Coverage Report

Created: 2024-07-27 06:27

/src/libwebp/src/dec/frame_dec.c
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2010 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Frame-reconstruction function. Memory allocation.
11
//
12
// Author: Skal (pascal.massimino@gmail.com)
13
14
#include <stdlib.h>
15
#include "src/dec/vp8i_dec.h"
16
#include "src/utils/utils.h"
17
18
//------------------------------------------------------------------------------
19
// Main reconstruction function.
20
21
static const uint16_t kScan[16] = {
22
  0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
23
  0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
24
  0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
25
  0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
26
};
27
28
0
static int CheckMode(int mb_x, int mb_y, int mode) {
29
0
  if (mode == B_DC_PRED) {
30
0
    if (mb_x == 0) {
31
0
      return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
32
0
    } else {
33
0
      return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
34
0
    }
35
0
  }
36
0
  return mode;
37
0
}
38
39
0
static void Copy32b(uint8_t* const dst, const uint8_t* const src) {
40
0
  memcpy(dst, src, 4);
41
0
}
42
43
static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src,
44
0
                                    uint8_t* const dst) {
45
0
  switch (bits >> 30) {
46
0
    case 3:
47
0
      VP8Transform(src, dst, 0);
48
0
      break;
49
0
    case 2:
50
0
      VP8TransformAC3(src, dst);
51
0
      break;
52
0
    case 1:
53
0
      VP8TransformDC(src, dst);
54
0
      break;
55
0
    default:
56
0
      break;
57
0
  }
58
0
}
59
60
static void DoUVTransform(uint32_t bits, const int16_t* const src,
61
0
                          uint8_t* const dst) {
62
0
  if (bits & 0xff) {    // any non-zero coeff at all?
63
0
    if (bits & 0xaa) {  // any non-zero AC coefficient?
64
0
      VP8TransformUV(src, dst);   // note we don't use the AC3 variant for U/V
65
0
    } else {
66
0
      VP8TransformDCUV(src, dst);
67
0
    }
68
0
  }
69
0
}
70
71
static void ReconstructRow(const VP8Decoder* const dec,
72
0
                           const VP8ThreadContext* ctx) {
73
0
  int j;
74
0
  int mb_x;
75
0
  const int mb_y = ctx->mb_y_;
76
0
  const int cache_id = ctx->id_;
77
0
  uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
78
0
  uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
79
0
  uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
80
81
  // Initialize left-most block.
82
0
  for (j = 0; j < 16; ++j) {
83
0
    y_dst[j * BPS - 1] = 129;
84
0
  }
85
0
  for (j = 0; j < 8; ++j) {
86
0
    u_dst[j * BPS - 1] = 129;
87
0
    v_dst[j * BPS - 1] = 129;
88
0
  }
89
90
  // Init top-left sample on left column too.
91
0
  if (mb_y > 0) {
92
0
    y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
93
0
  } else {
94
    // we only need to do this init once at block (0,0).
95
    // Afterward, it remains valid for the whole topmost row.
96
0
    memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
97
0
    memset(u_dst - BPS - 1, 127, 8 + 1);
98
0
    memset(v_dst - BPS - 1, 127, 8 + 1);
99
0
  }
100
101
  // Reconstruct one row.
102
0
  for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
103
0
    const VP8MBData* const block = ctx->mb_data_ + mb_x;
104
105
    // Rotate in the left samples from previously decoded block. We move four
106
    // pixels at a time for alignment reason, and because of in-loop filter.
