Coverage Report

Created: 2024-07-27 06:27

/src/libwebp/src/dsp/dec_sse2.c
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE2 version of some decoding functions (idct, loop filtering).
11
//
12
// Author: somnath@google.com (Somnath Banerjee)
13
//         cduvivier@google.com (Christian Duvivier)
14
15
#include "src/dsp/dsp.h"
16
17
#if defined(WEBP_USE_SSE2)
18
19
// The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20
// one it seems => disable it by default. Uncomment the following to enable:
21
#if !defined(USE_TRANSFORM_AC3)
22
#define USE_TRANSFORM_AC3 0   // ALTERNATE_CODE
23
#endif
24
25
#include <emmintrin.h>
26
#include "src/dsp/common_sse2.h"
27
#include "src/dec/vp8i_dec.h"
28
#include "src/utils/utils.h"
29
30
//------------------------------------------------------------------------------
31
// Transforms (Paragraph 14.4)
32
33
0
static void Transform_SSE2(const int16_t* in, uint8_t* dst, int do_two) {
34
  // This implementation makes use of 16-bit fixed point versions of two
35
  // multiply constants:
36
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
37
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
38
  //
39
  // To be able to use signed 16-bit integers, we use the following trick to
40
  // have constants within range:
41
  // - Associated constants are obtained by subtracting the 16-bit fixed point
42
  //   version of one:
43
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
44
  //      K1 = 85267  =>  k1 =  20091
45
  //      K2 = 35468  =>  k2 = -30068
46
  // - The multiplication of a variable by a constant become the sum of the
47
  //   variable and the multiplication of that variable by the associated
48
  //   constant:
49
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
50
0
  const __m128i k1 = _mm_set1_epi16(20091);
51
0
  const __m128i k2 = _mm_set1_epi16(-30068);
52
0
  __m128i T0, T1, T2, T3;
53
54
  // Load and concatenate the transform coefficients (we'll do two transforms
55
  // in parallel). In the case of only one transform, the second half of the
56
  // vectors will just contain random value we'll never use nor store.
57
0
  __m128i in0, in1, in2, in3;
58
0
  {
59
0
    in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
60
0
    in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
61
0
    in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
62
0
    in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
63
    // a00 a10 a20 a30   x x x x
64
    // a01 a11 a21 a31   x x x x
65
    // a02 a12 a22 a32   x x x x
66
    // a03 a13 a23 a33   x x x x
67
0
    if (do_two) {
68
0
      const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
69
0
      const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
70
0
      const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
71
0
      const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
72
0
      in0 = _mm_unpacklo_epi64(in0, inB0);
73
0
      in1 = _mm_unpacklo_epi64(in1, inB1);
74
0
      in2 = _mm_unpacklo_epi64(in2, inB2);
75
0
      in3 = _mm_unpacklo_epi64(in3, inB3);
76
      // a00 a10 a20 a30   b00 b10 b20 b30
77
      // a01 a11 a21 a31   b01 b11 b21 b31
78
      // a02 a12 a22 a32   b02 b12 b22 b32
79
      // a03 a13 a23 a33   b03 b13 b23 b33
80
0
    }
81
0
  }
82
83
  // Vertical pass and subsequent transpose.
84
0
  {
85
    // First pass, c and d calculations are longer because of the "trick"
86
    // multiplications.
87
0
    const __m128i a = _mm_add_epi16(in0, in2);
88
0
    const __m128i b = _mm_sub_epi16(in0, in2);
89
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
90
0
    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
91
0
    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
92
0
    const __m128i c3 = _mm_sub_epi16(in1, in3);
93
0
    const __m128i c4 = _mm_sub_epi16(c1, c2);
94
0
    const __m128i c = _mm_add_epi16(c3, c4);
95
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
96
0
    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
97
0
    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
98
0
    const __m128i d3 = _mm_add_epi16(in1, in3);
99
0
    const __m128i d4 = _mm_add_epi16(d1, d2);
100
0
    const __m128i d = _mm_add_epi16(d3, d4);
101
102
    // Second pass.
103
0
    const __m128i tmp0 = _mm_add_epi16(a, d);
104
0
    const __m128i tmp1 = _mm_add_epi16(b, c);
105
0
    const __m128i tmp2 = _mm_sub_epi16(b, c);
106
0
    const __m128i tmp3 = _mm_sub_epi16(a, d);
107
108
    // Transpose the two 4x4.
109
0
    VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
110
0
  }
111
112
  // Horizontal pass and subsequent transpose.
113
0
  {
114
    // First pass, c and d calculations are longer because of the "trick"
115
    // multiplications.
116
0
    const __m128i four = _mm_set1_epi16(4);
117
0
    const __m128i dc = _mm_add_epi16(T0, four);
118
0
    const __m128i a =  _mm_add_epi16(dc, T2);
119
0
    const __m128i b =  _mm_sub_epi16(dc, T2);
120
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
121
0
    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
122
0
    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
123
0
    const __m128i c3 = _mm_sub_epi16(T1, T3);
124
0
    const __m128i c4 = _mm_sub_epi16(c1, c2);
125
0
    const __m128i c = _mm_add_epi16(c3, c4);
126
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
127
0
    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
128
0
    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
129
0
    const __m128i d3 = _mm_add_epi16(T1, T3);
130
0
    const __m128i d4 = _mm_add_epi16(d1, d2);
131
0
    const __m128i d = _mm_add_epi16(d3, d4);
132
133
    // Second pass.
134
0
    const __m128i tmp0 = _mm_add_epi16(a, d);
135
0
    const __m128i tmp1 = _mm_add_epi16(b, c);
136
0
    const __m128i tmp2 = _mm_sub_epi16(b, c);
137
0
    const __m128i tmp3 = _mm_sub_epi16(a, d);
138
0
    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
139
0
    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
140
0
    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
141
0
    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
142
143
    // Transpose the two 4x4.
