd 8 bpp or 32 bpp rgb, or NULL on error
199
 *
200
 * <pre>
201
 * Notes:
202
 *    (1) This is a simplified interface for cleaning an image.
203
 *        For comparison, see pixAdaptThresholdToBinaryGen().
204
 *    (2) The suggested default values for the input parameters are:
205
 *          gamma:    1.0  (reduce this to increase the contrast; e.g.,
206
 *                          for light text)
207
 *          blackval   70  (a bit more than 60)
208
 *          whiteval  190  (a bit less than 200)
209
 *    (3) Note: the whiteval must not exceed 200, which is the value
210
 *        that the background is set to in pixBackgroundNormSimple().
211
 * </pre>
212
 */
213
PIX *
214
pixCleanBackgroundToWhite(PIX       *pixs,
215
                          PIX       *pixim,
216
                          PIX       *pixg,
217
                          l_float32  gamma,
218
                          l_int32    blackval,
219
                          l_int32    whiteval)
220
737
{
221
737
l_int32  d;
222
737
PIX     *pixd;
223
224
737
    if (!pixs)
225
46
        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
226
691
    d = pixGetDepth(pixs);
227
691
    if (d != 8 && d != 32)
228
0
        return (PIX *)ERROR_PTR("depth not 8 or 32", __func__, NULL);
229
691
    if (whiteval > 200) {
230
0
        L_WARNING("white value %d must not exceed 200; reset to 190",
231
0
                  __func__, whiteval);
232
0
        whiteval = 190;
233
0
    }
234
235
691
    pixd = pixBackgroundNormSimple(pixs, pixim, pixg);
236
691
    if (!pixd)
237
0
        return (PIX *)ERROR_PTR("background norm failedd", __func__, NULL);
238
691
    pixGammaTRC(pixd, pixd, gamma, blackval, whiteval);
239
691
    return pixd;
240
691
}
241
242
243
/*------------------------------------------------------------------*
244
 *                Adaptive background normalization                 *
245
 *------------------------------------------------------------------*/
246
/*!
247
 * \brief   pixBackgroundNormSimple()
248
 *
249
 * \param[in]    pixs     8 bpp grayscale or 32 bpp rgb
250
 * \param[in]    pixim    [optional] 1 bpp 'image' mask; can be null
251
 * \param[in]    pixg     [optional] 8 bpp grayscale version; can be null
252
 * \return  pixd 8 bpp or 32 bpp rgb, or NULL on error
253
 *
254
 * <pre>
255
 * Notes:
256
 *    (1) This is a simplified interface to pixBackgroundNorm(),
257
 *        where seven parameters are defaulted.
258
 *    (2) The input image is either grayscale or rgb.
259
 *    (3) See pixBackgroundNorm() for usage and function.
260
 * </pre>
261
 */
262
PIX *
263
pixBackgroundNormSimple(PIX  *pixs,
264
                        PIX  *pixim,
265
                        PIX  *pixg)
266
691
{
267
691
    return pixBackgroundNorm(pixs, pixim, pixg,
268
691
                             DefaultTileWidth, DefaultTileHeight,
269
691
                             DefaultFgThreshold, DefaultMinCount,
270
691
                             DefaultBgVal, DefaultXSmoothSize,
271
691
                             DefaultYSmoothSize);
272
691
}
273
274
275
/*!
276
 * \brief   pixBackgroundNorm()
277
 *
278
 * \param[in]    pixs        8 bpp grayscale or 32 bpp rgb
279
 * \param[in]    pixim       [optional] 1 bpp 'image' mask; can be null
280
 * \param[in]    pixg        [optional] 8 bpp grayscale version; can be null
281
 * \param[in]    sx, sy      tile size in pixels
282
 * \param[in]    thresh      threshold for determining foreground
283
 * \param[in]    mincount    min threshold on counts in a tile
284
 * \param[in]    bgval       target bg val; typ. > 128
285
 * \param[in]    smoothx     half-width of block convolution kernel width
286
 * \param[in]    smoothy     half-width of block convolution kernel height
287
 * \return  pixd 8 bpp or 32 bpp rgb, or NULL on error
288
 *
289
 * <pre>
290
 * Notes:
291
 *    (1) This is a top-level interface for normalizing the image intensity
292
 *        by mapping the image so that the background is near the input
293
 *        value %bgval.
294
 *    (2) The input image is either grayscale or rgb.
295
 *    (3) For each component in the input image, the background value
296
 *        in each tile is estimated using the values in the tile that
297
 *        are not part of the foreground, where the foreground is
298
 *        determined by %thresh.
299
 *    (4) An optional binary mask can be specified, with the foreground
300
 *        pixels typically over image regions.  The resulting background
301
 *        map values will be determined by surrounding pixels that are
302
 *        not under the mask foreground.  The origin (0,0) of this mask
303
 *        is assumed to be aligned with the origin of the input image.
304
 *        This binary mask must not fully cover pixs, because then there
305
 *        will be no pixels in the input image available to compute
306
 *        the background.
307
 *    (5) An optional grayscale version of the input pixs can be supplied.
308
 *        The only reason to do this is if the input is RGB and this
309
 *        grayscale version can be used elsewhere.  If the input is RGB
310
 *        and this is not supplied, it is made internally using only
311
 *        the green component, and destroyed after use.
312
 *    (6) The dimensions of the pixel tile (%sx, %sy) give the amount
313
 *        by which the map is reduced in size from the input image.
314
 *    (7) The input image is binarized using %thresh, in order to
315
 *        locate the foreground components.  If this is set too low,
316
 *        some actual foreground may be used to determine the maps;
317
 *        if set too high, there may not be enough background
318
 *        to determine the map values accurately.  Typically, it is
319
 *        better to err by setting the threshold too high.
320
 *    (8) A %mincount threshold is a minimum count of pixels in a
321
 *        tile for which a background reading is made, in order for that
322
 *        pixel in the map to be valid.  This number should perhaps be
323
 *        at least 1/3 the size of the tile.
324
 *    (9) A %bgval target background value for the normalized image.  This
325
 *        should be at least 128.  If set too close to 255, some
326
 *        clipping will occur in the result.  It is recommended to use
327
 *        %bgval = 200.
328
 *    (10) Two factors, %smoothx and %smoothy, are input for smoothing
329
 *         the map.  Each low-pass filter kernel dimension is
330
 *         is 2 * (smoothing factor) + 1, so a
331
 *         value of 0 means no smoothing. A value of 1 or 2 is recommended.
332
 *    (11) See pixCleanBackgroundToWhite().  The recommended value for %bgval
333
 *         is 200.  As done there, pixBackgroundNorm() is typically followed
334
 *         by pixGammaTRC(), where the maxval must not not exceed %bgval.
335
 * </pre>
336
 */
337
PIX *
338
pixBackgroundNorm(PIX     *pixs,
339
                  PIX     *pixim,
340
                  PIX     *pixg,
341
                  l_int32  sx,
342
                  l_int32  sy,
343
                  l_int32  thresh,
344
                  l_int32  mincount,
345
                  l_int32  bgval,
346
                  l_int32  smoothx,
347
                  l_int32  smoothy)
348
691
{
349
691
l_int32  d, allfg;
350
691
PIX     *pixm, *pixmi, *pixd;
351
691
PIX     *pixmr, *pixmg, *pixmb, *pixmri, *pixmgi, *pixmbi;
352
353
691
    if (!pixs)
354
0
        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
355
691
    d = pixGetDepth(pixs);
356
691
    if (d != 8 && d != 32)
357
0
        return (PIX *)ERROR_PTR("pixs not 8 or 32 bpp", __func__, NULL);
358
691
    if (sx < 4 || sy < 4)
359
0
        return (PIX *)ERROR_PTR("sx and sy must be >= 4", __func__, NULL);
360
691
    if (mincount > sx * sy) {
361
0
        L_WARNING("mincount too large for tile size\n", __func__);
362
0
        mincount = (sx * sy) / 3;
363
0
    }
364
365
        /* If pixim exists, verify that it is not all foreground. */
366
691
    if (pixim) {
367
0
        pixInvert(pixim, pixim);
368
0
        pixZero(pixim, &allfg);
369
0
        pixInvert(pixim, pixim);
370
0
        if (allfg)
371
0
            return (PIX *)ERROR_PTR("pixim all foreground", __func__, NULL);
372
0
    }
373
374
691
    pixd = NULL;
375
691
    if (d == 8) {
376
691
        pixm = NULL;
377
691
        pixGetBackgroundGrayMap(pixs, pixim, sx, sy, thresh, mincount, &pixm);
378
691
        if (!pixm) {
379
484
            L_WARNING("map not made; return a copy of the source\n", __func__);
380
484
            return pixCopy(NULL, pixs);
381
484
        }
382
383
207
        pixmi = pixGetInvBackgroundMap(pixm, bgval, smoothx, smoothy);
384
207
        if (!pixmi) {
385
112
            L_WARNING("pixmi not made; return a copy of source\n", __func__);
386
112
            pixDestroy(&pixm);
387
112
            return pixCopy(NULL, pixs);
388
112
        } else {
389
95
            pixd = pixApplyInvBackgroundGrayMap(pixs, pixmi, sx, sy);
390
95
        }
391
392
95
        pixDestroy(&pixm);
393
95
        pixDestroy(&pixmi);
394
95
    }
395
0
    else {
396
0
        pixmr = pixmg = pixmb = NULL;
397
0
        pixGetBackgroundRGBMap(pixs, pixim, pixg, sx, sy, thresh,
398
0
                               mincount, &pixmr, &pixmg, &pixmb);
399
0
        if (!pixmr || !pixmg || !pixmb) {
400
0
            pixDestroy(&pixmr);
401
0
            pixDestroy(&pixmg);
402
0
            pixDestroy(&pixmb);
403
0
            L_WARNING("map not made; return a copy of the source\n", __func__);
404
0
            return pixCopy(NULL, pixs);
405
0
        }
406
407
0
        pixmri = pixGetInvBackgroundMap(pixmr, bgval, smoothx, smoothy);
408
0
        pixmgi = pixGetInvBackgroundMap(pixmg, bgval, smoothx, smoothy);
409
0
        pixmbi = pixGetInvBackgroundMap(pixmb, bgval, smoothx, smoothy);
410
0
        if (!pixmri || !pixmgi || !pixmbi) {
411
0
            L_WARNING("not all pixm*i are made; return src copy\n", __func__);
412
0
            pixd = pixCopy(NULL, pixs);
413
0
        } else {
414
0
            pixd = pixApplyInvBackgroundRGBMap(pixs, pixmri, pixmgi, pixmbi,
415
0
                                               sx, sy);
416
0
        }
417
418
0
        pixDestroy(&pixmr);
419
0
        pixDestroy(&pixmg);
420
0
        pixDestroy(&pixmb);
421
0
        pixDestroy(&pixmri);
422
0
        pixDestroy(&pixmgi);
423
0
        pixDestroy(&pixmbi);
424
0
    }
425
426
95
    if (!pixd)
427
95
        ERROR_PTR("pixd not made", __func__, NULL);
428
95
    pixCopyResolution(pixd, pixs);
429
95
    return pixd;
430
691
}
431
432
433
/*!
434
 * \brief   pixBackgroundNormMorph()
435
 *
436
 * \param[in]    pixs        8 bpp grayscale or 32 bpp rgb
437
 * \param[in]    pixim       [optional] 1 bpp 'image' mask; can be null
438
 * \param[in]    reduction   at which morph closings are done; between 2 and 16
439
 * \param[in]    size        of square Sel for the closing; use an odd number
440
 * \param[in]    bgval       target bg val; typ. > 128
441
 * \return  pixd 8 bpp, or NULL on error
442
 *
443
 * <pre>
444
 * Notes:
445
 *    (1) This is a top-level interface for normalizing the image intensity
446
 *        by mapping the image so that the background is near the input
447
 *        value 'bgval'.
448
 *    (2) The input image is either grayscale or rgb.
449
 *    (3) For each component in the input image, the background value
450
 *        is estimated using a grayscale closing; hence the 'Morph'
451
 *        in the function name.
452
 *    (4) An optional binary mask can be specified, with the foreground
453
 *        pixels typically over image regions.  The resulting background
454
 *        map values will be determined by surrounding pixels that are
455
 *        not under the mask foreground.  The origin (0,0) of this mask
456
 *        is assumed to be aligned with the origin of the input image.
457
 *        This binary mask must not fully cover pixs, because then there
458
 *        will be no pixels in the input image available to compute
459
 *        the background.
460
 *    (5) The map is computed at reduced size (given by 'reduction')
461
 *        from the input pixs and optional pixim.  At this scale,
462
 *        pixs is closed to remove the background, using a square Sel
463
 *        of odd dimension.  The product of reduction * size should be
464
 *        large enough to remove most of the text foreground.
465
 *    (6) No convolutional smoothing needs to be done on the map before
466
 *        inverting it.
467
 *    (7) A 'bgval' target background value for the normalized image.  This
468
 *        should be at least 128.  If set too close to 255, some
469
 *        clipping will occur in the result.
470
 * </pre>
471
 */
472
PIX *
473
pixBackgroundNormMorph(PIX     *pixs,
474
                       PIX     *pixim,
475
                       l_int32  reduction,
476
                       l_int32  size,
477
                       l_int32  bgval)
478
0
{
479
0
l_int32    d, allfg;
480
0
PIX       *pixm, *pixmi, *pixd;
481
0
PIX       *pixmr, *pixmg, *pixmb, *pixmri, *pixmgi, *pixmbi;
482
483
0
    if (!pixs)
484
0
        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
485
0
    d = pixGetDepth(pixs);
486
0
    if (d != 8 && d != 32)
487
0
        return (PIX *)ERROR_PTR("pixs not 8 or 32 bpp", __func__, NULL);
488
0
    if (reduction < 2 || reduction > 16)
489
0
        return (PIX *)ERROR_PTR("reduction must be between 2 and 16",
490
0
                                __func__, NULL);
491
492
        /* If pixim exists, verify that it is not all foreground. */
493
0
    if (pixim) {
494
0
        pixInvert(pixim, pixim);
495
0
        pixZero(pixim, &allfg);
496
0
        pixInvert(pixim, pixim);
497
0
        if (allfg)
498
0
            return (PIX *)ERROR_PTR("pixim all foreground", __func__, NULL);
499
0
    }
500
501
0
    pixd = NULL;
502
0
    if (d == 8) {
503
0
        pixGetBackgroundGrayMapMorph(pixs, pixim, reduction, size, &pixm);
504
0
        if (!pixm)
505
0
            return (PIX *)ERROR_PTR("pixm not made", __func__, NULL);
506
0
        pixmi = pixGetInvBackgroundMap(pixm, bgval, 0, 0);
507
0
        if (!pixmi)
508
0
            ERROR_PTR("pixmi not made", __func__, NULL);
509
0
        else
510
0
            pixd = pixApplyInvBackgroundGrayMap(pixs, pixmi,
511
0
                                                reduction, reduction);
512
0
        pixDestroy(&pixm);
513
0
        pixDestroy(&pixmi);
514
0
    }
515
0
    else {  /* d == 32 */
516
0
        pixmr = pixmg = pixmb = NULL;
517
0
        pixGetBackgroundRGBMapMorph(pixs, pixim, reduction, size,
518
0
                                    &pixmr, &pixmg, &pixmb);
519
0
        if (!pixmr || !pixmg || !pixmb) {
520
0
            pixDestroy(&pixmr);
521
0
            pixDestroy(&pixmg);
522
0
            pixDestroy(&pixmb);
523
0
            return (PIX *)ERROR_PTR("not all pixm*", __func__, NULL);
524
0
        }
525
526
0
        pixmri = pixGetInvBackgroundMap(pixmr, bgval, 0, 0);
527
0
        pixmgi = pixGetInvBackgroundMap(pixmg, bgval, 0, 0);
528
0
        pixmbi = pixGetInvBackgroundMap(pixmb, bgval, 0, 0);
529
0
        if (!pixmri || !pixmgi || !pixmbi)
530
0
            ERROR_PTR("not all pixm*i are made", __func__, NULL);
531
0
        else
532
0
            pixd = pixApplyInvBackgroundRGBMap(pixs, pixmri, pixmgi, pixmbi,
533
0
                                               reduction, reduction);
534
535
0
        pixDestroy(&pixmr);
536
0
        pixDestroy(&pixmg);
537
0
        pixDestroy(&pixmb);
538
0
        pixDestroy(&pixmri);
539
0
        pixDestroy(&pixmgi);
540
0
        pixDestroy(&pixmbi);
541
0
    }
542
543
0
    if (!pixd)
544
0
        ERROR_PTR("pixd not made", __func__, NULL);
545
0
    pixCopyResolution(pixd, pixs);
546
0
    return pixd;
547
0
}
548
549
550
/*-------------------------------------------------------------------------*
551
 *      Arrays of inverted background values for normalization             *
552
 *-------------------------------------------------------------------------*
553
 *  Notes for these four functions:                                        *
554
 *      (1) They are useful if you need to save the actual mapping array.  *
555
 *      (2) They could be used in the top-level functions but are          *
556
 *          not because their use makes those functions less clear.        *
557
 *      (3) Each component in the input pixs generates a 16 bpp pix array. *
558
 *-------------------------------------------------------------------------*/
559
/*!
