Coverage Report

Created: 2024-07-27 06:27

/src/libwebp/src/dsp/enc_sse2.c
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE2 version of speed-critical encoding functions.
11
//
12
// Author: Christian Duvivier (cduvivier@google.com)
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_SSE2)
17
#include <assert.h>
18
#include <stdlib.h>  // for abs()
19
#include <emmintrin.h>
20
21
#include "src/dsp/common_sse2.h"
22
#include "src/enc/cost_enc.h"
23
#include "src/enc/vp8i_enc.h"
24
25
//------------------------------------------------------------------------------
26
// Transforms (Paragraph 14.4)
27
28
// Does one inverse transform.
29
static void ITransform_One_SSE2(const uint8_t* ref, const int16_t* in,
30
0
                                uint8_t* dst) {
31
  // This implementation makes use of 16-bit fixed point versions of two
32
  // multiply constants:
33
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
34
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
35
  //
36
  // To be able to use signed 16-bit integers, we use the following trick to
37
  // have constants within range:
38
  // - Associated constants are obtained by subtracting the 16-bit fixed point
39
  //   version of one:
40
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
41
  //      K1 = 85267  =>  k1 =  20091
42
  //      K2 = 35468  =>  k2 = -30068
43
  // - The multiplication of a variable by a constant become the sum of the
44
  //   variable and the multiplication of that variable by the associated
45
  //   constant:
46
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
47
0
  const __m128i k1k2 = _mm_set_epi16(-30068, -30068, -30068, -30068,
48
0
                                     20091, 20091, 20091, 20091);
49
0
  const __m128i k2k1 = _mm_set_epi16(20091, 20091, 20091, 20091,
50
0
                                     -30068, -30068, -30068, -30068);
51
0
  const __m128i zero = _mm_setzero_si128();
52
0
  const __m128i zero_four = _mm_set_epi16(0, 0, 0, 0, 4, 4, 4, 4);
53
0
  __m128i T01, T23;
54
55
  // Load and concatenate the transform coefficients.
56
0
  const __m128i in01 = _mm_loadu_si128((const __m128i*)&in[0]);
57
0
  const __m128i in23 = _mm_loadu_si128((const __m128i*)&in[8]);
58
  // a00 a10 a20 a30   a01 a11 a21 a31
59
  // a02 a12 a22 a32   a03 a13 a23 a33
60
61
  // Vertical pass and subsequent transpose.
62
0
  {
63
0
    const __m128i in1 = _mm_unpackhi_epi64(in01, in01);
64
0
    const __m128i in3 = _mm_unpackhi_epi64(in23, in23);
65
66
    // First pass, c and d calculations are longer because of the "trick"
67
    // multiplications.
68
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
69
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
70
0
    const __m128i a_d3 = _mm_add_epi16(in01, in23);
71
0
    const __m128i b_c3 = _mm_sub_epi16(in01, in23);
72
0
    const __m128i c1d1 = _mm_mulhi_epi16(in1, k2k1);
73
0
    const __m128i c2d2 = _mm_mulhi_epi16(in3, k1k2);
74
0
    const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
75
0
    const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
76
0
    const __m128i c = _mm_add_epi16(c3, c4);
77
0
    const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
78
0
    const __m128i du = _mm_add_epi16(a_d3, d4u);
79
0
    const __m128i d = _mm_unpackhi_epi64(du, du);
80
81
    // Second pass.
82
0
    const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
83
0
    const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
84
85
0
    const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
86
0
    const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
87
0
    const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
88
89
0
    const __m128i transpose_0 = _mm_unpacklo_epi16(tmp01, tmp23);
90
0
    const __m128i transpose_1 = _mm_unpackhi_epi16(tmp01, tmp23);
91
    // a00 a20 a01 a21   a02 a22 a03 a23
92
    // a10 a30 a11 a31   a12 a32 a13 a33
93
94
0
    T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
95
0
    T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
96
    // a00 a10 a20 a30   a01 a11 a21 a31
97
    // a02 a12 a22 a32   a03 a13 a23 a33
98
0
  }
99
100
  // Horizontal pass and subsequent transpose.
101
0
  {
102
0
    const __m128i T1 = _mm_unpackhi_epi64(T01, T01);
103
0
    const __m128i T3 = _mm_unpackhi_epi64(T23, T23);
104
105
    // First pass, c and d calculations are longer because of the "trick"
106
    // multiplications.
107
0
    const __m128i dc = _mm_add_epi16(T01, zero_four);
108
109
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
110
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
111
0
    const __m128i a_d3 = _mm_add_epi16(dc, T23);
112
0
    const __m128i b_c3 = _mm_sub_epi16(dc, T23);
113
0
    const __m128i c1d1 = _mm_mulhi_epi16(T1, k2k1);
114
0
    const __m128i c2d2 = _mm_mulhi_epi16(T3, k1k2);
115
0
    const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
116
0
    const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
117
0
    const __m128i c = _mm_add_epi16(c3, c4);
118
0
    const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
119
0
    const __m128i du = _mm_add_epi16(a_d3, d4u);
120
0
    const __m128i d = _mm_unpackhi_epi64(du, du);
121
122
    // Second pass.
123
0
    const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
124
0
    const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
125
126
0
    const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
127
0
    const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
128
0
    const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
129
130
0
    const __m128i shifted01 = _mm_srai_epi16(tmp01, 3);
131
0
    const __m128i shifted23 = _mm_srai_epi16(tmp23, 3);
132
    // a00 a01 a02 a03   a10 a11 a12 a13
133
    // a20 a21 a22 a23   a30 a31 a32 a33
134
135
0
    const __m128i transpose_0 = _mm_unpacklo_epi16(shifted01, shifted23);
136
0
    const __m128i transpose_1 = _mm_unpackhi_epi16(shifted01, shifted23);
137
    // a00 a20 a01 a21   a02 a22 a03 a23
138
    // a10 a30 a11 a31   a12 a32 a13 a33
139
140
0
    T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
141
0
    T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
142
    // a00 a10 a20 a30   a01 a11 a21 a31
143
    // a02 a12 a22 a32   a03 a13 a23 a33
144
0
  }
145
146
  // Add inverse transform to 'ref' and store.
147
0
  {
148
    // Load the reference(s).
149
0
    __m128i ref01, ref23, ref0123;
150
0
    int32_t buf[4];
151
152
    // Load four bytes/pixels per line.
153
0
    const __m128i ref0 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[0 * BPS]));
154
0
    const __m128i ref1 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[1 * BPS]));
155
0
    const __m128i ref2 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[2 * BPS]));
156
0
    const __m128i ref3 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[3 * BPS]));
157
0
    ref01 = _mm_unpacklo_epi32(ref0, ref1);
158
0
    ref23 = _mm_unpacklo_epi32(ref2, ref3);
159
160
    // Convert to 16b.
161
0
    ref01 = _mm_unpacklo_epi8(ref01, zero);
162
0
    ref23 = _mm_unpacklo_epi8(ref23, zero);
163
    // Add the inverse transform(s).
164
0
    ref01 = _mm_add_epi16(ref01, T01);
165
0
    ref23 = _mm_add_epi16(ref23, T23);
166
    // Unsigned saturate to 8b.
167
0
    ref0123 = _mm_packus_epi16(ref01, ref23);
168
169
0
    _mm_storeu_si128((__m128i *)buf, ref0123);
170
171
    // Store four bytes/pixels per line.
