/src/leptonica/src/seedfill.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*====================================================================* |
2 | | - Copyright (C) 2001 Leptonica. All rights reserved. |
3 | | - |
4 | | - Redistribution and use in source and binary forms, with or without |
5 | | - modification, are permitted provided that the following conditions |
6 | | - are met: |
7 | | - 1. Redistributions of source code must retain the above copyright |
8 | | - notice, this list of conditions and the following disclaimer. |
9 | | - 2. Redistributions in binary form must reproduce the above |
10 | | - copyright notice, this list of conditions and the following |
11 | | - disclaimer in the documentation and/or other materials |
12 | | - provided with the distribution. |
13 | | - |
14 | | - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
15 | | - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
16 | | - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
17 | | - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY |
18 | | - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | | - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | | - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | | - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | | - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
23 | | - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
24 | | - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | | *====================================================================*/ |
26 | | |
27 | | /*! |
28 | | * \file seedfill.c |
29 | | * <pre> |
30 | | * |
31 | | * Binary seedfill (source: Luc Vincent) |
32 | | * PIX *pixSeedfillBinary() |
33 | | * PIX *pixSeedfillBinaryRestricted() |
34 | | * static void seedfillBinaryLow() |
35 | | * |
36 | | * Applications of binary seedfill to find and fill holes, |
37 | | * remove c.c. touching the border and fill bg from border: |
38 | | * PIX *pixHolesByFilling() |
39 | | * PIX *pixFillClosedBorders() |
40 | | * PIX *pixExtractBorderConnComps() |
41 | | * PIX *pixRemoveBorderConnComps() |
42 | | * PIX *pixFillBgFromBorder() |
43 | | * |
44 | | * Hole-filling of components to bounding rectangle |
45 | | * PIX *pixFillHolesToBoundingRect() |
46 | | * |
47 | | * Gray seedfill (source: Luc Vincent:fast-hybrid-grayscale-reconstruction) |
48 | | * l_int32 pixSeedfillGray() |
49 | | * l_int32 pixSeedfillGrayInv() |
50 | | * static void seedfillGrayLow() |
51 | | * static void seedfillGrayInvLow() |
52 | | |
53 | | * |
54 | | * Gray seedfill (source: Luc Vincent: sequential-reconstruction algorithm) |
55 | | * l_int32 pixSeedfillGraySimple() |
56 | | * l_int32 pixSeedfillGrayInvSimple() |
57 | | * static void seedfillGrayLowSimple() |
58 | | * static void seedfillGrayInvLowSimple() |
59 | | * |
60 | | * Gray seedfill variations |
61 | | * PIX *pixSeedfillGrayBasin() |
62 | | * |
63 | | * Distance function (source: Luc Vincent) |
64 | | * PIX *pixDistanceFunction() |
65 | | * static void distanceFunctionLow() |
66 | | * |
67 | | * Seed spread (based on distance function) |
68 | | * PIX *pixSeedspread() |
69 | | * static void seedspreadLow() |
70 | | * |
71 | | * Local extrema: |
72 | | * l_int32 pixLocalExtrema() |
73 | | * static l_int32 pixQualifyLocalMinima() |
74 | | * l_int32 pixSelectedLocalExtrema() |
75 | | * PIX *pixFindEqualValues() |
76 | | * |
77 | | * Selection of minima in mask of connected components |
78 | | * PTA *pixSelectMinInConnComp() |
79 | | * |
80 | | * Removal of seeded connected components from a mask |
81 | | * PIX *pixRemoveSeededComponents() |
82 | | * |
83 | | * |
84 | | * ITERATIVE RASTER-ORDER SEEDFILL |
85 | | * |
86 | | * The basic method in the Vincent seedfill (aka reconstruction) |
87 | | * algorithm is simple. We describe here the situation for |
88 | | * binary seedfill. Pixels are sampled in raster order in |
89 | | * the seed image. If they are 4-connected to ON pixels |
90 | | * either directly above or to the left, and are not masked |
91 | | * out by the mask image, they are turned on (or remain on). |
92 | | * (Ditto for 8-connected, except you need to check 3 pixels |
93 | | * on the previous line as well as the pixel to the left |
94 | | * on the current line. This is extra computational work |
95 | | * for relatively little gain, so it is preferable |
96 | | * in most situations to use the 4-connected version.) |
97 | | * The algorithm proceeds from UR to LL of the image, and |
98 | | * then reverses and sweeps up from LL to UR. |
99 | | * These double sweeps are iterated until there is no change. |
100 | | * At this point, the seed has entirely filled the region it |
101 | | * is allowed to, as delimited by the mask image. |
102 | | * |
103 | | * The grayscale seedfill is a straightforward generalization |
104 | | * of the binary seedfill, and is described in seedfillLowGray(). |
105 | | * |
106 | | * For some applications, the filled seed will later be OR'd |
107 | | * with the negative of the mask. This is used, for example, |
108 | | * when you flood fill into a 4-connected region of OFF pixels |
109 | | * and you want the result after those pixels are turned ON. |
110 | | * |
111 | | * Note carefully that the mask we use delineates which pixels |
112 | | * are allowed to be ON as the seed is filled. We will call this |
113 | | * a "filling mask". As the seed expands, it is repeatedly |
114 | | * ANDed with the filling mask: s & fm. The process can equivalently |
115 | | * be formulated using the inverse of the filling mask, which |
116 | | * we will call a "blocking mask": bm = ~fm. As the seed |
117 | | * expands, the blocking mask is repeatedly used to prevent |
118 | | * the seed from expanding into the blocking mask. This is done |
119 | | * by set subtracting the blocking mask from the expanded seed: |
120 | | * s - bm. Set subtraction of the blocking mask is equivalent |
121 | | * to ANDing with the inverse of the blocking mask: s & (~bm). |
122 | | * But from the inverse relation between blocking and filling |
123 | | * masks, this is equal to s & fm, which proves the equivalence. |
124 | | * |
125 | | * For efficiency, the pixels can be taken in larger units |
126 | | * for processing, but still in raster order. It is natural |
127 | | * to take them in 32-bit words. The outline of the work |
128 | | * to be done for 4-cc (not including special cases for boundary |
129 | | * words, such as the first line or the last word in each line) |
130 | | * is as follows. Let the filling mask be m. The |
131 | | * seed is to fill "under" the mask; i.e., limited by an AND |
132 | | * with the mask. Let the current word be w, the word |
133 | | * in the line above be wa, and the previous word in the |
134 | | * current line be wp. Let t be a temporary word that |
135 | | * is used in computation. Note that masking is performed by |
136 | | * w & m. (If we had instead used a "blocking" mask, we |
137 | | * would perform masking by the set subtraction operation, |
138 | | * w - m, which is defined to be w & ~m.) |
139 | | * |
140 | | * The entire operation can be implemented with shifts, |
141 | | * logical operations and tests. For each word in the seed image |
142 | | * there are two steps. The first step is to OR the word with |
143 | | * the word above and with the rightmost pixel in wp (call it "x"). |
144 | | * Because wp is shifted one pixel to its right, "x" is ORed |
145 | | * to the leftmost pixel of w. We then clip to the ON pixels in |
146 | | * the mask. The result is |
147 | | * t <-- (w | wa | x000... ) & m |
148 | | * We've now finished taking data from above and to the left. |
149 | | * The second step is to allow filling to propagate horizontally |
150 | | * in t, always making sure that it is properly masked at each |
151 | | * step. So if filling can be done (i.e., t is neither all 0s |
152 | | * nor all 1s), iteratively take: |
153 | | * t <-- (t | (t >> 1) | (t << 1)) & m |
154 | | * until t stops changing. Then write t back into w. |
155 | | * |
156 | | * Finally, the boundary conditions require we note that in doing |
157 | | * the above steps: |
158 | | * (a) The words in the first row have no wa |
159 | | * (b) The first word in each row has no wp in that row |
160 | | * (c) The last word in each row must be masked so that |
161 | | * pixels don't propagate beyond the right edge of the |
162 | | * actual image. (This is easily accomplished by |
163 | | * setting the out-of-bound pixels in m to OFF.) |
164 | | * </pre> |
165 | | */ |
166 | | |
167 | | #ifdef HAVE_CONFIG_H |
168 | | #include <config_auto.h> |
169 | | #endif /* HAVE_CONFIG_H */ |
170 | | |
171 | | #include <math.h> |
172 | | #include "allheaders.h" |
173 | | |
174 | | struct L_Pixel |
175 | | { |
176 | | l_int32 x; |
177 | | l_int32 y; |
178 | | }; |
179 | | typedef struct L_Pixel L_PIXEL; |
180 | | |
181 | | static void seedfillBinaryLow(l_uint32 *datas, l_int32 hs, l_int32 wpls, |
182 | | l_uint32 *datam, l_int32 hm, l_int32 wplm, |
183 | | l_int32 connectivity); |
184 | | static void seedfillGrayLow(l_uint32 *datas, l_int32 w, l_int32 h, |
185 | | l_int32 wpls, l_uint32 *datam, l_int32 wplm, |
186 | | l_int32 connectivity); |
187 | | static void seedfillGrayInvLow(l_uint32 *datas, l_int32 w, l_int32 h, |
188 | | l_int32 wpls, l_uint32 *datam, l_int32 wplm, |
189 | | l_int32 connectivity); |
190 | | static void seedfillGrayLowSimple(l_uint32 *datas, l_int32 w, l_int32 h, |
191 | | l_int32 wpls, l_uint32 *datam, l_int32 wplm, |
192 | | l_int32 connectivity); |
193 | | static void seedfillGrayInvLowSimple(l_uint32 *datas, l_int32 w, l_int32 h, |
194 | | l_int32 wpls, l_uint32 *datam, |
195 | | l_int32 wplm, l_int32 connectivity); |
196 | | static void distanceFunctionLow(l_uint32 *datad, l_int32 w, l_int32 h, |
197 | | l_int32 d, l_int32 wpld, l_int32 connectivity); |
198 | | static void seedspreadLow(l_uint32 *datad, l_int32 w, l_int32 h, l_int32 wpld, |
199 | | l_uint32 *datat, l_int32 wplt, l_int32 connectivity); |
200 | | |
201 | | |
202 | | static l_int32 pixQualifyLocalMinima(PIX *pixs, PIX *pixm, l_int32 maxval); |
203 | | |
204 | | #ifndef NO_CONSOLE_IO |
205 | | #define DEBUG_PRINT_ITERS 0 |
206 | | #endif /* ~NO_CONSOLE_IO */ |
207 | | |
208 | | /* Two-way (UL --> LR, LR --> UL) sweep iterations; typically need only 4 */ |
209 | | static const l_int32 MaxIters = 40; |
210 | | |
211 | | |
212 | | /*-----------------------------------------------------------------------* |
213 | | * Vincent's Iterative Binary Seedfill method * |
214 | | *-----------------------------------------------------------------------*/ |
215 | | /*! |
216 | | * \brief pixSeedfillBinary() |
217 | | * |
218 | | * \param[in] pixd [optional]; can be null, equal to pixs, |
219 | | * or different from pixs; 1 bpp |
220 | | * \param[in] pixs 1 bpp seed |
221 | | * \param[in] pixm 1 bpp filling mask |
222 | | * \param[in] connectivity 4 or 8 |
223 | | * \return pixd always |
224 | | * |
225 | | * <pre> |
226 | | * Notes: |
227 | | * (1) This is for binary seedfill (aka "binary reconstruction"). |
228 | | * (2) There are 3 cases: |
229 | | * (a) pixd == null (make a new pixd) |
230 | | * (b) pixd == pixs (in-place) |
231 | | * (c) pixd != pixs |
232 | | * (3) If you know the case, use these patterns for clarity: |
233 | | * (a) pixd = pixSeedfillBinary(NULL, pixs, ...); |
234 | | * (b) pixSeedfillBinary(pixs, pixs, ...); |
235 | | * (c) pixSeedfillBinary(pixd, pixs, ...); |
236 | | * (4) The resulting pixd contains the filled seed. For some |
237 | | * applications you want to OR it with the inverse of |
238 | | * the filling mask. |
239 | | * (5) The input seed and mask images can be different sizes, but |
240 | | * in typical use the difference, if any, would be only |
241 | | * a few pixels in each direction. If the sizes differ, |
242 | | * the clipping is handled by the low-level function |
243 | | * seedfillBinaryLow(). |
244 | | * </pre> |
245 | | */ |
246 | | PIX * |
247 | | pixSeedfillBinary(PIX *pixd, |
248 | | PIX *pixs, |
249 | | PIX *pixm, |
250 | | l_int32 connectivity) |
251 | 0 | { |
252 | 0 | l_int32 i, boolval; |
253 | 0 | l_int32 hd, hm, wpld, wplm; |
254 | 0 | l_uint32 *datad, *datam; |
255 | 0 | PIX *pixt; |
256 | |
|
257 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
258 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd); |
259 | 0 | if (!pixm || pixGetDepth(pixm) != 1) |
260 | 0 | return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd); |
261 | 0 | if (connectivity != 4 && connectivity != 8) |
262 | 0 | return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, pixd); |
263 | | |
264 | | /* Prepare pixd as a copy of pixs if not identical */ |
265 | 0 | if ((pixd = pixCopy(pixd, pixs)) == NULL) |
266 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
267 | 0 | pixSetPadBits(pixd, 0); /* be safe: */ |
268 | 0 | pixSetPadBits(pixm, 0); /* avoid using uninitialized memory */ |
269 | | |
270 | | /* pixt is used to test for completion */ |
271 | 0 | if ((pixt = pixCreateTemplate(pixs)) == NULL) |
272 | 0 | return (PIX *)ERROR_PTR("pixt not made", __func__, pixd); |
273 | | |
274 | 0 | hd = pixGetHeight(pixd); |
275 | 0 | hm = pixGetHeight(pixm); /* included so seedfillBinaryLow() can clip */ |
276 | 0 | datad = pixGetData(pixd); |
277 | 0 | datam = pixGetData(pixm); |
278 | 0 | wpld = pixGetWpl(pixd); |
279 | 0 | wplm = pixGetWpl(pixm); |
280 | | |
281 | |
|
282 | 0 | for (i = 0; i < MaxIters; i++) { |
283 | 0 | pixCopy(pixt, pixd); |
284 | 0 | seedfillBinaryLow(datad, hd, wpld, datam, hm, wplm, connectivity); |
285 | 0 | pixEqual(pixd, pixt, &boolval); |
286 | 0 | if (boolval == 1) { |
287 | | #if DEBUG_PRINT_ITERS |
288 | | lept_stderr("Binary seed fill converged: %d iters\n", i + 1); |
289 | | #endif /* DEBUG_PRINT_ITERS */ |
290 | 0 | break; |
291 | 0 | } |
292 | 0 | } |
293 | |
|
294 | 0 | pixDestroy(&pixt); |
295 | 0 | return pixd; |
296 | 0 | } |
297 | | |
298 | | |
299 | | /*! |
300 | | * \brief pixSeedfillBinaryRestricted() |
301 | | * |
302 | | * \param[in] pixd [optional]; can be null, equal to pixs, |
303 | | * or different from pixs; 1 bpp |
304 | | * \param[in] pixs 1 bpp seed |
305 | | * \param[in] pixm 1 bpp filling mask |
306 | | * \param[in] connectivity 4 or 8 |
307 | | * \param[in] xmax max distance in x direction of fill into mask |
308 | | * \param[in] ymax max distance in y direction of fill into mask |
309 | | * \return pixd always |
310 | | * |
311 | | * <pre> |
312 | | * Notes: |
313 | | * (1) See usage for pixSeedfillBinary(), which has unrestricted fill. |
314 | | * In pixSeedfillBinary(), the filling distance is unrestricted |
315 | | * and can be larger than pixs, depending on the topology of |
316 | | * th mask. |
317 | | * (2) There are occasions where it is useful not to permit the |
318 | | * fill to go more than a certain distance into the mask. |
319 | | * %xmax specifies the maximum horizontal distance allowed |
320 | | * in the fill; %ymax does likewise in the vertical direction. |
321 | | * (3) Operationally, the max "distance" allowed for the fill |
322 | | * is a linear distance from the original seed, independent |
323 | | * of the actual mask topology. |
324 | | * (4) Another formulation of this problem, not implemented, |
325 | | * would use the manhattan distance from the seed, as |
326 | | * determined by a breadth-first search starting at the seed |
327 | | * boundaries and working outward where the mask fg allows. |
328 | | * How this might use the constraints of separate xmax and ymax |
329 | | * is not clear. |
330 | | * </pre> |
331 | | */ |
332 | | PIX * |
333 | | pixSeedfillBinaryRestricted(PIX *pixd, |
334 | | PIX *pixs, |
335 | | PIX *pixm, |
336 | | l_int32 connectivity, |
337 | | l_int32 xmax, |
338 | | l_int32 ymax) |
339 | 0 | { |
340 | 0 | l_int32 w, h; |
341 | 0 | PIX *pix1, *pix2; |
342 | |
|
343 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
344 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd); |
345 | 0 | if (!pixm || pixGetDepth(pixm) != 1) |
346 | 0 | return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd); |
347 | 0 | if (connectivity != 4 && connectivity != 8) |
348 | 0 | return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, pixd); |
349 | 0 | if (xmax == 0 && ymax == 0) /* no filling permitted */ |
350 | 0 | return pixClone(pixs); |
351 | 0 | if (xmax < 0 || ymax < 0) { |
352 | 0 | L_ERROR("xmax and ymax must be non-negative", __func__); |
353 | 0 | return pixClone(pixs); |
354 | 0 | } |
355 | | |
356 | | /* Full fill from the seed into the mask. */ |
357 | 0 | if ((pix1 = pixSeedfillBinary(NULL, pixs, pixm, connectivity)) == NULL) |
358 | 0 | return (PIX *)ERROR_PTR("pix1 not made", __func__, pixd); |
359 | | |
360 | | /* Dilate the seed. This gives the maximal region where changes |
361 | | * are permitted. Invert to get the region where pixs is |
362 | | * not allowed to change. */ |
363 | 0 | pix2 = pixDilateCompBrick(NULL, pixs, 2 * xmax + 1, 2 * ymax + 1); |
364 | 0 | pixInvert(pix2, pix2); |
365 | | |
