/src/leptonica/src/pix2.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*====================================================================* |
2 | | - Copyright (C) 2001 Leptonica. All rights reserved. |
3 | | - |
4 | | - Redistribution and use in source and binary forms, with or without |
5 | | - modification, are permitted provided that the following conditions |
6 | | - are met: |
7 | | - 1. Redistributions of source code must retain the above copyright |
8 | | - notice, this list of conditions and the following disclaimer. |
9 | | - 2. Redistributions in binary form must reproduce the above |
10 | | - copyright notice, this list of conditions and the following |
11 | | - disclaimer in the documentation and/or other materials |
12 | | - provided with the distribution. |
13 | | - |
14 | | - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
15 | | - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
16 | | - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
17 | | - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY |
18 | | - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | | - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | | - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | | - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | | - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
23 | | - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
24 | | - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | | *====================================================================*/ |
26 | | |
27 | | /*! |
28 | | * \file pix2.c |
29 | | * <pre> |
30 | | * |
31 | | * This file has these basic operations: |
32 | | * |
33 | | * (1) Get and set: individual pixels, full image, rectangular region, |
34 | | * pad pixels, border pixels, and color components for RGB |
35 | | * (2) Add and remove border pixels |
36 | | * (3) Endian byte swaps |
37 | | * (4) Simple method for byte-processing images (instead of words) |
38 | | * |
39 | | * Pixel poking |
40 | | * l_int32 pixGetPixel() |
41 | | * l_int32 pixSetPixel() |
42 | | * l_int32 pixGetRGBPixel() |
43 | | * l_int32 pixSetRGBPixel() |
44 | | * l_int32 pixSetCmapPixel() |
45 | | * l_int32 pixGetRandomPixel() |
46 | | * l_int32 pixClearPixel() |
47 | | * l_int32 pixFlipPixel() |
48 | | * void setPixelLow() |
49 | | * |
50 | | * Find black or white value |
51 | | * l_int32 pixGetBlackOrWhiteVal() |
52 | | * |
53 | | * Full image clear/set/set-to-arbitrary-value |
54 | | * l_int32 pixClearAll() |
55 | | * l_int32 pixSetAll() |
56 | | * l_int32 pixSetAllGray() |
57 | | * l_int32 pixSetAllArbitrary() |
58 | | * l_int32 pixSetBlackOrWhite() |
59 | | * l_int32 pixSetComponentArbitrary() |
60 | | * |
61 | | * Rectangular region clear/set/set-to-arbitrary-value/blend |
62 | | * l_int32 pixClearInRect() |
63 | | * l_int32 pixSetInRect() |
64 | | * l_int32 pixSetInRectArbitrary() |
65 | | * l_int32 pixBlendInRect() |
66 | | * |
67 | | * Set pad bits |
68 | | * l_int32 pixSetPadBits() |
69 | | * l_int32 pixSetPadBitsBand() |
70 | | * |
71 | | * Assign border pixels |
72 | | * l_int32 pixSetOrClearBorder() |
73 | | * l_int32 pixSetBorderVal() |
74 | | * l_int32 pixSetBorderRingVal() |
75 | | * l_int32 pixSetMirroredBorder() |
76 | | * PIX *pixCopyBorder() |
77 | | * |
78 | | * Add and remove border |
79 | | * PIX *pixAddBorder() |
80 | | * PIX *pixAddBlackOrWhiteBorder() |
81 | | * PIX *pixAddBorderGeneral() |
82 | | * PIX *pixAddMultipleBlackWhiteBorders() |
83 | | * PIX *pixRemoveBorder() |
84 | | * PIX *pixRemoveBorderGeneral() |
85 | | * PIX *pixRemoveBorderToSize() |
86 | | * PIX *pixAddMirroredBorder() |
87 | | * PIX *pixAddRepeatedBorder() |
88 | | * PIX *pixAddMixedBorder() |
89 | | * PIX *pixAddContinuedBorder() |
90 | | * |
91 | | * Helper functions using alpha |
92 | | * l_int32 pixShiftAndTransferAlpha() |
93 | | * PIX *pixDisplayLayersRGBA() |
94 | | * |
95 | | * Color sample setting and extraction |
96 | | * PIX *pixCreateRGBImage() |
97 | | * PIX *pixGetRGBComponent() |
98 | | * l_int32 pixSetRGBComponent() |
99 | | * PIX *pixGetRGBComponentCmap() |
100 | | * l_int32 pixCopyRGBComponent() |
101 | | * l_int32 composeRGBPixel() |
102 | | * l_int32 composeRGBAPixel() |
103 | | * void extractRGBValues() |
104 | | * void extractRGBAValues() |
105 | | * l_int32 extractMinMaxComponent() |
106 | | * l_int32 pixGetRGBLine() |
107 | | * |
108 | | * Raster line pixel setter |
109 | | * l_int32 setLineDataVal() |
110 | | * |
111 | | * Conversion between big and little endians |
112 | | * PIX *pixEndianByteSwapNew() |
113 | | * l_int32 pixEndianByteSwap() |
114 | | * l_int32 lineEndianByteSwap() |