144
0
    VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
145
0
                           &T2, &T3);
146
0
  }
147
148
  // Add inverse transform to 'dst' and store.
149
0
  {
150
0
    const __m128i zero = _mm_setzero_si128();
151
    // Load the reference(s).
152
0
    __m128i dst0, dst1, dst2, dst3;
153
0
    if (do_two) {
154
      // Load eight bytes/pixels per line.
155
0
      dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
156
0
      dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
157
0
      dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
158
0
      dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
159
0
    } else {
160
      // Load four bytes/pixels per line.
161
0
      dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS));
162
0
      dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS));
163
0
      dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS));
164
0
      dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS));
165
0
    }
166
    // Convert to 16b.
167
0
    dst0 = _mm_unpacklo_epi8(dst0, zero);
168
0
    dst1 = _mm_unpacklo_epi8(dst1, zero);
169
0
    dst2 = _mm_unpacklo_epi8(dst2, zero);
170
0
    dst3 = _mm_unpacklo_epi8(dst3, zero);
171
    // Add the inverse transform(s).
172
0
    dst0 = _mm_add_epi16(dst0, T0);
173
0
    dst1 = _mm_add_epi16(dst1, T1);
174
0
    dst2 = _mm_add_epi16(dst2, T2);
175
0
    dst3 = _mm_add_epi16(dst3, T3);
176
    // Unsigned saturate to 8b.
177
0
    dst0 = _mm_packus_epi16(dst0, dst0);
178
0
    dst1 = _mm_packus_epi16(dst1, dst1);
179
0
    dst2 = _mm_packus_epi16(dst2, dst2);
180
0
    dst3 = _mm_packus_epi16(dst3, dst3);
181
    // Store the results.
182
0
    if (do_two) {
183
      // Store eight bytes/pixels per line.
184
0
      _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
185
0
      _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
186
0
      _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
187
0
      _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
188
0
    } else {
189
      // Store four bytes/pixels per line.
190
0
      WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
191
0
      WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
192
0
      WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
193
0
      WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
194
0
    }
195
0
  }
196
0
}
197
198
#if (USE_TRANSFORM_AC3 == 1)
199
200
static void TransformAC3_SSE2(const int16_t* in, uint8_t* dst) {
201
  const __m128i A = _mm_set1_epi16(in[0] + 4);
202
  const __m128i c4 = _mm_set1_epi16(WEBP_TRANSFORM_AC3_MUL2(in[4]));
203
  const __m128i d4 = _mm_set1_epi16(WEBP_TRANSFORM_AC3_MUL1(in[4]));
204
  const int c1 = WEBP_TRANSFORM_AC3_MUL2(in[1]);
205
  const int d1 = WEBP_TRANSFORM_AC3_MUL1(in[1]);
206
  const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
207
  const __m128i B = _mm_adds_epi16(A, CD);
208
  const __m128i m0 = _mm_adds_epi16(B, d4);
209
  const __m128i m1 = _mm_adds_epi16(B, c4);
210
  const __m128i m2 = _mm_subs_epi16(B, c4);
211
  const __m128i m3 = _mm_subs_epi16(B, d4);
212
  const __m128i zero = _mm_setzero_si128();
213
  // Load the source pixels.
214
  __m128i dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS));
215
  __m128i dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS));
216
  __m128i dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS));
217
  __m128i dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS));
218
  // Convert to 16b.
219
  dst0 = _mm_unpacklo_epi8(dst0, zero);
220
  dst1 = _mm_unpacklo_epi8(dst1, zero);
221
  dst2 = _mm_unpacklo_epi8(dst2, zero);
222
  dst3 = _mm_unpacklo_epi8(dst3, zero);
223
  // Add the inverse transform.
224
  dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
225
  dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
226
  dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
227
  dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
228
  // Unsigned saturate to 8b.
229
  dst0 = _mm_packus_epi16(dst0, dst0);
230
  dst1 = _mm_packus_epi16(dst1, dst1);
231
  dst2 = _mm_packus_epi16(dst2, dst2);
232
  dst3 = _mm_packus_epi16(dst3, dst3);
233
  // Store the results.
234
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
235
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
236
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
237
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
238
}
239
240
#endif   // USE_TRANSFORM_AC3
241
242
//------------------------------------------------------------------------------
243
// Loop Filter (Paragraph 15)
244
245
// Compute abs(p - q) = subs(p - q) OR subs(q - p)
246
0
#define MM_ABS(p, q)  _mm_or_si128(                                            \
247
0
    _mm_subs_epu8((q), (p)),                                                   \
248
0
    _mm_subs_epu8((p), (q)))
249
250
// Shift each byte of "x" by 3 bits while preserving by the sign bit.
251
0
static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) {
252
0
  const __m128i zero = _mm_setzero_si128();
253
0
  const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
254
0
  const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
255
0
  const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
256
0
  const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
257
0
  *x = _mm_packs_epi16(lo_1, hi_1);
258
0
}
259
260
0
#define FLIP_SIGN_BIT2(a, b) do {                                              \
261
0
  (a) = _mm_xor_si128(a, sign_bit);                                            \
262
0
  (b) = _mm_xor_si128(b, sign_bit);                                            \
263
0
} while (0)
264
265
0
#define FLIP_SIGN_BIT4(a, b, c, d) do {                                        \
266
0
  FLIP_SIGN_BIT2(a, b);                                                        \
267
0
  FLIP_SIGN_BIT2(c, d);                                                        \
268
0
} while (0)
269
270
// input/output is uint8_t
271
static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1,
272
                                       const __m128i* const p0,
273
                                       const __m128i* const q0,
274
                                       const __m128i* const q1,
275
0
                                       int hev_thresh, __m128i* const not_hev) {
276
0
  const __m128i zero = _mm_setzero_si128();
277
0
  const __m128i t_1 = MM_ABS(*p1, *p0);
278
0
  const __m128i t_2 = MM_ABS(*q1, *q0);
279
280
0
  const __m128i h = _mm_set1_epi8(hev_thresh);
281
0
  const __m128i t_max = _mm_max_epu8(t_1, t_2);
282
283
0
  const __m128i t_max_h = _mm_subs_epu8(t_max, h);
284
0
  *not_hev = _mm_cmpeq_epi8(t_max_h, zero);  // not_hev <= t1 && not_hev <= t2
285
0
}
286
287
// input pixels are int8_t
288
static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1,
289
                                          const __m128i* const p0,
290
                                          const __m128i* const q0,
291
                                          const __m128i* const q1,
292
0
                                          __m128i* const delta) {
293
  // beware of addition order, for saturation!
