Coverage Report

Created: 2024-07-27 06:27

/src/libwebp/src/dsp/lossless_sse2.c
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2014 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE2 variant of methods for lossless decoder
11
//
12
// Author: Skal (pascal.massimino@gmail.com)
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_SSE2)
17
18
#include "src/dsp/common_sse2.h"
19
#include "src/dsp/lossless.h"
20
#include "src/dsp/lossless_common.h"
21
#include <emmintrin.h>
22
23
//------------------------------------------------------------------------------
24
// Predictor Transform
25
26
static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0,
27
                                                        uint32_t c1,
28
0
                                                        uint32_t c2) {
29
0
  const __m128i zero = _mm_setzero_si128();
30
0
  const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
31
0
  const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
32
0
  const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
33
0
  const __m128i V1 = _mm_add_epi16(C0, C1);
34
0
  const __m128i V2 = _mm_sub_epi16(V1, C2);
35
0
  const __m128i b = _mm_packus_epi16(V2, V2);
36
0
  return (uint32_t)_mm_cvtsi128_si32(b);
37
0
}
38
39
static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0,
40
                                                        uint32_t c1,
41
0
                                                        uint32_t c2) {
42
0
  const __m128i zero = _mm_setzero_si128();
43
0
  const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
44
0
  const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
45
0
  const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
46
0
  const __m128i avg = _mm_add_epi16(C1, C0);
47
0
  const __m128i A0 = _mm_srli_epi16(avg, 1);
48
0
  const __m128i A1 = _mm_sub_epi16(A0, B0);
49
0
  const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
50
0
  const __m128i A2 = _mm_sub_epi16(A1, BgtA);
51
0
  const __m128i A3 = _mm_srai_epi16(A2, 1);
52
0
  const __m128i A4 = _mm_add_epi16(A0, A3);
53
0
  const __m128i A5 = _mm_packus_epi16(A4, A4);
54
0
  return (uint32_t)_mm_cvtsi128_si32(A5);
55
0
}
56
57
0
static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) {
58
0
  int pa_minus_pb;
59
0
  const __m128i zero = _mm_setzero_si128();
60
0
  const __m128i A0 = _mm_cvtsi32_si128((int)a);
61
0
  const __m128i B0 = _mm_cvtsi32_si128((int)b);
62
0
  const __m128i C0 = _mm_cvtsi32_si128((int)c);
63
0
  const __m128i AC0 = _mm_subs_epu8(A0, C0);
64
0
  const __m128i CA0 = _mm_subs_epu8(C0, A0);
65
0
  const __m128i BC0 = _mm_subs_epu8(B0, C0);
66
0
  const __m128i CB0 = _mm_subs_epu8(C0, B0);
67
0
  const __m128i AC = _mm_or_si128(AC0, CA0);
68
0
  const __m128i BC = _mm_or_si128(BC0, CB0);
69
0
  const __m128i pa = _mm_unpacklo_epi8(AC, zero);  // |a - c|
70
0
  const __m128i pb = _mm_unpacklo_epi8(BC, zero);  // |b - c|
71
0
  const __m128i diff = _mm_sub_epi16(pb, pa);
72
0
  {
73
0
    int16_t out[8];
74
0
    _mm_storeu_si128((__m128i*)out, diff);
75
0
    pa_minus_pb = out[0] + out[1] + out[2] + out[3];
76
0
  }
77
0
  return (pa_minus_pb <= 0) ? a : b;
78
0
}
79
80
static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
81
                                       const __m128i* const a1,
82
0
                                       __m128i* const avg) {
83
  // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
84
0
  const __m128i ones = _mm_set1_epi8(1);
85
0
  const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
86
0
  const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
87
0
  *avg = _mm_sub_epi8(avg1, one);
88
0
}
89
90
static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0,
91
                                             const uint32_t a1,
92
0
                                             __m128i* const avg) {
93
  // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
94
0
  const __m128i ones = _mm_set1_epi8(1);
95
0
  const __m128i A0 = _mm_cvtsi32_si128((int)a0);