172
0
    WebPInt32ToMem(&dst[0 * BPS], buf[0]);
173
0
    WebPInt32ToMem(&dst[1 * BPS], buf[1]);
174
0
    WebPInt32ToMem(&dst[2 * BPS], buf[2]);
175
0
    WebPInt32ToMem(&dst[3 * BPS], buf[3]);
176
0
  }
177
0
}
178
179
// Does two inverse transforms.
180
static void ITransform_Two_SSE2(const uint8_t* ref, const int16_t* in,
181
0
                                uint8_t* dst) {
182
  // This implementation makes use of 16-bit fixed point versions of two
183
  // multiply constants:
184
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
185
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
186
  //
187
  // To be able to use signed 16-bit integers, we use the following trick to
188
  // have constants within range:
189
  // - Associated constants are obtained by subtracting the 16-bit fixed point
190
  //   version of one:
191
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
192
  //      K1 = 85267  =>  k1 =  20091
193
  //      K2 = 35468  =>  k2 = -30068
194
  // - The multiplication of a variable by a constant become the sum of the
195
  //   variable and the multiplication of that variable by the associated
196
  //   constant:
197
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
198
0
  const __m128i k1 = _mm_set1_epi16(20091);
199
0
  const __m128i k2 = _mm_set1_epi16(-30068);
200
0
  __m128i T0, T1, T2, T3;
201
202
  // Load and concatenate the transform coefficients (we'll do two inverse
203
  // transforms in parallel).
204
0
  __m128i in0, in1, in2, in3;
205
0
  {
206
0
    const __m128i tmp0 = _mm_loadu_si128((const __m128i*)&in[0]);
207
0
    const __m128i tmp1 = _mm_loadu_si128((const __m128i*)&in[8]);
208
0
    const __m128i tmp2 = _mm_loadu_si128((const __m128i*)&in[16]);
209
0
    const __m128i tmp3 = _mm_loadu_si128((const __m128i*)&in[24]);
210
0
    in0 = _mm_unpacklo_epi64(tmp0, tmp2);
211
0
    in1 = _mm_unpackhi_epi64(tmp0, tmp2);
212
0
    in2 = _mm_unpacklo_epi64(tmp1, tmp3);
213
0
    in3 = _mm_unpackhi_epi64(tmp1, tmp3);
214
    // a00 a10 a20 a30   b00 b10 b20 b30
215
    // a01 a11 a21 a31   b01 b11 b21 b31
216
    // a02 a12 a22 a32   b02 b12 b22 b32
217
    // a03 a13 a23 a33   b03 b13 b23 b33
218
0
  }
219
220
  // Vertical pass and subsequent transpose.
221
0
  {
222
    // First pass, c and d calculations are longer because of the "trick"
223
    // multiplications.
224
0
    const __m128i a = _mm_add_epi16(in0, in2);
225
0
    const __m128i b = _mm_sub_epi16(in0, in2);
226
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
227
0
    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
228
0
    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
229
0
    const __m128i c3 = _mm_sub_epi16(in1, in3);
230
0
    const __m128i c4 = _mm_sub_epi16(c1, c2);
231
0
    const __m128i c = _mm_add_epi16(c3, c4);
232
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
233
0
    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
234
0
    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
235
0
    const __m128i d3 = _mm_add_epi16(in1, in3);
236
0
    const __m128i d4 = _mm_add_epi16(d1, d2);
237
0
    const __m128i d = _mm_add_epi16(d3, d4);
238
239
    // Second pass.
240
0
    const __m128i tmp0 = _mm_add_epi16(a, d);
241
0
    const __m128i tmp1 = _mm_add_epi16(b, c);
242
0
    const __m128i tmp2 = _mm_sub_epi16(b, c);
243
0
    const __m128i tmp3 = _mm_sub_epi16(a, d);
244
245
    // Transpose the two 4x4.
246
0
    VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
247
0
  }
248
249
  // Horizontal pass and subsequent transpose.
250
0
  {
251
    // First pass, c and d calculations are longer because of the "trick"
252
    // multiplications.
253
0
    const __m128i four = _mm_set1_epi16(4);
254
0
    const __m128i dc = _mm_add_epi16(T0, four);
255
0
    const __m128i a =  _mm_add_epi16(dc, T2);
256
0
    const __m128i b =  _mm_sub_epi16(dc, T2);
257
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
258
0
    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
259
0
    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
260
0
    const __m128i c3 = _mm_sub_epi16(T1, T3);
261
0
    const __m128i c4 = _mm_sub_epi16(c1, c2);
262
0
    const __m128i c = _mm_add_epi16(c3, c4);
263
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
264
0
    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
265
0
    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
266
0
    const __m128i d3 = _mm_add_epi16(T1, T3);
267
0
    const __m128i d4 = _mm_add_epi16(d1, d2);
268
0
    const __m128i d = _mm_add_epi16(d3, d4);
269
270
    // Second pass.
271
0
    const __m128i tmp0 = _mm_add_epi16(a, d);
272
0
    const __m128i tmp1 = _mm_add_epi16(b, c);
273
0
    const __m128i tmp2 = _mm_sub_epi16(b, c);
274
0
    const __m128i tmp3 = _mm_sub_epi16(a, d);
275
0
    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
276
0
    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
277
0
    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
278
0
    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
279
280
    // Transpose the two 4x4.
281
0
    VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
282
0
                           &T2, &T3);
283
0
  }
284
285
  // Add inverse transform to 'ref' and store.
286
0
  {
287
0
    const __m128i zero = _mm_setzero_si128();
288
    // Load the reference(s).
289
0
    __m128i ref0, ref1, ref2, ref3;
290
    // Load eight bytes/pixels per line.
291
0
    ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
292
0
    ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
293
0
    ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
294
0
    ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
295
    // Convert to 16b.
296
0
    ref0 = _mm_unpacklo_epi8(ref0, zero);
297
0
    ref1 = _mm_unpacklo_epi8(ref1, zero);
298
0
    ref2 = _mm_unpacklo_epi8(ref2, zero);
299
0
    ref3 = _mm_unpacklo_epi8(ref3, zero);
300
    // Add the inverse transform(s).
301
0
    ref0 = _mm_add_epi16(ref0, T0);
302
0
    ref1 = _mm_add_epi16(ref1, T1);
303
0
    ref2 = _mm_add_epi16(ref2, T2);
304
0
    ref3 = _mm_add_epi16(ref3, T3);
305
    // Unsigned saturate to 8b.
306
0
    ref0 = _mm_packus_epi16(ref0, ref0);
307
0
    ref1 = _mm_packus_epi16(ref1, ref1);
308
0
    ref2 = _mm_packus_epi16(ref2, ref2);
309
0
    ref3 = _mm_packus_epi16(ref3, ref3);
310
    // Store eight bytes/pixels per line.
311
0
    _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
312
0
    _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
313
0
    _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
314
0
    _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
315
0
  }
316
0
}
317
318
// Does one or two inverse transforms.