366 | | /* Blank the region of pix1 specified by the fg of pix2. |
367 | | * This is not yet the final result, because it may have fg pixels |
368 | | * that are not accessible from the seed in the restricted distance. |
369 | | * For example, such pixels may be connected to the original seed, |
370 | | * but through a path that goes outside the permitted region. */ |
371 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
372 | 0 | pixRasterop(pix1, 0, 0, w, h, PIX_DST & PIX_NOT(PIX_SRC), pix2, 0, 0); |
373 | | |
374 | | /* To get the accessible pixels in the restricted region, do |
375 | | * a second seedfill from the original seed, using pix1 as |
376 | | * a mask. The result, in pixd, will not have any bad fg |
377 | | * pixels that were in pix1. */ |
378 | 0 | pixd = pixSeedfillBinary(pixd, pixs, pix1, connectivity); |
379 | |
|
380 | 0 | pixDestroy(&pix1); |
381 | 0 | pixDestroy(&pix2); |
382 | 0 | return pixd; |
383 | 0 | } |
384 | | |
385 | | |
386 | | /*! |
387 | | * \brief seedfillBinaryLow() |
388 | | * |
389 | | * Notes: |
390 | | * (1) This is an in-place fill, where the seed image is |
391 | | * filled, clipping to the filling mask, in one full |
392 | | * cycle of UL -> LR and LR -> UL raster scans. |
393 | | * (2) Assume the mask is a filling mask, not a blocking mask. |
394 | | * (3) Assume that the RHS pad bits of the mask |
395 | | * are properly set to 0. |
396 | | * (4) Clip to the smallest dimensions to avoid invalid reads. |
397 | | */ |
398 | | static void |
399 | | seedfillBinaryLow(l_uint32 *datas, |
400 | | l_int32 hs, |
401 | | l_int32 wpls, |
402 | | l_uint32 *datam, |
403 | | l_int32 hm, |
404 | | l_int32 wplm, |
405 | | l_int32 connectivity) |
406 | 0 | { |
407 | 0 | l_int32 i, j, h, wpl; |
408 | 0 | l_uint32 word, mask; |
409 | 0 | l_uint32 wordabove, wordleft, wordbelow, wordright; |
410 | 0 | l_uint32 wordprev; /* test against this in previous iteration */ |
411 | 0 | l_uint32 *lines, *linem; |
412 | |
|
413 | 0 | h = L_MIN(hs, hm); |
414 | 0 | wpl = L_MIN(wpls, wplm); |
415 | |
|
416 | 0 | switch (connectivity) |
417 | 0 | { |
418 | 0 | case 4: |
419 | | /* UL --> LR scan */ |
420 | 0 | for (i = 0; i < h; i++) { |
421 | 0 | lines = datas + i * wpls; |
422 | 0 | linem = datam + i * wplm; |
423 | 0 | for (j = 0; j < wpl; j++) { |
424 | 0 | word = *(lines + j); |
425 | 0 | mask = *(linem + j); |
426 | | |
427 | | /* OR from word above and from word to left; mask */ |
428 | 0 | if (i > 0) { |
429 | 0 | wordabove = *(lines - wpls + j); |
430 | 0 | word |= wordabove; |
431 | 0 | } |
432 | 0 | if (j > 0) { |
433 | 0 | wordleft = *(lines + j - 1); |
434 | 0 | word |= wordleft << 31; |
435 | 0 | } |
436 | 0 | word &= mask; |
437 | | |
438 | | /* No need to fill horizontally? */ |
439 | 0 | if (!word || !(~word)) { |
440 | 0 | *(lines + j) = word; |
441 | 0 | continue; |
442 | 0 | } |
443 | | |
444 | 0 | while (1) { |
445 | 0 | wordprev = word; |
446 | 0 | word = (word | (word >> 1) | (word << 1)) & mask; |
447 | 0 | if ((word ^ wordprev) == 0) { |
448 | 0 | *(lines + j) = word; |
449 | 0 | break; |
450 | 0 | } |
451 | 0 | } |
452 | 0 | } |
453 | 0 | } |
454 | | |
455 | | /* LR --> UL scan */ |
456 | 0 | for (i = h - 1; i >= 0; i--) { |
457 | 0 | lines = datas + i * wpls; |
458 | 0 | linem = datam + i * wplm; |
459 | 0 | for (j = wpl - 1; j >= 0; j--) { |
460 | 0 | word = *(lines + j); |
461 | 0 | mask = *(linem + j); |
462 | | |
463 | | /* OR from word below and from word to right; mask */ |
464 | 0 | if (i < h - 1) { |
465 | 0 | wordbelow = *(lines + wpls + j); |
466 | 0 | word |= wordbelow; |
467 | 0 | } |
468 | 0 | if (j < wpl - 1) { |
469 | 0 | wordright = *(lines + j + 1); |
470 | 0 | word |= wordright >> 31; |
471 | 0 | } |
472 | 0 | word &= mask; |
473 | | |
474 | | /* No need to fill horizontally? */ |
475 | 0 | if (!word || !(~word)) { |
476 | 0 | *(lines + j) = word; |
477 | 0 | continue; |
478 | 0 | } |
479 | | |
480 | 0 | while (1) { |
481 | 0 | wordprev = word; |
482 | 0 | word = (word | (word >> 1) | (word << 1)) & mask; |
483 | 0 | if ((word ^ wordprev) == 0) { |
484 | 0 | *(lines + j) = word; |
485 | 0 | break; |
486 | 0 | } |
487 | 0 | } |
488 | 0 | } |
489 | 0 | } |
490 | 0 | break; |
491 | | |
492 | 0 | case 8: |
493 | | /* UL --> LR scan */ |
494 | 0 | for (i = 0; i < h; i++) { |
495 | 0 | lines = datas + i * wpls; |
496 | 0 | linem = datam + i * wplm; |
497 | 0 | for (j = 0; j < wpl; j++) { |
498 | 0 | word = *(lines + j); |
499 | 0 | mask = *(linem + j); |
500 | | |
501 | | /* OR from words above and from word to left; mask */ |
502 | 0 | if (i > 0) { |
503 | 0 | wordabove = *(lines - wpls + j); |
504 | 0 | word |= (wordabove | (wordabove << 1) | (wordabove >> 1)); |
505 | 0 | if (j > 0) |
506 | 0 | word |= (*(lines - wpls + j - 1)) << 31; |
507 | 0 | if (j < wpl - 1) |
508 | 0 | word |= (*(lines - wpls + j + 1)) >> 31; |
509 | 0 | } |
510 | 0 | if (j > 0) { |
511 | 0 | wordleft = *(lines + j - 1); |
512 | 0 | word |= wordleft << 31; |
513 | 0 | } |
514 | 0 | word &= mask; |
515 | | |
516 | | /* No need to fill horizontally? */ |
517 | 0 | if (!word || !(~word)) { |
518 | 0 | *(lines + j) = word; |
519 | 0 | continue; |
520 | 0 | } |
521 | | |
522 | 0 | while (1) { |
523 | 0 | wordprev = word; |
524 | 0 | word = (word | (word >> 1) | (word << 1)) & mask; |
525 | 0 | if ((word ^ wordprev) == 0) { |
526 | 0 | *(lines + j) = word; |
527 | 0 | break; |
528 | 0 | } |
529 | 0 | } |
530 | 0 | } |
531 | 0 | } |
532 | | |
533 | | /* LR --> UL scan */ |
534 | 0 | for (i = h - 1; i >= 0; i--) { |
535 | 0 | lines = datas + i * wpls; |
536 | 0 | linem = datam + i * wplm; |
537 | 0 | for (j = wpl - 1; j >= 0; j--) { |
538 | 0 | word = *(lines + j); |
539 | 0 | mask = *(linem + j); |
540 | | |
541 | | /* OR from words below and from word to right; mask */ |
542 | 0 | if (i < h - 1) { |
543 | 0 | wordbelow = *(lines + wpls + j); |
544 | 0 | word |= (wordbelow | (wordbelow << 1) | (wordbelow >> 1)); |
545 | 0 | if (j > 0) |
546 | 0 | word |= (*(lines + wpls + j - 1)) << 31; |
547 | 0 | if (j < wpl - 1) |
548 | 0 | word |= (*(lines + wpls + j + 1)) >> 31; |
549 | 0 | } |
550 | 0 | if (j < wpl - 1) { |
551 | 0 | wordright = *(lines + j + 1); |
552 | 0 | word |= wordright >> 31; |
553 | 0 | } |
554 | 0 | word &= mask; |
555 | | |
556 | | /* No need to fill horizontally? */ |
557 | 0 | if (!word || !(~word)) { |
558 | 0 | *(lines + j) = word; |
559 | 0 | continue; |
560 | 0 | } |
561 | | |
562 | 0 | while (1) { |
563 | 0 | wordprev = word; |
564 | 0 | word = (word | (word >> 1) | (word << 1)) & mask; |
565 | 0 | if ((word ^ wordprev) == 0) { |
566 | 0 | *(lines + j) = word; |
567 | 0 | break; |
568 | 0 | } |
569 | 0 | } |
570 | 0 | } |
571 | 0 | } |
572 | 0 | break; |
573 | | |
574 | 0 | default: |
575 | 0 | L_ERROR("connectivity must be 4 or 8\n", __func__); |
576 | 0 | } |
577 | 0 | } |
578 | | |
579 | | |
580 | | /*! |
581 | | * \brief pixHolesByFilling() |
582 | | * |
583 | | * \param[in] pixs 1 bpp |
584 | | * \param[in] connectivity 4 or 8 |
585 | | * \return pixd inverted image of all holes, or NULL on error |
586 | | * |
587 | | * Action: |
588 | | * 1 Start with 1-pixel black border on otherwise white pixd |
589 | | * 2 Use the inverted pixs as the filling mask to fill in |
590 | | * all the pixels from the border to the pixs foreground |
591 | | * 3 OR the result with pixs to have an image with all |
592 | | * ON pixels except for the holes. |
593 | | * 4 Invert the result to get the holes as foreground |
594 | | * |
595 | | * <pre> |
596 | | * Notes: |
597 | | * (1) To get 4-c.c. holes of the 8-c.c. as foreground, use |
598 | | * 4-connected filling; to get 8-c.c. holes of the 4-c.c. |
599 | | * as foreground, use 8-connected filling. |
600 | | * </pre> |
601 | | */ |
602 | | PIX * |
603 | | pixHolesByFilling(PIX *pixs, |
604 | | l_int32 connectivity) |
605 | 0 | { |
606 | 0 | PIX *pixsi, *pixd; |
607 | |
|
608 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
609 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); |
610 | 0 | if (connectivity != 4 && connectivity != 8) |
611 | 0 | return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); |
612 | | |
613 | 0 | if ((pixd = pixCreateTemplate(pixs)) == NULL) |
614 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
615 | 0 | if ((pixsi = pixInvert(NULL, pixs)) == NULL) { |
616 | 0 | pixDestroy(&pixd); |
617 | 0 | return (PIX *)ERROR_PTR("pixsi not made", __func__, NULL); |
618 | 0 | } |
619 | | |
620 | 0 | pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); |
621 | 0 | pixSeedfillBinary(pixd, pixd, pixsi, connectivity); |
622 | 0 | pixOr(pixd, pixd, pixs); |
623 | 0 | pixInvert(pixd, pixd); |
624 | 0 | pixDestroy(&pixsi); |
625 | 0 | return pixd; |
626 | 0 | } |
627 | | |
628 | | |
629 | | /*! |
630 | | * \brief pixFillClosedBorders() |
631 | | * |
632 | | * \param[in] pixs 1 bpp |
633 | | * \param[in] connectivity filling connectivity 4 or 8 |
634 | | * \return pixd all topologically outer closed borders are filled |
635 | | * as connected comonents, or NULL on error |
636 | | * |
637 | | * <pre> |
638 | | * Notes: |
639 | | * (1) Start with 1-pixel black border on otherwise white pixd |
640 | | * (2) Subtract input pixs to remove border pixels that were |
641 | | * also on the closed border |
642 | | * (3) Use the inverted pixs as the filling mask to fill in |
643 | | * all the pixels from the outer border to the closed border |
644 | | * on pixs |
645 | | * (4) Invert the result to get the filled component, including |
646 | | * the input border |
647 | | * (5) If the borders are 4-c.c., use 8-c.c. filling, and v.v. |
648 | | * (6) Closed borders within c.c. that represent holes, etc., are filled. |
649 | | * </pre> |
650 | | */ |
651 | | PIX * |
652 | | pixFillClosedBorders(PIX *pixs, |
653 | | l_int32 connectivity) |
654 | 0 | { |
655 | 0 | PIX *pixsi, *pixd; |
656 | |
|
657 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
658 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); |
659 | 0 | if (connectivity != 4 && connectivity != 8) |
660 | 0 | return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); |
661 | | |
662 | 0 | if ((pixd = pixCreateTemplate(pixs)) == NULL) |
663 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
664 | 0 | pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); |
665 | 0 | pixSubtract(pixd, pixd, pixs); |
666 | 0 | if ((pixsi = pixInvert(NULL, pixs)) == NULL) { |
667 | 0 | pixDestroy(&pixd); |
668 | 0 | return (PIX *)ERROR_PTR("pixsi not made", __func__, NULL); |
669 | 0 | } |
670 | | |
671 | 0 | pixSeedfillBinary(pixd, pixd, pixsi, connectivity); |
672 | 0 | pixInvert(pixd, pixd); |
673 | 0 | pixDestroy(&pixsi); |
674 | |
|
675 | 0 | return pixd; |
676 | 0 | } |
677 | | |
678 | | |
679 | | /*! |
680 | | * \brief pixExtractBorderConnComps() |
681 | | * |
682 | | * \param[in] pixs 1 bpp |
683 | | * \param[in] connectivity filling connectivity 4 or 8 |
684 | | * \return pixd all pixels in the src that are in connected |
685 | | * components touching the border, or NULL on error |
686 | | */ |
687 | | PIX * |
688 | | pixExtractBorderConnComps(PIX *pixs, |
689 | | l_int32 connectivity) |
690 | 0 | { |
691 | 0 | PIX *pixd; |
692 | |
|
693 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
694 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); |
695 | 0 | if (connectivity != 4 && connectivity != 8) |
696 | 0 | return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); |
697 | | |
698 | | /* Start with 1 pixel wide black border as seed in pixd */ |
699 | 0 | if ((pixd = pixCreateTemplate(pixs)) == NULL) |
700 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
701 | 0 | pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); |
702 | | |
703 | | /* Fill in pixd from the seed, using pixs as the filling mask. |
704 | | * This fills all components from pixs that are touching the border. */ |
705 | 0 | pixSeedfillBinary(pixd, pixd, pixs, connectivity); |
706 | |
|
707 | 0 | return pixd; |
708 | 0 | } |
709 | | |
710 | | |
711 | | /*! |
712 | | * \brief pixRemoveBorderConnComps() |
713 | | * |
714 | | * \param[in] pixs 1 bpp |
715 | | * \param[in] connectivity filling connectivity 4 or 8 |
716 | | * \return pixd all pixels in the src that are not touching the |
717 | | * border or NULL on error |
718 | | * |
719 | | * <pre> |
720 | | * Notes: |
721 | | * (1) This removes all fg components touching the border. |
722 | | * </pre> |
723 | | */ |
724 | | PIX * |
725 | | pixRemoveBorderConnComps(PIX *pixs, |
726 | | l_int32 connectivity) |
727 | 0 | { |
728 | 0 | PIX *pixd; |
729 | |
|
730 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
731 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); |
732 | 0 | if (connectivity != 4 && connectivity != 8) |
733 | 0 | return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); |
734 | | |
735 | | /* Fill from a 1 pixel wide seed at the border into all components |
736 | | * in pixs (the filling mask) that are touching the border */ |
737 | 0 | pixd = pixExtractBorderConnComps(pixs, connectivity); |
738 | | |
739 | | /* Save in pixd only those components in pixs not touching the border */ |
740 | 0 | pixXor(pixd, pixd, pixs); |
741 | 0 | return pixd; |
742 | 0 | } |
743 | | |
744 | | |
745 | | /*! |
746 | | * \brief pixFillBgFromBorder() |
747 | | * |
748 | | * \param[in] pixs 1 bpp |
749 | | * \param[in] connectivity filling connectivity 4 or 8 |
750 | | * \return pixd with the background c.c. touching the border |
751 | | * filled to foreground, or NULL on error |
752 | | * |
753 | | * <pre> |
754 | | * Notes: |
755 | | * (1) This fills all bg components touching the border to fg. |
756 | | * It is the photometric inverse of pixRemoveBorderConnComps(). |
757 | | * (2) Invert the result to get the "holes" left after this fill. |
758 | | * This can be done multiple times, extracting holes within |
759 | | * holes after each pair of fillings. Specifically, this code |
760 | | * peels away n successive embeddings of components: |
761 | | * \code |
762 | | * pix1 = <initial image> |
763 | | * for (i = 0; i < 2 * n; i++) { |
764 | | * pix2 = pixFillBgFromBorder(pix1, 8); |
765 | | * pixInvert(pix2, pix2); |
766 | | * pixDestroy(&pix1); |
767 | | * pix1 = pix2; |
768 | | * } |
769 | | * \endcode |
770 | | * </pre> |
771 | | */ |
772 | | PIX * |
773 | | pixFillBgFromBorder(PIX *pixs, |
774 | | l_int32 connectivity) |
775 | 0 | { |
776 | 0 | PIX *pixd; |
777 | |
|
778 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
779 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); |
780 | 0 | if (connectivity != 4 && connectivity != 8) |
781 | 0 | return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); |
782 | | |
783 | | /* Invert to turn bg touching the border to a fg component. |
784 | | * Extract this by filling from a 1 pixel wide seed at the border. */ |
785 | 0 | pixInvert(pixs, pixs); |
786 | 0 | pixd = pixExtractBorderConnComps(pixs, connectivity); |
787 | 0 | pixInvert(pixs, pixs); /* restore pixs */ |
788 | | |
789 | | /* Bit-or the filled bg component with pixs */ |
790 | 0 | pixOr(pixd, pixd, pixs); |
791 | 0 | return pixd; |
792 | 0 | } |
793 | | |
794 | | |
795 | | /*-----------------------------------------------------------------------* |
796 | | * Hole-filling of components to bounding rectangle * |
797 | | *-----------------------------------------------------------------------*/ |
798 | | /*! |
799 | | * \brief pixFillHolesToBoundingRect() |
800 | | * |
801 | | * \param[in] pixs 1 bpp |
802 | | * \param[in] minsize min number of pixels in the hole |
803 | | * \param[in] maxhfract max hole area as fraction of fg pixels in the cc |
804 | | * \param[in] minfgfract min fg area as fraction of bounding rectangle |
805 | | * \return pixd with some holes possibly filled and some c.c. possibly |
806 | | * expanded to their bounding rects, or NULL on error |
807 | | * |
808 | | * <pre> |
809 | | * Notes: |
810 | | * (1) This does not fill holes that are smaller in area than 'minsize'. |
811 | | * Use %minsize = 0 and %maxhfract = 1.0 to fill all holes. |
812 | | * (2) This does not fill holes with an area larger than |
813 | | * %maxhfract times the fg area of the c.c. |
814 | | * Use 1.0 to fill all holes. |
815 | | * (3) This does not expand the fg of the c.c. to bounding rect if |
816 | | * the fg area is less than %minfgfract times the area of the |
817 | | * bounding rect. Use 1.0 to skip expanding to the bounding rect. |
818 | | * (4) The decisions are made as follows: |
819 | | * ~ Decide if we are filling the holes; if so, when using |
820 | | * the fg area, include the filled holes. |
821 | | * ~ Decide based on the fg area if we are filling to a bounding rect. |
822 | | * If so, do it. |
823 | | * If not, fill the holes if the condition is satisfied. |
824 | | * (5) The choice of %minsize depends on the resolution. |
825 | | * (6) For solidifying image mask regions on printed materials, |
826 | | * which tend to be rectangular, values for %maxhfract |
827 | | * and %minfgfract around 0.5 are reasonable. |