107
0
    if (mb_x > 0) {
108
0
      for (j = -1; j < 16; ++j) {
109
0
        Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
110
0
      }
111
0
      for (j = -1; j < 8; ++j) {
112
0
        Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
113
0
        Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
114
0
      }
115
0
    }
116
0
    {
117
      // bring top samples into the cache
118
0
      VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x;
119
0
      const int16_t* const coeffs = block->coeffs_;
120
0
      uint32_t bits = block->non_zero_y_;
121
0
      int n;
122
123
0
      if (mb_y > 0) {
124
0
        memcpy(y_dst - BPS, top_yuv[0].y, 16);
125
0
        memcpy(u_dst - BPS, top_yuv[0].u, 8);
126
0
        memcpy(v_dst - BPS, top_yuv[0].v, 8);
127
0
      }
128
129
      // predict and add residuals
130
0
      if (block->is_i4x4_) {   // 4x4
131
0
        uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
132
133
0
        if (mb_y > 0) {
134
0
          if (mb_x >= dec->mb_w_ - 1) {    // on rightmost border
135
0
            memset(top_right, top_yuv[0].y[15], sizeof(*top_right));
136
0
          } else {
137
0
            memcpy(top_right, top_yuv[1].y, sizeof(*top_right));
138
0
          }
139
0
        }
140
        // replicate the top-right pixels below
141
0
        top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
142
143
        // predict and add residuals for all 4x4 blocks in turn.
144
0
        for (n = 0; n < 16; ++n, bits <<= 2) {
145
0
          uint8_t* const dst = y_dst + kScan[n];
146
0
          VP8PredLuma4[block->imodes_[n]](dst);
147
0
          DoTransform(bits, coeffs + n * 16, dst);
148
0
        }
149
0
      } else {    // 16x16
150
0
        const int pred_func = CheckMode(mb_x, mb_y, block->imodes_[0]);
151
0
        VP8PredLuma16[pred_func](y_dst);
152
0
        if (bits != 0) {
153
0
          for (n = 0; n < 16; ++n, bits <<= 2) {
154
0
            DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]);
155
0
          }
156
0
        }
157
0
      }
158
0
      {
159
        // Chroma
160
0
        const uint32_t bits_uv = block->non_zero_uv_;
161
0
        const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_);
162
0
        VP8PredChroma8[pred_func](u_dst);
163
0
        VP8PredChroma8[pred_func](v_dst);
164
0
        DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst);
165
0
        DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst);
166
0
      }
167
168
      // stash away top samples for next block
169
0
      if (mb_y < dec->mb_h_ - 1) {
170
0
        memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16);
171
0
        memcpy(top_yuv[0].u, u_dst +  7 * BPS,  8);
172
0
        memcpy(top_yuv[0].v, v_dst +  7 * BPS,  8);
173
0
      }
174
0
    }
175
    // Transfer reconstructed samples from yuv_b_ cache to final destination.
176
0
    {
177
0
      const int y_offset = cache_id * 16 * dec->cache_y_stride_;
178
0
      const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
179
0
      uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset;
180
0
      uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset;
181
0
      uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset;
182
0
      for (j = 0; j < 16; ++j) {
183
0
        memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
184
0
      }
185
0
      for (j = 0; j < 8; ++j) {
186
0
        memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
187
0
        memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
188
0
      }
189
0
    }
190
0
  }
191
0
}
192
193
//------------------------------------------------------------------------------
194
// Filtering
195
196
// kFilterExtraRows[] = How many extra lines are needed on the MB boundary
197
// for caching, given a filtering level.
198
// Simple filter:  up to 2 luma samples are read and 1 is written.
199
// Complex filter: up to 4 luma samples are read and 3 are written. Same for
200
//                 U/V, so it's 8 samples total (because of the 2x upsampling).