294
0
  const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
295
0
  const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
296
0
  const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
297
0
  const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
298
0
  const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
299
0
  *delta = s3;
300
0
}
301
302
// input and output are int8_t
303
static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0,
304
                                            __m128i* const q0,
305
0
                                            const __m128i* const fl) {
306
0
  const __m128i k3 = _mm_set1_epi8(3);
307
0
  const __m128i k4 = _mm_set1_epi8(4);
308
0
  __m128i v3 = _mm_adds_epi8(*fl, k3);
309
0
  __m128i v4 = _mm_adds_epi8(*fl, k4);
310
311
0
  SignedShift8b_SSE2(&v4);             // v4 >> 3
312
0
  SignedShift8b_SSE2(&v3);             // v3 >> 3
313
0
  *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
314
0
  *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
315
0
}
316
317
// Updates values of 2 pixels at MB edge during complex filtering.
318
// Update operations:
319
// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
320
// Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
321
static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi,
322
                                           const __m128i* const a0_lo,
323
0
                                           const __m128i* const a0_hi) {
324
0
  const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
325
0
  const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
326
0
  const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
327
0
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
328
0
  *pi = _mm_adds_epi8(*pi, delta);
329
0
  *qi = _mm_subs_epi8(*qi, delta);
330
0
  FLIP_SIGN_BIT2(*pi, *qi);
331
0
}
332
333
// input pixels are uint8_t
334
static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1,
335
                                         const __m128i* const p0,
336
                                         const __m128i* const q0,
337
                                         const __m128i* const q1,
338
0
                                         int thresh, __m128i* const mask) {
339
0
  const __m128i m_thresh = _mm_set1_epi8((char)thresh);
340
0
  const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
341
0
  const __m128i kFE = _mm_set1_epi8((char)0xFE);
342
0
  const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
343
0
  const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
344
345
0
  const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
346
0
  const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
347
0
  const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
348
349
0
  const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
350
0
  *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
351
0
}
352
353
//------------------------------------------------------------------------------
354
// Edge filtering functions
355
356
// Applies filter on 2 pixels (p0 and q0)
357
static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0,
358
                                       __m128i* const q0, __m128i* const q1,
359
0
                                       int thresh) {
360
0
  __m128i a, mask;
361
0
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
362
  // convert p1/q1 to int8_t (for GetBaseDelta_SSE2)
363
0
  const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
364
0
  const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
365
366
0
  NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask);
367
368
0
  FLIP_SIGN_BIT2(*p0, *q0);
369
0
  GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a);
370
0
  a = _mm_and_si128(a, mask);     // mask filter values we don't care about
371
0
  DoSimpleFilter_SSE2(p0, q0, &a);
372
0
  FLIP_SIGN_BIT2(*p0, *q0);
373
0
}
374
375
// Applies filter on 4 pixels (p1, p0, q0 and q1)
376
static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0,
377
                                       __m128i* const q0, __m128i* const q1,
378
                                       const __m128i* const mask,
379
0
                                       int hev_thresh) {
380
0
  const __m128i zero = _mm_setzero_si128();
381
0
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
382
0
  const __m128i k64 = _mm_set1_epi8(64);
383
0
  const __m128i k3 = _mm_set1_epi8(3);
384
0
  const __m128i k4 = _mm_set1_epi8(4);
385
0
  __m128i not_hev;
386
0
  __m128i t1, t2, t3;
387
388
  // compute hev mask
389
0
  GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
390
391
  // convert to signed values
392
0
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
393
394
0
  t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
395
0
  t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
396
0
  t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
397
0
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
398
0
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
399
0
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
400
0
  t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
401
402
0
  t2 = _mm_adds_epi8(t1, k3);        // 3 * (q0 - p0) + hev(p1 - q1) + 3
403
0
  t3 = _mm_adds_epi8(t1, k4);        // 3 * (q0 - p0) + hev(p1 - q1) + 4
404
0
  SignedShift8b_SSE2(&t2);           // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
405
0
  SignedShift8b_SSE2(&t3);           // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
406
0
  *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
407
0
  *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
408
0
  FLIP_SIGN_BIT2(*p0, *q0);
409
410
  // this is equivalent to signed (a + 1) >> 1 calculation
411
0
  t2 = _mm_add_epi8(t3, sign_bit);
412
0
  t3 = _mm_avg_epu8(t2, zero);
413
0
  t3 = _mm_sub_epi8(t3, k64);
414
415
0
  t3 = _mm_and_si128(not_hev, t3);   // if !hev
416
0
  *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
417
0
  *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
418
0
  FLIP_SIGN_BIT2(*p1, *q1);
419
0
}
420
421
// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
422
static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1,
423
                                       __m128i* const p0, __m128i* const q0,
424
                                       __m128i* const q1, __m128i* const q2,
425
                                       const __m128i* const mask,
426
0
                                       int hev_thresh) {
427
0
  const __m128i zero = _mm_setzero_si128();
428
0
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
429
0
  __m128i a, not_hev;
430
431
  // compute hev mask
432
0
  GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
433
434
0
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
435
0
  FLIP_SIGN_BIT2(*p2, *q2);
436
0
  GetBaseDelta_SSE2(p1, p0, q0, q1, &a);
437
438
0
  { // do simple filter on pixels with hev
439
0
    const __m128i m = _mm_andnot_si128(not_hev, *mask);
440
0
    const __m128i f = _mm_and_si128(a, m);
441
0
    DoSimpleFilter_SSE2(p0, q0, &f);
442
0
  }
443
444
0
  { // do strong filter on pixels with not hev
445
0
    const __m128i k9 = _mm_set1_epi16(0x0900);
446
0
    const __m128i k63 = _mm_set1_epi16(63);
447
448
0
    const __m128i m = _mm_and_si128(not_hev, *mask);
449
0
    const __m128i f = _mm_and_si128(a, m);
450
451
0
    const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
452
0
    const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
453
454
0
    const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
455
0
    const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
456
457
0
    const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
458
0
    const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
459
460
0
    const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
461
0
    const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
462
463
0
    const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
464
0
    const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
465
466
0
    Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi);
467
0
    Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi);
468
0
    Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi);
469
0
  }
470
0
}
471
472
// reads 8 rows across a vertical edge.