319
static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
320
0
                            int do_two) {
321
0
  if (do_two) {
322
0
    ITransform_Two_SSE2(ref, in, dst);
323
0
  } else {
324
0
    ITransform_One_SSE2(ref, in, dst);
325
0
  }
326
0
}
327
328
static void FTransformPass1_SSE2(const __m128i* const in01,
329
                                 const __m128i* const in23,
330
                                 __m128i* const out01,
331
0
                                 __m128i* const out32) {
332
0
  const __m128i k937 = _mm_set1_epi32(937);
333
0
  const __m128i k1812 = _mm_set1_epi32(1812);
334
335
0
  const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
336
0
  const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
337
0
  const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
338
0
                                            2217, 5352, 2217, 5352);
339
0
  const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
340
0
                                            -5352, 2217, -5352, 2217);
341
342
  // *in01 = 00 01 10 11 02 03 12 13
343
  // *in23 = 20 21 30 31 22 23 32 33
344
0
  const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
345
0
  const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
346
  // 00 01 10 11 03 02 13 12
347
  // 20 21 30 31 23 22 33 32
348
0
  const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
349
0
  const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
350
  // 00 01 10 11 20 21 30 31
351
  // 03 02 13 12 23 22 33 32
352
0
  const __m128i a01 = _mm_add_epi16(s01, s32);
353
0
  const __m128i a32 = _mm_sub_epi16(s01, s32);
354
  // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
355
  // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
356
357
0
  const __m128i tmp0   = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
358
0
  const __m128i tmp2   = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
359
0
  const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
360
0
  const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
361
0
  const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
362
0
  const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
363
0
  const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
364
0
  const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
365
0
  const __m128i s03    = _mm_packs_epi32(tmp0, tmp2);
366
0
  const __m128i s12    = _mm_packs_epi32(tmp1, tmp3);
367
0
  const __m128i s_lo   = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
368
0
  const __m128i s_hi   = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
369
0
  const __m128i v23    = _mm_unpackhi_epi32(s_lo, s_hi);
370
0
  *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
371
0
  *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
372
0
}
373
374
static void FTransformPass2_SSE2(const __m128i* const v01,
375
                                 const __m128i* const v32,
376
0
                                 int16_t* out) {
377
0
  const __m128i zero = _mm_setzero_si128();
378
0
  const __m128i seven = _mm_set1_epi16(7);
379
0
  const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
380
0
                                           5352,  2217, 5352,  2217);
381
0
  const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
382
0
                                           2217, -5352, 2217, -5352);
383
0
  const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
384
0
  const __m128i k51000 = _mm_set1_epi32(51000);
385
386
  // Same operations are done on the (0,3) and (1,2) pairs.
387
  // a3 = v0 - v3
388
  // a2 = v1 - v2
389
0
  const __m128i a32 = _mm_sub_epi16(*v01, *v32);
390
0
  const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
391
392
0
  const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
393
0
  const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
394
0
  const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
395
0
  const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
396
0
  const __m128i d3 = _mm_add_epi32(c3, k51000);
397
0
  const __m128i e1 = _mm_srai_epi32(d1, 16);
398
0
  const __m128i e3 = _mm_srai_epi32(d3, 16);
399
  // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
400
  // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
401
0
  const __m128i f1 = _mm_packs_epi32(e1, e1);
402
0
  const __m128i f3 = _mm_packs_epi32(e3, e3);
403
  // g1 = f1 + (a3 != 0);
404
  // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
405
  // desired (0, 1), we add one earlier through k12000_plus_one.
406
  // -> g1 = f1 + 1 - (a3 == 0)
407
0
  const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
408
409
  // a0 = v0 + v3
410
  // a1 = v1 + v2
411
0
  const __m128i a01 = _mm_add_epi16(*v01, *v32);
412
0
  const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
413
0
  const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
414
0
  const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
415
0
  const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
416
  // d0 = (a0 + a1 + 7) >> 4;
417
  // d2 = (a0 - a1 + 7) >> 4;
418
0
  const __m128i d0 = _mm_srai_epi16(c0, 4);
419
0
  const __m128i d2 = _mm_srai_epi16(c2, 4);
420
421
0
  const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
422
0
  const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
423
0
  _mm_storeu_si128((__m128i*)&out[0], d0_g1);
424
0
  _mm_storeu_si128((__m128i*)&out[8], d2_f3);
425
0
}
426
427
static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref,
428
0
                            int16_t* out) {
429
0
  const __m128i zero = _mm_setzero_si128();
430
  // Load src.
431
0
  const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
432
0
  const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
433
0
  const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
434
0
  const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
435
  // 00 01 02 03 *
436
  // 10 11 12 13 *
437
  // 20 21 22 23 *
438
  // 30 31 32 33 *
439
  // Shuffle.
440
0
  const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
441
0
  const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
442
  // 00 01 10 11 02 03 12 13 * * ...
443
  // 20 21 30 31 22 22 32 33 * * ...
444
445
  // Load ref.
446
0
  const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
447
0
  const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
448
0
  const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
449
0
  const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
450
0
  const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
451
0
  const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
452
453
  // Convert both to 16 bit.
454
0
  const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
455
0
  const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
456
0
  const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
457
0
  const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
458
459
  // Compute the difference.
460
0
  const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
461
0
  const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
462
0
  __m128i v01, v32;
463
464
  // First pass
465
0
  FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
466
467
  // Second pass
468
0
  FTransformPass2_SSE2(&v01, &v32, out);
469
0
}
470
471
static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref,
472
0
                             int16_t* out) {
473
0
  const __m128i zero = _mm_setzero_si128();
474
475
  // Load src and convert to 16b.
476
0
  const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
477
0
  const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
478
0
  const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
479
0
  const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
480
0
  const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
481
0
  const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
482
0
  const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
483
0
  const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
484
  // Load ref and convert to 16b.
485
0
  const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
486
0
  const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
487
0
  const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
488
0
  const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
489
0
  const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
490
0
  const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
491
0
  const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
492
0
  const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
493
  // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
494
0
  const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
495
0
  const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
496
0
  const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
497
0
  const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
498
499
  // Unpack and shuffle
500
  // 00 01 02 03   0 0 0 0
501
  // 10 11 12 13   0 0 0 0
502
  // 20 21 22 23   0 0 0 0
503
  // 30 31 32 33   0 0 0 0
504
0
  const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
505
0
  const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
506
0
  const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
507
0
  const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
508
0
  __m128i v01l, v32l;
509
0
  __m128i v01h, v32h;
510
511
  // First pass
512
0
  FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
513
0
  FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
514
515
  // Second pass
516
0
  FTransformPass2_SSE2(&v01l, &v32l, out + 0);
517
0
  FTransformPass2_SSE2(&v01h, &v32h, out + 16);
518
0
}
519
520
0
static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) {
521
0
  const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
522
0
  const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
523
0
  const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
524
0
  const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
525
0
  const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
526
0
  const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
527
0
  const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
528
0
  const __m128i B0 = _mm_adds_epi16(A01, A23);    // a0 | a1 | ...
529
0
  const __m128i B1 = _mm_subs_epi16(A01, A23);    // a3 | a2 | ...
530
0
  const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2 | ...
531
0
  const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1 | ...
532
0
  const __m128i D = _mm_unpacklo_epi64(C0, C1);   // a0 a1 a3 a2 a3 a2 a0 a1
533
0
  *out = _mm_madd_epi16(D, kMult);
534
0
}
535
536
0
static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) {
537
  // Input is 12b signed.
538
0
  __m128i row0, row1, row2, row3;
539
  // Rows are 14b signed.
540
0
  FTransformWHTRow_SSE2(in + 0 * 64, &row0);
541
0
  FTransformWHTRow_SSE2(in + 1 * 64, &row1);
542
0
  FTransformWHTRow_SSE2(in + 2 * 64, &row2);
543
0
  FTransformWHTRow_SSE2(in + 3 * 64, &row3);
544
545
0
  {
546
    // The a* are 15b signed.