828 | | * </pre> |
829 | | */ |
830 | | PIX * |
831 | | pixFillHolesToBoundingRect(PIX *pixs, |
832 | | l_int32 minsize, |
833 | | l_float32 maxhfract, |
834 | | l_float32 minfgfract) |
835 | 0 | { |
836 | 0 | l_int32 i, x, y, w, h, n, nfg, nh, ntot, area; |
837 | 0 | l_int32 *tab; |
838 | 0 | l_float32 hfract; /* measured hole fraction */ |
839 | 0 | l_float32 fgfract; /* measured fg fraction */ |
840 | 0 | BOXA *boxa; |
841 | 0 | PIX *pixd, *pixfg, *pixh; |
842 | 0 | PIXA *pixa; |
843 | |
|
844 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
845 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); |
846 | 0 | maxhfract = L_MIN(L_MAX(maxhfract, 0.0), 1.0); |
847 | 0 | minfgfract = L_MIN(L_MAX(minfgfract, 0.0), 1.0); |
848 | |
|
849 | 0 | pixd = pixCopy(NULL, pixs); |
850 | 0 | boxa = pixConnComp(pixd, &pixa, 8); |
851 | 0 | n = boxaGetCount(boxa); |
852 | 0 | tab = makePixelSumTab8(); |
853 | 0 | for (i = 0; i < n; i++) { |
854 | 0 | boxaGetBoxGeometry(boxa, i, &x, &y, &w, &h); |
855 | 0 | area = w * h; |
856 | 0 | if (area < minsize) |
857 | 0 | continue; |
858 | 0 | pixfg = pixaGetPix(pixa, i, L_COPY); |
859 | 0 | pixh = pixHolesByFilling(pixfg, 4); /* holes only */ |
860 | 0 | pixCountPixels(pixfg, &nfg, tab); |
861 | 0 | pixCountPixels(pixh, &nh, tab); |
862 | 0 | hfract = (l_float32)nh / (l_float32)nfg; |
863 | 0 | ntot = nfg; |
864 | 0 | if (hfract <= maxhfract) /* we will fill the holes (at least) */ |
865 | 0 | ntot = nfg + nh; |
866 | 0 | fgfract = (l_float32)ntot / (l_float32)area; |
867 | 0 | if (fgfract >= minfgfract) { /* fill to bounding rect */ |
868 | 0 | pixSetAll(pixfg); |
869 | 0 | pixRasterop(pixd, x, y, w, h, PIX_SRC, pixfg, 0, 0); |
870 | 0 | } else if (hfract <= maxhfract) { /* fill just the holes */ |
871 | 0 | pixRasterop(pixd, x, y, w, h, PIX_DST | PIX_SRC , pixh, 0, 0); |
872 | 0 | } |
873 | 0 | pixDestroy(&pixfg); |
874 | 0 | pixDestroy(&pixh); |
875 | 0 | } |
876 | 0 | boxaDestroy(&boxa); |
877 | 0 | pixaDestroy(&pixa); |
878 | 0 | LEPT_FREE(tab); |
879 | 0 | return pixd; |
880 | 0 | } |
881 | | |
882 | | |
883 | | /*-----------------------------------------------------------------------* |
884 | | * Vincent's hybrid Grayscale Seedfill method * |
885 | | *-----------------------------------------------------------------------*/ |
886 | | /*! |
887 | | * \brief pixSeedfillGray() |
888 | | * |
889 | | * \param[in] pixs 8 bpp seed; filled in place |
890 | | * \param[in] pixm 8 bpp filling mask |
891 | | * \param[in] connectivity 4 or 8 |
892 | | * \return 0 if OK, 1 on error |
893 | | * |
894 | | * <pre> |
895 | | * Notes: |
896 | | * (1) This is an in-place filling operation on the seed, pixs, |
897 | | * where the clipping mask is always above or at the level |
898 | | * of the seed as it is filled. |
899 | | * (2) For details of the operation, see the description in |
900 | | * seedfillGrayLow() and the code there. |
901 | | * (3) As an example of use, see the description in pixHDome(). |
902 | | * There, the seed is an image where each pixel is a fixed |
903 | | * amount smaller than the corresponding mask pixel. |
904 | | * (4) Reference paper : |
905 | | * L. Vincent, Morphological grayscale reconstruction in image |
906 | | * analysis: applications and efficient algorithms, IEEE Transactions |
907 | | * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. |
908 | | * </pre> |
909 | | */ |
910 | | l_ok |
911 | | pixSeedfillGray(PIX *pixs, |
912 | | PIX *pixm, |
913 | | l_int32 connectivity) |
914 | 0 | { |
915 | 0 | l_int32 h, w, wpls, wplm; |
916 | 0 | l_uint32 *datas, *datam; |
917 | |
|
918 | 0 | if (!pixs || pixGetDepth(pixs) != 8) |
919 | 0 | return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); |
920 | 0 | if (!pixm || pixGetDepth(pixm) != 8) |
921 | 0 | return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); |
922 | 0 | if (connectivity != 4 && connectivity != 8) |
923 | 0 | return ERROR_INT("connectivity not in {4,8}", __func__, 1); |
924 | | |
925 | | /* Make sure the sizes of seed and mask images are the same */ |
926 | 0 | if (pixSizesEqual(pixs, pixm) == 0) |
927 | 0 | return ERROR_INT("pixs and pixm sizes differ", __func__, 1); |
928 | | |
929 | 0 | datas = pixGetData(pixs); |
930 | 0 | datam = pixGetData(pixm); |
931 | 0 | wpls = pixGetWpl(pixs); |
932 | 0 | wplm = pixGetWpl(pixm); |
933 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
934 | 0 | seedfillGrayLow(datas, w, h, wpls, datam, wplm, connectivity); |
935 | |
|
936 | 0 | return 0; |
937 | 0 | } |
938 | | |
939 | | |
940 | | /*! |
941 | | * \brief pixSeedfillGrayInv() |
942 | | * |
943 | | * \param[in] pixs 8 bpp seed; filled in place |
944 | | * \param[in] pixm 8 bpp filling mask |
945 | | * \param[in] connectivity 4 or 8 |
946 | | * \return 0 if OK, 1 on error |
947 | | * |
948 | | * <pre> |
949 | | * Notes: |
950 | | * (1) This is an in-place filling operation on the seed, pixs, |
951 | | * where the clipping mask is always below or at the level |
952 | | * of the seed as it is filled. Think of filling up a basin |
953 | | * to a particular level, given by the maximum seed value |
954 | | * in the basin. Outside the filled region, the mask |
955 | | * is above the filling level. |
956 | | * (2) Contrast this with pixSeedfillGray(), where the clipping mask |
957 | | * is always above or at the level of the fill. An example |
958 | | * of its use is the hdome fill, where the seed is an image |
959 | | * where each pixel is a fixed amount smaller than the |
960 | | * corresponding mask pixel. |
961 | | * (3) The basin fill, pixSeedfillGrayBasin(), is a special case |
962 | | * where the seed pixel values are generated from the mask, |
963 | | * and where the implementation uses pixSeedfillGray() by |
964 | | * inverting both the seed and mask. |
965 | | * </pre> |
966 | | */ |
967 | | l_ok |
968 | | pixSeedfillGrayInv(PIX *pixs, |
969 | | PIX *pixm, |
970 | | l_int32 connectivity) |
971 | 0 | { |
972 | 0 | l_int32 h, w, wpls, wplm; |
973 | 0 | l_uint32 *datas, *datam; |
974 | |
|
975 | 0 | if (!pixs || pixGetDepth(pixs) != 8) |
976 | 0 | return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); |
977 | 0 | if (!pixm || pixGetDepth(pixm) != 8) |
978 | 0 | return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); |
979 | 0 | if (connectivity != 4 && connectivity != 8) |
980 | 0 | return ERROR_INT("connectivity not in {4,8}", __func__, 1); |
981 | | |
982 | | /* Make sure the sizes of seed and mask images are the same */ |
983 | 0 | if (pixSizesEqual(pixs, pixm) == 0) |
984 | 0 | return ERROR_INT("pixs and pixm sizes differ", __func__, 1); |
985 | | |
986 | 0 | datas = pixGetData(pixs); |
987 | 0 | datam = pixGetData(pixm); |
988 | 0 | wpls = pixGetWpl(pixs); |
989 | 0 | wplm = pixGetWpl(pixm); |
990 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
991 | 0 | seedfillGrayInvLow(datas, w, h, wpls, datam, wplm, connectivity); |
992 | |
|
993 | 0 | return 0; |
994 | 0 | } |
995 | | |
996 | | |
997 | | /*! |
998 | | * \brief seedfillGrayLow() |
999 | | * |
1000 | | * Notes: |
1001 | | * (1) The pixels are numbered as follows: |
1002 | | * 1 2 3 |
1003 | | * 4 x 5 |
1004 | | * 6 7 8 |
1005 | | * This low-level filling operation consists of two scans, |
1006 | | * raster and anti-raster, covering the entire seed image. |
1007 | | * This is followed by a breadth-first propagation operation to |
1008 | | * complete the fill. |
1009 | | * During the anti-raster scan, every pixel p whose current value |
1010 | | * could still be propagated after the anti-raster scan is put into |
1011 | | * the FIFO queue. |
1012 | | * The propagation step is a breadth-first fill to completion. |
1013 | | * Unlike the simple grayscale seedfill pixSeedfillGraySimple(), |
1014 | | * where at least two full raster/anti-raster iterations are required |
1015 | | * for completion and verification, the hybrid method uses only a |
1016 | | * single raster/anti-raster set of scans. |
1017 | | * (2) The filling action can be visualized from the following example. |
1018 | | * Suppose the mask, which clips the fill, is a sombrero-shaped |
1019 | | * surface, where the highest point is 200 and the low pixels |
1020 | | * around the rim are 30. Beyond the rim, the mask goes up a bit. |
1021 | | * Suppose the seed, which is filled, consists of a single point |
1022 | | * of height 150, located below the max of the mask, with |
1023 | | * the rest 0. Then in the raster scan, nothing happens until |
1024 | | * the high seed point is encountered, and then this value is |
1025 | | * propagated right and down, until it hits the side of the |
1026 | | * sombrero. The seed can never exceed the mask, so it fills |
1027 | | * to the rim, going lower along the mask surface. When it |
1028 | | * passes the rim, the seed continues to fill at the rim |
1029 | | * height to the edge of the seed image. Then on the |
1030 | | * anti-raster scan, the seed fills flat inside the |
1031 | | * sombrero to the upper and left, and then out from the |
1032 | | * rim as before. The final result has a seed that is |
1033 | | * flat outside the rim, and inside it fills the sombrero |
1034 | | * but only up to 150. If the rim height varies, the |
1035 | | * filled seed outside the rim will be at the highest |
1036 | | * point on the rim, which is a saddle point on the rim. |
1037 | | * (3) Reference paper : |
1038 | | * L. Vincent, Morphological grayscale reconstruction in image |
1039 | | * analysis: applications and efficient algorithms, IEEE Transactions |
1040 | | * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. |
1041 | | */ |
1042 | | static void |
1043 | | seedfillGrayLow(l_uint32 *datas, |
1044 | | l_int32 w, |
1045 | | l_int32 h, |
1046 | | l_int32 wpls, |
1047 | | l_uint32 *datam, |
1048 | | l_int32 wplm, |
1049 | | l_int32 connectivity) |
1050 | 0 | { |
1051 | 0 | l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; |
1052 | 0 | l_uint8 val, maxval, maskval, boolval; |
1053 | 0 | l_int32 i, j, imax, jmax, queue_size; |
1054 | 0 | l_uint32 *lines, *linem; |
1055 | 0 | L_PIXEL *pixel; |
1056 | 0 | L_QUEUE *lq_pixel; |
1057 | |
|
1058 | 0 | if (connectivity != 4 && connectivity != 8) { |
1059 | 0 | L_ERROR("connectivity must be 4 or 8\n", __func__); |
1060 | 0 | return; |
1061 | 0 | } |
1062 | | |
1063 | 0 | imax = h - 1; |
1064 | 0 | jmax = w - 1; |
1065 | | |
1066 | | /* In the worst case, most of the pixels could be pushed |
1067 | | * onto the FIFO queue during anti-raster scan. However this |
1068 | | * will rarely happen, and we initialize the queue ptr size to |
1069 | | * the image perimeter. */ |
1070 | 0 | lq_pixel = lqueueCreate(2 * (w + h)); |
1071 | |
|
1072 | 0 | switch (connectivity) |
1073 | 0 | { |
1074 | 0 | case 4: |
1075 | | /* UL --> LR scan (Raster Order) |
1076 | | * If I : mask image |
1077 | | * J : marker image |
1078 | | * Let p be the currect pixel; |
1079 | | * J(p) <- (max{J(p) union J(p) neighbors in raster order}) |
1080 | | * intersection I(p) */ |
1081 | 0 | for (i = 0; i < h; i++) { |
1082 | 0 | lines = datas + i * wpls; |
1083 | 0 | linem = datam + i * wplm; |
1084 | 0 | for (j = 0; j < w; j++) { |
1085 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { |
1086 | 0 | maxval = 0; |
1087 | 0 | if (i > 0) |
1088 | 0 | maxval = GET_DATA_BYTE(lines - wpls, j); |
1089 | 0 | if (j > 0) { |
1090 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
1091 | 0 | maxval = L_MAX(maxval, val4); |
1092 | 0 | } |
1093 | 0 | val = GET_DATA_BYTE(lines, j); |
1094 | 0 | maxval = L_MAX(maxval, val); |
1095 | 0 | val = L_MIN(maxval, maskval); |
1096 | 0 | SET_DATA_BYTE(lines, j, val); |
1097 | 0 | } |
1098 | 0 | } |
1099 | 0 | } |
1100 | | |
1101 | | /* LR --> UL scan (anti-raster order) |
1102 | | * Let p be the currect pixel; |
1103 | | * J(p) <- (max{J(p) union J(p) neighbors in anti-raster order}) |
1104 | | * intersection I(p) */ |
1105 | 0 | for (i = imax; i >= 0; i--) { |
1106 | 0 | lines = datas + i * wpls; |
1107 | 0 | linem = datam + i * wplm; |
1108 | 0 | for (j = jmax; j >= 0; j--) { |
1109 | 0 | boolval = FALSE; |
1110 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { |
1111 | 0 | maxval = 0; |
1112 | 0 | if (i < imax) |
1113 | 0 | maxval = GET_DATA_BYTE(lines + wpls, j); |
1114 | 0 | if (j < jmax) { |
1115 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1116 | 0 | maxval = L_MAX(maxval, val5); |
1117 | 0 | } |
1118 | 0 | val = GET_DATA_BYTE(lines, j); |
1119 | 0 | maxval = L_MAX(maxval, val); |
1120 | 0 | val = L_MIN(maxval, maskval); |
1121 | 0 | SET_DATA_BYTE(lines, j, val); |
1122 | | |
1123 | | /* |
1124 | | * If there exists a point (q) which belongs to J(p) |
1125 | | * neighbors in anti-raster order such that J(q) < J(p) |
1126 | | * and J(q) < I(q) then |
1127 | | * fifo_add(p) */ |
1128 | 0 | if (i < imax) { |
1129 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1130 | 0 | if ((val7 < val) && |
1131 | 0 | (val7 < GET_DATA_BYTE(linem + wplm, j))) { |
1132 | 0 | boolval = TRUE; |
1133 | 0 | } |
1134 | 0 | } |
1135 | 0 | if (j < jmax) { |
1136 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1137 | 0 | if (!boolval && (val5 < val) && |
1138 | 0 | (val5 < GET_DATA_BYTE(linem, j + 1))) { |
1139 | 0 | boolval = TRUE; |
1140 | 0 | } |
1141 | 0 | } |
1142 | 0 | if (boolval) { |
1143 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1144 | 0 | pixel->x = i; |
1145 | 0 | pixel->y = j; |
1146 | 0 | lqueueAdd(lq_pixel, pixel); |
1147 | 0 | } |
1148 | 0 | } |
1149 | 0 | } |
1150 | 0 | } |
1151 | | |
1152 | | /* Propagation step: |
1153 | | * while fifo_empty = false |
1154 | | * p <- fifo_first() |
1155 | | * for every pixel (q) belong to neighbors of (p) |
1156 | | * if J(q) < J(p) and I(q) != J(q) |
1157 | | * J(q) <- min(J(p), I(q)); |
1158 | | * fifo_add(q); |
1159 | | * end |
1160 | | * end |
1161 | | * end */ |
1162 | 0 | queue_size = lqueueGetCount(lq_pixel); |
1163 | 0 | while (queue_size) { |
1164 | 0 | pixel = (L_PIXEL *)lqueueRemove(lq_pixel); |
1165 | 0 | i = pixel->x; |
1166 | 0 | j = pixel->y; |
1167 | 0 | LEPT_FREE(pixel); |
1168 | 0 | lines = datas + i * wpls; |
1169 | 0 | linem = datam + i * wplm; |
1170 | |
|
1171 | 0 | if ((val = GET_DATA_BYTE(lines, j)) > 0) { |
1172 | 0 | if (i > 0) { |
1173 | 0 | val2 = GET_DATA_BYTE(lines - wpls, j); |
1174 | 0 | maskval = GET_DATA_BYTE(linem - wplm, j); |
1175 | 0 | if (val > val2 && val2 != maskval) { |
1176 | 0 | SET_DATA_BYTE(lines - wpls, j, L_MIN(val, maskval)); |
1177 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1178 | 0 | pixel->x = i - 1; |
1179 | 0 | pixel->y = j; |
1180 | 0 | lqueueAdd(lq_pixel, pixel); |
1181 | 0 | } |
1182 | |
|
1183 | 0 | } |
1184 | 0 | if (j > 0) { |
1185 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
1186 | 0 | maskval = GET_DATA_BYTE(linem, j - 1); |
1187 | 0 | if (val > val4 && val4 != maskval) { |
1188 | 0 | SET_DATA_BYTE(lines, j - 1, L_MIN(val, maskval)); |
1189 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1190 | 0 | pixel->x = i; |
1191 | 0 | pixel->y = j - 1; |
1192 | 0 | lqueueAdd(lq_pixel, pixel); |
1193 | 0 | } |
1194 | 0 | } |
1195 | 0 | if (i < imax) { |
1196 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1197 | 0 | maskval = GET_DATA_BYTE(linem + wplm, j); |
1198 | 0 | if (val > val7 && val7 != maskval) { |
1199 | 0 | SET_DATA_BYTE(lines + wpls, j, L_MIN(val, maskval)); |
1200 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1201 | 0 | pixel->x = i + 1; |
1202 | 0 | pixel->y = j; |
1203 | 0 | lqueueAdd(lq_pixel, pixel); |
1204 | 0 | } |
1205 | 0 | } |
1206 | 0 | if (j < jmax) { |
1207 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1208 | 0 | maskval = GET_DATA_BYTE(linem, j + 1); |
1209 | 0 | if (val > val5 && val5 != maskval) { |
1210 | 0 | SET_DATA_BYTE(lines, j + 1, L_MIN(val, maskval)); |
1211 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1212 | 0 | pixel->x = i; |
1213 | 0 | pixel->y = j + 1; |
1214 | 0 | lqueueAdd(lq_pixel, pixel); |
1215 | 0 | } |
1216 | 0 | } |
1217 | 0 | } |
1218 | |
|
1219 | 0 | queue_size = lqueueGetCount(lq_pixel); |
1220 | 0 | } |
1221 | 0 | break; |
1222 | | |
1223 | 0 | case 8: |
1224 | | /* UL --> LR scan (Raster Order) |
1225 | | * If I : mask image |
1226 | | * J : marker image |
1227 | | * Let p be the currect pixel; |
1228 | | * J(p) <- (max{J(p) union J(p) neighbors in raster order}) |
1229 | | * intersection I(p) */ |
1230 | 0 | for (i = 0; i < h; i++) { |
1231 | 0 | lines = datas + i * wpls; |
1232 | 0 | linem = datam + i * wplm; |
1233 | 0 | for (j = 0; j < w; j++) { |
1234 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { |
1235 | 0 | maxval = 0; |
1236 | 0 | if (i > 0) { |
1237 | 0 | if (j > 0) |
1238 | 0 | maxval = GET_DATA_BYTE(lines - wpls, j - 1); |
1239 | 0 | if (j < jmax) { |
1240 | 0 | val3 = GET_DATA_BYTE(lines - wpls, j + 1); |
1241 | 0 | maxval = L_MAX(maxval, val3); |
1242 | 0 | } |
1243 | 0 | val2 = GET_DATA_BYTE(lines - wpls, j); |
1244 | 0 | maxval = L_MAX(maxval, val2); |
1245 | 0 | } |
1246 | 0 | if (j > 0) { |
1247 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