115 | | * PIX *pixEndianTwoByteSwapNew() |
116 | | * l_int32 pixEndianTwoByteSwap() |
117 | | * |
118 | | * Extract raster data as binary string |
119 | | * l_int32 pixGetRasterData() |
120 | | * |
121 | | * Test alpha component opaqueness |
122 | | * l_int32 pixAlphaIsOpaque() |
123 | | * |
124 | | * Infer resolution from image size |
125 | | * l_int32 pixInferResolution() |
126 | | * |
127 | | * Setup helpers for 8 bpp byte processing |
128 | | * l_uint8 **pixSetupByteProcessing() |
129 | | * l_int32 pixCleanupByteProcessing() |
130 | | * |
131 | | * Setting parameters for antialias masking with alpha transforms |
132 | | * void l_setAlphaMaskBorder() |
133 | | * </pre> |
134 | | */ |
135 | | |
136 | | #ifdef HAVE_CONFIG_H |
137 | | #include <config_auto.h> |
138 | | #endif /* HAVE_CONFIG_H */ |
139 | | |
140 | | #include <string.h> |
141 | | #include "allheaders.h" |
142 | | #include "pix_internal.h" |
143 | | |
144 | | static const l_uint32 rmask32[] = {0x0, |
145 | | 0x00000001, 0x00000003, 0x00000007, 0x0000000f, |
146 | | 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, |
147 | | 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, |
148 | | 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, |
149 | | 0x0001ffff, 0x0003ffff, 0x0007ffff, 0x000fffff, |
150 | | 0x001fffff, 0x003fffff, 0x007fffff, 0x00ffffff, |
151 | | 0x01ffffff, 0x03ffffff, 0x07ffffff, 0x0fffffff, |
152 | | 0x1fffffff, 0x3fffffff, 0x7fffffff, 0xffffffff}; |
153 | | |
154 | | /* This is a global that determines the default 8 bpp alpha mask values |
155 | | * for rings at distance 1 and 2 from the border. Declare extern |
156 | | * to use. To change the values, use l_setAlphaMaskBorder(). */ |
157 | | LEPT_DLL l_float32 AlphaMaskBorderVals[2] = {0.0, 0.5}; |
158 | | |
159 | | |
160 | | #ifndef NO_CONSOLE_IO |
161 | | #define DEBUG_SERIALIZE 0 |
162 | | #endif /* ~NO_CONSOLE_IO */ |
163 | | |
164 | | |
165 | | /*-------------------------------------------------------------* |
166 | | * Pixel poking * |
167 | | *-------------------------------------------------------------*/ |
168 | | /*! |
169 | | * \brief pixGetPixel() |
170 | | * |
171 | | * \param[in] pix |
172 | | * \param[in] x,y pixel coords |
173 | | * \param[out] pval pixel value |
174 | | * \return 0 if OK; 1 or 2 on error |
175 | | * |
176 | | * <pre> |
177 | | * Notes: |
178 | | * (1) This returns the value in the data array. If the pix is |
179 | | * colormapped, it returns the colormap index, not the rgb value. |
180 | | * (2) Because of the function overhead and the parameter checking, |
181 | | * this is much slower than using the GET_DATA_*() macros directly. |
182 | | * Speed on a 1 Mpixel RGB image, using a 3 GHz machine: |
183 | | * * pixGet/pixSet: ~25 Mpix/sec |
184 | | * * GET_DATA/SET_DATA: ~350 MPix/sec |
185 | | * If speed is important and you're doing random access into |
186 | | * the pix, use pixGetLinePtrs() and the array access macros. |
187 | | * (3) If the point is outside the image, this returns an error (2), |
188 | | * with 0 in %pval. To avoid spamming output, it fails silently. |
189 | | * </pre> |
190 | | */ |
191 | | l_ok |
192 | | pixGetPixel(PIX *pix, |
193 | | l_int32 x, |
194 | | l_int32 y, |
195 | | l_uint32 *pval) |
196 | 158k | { |
197 | 158k | l_int32 w, h, d, wpl, val; |
198 | 158k | l_uint32 *line, *data; |
199 | | |
200 | 158k | if (!pval) |
201 | 0 | return ERROR_INT("&val not defined", __func__, 1); |
202 | 158k | *pval = 0; |
203 | 158k | if (!pix) |
204 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
205 | | |
206 | 158k | pixGetDimensions(pix, &w, &h, &d); |
207 | 158k | if (x < 0 || x >= w || y < 0 || y >= h) |
208 | 73 | return 2; |
209 | | |
210 | 158k | wpl = pixGetWpl(pix); |
211 | 158k | data = pixGetData(pix); |
212 | 158k | line = data + y * wpl; |
213 | 158k | switch (d) |
214 | 158k | { |
215 | 683 | case 1: |
216 | 683 | val = GET_DATA_BIT(line, x); |
217 | 683 | break; |
218 | 0 | case 2: |
219 | 0 | val = GET_DATA_DIBIT(line, x); |
220 | 0 | break; |
221 | 0 | case 4: |
222 | 0 | val = GET_DATA_QBIT(line, x); |
223 | 0 | break; |
224 | 153k | case 8: |
225 | 153k | val = GET_DATA_BYTE(line, x); |
226 | 153k | break; |
227 | 0 | case 16: |
228 | 0 | val = GET_DATA_TWO_BYTES(line, x); |
229 | 0 | break; |
230 | 4.79k | case 32: |
231 | 4.79k | val = line[x]; |
232 | 4.79k | break; |
233 | 0 | default: |
234 | 0 | return ERROR_INT("depth must be in {1,2,4,8,16,32} bpp", __func__, 1); |
235 | 158k | } |
236 | | |
237 | 158k | *pval = val; |
238 | 158k | return 0; |
239 | 158k | } |
240 | | |
241 | | |
242 | | /*! |
243 | | * \brief pixSetPixel() |
244 | | * |
245 | | * \param[in] pix |