547
0
    const __m128i a0 = _mm_add_epi32(row0, row2);
548
0
    const __m128i a1 = _mm_add_epi32(row1, row3);
549
0
    const __m128i a2 = _mm_sub_epi32(row1, row3);
550
0
    const __m128i a3 = _mm_sub_epi32(row0, row2);
551
0
    const __m128i a0a3 = _mm_packs_epi32(a0, a3);
552
0
    const __m128i a1a2 = _mm_packs_epi32(a1, a2);
553
554
    // The b* are 16b signed.
555
0
    const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
556
0
    const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
557
0
    const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
558
0
    const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
559
560
0
    _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
561
0
    _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
562
0
  }
563
0
}
564
565
//------------------------------------------------------------------------------
566
// Compute susceptibility based on DCT-coeff histograms:
567
// the higher, the "easier" the macroblock is to compress.
568
569
static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred,
570
                                  int start_block, int end_block,
571
0
                                  VP8Histogram* const histo) {
572
0
  const __m128i zero = _mm_setzero_si128();
573
0
  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
574
0
  int j;
575
0
  int distribution[MAX_COEFF_THRESH + 1] = { 0 };
576
0
  for (j = start_block; j < end_block; ++j) {
577
0
    int16_t out[16];
578
0
    int k;
579
580
0
    FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
581
582
    // Convert coefficients to bin (within out[]).
583
0
    {
584
      // Load.
585
0
      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
586
0
      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
587
0
      const __m128i d0 = _mm_sub_epi16(zero, out0);
588
0
      const __m128i d1 = _mm_sub_epi16(zero, out1);
589
0
      const __m128i abs0 = _mm_max_epi16(out0, d0);   // abs(v), 16b
590
0
      const __m128i abs1 = _mm_max_epi16(out1, d1);
591
      // v = abs(out) >> 3
592
0
      const __m128i v0 = _mm_srai_epi16(abs0, 3);
593
0
      const __m128i v1 = _mm_srai_epi16(abs1, 3);
594
      // bin = min(v, MAX_COEFF_THRESH)
595
0
      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
596
0
      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
597
      // Store.
598
0
      _mm_storeu_si128((__m128i*)&out[0], bin0);
599
0
      _mm_storeu_si128((__m128i*)&out[8], bin1);
600
0
    }
601
602
    // Convert coefficients to bin.
603
0
    for (k = 0; k < 16; ++k) {
604
0
      ++distribution[out[k]];
605
0
    }
606
0
  }
607
0
  VP8SetHistogramData(distribution, histo);
608
0
}
609
610
//------------------------------------------------------------------------------
611
// Intra predictions
612
613
// helper for chroma-DC predictions
614
0
static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
615
0
  int j;
616
0
  const __m128i values = _mm_set1_epi8((char)v);
617
0
  for (j = 0; j < 8; ++j) {
618
0
    _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
619
0
  }
620
0
}
621
622
0
static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
623
0
  int j;
624
0
  const __m128i values = _mm_set1_epi8((char)v);
625
0
  for (j = 0; j < 16; ++j) {
626
0
    _mm_store_si128((__m128i*)(dst + j * BPS), values);
627
0
  }
628
0
}
629
630
0
static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
631
0
  if (size == 4) {
632
0
    int j;
633
0
    for (j = 0; j < 4; ++j) {
634
0
      memset(dst + j * BPS, value, 4);
635
0
    }
636
0
  } else if (size == 8) {
637
0
    Put8x8uv_SSE2(value, dst);
638
0
  } else {
639
0
    Put16_SSE2(value, dst);
640
0
  }
641
0
}
642
643
0
static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) {
644
0
  int j;
645
0
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
646
0
  for (j = 0; j < 8; ++j) {
647
0
    _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
648
0
  }
649
0
}
650
651
0
static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) {
652
0
  const __m128i top_values = _mm_load_si128((const __m128i*)top);
653
0
  int j;
654
0
  for (j = 0; j < 16; ++j) {
655
0
    _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
656
0
  }
657
0
}
658
659
static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst,
660
0
                                          const uint8_t* top, int size) {
661
0
  if (top != NULL) {
662
0
    if (size == 8) {
663
0
      VE8uv_SSE2(dst, top);
664
0
    } else {
665
0
      VE16_SSE2(dst, top);
666
0
    }
667
0
  } else {
668
0
    Fill_SSE2(dst, 127, size);
669
0
  }
670
0
}
671
672
0
static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) {
673
0
  int j;
674
0
  for (j = 0; j < 8; ++j) {
675
0
    const __m128i values = _mm_set1_epi8((char)left[j]);
676
0
    _mm_storel_epi64((__m128i*)dst, values);
677
0
    dst += BPS;
678
0
  }
679
0
}
680
681
0
static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) {
682
0
  int j;
683
0
  for (j = 0; j < 16; ++j) {
684
0
    const __m128i values = _mm_set1_epi8((char)left[j]);
685
0
    _mm_store_si128((__m128i*)dst, values);
686
0
    dst += BPS;
687
0
  }
688
0
}
689
690
static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst,
691
0
                                            const uint8_t* left, int size) {
692
0
  if (left != NULL) {
693
0
    if (size == 8) {
694
0
      HE8uv_SSE2(dst, left);
695
0
    } else {
696
0
      HE16_SSE2(dst, left);
697
0
    }
698
0
  } else {
699
0
    Fill_SSE2(dst, 129, size);
700
0
  }
701
0
}
702
703
static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left,
704
0
                                const uint8_t* top, int size) {
705
0
  const __m128i zero = _mm_setzero_si128();
706
0
  int y;
707
0
  if (size == 8) {
708
0
    const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
709
0
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
710
0
    for (y = 0; y < 8; ++y, dst += BPS) {
711
0
      const int val = left[y] - left[-1];
712
0
      const __m128i base = _mm_set1_epi16(val);
713
0
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
714
0
      _mm_storel_epi64((__m128i*)dst, out);
715
0
    }
716
0
  } else {
717
0
    const __m128i top_values = _mm_load_si128((const __m128i*)top);
718
0
    const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
719
0
    const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
720
0
    for (y = 0; y < 16; ++y, dst += BPS) {
721
0
      const int val = left[y] - left[-1];
722
0
      const __m128i base = _mm_set1_epi16(val);
723
0
      const __m128i out_0 = _mm_add_epi16(base, top_base_0);
724
0
      const __m128i out_1 = _mm_add_epi16(base, top_base_1);
725
0
      const __m128i out = _mm_packus_epi16(out_0, out_1);
726
0
      _mm_store_si128((__m128i*)dst, out);
727
0
    }
728
0
  }
729
0
}
730
731
static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left,
732
0
                                        const uint8_t* top, int size) {
733
0
  if (left != NULL) {
734
0
    if (top != NULL) {
735
0
      TM_SSE2(dst, left, top, size);
736
0
    } else {
737
0
      HorizontalPred_SSE2(dst, left, size);
738
0
    }
739
0
  } else {
740
    // true motion without left samples (hence: with default 129 value)
741
    // is equivalent to VE prediction where you just copy the top samples.
742
    // Note that if top samples are not available, the default value is
743
    // then 129, and not 127 as in the VerticalPred case.
