Coverage Report

Created: 2024-07-27 06:27

/src/libwebp/src/dsp/enc_sse41.c
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2015 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE4 version of some encoding functions.
11
//
12
// Author: Skal (pascal.massimino@gmail.com)
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_SSE41)
17
#include <smmintrin.h>
18
#include <stdlib.h>  // for abs()
19
20
#include "src/dsp/common_sse2.h"
21
#include "src/enc/vp8i_enc.h"
22
23
//------------------------------------------------------------------------------
24
// Compute susceptibility based on DCT-coeff histograms.
25
26
static void CollectHistogram_SSE41(const uint8_t* ref, const uint8_t* pred,
27
                                   int start_block, int end_block,
28
0
                                   VP8Histogram* const histo) {
29
0
  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
30
0
  int j;
31
0
  int distribution[MAX_COEFF_THRESH + 1] = { 0 };
32
0
  for (j = start_block; j < end_block; ++j) {
33
0
    int16_t out[16];
34
0
    int k;
35
36
0
    VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
37
38
    // Convert coefficients to bin (within out[]).
39
0
    {
40
      // Load.
41
0
      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
42
0
      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
43
      // v = abs(out) >> 3
44
0
      const __m128i abs0 = _mm_abs_epi16(out0);
45
0
      const __m128i abs1 = _mm_abs_epi16(out1);
46
0
      const __m128i v0 = _mm_srai_epi16(abs0, 3);
47
0
      const __m128i v1 = _mm_srai_epi16(abs1, 3);
48
      // bin = min(v, MAX_COEFF_THRESH)
49
0
      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
50
0
      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
51
      // Store.
52
0
      _mm_storeu_si128((__m128i*)&out[0], bin0);
53
0
      _mm_storeu_si128((__m128i*)&out[8], bin1);
54
0
    }
55
56
    // Convert coefficients to bin.
57
0
    for (k = 0; k < 16; ++k) {
58
0
      ++distribution[out[k]];
59
0
    }
60
0
  }
61
0
  VP8SetHistogramData(distribution, histo);
62
0
}
63
64
//------------------------------------------------------------------------------
65
// Texture distortion
66
//
67
// We try to match the spectral content (weighted) between source and
68
// reconstructed samples.
69
70
// Hadamard transform
71
// Returns the weighted sum of the absolute value of transformed coefficients.
72
// w[] contains a row-major 4 by 4 symmetric matrix.
73
static int TTransform_SSE41(const uint8_t* inA, const uint8_t* inB,
74
0
                            const uint16_t* const w) {
75
0
  int32_t sum[4];
76
0
  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
77
78
  // Load and combine inputs.
79
0
  {
80
0
    const __m128i inA_0 = _mm_loadu_si128((const __m128i*)&inA[BPS * 0]);
81
0
    const __m128i inA_1 = _mm_loadu_si128((const __m128i*)&inA[BPS * 1]);
82
0
    const __m128i inA_2 = _mm_loadu_si128((const __m128i*)&inA[BPS * 2]);
83
    // In SSE4.1, with gcc 4.8 at least (maybe other versions),
84
    // _mm_loadu_si128 is faster than _mm_loadl_epi64. But for the last lump
85
    // of inA and inB, _mm_loadl_epi64 is still used not to have an out of
86
    // bound read.
87
0
    const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
88
0
    const __m128i inB_0 = _mm_loadu_si128((const __m128i*)&inB[BPS * 0]);
89
0
    const __m128i inB_1 = _mm_loadu_si128((const __m128i*)&inB[BPS * 1]);
90
0
    const __m128i inB_2 = _mm_loadu_si128((const __m128i*)&inB[BPS * 2]);
91
0
    const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
92
93
    // Combine inA and inB (we'll do two transforms in parallel).
94
0
    const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
95
0
    const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
96
0
    const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
97
0
    const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
98
0
    tmp_0 = _mm_cvtepu8_epi16(inAB_0);
99
0
    tmp_1 = _mm_cvtepu8_epi16(inAB_1);
100
0
    tmp_2 = _mm_cvtepu8_epi16(inAB_2);
101
0
    tmp_3 = _mm_cvtepu8_epi16(inAB_3);
102
    // a00 a01 a02 a03   b00 b01 b02 b03
103
    // a10 a11 a12 a13   b10 b11 b12 b13
104
    // a20 a21 a22 a23   b20 b21 b22 b23
105
    // a30 a31 a32 a33   b30 b31 b32 b33
106
0
  }
107
108
  // Vertical pass first to avoid a transpose (vertical and horizontal passes
109
  // are commutative because w/kWeightY is symmetric) and subsequent transpose.
110
0
  {
111
    // Calculate a and b (two 4x4 at once).