246 | | * \param[in] x,y pixel coords |
247 | | * \param[in] val value to be inserted |
248 | | * \return 0 if OK; 1 or 2 on error |
249 | | * |
250 | | * <pre> |
251 | | * Notes: |
252 | | * (1) Warning: the input value is not checked for overflow with respect |
253 | | * the the depth of %pix, and the sign bit (if any) is ignored. |
254 | | * * For d == 1, %val > 0 sets the bit on. |
255 | | * * For d == 2, 4, 8 and 16, %val is masked to the maximum allowable |
256 | | * pixel value, and any (invalid) higher order bits are discarded. |
257 | | * (2) See pixGetPixel() for information on performance. |
258 | | * (3) If the point is outside the image, this returns an error (2), |
259 | | * with 0 in %pval. To avoid spamming output, it fails silently. |
260 | | * </pre> |
261 | | */ |
262 | | l_ok |
263 | | pixSetPixel(PIX *pix, |
264 | | l_int32 x, |
265 | | l_int32 y, |
266 | | l_uint32 val) |
267 | 153k | { |
268 | 153k | l_int32 w, h, d, wpl; |
269 | 153k | l_uint32 *line, *data; |
270 | | |
271 | 153k | if (!pix) |
272 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
273 | 153k | pixGetDimensions(pix, &w, &h, &d); |
274 | 153k | if (x < 0 || x >= w || y < 0 || y >= h) |
275 | 73 | return 2; |
276 | | |
277 | 153k | data = pixGetData(pix); |
278 | 153k | wpl = pixGetWpl(pix); |
279 | 153k | line = data + y * wpl; |
280 | 153k | switch (d) |
281 | 153k | { |
282 | 226 | case 1: |
283 | 226 | if (val) |
284 | 226 | SET_DATA_BIT(line, x); |
285 | 0 | else |
286 | 0 | CLEAR_DATA_BIT(line, x); |
287 | 226 | break; |
288 | 0 | case 2: |
289 | 0 | SET_DATA_DIBIT(line, x, val); |
290 | 0 | break; |
291 | 0 | case 4: |
292 | 0 | SET_DATA_QBIT(line, x, val); |
293 | 0 | break; |
294 | 0 | case 8: |
295 | 0 | SET_DATA_BYTE(line, x, val); |
296 | 0 | break; |
297 | 0 | case 16: |
298 | 0 | SET_DATA_TWO_BYTES(line, x, val); |
299 | 0 | break; |
300 | 153k | case 32: |
301 | 153k | line[x] = val; |
302 | 153k | break; |
303 | 0 | default: |
304 | 0 | return ERROR_INT("depth must be in {1,2,4,8,16,32} bpp", __func__, 1); |
305 | 153k | } |
306 | | |
307 | 153k | return 0; |
308 | 153k | } |
309 | | |
310 | | |
311 | | /*! |
312 | | * \brief pixGetRGBPixel() |
313 | | * |
314 | | * \param[in] pix 32 bpp rgb, not colormapped |
315 | | * \param[in] x,y pixel coords |
316 | | * \param[out] prval [optional] red component |
317 | | * \param[out] pgval [optional] green component |
318 | | * \param[out] pbval [optional] blue component |
319 | | * \return 0 if OK; 1 or 2 on error |
320 | | * |
321 | | * <pre> |
322 | | * Notes: |
323 | | * (1) If the point is outside the image, this returns an error (2), |
324 | | * with 0 in %pval. To avoid spamming output, it fails silently. |
325 | | * </pre> |
326 | | */ |
327 | | l_ok |
328 | | pixGetRGBPixel(PIX *pix, |
329 | | l_int32 x, |
330 | | l_int32 y, |
331 | | l_int32 *prval, |
332 | | l_int32 *pgval, |
333 | | l_int32 *pbval) |
334 | 0 | { |
335 | 0 | l_int32 w, h, d, wpl; |
336 | 0 | l_uint32 *data, *ppixel; |
337 | |
|
338 | 0 | if (prval) *prval = 0; |
339 | 0 | if (pgval) *pgval = 0; |
340 | 0 | if (pbval) *pbval = 0; |
341 | 0 | if (!prval && !pgval && !pbval) |
342 | 0 | return ERROR_INT("no output requested", __func__, 1); |
343 | 0 | if (!pix) |
344 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
345 | 0 | pixGetDimensions(pix, &w, &h, &d); |
346 | 0 | if (d != 32) |
347 | 0 | return ERROR_INT("pix not 32 bpp", __func__, 1); |
348 | 0 | if (x < 0 || x >= w || y < 0 || y >= h) |
349 | 0 | return 2; |
350 | | |
351 | 0 | wpl = pixGetWpl(pix); |
352 | 0 | data = pixGetData(pix); |
353 | 0 | ppixel = data + y * wpl + x; |
354 | 0 | if (prval) *prval = GET_DATA_BYTE(ppixel, COLOR_RED); |
355 | 0 | if (pgval) *pgval = GET_DATA_BYTE(ppixel, COLOR_GREEN); |
356 | 0 | if (pbval) *pbval = GET_DATA_BYTE(ppixel, COLOR_BLUE); |
357 | 0 | return 0; |
358 | 0 | } |
359 | | |
360 | | |
361 | | /*! |
362 | | * \brief pixSetRGBPixel() |
363 | | * |
364 | | * \param[in] pix 32 bpp rgb |
365 | | * \param[in] x,y pixel coords |
366 | | * \param[in] rval red component |
367 | | * \param[in] gval green component |
368 | | * \param[in] bval blue component |
369 | | * \return 0 if OK; 1 or 2 on error |
370 | | * |
371 | | * <pre> |
372 | | * Notes: |
373 | | * (1) If the point is outside the image, this returns an error (2), |
374 | | * and to avoid spamming output, it fails silently. |
375 | | * </pre> |
376 | | */ |
377 | | l_ok |
378 | | pixSetRGBPixel(PIX *pix, |
379 | | l_int32 x, |
380 | | l_int32 y, |
381 | | l_int32 rval, |
382 | | l_int32 gval, |
383 | | l_int32 bval) |
384 | 0 | { |
385 | 0 | l_int32 w, h, d, wpl; |
386 | 0 | l_uint32 pixel; |