96
0
  const __m128i A1 = _mm_cvtsi32_si128((int)a1);
97
0
  const __m128i avg1 = _mm_avg_epu8(A0, A1);
98
0
  const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
99
0
  *avg = _mm_sub_epi8(avg1, one);
100
0
}
101
102
0
static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) {
103
0
  const __m128i zero = _mm_setzero_si128();
104
0
  const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a0), zero);
105
0
  const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
106
0
  const __m128i sum = _mm_add_epi16(A1, A0);
107
0
  return _mm_srli_epi16(sum, 1);
108
0
}
109
110
0
static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) {
111
0
  __m128i output;
112
0
  Average2_uint32_SSE2(a0, a1, &output);
113
0
  return (uint32_t)_mm_cvtsi128_si32(output);
114
0
}
115
116
static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1,
117
0
                                          uint32_t a2) {
118
0
  const __m128i zero = _mm_setzero_si128();
119
0
  const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2);
120
0
  const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
121
0
  const __m128i sum = _mm_add_epi16(avg1, A1);
122
0
  const __m128i avg2 = _mm_srli_epi16(sum, 1);
123
0
  const __m128i A2 = _mm_packus_epi16(avg2, avg2);
124
0
  return (uint32_t)_mm_cvtsi128_si32(A2);
125
0
}
126
127
static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1,
128
0
                                          uint32_t a2, uint32_t a3) {
129
0
  const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1);
130
0
  const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3);
131
0
  const __m128i sum = _mm_add_epi16(avg2, avg1);
132
0
  const __m128i avg3 = _mm_srli_epi16(sum, 1);
133
0
  const __m128i A0 = _mm_packus_epi16(avg3, avg3);
134
0
  return (uint32_t)_mm_cvtsi128_si32(A0);
135
0
}
136
137
static uint32_t Predictor5_SSE2(const uint32_t* const left,
138
0
                                const uint32_t* const top) {
139
0
  const uint32_t pred = Average3_SSE2(*left, top[0], top[1]);
140
0
  return pred;
141
0
}
142
static uint32_t Predictor6_SSE2(const uint32_t* const left,
143
0
                                const uint32_t* const top) {
144
0
  const uint32_t pred = Average2_SSE2(*left, top[-1]);
145
0
  return pred;
146
0
}
147
static uint32_t Predictor7_SSE2(const uint32_t* const left,
148
0
                                const uint32_t* const top) {
149
0
  const uint32_t pred = Average2_SSE2(*left, top[0]);
150
0
  return pred;
151
0
}
152
static uint32_t Predictor8_SSE2(const uint32_t* const left,
153
0
                                const uint32_t* const top) {
154
0
  const uint32_t pred = Average2_SSE2(top[-1], top[0]);
155
0
  (void)left;
156
0
  return pred;
157
0
}
158
static uint32_t Predictor9_SSE2(const uint32_t* const left,
159
0
                                const uint32_t* const top) {
160
0
  const uint32_t pred = Average2_SSE2(top[0], top[1]);
161
0
  (void)left;
162
0
  return pred;
163
0
}
164
static uint32_t Predictor10_SSE2(const uint32_t* const left,
165
0
                                 const uint32_t* const top) {
166
0
  const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]);
167
0
  return pred;
168
0
}
169
static uint32_t Predictor11_SSE2(const uint32_t* const left,
170
0
                                 const uint32_t* const top) {
171
0
  const uint32_t pred = Select_SSE2(top[0], *left, top[-1]);
172
0
  return pred;
173
0
}
174
static uint32_t Predictor12_SSE2(const uint32_t* const left,
175
0
                                 const uint32_t* const top) {
176
0
  const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]);
177
0
  return pred;
178
0
}
179
static uint32_t Predictor13_SSE2(const uint32_t* const left,
180
0
                                 const uint32_t* const top) {
181
0
  const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]);
182
0
  return pred;
183
0
}
184
185
// Batch versions of those functions.
186
187
// Predictor0: ARGB_BLACK.