560
 * \brief   pixBackgroundNormGrayArray()
561
 *
562
 * \param[in]    pixs       8 bpp grayscale
563
 * \param[in]    pixim      [optional] 1 bpp 'image' mask; can be null
564
 * \param[in]    sx, sy     tile size in pixels
565
 * \param[in]    thresh     threshold for determining foreground
566
 * \param[in]    mincount   min threshold on counts in a tile
567
 * \param[in]    bgval      target bg val; typ. > 128
568
 * \param[in]    smoothx    half-width of block convolution kernel width
569
 * \param[in]    smoothy    half-width of block convolution kernel height
570
 * \param[out]   ppixd      16 bpp array of inverted background value
571
 * \return  0 if OK, 1 on error
572
 *
573
 * <pre>
574
 * Notes:
575
 *    (1) See notes in pixBackgroundNorm().
576
 *    (2) This returns a 16 bpp pix that can be used by
577
 *        pixApplyInvBackgroundGrayMap() to generate a normalized version
578
 *        of the input pixs.
579
 * </pre>
580
 */
581
l_ok
582
pixBackgroundNormGrayArray(PIX     *pixs,
583
                           PIX     *pixim,
584
                           l_int32  sx,
585
                           l_int32  sy,
586
                           l_int32  thresh,
587
                           l_int32  mincount,
588
                           l_int32  bgval,
589
                           l_int32  smoothx,
590
                           l_int32  smoothy,
591
                           PIX    **ppixd)
592
0
{
593
0
l_int32  allfg;
594
0
PIX     *pixm;
595
596
0
    if (!ppixd)
597
0
        return ERROR_INT("&pixd not defined", __func__, 1);
598
0
    *ppixd = NULL;
599
0
    if (!pixs || pixGetDepth(pixs) != 8)
600
0
        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
601
0
    if (pixGetColormap(pixs))
602
0
        return ERROR_INT("pixs is colormapped", __func__, 1);
603
0
    if (pixim && pixGetDepth(pixim) != 1)
604
0
        return ERROR_INT("pixim not 1 bpp", __func__, 1);
605
0
    if (sx < 4 || sy < 4)
606
0
        return ERROR_INT("sx and sy must be >= 4", __func__, 1);
607
0
    if (mincount > sx * sy) {
608
0
        L_WARNING("mincount too large for tile size\n", __func__);
609
0
        mincount = (sx * sy) / 3;
610
0
    }
611
612
        /* If pixim exists, verify that it is not all foreground. */
613
0
    if (pixim) {
614
0
        pixInvert(pixim, pixim);
615
0
        pixZero(pixim, &allfg);
616
0
        pixInvert(pixim, pixim);
617
0
        if (allfg)
618
0
            return ERROR_INT("pixim all foreground", __func__, 1);
619
0
    }
620
621
0
    pixGetBackgroundGrayMap(pixs, pixim, sx, sy, thresh, mincount, &pixm);
622
0
    if (!pixm)
623
0
        return ERROR_INT("pixm not made", __func__, 1);
624
0
    *ppixd = pixGetInvBackgroundMap(pixm, bgval, smoothx, smoothy);
625
0
    pixCopyResolution(*ppixd, pixs);
626
0
    pixDestroy(&pixm);
627
0
    return 0;
628
0
}
629
630
631
/*!
632
 * \brief   pixBackgroundNormRGBArrays()
633
 *
634
 * \param[in]    pixs       32 bpp rgb
635
 * \param[in]    pixim      [optional] 1 bpp 'image' mask; can be null
636
 * \param[in]    pixg       [optional] 8 bpp grayscale version; can be null
637
 * \param[in]    sx, sy     tile size in pixels
638
 * \param[in]    thresh     threshold for determining foreground
639
 * \param[in]    mincount   min threshold on counts in a tile
640
 * \param[in]    bgval      target bg val; typ. > 128
641
 * \param[in]    smoothx    half-width of block convolution kernel width
642
 * \param[in]    smoothy    half-width of block convolution kernel height
643
 * \param[out]   ppixr      16 bpp array of inverted R background value
644
 * \param[out]   ppixg      16 bpp array of inverted G background value
645
 * \param[out]   ppixb      16 bpp array of inverted B background value
646
 * \return  0 if OK, 1 on error
647
 *
648
 * <pre>
649
 * Notes:
650
 *    (1) See notes in pixBackgroundNorm().
651
 *    (2) This returns a set of three 16 bpp pix that can be used by
652
 *        pixApplyInvBackgroundGrayMap() to generate a normalized version
653
 *        of each component of the input pixs.
654
 * </pre>
655
 */
656
l_ok
657
pixBackgroundNormRGBArrays(PIX     *pixs,
658
                           PIX     *pixim,
659
                           PIX     *pixg,
660
                           l_int32  sx,
661
                           l_int32  sy,
662
                           l_int32  thresh,
663
                           l_int32  mincount,
664
                           l_int32  bgval,
665
                           l_int32  smoothx,
666
                           l_int32  smoothy,
667
                           PIX    **ppixr,
668
                           PIX    **ppixg,
669
                           PIX    **ppixb)
670
0
{
671
0
l_int32  allfg;
672
0
PIX     *pixmr, *pixmg, *pixmb;
673
674
0
    if (!ppixr || !ppixg || !ppixb)
675
0
        return ERROR_INT("&pixr, &pixg, &pixb not all defined", __func__, 1);
676
0
    *ppixr = *ppixg = *ppixb = NULL;
677
0
    if (!pixs)
678
0
        return ERROR_INT("pixs not defined", __func__, 1);
679
0
    if (pixGetDepth(pixs) != 32)
680
0
        return ERROR_INT("pixs not 32 bpp", __func__, 1);
681
0
    if (pixim && pixGetDepth(pixim) != 1)
682
0
        return ERROR_INT("pixim not 1 bpp", __func__, 1);
683
0
    if (sx < 4 || sy < 4)
684
0
        return ERROR_INT("sx and sy must be >= 4", __func__, 1);
685
0
    if (mincount > sx * sy) {
686
0
        L_WARNING("mincount too large for tile size\n", __func__);
687
0
        mincount = (sx * sy) / 3;
688
0
    }
689
690
        /* If pixim exists, verify that it is not all foreground. */
691
0
    if (pixim) {
692
0
        pixInvert(pixim, pixim);
693
0
        pixZero(pixim, &allfg);
694
0
        pixInvert(pixim, pixim);
695
0
        if (allfg)
696
0
            return ERROR_INT("pixim all foreground", __func__, 1);
697
0
    }
698
699
0
    pixGetBackgroundRGBMap(pixs, pixim, pixg, sx, sy, thresh, mincount,
700
0
                           &pixmr, &pixmg, &pixmb);
701
0
    if (!pixmr || !pixmg || !pixmb) {
702
0
        pixDestroy(&pixmr);
703
0
        pixDestroy(&pixmg);
704
0
        pixDestroy(&pixmb);
705
0
        return ERROR_INT("not all pixm* made", __func__, 1);
706
0
    }
707
708
0
    *ppixr = pixGetInvBackgroundMap(pixmr, bgval, smoothx, smoothy);
709
0
    *ppixg = pixGetInvBackgroundMap(pixmg, bgval, smoothx, smoothy);
710
0
    *ppixb = pixGetInvBackgroundMap(pixmb, bgval, smoothx, smoothy);
711
0
    pixDestroy(&pixmr);
712
0
    pixDestroy(&pixmg);
713
0
    pixDestroy(&pixmb);
714
0
    return 0;
715
0
}
716
717
718
/*!
719
 * \brief   pixBackgroundNormGrayArrayMorph()
720
 *
721
 * \param[in]    pixs        8 bpp grayscale
722
 * \param[in]    pixim       [optional] 1 bpp 'image' mask; can be null
723
 * \param[in]    reduction   at which morph closings are done; between 2 and 16
724
 * \param[in]    size        of square Sel for the closing; use an odd number
725
 * \param[in]    bgval       target bg val; typ. > 128
726
 * \param[out]   ppixd       16 bpp array of inverted background value
727
 * \return  0 if OK, 1 on error
728
 *
729
 * <pre>
730
 * Notes:
731
 *    (1) See notes in pixBackgroundNormMorph().
732
 *    (2) This returns a 16 bpp pix that can be used by
733
 *        pixApplyInvBackgroundGrayMap() to generate a normalized version
734
 *        of the input pixs.
735
 * </pre>
736
 */
737
l_ok
738
pixBackgroundNormGrayArrayMorph(PIX     *pixs,
739
                                PIX     *pixim,
740
                                l_int32  reduction,
741
                                l_int32  size,
742
                                l_int32  bgval,
743
                                PIX    **ppixd)
744
0
{
745
0
l_int32  allfg;
746
0
PIX     *pixm;
747
748
0
    if (!ppixd)
749
0
        return ERROR_INT("&pixd not defined", __func__, 1);
750
0
    *ppixd = NULL;
751
0
    if (!pixs)
752
0
        return ERROR_INT("pixs not defined", __func__, 1);
753
0
    if (pixGetDepth(pixs) != 8)
754
0
        return ERROR_INT("pixs not 8 bpp", __func__, 1);
755
0
    if (pixim && pixGetDepth(pixim) != 1)
756
0
        return ERROR_INT("pixim not 1 bpp", __func__, 1);
757
0
    if (reduction < 2 || reduction > 16)
758
0
        return ERROR_INT("reduction must be between 2 and 16", __func__, 1);
759
760
        /* If pixim exists, verify that it is not all foreground. */
761
0
    if (pixim) {
762
0
        pixInvert(pixim, pixim);
763
0
        pixZero(pixim, &allfg);
764
0
        pixInvert(pixim, pixim);
765
0
        if (allfg)
766
0
            return ERROR_INT("pixim all foreground", __func__, 1);
767
0
    }
768
769
0
    pixGetBackgroundGrayMapMorph(pixs, pixim, reduction, size, &pixm);
770
0
    if (!pixm)
771
0
        return ERROR_INT("pixm not made", __func__, 1);
772
0
    *ppixd = pixGetInvBackgroundMap(pixm, bgval, 0, 0);
773
0
    pixCopyResolution(*ppixd, pixs);
774
0
    pixDestroy(&pixm);
775
0
    return 0;
776
0
}
777
778
779
/*!
780
 * \brief   pixBackgroundNormRGBArraysMorph()
781
 *
782
 * \param[in]    pixs        32 bpp rgb
783
 * \param[in]    pixim       [optional] 1 bpp 'image' mask; can be null
784
 * \param[in]    reduction   at which morph closings are done; between 2 and 16
785
 * \param[in]    size        of square Sel for the closing; use an odd number
786
 * \param[in]    bgval       target bg val; typ. > 128
787
 * \param[out]   ppixr       16 bpp array of inverted R background value
788
 * \param[out]   ppixg       16 bpp array of inverted G background value
789
 * \param[out]   ppixb       16 bpp array of inverted B background value
790
 * \return  0 if OK, 1 on error
791
 *
792
 * <pre>
793
 * Notes:
794
 *    (1) See notes in pixBackgroundNormMorph().
795
 *    (2) This returns a set of three 16 bpp pix that can be used by
796
 *        pixApplyInvBackgroundGrayMap() to generate a normalized version
797
 *        of each component of the input pixs.
798
 * </pre>
799
 */
800
l_ok
801
pixBackgroundNormRGBArraysMorph(PIX     *pixs,
802
                                PIX     *pixim,
803
                                l_int32  reduction,
804
                                l_int32  size,
805
                                l_int32  bgval,
806
                                PIX    **ppixr,
807
                                PIX    **ppixg,
808
                                PIX    **ppixb)
809
0
{
810
0
l_int32  allfg;
811
0
PIX     *pixmr, *pixmg, *pixmb;
812
813
0
    if (!ppixr || !ppixg || !ppixb)
814
0
        return ERROR_INT("&pixr, &pixg, &pixb not all defined", __func__, 1);
815
0
    *ppixr = *ppixg = *ppixb = NULL;
816
0
    if (!pixs)
817
0
        return ERROR_INT("pixs not defined", __func__, 1);
818
0
    if (pixGetDepth(pixs) != 32)
819
0
        return ERROR_INT("pixs not 32 bpp", __func__, 1);
820
0
    if (pixim && pixGetDepth(pixim) != 1)
821
0
        return ERROR_INT("pixim not 1 bpp", __func__, 1);
822
0
    if (reduction < 2 || reduction > 16)
823
0
        return ERROR_INT("reduction must be between 2 and 16", __func__, 1);
824
825
        /* If pixim exists, verify that it is not all foreground. */
826
0
    if (pixim) {
827
0
        pixInvert(pixim, pixim);
828
0
        pixZero(pixim, &allfg);
829
0
        pixInvert(pixim, pixim);
830
0
        if (allfg)
831
0
            return ERROR_INT("pixim all foreground", __func__, 1);
832
0
    }
833
834
0
    pixGetBackgroundRGBMapMorph(pixs, pixim, reduction, size,
835
0
                                &pixmr, &pixmg, &pixmb);
836
0
    if (!pixmr || !pixmg || !pixmb) {
837
0
        pixDestroy(&pixmr);
838
0
        pixDestroy(&pixmg);
839
0
        pixDestroy(&pixmb);
840
0
        return ERROR_INT("not all pixm* made", __func__, 1);
841
0
    }
842
843
0
    *ppixr = pixGetInvBackgroundMap(pixmr, bgval, 0, 0);
844
0
    *ppixg = pixGetInvBackgroundMap(pixmg, bgval, 0, 0);
845
0
    *ppixb = pixGetInvBackgroundMap(pixmb, bgval, 0, 0);
846
0
    pixDestroy(&pixmr);
847
0
    pixDestroy(&pixmg);
848
0
    pixDestroy(&pixmb);
849
0
    return 0;
850
0
}
851
852
853
/*------------------------------------------------------------------*
854
 *                 Measurement of local background                  *
855
 *------------------------------------------------------------------*/
856
/*!
857
 * \brief   pixGetBackgroundGrayMap()
858
 *
859
 * \param[in]    pixs       8 bpp grayscale; not cmapped
860
 * \param[in]    pixim      [optional] 1 bpp 'image' mask; can be null;
861
 *                          it should not have only foreground pixels
862
 * \param[in]    sx, sy     tile size in pixels
863
 * \param[in]    thresh     threshold for determining foreground
864
 * \param[in]    mincount   min threshold on counts in a tile
865
 * \param[out]   ppixd      8 bpp grayscale map
866
 * \return  0 if OK, 1 on error
867
 *
868
 * <pre>
869
 * Notes:
870
 *      (1) The background is measured in regions that don't have
871
 *          images.  It is then propagated into the image regions,
872
 *          and finally smoothed in each image region.
873
 * </pre>
874
 */
875
l_ok
876
pixGetBackgroundGrayMap(PIX     *pixs,
877
                        PIX     *pixim,
878
                        l_int32  sx,
879
                        l_int32  sy,
880
                        l_int32  thresh,
881
                        l_int32  mincount,
882
                        PIX    **ppixd)
883
691
{
884
691
l_int32    w, h, wd, hd, wim, him, wpls, wplim, wpld, wplf;
885
691
l_int32    xim, yim, delx, nx, ny, i, j, k, m;
886
691
l_int32    count, sum, val8;
887
691
l_int32    empty, fgpixels;
888
691
l_uint32  *datas, *dataim, *datad, *dataf, *lines, *lineim, *lined, *linef;
889
691
l_float32  scalex, scaley;
890
691
PIX       *pixd, *piximi, *pixb, *pixf, *pixims;
891
892
691
    if (!ppixd)
893
0
        return ERROR_INT("&pixd not defined", __func__, 1);
894
691
    *ppixd = NULL;
895
691
    if (!pixs || pixGetDepth(pixs) != 8)
896
0
        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
897
691
    if (pixGetColormap(pixs))
898
0
        return ERROR_INT("pixs is colormapped", __func__, 1);
899
691
    if (pixim && pixGetDepth(pixim) != 1)
900
0
        return ERROR_INT("pixim not 1 bpp", __func__, 1);
901
691
    if (sx < 4 || sy < 4)
902
0
        return ERROR_INT("sx and sy must be >= 4", __func__, 1);
903
691
    if (mincount > sx * sy) {
904
0
        L_WARNING("mincount too large for tile size\n", __func__);
905
0
        mincount = (sx * sy) / 3;
906
0
    }
907
908
        /* Evaluate the 'image' mask, pixim, and make sure
909
         * it is not all fg. */
910
691
    fgpixels = 0;  /* boolean for existence of fg pixels in the image mask. */
911
691
    if (pixim) {
912
0
        piximi = pixInvert(NULL, pixim);  /* set non-'image' pixels to 1 */
913
0
        pixZero(piximi, &empty);
914
0
        pixDestroy(&piximi);
915
0
        if (empty)
916
0
            return ERROR_INT("pixim all fg; no background", __func__, 1);
917
0
        pixZero(pixim, &empty);
918
0
        if (!empty)  /* there are fg pixels in pixim */
919
0
            fgpixels = 1;
920
0
    }
921
922
        /* Generate the foreground mask, pixf, which is at
923
         * full resolution.  These pixels will be ignored when
924
         * computing the background values. */
925
691
    pixb = pixThresholdToBinary(pixs, thresh);
926
691
    pixf = pixMorphSequence(pixb, "d7.1 + d1.7", 0);
927
691
    pixDestroy(&pixb);
928
691
    if (!pixf)
929
0
        return ERROR_INT("pixf not made", __func__, 1);
930
931
932
    /* ------------- Set up the output map pixd --------------- */
933
        /* Generate pixd, which is reduced by the factors (sx, sy). */
934
691
    w = pixGetWidth(pixs);
935
691
    h = pixGetHeight(pixs);
936
691
    wd = (w + sx - 1) / sx;
937
691
    hd = (h + sy - 1) / sy;
938
691
    pixd = pixCreate(wd, hd, 8);
939
940
        /* Note: we only compute map values in tiles that are complete.