387 | 0 | l_uint32 *data, *line; |
388 | |
|
389 | 0 | if (!pix) |
390 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
391 | 0 | pixGetDimensions(pix, &w, &h, &d); |
392 | 0 | if (d != 32) |
393 | 0 | return ERROR_INT("pix not 32 bpp", __func__, 1); |
394 | 0 | if (x < 0 || x >= w || y < 0 || y >= h) |
395 | 0 | return 2; |
396 | | |
397 | 0 | wpl = pixGetWpl(pix); |
398 | 0 | data = pixGetData(pix); |
399 | 0 | line = data + y * wpl; |
400 | 0 | composeRGBPixel(rval, gval, bval, &pixel); |
401 | 0 | *(line + x) = pixel; |
402 | 0 | return 0; |
403 | 0 | } |
404 | | |
405 | | |
406 | | /*! |
407 | | * \brief pixSetCmapPixel() |
408 | | * |
409 | | * \param[in] pix 2, 4 or 8 bpp, colormapped |
410 | | * \param[in] x,y pixel coords |
411 | | * \param[in] rval red component |
412 | | * \param[in] gval green component |
413 | | * \param[in] bval blue component |
414 | | * \return 0 if OK; 1 or 2 on error |
415 | | * |
416 | | * <pre> |
417 | | * Notes: |
418 | | * (1) If the point is outside the image, this returns an error (2), |
419 | | * and to avoid spamming output, it fails silently. |
420 | | * (2) - If the color already exists, use it. |
421 | | * - If the color does not exist in the colormap, it is added |
422 | | * if possible. |
423 | | * - If there is not room in the colormap for the new color: |
424 | | * * if d < 8, return 2 with a warning. |
425 | | * * if d == 8, find and use the nearest color. |
426 | | * (3) Note that this operation scales with the number of colors |
427 | | * in the colormap, and therefore can be very expensive if an |
428 | | * attempt is made to set many pixels. (In that case, it should |
429 | | * be implemented with a map:rgb-->index for efficiency.) |
430 | | * This is best used with very small images. |
431 | | * </pre> |
432 | | */ |
433 | | l_ok |
434 | | pixSetCmapPixel(PIX *pix, |
435 | | l_int32 x, |
436 | | l_int32 y, |
437 | | l_int32 rval, |
438 | | l_int32 gval, |
439 | | l_int32 bval) |
440 | 0 | { |
441 | 0 | l_int32 w, h, d, index; |
442 | 0 | PIXCMAP *cmap; |
443 | |
|
444 | 0 | if (!pix) |
445 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
446 | 0 | if ((cmap = pixGetColormap(pix)) == NULL) |
447 | 0 | return ERROR_INT("pix is not colormapped", __func__, 1); |
448 | 0 | pixGetDimensions(pix, &w, &h, &d); |
449 | 0 | if (d != 2 && d != 4 && d != 8) |
450 | 0 | return ERROR_INT("pix depth not 2, 4 or 8", __func__, 1); |
451 | 0 | if (x < 0 || x >= w || y < 0 || y >= h) |
452 | 0 | return 2; |
453 | | |
454 | 0 | if (d == 8) { /* always add */ |
455 | 0 | pixcmapAddNearestColor(cmap, rval, gval, bval, &index); |
456 | 0 | } else { /* d < 8 */ |
457 | 0 | if (pixcmapAddNewColor(cmap, rval, gval, bval, &index) == 2) |
458 | 0 | return ERROR_INT("colormap is full", __func__, 2); |
459 | 0 | } |
460 | 0 | pixSetPixel(pix, x, y, index); |
461 | 0 | return 0; |
462 | 0 | } |
463 | | |
464 | | |
465 | | /*! |
466 | | * \brief pixGetRandomPixel() |
467 | | * |
468 | | * \param[in] pix any depth; can be colormapped |
469 | | * \param[out] pval [optional] pixel value |
470 | | * \param[out] px [optional] x coordinate chosen; can be null |
471 | | * \param[out] py [optional] y coordinate chosen; can be null |
472 | | * \return 0 if OK; 1 on error |
473 | | * |
474 | | * <pre> |
475 | | * Notes: |
476 | | * (1) If the pix is colormapped, it returns the rgb value. |
477 | | * </pre> |
478 | | */ |
479 | | l_ok |
480 | | pixGetRandomPixel(PIX *pix, |
481 | | l_uint32 *pval, |
482 | | l_int32 *px, |
483 | | l_int32 *py) |
484 | 0 | { |
485 | 0 | l_int32 w, h, x, y, rval, gval, bval; |
486 | 0 | l_uint32 val; |
487 | 0 | PIXCMAP *cmap; |
488 | |
|
489 | 0 | if (pval) *pval = 0; |
490 | 0 | if (px) *px = 0; |
491 | 0 | if (py) *py = 0; |
492 | 0 | if (!pval && !px && !py) |
493 | 0 | return ERROR_INT("no output requested", __func__, 1); |
494 | 0 | if (!pix) |
495 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
496 | | |
497 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
498 | 0 | x = rand() % w; |
499 | 0 | y = rand() % h; |
500 | 0 | if (px) *px = x; |
501 | 0 | if (py) *py = y; |
502 | 0 | if (pval) { |
503 | 0 | pixGetPixel(pix, x, y, &val); |
504 | 0 | if ((cmap = pixGetColormap(pix)) != NULL) { |
505 | 0 | pixcmapGetColor(cmap, val, &rval, &gval, &bval); |
506 | 0 | composeRGBPixel(rval, gval, bval, pval); |
507 | 0 | } else { |
508 | 0 | *pval = val; |
509 | 0 | } |
510 | 0 | } |
511 | |
|
512 | 0 | return 0; |
513 | 0 | } |
514 | | |
515 | | |
516 | | /*! |
517 | | * \brief pixClearPixel() |
518 | | * |
519 | | * \param[in] pix any depth; warning if colormapped |
520 | | * \param[in] x,y pixel coords |