201
static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
202
203
0
static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
204
0
  const VP8ThreadContext* const ctx = &dec->thread_ctx_;
205
0
  const int cache_id = ctx->id_;
206
0
  const int y_bps = dec->cache_y_stride_;
207
0
  const VP8FInfo* const f_info = ctx->f_info_ + mb_x;
208
0
  uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16;
209
0
  const int ilevel = f_info->f_ilevel_;
210
0
  const int limit = f_info->f_limit_;
211
0
  if (limit == 0) {
212
0
    return;
213
0
  }
214
0
  assert(limit >= 3);
215
0
  if (dec->filter_type_ == 1) {   // simple
216
0
    if (mb_x > 0) {
217
0
      VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
218
0
    }
219
0
    if (f_info->f_inner_) {
220
0
      VP8SimpleHFilter16i(y_dst, y_bps, limit);
221
0
    }
222
0
    if (mb_y > 0) {
223
0
      VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
224
0
    }
225
0
    if (f_info->f_inner_) {
226
0
      VP8SimpleVFilter16i(y_dst, y_bps, limit);
227
0
    }
228
0
  } else {    // complex
229
0
    const int uv_bps = dec->cache_uv_stride_;
230
0
    uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
231
0
    uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
232
0
    const int hev_thresh = f_info->hev_thresh_;
233
0
    if (mb_x > 0) {
234
0
      VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
235
0
      VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
236
0
    }
237
0
    if (f_info->f_inner_) {
238
0
      VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
239
0
      VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
240
0
    }
241
0
    if (mb_y > 0) {
242
0
      VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
243
0
      VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
244
0
    }
245
0
    if (f_info->f_inner_) {
246
0
      VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
247
0
      VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
248
0
    }
249
0
  }
250
0
}
251
252
// Filter the decoded macroblock row (if needed)
253
0
static void FilterRow(const VP8Decoder* const dec) {
254
0
  int mb_x;
255
0
  const int mb_y = dec->thread_ctx_.mb_y_;
256
0
  assert(dec->thread_ctx_.filter_row_);
257
0
  for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
258
0
    DoFilter(dec, mb_x, mb_y);
259
0
  }
260
0
}
261
262
//------------------------------------------------------------------------------
263
// Precompute the filtering strength for each segment and each i4x4/i16x16 mode.
264
265
0
static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
266
0
  if (dec->filter_type_ > 0) {
267
0
    int s;
268
0
    const VP8FilterHeader* const hdr = &dec->filter_hdr_;
269
0
    for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
270
0
      int i4x4;
271
      // First, compute the initial level
272
0
      int base_level;
273
0
      if (dec->segment_hdr_.use_segment_) {
274
0
        base_level = dec->segment_hdr_.filter_strength_[s];
275
0
        if (!dec->segment_hdr_.absolute_delta_) {
276
0
          base_level += hdr->level_;
277
0
        }
278
0
      } else {
279
0
        base_level = hdr->level_;
280
0
      }
281
0
      for (i4x4 = 0; i4x4 <= 1; ++i4x4) {
282
0
        VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
283
0
        int level = base_level;
284
0
        if (hdr->use_lf_delta_) {
285
0
          level += hdr->ref_lf_delta_[0];
286
0
          if (i4x4) {
287
0
            level += hdr->mode_lf_delta_[0];
288
0
          }
289
0
        }
290
0
        level = (level < 0) ? 0 : (level > 63) ? 63 : level;
291
0
        if (level > 0) {
292
0
          int ilevel = level;
293
0
          if (hdr->sharpness_ > 0) {
294
0
            if (hdr->sharpness_ > 4) {
295
0
              ilevel >>= 2;
296
0
            } else {
297
0
              ilevel >>= 1;
298
0
            }
299
0
            if (ilevel > 9 - hdr->sharpness_) {
300
0
              ilevel = 9 - hdr->sharpness_;
301
0
            }
302
0
          }
303
0
          if (ilevel < 1) ilevel = 1;
304
0
          info->f_ilevel_ = ilevel;