112
0
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
113
0
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
114
0
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
115
0
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
116
0
    const __m128i b0 = _mm_add_epi16(a0, a1);
117
0
    const __m128i b1 = _mm_add_epi16(a3, a2);
118
0
    const __m128i b2 = _mm_sub_epi16(a3, a2);
119
0
    const __m128i b3 = _mm_sub_epi16(a0, a1);
120
    // a00 a01 a02 a03   b00 b01 b02 b03
121
    // a10 a11 a12 a13   b10 b11 b12 b13
122
    // a20 a21 a22 a23   b20 b21 b22 b23
123
    // a30 a31 a32 a33   b30 b31 b32 b33
124
125
    // Transpose the two 4x4.
126
0
    VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
127
0
  }
128
129
  // Horizontal pass and difference of weighted sums.
130
0
  {
131
    // Load all inputs.
132
0
    const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
133
0
    const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
134
135
    // Calculate a and b (two 4x4 at once).
136
0
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
137
0
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
138
0
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
139
0
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
140
0
    const __m128i b0 = _mm_add_epi16(a0, a1);
141
0
    const __m128i b1 = _mm_add_epi16(a3, a2);
142
0
    const __m128i b2 = _mm_sub_epi16(a3, a2);
143
0
    const __m128i b3 = _mm_sub_epi16(a0, a1);
144
145
    // Separate the transforms of inA and inB.
146
0
    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
147
0
    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
148
0
    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
149
0
    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
150
151
0
    A_b0 = _mm_abs_epi16(A_b0);
152
0
    A_b2 = _mm_abs_epi16(A_b2);
153
0
    B_b0 = _mm_abs_epi16(B_b0);
154
0
    B_b2 = _mm_abs_epi16(B_b2);
155
156
    // weighted sums
157
0
    A_b0 = _mm_madd_epi16(A_b0, w_0);
158
0
    A_b2 = _mm_madd_epi16(A_b2, w_8);
159
0
    B_b0 = _mm_madd_epi16(B_b0, w_0);
160
0
    B_b2 = _mm_madd_epi16(B_b2, w_8);
161
0
    A_b0 = _mm_add_epi32(A_b0, A_b2);
162
0
    B_b0 = _mm_add_epi32(B_b0, B_b2);
163
164
    // difference of weighted sums
165
0
    A_b2 = _mm_sub_epi32(A_b0, B_b0);
166
0
    _mm_storeu_si128((__m128i*)&sum[0], A_b2);
167
0
  }
168
0
  return sum[0] + sum[1] + sum[2] + sum[3];
169
0
}
170
171
static int Disto4x4_SSE41(const uint8_t* const a, const uint8_t* const b,
172
0
                          const uint16_t* const w) {
173
0
  const int diff_sum = TTransform_SSE41(a, b, w);
174
0
  return abs(diff_sum) >> 5;
175
0
}
176
177
static int Disto16x16_SSE41(const uint8_t* const a, const uint8_t* const b,
178
0
                            const uint16_t* const w) {
179
0
  int D = 0;
180
0
  int x, y;
181
0
  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
182
0
    for (x = 0; x < 16; x += 4) {
183
0
      D += Disto4x4_SSE41(a + x + y, b + x + y, w);
184
0
    }
185
0
  }
186
0
  return D;
187
0
}
188
189
//------------------------------------------------------------------------------
190
// Quantization
191
//
192
193
// Generates a pshufb constant for shuffling 16b words.
194
#define PSHUFB_CST(A,B,C,D,E,F,G,H) \
195
0
  _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \
196
0
               2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \
197
0
               2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \
198
0
               2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0)
199
200
static WEBP_INLINE int DoQuantizeBlock_SSE41(int16_t in[16], int16_t out[16],
201
                                             const uint16_t* const sharpen,
202
0
                                             const VP8Matrix* const mtx) {
203
0
  const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
204
0
  const __m128i zero = _mm_setzero_si128();
205
0
  __m128i out0, out8;
206
0
  __m128i packed_out;
207
208
  // Load all inputs.