941
         * In general, tiles at right and bottom edges will not be
942
         * complete, and we must fill them in later. */
943
691
    nx = w / sx;
944
691
    ny = h / sy;
945
691
    wpls = pixGetWpl(pixs);
946
691
    datas = pixGetData(pixs);
947
691
    wpld = pixGetWpl(pixd);
948
691
    datad = pixGetData(pixd);
949
691
    wplf = pixGetWpl(pixf);
950
691
    dataf = pixGetData(pixf);
951
3.96k
    for (i = 0; i < ny; i++) {
952
3.27k
        lines = datas + sy * i * wpls;
953
3.27k
        linef = dataf + sy * i * wplf;
954
3.27k
        lined = datad + i * wpld;
955
26.3k
        for (j = 0; j < nx; j++) {
956
23.0k
            delx = j * sx;
957
23.0k
            sum = 0;
958
23.0k
            count = 0;
959
368k
            for (k = 0; k < sy; k++) {
960
3.79M
                for (m = 0; m < sx; m++) {
961
3.45M
                    if (GET_DATA_BIT(linef + k * wplf, delx + m) == 0) {
962
238k
                        sum += GET_DATA_BYTE(lines + k * wpls, delx + m);
963
238k
                        count++;
964
238k
                    }
965
3.45M
                }
966
345k
            }
967
23.0k
            if (count >= mincount) {
968
2.30k
                val8 = sum / count;
969
2.30k
                SET_DATA_BYTE(lined, j, val8);
970
2.30k
            }
971
23.0k
        }
972
3.27k
    }
973
691
    pixDestroy(&pixf);
974
975
        /* If there is an optional mask with fg pixels, erase the previous
976
         * calculation for the corresponding map pixels, setting the
977
         * map values to 0.   Then, when all the map holes are filled,
978
         * these erased pixels will be set by the surrounding map values.
979
         *
980
         * The calculation here is relatively efficient: for each pixel
981
         * in pixd (which corresponds to a tile of mask pixels in pixim)
982
         * we look only at the pixel in pixim that is at the center
983
         * of the tile.  If the mask pixel is ON, we reset the map
984
         * pixel in pixd to 0, so that it can later be filled in. */
985
691
    pixims = NULL;
986
691
    if (pixim && fgpixels) {
987
0
        wim = pixGetWidth(pixim);
988
0
        him = pixGetHeight(pixim);
989
0
        dataim = pixGetData(pixim);
990
0
        wplim = pixGetWpl(pixim);
991
0
        for (i = 0; i < ny; i++) {
992
0
            yim = i * sy + sy / 2;
993
0
            if (yim >= him)
994
0
                break;
995
0
            lineim = dataim + yim * wplim;
996
0
            for (j = 0; j < nx; j++) {
997
0
                xim = j * sx + sx / 2;
998
0
                if (xim >= wim)
999
0
                    break;
1000
0
                if (GET_DATA_BIT(lineim, xim))
1001
0
                    pixSetPixel(pixd, j, i, 0);
1002
0
            }
1003
0
        }
1004
0
    }
1005
1006
        /* Fill all the holes in the map. */
1007
691
    if (pixFillMapHoles(pixd, nx, ny, L_FILL_BLACK)) {
1008
484
        pixDestroy(&pixd);
1009
484
        L_WARNING("can't make the map\n", __func__);
1010
484
        return 1;
1011
484
    }
1012
1013
        /* Finally, for each connected region corresponding to the
1014
         * 'image' mask, reset all pixels to their average value.
1015
         * Each of these components represents an image (or part of one)
1016
         * in the input, and this smooths the background values
1017
         * in each of these regions. */
1018
207
    if (pixim && fgpixels) {
1019
0
        scalex = 1. / (l_float32)sx;
1020
0
        scaley = 1. / (l_float32)sy;
1021
0
        pixims = pixScaleBySampling(pixim, scalex, scaley);
1022
0
        pixSmoothConnectedRegions(pixd, pixims, 2);
1023
0
        pixDestroy(&pixims);
1024
0
    }
1025
1026
207
    *ppixd = pixd;
1027
207
    pixCopyResolution(*ppixd, pixs);
1028
207
    return 0;
1029
691
}
1030
1031
1032
/*!
1033
 * \brief   pixGetBackgroundRGBMap()
1034
 *
1035
 * \param[in]    pixs       32 bpp rgb
1036
 * \param[in]    pixim      [optional] 1 bpp 'image' mask; can be null; it
1037
 *                          should not have all foreground pixels
1038
 * \param[in]    pixg       [optional] 8 bpp grayscale version; can be null
1039
 * \param[in]    sx, sy     tile size in pixels
1040
 * \param[in]    thresh     threshold for determining foreground
1041
 * \param[in]    mincount   min threshold on counts in a tile
1042
 * \param[out]   ppixmr     red component map
1043
 * \param[out]   ppixmg     green component map
1044
 * \param[out]   ppixmb     blue component map
1045
 * \return  0 if OK, 1 on error
1046
 *
1047
 * <pre>
1048
 * Notes:
1049
 *      (1) If pixg, which is a grayscale version of pixs, is provided,
1050
 *          use this internally to generate the foreground mask.
1051
 *          Otherwise, a grayscale version of pixs will be generated
1052
 *          from the green component only, used, and destroyed.
1053
 * </pre>
1054
 */
1055
l_ok
1056
pixGetBackgroundRGBMap(PIX     *pixs,
1057
                       PIX     *pixim,
1058
                       PIX     *pixg,
1059
                       l_int32  sx,
1060
                       l_int32  sy,
1061
                       l_int32  thresh,
1062
                       l_int32  mincount,
1063
                       PIX    **ppixmr,
1064
                       PIX    **ppixmg,
1065
                       PIX    **ppixmb)
1066
0
{
1067
0
l_int32    w, h, wm, hm, wim, him, wpls, wplim, wplf;
1068
0
l_int32    xim, yim, delx, nx, ny, i, j, k, m;
1069
0
l_int32    count, rsum, gsum, bsum, rval, gval, bval;
1070
0
l_int32    empty, fgpixels;
1071
0
l_uint32   pixel;
1072
0
l_uint32  *datas, *dataim, *dataf, *lines, *lineim, *linef;
1073
0
l_float32  scalex, scaley;
1074
0
PIX       *piximi, *pixgc, *pixb, *pixf, *pixims;
1075
0
PIX       *pixmr, *pixmg, *pixmb;
1076
1077
0
    if (!ppixmr || !ppixmg || !ppixmb)
1078
0
        return ERROR_INT("&pixm* not all defined", __func__, 1);
1079
0
    *ppixmr = *ppixmg = *ppixmb = NULL;
1080
0
    if (!pixs)
1081
0
        return ERROR_INT("pixs not defined", __func__, 1);
1082
0
    if (pixGetDepth(pixs) != 32)
1083
0
        return ERROR_INT("pixs not 32 bpp", __func__, 1);
1084
0
    if (pixim && pixGetDepth(pixim) != 1)
1085
0
        return ERROR_INT("pixim not 1 bpp", __func__, 1);
1086
0
    if (sx < 4 || sy < 4)
1087
0
        return ERROR_INT("sx and sy must be >= 4", __func__, 1);
1088
0
    if (mincount > sx * sy) {
1089
0
        L_WARNING("mincount too large for tile size\n", __func__);
1090
0
        mincount = (sx * sy) / 3;
1091
0
    }
1092
1093
        /* Evaluate the mask pixim and make sure it is not all foreground */
1094
0
    fgpixels = 0;  /* boolean for existence of fg mask pixels */
1095
0
    if (pixim) {
1096
0
        piximi = pixInvert(NULL, pixim);  /* set non-'image' pixels to 1 */
1097
0
        pixZero(piximi, &empty);
1098
0
        pixDestroy(&piximi);
1099
0
        if (empty)
1100
0
            return ERROR_INT("pixim all fg; no background", __func__, 1);
1101
0
        pixZero(pixim, &empty);
1102
0
        if (!empty)  /* there are fg pixels in pixim */
1103
0
            fgpixels = 1;
1104
0
    }
1105
1106
        /* Generate the foreground mask.  These pixels will be
1107
         * ignored when computing the background values. */
1108
0
    if (pixg)  /* use the input grayscale version if it is provided */
1109
0
        pixgc = pixClone(pixg);
1110
0
    else
1111
0
        pixgc = pixConvertRGBToGrayFast(pixs);
1112
0
    pixb = pixThresholdToBinary(pixgc, thresh);
1113
0
    pixf = pixMorphSequence(pixb, "d7.1 + d1.7", 0);
1114
0
    pixDestroy(&pixgc);
1115
0
    pixDestroy(&pixb);
1116
1117
        /* Generate the output mask images */
1118
0
    w = pixGetWidth(pixs);
1119
0
    h = pixGetHeight(pixs);
1120
0
    wm = (w + sx - 1) / sx;
1121
0
    hm = (h + sy - 1) / sy;
1122
0
    pixmr = pixCreate(wm, hm, 8);
1123
0
    pixmg = pixCreate(wm, hm, 8);
1124
0
    pixmb = pixCreate(wm, hm, 8);
1125
1126
    /* ------------- Set up the mapping images --------------- */
1127
        /* Note: we only compute map values in tiles that are complete.
1128
         * In general, tiles at right and bottom edges will not be
1129
         * complete, and we must fill them in later. */
1130
0
    nx = w / sx;
1131
0
    ny = h / sy;
1132
0
    wpls = pixGetWpl(pixs);
1133
0
    datas = pixGetData(pixs);
1134
0
    wplf = pixGetWpl(pixf);
1135
0
    dataf = pixGetData(pixf);
1136
0
    for (i = 0; i < ny; i++) {
1137
0
        lines = datas + sy * i * wpls;
1138
0
        linef = dataf + sy * i * wplf;
1139
0
        for (j = 0; j < nx; j++) {
1140
0
            delx = j * sx;
1141
0
            rsum = gsum = bsum = 0;
1142
0
            count = 0;
1143
0
            for (k = 0; k < sy; k++) {
1144
0
                for (m = 0; m < sx; m++) {
1145
0
                    if (GET_DATA_BIT(linef + k * wplf, delx + m) == 0) {
1146
0
                        pixel = *(lines + k * wpls + delx + m);
1147
0
                        rsum += (pixel >> 24);
1148
0
                        gsum += ((pixel >> 16) & 0xff);
1149
0
                        bsum += ((pixel >> 8) & 0xff);
1150
0
                        count++;
1151
0
                    }
1152
0
                }
1153
0
            }
1154
0
            if (count >= mincount) {
1155
0
                rval = rsum / count;
1156
0
                gval = gsum / count;
1157
0
                bval = bsum / count;
1158
0
                pixSetPixel(pixmr, j, i, rval);
1159
0
                pixSetPixel(pixmg, j, i, gval);
1160
0
                pixSetPixel(pixmb, j, i, bval);
1161
0
            }
1162
0
        }
1163
0
    }
1164
0
    pixDestroy(&pixf);
1165
1166
        /* If there is an optional mask with fg pixels, erase the previous
1167
         * calculation for the corresponding map pixels, setting the
1168
         * map values in each of the 3 color maps to 0.   Then, when
1169
         * all the map holes are filled, these erased pixels will
1170
         * be set by the surrounding map values. */
1171
0
    if (pixim) {
1172
0
        wim = pixGetWidth(pixim);
1173
0
        him = pixGetHeight(pixim);
1174
0
        dataim = pixGetData(pixim);
1175
0
        wplim = pixGetWpl(pixim);
1176
0
        for (i = 0; i < ny; i++) {
1177
0
            yim = i * sy + sy / 2;
1178
0
            if (yim >= him)
1179
0
                break;
1180
0
            lineim = dataim + yim * wplim;
1181
0
            for (j = 0; j < nx; j++) {
1182
0
                xim = j * sx + sx / 2;
1183
0
                if (xim >= wim)
1184
0
                    break;
1185
0
                if (GET_DATA_BIT(lineim, xim)) {
1186
0
                    pixSetPixel(pixmr, j, i, 0);
1187
0
                    pixSetPixel(pixmg, j, i, 0);
1188
0
                    pixSetPixel(pixmb, j, i, 0);
1189
0
                }
1190
0
            }
1191
0
        }
1192
0
    }
1193
1194
    /* ----------------- Now fill in the holes ----------------------- */
1195
0
    if (pixFillMapHoles(pixmr, nx, ny, L_FILL_BLACK) ||
1196
0
        pixFillMapHoles(pixmg, nx, ny, L_FILL_BLACK) ||
1197
0
        pixFillMapHoles(pixmb, nx, ny, L_FILL_BLACK)) {
1198
0
        pixDestroy(&pixmr);
1199
0
        pixDestroy(&pixmg);
1200
0
        pixDestroy(&pixmb);
1201
0
        L_WARNING("can't make the maps\n", __func__);
1202
0
        return 1;
1203
0
    }
1204
1205
        /* Finally, for each connected region corresponding to the
1206
         * fg mask, reset all pixels to their average value. */
1207
0
    if (pixim && fgpixels) {
1208
0
        scalex = 1. / (l_float32)sx;
1209
0
        scaley = 1. / (l_float32)sy;
1210
0
        pixims = pixScaleBySampling(pixim, scalex, scaley);
1211
0
        pixSmoothConnectedRegions(pixmr, pixims, 2);
1212
0
        pixSmoothConnectedRegions(pixmg, pixims, 2);
1213
0
        pixSmoothConnectedRegions(pixmb, pixims, 2);
1214
0
        pixDestroy(&pixims);
1215
0
    }
1216
1217
0
    *ppixmr = pixmr;
1218
0
    *ppixmg = pixmg;
1219
0
    *ppixmb = pixmb;
1220
0
    pixCopyResolution(*ppixmr, pixs);
1221
0
    pixCopyResolution(*ppixmg, pixs);
1222
0
    pixCopyResolution(*ppixmb, pixs);
1223
0
    return 0;
1224
0
}
1225
1226
1227
/*!
1228
 * \brief   pixGetBackgroundGrayMapMorph()
1229
 *
1230
 * \param[in]    pixs        8 bpp grayscale; not cmapped
1231
 * \param[in]    pixim       [optional] 1 bpp 'image' mask; can be null; it
1232
 *                           should not have all foreground pixels
1233
 * \param[in]    reduction   factor at which closing is performed
1234
 * \param[in]    size        of square Sel for the closing; use an odd number
1235
 * \param[out]   ppixm       grayscale map
1236
 * \return  0 if OK, 1 on error
1237
 */
1238
l_ok
1239
pixGetBackgroundGrayMapMorph(PIX     *pixs,
1240
                             PIX     *pixim,
1241
                             l_int32  reduction,
1242
                             l_int32  size,
1243
                             PIX    **ppixm)
1244
0
{
1245
0
l_int32    nx, ny, empty, fgpixels;
1246
0
l_float32  scale;
1247
0
PIX       *pixm, *pix1, *pix2, *pix3, *pixims;
1248
1249
0
    if (!ppixm)
1250
0
        return ERROR_INT("&pixm not defined", __func__, 1);
1251
0
    *ppixm = NULL;
1252
0
    if (!pixs || pixGetDepth(pixs) != 8)
1253
0
        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
1254
0
    if (pixGetColormap(pixs))
1255
0
        return ERROR_INT("pixs is colormapped", __func__, 1);
1256
0
    if (pixim && pixGetDepth(pixim) != 1)
1257
0
        return ERROR_INT("pixim not 1 bpp", __func__, 1);
1258
1259
        /* Evaluate the mask pixim and make sure it is not all foreground. */
1260
0
    fgpixels = 0;  /* boolean for existence of fg mask pixels */
1261
0
    if (pixim) {
1262
0
        pixInvert(pixim, pixim);  /* set background pixels to 1 */
1263
0
        pixZero(pixim, &empty);
1264
0
        if (empty)
1265
0
            return ERROR_INT("pixim all fg; no background", __func__, 1);
1266
0
        pixInvert(pixim, pixim);  /* revert to original mask */
1267
0
        pixZero(pixim, &empty);
1268
0
        if (!empty)  /* there are fg pixels in pixim */
1269
0
            fgpixels = 1;
1270
0
    }
1271
1272
        /* Downscale as requested and do the closing to get the background. */
1273
0
    scale = 1. / (l_float32)reduction;
1274
0
    pix1 = pixScaleBySampling(pixs, scale, scale);
1275
0
    pix2 = pixCloseGray(pix1, size, size);
1276
0
    pix3 = pixExtendByReplication(pix2, 1, 1);
1277
0
    pixDestroy(&pix1);
1278
0
    pixDestroy(&pix2);
1279
1280
        /* Downscale the image mask, if any, and remove it from the
1281
         * background.  These pixels will be filled in (twice). */
1282
0
    pixims = NULL;
1283
0
    if (pixim) {
1284
0
        pixims = pixScale(pixim, scale, scale);
1285
0
        pixm = pixConvertTo8(pixims, FALSE);
1286
0
        pixAnd(pixm, pixm, pix3);
1287
0
    }
1288
0
    else
1289
0
        pixm = pixClone(pix3);
1290
0
    pixDestroy(&pix3);
1291
1292
        /* Fill all the holes in the map. */
1293
0
    nx = pixGetWidth(pixs) / reduction;
1294
0
    ny = pixGetHeight(pixs) / reduction;
1295
0
    if (pixFillMapHoles(pixm, nx, ny, L_FILL_BLACK)) {
1296
0
        pixDestroy(&pixm);
1297
0
        pixDestroy(&pixims);
1298
0
        L_WARNING("can't make the map\n", __func__);
1299
0
        return 1;
1300
0
    }
1301
1302
        /* Finally, for each connected region corresponding to the
1303
         * fg mask, reset all pixels to their average value. */
1304
0
    if (pixim && fgpixels)
1305
0
        pixSmoothConnectedRegions(pixm, pixims, 2);
1306
0
    pixDestroy(&pixims);
1307
1308
0
    *ppixm = pixm;
1309
0
    pixCopyResolution(*ppixm, pixs);
1310
0
    return 0;
1311
0
}
1312
1313
1314
/*!