744
0
    if (top != NULL) {
745
0
      VerticalPred_SSE2(dst, top, size);
746
0
    } else {
747
0
      Fill_SSE2(dst, 129, size);
748
0
    }
749
0
  }
750
0
}
751
752
static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left,
753
0
                                   const uint8_t* top) {
754
0
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
755
0
  const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
756
0
  const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
757
0
  const int DC = VP8HorizontalAdd8b(&combined) + 8;
758
0
  Put8x8uv_SSE2(DC >> 4, dst);
759
0
}
760
761
0
static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
762
0
  const __m128i zero = _mm_setzero_si128();
763
0
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
764
0
  const __m128i sum = _mm_sad_epu8(top_values, zero);
765
0
  const int DC = _mm_cvtsi128_si32(sum) + 4;
766
0
  Put8x8uv_SSE2(DC >> 3, dst);
767
0
}
768
769
0
static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) {
770
  // 'left' is contiguous so we can reuse the top summation.
771
0
  DC8uvNoLeft_SSE2(dst, left);
772
0
}
773
774
0
static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
775
0
  Put8x8uv_SSE2(0x80, dst);
776
0
}
777
778
static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left,
779
0
                                       const uint8_t* top) {
780
0
  if (top != NULL) {
781
0
    if (left != NULL) {  // top and left present
782
0
      DC8uv_SSE2(dst, left, top);
783
0
    } else {  // top, but no left
784
0
      DC8uvNoLeft_SSE2(dst, top);
785
0
    }
786
0
  } else if (left != NULL) {  // left but no top
787
0
    DC8uvNoTop_SSE2(dst, left);
788
0
  } else {  // no top, no left, nothing.
789
0
    DC8uvNoTopLeft_SSE2(dst);
790
0
  }
791
0
}
792
793
static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left,
794
0
                                  const uint8_t* top) {
795
0
  const __m128i top_row = _mm_load_si128((const __m128i*)top);
796
0
  const __m128i left_row = _mm_load_si128((const __m128i*)left);
797
0
  const int DC =
798
0
      VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
799
0
  Put16_SSE2(DC >> 5, dst);
800
0
}
801
802
0
static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
803
0
  const __m128i top_row = _mm_load_si128((const __m128i*)top);
804
0
  const int DC = VP8HorizontalAdd8b(&top_row) + 8;
805
0
  Put16_SSE2(DC >> 4, dst);
806
0
}
807
808
0
static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) {
809
  // 'left' is contiguous so we can reuse the top summation.
810
0
  DC16NoLeft_SSE2(dst, left);
811
0
}
812
813
0
static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
814
0
  Put16_SSE2(0x80, dst);
815
0
}
816
817
static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left,
818
0
                                      const uint8_t* top) {
819
0
  if (top != NULL) {
820
0
    if (left != NULL) {  // top and left present
821
0
      DC16_SSE2(dst, left, top);
822
0
    } else {  // top, but no left
823
0
      DC16NoLeft_SSE2(dst, top);
824
0
    }
825
0
  } else if (left != NULL) {  // left but no top
826
0
    DC16NoTop_SSE2(dst, left);
827
0
  } else {  // no top, no left, nothing.
828
0
    DC16NoTopLeft_SSE2(dst);
829
0
  }
830
0
}
831
832
//------------------------------------------------------------------------------
833
// 4x4 predictions
834
835
0
#define DST(x, y) dst[(x) + (y) * BPS]
836
0
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
837
0
#define AVG2(a, b) (((a) + (b) + 1) >> 1)
838
839
// We use the following 8b-arithmetic tricks:
840
//     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
841
//   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
842
// and:
843
//     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
844
//   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
845
//   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
846
847
static WEBP_INLINE void VE4_SSE2(uint8_t* dst,
848
0
                                 const uint8_t* top) {  // vertical
849
0
  const __m128i one = _mm_set1_epi8(1);
850
0
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
851
0
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
852
0
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
853
0
  const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
854
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
855
0
  const __m128i b = _mm_subs_epu8(a, lsb);
856
0
  const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
857
0
  const int vals = _mm_cvtsi128_si32(avg);
858
0
  int i;
859
0
  for (i = 0; i < 4; ++i) {
860
0
    WebPInt32ToMem(dst + i * BPS, vals);
861
0
  }
862
0
}
863
864
static WEBP_INLINE void HE4_SSE2(uint8_t* dst,
865
0
                                 const uint8_t* top) {  // horizontal
866
0
  const int X = top[-1];
867
0
  const int I = top[-2];
868
0
  const int J = top[-3];
869
0
  const int K = top[-4];
870
0
  const int L = top[-5];
871
0
  WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
872
0
  WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
873
0
  WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
874
0
  WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
875
0
}
876
877
0
static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) {
878
0
  uint32_t dc = 4;
879
0
  int i;
880
0
  for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
881
0
  Fill_SSE2(dst, dc >> 3, 4);
882
0
}
883
884
static WEBP_INLINE void LD4_SSE2(uint8_t* dst,
885
0
                                 const uint8_t* top) {  // Down-Left
886
0
  const __m128i one = _mm_set1_epi8(1);
887
0
  const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
888
0
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
889
0
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
890
0
  const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
891
0
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
892
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
893
0
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
894
0
  const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
895
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
896
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
897
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
898
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
899
0
}
900
901
static WEBP_INLINE void VR4_SSE2(uint8_t* dst,
902
0
                                 const uint8_t* top) {  // Vertical-Right
903
0
  const __m128i one = _mm_set1_epi8(1);
904
0
  const int I = top[-2];
905
0
  const int J = top[-3];
906
0
  const int K = top[-4];
907
0
  const int X = top[-1];
908
0
  const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
909
0
  const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
910
0
  const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
911
0
  const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
912
0
  const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
913
0
  const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
914
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
915
0
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
916
0
  const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
917
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
918
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
919
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
920
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
921
922
  // these two are hard to implement in SSE2, so we keep the C-version:
923
0
  DST(0, 2) = AVG3(J, I, X);
924
0
  DST(0, 3) = AVG3(K, J, I);
925
0
}
926
927
static WEBP_INLINE void VL4_SSE2(uint8_t* dst,
928
0
                                 const uint8_t* top) {  // Vertical-Left
929
0
  const __m128i one = _mm_set1_epi8(1);
930
0
  const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
931
0
  const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
932
0
  const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
933
0
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
934
0
  const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
935
0
  const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
936
0
  const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
937
0
  const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
938
0
  const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
939
0
  const __m128i abbc = _mm_or_si128(ab, bc);
940
0
  const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
941
0
  const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
942
0
  const uint32_t extra_out =
943
0
      (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
944
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
945
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
946
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
947