521 | | * \return 0 if OK; 1 or 2 on error. |
522 | | * |
523 | | * <pre> |
524 | | * Notes: |
525 | | * (1) If the point is outside the image, this returns an error (2), |
526 | | * with 0 in %pval. To avoid spamming output, it fails silently. |
527 | | * </pre> |
528 | | */ |
529 | | l_ok |
530 | | pixClearPixel(PIX *pix, |
531 | | l_int32 x, |
532 | | l_int32 y) |
533 | 0 | { |
534 | 0 | l_int32 w, h, d, wpl; |
535 | 0 | l_uint32 *line, *data; |
536 | |
|
537 | 0 | if (!pix) |
538 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
539 | 0 | if (pixGetColormap(pix)) |
540 | 0 | L_WARNING("cmapped: setting to 0 may not be intended\n", __func__); |
541 | 0 | pixGetDimensions(pix, &w, &h, &d); |
542 | 0 | if (x < 0 || x >= w || y < 0 || y >= h) |
543 | 0 | return 2; |
544 | | |
545 | 0 | wpl = pixGetWpl(pix); |
546 | 0 | data = pixGetData(pix); |
547 | 0 | line = data + y * wpl; |
548 | 0 | switch (d) |
549 | 0 | { |
550 | 0 | case 1: |
551 | 0 | CLEAR_DATA_BIT(line, x); |
552 | 0 | break; |
553 | 0 | case 2: |
554 | 0 | CLEAR_DATA_DIBIT(line, x); |
555 | 0 | break; |
556 | 0 | case 4: |
557 | 0 | CLEAR_DATA_QBIT(line, x); |
558 | 0 | break; |
559 | 0 | case 8: |
560 | 0 | SET_DATA_BYTE(line, x, 0); |
561 | 0 | break; |
562 | 0 | case 16: |
563 | 0 | SET_DATA_TWO_BYTES(line, x, 0); |
564 | 0 | break; |
565 | 0 | case 32: |
566 | 0 | line[x] = 0; |
567 | 0 | break; |
568 | 0 | default: |
569 | 0 | return ERROR_INT("depth must be in {1,2,4,8,16,32} bpp", __func__, 1); |
570 | 0 | } |
571 | | |
572 | 0 | return 0; |
573 | 0 | } |
574 | | |
575 | | |
576 | | /*! |
577 | | * \brief pixFlipPixel() |
578 | | * |
579 | | * \param[in] pix any depth, warning if colormapped |
580 | | * \param[in] x,y pixel coords |
581 | | * \return 0 if OK; 1 or 2 on error |
582 | | * |
583 | | * <pre> |
584 | | * Notes: |
585 | | * (1) If the point is outside the image, this returns an error (2), |
586 | | * with 0 in %pval. To avoid spamming output, it fails silently. |
587 | | * </pre> |
588 | | */ |
589 | | l_ok |
590 | | pixFlipPixel(PIX *pix, |
591 | | l_int32 x, |
592 | | l_int32 y) |
593 | 0 | { |
594 | 0 | l_int32 w, h, d, wpl; |
595 | 0 | l_uint32 val; |
596 | 0 | l_uint32 *line, *data; |
597 | |
|
598 | 0 | if (!pix) |
599 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
600 | 0 | if (pixGetColormap(pix)) |
601 | 0 | L_WARNING("cmapped: setting to 0 may not be intended\n", __func__); |
602 | 0 | pixGetDimensions(pix, &w, &h, &d); |
603 | 0 | if (x < 0 || x >= w || y < 0 || y >= h) |
604 | 0 | return 2; |
605 | | |
606 | 0 | data = pixGetData(pix); |
607 | 0 | wpl = pixGetWpl(pix); |
608 | 0 | line = data + y * wpl; |
609 | 0 | switch (d) |
610 | 0 | { |
611 | 0 | case 1: |
612 | 0 | val = GET_DATA_BIT(line, x); |
613 | 0 | if (val) |
614 | 0 | CLEAR_DATA_BIT(line, x); |
615 | 0 | else |
616 | 0 | SET_DATA_BIT(line, x); |
617 | 0 | break; |
618 | 0 | case 2: |
619 | 0 | val = GET_DATA_DIBIT(line, x); |
620 | 0 | val ^= 0x3; |
621 | 0 | SET_DATA_DIBIT(line, x, val); |
622 | 0 | break; |
623 | 0 | case 4: |
624 | 0 | val = GET_DATA_QBIT(line, x); |
625 | 0 | val ^= 0xf; |
626 | 0 | SET_DATA_QBIT(line, x, val); |
627 | 0 | break; |
628 | 0 | case 8: |
629 | 0 | val = GET_DATA_BYTE(line, x); |
630 | 0 | val ^= 0xff; |
631 | 0 | SET_DATA_BYTE(line, x, val); |
632 | 0 | break; |
633 | 0 | case 16: |
634 | 0 | val = GET_DATA_TWO_BYTES(line, x); |
635 | 0 | val ^= 0xffff; |
636 | 0 | SET_DATA_TWO_BYTES(line, x, val); |
637 | 0 | break; |
638 | 0 | case 32: |
639 | 0 | val = line[x] ^ 0xffffffff; |
640 | 0 | line[x] = val; |
641 | 0 | break; |
642 | 0 | default: |
643 | 0 | return ERROR_INT("depth must be in {1,2,4,8,16,32} bpp", __func__, 1); |
644 | 0 | } |
645 | | |
646 | 0 | return 0; |
647 | 0 | } |
648 | | |
649 | | |
650 | | /*! |
651 | | * \brief setPixelLow() |
652 | | * |
653 | | * \param[in] line ptr to beginning of line, |
654 | | * \param[in] x pixel location in line |
655 | | * \param[in] depth bpp |
656 | | * \param[in] val to be inserted |
657 | | * \return void |
658 | | * |
659 | | * <pre> |
660 | | * Notes: |
661 | | * (1) Caution: input variables are not checked! |
662 | | * </pre> |
663 | | */ |
664 | | void |
665 | | setPixelLow(l_uint32 *line, |
666 | | l_int32 x, |
667 | | l_int32 depth, |
668 | | l_uint32 val) |
669 | 0 | { |
670 | 0 | switch (depth) |
671 | 0 | { |
672 | 0 | case 1: |
673 | 0 | if (val) |
674 | 0 | SET_DATA_BIT(line, x); |
675 | 0 | else |
676 | 0 | CLEAR_DATA_BIT(line, x); |
677 | 0 | break; |
678 | 0 | case 2: |
679 | 0 | SET_DATA_DIBIT(line, x, val); |
680 | 0 | break; |
681 | 0 | case 4: |
682 | 0 | SET_DATA_QBIT(line, x, val); |
683 | 0 | break; |
684 | 0 | case 8: |