305
0
          info->f_limit_ = 2 * level + ilevel;
306
0
          info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
307
0
        } else {
308
0
          info->f_limit_ = 0;  // no filtering
309
0
        }
310
0
        info->f_inner_ = i4x4;
311
0
      }
312
0
    }
313
0
  }
314
0
}
315
316
//------------------------------------------------------------------------------
317
// Dithering
318
319
// minimal amp that will provide a non-zero dithering effect
320
0
#define MIN_DITHER_AMP 4
321
322
0
#define DITHER_AMP_TAB_SIZE 12
323
static const uint8_t kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = {
324
  // roughly, it's dqm->uv_mat_[1]
325
  8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1
326
};
327
328
void VP8InitDithering(const WebPDecoderOptions* const options,
329
0
                      VP8Decoder* const dec) {
330
0
  assert(dec != NULL);
331
0
  if (options != NULL) {
332
0
    const int d = options->dithering_strength;
333
0
    const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1;
334
0
    const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100);
335
0
    if (f > 0) {
336
0
      int s;
337
0
      int all_amp = 0;
338
0
      for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
339
0
        VP8QuantMatrix* const dqm = &dec->dqm_[s];
340
0
        if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) {
341
0
          const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_;
342
0
          dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3;
343
0
        }
344
0
        all_amp |= dqm->dither_;
345
0
      }
346
0
      if (all_amp != 0) {
347
0
        VP8InitRandom(&dec->dithering_rg_, 1.0f);
348
0
        dec->dither_ = 1;
349
0
      }
350
0
    }
351
    // potentially allow alpha dithering
352
0
    dec->alpha_dithering_ = options->alpha_dithering_strength;
353
0
    if (dec->alpha_dithering_ > 100) {
354
0
      dec->alpha_dithering_ = 100;
355
0
    } else if (dec->alpha_dithering_ < 0) {
356
0
      dec->alpha_dithering_ = 0;
357
0
    }
358
0
  }
359
0
}
360
361
// Convert to range: [-2,2] for dither=50, [-4,4] for dither=100
362
0
static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) {
363
0
  uint8_t dither[64];
364
0
  int i;
365
0
  for (i = 0; i < 8 * 8; ++i) {
366
0
    dither[i] = VP8RandomBits2(rg, VP8_DITHER_AMP_BITS + 1, amp);
367
0
  }
368
0
  VP8DitherCombine8x8(dither, dst, bps);
369
0
}
370
371
0
static void DitherRow(VP8Decoder* const dec) {
372
0
  int mb_x;
373
0
  assert(dec->dither_);
374
0
  for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
375
0
    const VP8ThreadContext* const ctx = &dec->thread_ctx_;
376
0
    const VP8MBData* const data = ctx->mb_data_ + mb_x;
377
0
    const int cache_id = ctx->id_;
378
0
    const int uv_bps = dec->cache_uv_stride_;
379
0
    if (data->dither_ >= MIN_DITHER_AMP) {
380
0
      uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
381
0
      uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
382
0
      Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_);
383
0
      Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_);
384
0
    }
385
0
  }
386
0
}
387
388
//------------------------------------------------------------------------------
389
// This function is called after a row of macroblocks is finished decoding.
390
// It also takes into account the following restrictions:
391
//  * In case of in-loop filtering, we must hold off sending some of the bottom
392
//    pixels as they are yet unfiltered. They will be when the next macroblock
393
//    row is decoded. Meanwhile, we must preserve them by rotating them in the
394
//    cache area. This doesn't hold for the very bottom row of the uncropped
395
//    picture of course.
396
//  * we must clip the remaining pixels against the cropping area. The VP8Io
397
//    struct must have the following fields set correctly before calling put():
398
399
0
#define MACROBLOCK_VPOS(mb_y)  ((mb_y) * 16)    // vertical position of a MB
400
401
// Finalize and transmit a complete row. Return false in case of user-abort.