1315
 * \brief   pixGetBackgroundRGBMapMorph()
1316
 *
1317
 * \param[in]    pixs        32 bpp rgb
1318
 * \param[in]    pixim       [optional] 1 bpp 'image' mask; can be null; it
1319
 *                           should not have all foreground pixels
1320
 * \param[in]    reduction   factor at which closing is performed
1321
 * \param[in]    size        of square Sel for the closing; use an odd number
1322
 * \param[out]   ppixmr      red component map
1323
 * \param[out]   ppixmg      green component map
1324
 * \param[out]   ppixmb      blue component map
1325
 * \return  0 if OK, 1 on error
1326
 */
1327
l_ok
1328
pixGetBackgroundRGBMapMorph(PIX     *pixs,
1329
                            PIX     *pixim,
1330
                            l_int32  reduction,
1331
                            l_int32  size,
1332
                            PIX    **ppixmr,
1333
                            PIX    **ppixmg,
1334
                            PIX    **ppixmb)
1335
0
{
1336
0
l_int32    nx, ny, empty, fgpixels;
1337
0
l_float32  scale;
1338
0
PIX       *pixm, *pixmr, *pixmg, *pixmb, *pix1, *pix2, *pix3, *pixims;
1339
1340
0
    if (!ppixmr || !ppixmg || !ppixmb)
1341
0
        return ERROR_INT("&pixm* not all defined", __func__, 1);
1342
0
    *ppixmr = *ppixmg = *ppixmb = NULL;
1343
0
    if (!pixs)
1344
0
        return ERROR_INT("pixs not defined", __func__, 1);
1345
0
    if (pixGetDepth(pixs) != 32)
1346
0
        return ERROR_INT("pixs not 32 bpp", __func__, 1);
1347
0
    if (pixim && pixGetDepth(pixim) != 1)
1348
0
        return ERROR_INT("pixim not 1 bpp", __func__, 1);
1349
1350
        /* Evaluate the mask pixim and make sure it is not all foreground. */
1351
0
    fgpixels = 0;  /* boolean for existence of fg mask pixels */
1352
0
    if (pixim) {
1353
0
        pixInvert(pixim, pixim);  /* set background pixels to 1 */
1354
0
        pixZero(pixim, &empty);
1355
0
        if (empty)
1356
0
            return ERROR_INT("pixim all fg; no background", __func__, 1);
1357
0
        pixInvert(pixim, pixim);  /* revert to original mask */
1358
0
        pixZero(pixim, &empty);
1359
0
        if (!empty)  /* there are fg pixels in pixim */
1360
0
            fgpixels = 1;
1361
0
    }
1362
1363
        /* Generate an 8 bpp version of the image mask, if it exists */
1364
0
    scale = 1. / (l_float32)reduction;
1365
0
    pixims = NULL;
1366
0
    pixm = NULL;
1367
0
    if (pixim) {
1368
0
        pixims = pixScale(pixim, scale, scale);
1369
0
        pixm = pixConvertTo8(pixims, FALSE);
1370
0
    }
1371
1372
        /* Downscale as requested and do the closing to get the background.
1373
         * Then remove the image mask pixels from the background.  They
1374
         * will be filled in (twice) later.  Do this for all 3 components. */
1375
0
    pix1 = pixScaleRGBToGrayFast(pixs, reduction, COLOR_RED);
1376
0
    pix2 = pixCloseGray(pix1, size, size);
1377
0
    pix3 = pixExtendByReplication(pix2, 1, 1);
1378
0
    if (pixim)
1379
0
        pixmr = pixAnd(NULL, pixm, pix3);
1380
0
    else
1381
0
        pixmr = pixClone(pix3);
1382
0
    pixDestroy(&pix1);
1383
0
    pixDestroy(&pix2);
1384
0
    pixDestroy(&pix3);
1385
1386
0
    pix1 = pixScaleRGBToGrayFast(pixs, reduction, COLOR_GREEN);
1387
0
    pix2 = pixCloseGray(pix1, size, size);
1388
0
    pix3 = pixExtendByReplication(pix2, 1, 1);
1389
0
    if (pixim)
1390
0
        pixmg = pixAnd(NULL, pixm, pix3);
1391
0
    else
1392
0
        pixmg = pixClone(pix3);
1393
0
    pixDestroy(&pix1);
1394
0
    pixDestroy(&pix2);
1395
0
    pixDestroy(&pix3);
1396
1397
0
    pix1 = pixScaleRGBToGrayFast(pixs, reduction, COLOR_BLUE);
1398
0
    pix2 = pixCloseGray(pix1, size, size);
1399
0
    pix3 = pixExtendByReplication(pix2, 1, 1);
1400
0
    if (pixim)
1401
0
        pixmb = pixAnd(NULL, pixm, pix3);
1402
0
    else
1403
0
        pixmb = pixClone(pix3);
1404
0
    pixDestroy(&pixm);
1405
0
    pixDestroy(&pix1);
1406
0
    pixDestroy(&pix2);
1407
0
    pixDestroy(&pix3);
1408
1409
        /* Fill all the holes in the three maps. */
1410
0
    nx = pixGetWidth(pixs) / reduction;
1411
0
    ny = pixGetHeight(pixs) / reduction;
1412
0
    if (pixFillMapHoles(pixmr, nx, ny, L_FILL_BLACK) ||
1413
0
        pixFillMapHoles(pixmg, nx, ny, L_FILL_BLACK) ||
1414
0
        pixFillMapHoles(pixmb, nx, ny, L_FILL_BLACK)) {
1415
0
        pixDestroy(&pixmr);
1416
0
        pixDestroy(&pixmg);
1417
0
        pixDestroy(&pixmb);
1418
0
        pixDestroy(&pixims);
1419
0
        L_WARNING("can't make the maps\n", __func__);
1420
0
        return 1;
1421
0
    }
1422
1423
        /* Finally, for each connected region corresponding to the
1424
         * fg mask in each component, reset all pixels to their
1425
         * average value. */
1426
0
    if (pixim && fgpixels) {
1427
0
        pixSmoothConnectedRegions(pixmr, pixims, 2);
1428
0
        pixSmoothConnectedRegions(pixmg, pixims, 2);
1429
0
        pixSmoothConnectedRegions(pixmb, pixims, 2);
1430
0
        pixDestroy(&pixims);
1431
0
    }
1432
1433
0
    *ppixmr = pixmr;
1434
0
    *ppixmg = pixmg;
1435
0
    *ppixmb = pixmb;
1436
0
    pixCopyResolution(*ppixmr, pixs);
1437
0
    pixCopyResolution(*ppixmg, pixs);
1438
0
    pixCopyResolution(*ppixmb, pixs);
1439
0
    return 0;
1440
0
}
1441
1442
1443
/*!
1444
 * \brief   pixFillMapHoles()
1445
 *
1446
 * \param[in]    pix        8 bpp; a map, with one pixel for each tile in
1447
 *                          a larger image
1448
 * \param[in]    nx         number of horizontal pixel tiles that are entirely
1449
 *                          covered with pixels in the original source image
1450
 * \param[in]    ny         ditto for the number of vertical pixel tiles
1451
 * \param[in]    filltype   L_FILL_WHITE or L_FILL_BLACK
1452
 * \return  0 if OK, 1 on error
1453
 *
1454
 * <pre>
1455
 * Notes:
1456
 *      (1) This is an in-place operation on pix (the map).  pix is
1457
 *          typically a low-resolution version of some other image
1458
 *          from which it was derived, where each pixel in pix
1459
 *          corresponds to a rectangular tile (say, m x n) of pixels
1460
 *          in the larger image.  All we need to know about the larger
1461
 *          image is whether or not the rightmost column and bottommost
1462
 *          row of pixels in pix correspond to tiles that are
1463
 *          only partially covered by pixels in the larger image.
1464
 *      (2) Typically, some number of pixels in the input map are
1465
 *          not known, and their values must be determined by near
1466
 *          pixels that are known.  These unknown pixels are the 'holes'.
1467
 *          They can take on only two values, 0 and 255, and the
1468
 *          instruction about which to fill is given by the filltype flag.
1469
 *      (3) The "holes" can come from two sources.  The first is when there
1470
 *          are not enough foreground or background pixels in a tile;
1471
 *          the second is when a tile is at least partially covered
1472
 *          by an image mask.  If we're filling holes in a fg mask,
1473
 *          the holes are initialized to black (0) and use L_FILL_BLACK.
1474
 *          For filling holes in a bg mask, initialize the holes to
1475
 *          white (255) and use L_FILL_WHITE.
1476
 *      (4) If w is the map width, nx = w or nx = w - 1; ditto for h and ny.
1477
 * </pre>
1478
 */
1479
l_ok
1480
pixFillMapHoles(PIX     *pix,
1481
                l_int32  nx,
1482
                l_int32  ny,
1483
                l_int32  filltype)
1484
691
{
1485
691
l_int32   w, h, y, nmiss, goodcol, i, j, found, ival, valtest;
1486
691
l_uint32  val, lastval;
1487
691
NUMA     *na;  /* indicates if there is any data in the column */
1488
1489
691
    if (!pix || pixGetDepth(pix) != 8)
1490
0
        return ERROR_INT("pix not defined or not 8 bpp", __func__, 1);
1491
691
    if (pixGetColormap(pix))
1492
0
        return ERROR_INT("pix is colormapped", __func__, 1);
1493
1494
    /* ------------- Fill holes in the mapping image columns ----------- */
1495
691
    pixGetDimensions(pix, &w, &h, NULL);
1496
691
    na = numaCreate(0);  /* holds flag for which columns have data */
1497
691
    nmiss = 0;
1498
691
    valtest = (filltype == L_FILL_WHITE) ? 255 : 0;
1499
7.81k
    for (j = 0; j < nx; j++) {  /* do it by columns */
1500
7.12k
        found = FALSE;
1501
25.1k
        for (i = 0; i < ny; i++) {
1502
19.3k
            pixGetPixel(pix, j, i, &val);
1503
19.3k
            if (val != valtest) {
1504
1.28k
                y = i;
1505
1.28k
                found = TRUE;
1506
1.28k
                break;
1507
1.28k
            }
1508
19.3k
        }
1509
7.12k
        if (found == FALSE) {
1510
5.83k
            numaAddNumber(na, 0);  /* no data in the column */
1511
5.83k
            nmiss++;
1512
5.83k
        }
1513
1.28k
        else {
1514
1.28k
            numaAddNumber(na, 1);  /* data in the column */
1515
7.17k
            for (i = y - 1; i >= 0; i--)  /* replicate upwards to top */
1516
5.88k
                pixSetPixel(pix, j, i, val);
1517
1.28k
            pixGetPixel(pix, j, 0, &lastval);
1518
12.1k
            for (i = 1; i < h; i++) {  /* set going down to bottom */
1519
10.8k
                pixGetPixel(pix, j, i, &val);
1520
10.8k
                if (val == valtest)
1521
3.97k
                    pixSetPixel(pix, j, i, lastval);
1522
6.90k
                else
1523
6.90k
                    lastval = val;
1524
10.8k
            }
1525
1.28k
        }
1526
7.12k
    }
1527
1528
691
    if (nmiss == nx) {  /* no data in any column! */
1529
484
        numaDestroy(&na);
1530
484
        L_WARNING("no bg found; no data in any column\n", __func__);
1531
484
        return 1;
1532
484
    }
1533
1534
    /* ---------- Fill in missing columns by replication ----------- */
1535
207
    if (nmiss > 0) {  /* replicate columns */
1536
            /* Find the first good column */
1537
84
        goodcol = 0;
1538
979
        for (j = 0; j < w; j++) {
1539
979
            numaGetIValue(na, j, &ival);
1540
979
            if (ival == 1) {
1541
84
                goodcol = j;
1542
84
                break;
1543
84
            }
1544
979
        }
1545
84
        if (goodcol > 0) {  /* copy cols backward */
1546
955
            for (j = goodcol - 1; j >= 0; j--)
1547
895
                pixRasterop(pix, j, 0, 1, h, PIX_SRC, pix, j + 1, 0);
1548
60
        }
1549
1.58k
        for (j = goodcol + 1; j < w; j++) {   /* copy cols forward */
1550
1.50k
            numaGetIValue(na, j, &ival);
1551
1.50k
            if (ival == 0) {
1552
                    /* Copy the column to the left of j */
1553
769
                pixRasterop(pix, j, 0, 1, h, PIX_SRC, pix, j - 1, 0);
1554
769
            }
1555
1.50k
        }
1556
84
    }
1557
207
    if (w > nx) {  /* replicate the last column */
1558
184
        pixRasterop(pix, w - 1, 0, 1, h, PIX_SRC, pix, w - 2, 0);
1559
184
    }
1560
1561
207
    numaDestroy(&na);
1562
207
    return 0;
1563
691
}
1564
1565
1566
/*!
1567
 * \brief   pixExtendByReplication()
1568
 *
1569
 * \param[in]    pixs    8 bpp
1570
 * \param[in]    addw    number of extra pixels horizontally to add
1571
 * \param[in]    addh    number of extra pixels vertically to add
1572
 * \return  pixd extended with replicated pixel values, or NULL on error
1573
 *
1574
 * <pre>
1575
 * Notes:
1576
 *      (1) The pixel values are extended to the left and down, as required.
1577
 * </pre>
1578
 */
1579
PIX *
1580
pixExtendByReplication(PIX     *pixs,
1581
                       l_int32  addw,
1582
                       l_int32  addh)
1583
0
{
1584
0
l_int32   w, h, i, j;
1585
0
l_uint32  val;
1586
0
PIX      *pixd;
1587
1588
0
    if (!pixs || pixGetDepth(pixs) != 8)
1589
0
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", __func__, NULL);
1590
1591
0
    if (addw == 0 && addh == 0)
1592
0
        return pixCopy(NULL, pixs);
1593
1594
0
    pixGetDimensions(pixs, &w, &h, NULL);
1595
0
    if ((pixd = pixCreate(w + addw, h + addh, 8)) == NULL)
1596
0
        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
1597
0
    pixRasterop(pixd, 0, 0, w, h, PIX_SRC, pixs, 0, 0);
1598
1599
0
    if (addw > 0) {
1600
0
        for (i = 0; i < h; i++) {
1601
0
            pixGetPixel(pixd, w - 1, i, &val);
1602
0
            for (j = 0; j < addw; j++)
1603
0
                pixSetPixel(pixd, w + j, i, val);
1604
0
        }
1605
0
    }
1606
1607
0
    if (addh > 0) {
1608
0
        for (j = 0; j < w + addw; j++) {
1609
0
            pixGetPixel(pixd, j, h - 1, &val);
1610
0
            for (i = 0; i < addh; i++)
1611
0
                pixSetPixel(pixd, j, h + i, val);
1612
0
        }
1613
0
    }
1614
1615
0
    pixCopyResolution(pixd, pixs);
1616
0
    return pixd;
1617
0
}
1618
1619
1620
/*!
1621
 * \brief   pixSmoothConnectedRegions()
1622
 *
1623
 * \param[in]    pixs    8 bpp grayscale; no colormap
1624
 * \param[in]    pixm    [optional] 1 bpp; if null, this is a no-op
1625
 * \param[in]    factor  subsampling factor for getting average; >= 1
1626
 * \return  0 if OK, 1 on error
1627
 *
1628
 * <pre>
1629
 * Notes:
1630
 *      (1) The pixels in pixs corresponding to those in each
1631
 *          8-connected region in the mask are set to the average value.
1632
 *      (2) This is required for adaptive mapping to avoid the
1633
 *          generation of stripes in the background map, due to
1634
 *          variations in the pixel values near the edges of mask regions.
1635
 *      (3) This function is optimized for background smoothing, where
1636
 *          there are a relatively small number of components.  It will
1637
 *          be inefficient if used where there are many small components.