685 | 0 | SET_DATA_BYTE(line, x, val); |
686 | 0 | break; |
687 | 0 | case 16: |
688 | 0 | SET_DATA_TWO_BYTES(line, x, val); |
689 | 0 | break; |
690 | 0 | case 32: |
691 | 0 | line[x] = val; |
692 | 0 | break; |
693 | 0 | default: |
694 | 0 | lept_stderr("illegal depth in setPixelLow()\n"); |
695 | 0 | } |
696 | 0 | } |
697 | | |
698 | | |
699 | | /*-------------------------------------------------------------* |
700 | | * Find black or white value * |
701 | | *-------------------------------------------------------------*/ |
702 | | /*! |
703 | | * \brief pixGetBlackOrWhiteVal() |
704 | | * |
705 | | * \param[in] pixs all depths; cmap ok |
706 | | * \param[in] op L_GET_BLACK_VAL, L_GET_WHITE_VAL |
707 | | * \param[out] pval pixel value |
708 | | * \return 0 if OK; 1 on error |
709 | | * |
710 | | * <pre> |
711 | | * Notes: |
712 | | * (1) Side effect. For a colormapped image, if the requested |
713 | | * color is not present and there is room to add it in the cmap, |
714 | | * it is added and the new index is returned. If there is no room, |
715 | | * the index of the closest color in intensity is returned. |
716 | | * </pre> |
717 | | */ |
718 | | l_ok |
719 | | pixGetBlackOrWhiteVal(PIX *pixs, |
720 | | l_int32 op, |
721 | | l_uint32 *pval) |
722 | 0 | { |
723 | 0 | l_int32 d, index; |
724 | 0 | PIXCMAP *cmap; |
725 | |
|
726 | 0 | if (!pval) |
727 | 0 | return ERROR_INT("&val not defined", __func__, 1); |
728 | 0 | *pval = 0; |
729 | 0 | if (!pixs) |
730 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
731 | 0 | if (op != L_GET_BLACK_VAL && op != L_GET_WHITE_VAL) |
732 | 0 | return ERROR_INT("invalid op", __func__, 1); |
733 | | |
734 | 0 | cmap = pixGetColormap(pixs); |
735 | 0 | d = pixGetDepth(pixs); |
736 | 0 | if (!cmap) { |
737 | 0 | if ((d == 1 && op == L_GET_WHITE_VAL) || |
738 | 0 | (d > 1 && op == L_GET_BLACK_VAL)) { /* min val */ |
739 | 0 | *pval = 0; |
740 | 0 | } else { /* max val */ |
741 | 0 | *pval = (d == 32) ? 0xffffff00 : (1 << d) - 1; |
742 | 0 | } |
743 | 0 | } else { /* handle colormap */ |
744 | 0 | if (op == L_GET_BLACK_VAL) |
745 | 0 | pixcmapAddBlackOrWhite(cmap, 0, &index); |
746 | 0 | else /* L_GET_WHITE_VAL */ |
747 | 0 | pixcmapAddBlackOrWhite(cmap, 1, &index); |
748 | 0 | *pval = index; |
749 | 0 | } |
750 | |
|
751 | 0 | return 0; |
752 | 0 | } |
753 | | |
754 | | |
755 | | /*-------------------------------------------------------------* |
756 | | * Full image clear/set/set-to-arbitrary-value/invert * |
757 | | *-------------------------------------------------------------*/ |
758 | | /*! |
759 | | * \brief pixClearAll() |
760 | | * |
761 | | * \param[in] pix all depths; use cmapped with caution |
762 | | * \return 0 if OK, 1 on error |
763 | | * |
764 | | * <pre> |
765 | | * Notes: |
766 | | * (1) Clears all data to 0. For 1 bpp, this is white; for grayscale |
767 | | * or color, this is black. |
768 | | * (2) Caution: for colormapped pix, this sets the color to the first |
769 | | * one in the colormap. Be sure that this is the intended color! |
770 | | * </pre> |
771 | | */ |
772 | | l_ok |
773 | | pixClearAll(PIX *pix) |
774 | 0 | { |
775 | 0 | if (!pix) |
776 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
777 | | |
778 | 0 | memset(pix->data, 0, 4LL * pix->wpl * pix->h); |
779 | 0 | return 0; |
780 | 0 | } |
781 | | |
782 | | |
783 | | /*! |
784 | | * \brief pixSetAll() |
785 | | * |
786 | | * \param[in] pix all depths; use cmapped with caution |
787 | | * \return 0 if OK, 1 on error |
788 | | * |
789 | | * <pre> |
790 | | * Notes: |
791 | | * (1) Sets all data to 1. For 1 bpp, this is black; for grayscale |
792 | | * or color, this is white. |
793 | | * (2) Caution: for colormapped pix, this sets the pixel value to the |
794 | | * maximum value supported by the colormap: 2^d - 1. However, this |
795 | | * color may not be defined, because the colormap may not be full. |
796 | | * </pre> |
797 | | */ |
798 | | l_ok |
799 | | pixSetAll(PIX *pix) |
800 | 113 | { |
801 | 113 | l_int32 n; |
802 | 113 | PIXCMAP *cmap; |
803 | | |
804 | 113 | if (!pix) |
805 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
806 | 113 | if ((cmap = pixGetColormap(pix)) != NULL) { |
807 | 0 | n = pixcmapGetCount(cmap); |
808 | 0 | if (n < cmap->nalloc) /* cmap is not full */ |
809 | 0 | return ERROR_INT("cmap entry does not exist", __func__, 1); |
810 | 0 | } |
811 | | |
812 | 113 | memset(pix->data, 0xff, 4LL * pix->wpl * pix->h); |
813 | 113 | return 0; |
814 | 113 | } |
815 | | |
816 | | |
817 | | /*! |
818 | | * \brief pixSetAllGray() |
819 | | * |
820 | | * \param[in] pix all depths, cmap ok |
821 | | * \param[in] grayval in range 0 ... 255 |