1248 | 0 | maxval = L_MAX(maxval, val4); |
1249 | 0 | } |
1250 | 0 | val = GET_DATA_BYTE(lines, j); |
1251 | 0 | maxval = L_MAX(maxval, val); |
1252 | 0 | val = L_MIN(maxval, maskval); |
1253 | 0 | SET_DATA_BYTE(lines, j, val); |
1254 | 0 | } |
1255 | 0 | } |
1256 | 0 | } |
1257 | | |
1258 | | /* LR --> UL scan (anti-raster order) |
1259 | | * Let p be the currect pixel; |
1260 | | * J(p) <- (max{J(p) union J(p) neighbors in anti-raster order}) |
1261 | | * intersection I(p) */ |
1262 | 0 | for (i = imax; i >= 0; i--) { |
1263 | 0 | lines = datas + i * wpls; |
1264 | 0 | linem = datam + i * wplm; |
1265 | 0 | for (j = jmax; j >= 0; j--) { |
1266 | 0 | boolval = FALSE; |
1267 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { |
1268 | 0 | maxval = 0; |
1269 | 0 | if (i < imax) { |
1270 | 0 | if (j > 0) { |
1271 | 0 | maxval = GET_DATA_BYTE(lines + wpls, j - 1); |
1272 | 0 | } |
1273 | 0 | if (j < jmax) { |
1274 | 0 | val8 = GET_DATA_BYTE(lines + wpls, j + 1); |
1275 | 0 | maxval = L_MAX(maxval, val8); |
1276 | 0 | } |
1277 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1278 | 0 | maxval = L_MAX(maxval, val7); |
1279 | 0 | } |
1280 | 0 | if (j < jmax) { |
1281 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1282 | 0 | maxval = L_MAX(maxval, val5); |
1283 | 0 | } |
1284 | 0 | val = GET_DATA_BYTE(lines, j); |
1285 | 0 | maxval = L_MAX(maxval, val); |
1286 | 0 | val = L_MIN(maxval, maskval); |
1287 | 0 | SET_DATA_BYTE(lines, j, val); |
1288 | | |
1289 | | /* If there exists a point (q) which belongs to J(p) |
1290 | | * neighbors in anti-raster order such that J(q) < J(p) |
1291 | | * and J(q) < I(q) then |
1292 | | * fifo_add(p) */ |
1293 | 0 | if (i < imax) { |
1294 | 0 | if (j > 0) { |
1295 | 0 | val6 = GET_DATA_BYTE(lines + wpls, j - 1); |
1296 | 0 | if ((val6 < val) && |
1297 | 0 | (val6 < GET_DATA_BYTE(linem + wplm, j - 1))) { |
1298 | 0 | boolval = TRUE; |
1299 | 0 | } |
1300 | 0 | } |
1301 | 0 | if (j < jmax) { |
1302 | 0 | val8 = GET_DATA_BYTE(lines + wpls, j + 1); |
1303 | 0 | if (!boolval && (val8 < val) && |
1304 | 0 | (val8 < GET_DATA_BYTE(linem + wplm, j + 1))) { |
1305 | 0 | boolval = TRUE; |
1306 | 0 | } |
1307 | 0 | } |
1308 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1309 | 0 | if (!boolval && (val7 < val) && |
1310 | 0 | (val7 < GET_DATA_BYTE(linem + wplm, j))) { |
1311 | 0 | boolval = TRUE; |
1312 | 0 | } |
1313 | 0 | } |
1314 | 0 | if (j < jmax) { |
1315 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1316 | 0 | if (!boolval && (val5 < val) && |
1317 | 0 | (val5 < GET_DATA_BYTE(linem, j + 1))) { |
1318 | 0 | boolval = TRUE; |
1319 | 0 | } |
1320 | 0 | } |
1321 | 0 | if (boolval) { |
1322 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1323 | 0 | pixel->x = i; |
1324 | 0 | pixel->y = j; |
1325 | 0 | lqueueAdd(lq_pixel, pixel); |
1326 | 0 | } |
1327 | 0 | } |
1328 | 0 | } |
1329 | 0 | } |
1330 | | |
1331 | | /* Propagation step: |
1332 | | * while fifo_empty = false |
1333 | | * p <- fifo_first() |
1334 | | * for every pixel (q) belong to neighbors of (p) |
1335 | | * if J(q) < J(p) and I(q) != J(q) |
1336 | | * J(q) <- min(J(p), I(q)); |
1337 | | * fifo_add(q); |
1338 | | * end |
1339 | | * end |
1340 | | * end */ |
1341 | 0 | queue_size = lqueueGetCount(lq_pixel); |
1342 | 0 | while (queue_size) { |
1343 | 0 | pixel = (L_PIXEL *)lqueueRemove(lq_pixel); |
1344 | 0 | i = pixel->x; |
1345 | 0 | j = pixel->y; |
1346 | 0 | LEPT_FREE(pixel); |
1347 | 0 | lines = datas + i * wpls; |
1348 | 0 | linem = datam + i * wplm; |
1349 | |
|
1350 | 0 | if ((val = GET_DATA_BYTE(lines, j)) > 0) { |
1351 | 0 | if (i > 0) { |
1352 | 0 | if (j > 0) { |
1353 | 0 | val1 = GET_DATA_BYTE(lines - wpls, j - 1); |
1354 | 0 | maskval = GET_DATA_BYTE(linem - wplm, j - 1); |
1355 | 0 | if (val > val1 && val1 != maskval) { |
1356 | 0 | SET_DATA_BYTE(lines - wpls, j - 1, |
1357 | 0 | L_MIN(val, maskval)); |
1358 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1359 | 0 | pixel->x = i - 1; |
1360 | 0 | pixel->y = j - 1; |
1361 | 0 | lqueueAdd(lq_pixel, pixel); |
1362 | 0 | } |
1363 | 0 | } |
1364 | 0 | if (j < jmax) { |
1365 | 0 | val3 = GET_DATA_BYTE(lines - wpls, j + 1); |
1366 | 0 | maskval = GET_DATA_BYTE(linem - wplm, j + 1); |
1367 | 0 | if (val > val3 && val3 != maskval) { |
1368 | 0 | SET_DATA_BYTE(lines - wpls, j + 1, |
1369 | 0 | L_MIN(val, maskval)); |
1370 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1371 | 0 | pixel->x = i - 1; |
1372 | 0 | pixel->y = j + 1; |
1373 | 0 | lqueueAdd(lq_pixel, pixel); |
1374 | 0 | } |
1375 | 0 | } |
1376 | 0 | val2 = GET_DATA_BYTE(lines - wpls, j); |
1377 | 0 | maskval = GET_DATA_BYTE(linem - wplm, j); |
1378 | 0 | if (val > val2 && val2 != maskval) { |
1379 | 0 | SET_DATA_BYTE(lines - wpls, j, L_MIN(val, maskval)); |
1380 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1381 | 0 | pixel->x = i - 1; |
1382 | 0 | pixel->y = j; |
1383 | 0 | lqueueAdd(lq_pixel, pixel); |
1384 | 0 | } |
1385 | |
|
1386 | 0 | } |
1387 | 0 | if (j > 0) { |
1388 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
1389 | 0 | maskval = GET_DATA_BYTE(linem, j - 1); |
1390 | 0 | if (val > val4 && val4 != maskval) { |
1391 | 0 | SET_DATA_BYTE(lines, j - 1, L_MIN(val, maskval)); |
1392 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1393 | 0 | pixel->x = i; |
1394 | 0 | pixel->y = j - 1; |
1395 | 0 | lqueueAdd(lq_pixel, pixel); |
1396 | 0 | } |
1397 | 0 | } |
1398 | 0 | if (i < imax) { |
1399 | 0 | if (j > 0) { |
1400 | 0 | val6 = GET_DATA_BYTE(lines + wpls, j - 1); |
1401 | 0 | maskval = GET_DATA_BYTE(linem + wplm, j - 1); |
1402 | 0 | if (val > val6 && val6 != maskval) { |
1403 | 0 | SET_DATA_BYTE(lines + wpls, j - 1, |
1404 | 0 | L_MIN(val, maskval)); |
1405 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1406 | 0 | pixel->x = i + 1; |
1407 | 0 | pixel->y = j - 1; |
1408 | 0 | lqueueAdd(lq_pixel, pixel); |
1409 | 0 | } |
1410 | 0 | } |
1411 | 0 | if (j < jmax) { |
1412 | 0 | val8 = GET_DATA_BYTE(lines + wpls, j + 1); |
1413 | 0 | maskval = GET_DATA_BYTE(linem + wplm, j + 1); |
1414 | 0 | if (val > val8 && val8 != maskval) { |
1415 | 0 | SET_DATA_BYTE(lines + wpls, j + 1, |
1416 | 0 | L_MIN(val, maskval)); |
1417 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1418 | 0 | pixel->x = i + 1; |
1419 | 0 | pixel->y = j + 1; |
1420 | 0 | lqueueAdd(lq_pixel, pixel); |
1421 | 0 | } |
1422 | 0 | } |
1423 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1424 | 0 | maskval = GET_DATA_BYTE(linem + wplm, j); |
1425 | 0 | if (val > val7 && val7 != maskval) { |
1426 | 0 | SET_DATA_BYTE(lines + wpls, j, L_MIN(val, maskval)); |
1427 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1428 | 0 | pixel->x = i + 1; |
1429 | 0 | pixel->y = j; |
1430 | 0 | lqueueAdd(lq_pixel, pixel); |
1431 | 0 | } |
1432 | 0 | } |
1433 | 0 | if (j < jmax) { |
1434 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1435 | 0 | maskval = GET_DATA_BYTE(linem, j + 1); |
1436 | 0 | if (val > val5 && val5 != maskval) { |
1437 | 0 | SET_DATA_BYTE(lines, j + 1, L_MIN(val, maskval)); |
1438 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1439 | 0 | pixel->x = i; |
1440 | 0 | pixel->y = j + 1; |
1441 | 0 | lqueueAdd(lq_pixel, pixel); |
1442 | 0 | } |
1443 | 0 | } |
1444 | 0 | } |
1445 | |
|
1446 | 0 | queue_size = lqueueGetCount(lq_pixel); |
1447 | 0 | } |
1448 | 0 | break; |
1449 | | |
1450 | 0 | default: |
1451 | 0 | L_ERROR("shouldn't get here!\n", __func__); |
1452 | 0 | } |
1453 | | |
1454 | 0 | lqueueDestroy(&lq_pixel, TRUE); |
1455 | 0 | } |
1456 | | |
1457 | | |
1458 | | /*! |
1459 | | * \brief seedfillGrayInvLow() |
1460 | | * |
1461 | | * Notes: |
1462 | | * (1) The pixels are numbered as follows: |
1463 | | * 1 2 3 |
1464 | | * 4 x 5 |
1465 | | * 6 7 8 |
1466 | | * This low-level filling operation consists of two scans, |
1467 | | * raster and anti-raster, covering the entire seed image. |
1468 | | * During the anti-raster scan, every pixel p such that its |
1469 | | * current value could still be propagated during the next |
1470 | | * raster scanning is put into the FIFO-queue. |
1471 | | * Next step is the propagation step where where we update |
1472 | | * and propagate the values using FIFO structure created in |
1473 | | * anti-raster scan. |
1474 | | * (2) The "Inv" signifies the fact that in this case, filling |
1475 | | * of the seed only takes place when the seed value is |
1476 | | * greater than the mask value. The mask will act to stop |
1477 | | * the fill when it is higher than the seed level. (This is |
1478 | | * in contrast to conventional grayscale filling where the |
1479 | | * seed always fills below the mask.) |
1480 | | * (3) An example of use is a basin, described by the mask (pixm), |
1481 | | * where within the basin, the seed pix (pixs) gets filled to the |
1482 | | * height of the highest seed pixel that is above its |
1483 | | * corresponding max pixel. Filling occurs while the |
1484 | | * propagating seed pixels in pixs are larger than the |
1485 | | * corresponding mask values in pixm. |
1486 | | * (4) Reference paper : |
1487 | | * L. Vincent, Morphological grayscale reconstruction in image |
1488 | | * analysis: applications and efficient algorithms, IEEE Transactions |
1489 | | * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. |
1490 | | */ |
1491 | | static void |
1492 | | seedfillGrayInvLow(l_uint32 *datas, |
1493 | | l_int32 w, |
1494 | | l_int32 h, |
1495 | | l_int32 wpls, |
1496 | | l_uint32 *datam, |
1497 | | l_int32 wplm, |
1498 | | l_int32 connectivity) |
1499 | 0 | { |
1500 | 0 | l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; |
1501 | 0 | l_uint8 val, maxval, maskval, boolval; |
1502 | 0 | l_int32 i, j, imax, jmax, queue_size; |
1503 | 0 | l_uint32 *lines, *linem; |
1504 | 0 | L_PIXEL *pixel; |
1505 | 0 | L_QUEUE *lq_pixel; |
1506 | |
|
1507 | 0 | if (connectivity != 4 && connectivity != 8) { |
1508 | 0 | L_ERROR("connectivity must be 4 or 8\n", __func__); |
1509 | 0 | return; |
1510 | 0 | } |
1511 | | |
1512 | 0 | imax = h - 1; |
1513 | 0 | jmax = w - 1; |
1514 | | |
1515 | | /* In the worst case, most of the pixels could be pushed |
1516 | | * onto the FIFO queue during anti-raster scan. However this |
1517 | | * will rarely happen, and we initialize the queue ptr size to |
1518 | | * the image perimeter. */ |
1519 | 0 | lq_pixel = lqueueCreate(2 * (w + h)); |
1520 | |
|
1521 | 0 | switch (connectivity) |
1522 | 0 | { |
1523 | 0 | case 4: |
1524 | | /* UL --> LR scan (Raster Order) |
1525 | | * If I : mask image |
1526 | | * J : marker image |
1527 | | * Let p be the currect pixel; |
1528 | | * tmp <- max{J(p) union J(p) neighbors in raster order} |
1529 | | * if (tmp > I(p)) |
1530 | | * J(p) <- tmp |
1531 | | * end */ |
1532 | 0 | for (i = 0; i < h; i++) { |
1533 | 0 | lines = datas + i * wpls; |
1534 | 0 | linem = datam + i * wplm; |
1535 | 0 | for (j = 0; j < w; j++) { |
1536 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { |
1537 | 0 | maxval = GET_DATA_BYTE(lines, j); |
1538 | 0 | if (i > 0) { |
1539 | 0 | val2 = GET_DATA_BYTE(lines - wpls, j); |
1540 | 0 | maxval = L_MAX(maxval, val2); |
1541 | 0 | } |
1542 | 0 | if (j > 0) { |
1543 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
1544 | 0 | maxval = L_MAX(maxval, val4); |
1545 | 0 | } |
1546 | 0 | if (maxval > maskval) |
1547 | 0 | SET_DATA_BYTE(lines, j, maxval); |
1548 | 0 | } |
1549 | 0 | } |
1550 | 0 | } |
1551 | | |
1552 | | /* LR --> UL scan (anti-raster order) |
1553 | | * If I : mask image |
1554 | | * J : marker image |
1555 | | * Let p be the currect pixel; |
1556 | | * tmp <- max{J(p) union J(p) neighbors in anti-raster order} |
1557 | | * if (tmp > I(p)) |
1558 | | * J(p) <- tmp |
1559 | | * end */ |
1560 | 0 | for (i = imax; i >= 0; i--) { |
1561 | 0 | lines = datas + i * wpls; |
1562 | 0 | linem = datam + i * wplm; |
1563 | 0 | for (j = jmax; j >= 0; j--) { |
1564 | 0 | boolval = FALSE; |
1565 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { |
1566 | 0 | val = maxval = GET_DATA_BYTE(lines, j); |
1567 | 0 | if (i < imax) { |
1568 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1569 | 0 | maxval = L_MAX(maxval, val7); |
1570 | 0 | } |
1571 | 0 | if (j < jmax) { |
1572 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1573 | 0 | maxval = L_MAX(maxval, val5); |
1574 | 0 | } |
1575 | 0 | if (maxval > maskval) |
1576 | 0 | SET_DATA_BYTE(lines, j, maxval); |
1577 | 0 | val = GET_DATA_BYTE(lines, j); |
1578 | | |
1579 | | /* |
1580 | | * If there exists a point (q) which belongs to J(p) |
1581 | | * neighbors in anti-raster order such that J(q) < J(p) |
1582 | | * and J(p) > I(q) then |
1583 | | * fifo_add(p) */ |
1584 | 0 | if (i < imax) { |
1585 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1586 | 0 | if ((val7 < val) && |
1587 | 0 | (val > GET_DATA_BYTE(linem + wplm, j))) { |
1588 | 0 | boolval = TRUE; |
1589 | 0 | } |
1590 | 0 | } |
1591 | 0 | if (j < jmax) { |
1592 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1593 | 0 | if (!boolval && (val5 < val) && |
1594 | 0 | (val > GET_DATA_BYTE(linem, j + 1))) { |
1595 | 0 | boolval = TRUE; |
1596 | 0 | } |
1597 | 0 | } |
1598 | 0 | if (boolval) { |
1599 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1600 | 0 | pixel->x = i; |
1601 | 0 | pixel->y = j; |
1602 | 0 | lqueueAdd(lq_pixel, pixel); |
1603 | 0 | } |
1604 | 0 | } |
1605 | 0 | } |
1606 | 0 | } |
1607 | | |
1608 | | /* Propagation step: |
1609 | | * while fifo_empty = false |
1610 | | * p <- fifo_first() |
1611 | | * for every pixel (q) belong to neighbors of (p) |
1612 | | * if J(q) < J(p) and J(p) > I(q) |
1613 | | * J(q) <- min(J(p), I(q)); |
1614 | | * fifo_add(q); |
1615 | | * end |
1616 | | * end |
1617 | | * end */ |
1618 | 0 | queue_size = lqueueGetCount(lq_pixel); |
1619 | 0 | while (queue_size) { |
1620 | 0 | pixel = (L_PIXEL *)lqueueRemove(lq_pixel); |
1621 | 0 | i = pixel->x; |
1622 | 0 | j = pixel->y; |
1623 | 0 | LEPT_FREE(pixel); |
1624 | 0 | lines = datas + i * wpls; |
1625 | 0 | linem = datam + i * wplm; |
1626 | |
|
1627 | 0 | if ((val = GET_DATA_BYTE(lines, j)) > 0) { |
1628 | 0 | if (i > 0) { |
1629 | 0 | val2 = GET_DATA_BYTE(lines - wpls, j); |
1630 | 0 | maskval = GET_DATA_BYTE(linem - wplm, j); |
1631 | 0 | if (val > val2 && val > maskval) { |
1632 | 0 | SET_DATA_BYTE(lines - wpls, j, val); |
1633 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1634 | 0 | pixel->x = i - 1; |
1635 | 0 | pixel->y = j; |
1636 | 0 | lqueueAdd(lq_pixel, pixel); |
1637 | 0 | } |
1638 | |
|
1639 | 0 | } |
1640 | 0 | if (j > 0) { |
1641 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
1642 | 0 | maskval = GET_DATA_BYTE(linem, j - 1); |
1643 | 0 | if (val > val4 && val > maskval) { |
1644 | 0 | SET_DATA_BYTE(lines, j - 1, val); |
1645 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1646 | 0 | pixel->x = i; |
1647 | 0 | pixel->y = j - 1; |
1648 | 0 | lqueueAdd(lq_pixel, pixel); |
1649 | 0 | } |
1650 | 0 | } |
1651 | 0 | if (i < imax) { |
1652 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1653 | 0 | maskval = GET_DATA_BYTE(linem + wplm, j); |
1654 | 0 | if (val > val7 && val > maskval) { |
1655 | 0 | SET_DATA_BYTE(lines + wpls, j, val); |
1656 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1657 | 0 | pixel->x = i + 1; |
1658 | 0 | pixel->y = j; |
1659 | 0 | lqueueAdd(lq_pixel, pixel); |
1660 | 0 | } |
1661 | 0 | } |
1662 | 0 | if (j < jmax) { |
1663 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1664 | 0 | maskval = GET_DATA_BYTE(linem, j + 1); |
1665 | 0 | if (val > val5 && val > maskval) { |
1666 | 0 | SET_DATA_BYTE(lines, j + 1, val); |
1667 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1668 | 0 | pixel->x = i; |
1669 | 0 | pixel->y = j + 1; |
1670 | 0 | lqueueAdd(lq_pixel, pixel); |
1671 | 0 | } |
1672 | 0 | } |
1673 | 0 | } |
1674 | |
|
1675 | 0 | queue_size = lqueueGetCount(lq_pixel); |
1676 | 0 | } |
1677 | 0 | break; |
1678 | | |
1679 | 0 | case 8: |
1680 | | /* UL --> LR scan (Raster Order) |
1681 | | * If I : mask image |
1682 | | * J : marker image |
1683 | | * Let p be the currect pixel; |
1684 | | * tmp <- max{J(p) union J(p) neighbors in raster order} |
1685 | | * if (tmp > I(p)) |
1686 | | * J(p) <- tmp |
1687 | | * end */ |
1688 | 0 | for (i = 0; i < h; i++) { |
1689 | 0 | lines = datas + i * wpls; |
1690 | 0 | linem = datam + i * wplm; |
1691 | 0 | for (j = 0; j < w; j++) { |
1692 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { |
1693 | 0 | maxval = GET_DATA_BYTE(lines, j); |
1694 | 0 | if (i > 0) { |
1695 | 0 | if (j > 0) { |
1696 | 0 | val1 = GET_DATA_BYTE(lines - wpls, j - 1); |
1697 | 0 | maxval = L_MAX(maxval, val1); |
1698 | 0 | } |
1699 | 0 | if (j < jmax) { |
1700 | 0 | val3 = GET_DATA_BYTE(lines - wpls, j + 1); |
1701 | 0 | maxval = L_MAX(maxval, val3); |
1702 | 0 | } |
1703 | 0 | val2 = GET_DATA_BYTE(lines - wpls, j); |
1704 | 0 | maxval = L_MAX(maxval, val2); |
1705 | 0 | } |
1706 | 0 | if (j > 0) { |
1707 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
1708 | 0 | maxval = L_MAX(maxval, val4); |
1709 | 0 | } |
1710 | 0 | if (maxval > maskval) |