473
static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride,
474
0
                                     __m128i* const p, __m128i* const q) {
475
  // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
476
  // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
477
0
  const __m128i A0 = _mm_set_epi32(
478
0
      WebPMemToInt32(&b[6 * stride]), WebPMemToInt32(&b[2 * stride]),
479
0
      WebPMemToInt32(&b[4 * stride]), WebPMemToInt32(&b[0 * stride]));
480
0
  const __m128i A1 = _mm_set_epi32(
481
0
      WebPMemToInt32(&b[7 * stride]), WebPMemToInt32(&b[3 * stride]),
482
0
      WebPMemToInt32(&b[5 * stride]), WebPMemToInt32(&b[1 * stride]));
483
484
  // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
485
  // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
486
0
  const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
487
0
  const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
488
489
  // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
490
  // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
491
0
  const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
492
0
  const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
493
494
  // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
495
  // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
496
0
  *p = _mm_unpacklo_epi32(C0, C1);
497
0
  *q = _mm_unpackhi_epi32(C0, C1);
498
0
}
499
500
static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0,
501
                                      const uint8_t* const r8,
502
                                      int stride,
503
                                      __m128i* const p1, __m128i* const p0,
504
0
                                      __m128i* const q0, __m128i* const q1) {
505
  // Assume the pixels around the edge (|) are numbered as follows
506
  //                00 01 | 02 03
507
  //                10 11 | 12 13
508
  //                 ...  |  ...
509
  //                e0 e1 | e2 e3
510
  //                f0 f1 | f2 f3
511
  //
512
  // r0 is pointing to the 0th row (00)
513
  // r8 is pointing to the 8th row (80)
514
515
  // Load
516
  // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
517
  // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
518
  // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
519
  // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
520
0
  Load8x4_SSE2(r0, stride, p1, q0);
521
0
  Load8x4_SSE2(r8, stride, p0, q1);
522
523
0
  {
524
    // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
525
    // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
526
    // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
527
    // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
528
0
    const __m128i t1 = *p1;
529
0
    const __m128i t2 = *q0;
530
0
    *p1 = _mm_unpacklo_epi64(t1, *p0);
531
0
    *p0 = _mm_unpackhi_epi64(t1, *p0);
532
0
    *q0 = _mm_unpacklo_epi64(t2, *q1);
533
0
    *q1 = _mm_unpackhi_epi64(t2, *q1);
534
0
  }
535
0
}
536
537
static WEBP_INLINE void Store4x4_SSE2(__m128i* const x,
538
0
                                      uint8_t* dst, int stride) {
539
0
  int i;
540
0
  for (i = 0; i < 4; ++i, dst += stride) {
541
0
    WebPInt32ToMem(dst, _mm_cvtsi128_si32(*x));
542
0
    *x = _mm_srli_si128(*x, 4);
543
0
  }
544
0
}
545
546
// Transpose back and store
547
static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1,
548
                                       const __m128i* const p0,
549
                                       const __m128i* const q0,
550
                                       const __m128i* const q1,
551
                                       uint8_t* r0, uint8_t* r8,
552
0
                                       int stride) {
553
0
  __m128i t1, p1_s, p0_s, q0_s, q1_s;
554
555
  // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
556
  // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
557
0
  t1 = *p0;
558
0
  p0_s = _mm_unpacklo_epi8(*p1, t1);
559
0
  p1_s = _mm_unpackhi_epi8(*p1, t1);
560
561
  // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
562
  // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
563
0
  t1 = *q0;
564
0
  q0_s = _mm_unpacklo_epi8(t1, *q1);
565
0
  q1_s = _mm_unpackhi_epi8(t1, *q1);
566
567
  // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
568
  // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
569
0
  t1 = p0_s;
570
0
  p0_s = _mm_unpacklo_epi16(t1, q0_s);
571
0
  q0_s = _mm_unpackhi_epi16(t1, q0_s);
572
573
  // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
574
  // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
575
0
  t1 = p1_s;
576
0
  p1_s = _mm_unpacklo_epi16(t1, q1_s);
577
0
  q1_s = _mm_unpackhi_epi16(t1, q1_s);
578
579
0
  Store4x4_SSE2(&p0_s, r0, stride);
580
0
  r0 += 4 * stride;
581
0
  Store4x4_SSE2(&q0_s, r0, stride);
582
583
0
  Store4x4_SSE2(&p1_s, r8, stride);
584
0
  r8 += 4 * stride;
585
0
  Store4x4_SSE2(&q1_s, r8, stride);
586
0
}
587
588
//------------------------------------------------------------------------------
589
// Simple In-loop filtering (Paragraph 15.2)
590
591
0
static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) {
592
  // Load
593
0
  __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
594
0
  __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
595
0
  __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
596
0
  __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
597
598
0
  DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
599
600
  // Store
601
0
  _mm_storeu_si128((__m128i*)&p[-stride], p0);
602
0
  _mm_storeu_si128((__m128i*)&p[0], q0);
603
0
}
604
605
0
static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) {
606
0
  __m128i p1, p0, q0, q1;
607
608
0
  p -= 2;  // beginning of p1
609
610
0
  Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
611
0
  DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
612
0
  Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
613
0
}
614
615
0
static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
616
0
  int k;
617
0
  for (k = 3; k > 0; --k) {