402
0
static int FinishRow(void* arg1, void* arg2) {
403
0
  VP8Decoder* const dec = (VP8Decoder*)arg1;
404
0
  VP8Io* const io = (VP8Io*)arg2;
405
0
  int ok = 1;
406
0
  const VP8ThreadContext* const ctx = &dec->thread_ctx_;
407
0
  const int cache_id = ctx->id_;
408
0
  const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
409
0
  const int ysize = extra_y_rows * dec->cache_y_stride_;
410
0
  const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
411
0
  const int y_offset = cache_id * 16 * dec->cache_y_stride_;
412
0
  const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
413
0
  uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
414
0
  uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
415
0
  uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
416
0
  const int mb_y = ctx->mb_y_;
417
0
  const int is_first_row = (mb_y == 0);
418
0
  const int is_last_row = (mb_y >= dec->br_mb_y_ - 1);
419
420
0
  if (dec->mt_method_ == 2) {
421
0
    ReconstructRow(dec, ctx);
422
0
  }
423
424
0
  if (ctx->filter_row_) {
425
0
    FilterRow(dec);
426
0
  }
427
428
0
  if (dec->dither_) {
429
0
    DitherRow(dec);
430
0
  }
431
432
0
  if (io->put != NULL) {
433
0
    int y_start = MACROBLOCK_VPOS(mb_y);
434
0
    int y_end = MACROBLOCK_VPOS(mb_y + 1);
435
0
    if (!is_first_row) {
436
0
      y_start -= extra_y_rows;
437
0
      io->y = ydst;
438
0
      io->u = udst;
439
0
      io->v = vdst;
440
0
    } else {
441
0
      io->y = dec->cache_y_ + y_offset;
442
0
      io->u = dec->cache_u_ + uv_offset;
443
0
      io->v = dec->cache_v_ + uv_offset;
444
0
    }
445
446
0
    if (!is_last_row) {
447
0
      y_end -= extra_y_rows;
448
0
    }
449
0
    if (y_end > io->crop_bottom) {
450
0
      y_end = io->crop_bottom;    // make sure we don't overflow on last row.
451
0
    }
452
    // If dec->alpha_data_ is not NULL, we have some alpha plane present.
453
0
    io->a = NULL;
454
0
    if (dec->alpha_data_ != NULL && y_start < y_end) {
455
0
      io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start);
456
0
      if (io->a == NULL) {
457
0
        return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
458
0
                           "Could not decode alpha data.");
459
0
      }
460
0
    }
461
0
    if (y_start < io->crop_top) {
462
0
      const int delta_y = io->crop_top - y_start;
463
0
      y_start = io->crop_top;
464
0
      assert(!(delta_y & 1));
465
0
      io->y += dec->cache_y_stride_ * delta_y;
466
0
      io->u += dec->cache_uv_stride_ * (delta_y >> 1);
467
0
      io->v += dec->cache_uv_stride_ * (delta_y >> 1);
468
0
      if (io->a != NULL) {
469
0
        io->a += io->width * delta_y;
470
0
      }
471
0
    }
472
0
    if (y_start < y_end) {
473
0
      io->y += io->crop_left;
474
0
      io->u += io->crop_left >> 1;
475
0
      io->v += io->crop_left >> 1;
476
0
      if (io->a != NULL) {
477
0
        io->a += io->crop_left;
478
0
      }
479
0
      io->mb_y = y_start - io->crop_top;
480
0
      io->mb_w = io->crop_right - io->crop_left;
481
0
      io->mb_h = y_end - y_start;
482
0
      ok = io->put(io);
483
0
    }
484
0
  }
485
  // rotate top samples if needed
486
0
  if (cache_id + 1 == dec->num_caches_) {
487
0
    if (!is_last_row) {
488
0
      memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
489
0
      memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
490
0
      memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
491
0
    }
492
0
  }
493
494
0
  return ok;
495
0
}
496
497
#undef MACROBLOCK_VPOS
498
499
//------------------------------------------------------------------------------
500
501
0
int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
502
0
  int ok = 1;
503
0
  VP8ThreadContext* const ctx = &dec->thread_ctx_;
504
0
  const int filter_row =
505
0
      (dec->filter_type_ > 0) &&
506
0
      (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
507
0
  if (dec->mt_method_ == 0) {
508
    // ctx->id_ and ctx->f_info_ are already set
509
0
    ctx->mb_y_ = dec->mb_y_;
510
0
    ctx->filter_row_ = filter_row;
511
0
    ReconstructRow(dec, ctx);
512
0
    ok = FinishRow(dec, io);
513
0
  } else {
514
0
    WebPWorker* const worker = &dec->worker_;
515
    // Finish previous job *before* updating context
516
0
    ok &= WebPGetWorkerInterface()->Sync(worker);
517
0
    assert(worker->status_ == OK);
518
0
    if (ok) {   // spawn a new deblocking/output job
519
0
      ctx->io_ = *io;
520
0
      ctx->id_ = dec->cache_id_;
521
0
      ctx->mb_y_ = dec->mb_y_;
522
0
      ctx->filter_row_ = filter_row;
523
0
      if (dec->mt_method_ == 2) {  // swap macroblock data
524
0
        VP8MBData* const tmp = ctx->mb_data_;
525
0
        ctx->mb_data_ = dec->mb_data_;
526
0
        dec->mb_data_ = tmp;
527
0
      } else {
528
        // perform reconstruction directly in main thread
529
0
        ReconstructRow(dec, ctx);
530
0
      }
531
0
      if (filter_row) {            // swap filter info
532
0
        VP8FInfo* const tmp = ctx->f_info_;
533
0
        ctx->f_info_ = dec->f_info_;
534
0
        dec->f_info_ = tmp;
535
0
      }
536
      // (reconstruct)+filter in parallel
537
0
      WebPGetWorkerInterface()->Launch(worker);
538
0
      if (++dec->cache_id_ == dec->num_caches_) {
539
0
        dec->cache_id_ = 0;
540
0
      }
541
0
    }
542
0
  }
543
0
  return ok;
544
0
}
545
546
//------------------------------------------------------------------------------
547
// Finish setting up the decoding parameter once user's setup() is called.