1711 | 0 | SET_DATA_BYTE(lines, j, maxval); |
1712 | 0 | } |
1713 | 0 | } |
1714 | 0 | } |
1715 | | |
1716 | | /* LR --> UL scan (anti-raster order) |
1717 | | * If I : mask image |
1718 | | * J : marker image |
1719 | | * Let p be the currect pixel; |
1720 | | * tmp <- max{J(p) union J(p) neighbors in anti-raster order} |
1721 | | * if (tmp > I(p)) |
1722 | | * J(p) <- tmp |
1723 | | * end */ |
1724 | 0 | for (i = imax; i >= 0; i--) { |
1725 | 0 | lines = datas + i * wpls; |
1726 | 0 | linem = datam + i * wplm; |
1727 | 0 | for (j = jmax; j >= 0; j--) { |
1728 | 0 | boolval = FALSE; |
1729 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { |
1730 | 0 | maxval = GET_DATA_BYTE(lines, j); |
1731 | 0 | if (i < imax) { |
1732 | 0 | if (j > 0) { |
1733 | 0 | val6 = GET_DATA_BYTE(lines + wpls, j - 1); |
1734 | 0 | maxval = L_MAX(maxval, val6); |
1735 | 0 | } |
1736 | 0 | if (j < jmax) { |
1737 | 0 | val8 = GET_DATA_BYTE(lines + wpls, j + 1); |
1738 | 0 | maxval = L_MAX(maxval, val8); |
1739 | 0 | } |
1740 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1741 | 0 | maxval = L_MAX(maxval, val7); |
1742 | 0 | } |
1743 | 0 | if (j < jmax) { |
1744 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1745 | 0 | maxval = L_MAX(maxval, val5); |
1746 | 0 | } |
1747 | 0 | if (maxval > maskval) |
1748 | 0 | SET_DATA_BYTE(lines, j, maxval); |
1749 | 0 | val = GET_DATA_BYTE(lines, j); |
1750 | | |
1751 | | /* |
1752 | | * If there exists a point (q) which belongs to J(p) |
1753 | | * neighbors in anti-raster order such that J(q) < J(p) |
1754 | | * and J(p) > I(q) then |
1755 | | * fifo_add(p) */ |
1756 | 0 | if (i < imax) { |
1757 | 0 | if (j > 0) { |
1758 | 0 | val6 = GET_DATA_BYTE(lines + wpls, j - 1); |
1759 | 0 | if ((val6 < val) && |
1760 | 0 | (val > GET_DATA_BYTE(linem + wplm, j - 1))) { |
1761 | 0 | boolval = TRUE; |
1762 | 0 | } |
1763 | 0 | } |
1764 | 0 | if (j < jmax) { |
1765 | 0 | val8 = GET_DATA_BYTE(lines + wpls, j + 1); |
1766 | 0 | if (!boolval && (val8 < val) && |
1767 | 0 | (val > GET_DATA_BYTE(linem + wplm, j + 1))) { |
1768 | 0 | boolval = TRUE; |
1769 | 0 | } |
1770 | 0 | } |
1771 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1772 | 0 | if (!boolval && (val7 < val) && |
1773 | 0 | (val > GET_DATA_BYTE(linem + wplm, j))) { |
1774 | 0 | boolval = TRUE; |
1775 | 0 | } |
1776 | 0 | } |
1777 | 0 | if (j < jmax) { |
1778 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1779 | 0 | if (!boolval && (val5 < val) && |
1780 | 0 | (val > GET_DATA_BYTE(linem, j + 1))) { |
1781 | 0 | boolval = TRUE; |
1782 | 0 | } |
1783 | 0 | } |
1784 | 0 | if (boolval) { |
1785 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1786 | 0 | pixel->x = i; |
1787 | 0 | pixel->y = j; |
1788 | 0 | lqueueAdd(lq_pixel, pixel); |
1789 | 0 | } |
1790 | 0 | } |
1791 | 0 | } |
1792 | 0 | } |
1793 | | |
1794 | | /* Propagation step: |
1795 | | * while fifo_empty = false |
1796 | | * p <- fifo_first() |
1797 | | * for every pixel (q) belong to neighbors of (p) |
1798 | | * if J(q) < J(p) and J(p) > I(q) |
1799 | | * J(q) <- min(J(p), I(q)); |
1800 | | * fifo_add(q); |
1801 | | * end |
1802 | | * end |
1803 | | * end */ |
1804 | 0 | queue_size = lqueueGetCount(lq_pixel); |
1805 | 0 | while (queue_size) { |
1806 | 0 | pixel = (L_PIXEL *)lqueueRemove(lq_pixel); |
1807 | 0 | i = pixel->x; |
1808 | 0 | j = pixel->y; |
1809 | 0 | LEPT_FREE(pixel); |
1810 | 0 | lines = datas + i * wpls; |
1811 | 0 | linem = datam + i * wplm; |
1812 | |
|
1813 | 0 | if ((val = GET_DATA_BYTE(lines, j)) > 0) { |
1814 | 0 | if (i > 0) { |
1815 | 0 | if (j > 0) { |
1816 | 0 | val1 = GET_DATA_BYTE(lines - wpls, j - 1); |
1817 | 0 | maskval = GET_DATA_BYTE(linem - wplm, j - 1); |
1818 | 0 | if (val > val1 && val > maskval) { |
1819 | 0 | SET_DATA_BYTE(lines - wpls, j - 1, val); |
1820 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1821 | 0 | pixel->x = i - 1; |
1822 | 0 | pixel->y = j - 1; |
1823 | 0 | lqueueAdd(lq_pixel, pixel); |
1824 | 0 | } |
1825 | 0 | } |
1826 | 0 | if (j < jmax) { |
1827 | 0 | val3 = GET_DATA_BYTE(lines - wpls, j + 1); |
1828 | 0 | maskval = GET_DATA_BYTE(linem - wplm, j + 1); |
1829 | 0 | if (val > val3 && val > maskval) { |
1830 | 0 | SET_DATA_BYTE(lines - wpls, j + 1, val); |
1831 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1832 | 0 | pixel->x = i - 1; |
1833 | 0 | pixel->y = j + 1; |
1834 | 0 | lqueueAdd(lq_pixel, pixel); |
1835 | 0 | } |
1836 | 0 | } |
1837 | 0 | val2 = GET_DATA_BYTE(lines - wpls, j); |
1838 | 0 | maskval = GET_DATA_BYTE(linem - wplm, j); |
1839 | 0 | if (val > val2 && val > maskval) { |
1840 | 0 | SET_DATA_BYTE(lines - wpls, j, val); |
1841 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1842 | 0 | pixel->x = i - 1; |
1843 | 0 | pixel->y = j; |
1844 | 0 | lqueueAdd(lq_pixel, pixel); |
1845 | 0 | } |
1846 | |
|
1847 | 0 | } |
1848 | 0 | if (j > 0) { |
1849 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
1850 | 0 | maskval = GET_DATA_BYTE(linem, j - 1); |
1851 | 0 | if (val > val4 && val > maskval) { |
1852 | 0 | SET_DATA_BYTE(lines, j - 1, val); |
1853 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1854 | 0 | pixel->x = i; |
1855 | 0 | pixel->y = j - 1; |
1856 | 0 | lqueueAdd(lq_pixel, pixel); |
1857 | 0 | } |
1858 | 0 | } |
1859 | 0 | if (i < imax) { |
1860 | 0 | if (j > 0) { |
1861 | 0 | val6 = GET_DATA_BYTE(lines + wpls, j - 1); |
1862 | 0 | maskval = GET_DATA_BYTE(linem + wplm, j - 1); |
1863 | 0 | if (val > val6 && val > maskval) { |
1864 | 0 | SET_DATA_BYTE(lines + wpls, j - 1, val); |
1865 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1866 | 0 | pixel->x = i + 1; |
1867 | 0 | pixel->y = j - 1; |
1868 | 0 | lqueueAdd(lq_pixel, pixel); |
1869 | 0 | } |
1870 | 0 | } |
1871 | 0 | if (j < jmax) { |
1872 | 0 | val8 = GET_DATA_BYTE(lines + wpls, j + 1); |
1873 | 0 | maskval = GET_DATA_BYTE(linem + wplm, j + 1); |
1874 | 0 | if (val > val8 && val > maskval) { |
1875 | 0 | SET_DATA_BYTE(lines + wpls, j + 1, val); |
1876 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1877 | 0 | pixel->x = i + 1; |
1878 | 0 | pixel->y = j + 1; |
1879 | 0 | lqueueAdd(lq_pixel, pixel); |
1880 | 0 | } |
1881 | 0 | } |
1882 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
1883 | 0 | maskval = GET_DATA_BYTE(linem + wplm, j); |
1884 | 0 | if (val > val7 && val > maskval) { |
1885 | 0 | SET_DATA_BYTE(lines + wpls, j, val); |
1886 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1887 | 0 | pixel->x = i + 1; |
1888 | 0 | pixel->y = j; |
1889 | 0 | lqueueAdd(lq_pixel, pixel); |
1890 | 0 | } |
1891 | 0 | } |
1892 | 0 | if (j < jmax) { |
1893 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
1894 | 0 | maskval = GET_DATA_BYTE(linem, j + 1); |
1895 | 0 | if (val > val5 && val > maskval) { |
1896 | 0 | SET_DATA_BYTE(lines, j + 1, val); |
1897 | 0 | pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); |
1898 | 0 | pixel->x = i; |
1899 | 0 | pixel->y = j + 1; |
1900 | 0 | lqueueAdd(lq_pixel, pixel); |
1901 | 0 | } |
1902 | 0 | } |
1903 | 0 | } |
1904 | |
|
1905 | 0 | queue_size = lqueueGetCount(lq_pixel); |
1906 | 0 | } |
1907 | 0 | break; |
1908 | | |
1909 | 0 | default: |
1910 | 0 | L_ERROR("shouldn't get here!\n", __func__); |
1911 | 0 | } |
1912 | | |
1913 | 0 | lqueueDestroy(&lq_pixel, TRUE); |
1914 | 0 | } |
1915 | | |
1916 | | |
1917 | | /*-----------------------------------------------------------------------* |
1918 | | * Vincent's Iterative Grayscale Seedfill method * |
1919 | | *-----------------------------------------------------------------------*/ |
1920 | | /*! |
1921 | | * \brief pixSeedfillGraySimple() |
1922 | | * |
1923 | | * \param[in] pixs 8 bpp seed; filled in place |
1924 | | * \param[in] pixm 8 bpp filling mask |
1925 | | * \param[in] connectivity 4 or 8 |
1926 | | * \return 0 if OK, 1 on error |
1927 | | * |
1928 | | * <pre> |
1929 | | * Notes: |
1930 | | * (1) This is an in-place filling operation on the seed, pixs, |
1931 | | * where the clipping mask is always above or at the level |
1932 | | * of the seed as it is filled. |
1933 | | * (2) For details of the operation, see the description in |
1934 | | * seedfillGrayLowSimple() and the code there. |
1935 | | * (3) As an example of use, see the description in pixHDome(). |
1936 | | * There, the seed is an image where each pixel is a fixed |
1937 | | * amount smaller than the corresponding mask pixel. |
1938 | | * (4) Reference paper : |
1939 | | * L. Vincent, Morphological grayscale reconstruction in image |
1940 | | * analysis: applications and efficient algorithms, IEEE Transactions |
1941 | | * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. |
1942 | | * </pre> |
1943 | | */ |
1944 | | l_ok |
1945 | | pixSeedfillGraySimple(PIX *pixs, |
1946 | | PIX *pixm, |
1947 | | l_int32 connectivity) |
1948 | 0 | { |
1949 | 0 | l_int32 i, h, w, wpls, wplm, boolval; |
1950 | 0 | l_uint32 *datas, *datam; |
1951 | 0 | PIX *pixt; |
1952 | |
|
1953 | 0 | if (!pixs || pixGetDepth(pixs) != 8) |
1954 | 0 | return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); |
1955 | 0 | if (!pixm || pixGetDepth(pixm) != 8) |
1956 | 0 | return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); |
1957 | 0 | if (connectivity != 4 && connectivity != 8) |
1958 | 0 | return ERROR_INT("connectivity not in {4,8}", __func__, 1); |
1959 | | |
1960 | | /* Make sure the sizes of seed and mask images are the same */ |
1961 | 0 | if (pixSizesEqual(pixs, pixm) == 0) |
1962 | 0 | return ERROR_INT("pixs and pixm sizes differ", __func__, 1); |
1963 | | |
1964 | | /* This is used to test for completion */ |
1965 | 0 | if ((pixt = pixCreateTemplate(pixs)) == NULL) |
1966 | 0 | return ERROR_INT("pixt not made", __func__, 1); |
1967 | | |
1968 | 0 | datas = pixGetData(pixs); |
1969 | 0 | datam = pixGetData(pixm); |
1970 | 0 | wpls = pixGetWpl(pixs); |
1971 | 0 | wplm = pixGetWpl(pixm); |
1972 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
1973 | 0 | for (i = 0; i < MaxIters; i++) { |
1974 | 0 | pixCopy(pixt, pixs); |
1975 | 0 | seedfillGrayLowSimple(datas, w, h, wpls, datam, wplm, connectivity); |
1976 | 0 | pixEqual(pixs, pixt, &boolval); |
1977 | 0 | if (boolval == 1) { |
1978 | | #if DEBUG_PRINT_ITERS |
1979 | | L_INFO("Gray seed fill converged: %d iters\n", __func__, i + 1); |
1980 | | #endif /* DEBUG_PRINT_ITERS */ |
1981 | 0 | break; |
1982 | 0 | } |
1983 | 0 | } |
1984 | |
|
1985 | 0 | pixDestroy(&pixt); |
1986 | 0 | return 0; |
1987 | 0 | } |
1988 | | |
1989 | | |
1990 | | /*! |
1991 | | * \brief pixSeedfillGrayInvSimple() |
1992 | | * |
1993 | | * \param[in] pixs 8 bpp seed; filled in place |
1994 | | * \param[in] pixm 8 bpp filling mask |
1995 | | * \param[in] connectivity 4 or 8 |
1996 | | * \return 0 if OK, 1 on error |
1997 | | * |
1998 | | * <pre> |
1999 | | * Notes: |
2000 | | * (1) This is an in-place filling operation on the seed, pixs, |
2001 | | * where the clipping mask is always below or at the level |
2002 | | * of the seed as it is filled. Think of filling up a basin |
2003 | | * to a particular level, given by the maximum seed value |
2004 | | * in the basin. Outside the filled region, the mask |
2005 | | * is above the filling level. |
2006 | | * (2) Contrast this with pixSeedfillGraySimple(), where the clipping mask |
2007 | | * is always above or at the level of the fill. An example |
2008 | | * of its use is the hdome fill, where the seed is an image |
2009 | | * where each pixel is a fixed amount smaller than the |
2010 | | * corresponding mask pixel. |
2011 | | * </pre> |
2012 | | */ |
2013 | | l_ok |
2014 | | pixSeedfillGrayInvSimple(PIX *pixs, |
2015 | | PIX *pixm, |
2016 | | l_int32 connectivity) |
2017 | 0 | { |
2018 | 0 | l_int32 i, h, w, wpls, wplm, boolval; |
2019 | 0 | l_uint32 *datas, *datam; |
2020 | 0 | PIX *pixt; |
2021 | |
|
2022 | 0 | if (!pixs || pixGetDepth(pixs) != 8) |
2023 | 0 | return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); |
2024 | 0 | if (!pixm || pixGetDepth(pixm) != 8) |
2025 | 0 | return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); |
2026 | 0 | if (connectivity != 4 && connectivity != 8) |
2027 | 0 | return ERROR_INT("connectivity not in {4,8}", __func__, 1); |
2028 | | |
2029 | | /* Make sure the sizes of seed and mask images are the same */ |
2030 | 0 | if (pixSizesEqual(pixs, pixm) == 0) |
2031 | 0 | return ERROR_INT("pixs and pixm sizes differ", __func__, 1); |
2032 | | |
2033 | | /* This is used to test for completion */ |
2034 | 0 | if ((pixt = pixCreateTemplate(pixs)) == NULL) |
2035 | 0 | return ERROR_INT("pixt not made", __func__, 1); |
2036 | | |
2037 | 0 | datas = pixGetData(pixs); |
2038 | 0 | datam = pixGetData(pixm); |
2039 | 0 | wpls = pixGetWpl(pixs); |
2040 | 0 | wplm = pixGetWpl(pixm); |
2041 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2042 | 0 | for (i = 0; i < MaxIters; i++) { |
2043 | 0 | pixCopy(pixt, pixs); |
2044 | 0 | seedfillGrayInvLowSimple(datas, w, h, wpls, datam, wplm, connectivity); |
2045 | 0 | pixEqual(pixs, pixt, &boolval); |
2046 | 0 | if (boolval == 1) { |
2047 | | #if DEBUG_PRINT_ITERS |
2048 | | L_INFO("Gray seed fill converged: %d iters\n", __func__, i + 1); |
2049 | | #endif /* DEBUG_PRINT_ITERS */ |
2050 | 0 | break; |
2051 | 0 | } |
2052 | 0 | } |
2053 | |
|
2054 | 0 | pixDestroy(&pixt); |
2055 | 0 | return 0; |
2056 | 0 | } |
2057 | | |
2058 | | |
2059 | | /*! |
2060 | | * \brief seedfillGrayLowSimple() |
2061 | | * |
2062 | | * Notes: |
2063 | | * (1) The pixels are numbered as follows: |
2064 | | * 1 2 3 |
2065 | | * 4 x 5 |
2066 | | * 6 7 8 |
2067 | | * This low-level filling operation consists of two scans, |
2068 | | * raster and anti-raster, covering the entire seed image. |
2069 | | * The caller typically iterates until the filling is |
2070 | | * complete. |
2071 | | * (2) The filling action can be visualized from the following example. |
2072 | | * Suppose the mask, which clips the fill, is a sombrero-shaped |
2073 | | * surface, where the highest point is 200 and the low pixels |
2074 | | * around the rim are 30. Beyond the rim, the mask goes up a bit. |
2075 | | * Suppose the seed, which is filled, consists of a single point |
2076 | | * of height 150, located below the max of the mask, with |
2077 | | * the rest 0. Then in the raster scan, nothing happens until |
2078 | | * the high seed point is encountered, and then this value is |
2079 | | * propagated right and down, until it hits the side of the |
2080 | | * sombrero. The seed can never exceed the mask, so it fills |
2081 | | * to the rim, going lower along the mask surface. When it |
2082 | | * passes the rim, the seed continues to fill at the rim |
2083 | | * height to the edge of the seed image. Then on the |
2084 | | * anti-raster scan, the seed fills flat inside the |
2085 | | * sombrero to the upper and left, and then out from the |
2086 | | * rim as before. The final result has a seed that is |
2087 | | * flat outside the rim, and inside it fills the sombrero |
2088 | | * but only up to 150. If the rim height varies, the |
2089 | | * filled seed outside the rim will be at the highest |
2090 | | * point on the rim, which is a saddle point on the rim. |
2091 | | */ |
2092 | | static void |
2093 | | seedfillGrayLowSimple(l_uint32 *datas, |
2094 | | l_int32 w, |
2095 | | l_int32 h, |
2096 | | l_int32 wpls, |
2097 | | l_uint32 *datam, |
2098 | | l_int32 wplm, |
2099 | | l_int32 connectivity) |
2100 | 0 | { |
2101 | 0 | l_uint8 val2, val3, val4, val5, val7, val8; |
2102 | 0 | l_uint8 val, maxval, maskval; |
2103 | 0 | l_int32 i, j, imax, jmax; |
2104 | 0 | l_uint32 *lines, *linem; |
2105 | |
|
2106 | 0 | imax = h - 1; |
2107 | 0 | jmax = w - 1; |
2108 | |
|
2109 | 0 | switch (connectivity) |
2110 | 0 | { |
2111 | 0 | case 4: |
2112 | | /* UL --> LR scan */ |
2113 | 0 | for (i = 0; i < h; i++) { |
2114 | 0 | lines = datas + i * wpls; |
2115 | 0 | linem = datam + i * wplm; |
2116 | 0 | for (j = 0; j < w; j++) { |
2117 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { |
2118 | 0 | maxval = 0; |
2119 | 0 | if (i > 0) |
2120 | 0 | maxval = GET_DATA_BYTE(lines - wpls, j); |
2121 | 0 | if (j > 0) { |
2122 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
2123 | 0 | maxval = L_MAX(maxval, val4); |
2124 | 0 | } |
2125 | 0 | val = GET_DATA_BYTE(lines, j); |
2126 | 0 | maxval = L_MAX(maxval, val); |
2127 | 0 | val = L_MIN(maxval, maskval); |
2128 | 0 | SET_DATA_BYTE(lines, j, val); |
2129 | 0 | } |
2130 | 0 | } |
2131 | 0 | } |
2132 | | |
2133 | | /* LR --> UL scan */ |
2134 | 0 | for (i = imax; i >= 0; i--) { |
2135 | 0 | lines = datas + i * wpls; |
2136 | 0 | linem = datam + i * wplm; |
2137 | 0 | for (j = jmax; j >= 0; j--) { |
2138 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { |
2139 | 0 | maxval = 0; |
2140 | 0 | if (i < imax) |
2141 | 0 | maxval = GET_DATA_BYTE(lines + wpls, j); |
2142 | 0 | if (j < jmax) { |
2143 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
2144 | 0 | maxval = L_MAX(maxval, val5); |
2145 | 0 | } |
2146 | 0 | val = GET_DATA_BYTE(lines, j); |
2147 | 0 | maxval = L_MAX(maxval, val); |
2148 | 0 | val = L_MIN(maxval, maskval); |