822 | | * \return 0 if OK; 1 on error |
823 | | * |
824 | | * <pre> |
825 | | * Notes: |
826 | | * (1) N.B. For all images, %grayval == 0 represents black and |
827 | | * %grayval == 255 represents white. |
828 | | * (2) For depth < 8, we do our best to approximate the gray level. |
829 | | * For 1 bpp images, any %grayval < 128 is black; >= 128 is white. |
830 | | * For 32 bpp images, each r,g,b component is set to %grayval, |
831 | | * and the alpha component is preserved. |
832 | | * (3) If pix is colormapped, it adds the gray value, replicated in |
833 | | * all components, to the colormap if it's not there and there |
834 | | * is room. If the colormap is full, it finds the closest color in |
835 | | * L2 distance of components. This index is written to all pixels. |
836 | | * </pre> |
837 | | */ |
838 | | l_ok |
839 | | pixSetAllGray(PIX *pix, |
840 | | l_int32 grayval) |
841 | 0 | { |
842 | 0 | l_int32 d, spp, index; |
843 | 0 | l_uint32 val32; |
844 | 0 | PIX *alpha; |
845 | 0 | PIXCMAP *cmap; |
846 | |
|
847 | 0 | if (!pix) |
848 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
849 | 0 | if (grayval < 0) { |
850 | 0 | L_WARNING("grayval < 0; setting to 0\n", __func__); |
851 | 0 | grayval = 0; |
852 | 0 | } else if (grayval > 255) { |
853 | 0 | L_WARNING("grayval > 255; setting to 255\n", __func__); |
854 | 0 | grayval = 255; |
855 | 0 | } |
856 | | |
857 | | /* Handle the colormap case */ |
858 | 0 | cmap = pixGetColormap(pix); |
859 | 0 | if (cmap) { |
860 | 0 | pixcmapAddNearestColor(cmap, grayval, grayval, grayval, &index); |
861 | 0 | pixSetAllArbitrary(pix, index); |
862 | 0 | return 0; |
863 | 0 | } |
864 | | |
865 | | /* Non-cmapped */ |
866 | 0 | d = pixGetDepth(pix); |
867 | 0 | spp = pixGetSpp(pix); |
868 | 0 | if (d == 1) { |
869 | 0 | if (grayval < 128) /* black */ |
870 | 0 | pixSetAll(pix); |
871 | 0 | else |
872 | 0 | pixClearAll(pix); /* white */ |
873 | 0 | } else if (d < 8) { |
874 | 0 | grayval >>= 8 - d; |
875 | 0 | pixSetAllArbitrary(pix, grayval); |
876 | 0 | } else if (d == 8) { |
877 | 0 | pixSetAllArbitrary(pix, grayval); |
878 | 0 | } else if (d == 16) { |
879 | 0 | grayval |= (grayval << 8); |
880 | 0 | pixSetAllArbitrary(pix, grayval); |
881 | 0 | } else if (d == 32 && spp == 3) { |
882 | 0 | composeRGBPixel(grayval, grayval, grayval, &val32); |
883 | 0 | pixSetAllArbitrary(pix, val32); |
884 | 0 | } else if (d == 32 && spp == 4) { |
885 | 0 | alpha = pixGetRGBComponent(pix, L_ALPHA_CHANNEL); |
886 | 0 | composeRGBPixel(grayval, grayval, grayval, &val32); |
887 | 0 | pixSetAllArbitrary(pix, val32); |
888 | 0 | pixSetRGBComponent(pix, alpha, L_ALPHA_CHANNEL); |
889 | 0 | pixDestroy(&alpha); |
890 | 0 | } else { |
891 | 0 | L_ERROR("invalid depth: %d\n", __func__, d); |
892 | 0 | return 1; |
893 | 0 | } |
894 | | |
895 | 0 | return 0; |
896 | 0 | } |
897 | | |
898 | | |
899 | | /*! |
900 | | * \brief pixSetAllArbitrary() |
901 | | * |
902 | | * \param[in] pix all depths; use cmapped with caution |
903 | | * \param[in] val value to set all pixels |
904 | | * \return 0 if OK; 1 on error |
905 | | * |
906 | | * <pre> |
907 | | * Notes: |
908 | | * (1) Caution 1! For colormapped pix, %val is used as an index |
909 | | * into a colormap. Be sure that index refers to the intended color. |
910 | | * If the color is not in the colormap, you should first add it |
911 | | * and then call this function. |
912 | | * (2) Caution 2! For 32 bpp pix, the interpretation of the LSB |
913 | | * of %val depends on whether spp == 3 (RGB) or spp == 4 (RGBA). |
914 | | * For RGB, the LSB is ignored in image transformations. |
915 | | * For RGBA, the LSB is interpreted as the alpha (transparency) |
916 | | * component; full transparency has alpha == 0x0, whereas |
917 | | * full opacity has alpha = 0xff. An RGBA image with full |
918 | | * opacity behaves like an RGB image. |
919 | | * (3) As an example of (2), suppose you want to initialize a 32 bpp |
920 | | * pix with partial opacity, say 0xee337788. If the pix is 3 spp, |
921 | | * the 0x88 alpha component will be ignored and may be changed |
922 | | * in subsequent processing. However, if the pix is 4 spp, the |
923 | | * alpha component will be retained and used. The function |
924 | | * pixCreate(w, h, 32) makes an RGB image by default, and |
925 | | * pixSetSpp(pix, 4) can be used to promote an RGB image to RGBA. |
926 | | * </pre> |
927 | | */ |
928 | | l_ok |
929 | | pixSetAllArbitrary(PIX *pix, |
930 | | l_uint32 val) |
931 | 0 | { |
932 | 0 | l_int32 n, i, j, w, h, d, wpl, npix; |
933 | 0 | l_uint32 maxval, wordval; |
934 | 0 | l_uint32 *data, *line; |
935 | 0 | PIXCMAP *cmap; |
936 | |
|