548
549
0
VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
550
  // Call setup() first. This may trigger additional decoding features on 'io'.
551
  // Note: Afterward, we must call teardown() no matter what.
552
0
  if (io->setup != NULL && !io->setup(io)) {
553
0
    VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
554
0
    return dec->status_;
555
0
  }
556
557
  // Disable filtering per user request
558
0
  if (io->bypass_filtering) {
559
0
    dec->filter_type_ = 0;
560
0
  }
561
562
  // Define the area where we can skip in-loop filtering, in case of cropping.
563
  //
564
  // 'Simple' filter reads two luma samples outside of the macroblock
565
  // and filters one. It doesn't filter the chroma samples. Hence, we can
566
  // avoid doing the in-loop filtering before crop_top/crop_left position.
567
  // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
568
  // Means: there's a dependency chain that goes all the way up to the
569
  // top-left corner of the picture (MB #0). We must filter all the previous
570
  // macroblocks.
571
0
  {
572
0
    const int extra_pixels = kFilterExtraRows[dec->filter_type_];
573
0
    if (dec->filter_type_ == 2) {
574
      // For complex filter, we need to preserve the dependency chain.
575
0
      dec->tl_mb_x_ = 0;
576
0
      dec->tl_mb_y_ = 0;
577
0
    } else {
578
      // For simple filter, we can filter only the cropped region.
579
      // We include 'extra_pixels' on the other side of the boundary, since
580
      // vertical or horizontal filtering of the previous macroblock can
581
      // modify some abutting pixels.
582
0
      dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
583
0
      dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
584
0
      if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
585
0
      if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
586
0
    }
587
    // We need some 'extra' pixels on the right/bottom.
588
0
    dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
589
0
    dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
590
0
    if (dec->br_mb_x_ > dec->mb_w_) {
591
0
      dec->br_mb_x_ = dec->mb_w_;
592
0
    }
593
0
    if (dec->br_mb_y_ > dec->mb_h_) {
594
0
      dec->br_mb_y_ = dec->mb_h_;
595
0
    }
596
0
  }
597
0
  PrecomputeFilterStrengths(dec);
598
0
  return VP8_STATUS_OK;
599
0
}
600
601
0
int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
602
0
  int ok = 1;
603
0
  if (dec->mt_method_ > 0) {
604
0
    ok = WebPGetWorkerInterface()->Sync(&dec->worker_);
605
0
  }
606
607
0
  if (io->teardown != NULL) {
608
0
    io->teardown(io);
609
0
  }
610
0
  return ok;
611
0
}
612
613
//------------------------------------------------------------------------------
614
// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
615
//
616
// Reason is: the deblocking filter cannot deblock the bottom horizontal edges
617
// immediately, and needs to wait for first few rows of the next macroblock to
618
// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
619
// on strength).
620
// With two threads, the vertical positions of the rows being decoded are:
621
// Decode:  [ 0..15][16..31][32..47][48..63][64..79][...