188
static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
189
0
                               int num_pixels, uint32_t* out) {
190
0
  int i;
191
0
  const __m128i black = _mm_set1_epi32((int)ARGB_BLACK);
192
0
  for (i = 0; i + 4 <= num_pixels; i += 4) {
193
0
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
194
0
    const __m128i res = _mm_add_epi8(src, black);
195
0
    _mm_storeu_si128((__m128i*)&out[i], res);
196
0
  }
197
0
  if (i != num_pixels) {
198
0
    VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i);
199
0
  }
200
0
  (void)upper;
201
0
}
202
203
// Predictor1: left.
204
static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
205
0
                               int num_pixels, uint32_t* out) {
206
0
  int i;
207
0
  __m128i prev = _mm_set1_epi32((int)out[-1]);
208
0
  for (i = 0; i + 4 <= num_pixels; i += 4) {
209
    // a | b | c | d
210
0
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
211
    // 0 | a | b | c
212
0
    const __m128i shift0 = _mm_slli_si128(src, 4);
213
    // a | a + b | b + c | c + d
214
0
    const __m128i sum0 = _mm_add_epi8(src, shift0);
215
    // 0 | 0 | a | a + b
216
0
    const __m128i shift1 = _mm_slli_si128(sum0, 8);
217
    // a | a + b | a + b + c | a + b + c + d
218
0
    const __m128i sum1 = _mm_add_epi8(sum0, shift1);
219
0
    const __m128i res = _mm_add_epi8(sum1, prev);
220
0
    _mm_storeu_si128((__m128i*)&out[i], res);
221
    // replicate prev output on the four lanes
222
0
    prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
223
0
  }
224
0
  if (i != num_pixels) {
225
0
    VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
226
0
  }
227
0
}
228
229
// Macro that adds 32-bit integers from IN using mod 256 arithmetic
230
// per 8 bit channel.
231
#define GENERATE_PREDICTOR_1(X, IN)                                           \
232
static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
233
0
                                  int num_pixels, uint32_t* out) {            \
234
0
  int i;                                                                      \
235
0
  for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
236
0
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
237
0
    const __m128i other = _mm_loadu_si128((const __m128i*)&(IN));             \
238
0
    const __m128i res = _mm_add_epi8(src, other);                             \
239
0
    _mm_storeu_si128((__m128i*)&out[i], res);                                 \
240
0
  }                                                                           \
241
0
  if (i != num_pixels) {                                                      \
242
0
    VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
243
0
  }                                                                           \
244
0
}
Unexecuted instantiation: lossless_sse2.c:PredictorAdd2_SSE2
Unexecuted instantiation: lossless_sse2.c:PredictorAdd3_SSE2
Unexecuted instantiation: lossless_sse2.c:PredictorAdd4_SSE2
245
246
// Predictor2: Top.
247
GENERATE_PREDICTOR_1(2, upper[i])
248
// Predictor3: Top-right.
249
GENERATE_PREDICTOR_1(3, upper[i + 1])
250
// Predictor4: Top-left.
251
GENERATE_PREDICTOR_1(4, upper[i - 1])
252
#undef GENERATE_PREDICTOR_1
253
254
// Due to averages with integers, values cannot be accumulated in parallel for
255
// predictors 5 to 7.
256
GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
257
GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
258
GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
259
260
#define GENERATE_PREDICTOR_2(X, IN)                                           \
261
static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
262
0
                                   int num_pixels, uint32_t* out) {           \
263
0
  int i;                                                                      \
264
0
  for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
265
0
    const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN));            \
266
0
    const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);             \
267
0
    const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
268
0
    __m128i avg, res;                                                         \
269
0
    Average2_m128i(&T, &Tother, &avg);                                        \
270
0
    res = _mm_add_epi8(avg, src);                                             \
271
0
    _mm_storeu_si128((__m128i*)&out[i], res);                                 \
272
0
  }                                                                           \
273
0
  if (i != num_pixels) {                                                      \
274
0
    VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
275
0
  }                                                                           \
276
0
}
Unexecuted instantiation: lossless_sse2.c:PredictorAdd8_SSE2
Unexecuted instantiation: lossless_sse2.c:PredictorAdd9_SSE2
277
// Predictor8: average TL T.