618
0
    p += 4 * stride;
619
0
    SimpleVFilter16_SSE2(p, stride, thresh);
620
0
  }
621
0
}
622
623
0
static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
624
0
  int k;
625
0
  for (k = 3; k > 0; --k) {
626
0
    p += 4;
627
0
    SimpleHFilter16_SSE2(p, stride, thresh);
628
0
  }
629
0
}
630
631
//------------------------------------------------------------------------------
632
// Complex In-loop filtering (Paragraph 15.3)
633
634
0
#define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
635
0
  (m) = MM_ABS(p1, p0);                                                        \
636
0
  (m) = _mm_max_epu8(m, MM_ABS(p3, p2));                                       \
637
0
  (m) = _mm_max_epu8(m, MM_ABS(p2, p1));                                       \
638
0
} while (0)
639
640
0
#define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
641
0
  (m) = _mm_max_epu8(m, MM_ABS(p1, p0));                                       \
642
0
  (m) = _mm_max_epu8(m, MM_ABS(p3, p2));                                       \
643
0
  (m) = _mm_max_epu8(m, MM_ABS(p2, p1));                                       \
644
0
} while (0)
645
646
0
#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) do {                          \
647
0
  (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]);                        \
648
0
  (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]);                        \
649
0
  (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]);                        \
650
0
  (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]);                        \
651
0
} while (0)
652
653
0
#define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
654
0
  const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
655
0
  const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
656
0
  (p) = _mm_unpacklo_epi64(U, V);                                              \
657
0
} while (0)
658
659
0
#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) do {                     \
660
0
  LOADUV_H_EDGE(e1, u, v, 0 * (stride));                                       \
661
0
  LOADUV_H_EDGE(e2, u, v, 1 * (stride));                                       \
662
0
  LOADUV_H_EDGE(e3, u, v, 2 * (stride));                                       \
663
0
  LOADUV_H_EDGE(e4, u, v, 3 * (stride));                                       \
664
0
} while (0)
665
666
0
#define STOREUV(p, u, v, stride) do {                                          \
667
0
  _mm_storel_epi64((__m128i*)&(u)[(stride)], p);                               \
668
0
  (p) = _mm_srli_si128(p, 8);                                                  \
669
0
  _mm_storel_epi64((__m128i*)&(v)[(stride)], p);                               \
670
0
} while (0)
671
672
static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1,
673
                                         const __m128i* const p0,
674
                                         const __m128i* const q0,
675
                                         const __m128i* const q1,
676
                                         int thresh, int ithresh,
677
0
                                         __m128i* const mask) {
678
0
  const __m128i it = _mm_set1_epi8(ithresh);
679
0
  const __m128i diff = _mm_subs_epu8(*mask, it);
680
0
  const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
681
0
  __m128i filter_mask;
682
0
  NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask);
683
0
  *mask = _mm_and_si128(thresh_mask, filter_mask);
684
0
}
685
686
// on macroblock edges
687
static void VFilter16_SSE2(uint8_t* p, int stride,
688
0
                           int thresh, int ithresh, int hev_thresh) {
689
0
  __m128i t1;
690
0
  __m128i mask;
691
0
  __m128i p2, p1, p0, q0, q1, q2;
692
693
  // Load p3, p2, p1, p0
694
0
  LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
695
0
  MAX_DIFF1(t1, p2, p1, p0, mask);
696
697
  // Load q0, q1, q2, q3
698
0
  LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
699
0
  MAX_DIFF2(t1, q2, q1, q0, mask);
700
701
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
702
0
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
703
704
  // Store
705
0
  _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
706
0
  _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
707
0
  _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
708
0
  _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
709
0
  _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
710
0
  _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
711
0
}
712
713
static void HFilter16_SSE2(uint8_t* p, int stride,
714
0
                           int thresh, int ithresh, int hev_thresh) {
715
0
  __m128i mask;
716
0
  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
717
718
0
  uint8_t* const b = p - 4;
719
0
  Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
720
0
  MAX_DIFF1(p3, p2, p1, p0, mask);
721
722
0
  Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
723
0
  MAX_DIFF2(q3, q2, q1, q0, mask);
724
725
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
726
0
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
727
728
0
  Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
729
0
  Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
730
0
}
731
732
// on three inner edges
733
static void VFilter16i_SSE2(uint8_t* p, int stride,
734
0
                            int thresh, int ithresh, int hev_thresh) {
735
0
  int k;
736
0
  __m128i p3, p2, p1, p0;   // loop invariants
737
738
0
  LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
739
740
0
  for (k = 3; k > 0; --k) {
741
0
    __m128i mask, tmp1, tmp2;
742
0
    uint8_t* const b = p + 2 * stride;   // beginning of p1
743
0
    p += 4 * stride;
744
745
0
    MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
746
0
    LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
747
0
    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
748
749
    // p3 and p2 are not just temporary variables here: they will be
750
    // re-used for next span. And q2/q3 will become p1/p0 accordingly.