622
// Deblock:         [ 0..11][12..27][28..43][44..59][...
623
// If we use two threads and two caches of 16 pixels, the sequence would be:
624
// Decode:  [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
625
// Deblock:         [ 0..11][12..27!!][-4..11][12..27][...
626
// The problem occurs during row [12..15!!] that both the decoding and
627
// deblocking threads are writing simultaneously.
628
// With 3 cache lines, one get a safe write pattern:
629
// Decode:  [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
630
// Deblock:         [ 0..11][12..27][28..43][-4..11][12..27][28...
631
// Note that multi-threaded output _without_ deblocking can make use of two
632
// cache lines of 16 pixels only, since there's no lagging behind. The decoding
633
// and output process have non-concurrent writing:
634
// Decode:  [ 0..15][16..31][ 0..15][16..31][...
635
// io->put:         [ 0..15][16..31][ 0..15][...
636
637
0
#define MT_CACHE_LINES 3
638
0
#define ST_CACHE_LINES 1   // 1 cache row only for single-threaded case
639
640
// Initialize multi/single-thread worker
641
0
static int InitThreadContext(VP8Decoder* const dec) {
642
0
  dec->cache_id_ = 0;
643
0
  if (dec->mt_method_ > 0) {
644
0
    WebPWorker* const worker = &dec->worker_;
645
0
    if (!WebPGetWorkerInterface()->Reset(worker)) {
646
0
      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
647
0
                         "thread initialization failed.");
648
0
    }
649
0
    worker->data1 = dec;
650
0
    worker->data2 = (void*)&dec->thread_ctx_.io_;
651
0
    worker->hook = FinishRow;
652
0
    dec->num_caches_ =
653
0
      (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
654
0
  } else {
655
0
    dec->num_caches_ = ST_CACHE_LINES;
656
0
  }
657
0
  return 1;
658
0
}
659
660
int VP8GetThreadMethod(const WebPDecoderOptions* const options,
661
                       const WebPHeaderStructure* const headers,
662
0
                       int width, int height) {
663
0
  if (options == NULL || options->use_threads == 0) {
664
0
    return 0;
665
0
  }
666
0
  (void)headers;
667
0
  (void)width;
668
0
  (void)height;
669
0
  assert(headers == NULL || !headers->is_lossless);
670
0
#if defined(WEBP_USE_THREAD)
671
0
  if (width >= MIN_WIDTH_FOR_THREADS) return 2;
672
0
#endif
673
0
  return 0;
674
0
}
675
676
#undef MT_CACHE_LINES
677
#undef ST_CACHE_LINES
678
679
//------------------------------------------------------------------------------
680
// Memory setup
681
682
0
static int AllocateMemory(VP8Decoder* const dec) {
683
0
  const int num_caches = dec->num_caches_;
684
0
  const int mb_w = dec->mb_w_;
685
  // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
686
0
  const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
687
0
  const size_t top_size = sizeof(VP8TopSamples) * mb_w;
688
0
  const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
689
0
  const size_t f_info_size =
690
0
      (dec->filter_type_ > 0) ?
691
0
          mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo)
692
0
        : 0;
693
0
  const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
694
0
  const size_t mb_data_size =
695
0
      (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_);
696
0
  const size_t cache_height = (16 * num_caches
697
0
                            + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
698
0
  const size_t cache_size = top_size * cache_height;
699
  // alpha_size is the only one that scales as width x height.
700
0
  const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
701
0
      (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
702
0
  const uint64_t needed = (uint64_t)intra_pred_mode_size
703
0
                        + top_size + mb_info_size + f_info_size
704
0
                        + yuv_size + mb_data_size
705
0
                        + cache_size + alpha_size + WEBP_ALIGN_CST;
706
0
  uint8_t* mem;
707
708
0
  if (!CheckSizeOverflow(needed)) return 0;  // check for overflow
709
0
  if (needed > dec->mem_size_) {
710
0
    WebPSafeFree(dec->mem_);
711
0
    dec->mem_size_ = 0;
712
0
    dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
713
0
    if (dec->mem_ == NULL) {
714
0
      return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
715
0
                         "no memory during frame initialization.");
716
0
    }
717
    // down-cast is ok, thanks to WebPSafeMalloc() above.