1638
 * </pre>
1639
 */
1640
l_ok
1641
pixSmoothConnectedRegions(PIX     *pixs,
1642
                          PIX     *pixm,
1643
                          l_int32  factor)
1644
0
{
1645
0
l_int32    empty, i, n, x, y;
1646
0
l_float32  aveval;
1647
0
BOXA      *boxa;
1648
0
PIX       *pixmc;
1649
0
PIXA      *pixa;
1650
1651
0
    if (!pixs || pixGetDepth(pixs) != 8)
1652
0
        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
1653
0
    if (pixGetColormap(pixs))
1654
0
        return ERROR_INT("pixs has colormap", __func__, 1);
1655
0
    if (!pixm) {
1656
0
        L_INFO("pixm not defined\n", __func__);
1657
0
        return 0;
1658
0
    }
1659
0
    if (pixGetDepth(pixm) != 1)
1660
0
        return ERROR_INT("pixm not 1 bpp", __func__, 1);
1661
0
    pixZero(pixm, &empty);
1662
0
    if (empty) {
1663
0
        L_INFO("pixm has no fg pixels; nothing to do\n", __func__);
1664
0
        return 0;
1665
0
    }
1666
1667
0
    boxa = pixConnComp(pixm, &pixa, 8);
1668
0
    n = boxaGetCount(boxa);
1669
0
    for (i = 0; i < n; i++) {
1670
0
        if ((pixmc = pixaGetPix(pixa, i, L_CLONE)) == NULL) {
1671
0
            L_WARNING("missing pixmc!\n", __func__);
1672
0
            continue;
1673
0
        }
1674
0
        boxaGetBoxGeometry(boxa, i, &x, &y, NULL, NULL);
1675
0
        pixGetAverageMasked(pixs, pixmc, x, y, factor, L_MEAN_ABSVAL, &aveval);
1676
0
        pixPaintThroughMask(pixs, pixmc, x, y, (l_int32)aveval);
1677
0
        pixDestroy(&pixmc);
1678
0
    }
1679
1680
0
    boxaDestroy(&boxa);
1681
0
    pixaDestroy(&pixa);
1682
0
    return 0;
1683
0
}
1684
1685
1686
/*------------------------------------------------------------------*
1687
 *                 Measurement of local foreground                  *
1688
 *------------------------------------------------------------------*/
1689
#if 0    /* Not working properly: do not use */
1690
1691
/*!
1692
 * \brief   pixGetForegroundGrayMap()
1693
 *
1694
 * \param[in]    pixs      8 bpp
1695
 * \param[in]    pixim     [optional] 1 bpp 'image' mask; can be null
1696
 * \param[in]    sx, sy    src tile size, in pixels
1697
 * \param[in]    thresh    threshold for determining foreground
1698
 * \param[out]   ppixd     8 bpp grayscale map
1699
 * \return  0 if OK, 1 on error
1700
 *
1701
 * <pre>
1702
 * Notes:
1703
 *      (1) Each (sx, sy) tile of pixs gets mapped to one pixel in pixd.
1704
 *      (2) pixd is the estimate of the fg (darkest) value within each tile.
1705
 *      (3) All pixels in pixd that are in 'image' regions, as specified
1706
 *          by pixim, are given the background value 0.
1707
 *      (4) For pixels in pixd that can't directly be given a fg value,
1708
 *          the value is inferred by propagating from neighboring pixels.
1709
 *      (5) In practice, pixd can be used to normalize the fg, and
1710
 *          it can be done after background normalization.
1711
 *      (6) The overall procedure is:
1712
 *            ~ reduce 2x by sampling
1713
 *            ~ paint all 'image' pixels white, so that they don't
1714
 *            ~ participate in the Min reduction
1715
 *            ~ do a further (sx, sy) Min reduction -- think of
1716
 *              it as a large opening followed by subsampling by the
1717
 *              reduction factors
1718
 *            ~ threshold the result to identify fg, and set the
1719
 *              bg pixels to 255 (these are 'holes')
1720
 *            ~ fill holes by propagation from fg values
1721
 *            ~ replicatively expand by 2x, arriving at the final
1722
 *              resolution of pixd
1723
 *            ~ smooth with a 17x17 kernel
1724
 *            ~ paint the 'image' regions black
1725
 * </pre>
1726
 */
1727
l_ok
1728
pixGetForegroundGrayMap(PIX     *pixs,
1729
                        PIX     *pixim,
1730
                        l_int32  sx,
1731
                        l_int32  sy,
1732
                        l_int32  thresh,
1733
                        PIX    **ppixd)
1734
{
1735
l_int32  w, h, d, wd, hd;
1736
l_int32  empty, fgpixels;
1737
PIX     *pixd, *piximi, *pixim2, *pixims, *pixs2, *pixb, *pixt1, *pixt2, *pixt3;
1738
1739
    if (!ppixd)
1740
        return ERROR_INT("&pixd not defined", __func__, 1);
1741
    *ppixd = NULL;
1742
    if (!pixs)
1743
        return ERROR_INT("pixs not defined", __func__, 1);
1744
    pixGetDimensions(pixs, &w, &h, &d);
1745
    if (d != 8)
1746
        return ERROR_INT("pixs not 8 bpp", __func__, 1);
1747
    if (pixim && pixGetDepth(pixim) != 1)
1748
        return ERROR_INT("pixim not 1 bpp", __func__, 1);
1749
    if (sx < 2 || sy < 2)
1750
        return ERROR_INT("sx and sy must be >= 2", __func__, 1);
1751
1752
        /* Generate pixd, which is reduced by the factors (sx, sy). */
1753
    wd = (w + sx - 1) / sx;
1754
    hd = (h + sy - 1) / sy;
1755
    pixd = pixCreate(wd, hd, 8);
1756
    *ppixd = pixd;
1757
1758
        /* Evaluate the 'image' mask, pixim.  If it is all fg,
1759
         * the output pixd has all pixels with value 0. */
1760
    fgpixels = 0;  /* boolean for existence of fg pixels in the image mask. */
1761
    if (pixim) {
1762
        piximi = pixInvert(NULL, pixim);  /* set non-image pixels to 1 */
1763
        pixZero(piximi, &empty);
1764
        pixDestroy(&piximi);
1765
        if (empty)  /* all 'image'; return with all pixels set to 0 */
1766
            return 0;
1767
        pixZero(pixim, &empty);
1768
        if (!empty)  /* there are fg pixels in pixim */
1769
            fgpixels = 1;
1770
    }
1771
1772
        /* 2x subsampling; paint white through 'image' mask. */
1773
    pixs2 = pixScaleBySampling(pixs, 0.5, 0.5);
1774
    if (pixim && fgpixels) {
1775
        pixim2 = pixReduceBinary2(pixim, NULL);
1776
        pixPaintThroughMask(pixs2, pixim2, 0, 0, 255);
1777
        pixDestroy(&pixim2);
1778
    }
1779
1780
        /* Min (erosion) downscaling; total reduction (4 sx, 4 sy). */
1781
    pixt1 = pixScaleGrayMinMax(pixs2, sx, sy, L_CHOOSE_MIN);
1782
1783
/*    pixDisplay(pixt1, 300, 200); */
1784
1785
        /* Threshold to identify fg; paint bg pixels to white. */
1786
    pixb = pixThresholdToBinary(pixt1, thresh);  /* fg pixels */
1787
    pixInvert(pixb, pixb);
1788
    pixPaintThroughMask(pixt1, pixb, 0, 0, 255);
1789
    pixDestroy(&pixb);
1790
1791
        /* Replicative expansion by 2x to (sx, sy). */
1792
    pixt2 = pixExpandReplicate(pixt1, 2);
1793
1794
/*    pixDisplay(pixt2, 500, 200); */
1795
1796
        /* Fill holes in the fg by propagation */
1797
    pixFillMapHoles(pixt2, w / sx, h / sy, L_FILL_WHITE);
1798
1799
/*    pixDisplay(pixt2, 700, 200); */
1800
1801
        /* Smooth with 17x17 kernel. */
1802
    pixt3 = pixBlockconv(pixt2, 8, 8);
1803
    pixRasterop(pixd, 0, 0, wd, hd, PIX_SRC, pixt3, 0, 0);
1804
1805
        /* Paint the image parts black. */
1806
    pixims = pixScaleBySampling(pixim, 1. / sx, 1. / sy);
1807
    pixPaintThroughMask(pixd, pixims, 0, 0, 0);
1808
1809
    pixDestroy(&pixs2);
1810
    pixDestroy(&pixt1);
1811
    pixDestroy(&pixt2);
1812
    pixDestroy(&pixt3);
1813
    return 0;
1814
}
1815
#endif   /* Not working properly: do not use */
1816
1817
1818
/*------------------------------------------------------------------*
1819
 *                  Generate inverted background map                *
1820
 *------------------------------------------------------------------*/
1821
/*!
1822
 * \brief   pixGetInvBackgroundMap()
1823
 *
1824
 * \param[in]    pixs       8 bpp grayscale; no colormap
1825
 * \param[in]    bgval      target bg val; typ. > 128
1826
 * \param[in]    smoothx    half-width of block convolution kernel width
1827
 * \param[in]    smoothy    half-width of block convolution kernel height
1828
 * \return  pixd 16 bpp, or NULL on error
1829
 *
1830
 * <pre>
1831
 * Notes:
1832
 *     (1) bgval should typically be > 120 and < 240
1833
 *     (2) pixd is a normalization image; the original image is
1834
 *       multiplied by pixd and the result is divided by 256.
1835
 * </pre>
1836
 */
1837
PIX *
1838
pixGetInvBackgroundMap(PIX     *pixs,
1839
                       l_int32  bgval,
1840
                       l_int32  smoothx,
1841
                       l_int32  smoothy)
1842
207
{
1843
207
l_int32    w, h, wplsm, wpld, i, j;
1844
207
l_int32    val, val16;
1845
207
l_uint32  *datasm, *datad, *linesm, *lined;
1846
207
PIX       *pixsm, *pixd;
1847
1848
207
    if (!pixs || pixGetDepth(pixs) != 8)
1849
0
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", __func__, NULL);
1850
207
    if (pixGetColormap(pixs))
1851
0
        return (PIX *)ERROR_PTR("pixs has colormap", __func__, NULL);
1852
207
    pixGetDimensions(pixs, &w, &h, NULL);
1853
207
    if (w < 5 || h < 5)
1854
112
        return (PIX *)ERROR_PTR("w and h must be >= 5", __func__, NULL);
1855
1856
        /* smooth the map image */
1857
95
    pixsm = pixBlockconv(pixs, smoothx, smoothy);
1858
95
    datasm = pixGetData(pixsm);
1859
95
    wplsm = pixGetWpl(pixsm);
1860
1861
        /* invert the map image, scaling up to preserve dynamic range */
1862
95
    pixd = pixCreate(w, h, 16);
1863
95
    datad = pixGetData(pixd);
1864
95
    wpld = pixGetWpl(pixd);
1865
1.43k
    for (i = 0; i < h; i++) {
1866
1.33k
        linesm = datasm + i * wplsm;
1867
1.33k
        lined = datad + i * wpld;
1868
20.0k
        for (j = 0; j < w; j++) {
1869
18.7k
            val = GET_DATA_BYTE(linesm, j);
1870
18.7k
            if (val > 0)
1871
18.7k
                val16 = (256 * bgval) / val;
1872
0
            else {  /* shouldn't happen */
1873
0
                L_WARNING("smoothed bg has 0 pixel!\n", __func__);
1874
0
                val16 = bgval / 2;
1875
0
            }
1876
18.7k
            SET_DATA_TWO_BYTES(lined, j, val16);
1877
18.7k
        }
1878
1.33k
    }
1879
1880
95
    pixDestroy(&pixsm);
1881
95
    pixCopyResolution(pixd, pixs);
1882
95
    return pixd;
1883
207
}
1884
1885
1886
/*------------------------------------------------------------------*
1887
 *                    Apply background map to image                 *
1888
 *------------------------------------------------------------------*/
1889
/*!
1890
 * \brief   pixApplyInvBackgroundGrayMap()
1891
 *
1892
 * \param[in]    pixs    8 bpp grayscale; no colormap
1893
 * \param[in]    pixm    16 bpp, inverse background map
1894
 * \param[in]    sx      tile width in pixels
1895
 * \param[in]    sy      tile height in pixels
1896
 * \return  pixd 8 bpp, or NULL on error
1897
 */
1898
PIX *
1899
pixApplyInvBackgroundGrayMap(PIX     *pixs,
1900
                             PIX     *pixm,
1901
                             l_int32  sx,
1902
                             l_int32  sy)
1903
95
{
1904
95
l_int32    w, h, wm, hm, wpls, wpld, i, j, k, m, xoff, yoff;
1905
95
l_int32    vals, vald;
1906
95
l_uint32   val16;
1907
95
l_uint32  *datas, *datad, *lines, *lined, *flines, *flined;
1908
95
PIX       *pixd;
1909
1910
95
    if (!pixs || pixGetDepth(pixs) != 8)
1911
0
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", __func__, NULL);
1912
95
    if (pixGetColormap(pixs))
1913
0
        return (PIX *)ERROR_PTR("pixs has colormap", __func__, NULL);
1914
95
    if (!pixm || pixGetDepth(pixm) != 16)
1915
0
        return (PIX *)ERROR_PTR("pixm undefined or not 16 bpp", __func__, NULL);
1916
95
    if (sx == 0 || sy == 0)
1917
0
        return (PIX *)ERROR_PTR("invalid sx and/or sy", __func__, NULL);
1918
1919
95
    datas = pixGetData(pixs);
1920
95
    wpls = pixGetWpl(pixs);
1921
95
    pixGetDimensions(pixs, &w, &h, NULL);
1922
95
    pixGetDimensions(pixm, &wm, &hm, NULL);
1923
95
    if ((pixd = pixCreateTemplate(pixs)) == NULL)
1924
0
        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
1925
95
    datad = pixGetData(pixd);
1926
95
    wpld = pixGetWpl(pixd);
1927
1.43k
    for (i = 0; i < hm; i++) {
1928
1.33k
        lines = datas + sy * i * wpls;
1929
1.33k
        lined = datad + sy * i * wpld;
1930
1.33k
        yoff = sy * i;
1931
20.0k
        for (j = 0; j < wm; j++) {
1932
18.7k
            pixGetPixel(pixm, j, i, &val16);
1933
18.7k
            xoff = sx * j;
1934
289k
            for (k = 0; k < sy && yoff + k < h; k++) {
1935
270k
                flines = lines + k * wpls;
1936
270k
                flined = lined + k * wpld;
1937
2.87M
                for (m = 0; m < sx && xoff + m < w; m++) {
1938
2.60M
                    vals = GET_DATA_BYTE(flines, xoff + m);
1939
2.60M
                    vald = (vals * val16) / 256;
1940
2.60M
                    vald = L_MIN(vald, 255);
1941
2.60M
                    SET_DATA_BYTE(flined, xoff + m, vald);
1942
2.60M
                }
1943
270k
            }
1944
18.7k
        }
1945
1.33k
    }
1946
1947
95
    return pixd;
1948
95
}
1949
1950
1951
/*!
1952
 * \brief   pixApplyInvBackgroundRGBMap()
1953
 *
1954
 * \param[in]    pixs    32 bpp rbg
1955
 * \param[in]    pixmr   16 bpp, red inverse background map
1956
 * \param[in]    pixmg   16 bpp, green inverse background map
1957
 * \param[in]    pixmb   16 bpp, blue inverse background map
1958
 * \param[in]    sx      tile width in pixels
1959
 * \param[in]    sy      tile height in pixels
1960
 * \return  pixd 32 bpp rbg, or NULL on error
1961
 */
1962
PIX *
1963
pixApplyInvBackgroundRGBMap(PIX     *pixs,
1964
                            PIX     *pixmr,
1965
                            PIX     *pixmg,
1966
                            PIX     *pixmb,
1967
                            l_int32  sx,
1968
                            l_int32  sy)
1969
0
{
1970
0
l_int32    w, h, wm, hm, wpls, wpld, i, j, k, m, xoff, yoff;
1971
0
l_int32    rvald, gvald, bvald;
1972
0
l_uint32   vals;
1973
0
l_uint32   rval16, gval16, bval16;
1974
0
l_uint32  *datas, *datad, *lines, *lined, *flines, *flined;
1975
0
PIX       *pixd;
1976
1977
0
    if (!pixs)
1978
0
        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
1979
0
    if (pixGetDepth(pixs) != 32)
1980
0
        return (PIX *)ERROR_PTR("pixs not 32 bpp", __func__, NULL);
1981
0
    if (!pixmr || !pixmg || !pixmb)
1982
0
        return (PIX *)ERROR_PTR("pix maps not all defined", __func__, NULL);
1983
0
    if (pixGetDepth(pixmr) != 16 || pixGetDepth(pixmg) != 16 ||
1984
0
        pixGetDepth(pixmb) != 16)
1985
0
        return (PIX *)ERROR_PTR("pix maps not all 16 bpp", __func__, NULL);
1986
0
    if (sx == 0 || sy == 0)
1987
0
        return (PIX *)ERROR_PTR("invalid sx and/or sy", __func__, NULL);
1988
1989
0
    datas = pixGetData(pixs);
1990
0
    wpls = pixGetWpl(pixs);
1991
0
    w = pixGetWidth(pixs);
1992
0
    h = pixGetHeight(pixs);
1993
0
    wm = pixGetWidth(pixmr);
1994
0
    hm = pixGetHeight(pixmr);
1995
0
    if ((pixd = pixCreateTemplate(pixs)) == NULL)
1996
0
        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
1997
0
    datad = pixGetData(pixd);
1998
0
    wpld = pixGetWpl(pixd);
1999
0
    for (i = 0; i < hm; i++) {
2000
0
        lines = datas + sy * i * wpls;
2001
0
        lined = datad + sy * i * wpld;
2002
0
        yoff = sy * i;
2003
0
        for (j = 0; j < wm; j++) {
2004
0
            pixGetPixel(pixmr, j, i, &rval16);
2005
0
            pixGetPixel(pixmg, j, i, &gval16);
2006
0
            pixGetPixel(pixmb, j, i, &bval16);
2007
0
            xoff = sx * j;
2008
0
            for (k = 0; k < sy && yoff + k < h; k++) {
2009
0
                flines = lines + k * wpls;
2010
0
                flined = lined + k * wpld;
2011
0
                for (m = 0; m < sx && xoff + m < w; m++) {
2012
0
                    vals = *(flines + xoff + m);
2013
0
                    rvald = ((vals >> 24) * rval16) / 256;
2014
0
                    rvald = L_MIN(rvald, 255);
2015
0
                    gvald = (((vals >> 16) & 0xff) * gval16) / 256;
2016
0
                    gvald = L_MIN(gvald, 255);
2017
0
                    bvald = (((vals >> 8) & 0xff) * bval16) / 256;
2018
0
                    bvald = L_MIN(bvald, 255);
2019
0
                    composeRGBPixel(rvald, gvald, bvald, flined + xoff + m);
2020
0
                }
2021
0
            }
2022
0
        }
2023
0
    }
2024
2025
0
    return pixd;
2026
0
}
2027
2028
2029
/*------------------------------------------------------------------*
2030
 *                         Apply variable map                       *
2031
 *------------------------------------------------------------------*/
2032
/*!