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
948
949
  // these two are hard to get and irregular
950
0
  DST(3, 2) = (extra_out >> 0) & 0xff;
951
0
  DST(3, 3) = (extra_out >> 8) & 0xff;
952
0
}
953
954
static WEBP_INLINE void RD4_SSE2(uint8_t* dst,
955
0
                                 const uint8_t* top) {  // Down-right
956
0
  const __m128i one = _mm_set1_epi8(1);
957
0
  const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
958
0
  const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
959
0
  const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
960
0
  const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
961
0
  const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
962
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
963
0
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
964
0
  const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
965
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
966
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
967
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
968
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
969
0
}
970
971
0
static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) {
972
0
  const int I = top[-2];
973
0
  const int J = top[-3];
974
0
  const int K = top[-4];
975
0
  const int L = top[-5];
976
0
  DST(0, 0) =             AVG2(I, J);
977
0
  DST(2, 0) = DST(0, 1) = AVG2(J, K);
978
0
  DST(2, 1) = DST(0, 2) = AVG2(K, L);
979
0
  DST(1, 0) =             AVG3(I, J, K);
980
0
  DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
981
0
  DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
982
0
  DST(3, 2) = DST(2, 2) =
983
0
  DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
984
0
}
985
986
0
static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) {
987
0
  const int X = top[-1];
988
0
  const int I = top[-2];
989
0
  const int J = top[-3];
990
0
  const int K = top[-4];
991
0
  const int L = top[-5];
992
0
  const int A = top[0];
993
0
  const int B = top[1];
994
0
  const int C = top[2];
995
996
0
  DST(0, 0) = DST(2, 1) = AVG2(I, X);
997
0
  DST(0, 1) = DST(2, 2) = AVG2(J, I);
998
0
  DST(0, 2) = DST(2, 3) = AVG2(K, J);
999
0
  DST(0, 3)             = AVG2(L, K);
1000
1001
0
  DST(3, 0)             = AVG3(A, B, C);
1002
0
  DST(2, 0)             = AVG3(X, A, B);
1003
0
  DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
1004
0
  DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
1005
0
  DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
1006
0
  DST(1, 3)             = AVG3(L, K, J);
1007
0
}
1008
1009
0
static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) {
1010
0
  const __m128i zero = _mm_setzero_si128();
1011
0
  const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1012
0
  const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1013
0
  int y;
1014
0
  for (y = 0; y < 4; ++y, dst += BPS) {
1015
0
    const int val = top[-2 - y] - top[-1];
1016
0
    const __m128i base = _mm_set1_epi16(val);
1017
0
    const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1018
0
    WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1019
0
  }
1020
0
}
1021
1022
#undef DST
1023
#undef AVG3
1024
#undef AVG2
1025
1026
//------------------------------------------------------------------------------
1027
// luma 4x4 prediction
1028
1029
// Left samples are top[-5 .. -2], top_left is top[-1], top are
1030
// located at top[0..3], and top right is top[4..7]
1031
0
static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) {
1032
0
  DC4_SSE2(I4DC4 + dst, top);
1033
0
  TM4_SSE2(I4TM4 + dst, top);
1034
0
  VE4_SSE2(I4VE4 + dst, top);
1035
0
  HE4_SSE2(I4HE4 + dst, top);
1036
0
  RD4_SSE2(I4RD4 + dst, top);
1037
0
  VR4_SSE2(I4VR4 + dst, top);
1038
0
  LD4_SSE2(I4LD4 + dst, top);
1039
0
  VL4_SSE2(I4VL4 + dst, top);
1040
0
  HD4_SSE2(I4HD4 + dst, top);
1041
0
  HU4_SSE2(I4HU4 + dst, top);
1042
0
}
1043
1044
//------------------------------------------------------------------------------
1045
// Chroma 8x8 prediction (paragraph 12.2)
1046
1047
static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left,
1048
0
                                  const uint8_t* top) {
1049
  // U block
1050
0
  DC8uvMode_SSE2(C8DC8 + dst, left, top);
1051
0
  VerticalPred_SSE2(C8VE8 + dst, top, 8);
1052
0
  HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1053
0
  TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1054
  // V block
1055
0
  dst += 8;
1056
0
  if (top != NULL) top += 8;
1057
0
  if (left != NULL) left += 16;
1058
0
  DC8uvMode_SSE2(C8DC8 + dst, left, top);
1059
0
  VerticalPred_SSE2(C8VE8 + dst, top, 8);
1060
0
  HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1061
0
  TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1062
0
}
1063
1064
//------------------------------------------------------------------------------
1065
// luma 16x16 prediction (paragraph 12.3)
1066
1067
static void Intra16Preds_SSE2(uint8_t* dst,
1068
0
                              const uint8_t* left, const uint8_t* top) {
1069
0
  DC16Mode_SSE2(I16DC16 + dst, left, top);
1070
0
  VerticalPred_SSE2(I16VE16 + dst, top, 16);
1071
0
  HorizontalPred_SSE2(I16HE16 + dst, left, 16);
1072
0
  TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
1073
0
}
1074
1075
//------------------------------------------------------------------------------
1076
// Metric
1077
1078
static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
1079
                                                   const __m128i b,
1080
0
                                                   __m128i* const sum) {
1081
  // take abs(a-b) in 8b
1082
0
  const __m128i a_b = _mm_subs_epu8(a, b);
1083
0
  const __m128i b_a = _mm_subs_epu8(b, a);
1084
0
  const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
1085
  // zero-extend to 16b
1086
0
  const __m128i zero = _mm_setzero_si128();
1087
0
  const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
1088
0
  const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
1089
  // multiply with self
1090
0
  const __m128i sum1 = _mm_madd_epi16(C0, C0);
1091
0
  const __m128i sum2 = _mm_madd_epi16(C1, C1);
1092
0
  *sum = _mm_add_epi32(sum1, sum2);
1093
0
}
1094
1095
static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b,
1096
0
                                     int num_pairs) {
1097
0
  __m128i sum = _mm_setzero_si128();
1098
0
  int32_t tmp[4];
1099
0
  int i;
1100
1101
0
  for (i = 0; i < num_pairs; ++i) {
1102
0
    const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
1103
0
    const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
1104
0
    const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
1105
0
    const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
1106
0
    __m128i sum1, sum2;
1107
0
    SubtractAndAccumulate_SSE2(a0, b0, &sum1);
1108
0
    SubtractAndAccumulate_SSE2(a1, b1, &sum2);
1109
0
    sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
1110
0
    a += 2 * BPS;
1111
0
    b += 2 * BPS;
1112
0
  }
1113
0
  _mm_storeu_si128((__m128i*)tmp, sum);
1114
0
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1115
0
}
1116
1117
0
static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) {
1118
0
  return SSE_16xN_SSE2(a, b, 8);
1119
0
}
1120
1121
0
static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) {
1122
0
  return SSE_16xN_SSE2(a, b, 4);
1123
0
}
1124
1125
#define LOAD_8x16b(ptr) \
1126
0
  _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
1127
1128
0
static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) {
1129
0
  const __m128i zero = _mm_setzero_si128();
1130
0
  int num_pairs = 4;
1131
0
  __m128i sum = zero;
1132
0
  int32_t tmp[4];
1133
0
  while (num_pairs-- > 0) {
1134
0
    const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1135
0
    const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1136
0
    const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1137
0
    const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1138
    // subtract
1139
0
    const __m128i c0 = _mm_subs_epi16(a0, b0);
1140
0
    const __m128i c1 = _mm_subs_epi16(a1, b1);
1141
    // multiply/accumulate with self
1142
0
    const __m128i d0 = _mm_madd_epi16(c0, c0);
1143
0
    const __m128i d1 = _mm_madd_epi16(c1, c1);
1144
    // collect
1145
0
    const __m128i sum01 = _mm_add_epi32(d0, d1);
1146
0
    sum = _mm_add_epi32(sum, sum01);
1147
0
    a += 2 * BPS;
1148
0
    b += 2 * BPS;
1149
0
  }
1150
0
  _mm_storeu_si128((__m128i*)tmp, sum);
1151
0
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1152
0
}
1153
#undef LOAD_8x16b
1154
1155
0
static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) {
1156
0
  const __m128i zero = _mm_setzero_si128();
1157
1158
  // Load values. Note that we read 8 pixels instead of 4,
1159
  // but the a/b buffers are over-allocated to that effect.