2149 | 0 | SET_DATA_BYTE(lines, j, val); |
2150 | 0 | } |
2151 | 0 | } |
2152 | 0 | } |
2153 | 0 | break; |
2154 | | |
2155 | 0 | case 8: |
2156 | | /* UL --> LR scan */ |
2157 | 0 | for (i = 0; i < h; i++) { |
2158 | 0 | lines = datas + i * wpls; |
2159 | 0 | linem = datam + i * wplm; |
2160 | 0 | for (j = 0; j < w; j++) { |
2161 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { |
2162 | 0 | maxval = 0; |
2163 | 0 | if (i > 0) { |
2164 | 0 | if (j > 0) |
2165 | 0 | maxval = GET_DATA_BYTE(lines - wpls, j - 1); |
2166 | 0 | if (j < jmax) { |
2167 | 0 | val2 = GET_DATA_BYTE(lines - wpls, j + 1); |
2168 | 0 | maxval = L_MAX(maxval, val2); |
2169 | 0 | } |
2170 | 0 | val3 = GET_DATA_BYTE(lines - wpls, j); |
2171 | 0 | maxval = L_MAX(maxval, val3); |
2172 | 0 | } |
2173 | 0 | if (j > 0) { |
2174 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
2175 | 0 | maxval = L_MAX(maxval, val4); |
2176 | 0 | } |
2177 | 0 | val = GET_DATA_BYTE(lines, j); |
2178 | 0 | maxval = L_MAX(maxval, val); |
2179 | 0 | val = L_MIN(maxval, maskval); |
2180 | 0 | SET_DATA_BYTE(lines, j, val); |
2181 | 0 | } |
2182 | 0 | } |
2183 | 0 | } |
2184 | | |
2185 | | /* LR --> UL scan */ |
2186 | 0 | for (i = imax; i >= 0; i--) { |
2187 | 0 | lines = datas + i * wpls; |
2188 | 0 | linem = datam + i * wplm; |
2189 | 0 | for (j = jmax; j >= 0; j--) { |
2190 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { |
2191 | 0 | maxval = 0; |
2192 | 0 | if (i < imax) { |
2193 | 0 | if (j > 0) |
2194 | 0 | maxval = GET_DATA_BYTE(lines + wpls, j - 1); |
2195 | 0 | if (j < jmax) { |
2196 | 0 | val8 = GET_DATA_BYTE(lines + wpls, j + 1); |
2197 | 0 | maxval = L_MAX(maxval, val8); |
2198 | 0 | } |
2199 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
2200 | 0 | maxval = L_MAX(maxval, val7); |
2201 | 0 | } |
2202 | 0 | if (j < jmax) { |
2203 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
2204 | 0 | maxval = L_MAX(maxval, val5); |
2205 | 0 | } |
2206 | 0 | val = GET_DATA_BYTE(lines, j); |
2207 | 0 | maxval = L_MAX(maxval, val); |
2208 | 0 | val = L_MIN(maxval, maskval); |
2209 | 0 | SET_DATA_BYTE(lines, j, val); |
2210 | 0 | } |
2211 | 0 | } |
2212 | 0 | } |
2213 | 0 | break; |
2214 | | |
2215 | 0 | default: |
2216 | 0 | L_ERROR("connectivity must be 4 or 8\n", __func__); |
2217 | 0 | } |
2218 | 0 | } |
2219 | | |
2220 | | |
2221 | | /*! |
2222 | | * \brief seedfillGrayInvLowSimple() |
2223 | | * |
2224 | | * Notes: |
2225 | | * (1) The pixels are numbered as follows: |
2226 | | * 1 2 3 |
2227 | | * 4 x 5 |
2228 | | * 6 7 8 |
2229 | | * This low-level filling operation consists of two scans, |
2230 | | * raster and anti-raster, covering the entire seed image. |
2231 | | * The caller typically iterates until the filling is |
2232 | | * complete. |
2233 | | * (2) The "Inv" signifies the fact that in this case, filling |
2234 | | * of the seed only takes place when the seed value is |
2235 | | * greater than the mask value. The mask will act to stop |
2236 | | * the fill when it is higher than the seed level. (This is |
2237 | | * in contrast to conventional grayscale filling where the |
2238 | | * seed always fills below the mask.) |
2239 | | * (3) An example of use is a basin, described by the mask (pixm), |
2240 | | * where within the basin, the seed pix (pixs) gets filled to the |
2241 | | * height of the highest seed pixel that is above its |
2242 | | * corresponding max pixel. Filling occurs while the |
2243 | | * propagating seed pixels in pixs are larger than the |
2244 | | * corresponding mask values in pixm. |
2245 | | */ |
2246 | | static void |
2247 | | seedfillGrayInvLowSimple(l_uint32 *datas, |
2248 | | l_int32 w, |
2249 | | l_int32 h, |
2250 | | l_int32 wpls, |
2251 | | l_uint32 *datam, |
2252 | | l_int32 wplm, |
2253 | | l_int32 connectivity) |
2254 | 0 | { |
2255 | 0 | l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; |
2256 | 0 | l_uint8 maxval, maskval; |
2257 | 0 | l_int32 i, j, imax, jmax; |
2258 | 0 | l_uint32 *lines, *linem; |
2259 | |
|
2260 | 0 | imax = h - 1; |
2261 | 0 | jmax = w - 1; |
2262 | |
|
2263 | 0 | switch (connectivity) |
2264 | 0 | { |
2265 | 0 | case 4: |
2266 | | /* UL --> LR scan */ |
2267 | 0 | for (i = 0; i < h; i++) { |
2268 | 0 | lines = datas + i * wpls; |
2269 | 0 | linem = datam + i * wplm; |
2270 | 0 | for (j = 0; j < w; j++) { |
2271 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { |
2272 | 0 | maxval = GET_DATA_BYTE(lines, j); |
2273 | 0 | if (i > 0) { |
2274 | 0 | val2 = GET_DATA_BYTE(lines - wpls, j); |
2275 | 0 | maxval = L_MAX(maxval, val2); |
2276 | 0 | } |
2277 | 0 | if (j > 0) { |
2278 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
2279 | 0 | maxval = L_MAX(maxval, val4); |
2280 | 0 | } |
2281 | 0 | if (maxval > maskval) |
2282 | 0 | SET_DATA_BYTE(lines, j, maxval); |
2283 | 0 | } |
2284 | 0 | } |
2285 | 0 | } |
2286 | | |
2287 | | /* LR --> UL scan */ |
2288 | 0 | for (i = imax; i >= 0; i--) { |
2289 | 0 | lines = datas + i * wpls; |
2290 | 0 | linem = datam + i * wplm; |
2291 | 0 | for (j = jmax; j >= 0; j--) { |
2292 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { |
2293 | 0 | maxval = GET_DATA_BYTE(lines, j); |
2294 | 0 | if (i < imax) { |
2295 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
2296 | 0 | maxval = L_MAX(maxval, val7); |
2297 | 0 | } |
2298 | 0 | if (j < jmax) { |
2299 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
2300 | 0 | maxval = L_MAX(maxval, val5); |
2301 | 0 | } |
2302 | 0 | if (maxval > maskval) |
2303 | 0 | SET_DATA_BYTE(lines, j, maxval); |
2304 | 0 | } |
2305 | 0 | } |
2306 | 0 | } |
2307 | 0 | break; |
2308 | | |
2309 | 0 | case 8: |
2310 | | /* UL --> LR scan */ |
2311 | 0 | for (i = 0; i < h; i++) { |
2312 | 0 | lines = datas + i * wpls; |
2313 | 0 | linem = datam + i * wplm; |
2314 | 0 | for (j = 0; j < w; j++) { |
2315 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { |
2316 | 0 | maxval = GET_DATA_BYTE(lines, j); |
2317 | 0 | if (i > 0) { |
2318 | 0 | if (j > 0) { |
2319 | 0 | val1 = GET_DATA_BYTE(lines - wpls, j - 1); |
2320 | 0 | maxval = L_MAX(maxval, val1); |
2321 | 0 | } |
2322 | 0 | if (j < jmax) { |
2323 | 0 | val2 = GET_DATA_BYTE(lines - wpls, j + 1); |
2324 | 0 | maxval = L_MAX(maxval, val2); |
2325 | 0 | } |
2326 | 0 | val3 = GET_DATA_BYTE(lines - wpls, j); |
2327 | 0 | maxval = L_MAX(maxval, val3); |
2328 | 0 | } |
2329 | 0 | if (j > 0) { |
2330 | 0 | val4 = GET_DATA_BYTE(lines, j - 1); |
2331 | 0 | maxval = L_MAX(maxval, val4); |
2332 | 0 | } |
2333 | 0 | if (maxval > maskval) |
2334 | 0 | SET_DATA_BYTE(lines, j, maxval); |
2335 | 0 | } |
2336 | 0 | } |
2337 | 0 | } |
2338 | | |
2339 | | /* LR --> UL scan */ |
2340 | 0 | for (i = imax; i >= 0; i--) { |
2341 | 0 | lines = datas + i * wpls; |
2342 | 0 | linem = datam + i * wplm; |
2343 | 0 | for (j = jmax; j >= 0; j--) { |
2344 | 0 | if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { |
2345 | 0 | maxval = GET_DATA_BYTE(lines, j); |
2346 | 0 | if (i < imax) { |
2347 | 0 | if (j > 0) { |
2348 | 0 | val6 = GET_DATA_BYTE(lines + wpls, j - 1); |
2349 | 0 | maxval = L_MAX(maxval, val6); |
2350 | 0 | } |
2351 | 0 | if (j < jmax) { |
2352 | 0 | val8 = GET_DATA_BYTE(lines + wpls, j + 1); |
2353 | 0 | maxval = L_MAX(maxval, val8); |
2354 | 0 | } |
2355 | 0 | val7 = GET_DATA_BYTE(lines + wpls, j); |
2356 | 0 | maxval = L_MAX(maxval, val7); |
2357 | 0 | } |
2358 | 0 | if (j < jmax) { |
2359 | 0 | val5 = GET_DATA_BYTE(lines, j + 1); |
2360 | 0 | maxval = L_MAX(maxval, val5); |
2361 | 0 | } |
2362 | 0 | if (maxval > maskval) |
2363 | 0 | SET_DATA_BYTE(lines, j, maxval); |
2364 | 0 | } |
2365 | 0 | } |
2366 | 0 | } |
2367 | 0 | break; |
2368 | | |
2369 | 0 | default: |
2370 | 0 | L_ERROR("connectivity must be 4 or 8\n", __func__); |
2371 | 0 | } |
2372 | 0 | } |
2373 | | |
2374 | | |
2375 | | /*-----------------------------------------------------------------------* |
2376 | | * Gray seedfill variations * |
2377 | | *-----------------------------------------------------------------------*/ |
2378 | | /*! |
2379 | | * \brief pixSeedfillGrayBasin() |
2380 | | * |
2381 | | * \param[in] pixb binary mask giving seed locations |
2382 | | * \param[in] pixm 8 bpp basin-type filling mask |
2383 | | * \param[in] delta amount of seed value above mask |
2384 | | * \param[in] connectivity 4 or 8 |
2385 | | * \return pixd filled seed if OK, NULL on error |
2386 | | * |
2387 | | * <pre> |
2388 | | * Notes: |
2389 | | * (1) This fills from a seed within basins defined by a filling mask. |
2390 | | * The seed value(s) are greater than the corresponding |
2391 | | * filling mask value, and the result has the bottoms of |
2392 | | * the basins raised by the initial seed value. |
2393 | | * (2) The seed has value 255 except where pixb has fg (1), which |
2394 | | * are the seed 'locations'. At the seed locations, the seed |
2395 | | * value is the corresponding value of the mask pixel in pixm |
2396 | | * plus %delta. If %delta == 0, we return a copy of pixm. |
2397 | | * (3) The actual filling is done using the standard grayscale filling |
2398 | | * operation on the inverse of the mask and using the inverse |
2399 | | * of the seed image. After filling, we return the inverse of |
2400 | | * the filled seed. |
2401 | | * (4) As an example of use: pixm can describe a grayscale image |
2402 | | * of text, where the (dark) text pixels are basins of |
2403 | | * low values; pixb can identify the local minima in pixm (say, at |
2404 | | * the bottom of the basins); and delta is the amount that we wish |
2405 | | * to raise (lighten) the basins. We construct the seed |
2406 | | * (a.k.a marker) image from pixb, pixm and %delta. |
2407 | | * </pre> |
2408 | | */ |
2409 | | PIX * |
2410 | | pixSeedfillGrayBasin(PIX *pixb, |
2411 | | PIX *pixm, |
2412 | | l_int32 delta, |
2413 | | l_int32 connectivity) |
2414 | 0 | { |
2415 | 0 | PIX *pixbi, *pixmi, *pixsd; |
2416 | |
|
2417 | 0 | if (!pixb || pixGetDepth(pixb) != 1) |
2418 | 0 | return (PIX *)ERROR_PTR("pixb undefined or not 1 bpp", __func__, NULL); |
2419 | 0 | if (!pixm || pixGetDepth(pixm) != 8) |
2420 | 0 | return (PIX *)ERROR_PTR("pixm undefined or not 8 bpp", __func__, NULL); |
2421 | 0 | if (connectivity != 4 && connectivity != 8) |
2422 | 0 | return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, NULL); |
2423 | | |
2424 | 0 | if (delta <= 0) { |
2425 | 0 | L_WARNING("delta <= 0; returning a copy of pixm\n", __func__); |
2426 | 0 | return pixCopy(NULL, pixm); |
2427 | 0 | } |
2428 | | |
2429 | | /* Add delta to every pixel in pixm */ |
2430 | 0 | pixsd = pixCopy(NULL, pixm); |
2431 | 0 | pixAddConstantGray(pixsd, delta); |
2432 | | |
2433 | | /* Prepare the seed. Write 255 in all pixels of |
2434 | | * ([pixm] + delta) where pixb is 0. */ |
2435 | 0 | pixbi = pixInvert(NULL, pixb); |
2436 | 0 | pixSetMasked(pixsd, pixbi, 255); |
2437 | | |
2438 | | /* Fill the inverse seed, using the inverse clipping mask */ |
2439 | 0 | pixmi = pixInvert(NULL, pixm); |
2440 | 0 | pixInvert(pixsd, pixsd); |
2441 | 0 | pixSeedfillGray(pixsd, pixmi, connectivity); |
2442 | | |
2443 | | /* Re-invert the filled seed */ |
2444 | 0 | pixInvert(pixsd, pixsd); |
2445 | |
|
2446 | 0 | pixDestroy(&pixbi); |
2447 | 0 | pixDestroy(&pixmi); |
2448 | 0 | return pixsd; |
2449 | 0 | } |
2450 | | |
2451 | | |
2452 | | /*-----------------------------------------------------------------------* |
2453 | | * Vincent's Distance Function method * |
2454 | | *-----------------------------------------------------------------------*/ |
2455 | | /*! |
2456 | | * \brief pixDistanceFunction() |
2457 | | * |
2458 | | * \param[in] pixs 1 bpp |
2459 | | * \param[in] connectivity 4 or 8 |
2460 | | * \param[in] outdepth 8 or 16 bits for pixd |
2461 | | * \param[in] boundcond L_BOUNDARY_BG, L_BOUNDARY_FG |
2462 | | * \return pixd, or NULL on error |
2463 | | * |
2464 | | * <pre> |
2465 | | * Notes: |
2466 | | * (1) This computes the distance of each pixel from the nearest |
2467 | | * background pixel. All bg pixels therefore have a distance of 0, |
2468 | | * and the fg pixel distances increase linearly from 1 at the |
2469 | | * boundary. It can also be used to compute the distance of |
2470 | | * each pixel from the nearest fg pixel, by inverting the input |
2471 | | * image before calling this function. Then all fg pixels have |
2472 | | * a distance 0 and the bg pixel distances increase linearly |
2473 | | * from 1 at the boundary. |
2474 | | * (2) The algorithm, described in Leptonica on the page on seed |
2475 | | * filling and connected components, is due to Luc Vincent. |
2476 | | * In brief, we generate an 8 or 16 bpp image, initialized |
2477 | | * with the fg pixels of the input pix set to 1 and the |
2478 | | * 1-boundary pixels (i.e., the boundary pixels of width 1 on |
2479 | | * the four sides set as either: |
2480 | | * * L_BOUNDARY_BG: 0 |
2481 | | * * L_BOUNDARY_FG: max |
2482 | | * where max = 0xff for 8 bpp and 0xffff for 16 bpp. |
2483 | | * Then do raster/anti-raster sweeps over all pixels interior |
2484 | | * to the 1-boundary, where the value of each new pixel is |
2485 | | * taken to be 1 more than the minimum of the previously-seen |
2486 | | * connected pixels (using either 4 or 8 connectivity). |
2487 | | * Finally, set the 1-boundary pixels using the mirrored method; |
2488 | | * this removes the max values there. |
2489 | | * (3) Using L_BOUNDARY_BG clamps the distance to 0 at the |
2490 | | * boundary. Using L_BOUNDARY_FG allows the distance |
2491 | | * at the image boundary to "float". |
2492 | | * (4) For 4-connected, one could initialize only the left and top |
2493 | | * 1-boundary pixels, and go all the way to the right |
2494 | | * and bottom; then coming back reset left and top. But we |
2495 | | * instead use a method that works for both 4- and 8-connected. |
2496 | | * </pre> |
2497 | | */ |
2498 | | PIX * |
2499 | | pixDistanceFunction(PIX *pixs, |
2500 | | l_int32 connectivity, |
2501 | | l_int32 outdepth, |
2502 | | l_int32 boundcond) |
2503 | 0 | { |
2504 | 0 | l_int32 w, h, wpld; |
2505 | 0 | l_uint32 *datad; |
2506 | 0 | PIX *pixd; |
2507 | |
|
2508 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
2509 | 0 | return (PIX *)ERROR_PTR("!pixs or pixs not 1 bpp", __func__, NULL); |
2510 | 0 | if (connectivity != 4 && connectivity != 8) |
2511 | 0 | return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); |
2512 | 0 | if (outdepth != 8 && outdepth != 16) |
2513 | 0 | return (PIX *)ERROR_PTR("outdepth not 8 or 16 bpp", __func__, NULL); |
2514 | 0 | if (boundcond != L_BOUNDARY_BG && boundcond != L_BOUNDARY_FG) |
2515 | 0 | return (PIX *)ERROR_PTR("invalid boundcond", __func__, NULL); |
2516 | | |
2517 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2518 | 0 | if ((pixd = pixCreate(w, h, outdepth)) == NULL) |
2519 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
2520 | 0 | datad = pixGetData(pixd); |
2521 | 0 | wpld = pixGetWpl(pixd); |
2522 | | |
2523 | | /* Initialize the fg pixels to 1 and the bg pixels to 0 */ |
2524 | 0 | pixSetMasked(pixd, pixs, 1); |
2525 | |
|
2526 | 0 | if (boundcond == L_BOUNDARY_BG) { |
2527 | 0 | distanceFunctionLow(datad, w, h, outdepth, wpld, connectivity); |
2528 | 0 | } else { /* L_BOUNDARY_FG: set boundary pixels to max val */ |
2529 | 0 | pixRasterop(pixd, 0, 0, w, 1, PIX_SET, NULL, 0, 0); /* top */ |
2530 | 0 | pixRasterop(pixd, 0, h - 1, w, 1, PIX_SET, NULL, 0, 0); /* bot */ |
2531 | 0 | pixRasterop(pixd, 0, 0, 1, h, PIX_SET, NULL, 0, 0); /* left */ |
2532 | 0 | pixRasterop(pixd, w - 1, 0, 1, h, PIX_SET, NULL, 0, 0); /* right */ |
2533 | |
|
2534 | 0 | distanceFunctionLow(datad, w, h, outdepth, wpld, connectivity); |
2535 | | |
2536 | | /* Set each boundary pixel equal to the pixel next to it */ |
2537 | 0 | pixSetMirroredBorder(pixd, 1, 1, 1, 1); |
2538 | 0 | } |
2539 | |
|
2540 | 0 | return pixd; |
2541 | 0 | } |
2542 | | |
2543 | | |
2544 | | /*! |
2545 | | * \brief distanceFunctionLow() |
2546 | | */ |
2547 | | static void |
2548 | | distanceFunctionLow(l_uint32 *datad, |
2549 | | l_int32 w, |
2550 | | l_int32 h, |
2551 | | l_int32 d, |
2552 | | l_int32 wpld, |
2553 | | l_int32 connectivity) |
2554 | 0 | { |
2555 | 0 | l_int32 val1, val2, val3, val4, val5, val6, val7, val8, minval, val; |
2556 | 0 | l_int32 i, j, imax, jmax; |
2557 | 0 | l_uint32 *lined; |
2558 | | |
2559 | | /* One raster scan followed by one anti-raster scan. |
2560 | | * This does not re-set the 1-boundary of pixels that |
2561 | | * were initialized to either 0 or maxval. */ |
2562 | 0 | imax = h - 1; |
2563 | 0 | jmax = w - 1; |
2564 | 0 | switch (connectivity) |
2565 | 0 | { |
2566 | 0 | case 4: |
2567 | 0 | if (d == 8) { |
2568 | | /* UL --> LR scan */ |
2569 | 0 | for (i = 1; i < imax; i++) { |
2570 | 0 | lined = datad + i * wpld; |
2571 | 0 | for (j = 1; j < jmax; j++) { |
2572 | 0 | if ((val = GET_DATA_BYTE(lined, j)) > 0) { |
2573 | 0 | val2 = GET_DATA_BYTE(lined - wpld, j); |
2574 | 0 | val4 = GET_DATA_BYTE(lined, j - 1); |
2575 | 0 | minval = L_MIN(val2, val4); |
2576 | 0 | minval = L_MIN(minval, 254); |