209
0
  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
210
0
  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
211
0
  const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
212
0
  const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
213
0
  const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
214
0
  const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
215
216
  // coeff = abs(in)
217
0
  __m128i coeff0 = _mm_abs_epi16(in0);
218
0
  __m128i coeff8 = _mm_abs_epi16(in8);
219
220
  // coeff = abs(in) + sharpen
221
0
  if (sharpen != NULL) {
222
0
    const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
223
0
    const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
224
0
    coeff0 = _mm_add_epi16(coeff0, sharpen0);
225
0
    coeff8 = _mm_add_epi16(coeff8, sharpen8);
226
0
  }
227
228
  // out = (coeff * iQ + B) >> QFIX
229
0
  {
230
    // doing calculations with 32b precision (QFIX=17)
231
    // out = (coeff * iQ)
232
0
    const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
233
0
    const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
234
0
    const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
235
0
    const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
236
0
    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
237
0
    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
238
0
    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
239
0
    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
240
    // out = (coeff * iQ + B)
241
0
    const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
242
0
    const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
243
0
    const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
244
0
    const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
245
0
    out_00 = _mm_add_epi32(out_00, bias_00);
246
0
    out_04 = _mm_add_epi32(out_04, bias_04);
247
0
    out_08 = _mm_add_epi32(out_08, bias_08);
248
0
    out_12 = _mm_add_epi32(out_12, bias_12);
249
    // out = QUANTDIV(coeff, iQ, B, QFIX)
250
0
    out_00 = _mm_srai_epi32(out_00, QFIX);
251
0
    out_04 = _mm_srai_epi32(out_04, QFIX);
252
0
    out_08 = _mm_srai_epi32(out_08, QFIX);
253
0
    out_12 = _mm_srai_epi32(out_12, QFIX);
254
255
    // pack result as 16b
256
0
    out0 = _mm_packs_epi32(out_00, out_04);
257
0
    out8 = _mm_packs_epi32(out_08, out_12);
258
259
    // if (coeff > 2047) coeff = 2047
260
0
    out0 = _mm_min_epi16(out0, max_coeff_2047);
261
0
    out8 = _mm_min_epi16(out8, max_coeff_2047);
262
0
  }
263
264
  // put sign back
265
0
  out0 = _mm_sign_epi16(out0, in0);
266
0
  out8 = _mm_sign_epi16(out8, in8);
267
268
  // in = out * Q
269
0
  in0 = _mm_mullo_epi16(out0, q0);
270
0
  in8 = _mm_mullo_epi16(out8, q8);
271
272
0
  _mm_storeu_si128((__m128i*)&in[0], in0);
273
0
  _mm_storeu_si128((__m128i*)&in[8], in8);
274
275
  // zigzag the output before storing it. The re-ordering is:
276
  //    0 1 2 3 4 5 6 7 | 8  9 10 11 12 13 14 15
277
  // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15
278
  // There's only two misplaced entries ([8] and [7]) that are crossing the
279
  // reg's boundaries.
280
  // We use pshufb instead of pshuflo/pshufhi.
281
0
  {
282
0
    const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6);
283
0
    const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1);
284
0
    const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo);
285
0
    const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7);  // extract #7
286
0
    const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7);
287
0
    const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1);
288
0
    const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi);
289
0
    const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8);  // extract #8
290
0
    const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8);
291
0
    const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7);
292
0
    _mm_storeu_si128((__m128i*)&out[0], out_z0);
293
0
    _mm_storeu_si128((__m128i*)&out[8], out_z8);
294
0
    packed_out = _mm_packs_epi16(out_z0, out_z8);
295
0
  }
296
297
  // detect if all 'out' values are zeroes or not
298
0
  return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
299
0
}
300
301
#undef PSHUFB_CST
302
303
static int QuantizeBlock_SSE41(int16_t in[16], int16_t out[16],
304
0
                               const VP8Matrix* const mtx) {
305
0
  return DoQuantizeBlock_SSE41(in, out, &mtx->sharpen_[0], mtx);
306
0
}
307
308
static int QuantizeBlockWHT_SSE41(int16_t in[16], int16_t out[16],
309
0
                                  const VP8Matrix* const mtx) {
310
0
  return DoQuantizeBlock_SSE41(in, out, NULL, mtx);
311
0
}
312
313
static int Quantize2Blocks_SSE41(int16_t in[32], int16_t out[32],
314
0
                                 const VP8Matrix* const mtx) {
315
0
  int nz;
316
0
  const uint16_t* const sharpen = &mtx->sharpen_[0];
317
0
  nz  = DoQuantizeBlock_SSE41(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
318
0
  nz |= DoQuantizeBlock_SSE41(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
319
0
  return nz;
320
0
}
321
322
//------------------------------------------------------------------------------
323
// Entry point
324
325
extern void VP8EncDspInitSSE41(void);
326
0
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) {
327
0
  VP8CollectHistogram = CollectHistogram_SSE41;
328
0
  VP8EncQuantizeBlock = QuantizeBlock_SSE41;
329
0
  VP8EncQuantize2Blocks = Quantize2Blocks_SSE41;
330
0
  VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE41;
331
0
  VP8TDisto4x4 = Disto4x4_SSE41;
332
0
  VP8TDisto16x16 = Disto16x16_SSE41;
333
0
}
334
335
#else  // !WEBP_USE_SSE41
336
337
WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41)
338
339
#endif  // WEBP_USE_SSE41