1160
0
  const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1161
0
  const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1162
0
  const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1163
0
  const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1164
0
  const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1165
0
  const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1166
0
  const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1167
0
  const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1168
  // Combine pair of lines.
1169
0
  const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1170
0
  const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1171
0
  const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1172
0
  const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1173
  // Convert to 16b.
1174
0
  const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1175
0
  const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1176
0
  const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1177
0
  const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1178
  // subtract, square and accumulate
1179
0
  const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1180
0
  const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1181
0
  const __m128i e0 = _mm_madd_epi16(d0, d0);
1182
0
  const __m128i e1 = _mm_madd_epi16(d1, d1);
1183
0
  const __m128i sum = _mm_add_epi32(e0, e1);
1184
1185
0
  int32_t tmp[4];
1186
0
  _mm_storeu_si128((__m128i*)tmp, sum);
1187
0
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1188
0
}
1189
1190
//------------------------------------------------------------------------------
1191
1192
0
static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) {
1193
0
  const __m128i mask = _mm_set1_epi16(0x00ff);
1194
0
  const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1195
0
  const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1196
0
  const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1197
0
  const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1198
0
  const __m128i b0 = _mm_srli_epi16(a0, 8);     // hi byte
1199
0
  const __m128i b1 = _mm_srli_epi16(a1, 8);
1200
0
  const __m128i b2 = _mm_srli_epi16(a2, 8);
1201
0
  const __m128i b3 = _mm_srli_epi16(a3, 8);
1202
0
  const __m128i c0 = _mm_and_si128(a0, mask);   // lo byte
1203
0
  const __m128i c1 = _mm_and_si128(a1, mask);
1204
0
  const __m128i c2 = _mm_and_si128(a2, mask);
1205
0
  const __m128i c3 = _mm_and_si128(a3, mask);
1206
0
  const __m128i d0 = _mm_add_epi32(b0, c0);
1207
0
  const __m128i d1 = _mm_add_epi32(b1, c1);
1208
0
  const __m128i d2 = _mm_add_epi32(b2, c2);
1209
0
  const __m128i d3 = _mm_add_epi32(b3, c3);
1210
0
  const __m128i e0 = _mm_add_epi32(d0, d1);
1211
0
  const __m128i e1 = _mm_add_epi32(d2, d3);
1212
0
  const __m128i f0 = _mm_add_epi32(e0, e1);
1213
0
  uint16_t tmp[8];
1214
0
  _mm_storeu_si128((__m128i*)tmp, f0);
1215
0
  dc[0] = tmp[0] + tmp[1];
1216
0
  dc[1] = tmp[2] + tmp[3];
1217
0
  dc[2] = tmp[4] + tmp[5];
1218
0
  dc[3] = tmp[6] + tmp[7];
1219
0
}
1220
1221
//------------------------------------------------------------------------------
1222
// Texture distortion
1223
//
1224
// We try to match the spectral content (weighted) between source and
1225
// reconstructed samples.
1226
1227
// Hadamard transform
1228
// Returns the weighted sum of the absolute value of transformed coefficients.
1229
// w[] contains a row-major 4 by 4 symmetric matrix.
1230
static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB,
1231
0
                           const uint16_t* const w) {
1232
0
  int32_t sum[4];
1233
0
  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1234
0
  const __m128i zero = _mm_setzero_si128();
1235
1236
  // Load and combine inputs.
1237
0
  {
1238
0
    const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1239
0
    const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1240
0
    const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1241
0
    const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1242
0
    const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1243
0
    const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1244
0
    const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1245
0
    const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1246
1247
    // Combine inA and inB (we'll do two transforms in parallel).
1248
0
    const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1249
0
    const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1250
0
    const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1251
0
    const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1252
0
    tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1253
0
    tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1254
0
    tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1255
0
    tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1256
    // a00 a01 a02 a03   b00 b01 b02 b03
1257
    // a10 a11 a12 a13   b10 b11 b12 b13
1258
    // a20 a21 a22 a23   b20 b21 b22 b23
1259
    // a30 a31 a32 a33   b30 b31 b32 b33
1260
0
  }
1261
1262
  // Vertical pass first to avoid a transpose (vertical and horizontal passes
1263
  // are commutative because w/kWeightY is symmetric) and subsequent transpose.
1264
0
  {
1265
    // Calculate a and b (two 4x4 at once).
1266
0
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1267
0
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1268
0
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1269
0
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1270
0
    const __m128i b0 = _mm_add_epi16(a0, a1);
1271
0
    const __m128i b1 = _mm_add_epi16(a3, a2);
1272
0
    const __m128i b2 = _mm_sub_epi16(a3, a2);
1273
0
    const __m128i b3 = _mm_sub_epi16(a0, a1);
1274
    // a00 a01 a02 a03   b00 b01 b02 b03
1275
    // a10 a11 a12 a13   b10 b11 b12 b13
1276
    // a20 a21 a22 a23   b20 b21 b22 b23
1277
    // a30 a31 a32 a33   b30 b31 b32 b33
1278
1279
    // Transpose the two 4x4.
1280
0
    VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1281
0
  }
1282
1283
  // Horizontal pass and difference of weighted sums.
1284
0
  {
1285
    // Load all inputs.
1286
0
    const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1287
0
    const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1288
1289
    // Calculate a and b (two 4x4 at once).
1290
0
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1291
0
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1292
0
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1293
0
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1294
0
    const __m128i b0 = _mm_add_epi16(a0, a1);
1295
0
    const __m128i b1 = _mm_add_epi16(a3, a2);
1296
0
    const __m128i b2 = _mm_sub_epi16(a3, a2);
1297
0
    const __m128i b3 = _mm_sub_epi16(a0, a1);
1298
1299
    // Separate the transforms of inA and inB.
1300
0
    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1301
0
    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1302
0
    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1303
0
    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1304
1305
0
    {
1306
0
      const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1307
0
      const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1308
0
      const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1309
0
      const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1310
0
      A_b0 = _mm_max_epi16(A_b0, d0);   // abs(v), 16b
1311
0
      A_b2 = _mm_max_epi16(A_b2, d1);
1312
0
      B_b0 = _mm_max_epi16(B_b0, d2);
1313
0
      B_b2 = _mm_max_epi16(B_b2, d3);
1314
0
    }
1315
1316
    // weighted sums
1317
0
    A_b0 = _mm_madd_epi16(A_b0, w_0);
1318
0
    A_b2 = _mm_madd_epi16(A_b2, w_8);
1319
0
    B_b0 = _mm_madd_epi16(B_b0, w_0);
1320
0
    B_b2 = _mm_madd_epi16(B_b2, w_8);
1321
0
    A_b0 = _mm_add_epi32(A_b0, A_b2);
1322
0
    B_b0 = _mm_add_epi32(B_b0, B_b2);
1323
1324
    // difference of weighted sums
1325
0
    A_b0 = _mm_sub_epi32(A_b0, B_b0);
1326
0
    _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1327
0
  }
1328
0
  return sum[0] + sum[1] + sum[2] + sum[3];
1329
0
}
1330
1331
static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b,
1332
0
                         const uint16_t* const w) {
1333
0
  const int diff_sum = TTransform_SSE2(a, b, w);
1334
0
  return abs(diff_sum) >> 5;
1335
0
}
1336
1337
static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b,
1338
0
                           const uint16_t* const w) {
1339
0
  int D = 0;
1340
0
  int x, y;
1341
0
  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1342
0
    for (x = 0; x < 16; x += 4) {
1343
0
      D += Disto4x4_SSE2(a + x + y, b + x + y, w);
1344
0
    }
1345
0
  }
1346
0
  return D;
1347
0
}
1348
1349
//------------------------------------------------------------------------------
1350
// Quantization
1351
//
1352
1353
static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1354
                                            const uint16_t* const sharpen,
1355
0
                                            const VP8Matrix* const mtx) {
1356
0
  const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1357
0
  const __m128i zero = _mm_setzero_si128();
1358
0
  __m128i coeff0, coeff8;
1359
0
  __m128i out0, out8;
1360
0
  __m128i packed_out;
1361
1362
  // Load all inputs.