2577 | 0 | SET_DATA_BYTE(lined, j, minval + 1); |
2578 | 0 | } |
2579 | 0 | } |
2580 | 0 | } |
2581 | | |
2582 | | /* LR --> UL scan */ |
2583 | 0 | for (i = imax - 1; i > 0; i--) { |
2584 | 0 | lined = datad + i * wpld; |
2585 | 0 | for (j = jmax - 1; j > 0; j--) { |
2586 | 0 | if ((val = GET_DATA_BYTE(lined, j)) > 0) { |
2587 | 0 | val7 = GET_DATA_BYTE(lined + wpld, j); |
2588 | 0 | val5 = GET_DATA_BYTE(lined, j + 1); |
2589 | 0 | minval = L_MIN(val5, val7); |
2590 | 0 | minval = L_MIN(minval + 1, val); |
2591 | 0 | SET_DATA_BYTE(lined, j, minval); |
2592 | 0 | } |
2593 | 0 | } |
2594 | 0 | } |
2595 | 0 | } else { /* d == 16 */ |
2596 | | /* UL --> LR scan */ |
2597 | 0 | for (i = 1; i < imax; i++) { |
2598 | 0 | lined = datad + i * wpld; |
2599 | 0 | for (j = 1; j < jmax; j++) { |
2600 | 0 | if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { |
2601 | 0 | val2 = GET_DATA_TWO_BYTES(lined - wpld, j); |
2602 | 0 | val4 = GET_DATA_TWO_BYTES(lined, j - 1); |
2603 | 0 | minval = L_MIN(val2, val4); |
2604 | 0 | minval = L_MIN(minval, 0xfffe); |
2605 | 0 | SET_DATA_TWO_BYTES(lined, j, minval + 1); |
2606 | 0 | } |
2607 | 0 | } |
2608 | 0 | } |
2609 | | |
2610 | | /* LR --> UL scan */ |
2611 | 0 | for (i = imax - 1; i > 0; i--) { |
2612 | 0 | lined = datad + i * wpld; |
2613 | 0 | for (j = jmax - 1; j > 0; j--) { |
2614 | 0 | if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { |
2615 | 0 | val7 = GET_DATA_TWO_BYTES(lined + wpld, j); |
2616 | 0 | val5 = GET_DATA_TWO_BYTES(lined, j + 1); |
2617 | 0 | minval = L_MIN(val5, val7); |
2618 | 0 | minval = L_MIN(minval + 1, val); |
2619 | 0 | SET_DATA_TWO_BYTES(lined, j, minval); |
2620 | 0 | } |
2621 | 0 | } |
2622 | 0 | } |
2623 | 0 | } |
2624 | 0 | break; |
2625 | | |
2626 | 0 | case 8: |
2627 | 0 | if (d == 8) { |
2628 | | /* UL --> LR scan */ |
2629 | 0 | for (i = 1; i < imax; i++) { |
2630 | 0 | lined = datad + i * wpld; |
2631 | 0 | for (j = 1; j < jmax; j++) { |
2632 | 0 | if ((val = GET_DATA_BYTE(lined, j)) > 0) { |
2633 | 0 | val1 = GET_DATA_BYTE(lined - wpld, j - 1); |
2634 | 0 | val2 = GET_DATA_BYTE(lined - wpld, j); |
2635 | 0 | val3 = GET_DATA_BYTE(lined - wpld, j + 1); |
2636 | 0 | val4 = GET_DATA_BYTE(lined, j - 1); |
2637 | 0 | minval = L_MIN(val1, val2); |
2638 | 0 | minval = L_MIN(minval, val3); |
2639 | 0 | minval = L_MIN(minval, val4); |
2640 | 0 | minval = L_MIN(minval, 254); |
2641 | 0 | SET_DATA_BYTE(lined, j, minval + 1); |
2642 | 0 | } |
2643 | 0 | } |
2644 | 0 | } |
2645 | | |
2646 | | /* LR --> UL scan */ |
2647 | 0 | for (i = imax - 1; i > 0; i--) { |
2648 | 0 | lined = datad + i * wpld; |
2649 | 0 | for (j = jmax - 1; j > 0; j--) { |
2650 | 0 | if ((val = GET_DATA_BYTE(lined, j)) > 0) { |
2651 | 0 | val8 = GET_DATA_BYTE(lined + wpld, j + 1); |
2652 | 0 | val7 = GET_DATA_BYTE(lined + wpld, j); |
2653 | 0 | val6 = GET_DATA_BYTE(lined + wpld, j - 1); |
2654 | 0 | val5 = GET_DATA_BYTE(lined, j + 1); |
2655 | 0 | minval = L_MIN(val8, val7); |
2656 | 0 | minval = L_MIN(minval, val6); |
2657 | 0 | minval = L_MIN(minval, val5); |
2658 | 0 | minval = L_MIN(minval + 1, val); |
2659 | 0 | SET_DATA_BYTE(lined, j, minval); |
2660 | 0 | } |
2661 | 0 | } |
2662 | 0 | } |
2663 | 0 | } else { /* d == 16 */ |
2664 | | /* UL --> LR scan */ |
2665 | 0 | for (i = 1; i < imax; i++) { |
2666 | 0 | lined = datad + i * wpld; |
2667 | 0 | for (j = 1; j < jmax; j++) { |
2668 | 0 | if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { |
2669 | 0 | val1 = GET_DATA_TWO_BYTES(lined - wpld, j - 1); |
2670 | 0 | val2 = GET_DATA_TWO_BYTES(lined - wpld, j); |
2671 | 0 | val3 = GET_DATA_TWO_BYTES(lined - wpld, j + 1); |
2672 | 0 | val4 = GET_DATA_TWO_BYTES(lined, j - 1); |
2673 | 0 | minval = L_MIN(val1, val2); |
2674 | 0 | minval = L_MIN(minval, val3); |
2675 | 0 | minval = L_MIN(minval, val4); |
2676 | 0 | minval = L_MIN(minval, 0xfffe); |
2677 | 0 | SET_DATA_TWO_BYTES(lined, j, minval + 1); |
2678 | 0 | } |
2679 | 0 | } |
2680 | 0 | } |
2681 | | |
2682 | | /* LR --> UL scan */ |
2683 | 0 | for (i = imax - 1; i > 0; i--) { |
2684 | 0 | lined = datad + i * wpld; |
2685 | 0 | for (j = jmax - 1; j > 0; j--) { |
2686 | 0 | if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { |
2687 | 0 | val8 = GET_DATA_TWO_BYTES(lined + wpld, j + 1); |
2688 | 0 | val7 = GET_DATA_TWO_BYTES(lined + wpld, j); |
2689 | 0 | val6 = GET_DATA_TWO_BYTES(lined + wpld, j - 1); |
2690 | 0 | val5 = GET_DATA_TWO_BYTES(lined, j + 1); |
2691 | 0 | minval = L_MIN(val8, val7); |
2692 | 0 | minval = L_MIN(minval, val6); |
2693 | 0 | minval = L_MIN(minval, val5); |
2694 | 0 | minval = L_MIN(minval + 1, val); |
2695 | 0 | SET_DATA_TWO_BYTES(lined, j, minval); |
2696 | 0 | } |
2697 | 0 | } |
2698 | 0 | } |
2699 | 0 | } |
2700 | 0 | break; |
2701 | | |
2702 | 0 | default: |
2703 | 0 | L_ERROR("connectivity must be 4 or 8\n", __func__); |
2704 | 0 | } |
2705 | 0 | } |
2706 | | |
2707 | | |
2708 | | /*-----------------------------------------------------------------------* |
2709 | | * Seed spread (based on distance function) * |
2710 | | *-----------------------------------------------------------------------*/ |
2711 | | /*! |
2712 | | * \brief pixSeedspread() |
2713 | | * |
2714 | | * \param[in] pixs 8 bpp |
2715 | | * \param[in] connectivity 4 or 8 |
2716 | | * \return pixd, or NULL on error |
2717 | | * |
2718 | | * <pre> |
2719 | | * Notes: |
2720 | | * (1) The raster/anti-raster method for implementing this filling |
2721 | | * operation was suggested by Ray Smith. |
2722 | | * (2) This takes an arbitrary set of nonzero pixels in pixs, which |
2723 | | * can be sparse, and spreads (extrapolates) the values to |
2724 | | * fill all the pixels in pixd with the nonzero value it is |
2725 | | * closest to in pixs. This is similar (though not completely |
2726 | | * equivalent) to doing a Voronoi tiling of the image, with a |
2727 | | * tile surrounding each pixel that has a nonzero value. |
2728 | | * All pixels within a tile are then closer to its "central" |
2729 | | * pixel than to any others. Then assign the value of the |
2730 | | * "central" pixel to each pixel in the tile. |
2731 | | * (3) This is implemented by computing a distance function in parallel |
2732 | | * with the fill. The distance function uses free boundary |
2733 | | * conditions (assumed maxval outside), and it controls the |
2734 | | * propagation of the pixels in pixd away from the nonzero |
2735 | | * (seed) values. This is done in 2 traversals (raster/antiraster). |
2736 | | * In the raster direction, whenever the distance function |
2737 | | * is nonzero, the spread pixel takes on the value of its |
2738 | | * predecessor that has the minimum distance value. In the |
2739 | | * antiraster direction, whenever the distance function is nonzero |
2740 | | * and its value is replaced by a smaller value, the spread |
2741 | | * pixel takes the value of the predecessor with the minimum |
2742 | | * distance value. |
2743 | | * (4) At boundaries where a pixel is equidistant from two |
2744 | | * nearest nonzero (seed) pixels, the decision of which value |
2745 | | * to use is arbitrary (greedy in search for minimum distance). |
2746 | | * This can give rise to strange-looking results, particularly |
2747 | | * for 4-connectivity where the L1 distance is computed from |
2748 | | * steps in N,S,E and W directions (no diagonals). |
2749 | | * </pre> |
2750 | | */ |
2751 | | PIX * |
2752 | | pixSeedspread(PIX *pixs, |
2753 | | l_int32 connectivity) |
2754 | 0 | { |
2755 | 0 | l_int32 w, h, wplt, wplg; |
2756 | 0 | l_uint32 *datat, *datag; |
2757 | 0 | PIX *pixm, *pixt, *pixg, *pixd; |
2758 | |
|
2759 | 0 | if (!pixs || pixGetDepth(pixs) != 8) |
2760 | 0 | return (PIX *)ERROR_PTR("!pixs or pixs not 8 bpp", __func__, NULL); |
2761 | 0 | if (connectivity != 4 && connectivity != 8) |
2762 | 0 | return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); |
2763 | | |
2764 | | /* Add a 4 byte border to pixs. This simplifies the computation. */ |
2765 | 0 | pixg = pixAddBorder(pixs, 4, 0); |
2766 | 0 | pixGetDimensions(pixg, &w, &h, NULL); |
2767 | | |
2768 | | /* Initialize distance function pixt. Threshold pixs to get |
2769 | | * a 0 at the seed points where the pixs pixel is nonzero, and |
2770 | | * a 1 at all points that need to be filled. Use this as a |
2771 | | * mask to set a 1 in pixt at all non-seed points. Also, set all |
2772 | | * pixt pixels in an interior boundary of width 1 to the |
2773 | | * maximum value. For debugging, to view the distance function, |
2774 | | * use pixConvert16To8(pixt, L_LS_BYTE) on small images. */ |
2775 | 0 | pixm = pixThresholdToBinary(pixg, 1); |
2776 | 0 | pixt = pixCreate(w, h, 16); |
2777 | 0 | pixSetMasked(pixt, pixm, 1); |
2778 | 0 | pixRasterop(pixt, 0, 0, w, 1, PIX_SET, NULL, 0, 0); /* top */ |
2779 | 0 | pixRasterop(pixt, 0, h - 1, w, 1, PIX_SET, NULL, 0, 0); /* bot */ |
2780 | 0 | pixRasterop(pixt, 0, 0, 1, h, PIX_SET, NULL, 0, 0); /* left */ |
2781 | 0 | pixRasterop(pixt, w - 1, 0, 1, h, PIX_SET, NULL, 0, 0); /* right */ |
2782 | 0 | datat = pixGetData(pixt); |
2783 | 0 | wplt = pixGetWpl(pixt); |
2784 | | |
2785 | | /* Do the interpolation and remove the border. */ |
2786 | 0 | datag = pixGetData(pixg); |
2787 | 0 | wplg = pixGetWpl(pixg); |
2788 | 0 | seedspreadLow(datag, w, h, wplg, datat, wplt, connectivity); |
2789 | 0 | pixd = pixRemoveBorder(pixg, 4); |
2790 | |
|
2791 | 0 | pixDestroy(&pixm); |
2792 | 0 | pixDestroy(&pixg); |
2793 | 0 | pixDestroy(&pixt); |
2794 | 0 | return pixd; |
2795 | 0 | } |
2796 | | |
2797 | | |
2798 | | /*! |
2799 | | * \brief seedspreadLow() |
2800 | | * |
2801 | | * See pixSeedspread() for a brief description of the algorithm here. |
2802 | | */ |
2803 | | static void |
2804 | | seedspreadLow(l_uint32 *datad, |
2805 | | l_int32 w, |
2806 | | l_int32 h, |
2807 | | l_int32 wpld, |
2808 | | l_uint32 *datat, |
2809 | | l_int32 wplt, |
2810 | | l_int32 connectivity) |
2811 | 0 | { |
2812 | 0 | l_int32 val1t, val2t, val3t, val4t, val5t, val6t, val7t, val8t; |
2813 | 0 | l_int32 i, j, imax, jmax, minval, valt, vald; |
2814 | 0 | l_uint32 *linet, *lined; |
2815 | | |
2816 | | /* One raster scan followed by one anti-raster scan. |
2817 | | * pixt is initialized to have 0 on pixels where the |
2818 | | * input is specified in pixd, and to have 1 on all |
2819 | | * other pixels. We only change pixels in pixt and pixd |
2820 | | * that are non-zero in pixt. */ |
2821 | 0 | imax = h - 1; |
2822 | 0 | jmax = w - 1; |
2823 | 0 | switch (connectivity) |
2824 | 0 | { |
2825 | 0 | case 4: |
2826 | | /* UL --> LR scan */ |
2827 | 0 | for (i = 1; i < h; i++) { |
2828 | 0 | linet = datat + i * wplt; |
2829 | 0 | lined = datad + i * wpld; |
2830 | 0 | for (j = 1; j < jmax; j++) { |
2831 | 0 | if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { |
2832 | 0 | val2t = GET_DATA_TWO_BYTES(linet - wplt, j); |
2833 | 0 | val4t = GET_DATA_TWO_BYTES(linet, j - 1); |
2834 | 0 | minval = L_MIN(val2t, val4t); |
2835 | 0 | minval = L_MIN(minval, 0xfffe); |
2836 | 0 | SET_DATA_TWO_BYTES(linet, j, minval + 1); |
2837 | 0 | if (val2t < val4t) |
2838 | 0 | vald = GET_DATA_BYTE(lined - wpld, j); |
2839 | 0 | else |
2840 | 0 | vald = GET_DATA_BYTE(lined, j - 1); |
2841 | 0 | SET_DATA_BYTE(lined, j, vald); |
2842 | 0 | } |
2843 | 0 | } |
2844 | 0 | } |
2845 | | |
2846 | | /* LR --> UL scan */ |
2847 | 0 | for (i = imax - 1; i > 0; i--) { |
2848 | 0 | linet = datat + i * wplt; |
2849 | 0 | lined = datad + i * wpld; |
2850 | 0 | for (j = jmax - 1; j > 0; j--) { |
2851 | 0 | if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { |
2852 | 0 | val7t = GET_DATA_TWO_BYTES(linet + wplt, j); |
2853 | 0 | val5t = GET_DATA_TWO_BYTES(linet, j + 1); |
2854 | 0 | minval = L_MIN(val5t, val7t); |
2855 | 0 | minval = L_MIN(minval + 1, valt); |
2856 | 0 | if (valt > minval) { /* replace */ |
2857 | 0 | SET_DATA_TWO_BYTES(linet, j, minval); |
2858 | 0 | if (val5t < val7t) |
2859 | 0 | vald = GET_DATA_BYTE(lined, j + 1); |
2860 | 0 | else |
2861 | 0 | vald = GET_DATA_BYTE(lined + wplt, j); |
2862 | 0 | SET_DATA_BYTE(lined, j, vald); |
2863 | 0 | } |
2864 | 0 | } |
2865 | 0 | } |
2866 | 0 | } |
2867 | 0 | break; |
2868 | 0 | case 8: |
2869 | | /* UL --> LR scan */ |
2870 | 0 | for (i = 1; i < h; i++) { |
2871 | 0 | linet = datat + i * wplt; |
2872 | 0 | lined = datad + i * wpld; |
2873 | 0 | for (j = 1; j < jmax; j++) { |
2874 | 0 | if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { |
2875 | 0 | val1t = GET_DATA_TWO_BYTES(linet - wplt, j - 1); |
2876 | 0 | val2t = GET_DATA_TWO_BYTES(linet - wplt, j); |
2877 | 0 | val3t = GET_DATA_TWO_BYTES(linet - wplt, j + 1); |
2878 | 0 | val4t = GET_DATA_TWO_BYTES(linet, j - 1); |
2879 | 0 | minval = L_MIN(val1t, val2t); |
2880 | 0 | minval = L_MIN(minval, val3t); |
2881 | 0 | minval = L_MIN(minval, val4t); |
2882 | 0 | minval = L_MIN(minval, 0xfffe); |
2883 | 0 | SET_DATA_TWO_BYTES(linet, j, minval + 1); |
2884 | 0 | if (minval == val1t) |
2885 | 0 | vald = GET_DATA_BYTE(lined - wpld, j - 1); |
2886 | 0 | else if (minval == val2t) |
2887 | 0 | vald = GET_DATA_BYTE(lined - wpld, j); |
2888 | 0 | else if (minval == val3t) |
2889 | 0 | vald = GET_DATA_BYTE(lined - wpld, j + 1); |
2890 | 0 | else /* minval == val4t */ |
2891 | 0 | vald = GET_DATA_BYTE(lined, j - 1); |
2892 | 0 | SET_DATA_BYTE(lined, j, vald); |
2893 | 0 | } |
2894 | 0 | } |
2895 | 0 | } |
2896 | | |
2897 | | /* LR --> UL scan */ |
2898 | 0 | for (i = imax - 1; i > 0; i--) { |
2899 | 0 | linet = datat + i * wplt; |
2900 | 0 | lined = datad + i * wpld; |
2901 | 0 | for (j = jmax - 1; j > 0; j--) { |
2902 | 0 | if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { |
2903 | 0 | val8t = GET_DATA_TWO_BYTES(linet + wplt, j + 1); |
2904 | 0 | val7t = GET_DATA_TWO_BYTES(linet + wplt, j); |
2905 | 0 | val6t = GET_DATA_TWO_BYTES(linet + wplt, j - 1); |
2906 | 0 | val5t = GET_DATA_TWO_BYTES(linet, j + 1); |
2907 | 0 | minval = L_MIN(val8t, val7t); |
2908 | 0 | minval = L_MIN(minval, val6t); |
2909 | 0 | minval = L_MIN(minval, val5t); |
2910 | 0 | minval = L_MIN(minval + 1, valt); |
2911 | 0 | if (valt > minval) { /* replace */ |
2912 | 0 | SET_DATA_TWO_BYTES(linet, j, minval); |
2913 | 0 | if (minval == val5t + 1) |
2914 | 0 | vald = GET_DATA_BYTE(lined, j + 1); |
2915 | 0 | else if (minval == val6t + 1) |
2916 | 0 | vald = GET_DATA_BYTE(lined + wpld, j - 1); |
2917 | 0 | else if (minval == val7t + 1) |
2918 | 0 | vald = GET_DATA_BYTE(lined + wpld, j); |
2919 | 0 | else /* minval == val8t + 1 */ |
2920 | 0 | vald = GET_DATA_BYTE(lined + wpld, j + 1); |
2921 | 0 | SET_DATA_BYTE(lined, j, vald); |
2922 | 0 | } |
2923 | 0 | } |
2924 | 0 | } |
2925 | 0 | } |
2926 | 0 | break; |
2927 | 0 | default: |
2928 | 0 | L_ERROR("connectivity must be 4 or 8\n", __func__); |
2929 | 0 | break; |
2930 | 0 | } |
2931 | 0 | } |
2932 | | |
2933 | | |
2934 | | /*-----------------------------------------------------------------------* |
2935 | | * Local extrema * |
2936 | | *-----------------------------------------------------------------------*/ |
2937 | | /*! |
2938 | | * \brief pixLocalExtrema() |
2939 | | * |
2940 | | * \param[in] pixs 8 bpp |
2941 | | * \param[in] maxmin max allowed for the min in a 3x3 neighborhood; |
2942 | | * use 0 for default which is to have no upper bound |
2943 | | * \param[in] minmax min allowed for the max in a 3x3 neighborhood; |
2944 | | * use 0 for default which is to have no lower bound |
2945 | | * \param[out] ppixmin [optional] mask of local minima |
2946 | | * \param[out] ppixmax [optional] mask of local maxima |
2947 | | * \return 0 if OK, 1 on error |
2948 | | * |
2949 | | * <pre> |
2950 | | * Notes: |
2951 | | * (1) This gives the actual local minima and maxima. |
2952 | | * A local minimum is a pixel whose surrounding pixels all |
2953 | | * have values at least as large, and likewise for a local |
2954 | | * maximum. For the local minima, %maxmin is the upper |
2955 | | * bound for the value of pixs. Likewise, for the local maxima, |
2956 | | * %minmax is the lower bound for the value of pixs. |
2957 | | * (2) The minima are found by starting with the erosion-and-equality |
2958 | | * approach of pixSelectedLocalExtrema(). This is followed |
2959 | | * by a qualification step, where each c.c. in the resulting |
2960 | | * minimum mask is extracted, the pixels bordering it are |
2961 | | * located, and they are queried. If all of those pixels |
2962 | | * are larger than the value of that minimum, it is a true |
2963 | | * minimum and its c.c. is saved; otherwise the c.c. is |
2964 | | * rejected. Note that if a bordering pixel has the |
2965 | | * same value as the minimum, it must then have a |
2966 | | * neighbor that is smaller, so the component is not a |
2967 | | * true minimum. |
2968 | | * (3) The maxima are found by inverting the image and looking |
2969 | | * for the minima there. |
2970 | | * (4) The generated masks can be used as markers for |
2971 | | * further operations. |
2972 | | * </pre> |
2973 | | */ |
2974 | | l_ok |
2975 | | pixLocalExtrema(PIX *pixs, |
2976 | | l_int32 maxmin, |
2977 | | l_int32 minmax, |