278
GENERATE_PREDICTOR_2(8, upper[i - 1])
279
// Predictor9: average T TR.
280
GENERATE_PREDICTOR_2(9, upper[i + 1])
281
#undef GENERATE_PREDICTOR_2
282
283
// Predictor10: average of (average of (L,TL), average of (T, TR)).
284
0
#define DO_PRED10(OUT) do {                         \
285
0
  __m128i avgLTL, avg;                              \
286
0
  Average2_m128i(&L, &TL, &avgLTL);                 \
287
0
  Average2_m128i(&avgTTR, &avgLTL, &avg);           \
288
0
  L = _mm_add_epi8(avg, src);                       \
289
0
  out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L);  \
290
0
} while (0)
291
292
0
#define DO_PRED10_SHIFT do {                                  \
293
0
  /* Rotate the pre-computed values for the next iteration.*/ \
294
0
  avgTTR = _mm_srli_si128(avgTTR, 4);                         \
295
0
  TL = _mm_srli_si128(TL, 4);                                 \
296
0
  src = _mm_srli_si128(src, 4);                               \
297
0
} while (0)
298
299
static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
300
0
                                int num_pixels, uint32_t* out) {
301
0
  int i;
302
0
  __m128i L = _mm_cvtsi32_si128((int)out[-1]);
303
0
  for (i = 0; i + 4 <= num_pixels; i += 4) {
304
0
    __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
305
0
    __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
306
0
    const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
307
0
    const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
308
0
    __m128i avgTTR;
309
0
    Average2_m128i(&T, &TR, &avgTTR);
310
0
    DO_PRED10(0);
311
0
    DO_PRED10_SHIFT;
312
0
    DO_PRED10(1);
313
0
    DO_PRED10_SHIFT;
314
0
    DO_PRED10(2);
315
0
    DO_PRED10_SHIFT;
316
0
    DO_PRED10(3);
317
0
  }
318
0
  if (i != num_pixels) {
319
0
    VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
320
0
  }
321
0
}
322
#undef DO_PRED10
323
#undef DO_PRED10_SHIFT
324
325
// Predictor11: select.
326
0
#define DO_PRED11(OUT) do {                                            \
327
0
  const __m128i L_lo = _mm_unpacklo_epi32(L, T);                       \
328
0
  const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);                     \
329
0
  const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/   \
330
0
  const __m128i mask = _mm_cmpgt_epi32(pb, pa);                        \
331
0
  const __m128i A = _mm_and_si128(mask, L);                            \
332
0
  const __m128i B = _mm_andnot_si128(mask, T);                         \
333
0
  const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \
334
0
  L = _mm_add_epi8(src, pred);                                         \
335
0
  out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L);                     \
336
0
} while (0)
337
338
0
#define DO_PRED11_SHIFT do {                                \
339
0
  /* Shift the pre-computed value for the next iteration.*/ \
340
0
  T = _mm_srli_si128(T, 4);                                 \
341
0
  TL = _mm_srli_si128(TL, 4);                               \
342
0
  src = _mm_srli_si128(src, 4);                             \
343
0
  pa = _mm_srli_si128(pa, 4);                               \
344
0
} while (0)
345
346
static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
347
0
                                int num_pixels, uint32_t* out) {
348
0
  int i;
349
0
  __m128i pa;
350
0
  __m128i L = _mm_cvtsi32_si128((int)out[-1]);
351
0
  for (i = 0; i + 4 <= num_pixels; i += 4) {
352
0
    __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
353
0
    __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
354
0
    __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
355
0
    {
356
      // We can unpack with any value on the upper 32 bits, provided it's the
357
      // same on both operands (so that their sum of abs diff is zero). Here we
358
      // use T.