751
0
    ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
752
0
    DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
753
754
    // Store
755
0
    _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
756
0
    _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
757
0
    _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
758
0
    _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
759
760
    // rotate samples
761
0
    p1 = tmp1;
762
0
    p0 = tmp2;
763
0
  }
764
0
}
765
766
static void HFilter16i_SSE2(uint8_t* p, int stride,
767
0
                            int thresh, int ithresh, int hev_thresh) {
768
0
  int k;
769
0
  __m128i p3, p2, p1, p0;   // loop invariants
770
771
0
  Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
772
773
0
  for (k = 3; k > 0; --k) {
774
0
    __m128i mask, tmp1, tmp2;
775
0
    uint8_t* const b = p + 2;   // beginning of p1
776
777
0
    p += 4;  // beginning of q0 (and next span)
778
779
0
    MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
780
0
    Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
781
0
    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
782
783
0
    ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
784
0
    DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
785
786
0
    Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
787
788
    // rotate samples
789
0
    p1 = tmp1;
790
0
    p0 = tmp2;
791
0
  }
792
0
}
793
794
// 8-pixels wide variant, for chroma filtering
795
static void VFilter8_SSE2(uint8_t* u, uint8_t* v, int stride,
796
0
                          int thresh, int ithresh, int hev_thresh) {
797
0
  __m128i mask;
798
0
  __m128i t1, p2, p1, p0, q0, q1, q2;
799
800
  // Load p3, p2, p1, p0
801
0
  LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
802
0
  MAX_DIFF1(t1, p2, p1, p0, mask);
803
804
  // Load q0, q1, q2, q3
805
0
  LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
806
0
  MAX_DIFF2(t1, q2, q1, q0, mask);
807
808
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
809
0
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
810
811
  // Store
812
0
  STOREUV(p2, u, v, -3 * stride);
813
0
  STOREUV(p1, u, v, -2 * stride);
814
0
  STOREUV(p0, u, v, -1 * stride);
815
0
  STOREUV(q0, u, v, 0 * stride);
816
0
  STOREUV(q1, u, v, 1 * stride);
817
0
  STOREUV(q2, u, v, 2 * stride);
818
0
}
819
820
static void HFilter8_SSE2(uint8_t* u, uint8_t* v, int stride,
821
0
                          int thresh, int ithresh, int hev_thresh) {
822
0
  __m128i mask;
823
0
  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
824
825
0
  uint8_t* const tu = u - 4;
826
0
  uint8_t* const tv = v - 4;
827
0
  Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0);
828
0
  MAX_DIFF1(p3, p2, p1, p0, mask);
829
830
0
  Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3);
831
0
  MAX_DIFF2(q3, q2, q1, q0, mask);
832
833
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
834
0
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
835
836
0
  Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride);
837
0
  Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride);
838
0
}
839
840
static void VFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride,
841
0
                           int thresh, int ithresh, int hev_thresh) {
842
0
  __m128i mask;
843
0
  __m128i t1, t2, p1, p0, q0, q1;
844
845
  // Load p3, p2, p1, p0
846
0
  LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
847
0
  MAX_DIFF1(t2, t1, p1, p0, mask);
848
849
0
  u += 4 * stride;
850
0
  v += 4 * stride;
851
852
  // Load q0, q1, q2, q3
853
0
  LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
854
0
  MAX_DIFF2(t2, t1, q1, q0, mask);
855
856
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
857
0
  DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
858
859
  // Store
860
0
  STOREUV(p1, u, v, -2 * stride);
861
0
  STOREUV(p0, u, v, -1 * stride);
862
0
  STOREUV(q0, u, v, 0 * stride);
863
0
  STOREUV(q1, u, v, 1 * stride);
864
0
}
865
866
static void HFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride,
867
0
                           int thresh, int ithresh, int hev_thresh) {
868
0
  __m128i mask;
869
0
  __m128i t1, t2, p1, p0, q0, q1;
870
0
  Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
871
0
  MAX_DIFF1(t2, t1, p1, p0, mask);
872
873
0
  u += 4;  // beginning of q0
874
0
  v += 4;
875
0
  Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
876
0
  MAX_DIFF2(t2, t1, q1, q0, mask);
877
878
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
879
0
  DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
880
881
0
  u -= 2;  // beginning of p1
882
0
  v -= 2;
883
0
  Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride);
884
0
}
885
886
//------------------------------------------------------------------------------
887
// 4x4 predictions
888
889
0
#define DST(x, y) dst[(x) + (y) * BPS]
890
0
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
891
892
// We use the following 8b-arithmetic tricks:
893
//     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
894
//   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
895
// and:
896
//     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
897
//   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
898
//   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
899
900
0
static void VE4_SSE2(uint8_t* dst) {    // vertical
901
0
  const __m128i one = _mm_set1_epi8(1);
902
0
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
903
0
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
904
0
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
905
0
  const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
906
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
907
0
  const __m128i b = _mm_subs_epu8(a, lsb);
908
0
  const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
909
0
  const int vals = _mm_cvtsi128_si32(avg);
910
0
  int i;
911
0
  for (i = 0; i < 4; ++i) {
912
0
    WebPInt32ToMem(dst + i * BPS, vals);
913
0
  }
914
0
}
915
916
0
static void LD4_SSE2(uint8_t* dst) {   // Down-Left
917
0
  const __m128i one = _mm_set1_epi8(1);
918
0
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
919
0
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
920
0