2033
 * \brief   pixApplyVariableGrayMap()
2034
 *
2035
 * \param[in]    pixs     8 bpp
2036
 * \param[in]    pixg     8 bpp, variable map
2037
 * \param[in]    target   typ. 128 for threshold
2038
 * \return  pixd 8 bpp, or NULL on error
2039
 *
2040
 * <pre>
2041
 * Notes:
2042
 *      (1) Suppose you have an image that you want to transform based
2043
 *          on some photometric measurement at each point, such as the
2044
 *          threshold value for binarization.  Representing the photometric
2045
 *          measurement as an image pixg, you can threshold in input image
2046
 *          using pixVarThresholdToBinary().  Alternatively, you can map
2047
 *          the input image pointwise so that the threshold over the
2048
 *          entire image becomes a constant, such as 128.  For example,
2049
 *          if a pixel in pixg is 150 and the target is 128, the
2050
 *          corresponding pixel in pixs is mapped linearly to a value
2051
 *          (128/150) of the input value.  If the resulting mapped image
2052
 *          pixd were then thresholded at 128, you would obtain the
2053
 *          same result as a direct binarization using pixg with
2054
 *          pixVarThresholdToBinary().
2055
 *      (2) The sizes of pixs and pixg must be equal.
2056
 * </pre>
2057
 */
2058
PIX *
2059
pixApplyVariableGrayMap(PIX     *pixs,
2060
                        PIX     *pixg,
2061
                        l_int32  target)
2062
0
{
2063
0
l_int32    i, j, w, h, d, wpls, wplg, wpld, vals, valg, vald;
2064
0
l_uint8   *lut;
2065
0
l_uint32  *datas, *datag, *datad, *lines, *lineg, *lined;
2066
0
l_float32  fval;
2067
0
PIX       *pixd;
2068
2069
0
    if (!pixs)
2070
0
        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
2071
0
    if (!pixg)
2072
0
        return (PIX *)ERROR_PTR("pixg not defined", __func__, NULL);
2073
0
    if (!pixSizesEqual(pixs, pixg))
2074
0
        return (PIX *)ERROR_PTR("pix sizes not equal", __func__, NULL);
2075
0
    pixGetDimensions(pixs, &w, &h, &d);
2076
0
    if (d != 8)
2077
0
        return (PIX *)ERROR_PTR("depth not 8 bpp", __func__, NULL);
2078
2079
        /* Generate a LUT for the mapping if the image is large enough
2080
         * to warrant the overhead.  The LUT is of size 2^16.  For the
2081
         * index to the table, get the MSB from pixs and the LSB from pixg.
2082
         * Note: this LUT is bigger than the typical 32K L1 cache, so
2083
         * we expect cache misses.  L2 latencies are about 5ns.  But
2084
         * division is slooooow.  For large images, this function is about
2085
         * 4x faster when using the LUT.  C'est la vie.  */
2086
0
    lut = NULL;
2087
0
    if (w * h > 100000) {  /* more pixels than 2^16 */
2088
0
        lut = (l_uint8 *)LEPT_CALLOC(0x10000, sizeof(l_uint8));
2089
0
        for (i = 0; i < 256; i++) {
2090
0
            for (j = 0; j < 256; j++) {
2091
0
                fval = (l_float32)(i * target) / (j + 0.5);
2092
0
                lut[(i << 8) + j] = L_MIN(255, (l_int32)(fval + 0.5));
2093
0
            }
2094
0
        }
2095
0
    }
2096
2097
0
    if ((pixd = pixCreate(w, h, 8)) == NULL) {
2098
0
        LEPT_FREE(lut);
2099
0
        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
2100
0
    }
2101
0
    pixCopyResolution(pixd, pixs);
2102
0
    datad = pixGetData(pixd);
2103
0
    wpld = pixGetWpl(pixd);
2104
0
    datas = pixGetData(pixs);
2105
0
    wpls = pixGetWpl(pixs);
2106
0
    datag = pixGetData(pixg);
2107
0
    wplg = pixGetWpl(pixg);
2108
0
    for (i = 0; i < h; i++) {
2109
0
        lines = datas + i * wpls;
2110
0
        lineg = datag + i * wplg;
2111
0
        lined = datad + i * wpld;
2112
0
        if (lut) {
2113
0
            for (j = 0; j < w; j++) {
2114
0
                vals = GET_DATA_BYTE(lines, j);
2115
0
                valg = GET_DATA_BYTE(lineg, j);
2116
0
                vald = lut[(vals << 8) + valg];
2117
0
                SET_DATA_BYTE(lined, j, vald);
2118
0
            }
2119
0
        }
2120
0
        else {
2121
0
            for (j = 0; j < w; j++) {
2122
0
                vals = GET_DATA_BYTE(lines, j);
2123
0
                valg = GET_DATA_BYTE(lineg, j);
2124
0
                fval = (l_float32)(vals * target) / (valg + 0.5);
2125
0
                vald = L_MIN(255, (l_int32)(fval + 0.5));
2126
0
                SET_DATA_BYTE(lined, j, vald);
2127
0
            }
2128
0
        }
2129
0
    }
2130
2131
0
    LEPT_FREE(lut);
2132
0
    return pixd;
2133
0
}
2134
2135
2136
/*------------------------------------------------------------------*
2137
 *                  Non-adaptive (global) mapping                   *
2138
 *------------------------------------------------------------------*/
2139
/*!
2140
 * \brief   pixGlobalNormRGB()
2141
 *
2142
 * \param[in]    pixd     [optional] null, existing or equal to pixs
2143
 * \param[in]    pixs     32 bpp rgb, or colormapped
2144
 * \param[in]    rval, gval, bval   pixel values in pixs that are
2145
 *                                  linearly mapped to mapval
2146
 * \param[in]    mapval   use 255 for mapping to white
2147
 * \return  pixd 32 bpp rgb or colormapped, or NULL on error
2148
 *
2149
 * <pre>
2150
 * Notes:
2151
 *    (1) The value of pixd determines if the results are written to a
2152
 *        new pix (use NULL), in-place to pixs (use pixs), or to some
2153
 *        other existing pix.
2154
 *    (2) This does a global normalization of an image where the
2155
 *        r,g,b color components are not balanced.  Thus, white in pixs is
2156
 *        represented by a set of r,g,b values that are not all 255.
2157
 *    (3) The input values (rval, gval, bval) should be chosen to
2158
 *        represent the gray color (mapval, mapval, mapval) in src.
2159
 *        Thus, this function will map (rval, gval, bval) to that gray color.
2160
 *    (4) Typically, mapval = 255, so that (rval, gval, bval)
2161
 *        corresponds to the white point of src.  In that case, these
2162
 *        parameters should be chosen so that few pixels have higher values.
2163
 *    (5) In all cases, we do a linear TRC separately on each of the
2164
 *        components, saturating at 255.
2165
 *    (6) If the input pix is 8 bpp without a colormap, you can get
2166
 *        this functionality with mapval = 255 by calling:
2167
 *            pixGammaTRC(pixd, pixs, 1.0, 0, bgval);
2168
 *        where bgval is the value you want to be mapped to 255.
2169
 *        Or more generally, if you want bgval to be mapped to mapval:
2170
 *            pixGammaTRC(pixd, pixs, 1.0, 0, 255 * bgval / mapval);
2171
 * </pre>
2172
 */
2173
PIX *
2174
pixGlobalNormRGB(PIX     *pixd,
2175
                 PIX     *pixs,
2176
                 l_int32  rval,
2177
                 l_int32  gval,
2178
                 l_int32  bval,
2179
                 l_int32  mapval)
2180
0
{
2181
0
l_int32    w, h, d, i, j, ncolors, rv, gv, bv, wpl;
2182
0
l_int32   *rarray, *garray, *barray;
2183
0
l_uint32  *data, *line;
2184
0
NUMA      *nar, *nag, *nab;
2185
0
PIXCMAP   *cmap;
2186
2187
0
    if (!pixs)
2188
0
        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
2189
0
    cmap = pixGetColormap(pixs);
2190
0
    pixGetDimensions(pixs, &w, &h, &d);
2191
0
    if (!cmap && d != 32)
2192
0
        return (PIX *)ERROR_PTR("pixs not cmapped or 32 bpp", __func__, NULL);
2193
0
    if (mapval <= 0) {
2194
0
        L_WARNING("mapval must be > 0; setting to 255\n", __func__);
2195
0
        mapval = 255;
2196
0
    }
2197
2198
        /* Prepare pixd to be a copy of pixs */
2199
0
    if ((pixd = pixCopy(pixd, pixs)) == NULL)
2200
0
        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
2201
2202
        /* Generate the TRC maps for each component.  Make sure the
2203
         * upper range for each color is greater than zero. */
2204
0
    nar = numaGammaTRC(1.0, 0, L_MAX(1, 255 * rval / mapval));
2205
0
    nag = numaGammaTRC(1.0, 0, L_MAX(1, 255 * gval / mapval));
2206
0
    nab = numaGammaTRC(1.0, 0, L_MAX(1, 255 * bval / mapval));
2207
2208
        /* Extract copies of the internal arrays */
2209
0
    rarray = numaGetIArray(nar);
2210
0
    garray = numaGetIArray(nag);
2211
0
    barray = numaGetIArray(nab);
2212
0
    if (!nar || !nag || !nab || !rarray || !garray || !barray) {
2213
0
        L_ERROR("allocation failure in arrays\n", __func__);
2214
0
        goto cleanup_arrays;
2215
0
    }
2216
2217
0
    if (cmap) {
2218
0
        ncolors = pixcmapGetCount(cmap);
2219
0
        for (i = 0; i < ncolors; i++) {
2220
0
            pixcmapGetColor(cmap, i, &rv, &gv, &bv);
2221
0
            pixcmapResetColor(cmap, i, rarray[rv], garray[gv], barray[bv]);
2222
0
        }
2223
0
    }
2224
0
    else {
2225
0
        data = pixGetData(pixd);
2226
0
        wpl = pixGetWpl(pixd);
2227
0
        for (i = 0; i < h; i++) {
2228
0
            line = data + i * wpl;
2229
0
            for (j = 0; j < w; j++) {
2230
0
                extractRGBValues(line[j], &rv, &gv, &bv);
2231
0
                composeRGBPixel(rarray[rv], garray[gv], barray[bv], line + j);
2232
0
            }
2233
0
        }
2234
0
    }
2235
2236
0
cleanup_arrays:
2237
0
    numaDestroy(&nar);
2238
0
    numaDestroy(&nag);
2239
0
    numaDestroy(&nab);
2240
0
    LEPT_FREE(rarray);
2241
0
    LEPT_FREE(garray);
2242
0
    LEPT_FREE(barray);
2243
0
    return pixd;
2244
0
}
2245
2246
2247
/*!
2248
 * \brief   pixGlobalNormNoSatRGB()
2249
 *
2250
 * \param[in]    pixd       [optional] null, existing or equal to pixs
2251
 * \param[in]    pixs       32 bpp rgb
2252
 * \param[in]    rval, gval, bval   pixel values in pixs that are
2253
 *                                  linearly mapped to mapval; but see below
2254
 * \param[in]    factor     subsampling factor; integer >= 1
2255
 * \param[in]    rank       between 0.0 and 1.0; typ. use a value near 1.0
2256
 * \return  pixd 32 bpp rgb, or NULL on error
2257
 *
2258
 * <pre>
2259
 * Notes:
2260
 *    (1) This is a version of pixGlobalNormRGB(), where the output
2261
 *        intensity is scaled back so that a controlled fraction of
2262
 *        pixel components is allowed to saturate.  See comments in
2263
 *        pixGlobalNormRGB().
2264
 *    (2) The value of pixd determines if the results are written to a
2265
 *        new pix (use NULL), in-place to pixs (use pixs), or to some
2266
 *        other existing pix.
2267
 *    (3) This does a global normalization of an image where the
2268
 *        r,g,b color components are not balanced.  Thus, white in pixs is
2269
 *        represented by a set of r,g,b values that are not all 255.
2270
 *    (4) The input values (rval, gval, bval) can be chosen to be the
2271
 *        color that, after normalization, becomes white background.
2272
 *        For images that are mostly background, the closer these values
2273
 *        are to the median component values, the closer the resulting
2274
 *        background will be to gray, becoming white at the brightest places.
2275
 *    (5) The mapval used in pixGlobalNormRGB() is computed here to
2276
 *        avoid saturation of any component in the image (save for a
2277
 *        fraction of the pixels given by the input rank value).
2278
 * </pre>
2279
 */
2280
PIX *
2281
pixGlobalNormNoSatRGB(PIX       *pixd,
2282
                      PIX       *pixs,
2283
                      l_int32    rval,
2284
                      l_int32    gval,
2285
                      l_int32    bval,
2286
                      l_int32    factor,
2287
                      l_float32  rank)
2288
0
{
2289
0
l_int32    mapval;
2290
0
l_float32  rankrval, rankgval, rankbval;
2291
0
l_float32  rfract, gfract, bfract, maxfract;
2292
2293
0
    if (!pixs)
2294
0
        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
2295
0
    if (pixGetDepth(pixs) != 32)
2296
0
        return (PIX *)ERROR_PTR("pixs not 32 bpp", __func__, NULL);
2297
0
    if (factor < 1)
2298
0
        return (PIX *)ERROR_PTR("sampling factor < 1", __func__, NULL);
2299
0
    if (rank < 0.0 || rank > 1.0)
2300
0
        return (PIX *)ERROR_PTR("rank not in [0.0 ... 1.0]", __func__, NULL);
2301
0
    if (rval <= 0 || gval <= 0 || bval <= 0)
2302
0
        return (PIX *)ERROR_PTR("invalid estim. color values", __func__, NULL);
2303
2304
        /* The max value for each component may be larger than the
2305
         * input estimated background value.  In that case, mapping
2306
         * for those pixels would saturate.  To prevent saturation,
2307
         * we compute the fraction for each component by which we
2308
         * would oversaturate.  Then take the max of these, and
2309
         * reduce, uniformly over all components, the output intensity
2310
         * by this value.  Then no component will saturate.
2311
         * In practice, if rank < 1.0, a fraction of pixels
2312
         * may have a component saturate.  By keeping rank close to 1.0,
2313
         * that fraction can be made arbitrarily small. */
2314
0
    pixGetRankValueMaskedRGB(pixs, NULL, 0, 0, factor, rank, &rankrval,
2315
0
                             &rankgval, &rankbval);
2316
0
    rfract = rankrval / (l_float32)rval;
2317
0
    gfract = rankgval / (l_float32)gval;
2318
0
    bfract = rankbval / (l_float32)bval;
2319
0
    maxfract = L_MAX(rfract, gfract);
2320
0
    maxfract = L_MAX(maxfract, bfract);
2321
#if  DEBUG_GLOBAL
2322
    lept_stderr("rankrval = %7.2f, rankgval = %7.2f, rankbval = %7.2f\n",
2323
                rankrval, rankgval, rankbval);
2324
    lept_stderr("rfract = %7.4f, gfract = %7.4f, bfract = %7.4f\n",
2325
                rfract, gfract, bfract);
2326
#endif  /* DEBUG_GLOBAL */
2327
2328
0
    mapval = (l_int32)(255. / maxfract);
2329
0
    pixd = pixGlobalNormRGB(pixd, pixs, rval, gval, bval, mapval);
2330
0
    return pixd;
2331
0
}
2332
2333
2334
/*------------------------------------------------------------------*
2335
 *              Adaptive threshold spread normalization             *
2336
 *------------------------------------------------------------------*/
2337
/*!
2338
 * \brief   pixThresholdSpreadNorm()
2339
 *
2340
 * \param[in]    pixs              8 bpp grayscale; not colormapped
2341
 * \param[in]    filtertype        L_SOBEL_EDGE or L_TWO_SIDED_EDGE;
2342
 * \param[in]    edgethresh        threshold on magnitude of edge filter;
2343
 *                                 typ 10-20
2344
 * \param[in]    smoothx, smoothy  half-width of convolution kernel applied to
2345
 *                                 spread threshold: use 0 for no smoothing
2346
 * \param[in]    gamma             gamma correction; typ. about 0.7
2347
 * \param[in]    minval            input value that gives 0 for output; typ. -25
2348
 * \param[in]    maxval            input value that gives 255 for output;
2349
 *                                 typ. 255
2350
 * \param[in]    targetthresh      target threshold for normalization
2351
 * \param[out]   ppixth            [optional] computed local threshold value
2352
 * \param[out]   ppixb             [optional] thresholded normalized image
2353
 * \param[out]   ppixd             [optional] normalized image
2354
 * \return  0 if OK, 1 on error
2355
 *
2356
 * <pre>
2357
 * Notes:
2358
 *      (1) The basis of this approach is the use of seed spreading
2359
 *          on a (possibly) sparse set of estimates for the local threshold.