2978 | | PIX **ppixmin, |
2979 | | PIX **ppixmax) |
2980 | 0 | { |
2981 | 0 | PIX *pixmin, *pixmax, *pixt1, *pixt2; |
2982 | |
|
2983 | 0 | if (!pixs || pixGetDepth(pixs) != 8) |
2984 | 0 | return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); |
2985 | 0 | if (!ppixmin && !ppixmax) |
2986 | 0 | return ERROR_INT("neither &pixmin, &pixmax are defined", __func__, 1); |
2987 | 0 | if (maxmin <= 0) maxmin = 254; |
2988 | 0 | if (minmax <= 0) minmax = 1; |
2989 | |
|
2990 | 0 | if (ppixmin) { |
2991 | 0 | pixt1 = pixErodeGray(pixs, 3, 3); |
2992 | 0 | pixmin = pixFindEqualValues(pixs, pixt1); |
2993 | 0 | pixDestroy(&pixt1); |
2994 | 0 | pixQualifyLocalMinima(pixs, pixmin, maxmin); |
2995 | 0 | *ppixmin = pixmin; |
2996 | 0 | } |
2997 | |
|
2998 | 0 | if (ppixmax) { |
2999 | 0 | pixt1 = pixInvert(NULL, pixs); |
3000 | 0 | pixt2 = pixErodeGray(pixt1, 3, 3); |
3001 | 0 | pixmax = pixFindEqualValues(pixt1, pixt2); |
3002 | 0 | pixDestroy(&pixt2); |
3003 | 0 | pixQualifyLocalMinima(pixt1, pixmax, 255 - minmax); |
3004 | 0 | *ppixmax = pixmax; |
3005 | 0 | pixDestroy(&pixt1); |
3006 | 0 | } |
3007 | |
|
3008 | 0 | return 0; |
3009 | 0 | } |
3010 | | |
3011 | | |
3012 | | /*! |
3013 | | * \brief pixQualifyLocalMinima() |
3014 | | * |
3015 | | * \param[in] pixs 8 bpp image from which pixm has been extracted |
3016 | | * \param[in] pixm 1 bpp mask of values equal to min in 3x3 neighborhood |
3017 | | * \param[in] maxval max allowed for the min in a 3x3 neighborhood; |
3018 | | * use 0 for default which is to have no upper bound |
3019 | | * \return 0 if OK, 1 on error |
3020 | | * |
3021 | | * <pre> |
3022 | | * Notes: |
3023 | | * (1) This function acts in-place to remove all c.c. in pixm |
3024 | | * that are not true local minima in pixs. As seen in |
3025 | | * pixLocalExtrema(), the input pixm are found by selecting those |
3026 | | * pixels of pixs whose values do not change with a 3x3 |
3027 | | * grayscale erosion. Here, we require that for each c.c. |
3028 | | * in pixm, all pixels in pixs that correspond to the exterior |
3029 | | * boundary pixels of the c.c. have values that are greater |
3030 | | * than the value within the c.c. |
3031 | | * (2) The maximum allowed value for each local minimum can be |
3032 | | * bounded with %maxval. Use 0 for default, which is to have |
3033 | | * no upper bound (equivalent to maxval == 254). |
3034 | | * </pre> |
3035 | | */ |
3036 | | static l_int32 |
3037 | | pixQualifyLocalMinima(PIX *pixs, |
3038 | | PIX *pixm, |
3039 | | l_int32 maxval) |
3040 | 0 | { |
3041 | 0 | l_int32 n, i, j, k, x, y, w, h, xc, yc, wc, hc, xon, yon; |
3042 | 0 | l_int32 vals, wpls, wplc, ismin; |
3043 | 0 | l_uint32 val; |
3044 | 0 | l_uint32 *datas, *datac, *lines, *linec; |
3045 | 0 | BOXA *boxa; |
3046 | 0 | PIX *pix1, *pix2, *pix3; |
3047 | 0 | PIXA *pixa; |
3048 | |
|
3049 | 0 | if (!pixs || pixGetDepth(pixs) != 8) |
3050 | 0 | return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); |
3051 | 0 | if (!pixm || pixGetDepth(pixm) != 1) |
3052 | 0 | return ERROR_INT("pixm not defined or not 1 bpp", __func__, 1); |
3053 | 0 | if (maxval <= 0) maxval = 254; |
3054 | |
|
3055 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
3056 | 0 | datas = pixGetData(pixs); |
3057 | 0 | wpls = pixGetWpl(pixs); |
3058 | 0 | boxa = pixConnComp(pixm, &pixa, 8); |
3059 | 0 | n = pixaGetCount(pixa); |
3060 | 0 | for (k = 0; k < n; k++) { |
3061 | 0 | boxaGetBoxGeometry(boxa, k, &xc, &yc, &wc, &hc); |
3062 | 0 | pix1 = pixaGetPix(pixa, k, L_COPY); |
3063 | 0 | pix2 = pixAddBorder(pix1, 1, 0); |
3064 | 0 | pix3 = pixDilateBrick(NULL, pix2, 3, 3); |
3065 | 0 | pixXor(pix3, pix3, pix2); /* exterior boundary pixels */ |
3066 | 0 | datac = pixGetData(pix3); |
3067 | 0 | wplc = pixGetWpl(pix3); |
3068 | 0 | nextOnPixelInRaster(pix1, 0, 0, &xon, &yon); |
3069 | 0 | pixGetPixel(pixs, xc + xon, yc + yon, &val); |
3070 | 0 | if (val > maxval) { /* too large; erase */ |
3071 | 0 | pixRasterop(pixm, xc, yc, wc, hc, PIX_XOR, pix1, 0, 0); |
3072 | 0 | pixDestroy(&pix1); |
3073 | 0 | pixDestroy(&pix2); |
3074 | 0 | pixDestroy(&pix3); |
3075 | 0 | continue; |
3076 | 0 | } |
3077 | 0 | ismin = TRUE; |
3078 | | |
3079 | | /* Check all values in pixs that correspond to the exterior |
3080 | | * boundary pixels of the c.c. in pixm. Verify that the |
3081 | | * value in the c.c. is always less. */ |
3082 | 0 | for (i = 0, y = yc - 1; i < hc + 2 && y >= 0 && y < h; i++, y++) { |
3083 | 0 | lines = datas + y * wpls; |
3084 | 0 | linec = datac + i * wplc; |
3085 | 0 | for (j = 0, x = xc - 1; j < wc + 2 && x >= 0 && x < w; j++, x++) { |
3086 | 0 | if (GET_DATA_BIT(linec, j)) { |
3087 | 0 | vals = GET_DATA_BYTE(lines, x); |
3088 | 0 | if (vals <= val) { /* not a minimum! */ |
3089 | 0 | ismin = FALSE; |
3090 | 0 | break; |
3091 | 0 | } |
3092 | 0 | } |
3093 | 0 | } |
3094 | 0 | if (!ismin) |
3095 | 0 | break; |
3096 | 0 | } |
3097 | 0 | if (!ismin) /* erase it */ |
3098 | 0 | pixRasterop(pixm, xc, yc, wc, hc, PIX_XOR, pix1, 0, 0); |
3099 | 0 | pixDestroy(&pix1); |
3100 | 0 | pixDestroy(&pix2); |
3101 | 0 | pixDestroy(&pix3); |
3102 | 0 | } |
3103 | |
|
3104 | 0 | boxaDestroy(&boxa); |
3105 | 0 | pixaDestroy(&pixa); |
3106 | 0 | return 0; |
3107 | 0 | } |
3108 | | |
3109 | | |
3110 | | /*! |
3111 | | * \brief pixSelectedLocalExtrema() |
3112 | | * |
3113 | | * \param[in] pixs 8 bpp |
3114 | | * \param[in] mindist -1 for keeping all pixels; >= 0 specifies distance |
3115 | | * \param[out] ppixmin mask of local minima |
3116 | | * \param[out] ppixmax mask of local maxima |
3117 | | * \return 0 if OK, 1 on error |
3118 | | * |
3119 | | * <pre> |
3120 | | * Notes: |
3121 | | * (1) This selects those local 3x3 minima that are at least a |
3122 | | * specified distance from the nearest local 3x3 maxima, and v.v. |
3123 | | * for the selected set of local 3x3 maxima. |
3124 | | * The local 3x3 minima is the set of pixels whose value equals |
3125 | | * the value after a 3x3 brick erosion, and the local 3x3 maxima |
3126 | | * is the set of pixels whose value equals the value after |
3127 | | * a 3x3 brick dilation. |
3128 | | * (2) mindist is the minimum distance allowed between |
3129 | | * local 3x3 minima and local 3x3 maxima, in an 8-connected sense. |
3130 | | * mindist == 1 keeps all pixels found in step 1. |
3131 | | * mindist == 0 removes all pixels from each mask that are |
3132 | | * both a local 3x3 minimum and a local 3x3 maximum. |
3133 | | * mindist == 1 removes any local 3x3 minimum pixel that touches a |
3134 | | * local 3x3 maximum pixel, and likewise for the local maxima. |
3135 | | * To make the decision, visualize each local 3x3 minimum pixel |
3136 | | * as being surrounded by a square of size (2 * mindist + 1) |
3137 | | * on each side, such that no local 3x3 maximum pixel is within |
3138 | | * that square; and v.v. |
3139 | | * (3) The generated masks can be used as markers for further operations. |
3140 | | * </pre> |
3141 | | */ |
3142 | | l_ok |
3143 | | pixSelectedLocalExtrema(PIX *pixs, |
3144 | | l_int32 mindist, |
3145 | | PIX **ppixmin, |
3146 | | PIX **ppixmax) |
3147 | 0 | { |
3148 | 0 | PIX *pixmin, *pixmax, *pixt, *pixtmin, *pixtmax; |
3149 | |
|
3150 | 0 | if (!pixs || pixGetDepth(pixs) != 8) |
3151 | 0 | return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); |
3152 | 0 | if (!ppixmin || !ppixmax) |
3153 | 0 | return ERROR_INT("&pixmin and &pixmax not both defined", __func__, 1); |
3154 | | |
3155 | 0 | pixt = pixErodeGray(pixs, 3, 3); |
3156 | 0 | pixmin = pixFindEqualValues(pixs, pixt); |
3157 | 0 | pixDestroy(&pixt); |
3158 | 0 | pixt = pixDilateGray(pixs, 3, 3); |
3159 | 0 | pixmax = pixFindEqualValues(pixs, pixt); |
3160 | 0 | pixDestroy(&pixt); |
3161 | | |
3162 | | /* Remove all points that are within the prescribed distance |
3163 | | * from each other. */ |
3164 | 0 | if (mindist < 0) { /* remove no points */ |
3165 | 0 | *ppixmin = pixmin; |
3166 | 0 | *ppixmax = pixmax; |
3167 | 0 | } else if (mindist == 0) { /* remove points belonging to both sets */ |
3168 | 0 | pixt = pixAnd(NULL, pixmin, pixmax); |
3169 | 0 | *ppixmin = pixSubtract(pixmin, pixmin, pixt); |
3170 | 0 | *ppixmax = pixSubtract(pixmax, pixmax, pixt); |
3171 | 0 | pixDestroy(&pixt); |
3172 | 0 | } else { |
3173 | 0 | pixtmin = pixDilateBrick(NULL, pixmin, |
3174 | 0 | 2 * mindist + 1, 2 * mindist + 1); |
3175 | 0 | pixtmax = pixDilateBrick(NULL, pixmax, |
3176 | 0 | 2 * mindist + 1, 2 * mindist + 1); |
3177 | 0 | *ppixmin = pixSubtract(pixmin, pixmin, pixtmax); |
3178 | 0 | *ppixmax = pixSubtract(pixmax, pixmax, pixtmin); |
3179 | 0 | pixDestroy(&pixtmin); |
3180 | 0 | pixDestroy(&pixtmax); |
3181 | 0 | } |
3182 | 0 | return 0; |
3183 | 0 | } |
3184 | | |
3185 | | |
3186 | | /*! |
3187 | | * \brief pixFindEqualValues() |
3188 | | * |
3189 | | * \param[in] pixs1 8 bpp |
3190 | | * \param[in] pixs2 8 bpp |
3191 | | * \return pixd 1 bpp mask, or NULL on error |
3192 | | * |
3193 | | * <pre> |
3194 | | * Notes: |
3195 | | * (1) The two images are aligned at the UL corner, and the returned |
3196 | | * image has ON pixels where the pixels in pixs1 and pixs2 |
3197 | | * have equal values. |
3198 | | * </pre> |
3199 | | */ |
3200 | | PIX * |
3201 | | pixFindEqualValues(PIX *pixs1, |
3202 | | PIX *pixs2) |
3203 | 0 | { |
3204 | 0 | l_int32 w1, h1, w2, h2, w, h; |
3205 | 0 | l_int32 i, j, val1, val2, wpls1, wpls2, wpld; |
3206 | 0 | l_uint32 *datas1, *datas2, *datad, *lines1, *lines2, *lined; |
3207 | 0 | PIX *pixd; |
3208 | |
|
3209 | 0 | if (!pixs1 || pixGetDepth(pixs1) != 8) |
3210 | 0 | return (PIX *)ERROR_PTR("pixs1 undefined or not 8 bpp", __func__, NULL); |
3211 | 0 | if (!pixs2 || pixGetDepth(pixs2) != 8) |
3212 | 0 | return (PIX *)ERROR_PTR("pixs2 undefined or not 8 bpp", __func__, NULL); |
3213 | 0 | pixGetDimensions(pixs1, &w1, &h1, NULL); |
3214 | 0 | pixGetDimensions(pixs2, &w2, &h2, NULL); |
3215 | 0 | w = L_MIN(w1, w2); |
3216 | 0 | h = L_MIN(h1, h2); |
3217 | 0 | pixd = pixCreate(w, h, 1); |
3218 | 0 | datas1 = pixGetData(pixs1); |
3219 | 0 | datas2 = pixGetData(pixs2); |
3220 | 0 | datad = pixGetData(pixd); |
3221 | 0 | wpls1 = pixGetWpl(pixs1); |
3222 | 0 | wpls2 = pixGetWpl(pixs2); |
3223 | 0 | wpld = pixGetWpl(pixd); |
3224 | |
|
3225 | 0 | for (i = 0; i < h; i++) { |
3226 | 0 | lines1 = datas1 + i * wpls1; |
3227 | 0 | lines2 = datas2 + i * wpls2; |
3228 | 0 | lined = datad + i * wpld; |
3229 | 0 | for (j = 0; j < w; j++) { |
3230 | 0 | val1 = GET_DATA_BYTE(lines1, j); |
3231 | 0 | val2 = GET_DATA_BYTE(lines2, j); |
3232 | 0 | if (val1 == val2) |
3233 | 0 | SET_DATA_BIT(lined, j); |
3234 | 0 | } |
3235 | 0 | } |
3236 | |
|
3237 | 0 | return pixd; |
3238 | 0 | } |
3239 | | |
3240 | | |
3241 | | /*-----------------------------------------------------------------------* |
3242 | | * Selection of minima in mask connected components * |
3243 | | *-----------------------------------------------------------------------*/ |
3244 | | /*! |
3245 | | * \brief pixSelectMinInConnComp() |
3246 | | * |
3247 | | * \param[in] pixs 8 bpp |
3248 | | * \param[in] pixm 1 bpp |
3249 | | * \param[out] ppta pta of min pixel locations |
3250 | | * \param[out] pnav [optional] numa of minima values |
3251 | | * \return 0 if OK, 1 on error. |
3252 | | * |
3253 | | * <pre> |
3254 | | * Notes: |
3255 | | * (1) For each 8 connected component in pixm, this finds |
3256 | | * a pixel in pixs that has the lowest value, and saves |
3257 | | * it in a Pta. If several pixels in pixs have the same |
3258 | | * minimum value, it picks the first one found. |
3259 | | * (2) For a mask pixm of true local minima, all pixels in each |
3260 | | * connected component have the same value in pixs, so it is |
3261 | | * fastest to select one of them using a special seedfill |
3262 | | * operation. Not yet implemented. |
3263 | | * </pre> |
3264 | | */ |
3265 | | l_ok |
3266 | | pixSelectMinInConnComp(PIX *pixs, |
3267 | | PIX *pixm, |
3268 | | PTA **ppta, |
3269 | | NUMA **pnav) |
3270 | 0 | { |
3271 | 0 | l_int32 bx, by, bw, bh, i, j, c, n; |
3272 | 0 | l_int32 xs, ys, minx, miny, wpls, wplt, val, minval; |
3273 | 0 | l_uint32 *datas, *datat, *lines, *linet; |
3274 | 0 | BOXA *boxa; |
3275 | 0 | NUMA *nav; |
3276 | 0 | PIX *pixt, *pixs2, *pixm2; |
3277 | 0 | PIXA *pixa; |
3278 | 0 | PTA *pta; |
3279 | |
|
3280 | 0 | if (!ppta) |
3281 | 0 | return ERROR_INT("&pta not defined", __func__, 1); |
3282 | 0 | *ppta = NULL; |
3283 | 0 | if (pnav) *pnav = NULL; |
3284 | 0 | if (!pixs || pixGetDepth(pixs) != 8) |
3285 | 0 | return ERROR_INT("pixs undefined or not 8 bpp", __func__, 1); |
3286 | 0 | if (!pixm || pixGetDepth(pixm) != 1) |
3287 | 0 | return ERROR_INT("pixm undefined or not 1 bpp", __func__, 1); |
3288 | | |
3289 | | /* Crop to the min size if necessary */ |
3290 | 0 | if (pixCropToMatch(pixs, pixm, &pixs2, &pixm2)) { |
3291 | 0 | pixDestroy(&pixs2); |
3292 | 0 | pixDestroy(&pixm2); |
3293 | 0 | return ERROR_INT("cropping failure", __func__, 1); |
3294 | 0 | } |
3295 | | |
3296 | | /* Find value and location of min value pixel in each component */ |
3297 | 0 | boxa = pixConnComp(pixm2, &pixa, 8); |
3298 | 0 | n = boxaGetCount(boxa); |
3299 | 0 | pta = ptaCreate(n); |
3300 | 0 | *ppta = pta; |
3301 | 0 | nav = numaCreate(n); |
3302 | 0 | datas = pixGetData(pixs2); |
3303 | 0 | wpls = pixGetWpl(pixs2); |
3304 | 0 | for (c = 0; c < n; c++) { |
3305 | 0 | pixt = pixaGetPix(pixa, c, L_CLONE); |
3306 | 0 | boxaGetBoxGeometry(boxa, c, &bx, &by, &bw, &bh); |
3307 | 0 | if (bw == 1 && bh == 1) { |
3308 | 0 | ptaAddPt(pta, bx, by); |
3309 | 0 | numaAddNumber(nav, GET_DATA_BYTE(datas + by * wpls, bx)); |
3310 | 0 | pixDestroy(&pixt); |
3311 | 0 | continue; |
3312 | 0 | } |
3313 | 0 | datat = pixGetData(pixt); |
3314 | 0 | wplt = pixGetWpl(pixt); |
3315 | 0 | minx = miny = 1000000; |
3316 | 0 | minval = 256; |
3317 | 0 | for (i = 0; i < bh; i++) { |
3318 | 0 | ys = by + i; |
3319 | 0 | lines = datas + ys * wpls; |
3320 | 0 | linet = datat + i * wplt; |
3321 | 0 | for (j = 0; j < bw; j++) { |
3322 | 0 | xs = bx + j; |
3323 | 0 | if (GET_DATA_BIT(linet, j)) { |
3324 | 0 | val = GET_DATA_BYTE(lines, xs); |
3325 | 0 | if (val < minval) { |
3326 | 0 | minval = val; |
3327 | 0 | minx = xs; |
3328 | 0 | miny = ys; |
3329 | 0 | } |
3330 | 0 | } |
3331 | 0 | } |
3332 | 0 | } |
3333 | 0 | ptaAddPt(pta, minx, miny); |
3334 | 0 | numaAddNumber(nav, GET_DATA_BYTE(datas + miny * wpls, minx)); |
3335 | 0 | pixDestroy(&pixt); |
3336 | 0 | } |
3337 | |
|
3338 | 0 | boxaDestroy(&boxa); |
3339 | 0 | pixaDestroy(&pixa); |
3340 | 0 | if (pnav) |
3341 | 0 | *pnav = nav; |
3342 | 0 | else |
3343 | 0 | numaDestroy(&nav); |
3344 | 0 | pixDestroy(&pixs2); |
3345 | 0 | pixDestroy(&pixm2); |
3346 | 0 | return 0; |
3347 | 0 | } |
3348 | | |
3349 | | |
3350 | | /*-----------------------------------------------------------------------* |
3351 | | * Removal of seeded connected components from a mask * |
3352 | | *-----------------------------------------------------------------------*/ |
3353 | | /*! |
3354 | | * \brief pixRemoveSeededComponents() |
3355 | | * |
3356 | | * \param[in] pixd [optional]; can be null or equal to pixm; 1 bpp |
3357 | | * \param[in] pixs 1 bpp seed |
3358 | | * \param[in] pixm 1 bpp filling mask |
3359 | | * \param[in] connectivity 4 or 8 |
3360 | | * \param[in] bordersize amount of border clearing |
3361 | | * \return pixd, or NULL on error |
3362 | | * |
3363 | | * <pre> |
3364 | | * Notes: |
3365 | | * (1) This removes each component in pixm for which there is |
3366 | | * at least one seed in pixs. If pixd == NULL, this returns |
3367 | | * the result in a new pixd. Otherwise, it is an in-place |
3368 | | * operation on pixm. In no situation is pixs altered, |
3369 | | * because we do the filling with a copy of pixs. |
3370 | | * (2) If bordersize > 0, it also clears all pixels within a |
3371 | | * distance %bordersize of the edge of pixd. This is here |
3372 | | * because pixLocalExtrema() typically finds local minima |
3373 | | * at the border. Use %bordersize >= 2 to remove these. |
3374 | | * </pre> |
3375 | | */ |
3376 | | PIX * |
3377 | | pixRemoveSeededComponents(PIX *pixd, |
3378 | | PIX *pixs, |
3379 | | PIX *pixm, |
3380 | | l_int32 connectivity, |
3381 | | l_int32 bordersize) |
3382 | 0 | { |
3383 | 0 | PIX *pixt; |
3384 | |
|
3385 | 0 | if (!pixs || pixGetDepth(pixs) != 1) |
3386 | 0 | return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd); |
3387 | 0 | if (!pixm || pixGetDepth(pixm) != 1) |
3388 | 0 | return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd); |
3389 | 0 | if (pixd && pixd != pixm) |
3390 | 0 | return (PIX *)ERROR_PTR("operation not inplace", __func__, pixd); |
3391 | | |
3392 | 0 | pixt = pixCopy(NULL, pixs); |
3393 | 0 | pixSeedfillBinary(pixt, pixt, pixm, connectivity); |
3394 | 0 | pixd = pixXor(pixd, pixm, pixt); |
3395 | 0 | if (bordersize > 0) |
3396 | 0 | pixSetOrClearBorder(pixd, bordersize, bordersize, bordersize, |
3397 | 0 | bordersize, PIX_CLR); |
3398 | 0 | pixDestroy(&pixt); |
3399 | 0 | return pixd; |
3400 | 0 | } |