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
921
0
  const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
922
0
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
923
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
924
0
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
925
0
  const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
926
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
927
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
928
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
929
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
930
0
}
931
932
0
static void VR4_SSE2(uint8_t* dst) {   // Vertical-Right
933
0
  const __m128i one = _mm_set1_epi8(1);
934
0
  const int I = dst[-1 + 0 * BPS];
935
0
  const int J = dst[-1 + 1 * BPS];
936
0
  const int K = dst[-1 + 2 * BPS];
937
0
  const int X = dst[-1 - BPS];
938
0
  const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
939
0
  const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
940
0
  const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
941
0
  const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
942
0
  const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
943
0
  const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
944
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
945
0
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
946
0
  const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
947
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
948
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
949
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
950
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
951
952
  // these two are hard to implement in SSE2, so we keep the C-version:
953
0
  DST(0, 2) = AVG3(J, I, X);
954
0
  DST(0, 3) = AVG3(K, J, I);
955
0
}
956
957
0
static void VL4_SSE2(uint8_t* dst) {   // Vertical-Left
958
0
  const __m128i one = _mm_set1_epi8(1);
959
0
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
960
0
  const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
961
0
  const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
962
0
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
963
0
  const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
964
0
  const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
965
0
  const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
966
0
  const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
967
0
  const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
968
0
  const __m128i abbc = _mm_or_si128(ab, bc);
969
0
  const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
970
0
  const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
971
0
  const uint32_t extra_out =
972
0
      (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
973
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
974
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
975
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
976
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
977
978
  // these two are hard to get and irregular
979
0
  DST(3, 2) = (extra_out >> 0) & 0xff;
980
0
  DST(3, 3) = (extra_out >> 8) & 0xff;
981
0
}
982
983
0
static void RD4_SSE2(uint8_t* dst) {   // Down-right
984
0
  const __m128i one = _mm_set1_epi8(1);
985
0
  const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
986
0
  const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
987
0
  const uint32_t I = dst[-1 + 0 * BPS];
988
0
  const uint32_t J = dst[-1 + 1 * BPS];
989
0
  const uint32_t K = dst[-1 + 2 * BPS];
990
0
  const uint32_t L = dst[-1 + 3 * BPS];
991
0
  const __m128i LKJI_____ =
992
0
      _mm_cvtsi32_si128((int)(L | (K << 8) | (J << 16) | (I << 24)));
993
0
  const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
994
0
  const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
995
0
  const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
996
0
  const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
997
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
998
0
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
999
0
  const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1000
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
1001
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1002
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1003
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1004
0
}
1005
1006
#undef DST
1007
#undef AVG3
1008
1009
//------------------------------------------------------------------------------
1010
// Luma 16x16
1011
1012
0
static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) {
1013
0
  const uint8_t* top = dst - BPS;
1014
0
  const __m128i zero = _mm_setzero_si128();
1015
0
  int y;
1016
0
  if (size == 4) {
1017
0
    const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1018
0
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1019
0
    for (y = 0; y < 4; ++y, dst += BPS) {
1020
0
      const int val = dst[-1] - top[-1];
1021
0
      const __m128i base = _mm_set1_epi16(val);
1022
0
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1023
0
      WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1024
0
    }
1025
0
  } else if (size == 8) {
1026
0
    const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1027
0
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1028
0
    for (y = 0; y < 8; ++y, dst += BPS) {
1029
0
      const int val = dst[-1] - top[-1];
1030
0
      const __m128i base = _mm_set1_epi16(val);
1031
0
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1032
0
      _mm_storel_epi64((__m128i*)dst, out);
1033
0
    }
1034
0
  } else {
1035
0
    const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1036
0
    const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1037
0
    const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1038
0
    for (y = 0; y < 16; ++y, dst += BPS) {
1039
0
      const int val = dst[-1] - top[-1];
1040
0
      const __m128i base = _mm_set1_epi16(val);
1041
0
      const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1042
0
      const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1043
0
      const __m128i out = _mm_packus_epi16(out_0, out_1);
1044
0
      _mm_storeu_si128((__m128i*)dst, out);