359
0
      const __m128i T_lo = _mm_unpacklo_epi32(T, T);
360
0
      const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);
361
0
      const __m128i T_hi = _mm_unpackhi_epi32(T, T);
362
0
      const __m128i TL_hi = _mm_unpackhi_epi32(TL, T);
363
0
      const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo);
364
0
      const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi);
365
0
      pa = _mm_packs_epi32(s_lo, s_hi);  // pa = sum |T-TL|
366
0
    }
367
0
    DO_PRED11(0);
368
0
    DO_PRED11_SHIFT;
369
0
    DO_PRED11(1);
370
0
    DO_PRED11_SHIFT;
371
0
    DO_PRED11(2);
372
0
    DO_PRED11_SHIFT;
373
0
    DO_PRED11(3);
374
0
  }
375
0
  if (i != num_pixels) {
376
0
    VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
377
0
  }
378
0
}
379
#undef DO_PRED11
380
#undef DO_PRED11_SHIFT
381
382
// Predictor12: ClampedAddSubtractFull.
383
0
#define DO_PRED12(DIFF, LANE, OUT) do {              \
384
0
  const __m128i all = _mm_add_epi16(L, (DIFF));      \
385
0
  const __m128i alls = _mm_packus_epi16(all, all);   \
386
0
  const __m128i res = _mm_add_epi8(src, alls);       \
387
0
  out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(res); \
388
0
  L = _mm_unpacklo_epi8(res, zero);                  \
389
0
} while (0)
390
391
0
#define DO_PRED12_SHIFT(DIFF, LANE) do {                    \
392
0
  /* Shift the pre-computed value for the next iteration.*/ \
393
0
  if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8);      \
394
0
  src = _mm_srli_si128(src, 4);                             \
395
0
} while (0)
396
397
static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
398
0
                                int num_pixels, uint32_t* out) {
399
0
  int i;
400
0
  const __m128i zero = _mm_setzero_si128();
401
0
  const __m128i L8 = _mm_cvtsi32_si128((int)out[-1]);
402
0
  __m128i L = _mm_unpacklo_epi8(L8, zero);
403
0
  for (i = 0; i + 4 <= num_pixels; i += 4) {
404
    // Load 4 pixels at a time.
405
0
    __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
406
0
    const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
407
0
    const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
408
0
    const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
409
0
    const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
410
0
    const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
411
0
    const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
412
0
    __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
413
0
    __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
414
0
    DO_PRED12(diff_lo, 0, 0);
415
0
    DO_PRED12_SHIFT(diff_lo, 0);
416
0
    DO_PRED12(diff_lo, 1, 1);
417
0
    DO_PRED12_SHIFT(diff_lo, 1);
418
0
    DO_PRED12(diff_hi, 0, 2);
419
0
    DO_PRED12_SHIFT(diff_hi, 0);
420
0
    DO_PRED12(diff_hi, 1, 3);
421
0
  }
422
0
  if (i != num_pixels) {
423
0
    VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
424
0
  }
425
0
}
426
#undef DO_PRED12
427
#undef DO_PRED12_SHIFT
428
429
// Due to averages with integers, values cannot be accumulated in parallel for
430
// predictors 13.
431
GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
432
433
//------------------------------------------------------------------------------
434
// Subtract-Green Transform
435
436
static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels,
437
0
                                      uint32_t* dst) {
438
0
  int i;
439
0
  for (i = 0; i + 4 <= num_pixels; i += 4) {
440
0
    const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
441
0
    const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
442
0
    const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
443
0
    const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
444
0
    const __m128i out = _mm_add_epi8(in, C);
445
0
    _mm_storeu_si128((__m128i*)&dst[i], out);
446
0
  }
447
  // fallthrough and finish off with plain-C
448
0
  if (i != num_pixels) {
449
0
    VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
450
0
  }
451
0
}
452
453
//------------------------------------------------------------------------------
454
// Color Transform
455
456
static void TransformColorInverse_SSE2(const VP8LMultipliers* const m,
457
                                       const uint32_t* const src,
458
0
                                       int num_pixels, uint32_t* dst) {
459
// sign-extended multiplying constants, pre-shifted by 5.