2360
 *          The resulting dense estimates are smoothed by convolution
2361
 *          and used to either threshold the input image or normalize it
2362
 *          with a local transformation that linearly maps the pixels so
2363
 *          that the local threshold estimate becomes constant over the
2364
 *          resulting image.  This approach is one of several that
2365
 *          have been suggested (and implemented) by Ray Smith.
2366
 *      (2) You can use either the Sobel or TwoSided edge filters.
2367
 *          The results appear to be similar, using typical values
2368
 *          of edgethresh in the rang 10-20.
2369
 *      (3) To skip the trc enhancement, use gamma = 1.0, minval = 0
2370
 *          and maxval = 255.
2371
 *      (4) For the normalized image pixd, each pixel is linearly mapped
2372
 *          in such a way that the local threshold is equal to targetthresh.
2373
 *      (5) The full width and height of the convolution kernel
2374
 *          are (2 * smoothx + 1) and (2 * smoothy + 1).
2375
 *      (6) This function can be used with the pixtiling utility if the
2376
 *          images are too large.  See pixOtsuAdaptiveThreshold() for
2377
 *          an example of this.
2378
 * </pre>
2379
 */
2380
l_ok
2381
pixThresholdSpreadNorm(PIX       *pixs,
2382
                       l_int32    filtertype,
2383
                       l_int32    edgethresh,
2384
                       l_int32    smoothx,
2385
                       l_int32    smoothy,
2386
                       l_float32  gamma,
2387
                       l_int32    minval,
2388
                       l_int32    maxval,
2389
                       l_int32    targetthresh,
2390
                       PIX      **ppixth,
2391
                       PIX      **ppixb,
2392
                       PIX      **ppixd)
2393
0
{
2394
0
PIX  *pixe, *pixet, *pixsd, *pixg1, *pixg2, *pixth;
2395
2396
0
    if (ppixth) *ppixth = NULL;
2397
0
    if (ppixb) *ppixb = NULL;
2398
0
    if (ppixd) *ppixd = NULL;
2399
0
    if (!pixs || pixGetDepth(pixs) != 8)
2400
0
        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
2401
0
    if (pixGetColormap(pixs))
2402
0
        return ERROR_INT("pixs is colormapped", __func__, 1);
2403
0
    if (!ppixth && !ppixb && !ppixd)
2404
0
        return ERROR_INT("no output requested", __func__, 1);
2405
0
    if (filtertype != L_SOBEL_EDGE && filtertype != L_TWO_SIDED_EDGE)
2406
0
        return ERROR_INT("invalid filter type", __func__, 1);
2407
2408
        /* Get the thresholded edge pixels.  These are the ones
2409
         * that have values in pixs near the local optimal fg/bg threshold. */
2410
0
    if (filtertype == L_SOBEL_EDGE)
2411
0
        pixe = pixSobelEdgeFilter(pixs, L_VERTICAL_EDGES);
2412
0
    else  /* L_TWO_SIDED_EDGE */
2413
0
        pixe = pixTwoSidedEdgeFilter(pixs, L_VERTICAL_EDGES);
2414
0
    pixet = pixThresholdToBinary(pixe, edgethresh);
2415
0
    pixInvert(pixet, pixet);
2416
2417
        /* Build a seed image whose only nonzero values are those
2418
         * values of pixs corresponding to pixels in the fg of pixet. */
2419
0
    pixsd = pixCreateTemplate(pixs);
2420
0
    pixCombineMasked(pixsd, pixs, pixet);
2421
2422
        /* Spread the seed and optionally smooth to reduce noise */
2423
0
    pixg1 = pixSeedspread(pixsd, 4);
2424
0
    pixg2 = pixBlockconv(pixg1, smoothx, smoothy);
2425
2426
        /* Optionally do a gamma enhancement */
2427
0
    pixth = pixGammaTRC(NULL, pixg2, gamma, minval, maxval);
2428
2429
        /* Do the mapping and thresholding */
2430
0
    if (ppixd) {
2431
0
        *ppixd = pixApplyVariableGrayMap(pixs, pixth, targetthresh);
2432
0
        if (ppixb)
2433
0
            *ppixb = pixThresholdToBinary(*ppixd, targetthresh);
2434
0
    }
2435
0
    else if (ppixb)
2436
0
        *ppixb = pixVarThresholdToBinary(pixs, pixth);
2437
2438
0
    if (ppixth)
2439
0
        *ppixth = pixth;
2440
0
    else
2441
0
        pixDestroy(&pixth);
2442
2443
0
    pixDestroy(&pixe);
2444
0
    pixDestroy(&pixet);
2445
0
    pixDestroy(&pixsd);
2446
0
    pixDestroy(&pixg1);
2447
0
    pixDestroy(&pixg2);
2448
0
    return 0;
2449
0
}
2450
2451
2452
/*------------------------------------------------------------------*
2453
 *      Adaptive background normalization (flexible adaptaption)    *
2454
 *------------------------------------------------------------------*/
2455
/*!
2456
 * \brief   pixBackgroundNormFlex()
2457
 *
2458
 * \param[in]    pixs               8 bpp grayscale; not colormapped
2459
 * \param[in]    sx, sy             desired tile dimensions; size may vary;
2460
 *                                  use values between 3 and 10
2461
 * \param[in]    smoothx, smoothy   half-width of convolution kernel applied to
2462
 *                                  threshold array: use values between 1 and 3
2463
 * \param[in]    delta              difference parameter in basin filling;
2464
 *                                  use 0 to skip
2465
 * \return  pixd 8 bpp, background-normalized), or NULL on error
2466
 *
2467
 * <pre>
2468
 * Notes:
2469
 *      (1) This does adaptation flexibly to a quickly varying background.
2470
 *          For that reason, all input parameters should be small.
2471
 *      (2) sx and sy give the tile size; they should be in [5 - 7].
2472
 *      (3) The full width and height of the convolution kernel
2473
 *          are (2 * smoothx + 1) and (2 * smoothy + 1).  They
2474
 *          should be in [1 - 2].
2475
 *      (4) Basin filling is used to fill the large fg regions.  The
2476
 *          parameter %delta measures the height that the black
2477
 *          background is raised from the local minima.  By raising
2478
 *          the background, it is possible to threshold the large
2479
 *          fg regions to foreground.  If %delta is too large,
2480
 *          bg regions will be lifted, causing thickening of
2481
 *          the fg regions.  Use 0 to skip.
2482
 * </pre>
2483
 */
2484
PIX *
2485
pixBackgroundNormFlex(PIX     *pixs,
2486
                      l_int32  sx,
2487
                      l_int32  sy,
2488
                      l_int32  smoothx,
2489
                      l_int32  smoothy,
2490
                      l_int32  delta)
2491
0
{
2492
0
l_float32  scalex, scaley;
2493
0
PIX       *pixt, *pixsd, *pixmin, *pixbg, *pixbgi, *pixd;
2494
2495
0
    if (!pixs || pixGetDepth(pixs) != 8)
2496
0
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", __func__, NULL);
2497
0
    if (pixGetColormap(pixs))
2498
0
        return (PIX *)ERROR_PTR("pixs is colormapped", __func__, NULL);
2499
0
    if (sx < 3 || sy < 3)
2500
0
        return (PIX *)ERROR_PTR("sx and/or sy less than 3", __func__, NULL);
2501
0
    if (sx > 10 || sy > 10)
2502
0
        return (PIX *)ERROR_PTR("sx and/or sy exceed 10", __func__, NULL);
2503
0
    if (smoothx < 1 || smoothy < 1)
2504
0
        return (PIX *)ERROR_PTR("smooth params less than 1", __func__, NULL);
2505
0
    if (smoothx > 3 || smoothy > 3)
2506
0
        return (PIX *)ERROR_PTR("smooth params exceed 3", __func__, NULL);
2507
2508
        /* Generate the bg estimate using smoothed average with subsampling */
2509
0
    scalex = 1. / (l_float32)sx;
2510
0
    scaley = 1. / (l_float32)sy;
2511
0
    pixt = pixScaleSmooth(pixs, scalex, scaley);
2512
2513
        /* Do basin filling on the bg estimate if requested */
2514
0
    if (delta <= 0)
2515
0
        pixsd = pixClone(pixt);
2516
0
    else {
2517
0
        pixLocalExtrema(pixt, 0, 0, &pixmin, NULL);
2518
0
        pixsd = pixSeedfillGrayBasin(pixmin, pixt, delta, 4);
2519
0
        pixDestroy(&pixmin);
2520
0
    }
2521
0
    pixbg = pixExtendByReplication(pixsd, 1, 1);
2522
2523
        /* Map the bg to 200 */
2524
0
    pixbgi = pixGetInvBackgroundMap(pixbg, 200, smoothx, smoothy);
2525
0
    pixd = pixApplyInvBackgroundGrayMap(pixs, pixbgi, sx, sy);
2526
2527
0
    pixDestroy(&pixt);
2528
0
    pixDestroy(&pixsd);
2529
0
    pixDestroy(&pixbg);
2530
0
    pixDestroy(&pixbgi);
2531
0
    return pixd;
2532
0
}
2533
2534
2535
/*------------------------------------------------------------------*
2536
 *                    Adaptive contrast normalization               *
2537
 *------------------------------------------------------------------*/
2538
/*!
2539
 * \brief   pixContrastNorm()
2540
 *
2541
 * \param[in]    pixd               [optional] 8 bpp; null or equal to pixs
2542
 * \param[in]    pixs               8 bpp grayscale; not colormapped
2543
 * \param[in]    sx, sy             tile dimensions
2544
 * \param[in]    mindiff            minimum difference to accept as valid
2545
 * \param[in]    smoothx, smoothy   half-width of convolution kernel applied to
2546
 *                                  min and max arrays: use 0 for no smoothing
2547
 * \return  pixd always
2548
 *
2549
 * <pre>
2550
 * Notes:
2551
 *      (1) This function adaptively attempts to expand the contrast
2552
 *          to the full dynamic range in each tile.  If the contrast in
2553
 *          a tile is smaller than %mindiff, it uses the min and max
2554
 *          pixel values from neighboring tiles.  It also can use
2555
 *          convolution to smooth the min and max values from
2556
 *          neighboring tiles.  After all that processing, it is
2557
 *          possible that the actual pixel values in the tile are outside
2558
 *          the computed [min ... max] range for local contrast
2559
 *          normalization.  Such pixels are taken to be at either 0
2560
 *          (if below the min) or 255 (if above the max).
2561
 *      (2) pixd can be equal to pixs (in-place operation) or
2562
 *          null (makes a new pixd).
2563
 *      (3) sx and sy give the tile size; they are typically at least 20.
2564
 *      (4) mindiff is used to eliminate results for tiles where it is
2565
 *          likely that either fg or bg is missing.  A value around 50
2566
 *          or more is reasonable.
2567
 *      (5) The full width and height of the convolution kernel
2568
 *          are (2 * smoothx + 1) and (2 * smoothy + 1).  Some smoothing
2569
 *          is typically useful, and we limit the smoothing half-widths
2570
 *          to the range from 0 to 8.
2571
 *      (6) A linear TRC (gamma = 1.0) is applied to increase the contrast
2572
 *          in each tile.  The result can subsequently be globally corrected,
2573
 *          by applying pixGammaTRC() with arbitrary values of gamma
2574
 *          and the 0 and 255 points of the mapping.
2575
 * </pre>
2576
 */
2577
PIX *
2578
pixContrastNorm(PIX       *pixd,
2579
                PIX       *pixs,
2580
                l_int32    sx,
2581
                l_int32    sy,
2582
                l_int32    mindiff,
2583
                l_int32    smoothx,
2584
                l_int32    smoothy)
2585
0
{
2586
0
PIX  *pixmin, *pixmax;
2587
2588
0
    if (!pixs || pixGetDepth(pixs) != 8)
2589
0
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", __func__, pixd);
2590
0
    if (pixd && pixd != pixs)
2591
0
        return (PIX *)ERROR_PTR("pixd not null or == pixs", __func__, pixd);
2592
0
    if (pixGetColormap(pixs))
2593
0
        return (PIX *)ERROR_PTR("pixs is colormapped", __func__, pixd);
2594
0
    if (sx < 5 || sy < 5)
2595
0
        return (PIX *)ERROR_PTR("sx and/or sy less than 5", __func__, pixd);
2596
0
    if (smoothx < 0 || smoothy < 0)
2597
0
        return (PIX *)ERROR_PTR("smooth params less than 0", __func__, pixd);
2598
0
    if (smoothx > 8 || smoothy > 8)
2599
0
        return (PIX *)ERROR_PTR("smooth params exceed 8", __func__, pixd);
2600
2601
        /* Get the min and max pixel values in each tile, and represent
2602
         * each value as a pixel in pixmin and pixmax, respectively. */
2603
0
    pixMinMaxTiles(pixs, sx, sy, mindiff, smoothx, smoothy, &pixmin, &pixmax);
2604
2605
        /* For each tile, do a linear expansion of the dynamic range
2606
         * of pixels so that the min value is mapped to 0 and the
2607
         * max value is mapped to 255.  */
2608
0
    pixd = pixLinearTRCTiled(pixd, pixs, sx, sy, pixmin, pixmax);
2609
2610
0
    pixDestroy(&pixmin);
2611
0
    pixDestroy(&pixmax);
2612
0
    return pixd;
2613
0
}
2614
2615
2616
/*!
2617
 * \brief   pixMinMaxTiles()
2618
 *
2619
 * \param[in]    pixs               8 bpp grayscale; not colormapped
2620
 * \param[in]    sx, sy             tile dimensions
2621
 * \param[in]    mindiff            minimum difference to accept as valid
2622
 * \param[in]    smoothx, smoothy   half-width of convolution kernel applied to
2623
 *                                  min and max arrays: use 0 for no smoothing
2624
 * \param[out]   ppixmin            tiled minima
2625
 * \param[out]   ppixmax            tiled maxima
2626
 * \return  0 if OK, 1 on error
2627
 *
2628
 * <pre>
2629
 * Notes:
2630
 *      (1) This computes filtered and smoothed values for the min and
2631
 *          max pixel values in each tile of the image.
2632
 *      (2) See pixContrastNorm() for usage.
2633
 * </pre>
2634
 */
2635
static l_ok
2636
pixMinMaxTiles(PIX     *pixs,
2637
               l_int32  sx,
2638
               l_int32  sy,
2639
               l_int32  mindiff,
2640
               l_int32  smoothx,
2641
               l_int32  smoothy,
2642
               PIX    **ppixmin,
2643
               PIX    **ppixmax)
2644
0
{
2645
0
l_int32  w, h;
2646
0
PIX     *pixmin1, *pixmax1, *pixmin2, *pixmax2;
2647
2648
0
    if (ppixmin) *ppixmin = NULL;
2649
0
    if (ppixmax) *ppixmax = NULL;
2650
0
    if (!ppixmin || !ppixmax)
2651
0
        return ERROR_INT("&pixmin or &pixmax undefined", __func__, 1);
2652
0
    if (!pixs || pixGetDepth(pixs) != 8)
2653
0
        return ERROR_INT("pixs undefined or not 8 bpp", __func__, 1);
2654
0
    if (pixGetColormap(pixs))
2655
0
        return ERROR_INT("pixs is colormapped", __func__, 1);
2656
0
    if (sx < 5 || sy < 5)
2657
0
        return ERROR_INT("sx and/or sy less than 3", __func__, 1);
2658
0
    if (smoothx < 0 || smoothy < 0)
2659
0
        return ERROR_INT("smooth params less than 0", __func__, 1);
2660
0
    if (smoothx > 5 || smoothy > 5)
2661
0
        return ERROR_INT("smooth params exceed 5", __func__, 1);
2662
2663
        /* Get the min and max values in each tile */
2664
0
    pixmin1 = pixScaleGrayMinMax(pixs, sx, sy, L_CHOOSE_MIN);
2665
0
    pixmax1 = pixScaleGrayMinMax(pixs, sx, sy, L_CHOOSE_MAX);
2666
2667
0
    pixmin2 = pixExtendByReplication(pixmin1, 1, 1);
2668
0
    pixmax2 = pixExtendByReplication(pixmax1, 1, 1);
2669
0
    pixDestroy(&pixmin1);
2670
0
    pixDestroy(&pixmax1);
2671
2672
        /* Make sure no value is 0 */
2673
0
    pixAddConstantGray(pixmin2, 1);
2674
0
    pixAddConstantGray(pixmax2, 1);
2675
2676
        /* Generate holes where the contrast is too small */
2677
0
    pixSetLowContrast(pixmin2, pixmax2, mindiff);
2678
2679
        /* Fill the holes (0 values) */
2680
0
    pixGetDimensions(pixmin2, &w, &h, NULL);
2681
0
    pixFillMapHoles(pixmin2, w, h, L_FILL_BLACK);
2682
0
    pixFillMapHoles(pixmax2, w, h, L_FILL_BLACK);
2683
2684
        /* Smooth if requested */
2685
0
    if (smoothx > 0 || smoothy > 0) {
2686
0
        smoothx = L_MIN(smoothx, (w - 1) / 2);
2687
0
        smoothy = L_MIN(smoothy, (h - 1) / 2);
2688
0
        *ppixmin = pixBlockconv(pixmin2, smoothx, smoothy);
2689
0
        *ppixmax = pixBlockconv(pixmax2, smoothx, smoothy);
2690
0
    }
2691
0
    else {
2692
0
        *ppixmin = pixClone(pixmin2);
2693
0
        *ppixmax = pixClone(pixmax2);
2694
0
    }
2695
0
    pixCopyResolution(*ppixmin, pixs);
2696
0
    pixCopyResolution(*ppixmax, pixs);
2697
0
    pixDestroy(&pixmin2);
2698
0
    pixDestroy(&pixmax2);
2699
2700
0
    return 0;
2701
0
}
2702
2703
2704
/*!