1045
0
    }
1046
0
  }
1047
0
}
1048
1049
0
static void TM4_SSE2(uint8_t* dst)   { TrueMotion_SSE2(dst, 4); }
1050
0
static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); }
1051
0
static void TM16_SSE2(uint8_t* dst)  { TrueMotion_SSE2(dst, 16); }
1052
1053
0
static void VE16_SSE2(uint8_t* dst) {
1054
0
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1055
0
  int j;
1056
0
  for (j = 0; j < 16; ++j) {
1057
0
    _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1058
0
  }
1059
0
}
1060
1061
0
static void HE16_SSE2(uint8_t* dst) {     // horizontal
1062
0
  int j;
1063
0
  for (j = 16; j > 0; --j) {
1064
0
    const __m128i values = _mm_set1_epi8((char)dst[-1]);
1065
0
    _mm_storeu_si128((__m128i*)dst, values);
1066
0
    dst += BPS;
1067
0
  }
1068
0
}
1069
1070
0
static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
1071
0
  int j;
1072
0
  const __m128i values = _mm_set1_epi8((char)v);
1073
0
  for (j = 0; j < 16; ++j) {
1074
0
    _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1075
0
  }
1076
0
}
1077
1078
0
static void DC16_SSE2(uint8_t* dst) {  // DC
1079
0
  const __m128i zero = _mm_setzero_si128();
1080
0
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1081
0
  const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1082
  // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1083
0
  const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1084
0
  int left = 0;
1085
0
  int j;
1086
0
  for (j = 0; j < 16; ++j) {
1087
0
    left += dst[-1 + j * BPS];
1088
0
  }
1089
0
  {
1090
0
    const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1091
0
    Put16_SSE2(DC >> 5, dst);
1092
0
  }
1093
0
}
1094
1095
0
static void DC16NoTop_SSE2(uint8_t* dst) {  // DC with top samples unavailable
1096
0
  int DC = 8;
1097
0
  int j;
1098
0
  for (j = 0; j < 16; ++j) {
1099
0
    DC += dst[-1 + j * BPS];
1100
0
  }
1101
0
  Put16_SSE2(DC >> 4, dst);
1102
0
}
1103
1104
0
static void DC16NoLeft_SSE2(uint8_t* dst) {  // DC with left samples unavailable
1105
0
  const __m128i zero = _mm_setzero_si128();
1106
0
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1107
0
  const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1108
  // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1109
0
  const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1110
0
  const int DC = _mm_cvtsi128_si32(sum) + 8;
1111
0
  Put16_SSE2(DC >> 4, dst);
1112
0
}
1113
1114
0
static void DC16NoTopLeft_SSE2(uint8_t* dst) {  // DC with no top & left samples
1115
0
  Put16_SSE2(0x80, dst);
1116
0
}
1117
1118
//------------------------------------------------------------------------------
1119
// Chroma
1120
1121
0
static void VE8uv_SSE2(uint8_t* dst) {    // vertical
1122
0
  int j;
1123
0
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1124
0
  for (j = 0; j < 8; ++j) {
1125
0
    _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1126
0
  }
1127
0
}
1128
1129
// helper for chroma-DC predictions
1130
0
static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
1131
0
  int j;
1132
0
  const __m128i values = _mm_set1_epi8((char)v);
1133
0
  for (j = 0; j < 8; ++j) {
1134
0
    _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1135
0
  }
1136
0
}
1137
1138
0
static void DC8uv_SSE2(uint8_t* dst) {     // DC
1139
0
  const __m128i zero = _mm_setzero_si128();
1140
0
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1141
0
  const __m128i sum = _mm_sad_epu8(top, zero);
1142
0
  int left = 0;
1143
0
  int j;
1144
0
  for (j = 0; j < 8; ++j) {
1145
0
    left += dst[-1 + j * BPS];
1146
0
  }
1147
0
  {
1148
0
    const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1149
0
    Put8x8uv_SSE2(DC >> 4, dst);
1150
0
  }
1151
0
}
1152
1153
0
static void DC8uvNoLeft_SSE2(uint8_t* dst) {   // DC with no left samples
1154
0
  const __m128i zero = _mm_setzero_si128();
1155
0
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1156
0
  const __m128i sum = _mm_sad_epu8(top, zero);
1157
0
  const int DC = _mm_cvtsi128_si32(sum) + 4;
1158
0
  Put8x8uv_SSE2(DC >> 3, dst);
1159
0
}
1160
1161
0
static void DC8uvNoTop_SSE2(uint8_t* dst) {  // DC with no top samples
1162
0
  int dc0 = 4;
1163
0
  int i;
1164
0
  for (i = 0; i < 8; ++i) {
1165
0
    dc0 += dst[-1 + i * BPS];
1166
0
  }
1167
0
  Put8x8uv_SSE2(dc0 >> 3, dst);
1168
0
}
1169
1170
0
static void DC8uvNoTopLeft_SSE2(uint8_t* dst) {    // DC with nothing
1171
0
  Put8x8uv_SSE2(0x80, dst);
1172
0
}
1173
1174
//------------------------------------------------------------------------------
1175
// Entry point
1176
1177
extern void VP8DspInitSSE2(void);
1178
1179
0
WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
1180
0
  VP8Transform = Transform_SSE2;
1181
#if (USE_TRANSFORM_AC3 == 1)
1182
  VP8TransformAC3 = TransformAC3_SSE2;
1183
#endif
1184
1185
0
  VP8VFilter16 = VFilter16_SSE2;
1186
0
  VP8HFilter16 = HFilter16_SSE2;
1187
0
  VP8VFilter8 = VFilter8_SSE2;
1188
0
  VP8HFilter8 = HFilter8_SSE2;
1189
0
  VP8VFilter16i = VFilter16i_SSE2;
1190
0
  VP8HFilter16i = HFilter16i_SSE2;
1191
0
  VP8VFilter8i = VFilter8i_SSE2;
1192
0
  VP8HFilter8i = HFilter8i_SSE2;
1193
1194
0
  VP8SimpleVFilter16 = SimpleVFilter16_SSE2;
1195
0
  VP8SimpleHFilter16 = SimpleHFilter16_SSE2;
1196
0
  VP8SimpleVFilter16i = SimpleVFilter16i_SSE2;
1197
0
  VP8SimpleHFilter16i = SimpleHFilter16i_SSE2;
1198
1199
0
  VP8PredLuma4[1] = TM4_SSE2;
1200
0
  VP8PredLuma4[2] = VE4_SSE2;
1201
0
  VP8PredLuma4[4] = RD4_SSE2;
1202
0
  VP8PredLuma4[5] = VR4_SSE2;
1203
0
  VP8PredLuma4[6] = LD4_SSE2;
1204
0
  VP8PredLuma4[7] = VL4_SSE2;
1205
1206
0
  VP8PredLuma16[0] = DC16_SSE2;
1207
0
  VP8PredLuma16[1] = TM16_SSE2;
1208
0
  VP8PredLuma16[2] = VE16_SSE2;
1209
0
  VP8PredLuma16[3] = HE16_SSE2;
1210
0
  VP8PredLuma16[4] = DC16NoTop_SSE2;
1211
0
  VP8PredLuma16[5] = DC16NoLeft_SSE2;
1212
0
  VP8PredLuma16[6] = DC16NoTopLeft_SSE2;
1213
1214
0
  VP8PredChroma8[0] = DC8uv_SSE2;
1215
0
  VP8PredChroma8[1] = TM8uv_SSE2;
1216
0
  VP8PredChroma8[2] = VE8uv_SSE2;
1217
0
  VP8PredChroma8[4] = DC8uvNoTop_SSE2;
1218
0
  VP8PredChroma8[5] = DC8uvNoLeft_SSE2;
1219
0
  VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2;
1220
0
}
1221
1222
#else  // !WEBP_USE_SSE2
1223
1224
WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1225
1226
#endif  // WEBP_USE_SSE2