1363
0
  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1364
0
  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1365
0
  const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1366
0
  const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1367
0
  const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1368
0
  const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1369
1370
  // extract sign(in)  (0x0000 if positive, 0xffff if negative)
1371
0
  const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1372
0
  const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1373
1374
  // coeff = abs(in) = (in ^ sign) - sign
1375
0
  coeff0 = _mm_xor_si128(in0, sign0);
1376
0
  coeff8 = _mm_xor_si128(in8, sign8);
1377
0
  coeff0 = _mm_sub_epi16(coeff0, sign0);
1378
0
  coeff8 = _mm_sub_epi16(coeff8, sign8);
1379
1380
  // coeff = abs(in) + sharpen
1381
0
  if (sharpen != NULL) {
1382
0
    const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1383
0
    const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1384
0
    coeff0 = _mm_add_epi16(coeff0, sharpen0);
1385
0
    coeff8 = _mm_add_epi16(coeff8, sharpen8);
1386
0
  }
1387
1388
  // out = (coeff * iQ + B) >> QFIX
1389
0
  {
1390
    // doing calculations with 32b precision (QFIX=17)
1391
    // out = (coeff * iQ)
1392
0
    const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1393
0
    const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1394
0
    const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1395
0
    const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1396
0
    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1397
0
    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1398
0
    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1399
0
    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1400
    // out = (coeff * iQ + B)
1401
0
    const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1402
0
    const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1403
0
    const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1404
0
    const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1405
0
    out_00 = _mm_add_epi32(out_00, bias_00);
1406
0
    out_04 = _mm_add_epi32(out_04, bias_04);
1407
0
    out_08 = _mm_add_epi32(out_08, bias_08);
1408
0
    out_12 = _mm_add_epi32(out_12, bias_12);
1409
    // out = QUANTDIV(coeff, iQ, B, QFIX)
1410
0
    out_00 = _mm_srai_epi32(out_00, QFIX);
1411
0
    out_04 = _mm_srai_epi32(out_04, QFIX);
1412
0
    out_08 = _mm_srai_epi32(out_08, QFIX);
1413
0
    out_12 = _mm_srai_epi32(out_12, QFIX);
1414
1415
    // pack result as 16b
1416
0
    out0 = _mm_packs_epi32(out_00, out_04);
1417
0
    out8 = _mm_packs_epi32(out_08, out_12);
1418
1419
    // if (coeff > 2047) coeff = 2047
1420
0
    out0 = _mm_min_epi16(out0, max_coeff_2047);
1421
0
    out8 = _mm_min_epi16(out8, max_coeff_2047);
1422
0
  }
1423
1424
  // get sign back (if (sign[j]) out_n = -out_n)
1425
0
  out0 = _mm_xor_si128(out0, sign0);
1426
0
  out8 = _mm_xor_si128(out8, sign8);
1427
0
  out0 = _mm_sub_epi16(out0, sign0);
1428
0
  out8 = _mm_sub_epi16(out8, sign8);
1429
1430
  // in = out * Q
1431
0
  in0 = _mm_mullo_epi16(out0, q0);
1432
0
  in8 = _mm_mullo_epi16(out8, q8);
1433
1434
0
  _mm_storeu_si128((__m128i*)&in[0], in0);
1435
0
  _mm_storeu_si128((__m128i*)&in[8], in8);
1436
1437
  // zigzag the output before storing it.
1438
  //
1439
  // The zigzag pattern can almost be reproduced with a small sequence of
1440
  // shuffles. After it, we only need to swap the 7th (ending up in third
1441
  // position instead of twelfth) and 8th values.
1442
0
  {
1443
0
    __m128i outZ0, outZ8;
1444
0
    outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
1445
0
    outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1446
0
    outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1447
0
    outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
1448
0
    outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1449
0
    outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1450
0
    _mm_storeu_si128((__m128i*)&out[0], outZ0);
1451
0
    _mm_storeu_si128((__m128i*)&out[8], outZ8);
1452
0
    packed_out = _mm_packs_epi16(outZ0, outZ8);
1453
0
  }
1454
0
  {
1455
0
    const int16_t outZ_12 = out[12];
1456
0
    const int16_t outZ_3 = out[3];
1457
0
    out[3] = outZ_12;
1458
0
    out[12] = outZ_3;
1459
0
  }
1460
1461
  // detect if all 'out' values are zeroes or not
1462
0
  return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1463
0
}
1464
1465
static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1466
0
                              const VP8Matrix* const mtx) {
1467
0
  return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
1468
0
}
1469
1470
static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
1471
0
                                 const VP8Matrix* const mtx) {
1472
0
  return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
1473
0
}
1474
1475
static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
1476
0
                                const VP8Matrix* const mtx) {
1477
0
  int nz;
1478
0
  const uint16_t* const sharpen = &mtx->sharpen_[0];
1479
0
  nz  = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1480
0
  nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1481
0
  return nz;
1482
0
}
1483
1484
//------------------------------------------------------------------------------
1485
// Entry point
1486
1487
extern void VP8EncDspInitSSE2(void);
1488
1489
0
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1490
0
  VP8CollectHistogram = CollectHistogram_SSE2;
1491
0
  VP8EncPredLuma16 = Intra16Preds_SSE2;
1492
0
  VP8EncPredChroma8 = IntraChromaPreds_SSE2;
1493
0
  VP8EncPredLuma4 = Intra4Preds_SSE2;
1494
0
  VP8EncQuantizeBlock = QuantizeBlock_SSE2;
1495
0
  VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
1496
0
  VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
1497
0
  VP8ITransform = ITransform_SSE2;
1498
0
  VP8FTransform = FTransform_SSE2;
1499
0
  VP8FTransform2 = FTransform2_SSE2;
1500
0
  VP8FTransformWHT = FTransformWHT_SSE2;
1501
0
  VP8SSE16x16 = SSE16x16_SSE2;
1502
0
  VP8SSE16x8 = SSE16x8_SSE2;
1503
0
  VP8SSE8x8 = SSE8x8_SSE2;
1504
0
  VP8SSE4x4 = SSE4x4_SSE2;
1505
0
  VP8TDisto4x4 = Disto4x4_SSE2;
1506
0
  VP8TDisto16x16 = Disto16x16_SSE2;
1507
0
  VP8Mean16x4 = Mean16x4_SSE2;
1508
0
}
1509
1510
#else  // !WEBP_USE_SSE2
1511
1512
WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1513
1514
#endif  // WEBP_USE_SSE2