2705
 * \brief   pixSetLowContrast()
2706
 *
2707
 * \param[in]    pixs1      8 bpp
2708
 * \param[in]    pixs2      8 bpp
2709
 * \param[in]    mindiff    minimum difference to accept as valid
2710
 * \return  0 if OK; 1 if no pixel diffs are large enough, or on error
2711
 *
2712
 * <pre>
2713
 * Notes:
2714
 *      (1) This compares corresponding pixels in pixs1 and pixs2.
2715
 *          When they differ by less than %mindiff, set the pixel
2716
 *          values to 0 in each.  Each pixel typically represents a tile
2717
 *          in a larger image, and a very small difference between
2718
 *          the min and max in the tile indicates that the min and max
2719
 *          values are not to be trusted.
2720
 *      (2) If contrast (pixel difference) detection is expected to fail,
2721
 *          caller should check return value.
2722
 * </pre>
2723
 */
2724
static l_ok
2725
pixSetLowContrast(PIX     *pixs1,
2726
                  PIX     *pixs2,
2727
                  l_int32  mindiff)
2728
0
{
2729
0
l_int32    i, j, w, h, d, wpl, val1, val2, found;
2730
0
l_uint32  *data1, *data2, *line1, *line2;
2731
2732
0
    if (!pixs1 || !pixs2)
2733
0
        return ERROR_INT("pixs1 and pixs2 not both defined", __func__, 1);
2734
0
    if (pixSizesEqual(pixs1, pixs2) == 0)
2735
0
        return ERROR_INT("pixs1 and pixs2 not equal size", __func__, 1);
2736
0
    pixGetDimensions(pixs1, &w, &h, &d);
2737
0
    if (d != 8)
2738
0
        return ERROR_INT("depth not 8 bpp", __func__, 1);
2739
0
    if (mindiff > 254) return 0;
2740
2741
0
    data1 = pixGetData(pixs1);
2742
0
    data2 = pixGetData(pixs2);
2743
0
    wpl = pixGetWpl(pixs1);
2744
0
    found = 0;  /* init to not finding any diffs >= mindiff */
2745
0
    for (i = 0; i < h; i++) {
2746
0
        line1 = data1 + i * wpl;
2747
0
        line2 = data2 + i * wpl;
2748
0
        for (j = 0; j < w; j++) {
2749
0
            val1 = GET_DATA_BYTE(line1, j);
2750
0
            val2 = GET_DATA_BYTE(line2, j);
2751
0
            if (L_ABS(val1 - val2) >= mindiff) {
2752
0
                found = 1;
2753
0
                break;
2754
0
            }
2755
0
        }
2756
0
        if (found) break;
2757
0
    }
2758
0
    if (!found) {
2759
0
        L_WARNING("no pixel pair diffs as large as mindiff\n", __func__);
2760
0
        pixClearAll(pixs1);
2761
0
        pixClearAll(pixs2);
2762
0
        return 1;
2763
0
    }
2764
2765
0
    for (i = 0; i < h; i++) {
2766
0
        line1 = data1 + i * wpl;
2767
0
        line2 = data2 + i * wpl;
2768
0
        for (j = 0; j < w; j++) {
2769
0
            val1 = GET_DATA_BYTE(line1, j);
2770
0
            val2 = GET_DATA_BYTE(line2, j);
2771
0
            if (L_ABS(val1 - val2) < mindiff) {
2772
0
                SET_DATA_BYTE(line1, j, 0);
2773
0
                SET_DATA_BYTE(line2, j, 0);
2774
0
            }
2775
0
        }
2776
0
    }
2777
2778
0
    return 0;
2779
0
}
2780
2781
2782
/*!
2783
 * \brief   pixLinearTRCTiled()
2784
 *
2785
 * \param[in]    pixd     [optional] 8 bpp
2786
 * \param[in]    pixs     8 bpp, not colormapped
2787
 * \param[in]    sx, sy   tile dimensions
2788
 * \param[in]    pixmin   pix of min values in tiles
2789
 * \param[in]    pixmax   pix of max values in tiles
2790
 * \return  pixd always
2791
 *
2792
 * <pre>
2793
 * Notes:
2794
 *      (1) pixd can be equal to pixs (in-place operation) or
2795
 *          null (makes a new pixd).
2796
 *      (2) sx and sy give the tile size; they are typically at least 20.
2797
 *      (3) pixmin and pixmax are generated by pixMinMaxTiles()
2798
 *      (4) For each tile, this does a linear expansion of the dynamic
2799
 *          range so that the min value in the tile becomes 0 and the
2800
 *          max value in the tile becomes 255.
2801
 *      (5) The LUTs that do the mapping are generated as needed
2802
 *          and stored for reuse in an integer array within the ptr array iaa[].
2803
 * </pre>
2804
 */
2805
static PIX *
2806
pixLinearTRCTiled(PIX       *pixd,
2807
                  PIX       *pixs,
2808
                  l_int32    sx,
2809
                  l_int32    sy,
2810
                  PIX       *pixmin,
2811
                  PIX       *pixmax)
2812
0
{
2813
0
l_int32    i, j, k, m, w, h, wt, ht, wpl, wplt, xoff, yoff;
2814
0
l_int32    minval, maxval, val, sval;
2815
0
l_int32   *ia;
2816
0
l_int32  **iaa;
2817
0
l_uint32  *data, *datamin, *datamax, *line, *tline, *linemin, *linemax;
2818
2819
0
    if (!pixs || pixGetDepth(pixs) != 8)
2820
0
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", __func__, pixd);
2821
0
    if (pixd && pixd != pixs)
2822
0
        return (PIX *)ERROR_PTR("pixd not null or == pixs", __func__, pixd);
2823
0
    if (pixGetColormap(pixs))
2824
0
        return (PIX *)ERROR_PTR("pixs is colormapped", __func__, pixd);
2825
0
    if (!pixmin || !pixmax)
2826
0
        return (PIX *)ERROR_PTR("pixmin & pixmax not defined", __func__, pixd);
2827
0
    if (sx < 5 || sy < 5)
2828
0
        return (PIX *)ERROR_PTR("sx and/or sy less than 5", __func__, pixd);
2829
2830
0
    iaa = (l_int32 **)LEPT_CALLOC(256, sizeof(l_int32 *));
2831
0
    if ((pixd = pixCopy(pixd, pixs)) == NULL) {
2832
0
        LEPT_FREE(iaa);
2833
0
        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
2834
0
    }
2835
0
    pixGetDimensions(pixd, &w, &h, NULL);
2836
2837
0
    data = pixGetData(pixd);
2838
0
    wpl = pixGetWpl(pixd);
2839
0
    datamin = pixGetData(pixmin);
2840
0
    datamax = pixGetData(pixmax);
2841
0
    wplt = pixGetWpl(pixmin);
2842
0
    pixGetDimensions(pixmin, &wt, &ht, NULL);
2843
0
    for (i = 0; i < ht; i++) {
2844
0
        line = data + sy * i * wpl;
2845
0
        linemin = datamin + i * wplt;
2846
0
        linemax = datamax + i * wplt;
2847
0
        yoff = sy * i;
2848
0
        for (j = 0; j < wt; j++) {
2849
0
            xoff = sx * j;
2850
0
            minval = GET_DATA_BYTE(linemin, j);
2851
0
            maxval = GET_DATA_BYTE(linemax, j);
2852
0
            if (maxval == minval) {
2853
0
                L_ERROR("shouldn't happen! i,j = %d,%d, minval = %d\n",
2854
0
                        __func__, i, j, minval);
2855
0
                continue;
2856
0
            }
2857
0
            if ((ia = iaaGetLinearTRC(iaa, maxval - minval)) == NULL) {
2858
0
                L_ERROR("failure to make ia for j = %d!\n", __func__, j);
2859
0
                continue;
2860
0
            }
2861
0
            for (k = 0; k < sy && yoff + k < h; k++) {
2862
0
                tline = line + k * wpl;
2863
0
                for (m = 0; m < sx && xoff + m < w; m++) {
2864
0
                    val = GET_DATA_BYTE(tline, xoff + m);
2865
0
                    sval = val - minval;
2866
0
                    sval = L_MAX(0, sval);
2867
0
                    SET_DATA_BYTE(tline, xoff + m, ia[sval]);
2868
0
                }
2869
0
            }
2870
0
        }
2871
0
    }
2872
2873
0
    for (i = 0; i < 256; i++)
2874
0
        LEPT_FREE(iaa[i]);
2875
0
    LEPT_FREE(iaa);
2876
0
    return pixd;
2877
0
}
2878
2879
2880
/*!
2881
 * \brief   iaaGetLinearTRC()
2882
 *
2883
 * \param[in]    iaa     bare array of ptrs to l_int32
2884
 * \param[in]    diff    between min and max pixel values that are
2885
 *                       to be mapped to 0 and 255
2886
 * \return  ia LUT with input (val - minval) and output a
2887
 *                  value between 0 and 255)
2888
 */
2889
static l_int32 *
2890
iaaGetLinearTRC(l_int32  **iaa,
2891
                l_int32    diff)
2892
0
{
2893
0
l_int32    i;
2894
0
l_int32   *ia;
2895
0
l_float32  factor;
2896
2897
0
    if (!iaa)
2898
0
        return (l_int32 *)ERROR_PTR("iaa not defined", __func__, NULL);
2899
2900
0
    if (iaa[diff] != NULL)  /* already have it */
2901
0
       return iaa[diff];
2902
2903
0
    ia = (l_int32 *)LEPT_CALLOC(256, sizeof(l_int32));
2904
0
    iaa[diff] = ia;
2905
0
    if (diff == 0) {  /* shouldn't happen */
2906
0
        for (i = 0; i < 256; i++)
2907
0
            ia[i] = 128;
2908
0
    }
2909
0
    else {
2910
0
        factor = 255. / (l_float32)diff;
2911
0
        for (i = 0; i < diff + 1; i++)
2912
0
            ia[i] = (l_int32)(factor * i + 0.5);
2913
0
        for (i = diff + 1; i < 256; i++)
2914
0
            ia[i] = 255;
2915
0
    }
2916
2917
0
    return ia;
2918
0
}
2919
2920
2921
/*------------------------------------------------------------------*
2922
 *   Adaptive normalization with MinMax conversion of RGB to gray,  *
2923
 *   contrast enhancement and optional 2x upscale binarization      *
2924
 *------------------------------------------------------------------*/
2925
/*!
2926
 * \brief   pixBackgroundNormTo1MinMax()
2927
 *
2928
 * \param[in]    pixs          any depth, with or without colormap
2929
 * \param[in]    contrast      1 to 10: 1 reduces contrast; 10 is maximum
2930
 *                             enhancement
2931
 * \param[in]    scalefactor   1 (no change); 2 (2x upscale)
2932
 * \return  1 bpp pix if OK; NULL on error
2933
 *
2934
 * <pre>
2935
 * Notes:
2936
 *    (1) This is a convenience binarization function that does four things:
2937
 *        * Generates a grayscale image with color enhancement to gray
2938
 *        * Background normalization
2939
 *        * Optional contrast enhancement
2940
 *        * Binarizes either at input resolution or with 2x upscaling
2941
 *    (2) If the %pixs is 1 bpp, returns a copy.
2942
 *    (3) The contrast increasing parameter %contrast takes values {1, ... 10}.
2943
 *        For decent scans, contrast = 1 is recommended.  Use a larger
2944
 *        value if important details are lost in binarization.
2945
 *    (4) Valid values of %scalefactor are 1 and 2.
2946
 * </pre>
2947
 */
2948
PIX *
2949
pixBackgroundNormTo1MinMax(PIX     *pixs,
2950
                           l_int32  contrast,
2951
                           l_int32  scalefactor)
2952
0
{
2953
0
PIX  *pix1, *pix2, *pixd;
2954
2955
0
    if (!pixs)
2956
0
        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
2957
0
    if (contrast < 1 || contrast > 10)
2958
0
        return (PIX *)ERROR_PTR("contrast not in [1 ... 10]", __func__, NULL);
2959
0
    if (scalefactor != 1 && scalefactor != 2)
2960
0
        return (PIX *)ERROR_PTR("scalefactor not 1 or 2", __func__, NULL);
2961
2962
0
    if (pixGetDepth(pixs) == 1) {
2963
0
        pixd = pixCopy(NULL, pixs);
2964
0
    } else {
2965
0
        pix1 = pixConvertTo8MinMax(pixs);
2966
0
        pix2 = pixBackgroundNormSimple(pix1, NULL, NULL);
2967
0
        pixSelectiveContrastMod(pix2, contrast);
2968
0
        if (scalefactor == 1)
2969
0
            pixd = pixThresholdToBinary(pix2, 180);
2970
0
        else  /* scalefactor == 2 */
2971
0
            pixd = pixScaleGray2xLIThresh(pix2, 180);
2972
0
        pixDestroy(&pix1);
2973
0
        pixDestroy(&pix2);
2974
0
    }
2975
0
    return pixd;
2976
0
}
2977
2978
2979
/*!
2980
 * \brief   pixConvertTo8MinMax()
2981
 *
2982
 * \param[in]    pixs       any depth, with or without colormap
2983
 * \return  8 bpp pix if OK; NULL on error
2984
 *
2985
 * <pre>
2986
 * Notes:
2987
 *    (1) This is a special version of pixConvert1To8() that removes any
2988
 *        existing colormap and uses pixConvertRGBToGrayMinMax()
2989
 *        to strongly render color into black.
2990
 * </pre>
2991
 */
2992
PIX *
2993
pixConvertTo8MinMax(PIX  *pixs)
2994
0
{
2995
0
l_int32  d;
2996
2997
0
    if (!pixs)
2998
0
        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
2999
3000
0
    d = pixGetDepth(pixs);
3001
0
    if (d == 1) {
3002
0
        return pixConvert1To8(NULL, pixs, 255, 0);
3003
0
    } else if (d == 2) {
3004
0
        return pixConvert2To8(pixs, 0, 85, 170, 255, FALSE);
3005
0
    } else if (d == 4) {
3006
0
        return pixConvert4To8(pixs, FALSE);
3007
0
    } else if (d == 8) {
3008
0
        if (pixGetColormap(pixs) != NULL)
3009
0
            return pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
3010
0
        else
3011
0
            return pixCopy(NULL, pixs);
3012
0
    } else if (d == 16) {
3013
0
        return pixConvert16To8(pixs, L_MS_BYTE);
3014
0
    } else if (d == 32) {
3015
0
        return pixConvertRGBToGrayMinMax(pixs, L_CHOOSE_MIN);
3016
0
    }
3017
3018
0
    L_ERROR("Invalid depth d = %d\n", __func__, d);
3019
0
    return NULL;
3020
0
}
3021
3022
3023
/*!
3024
 * \brief   pixSelectiveContrastMod()
3025
 *
3026
 * \param[in]    pixs       8 bpp without colormap
3027
 * \param[in]    contrast   1 (default value) for some contrast reduction;
3028
 *                          10 for maximum contrast enhancement.
3029
 * \return  0 if OK, 1 on error
3030
 *
3031
 * <pre>
3032
 * Notes:
3033
 *    (1) This does in-place contrast enhancement on 8 bpp grayscale that
3034
 *        has been background normalized to 200.  Therefore, there should
3035
 *        be no gray pixels above 200 in %pixs.  For general contrast
3036
 *        enhancement on gray or color images, see pixContrastTRC().
3037
 *    (2) Caller restricts %contrast to [1 ... 10].
3038
 *    (3) Use %contrast = 1 for minimum contrast enhancement (which will
3039
 *        remove some speckle noise) and %contrast = 10 for maximum
3040
 *        darkening.
3041
 *    (4) We use 200 for the white point in all transforms.  Using a
3042
 *        white point above 200 will darken all grayscale pixels.
3043
 * </pre>
3044
 */
3045
static l_ok
3046
pixSelectiveContrastMod(PIX     *pixs,
3047
                        l_int32  contrast)
3048
0
{
3049
0
    if (!pixs || pixGetDepth(pixs) != 8)
3050
0
        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
3051
3052
0
    if (contrast == 1)
3053
0
        pixGammaTRC(pixs, pixs, 2.0, 50, 200);
3054
0
    else if (contrast == 2)
3055
0
        pixGammaTRC(pixs, pixs, 1.8, 60, 200);
3056
0
    else if (contrast == 3)
3057
0
        pixGammaTRC(pixs, pixs, 1.6, 70, 200);
3058
0
    else if (contrast == 4)
3059
0
        pixGammaTRC(pixs, pixs, 1.4, 80, 200);
3060
0
    else if (contrast == 5)
3061
0
        pixGammaTRC(pixs, pixs, 1.2, 90, 200);
3062
0
    else if (contrast == 6)
3063
0
        pixGammaTRC(pixs, pixs, 1.0, 100, 200);
3064
0
    else if (contrast == 7)
3065
0
        pixGammaTRC(pixs, pixs, 0.85, 110, 200);
3066
0
    else if (contrast == 8)
3067
0
        pixGammaTRC(pixs, pixs, 0.7, 120, 200);
3068
0
    else if (contrast == 9)
3069
0
        pixGammaTRC(pixs, pixs, 0.6, 130, 200);
3070
0
    else  /* contrast == 10 */
3071
0
        pixGammaTRC(pixs, pixs, 0.5, 140, 200);
3072
3073
0
    return 0;
3074
0
}
3075