718
0
    dec->mem_size_ = (size_t)needed;
719
0
  }
720
721
0
  mem = (uint8_t*)dec->mem_;
722
0
  dec->intra_t_ = mem;
723
0
  mem += intra_pred_mode_size;
724
725
0
  dec->yuv_t_ = (VP8TopSamples*)mem;
726
0
  mem += top_size;
727
728
0
  dec->mb_info_ = ((VP8MB*)mem) + 1;
729
0
  mem += mb_info_size;
730
731
0
  dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
732
0
  mem += f_info_size;
733
0
  dec->thread_ctx_.id_ = 0;
734
0
  dec->thread_ctx_.f_info_ = dec->f_info_;
735
0
  if (dec->filter_type_ > 0 && dec->mt_method_ > 0) {
736
    // secondary cache line. The deblocking process need to make use of the
737
    // filtering strength from previous macroblock row, while the new ones
738
    // are being decoded in parallel. We'll just swap the pointers.
739
0
    dec->thread_ctx_.f_info_ += mb_w;
740
0
  }
741
742
0
  mem = (uint8_t*)WEBP_ALIGN(mem);
743
0
  assert((yuv_size & WEBP_ALIGN_CST) == 0);
744
0
  dec->yuv_b_ = mem;
745
0
  mem += yuv_size;
746
747
0
  dec->mb_data_ = (VP8MBData*)mem;
748
0
  dec->thread_ctx_.mb_data_ = (VP8MBData*)mem;
749
0
  if (dec->mt_method_ == 2) {
750
0
    dec->thread_ctx_.mb_data_ += mb_w;
751
0
  }
752
0
  mem += mb_data_size;
753
754
0
  dec->cache_y_stride_ = 16 * mb_w;
755
0
  dec->cache_uv_stride_ = 8 * mb_w;
756
0
  {
757
0
    const int extra_rows = kFilterExtraRows[dec->filter_type_];
758
0
    const int extra_y = extra_rows * dec->cache_y_stride_;
759
0
    const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
760
0
    dec->cache_y_ = mem + extra_y;
761
0
    dec->cache_u_ = dec->cache_y_
762
0
                  + 16 * num_caches * dec->cache_y_stride_ + extra_uv;
763
0
    dec->cache_v_ = dec->cache_u_
764
0
                  + 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
765
0
    dec->cache_id_ = 0;
766
0
  }
767
0
  mem += cache_size;
768
769
  // alpha plane
770
0
  dec->alpha_plane_ = alpha_size ? mem : NULL;
771
0
  mem += alpha_size;
772
0
  assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
773
774
  // note: left/top-info is initialized once for all.
775
0
  memset(dec->mb_info_ - 1, 0, mb_info_size);
776
0
  VP8InitScanline(dec);   // initialize left too.
777
778
  // initialize top
779
0
  memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
780
781
0
  return 1;
782
0
}
783
784
0
static void InitIo(VP8Decoder* const dec, VP8Io* io) {
785
  // prepare 'io'
786
0
  io->mb_y = 0;
787
0
  io->y = dec->cache_y_;
788
0
  io->u = dec->cache_u_;
789
0
  io->v = dec->cache_v_;
790
0
  io->y_stride = dec->cache_y_stride_;
791
0
  io->uv_stride = dec->cache_uv_stride_;
792
0
  io->a = NULL;
793
0
}
794
795
0
int VP8InitFrame(VP8Decoder* const dec, VP8Io* const io) {
796
0
  if (!InitThreadContext(dec)) return 0;  // call first. Sets dec->num_caches_.
797
0
  if (!AllocateMemory(dec)) return 0;
798
0
  InitIo(dec, io);
799
0
  VP8DspInit();  // Init critical function pointers and look-up tables.
800
0
  return 1;
801
0
}
802
803
//------------------------------------------------------------------------------