460
0
#define CST(X)  (((int16_t)(m->X << 8)) >> 5)   // sign-extend
461
0
#define MK_CST_16(HI, LO) \
462
0
  _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
463
0
  const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_));
464
0
  const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0);
465
0
#undef MK_CST_16
466
0
#undef CST
467
0
  const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00);  // alpha-green masks
468
0
  int i;
469
0
  for (i = 0; i + 4 <= num_pixels; i += 4) {
470
0
    const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
471
0
    const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
472
0
    const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
473
0
    const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
474
0
    const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
475
0
    const __m128i E = _mm_add_epi8(in, D);             // x r'  x   b'
476
0
    const __m128i F = _mm_slli_epi16(E, 8);            // r' 0   b' 0
477
0
    const __m128i G = _mm_mulhi_epi16(F, mults_b2);    // x db2  0  0
478
0
    const __m128i H = _mm_srli_epi32(G, 8);            // 0  x db2  0
479
0
    const __m128i I = _mm_add_epi8(H, F);              // r' x  b'' 0
480
0
    const __m128i J = _mm_srli_epi16(I, 8);            // 0  r'  0  b''
481
0
    const __m128i out = _mm_or_si128(J, A);
482
0
    _mm_storeu_si128((__m128i*)&dst[i], out);
483
0
  }
484
  // Fall-back to C-version for left-overs.
485
0
  if (i != num_pixels) {
486
0
    VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
487
0
  }
488
0
}
489
490
//------------------------------------------------------------------------------
491
// Color-space conversion functions
492
493
static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels,
494
0
                                  uint8_t* dst) {
495
0
  const __m128i* in = (const __m128i*)src;
496
0
  __m128i* out = (__m128i*)dst;
497
498
0
  while (num_pixels >= 32) {
499
    // Load the BGRA buffers.
500
0
    __m128i in0 = _mm_loadu_si128(in + 0);
501
0
    __m128i in1 = _mm_loadu_si128(in + 1);
502
0
    __m128i in2 = _mm_loadu_si128(in + 2);
503
0
    __m128i in3 = _mm_loadu_si128(in + 3);
504
0
    __m128i in4 = _mm_loadu_si128(in + 4);
505
0
    __m128i in5 = _mm_loadu_si128(in + 5);
506
0
    __m128i in6 = _mm_loadu_si128(in + 6);
507
0
    __m128i in7 = _mm_loadu_si128(in + 7);
508
0
    VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3);
509
0
    VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7);
510
    // At this points, in1/in5 contains red only, in2/in6 green only ...
511
    // Pack the colors in 24b RGB.
512
0
    VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7);
513
0
    _mm_storeu_si128(out + 0, in1);
514
0
    _mm_storeu_si128(out + 1, in5);
515
0
    _mm_storeu_si128(out + 2, in2);
516
0
    _mm_storeu_si128(out + 3, in6);
517
0
    _mm_storeu_si128(out + 4, in3);
518
0
    _mm_storeu_si128(out + 5, in7);
519
0
    in += 8;
520
0
    out += 6;
521
0
    num_pixels -= 32;
522
0
  }
523
  // left-overs
524
0
  if (num_pixels > 0) {
525
0
    VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
526
0
  }
527
0
}
528
529
static void ConvertBGRAToRGBA_SSE2(const uint32_t* src,
530
0
                                   int num_pixels, uint8_t* dst) {
531
0
  const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ff);
532
0
  const __m128i* in = (const __m128i*)src;
533
0
  __m128i* out = (__m128i*)dst;
534
0
  while (num_pixels >= 8) {
535
0
    const __m128i A1 = _mm_loadu_si128(in++);
536
0
    const __m128i A2 = _mm_loadu_si128(in++);
537
0
    const __m128i B1 = _mm_and_si128(A1, red_blue_mask);     // R 0 B 0
538
0
    const __m128i B2 = _mm_and_si128(A2, red_blue_mask);     // R 0 B 0
539
0
    const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1);  // 0 G 0 A
540
0
    const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2);  // 0 G 0 A
541
0
    const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1));
542
0
    const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1));
543
0
    const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1));
544
0
    const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1));
545
0
    const __m128i F1 = _mm_or_si128(E1, C1);
546
0
    const __m128i F2 = _mm_or_si128(E2, C2);
547
0
    _mm_storeu_si128(out++, F1);
548
0
    _mm_storeu_si128(out++, F2);
549
0
    num_pixels -= 8;
550
0
  }
551
  // left-overs
552
0
  if (num_pixels > 0) {
553
0
    VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
554
0
  }
555
0
}
556
557
static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src,
558
0
                                       int num_pixels, uint8_t* dst) {
559
0
  const __m128i mask_0x0f = _mm_set1_epi8(0x0f);
560
0
  const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0);
561
0
  const __m128i* in = (const __m128i*)src;
562
0
  __m128i* out = (__m128i*)dst;
563
0
  while (num_pixels >= 8) {
564
0
    const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
565
0
    const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
566
0
    const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4);  // b0b4g0g4r0r4a0a4...
567
0
    const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4);  // b2b6g2g6r2r6a2a6...
568
0
    const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h);    // b0b2b4b6g0g2g4g6...
569
0
    const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h);    // b1b3b5b7g1g3g5g7...
570
0
    const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h);    // b0...b7 | g0...g7
571
0
    const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h);    // r0...r7 | a0...a7
572
0
    const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h);   // g0...g7 | a0...a7
573
0
    const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l);   // r0...r7 | b0...b7
574
0
    const __m128i ga1 = _mm_srli_epi16(ga0, 4);         // g0-|g1-|...|a6-|a7-
575
0
    const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0);  // -r0|-r1|...|-b6|-a7
576
0
    const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f);  // g0-|g1-|...|a6-|a7-
577
0
    const __m128i rgba0 = _mm_or_si128(ga2, rb1);       // rg0..rg7 | ba0..ba7
578
0
    const __m128i rgba1 = _mm_srli_si128(rgba0, 8);     // ba0..ba7 | 0
579
#if (WEBP_SWAP_16BIT_CSP == 1)
580
    const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0);  // barg0...barg7
581
#else
582
0
    const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1);  // rgba0...rgba7
583
0
#endif
584
0
    _mm_storeu_si128(out++, rgba);
585
0
    num_pixels -= 8;
586
0
  }
587
  // left-overs
588
0
  if (num_pixels > 0) {
589
0
    VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
590
0
  }
591
0
}
592
593
static void ConvertBGRAToRGB565_SSE2(const uint32_t* src,
594
0
                                     int num_pixels, uint8_t* dst) {
595
0
  const __m128i mask_0xe0 = _mm_set1_epi8((char)0xe0);
596
0
  const __m128i mask_0xf8 = _mm_set1_epi8((char)0xf8);
597
0
  const __m128i mask_0x07 = _mm_set1_epi8(0x07);
598
0
  const __m128i* in = (const __m128i*)src;
599
0
  __m128i* out = (__m128i*)dst;
600
0
  while (num_pixels >= 8) {
601
0
    const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
602
0
    const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
603
0
    const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4);  // b0b4g0g4r0r4a0a4...
604
0
    const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4);  // b2b6g2g6r2r6a2a6...
605
0
    const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h);      // b0b2b4b6g0g2g4g6...
606
0
    const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h);      // b1b3b5b7g1g3g5g7...
607
0
    const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h);      // b0...b7 | g0...g7
608
0
    const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h);      // r0...r7 | a0...a7
609
0
    const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h);     // g0...g7 | a0...a7
610
0
    const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l);     // r0...r7 | b0...b7
611
0
    const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8);    // -r0..-r7|-b0..-b7
612
0
    const __m128i g_lo1 = _mm_srli_epi16(ga0, 5);
613
0
    const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07);  // g0-...g7-|xx (3b)
614
0
    const __m128i g_hi1 = _mm_slli_epi16(ga0, 3);
615
0
    const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0);  // -g0...-g7|xx (3b)
616
0
    const __m128i b0 = _mm_srli_si128(rb1, 8);              // -b0...-b7|0
617
0
    const __m128i rg1 = _mm_or_si128(rb1, g_lo2);           // gr0...gr7|xx
618
0
    const __m128i b1 = _mm_srli_epi16(b0, 3);
619
0
    const __m128i gb1 = _mm_or_si128(b1, g_hi2);            // bg0...bg7|xx
620
#if (WEBP_SWAP_16BIT_CSP == 1)
621
    const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1);     // rggb0...rggb7
622
#else
623
0
    const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1);     // bgrb0...bgrb7
624
0
#endif
625
0
    _mm_storeu_si128(out++, rgba);
626
0
    num_pixels -= 8;
627
0
  }
628
  // left-overs
629
0
  if (num_pixels > 0) {
630
0
    VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
631
0
  }
632
0
}
633
634
static void ConvertBGRAToBGR_SSE2(const uint32_t* src,
635
0
                                  int num_pixels, uint8_t* dst) {
636
0
  const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff);
637
0
  const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0);
638
0
  const __m128i* in = (const __m128i*)src;
639
0
  const uint8_t* const end = dst + num_pixels * 3;
640
  // the last storel_epi64 below writes 8 bytes starting at offset 18
641
0
  while (dst + 26 <= end) {
642
0
    const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
643
0
    const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
644
0
    const __m128i a0l = _mm_and_si128(bgra0, mask_l);   // bgr0|0|bgr0|0
645
0
    const __m128i a4l = _mm_and_si128(bgra4, mask_l);   // bgr0|0|bgr0|0
646
0
    const __m128i a0h = _mm_and_si128(bgra0, mask_h);   // 0|bgr0|0|bgr0
647
0
    const __m128i a4h = _mm_and_si128(bgra4, mask_h);   // 0|bgr0|0|bgr0
648
0
    const __m128i b0h = _mm_srli_epi64(a0h, 8);         // 000b|gr00|000b|gr00
649
0
    const __m128i b4h = _mm_srli_epi64(a4h, 8);         // 000b|gr00|000b|gr00
650
0
    const __m128i c0 = _mm_or_si128(a0l, b0h);          // rgbrgb00|rgbrgb00
651
0
    const __m128i c4 = _mm_or_si128(a4l, b4h);          // rgbrgb00|rgbrgb00
652
0
    const __m128i c2 = _mm_srli_si128(c0, 8);
653
0
    const __m128i c6 = _mm_srli_si128(c4, 8);
654
0
    _mm_storel_epi64((__m128i*)(dst +   0), c0);
655
0
    _mm_storel_epi64((__m128i*)(dst +   6), c2);
656
0
    _mm_storel_epi64((__m128i*)(dst +  12), c4);
657
0
    _mm_storel_epi64((__m128i*)(dst +  18), c6);
658
0
    dst += 24;
659
0
    num_pixels -= 8;
660
0
  }
661
  // left-overs
662
0
  if (num_pixels > 0) {
663
0
    VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
664
0
  }
665
0
}
666
667
//------------------------------------------------------------------------------
668
// Entry point
669
670
extern void VP8LDspInitSSE2(void);
671
672
0
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
673
0
  VP8LPredictors[5] = Predictor5_SSE2;
674
0
  VP8LPredictors[6] = Predictor6_SSE2;
675
0
  VP8LPredictors[7] = Predictor7_SSE2;
676
0
  VP8LPredictors[8] = Predictor8_SSE2;
677
0
  VP8LPredictors[9] = Predictor9_SSE2;
678
0
  VP8LPredictors[10] = Predictor10_SSE2;
679
0
  VP8LPredictors[11] = Predictor11_SSE2;
680
0
  VP8LPredictors[12] = Predictor12_SSE2;
681
0
  VP8LPredictors[13] = Predictor13_SSE2;
682
683
0
  VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
684
0
  VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
685
0
  VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
686
0
  VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
687
0
  VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
688
0
  VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
689
0
  VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
690
0
  VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
691
0
  VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
692
0
  VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
693
0
  VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
694
0
  VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
695
0
  VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
696
0
  VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
697
698
0
  VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2;
699
0
  VP8LTransformColorInverse = TransformColorInverse_SSE2;
700
701
0
  VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2;
702
0
  VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2;
703
0
  VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2;
704
0
  VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2;
705
0
  VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2;
706
0
}
707
708
#else  // !WEBP_USE_SSE2
709
710
WEBP_DSP_INIT_STUB(VP8LDspInitSSE2)
711
712
#endif  // WEBP_USE_SSE2