937 | 0 | if (!pix) |
938 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
939 | | |
940 | | /* If colormapped, make sure that val is less than the size |
941 | | * of the cmap array. */ |
942 | 0 | if ((cmap = pixGetColormap(pix)) != NULL) { |
943 | 0 | n = pixcmapGetCount(cmap); |
944 | 0 | if (val >= n) { |
945 | 0 | L_WARNING("index not in colormap; using last color\n", __func__); |
946 | 0 | val = n - 1; |
947 | 0 | } |
948 | 0 | } |
949 | | |
950 | | /* Make sure val isn't too large for the pixel depth. |
951 | | * If it is too large, set the pixel color to white. */ |
952 | 0 | pixGetDimensions(pix, &w, &h, &d); |
953 | 0 | if (d < 32) { |
954 | 0 | maxval = (1 << d) - 1; |
955 | 0 | if (val > maxval) { |
956 | 0 | L_WARNING("val = %d too large for depth; using maxval = %d\n", |
957 | 0 | __func__, val, maxval); |
958 | 0 | val = maxval; |
959 | 0 | } |
960 | 0 | } |
961 | | |
962 | | /* Set up word to tile with */ |
963 | 0 | wordval = 0; |
964 | 0 | npix = 32 / d; /* number of pixels per 32 bit word */ |
965 | 0 | for (j = 0; j < npix; j++) |
966 | 0 | wordval |= (val << (j * d)); |
967 | 0 | wpl = pixGetWpl(pix); |
968 | 0 | data = pixGetData(pix); |
969 | 0 | for (i = 0; i < h; i++) { |
970 | 0 | line = data + i * wpl; |
971 | 0 | for (j = 0; j < wpl; j++) { |
972 | 0 | *(line + j) = wordval; |
973 | 0 | } |
974 | 0 | } |
975 | 0 | return 0; |
976 | 0 | } |
977 | | |
978 | | |
979 | | /*! |
980 | | * \brief pixSetBlackOrWhite() |
981 | | * |
982 | | * \param[in] pixs all depths; cmap ok |
983 | | * \param[in] op L_SET_BLACK, L_SET_WHITE |
984 | | * \return 0 if OK; 1 on error |
985 | | * |
986 | | * <pre> |
987 | | * Notes: |
988 | | * (1) Function for setting all pixels in an image to either black |
989 | | * or white. |
990 | | * (2) If pixs is colormapped, it adds black or white to the |
991 | | * colormap if it's not there and there is room. If the colormap |
992 | | * is full, it finds the closest color in intensity. |
993 | | * This index is written to all pixels. |
994 | | * </pre> |
995 | | */ |
996 | | l_ok |
997 | | pixSetBlackOrWhite(PIX *pixs, |
998 | | l_int32 op) |
999 | 0 | { |
1000 | 0 | l_int32 d, index; |
1001 | 0 | PIXCMAP *cmap; |
1002 | |
|
1003 | 0 | if (!pixs) |
1004 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
1005 | 0 | if (op != L_SET_BLACK && op != L_SET_WHITE) |
1006 | 0 | return ERROR_INT("invalid op", __func__, 1); |
1007 | | |
1008 | 0 | cmap = pixGetColormap(pixs); |
1009 | 0 | d = pixGetDepth(pixs); |
1010 | 0 | if (!cmap) { |
1011 | 0 | if ((d == 1 && op == L_SET_BLACK) || (d > 1 && op == L_SET_WHITE)) |
1012 | 0 | pixSetAll(pixs); |
1013 | 0 | else |
1014 | 0 | pixClearAll(pixs); |
1015 | 0 | } else { /* handle colormap */ |
1016 | 0 | if (op == L_SET_BLACK) |
1017 | 0 | pixcmapAddBlackOrWhite(cmap, 0, &index); |
1018 | 0 | else /* L_SET_WHITE */ |
1019 | 0 | pixcmapAddBlackOrWhite(cmap, 1, &index); |
1020 | 0 | pixSetAllArbitrary(pixs, index); |
1021 | 0 | } |
1022 | |
|
1023 | 0 | return 0; |
1024 | 0 | } |
1025 | | |
1026 | | |
1027 | | /*! |
1028 | | * \brief pixSetComponentArbitrary() |
1029 | | * |
1030 | | * \param[in] pix 32 bpp |
1031 | | * \param[in] comp COLOR_RED, COLOR_GREEN, COLOR_BLUE, L_ALPHA_CHANNEL |
1032 | | * \param[in] val value to set this component |
1033 | | * \return 0 if OK; 1 on error |
1034 | | * |
1035 | | * <pre> |
1036 | | * Notes: |
1037 | | * (1) For example, this can be used to set the alpha component to opaque: |
1038 | | * pixSetComponentArbitrary(pix, L_ALPHA_CHANNEL, 255) |
1039 | | * </pre> |
1040 | | */ |
1041 | | l_ok |
1042 | | pixSetComponentArbitrary(PIX *pix, |
1043 | | l_int32 comp, |
1044 | | l_int32 val) |
1045 | 0 | { |
1046 | 0 | l_int32 i, nwords; |
1047 | 0 | l_uint32 mask1, mask2; |
1048 | 0 | l_uint32 *data; |
1049 | |
|
1050 | 0 | if (!pix || pixGetDepth(pix) != 32) |
1051 | 0 | return ERROR_INT("pix not defined or not 32 bpp", __func__, 1); |
1052 | 0 | if (comp != COLOR_RED && comp != COLOR_GREEN && comp != COLOR_BLUE && |
1053 | 0 | comp != L_ALPHA_CHANNEL) |
1054 | 0 | return ERROR_INT("invalid component", __func__, 1); |
1055 | 0 | if (val < 0 || val > 255) |
1056 | 0 | return ERROR_INT("val not in [0 ... 255]", __func__, 1); |
1057 | | |
1058 | 0 | mask1 = ~(255 << (8 * (3 - comp))); |
1059 | 0 | mask2 = val << (8 * (3 - comp)); |
1060 | 0 | nwords = pixGetHeight(pix) * pixGetWpl(pix); |
1061 | 0 | data = pixGetData(pix); |
1062 | 0 | for (i = 0; i < nwords; i++) { |
1063 | 0 | data[i] &= mask1; /* clear out the component */ |
1064 | 0 | data[i] |= mask2; /* insert the new component value */ |
1065 | 0 | } |
1066 | |
|
1067 | 0 | return 0; |
1068 | 0 | } |
1069 | | |
1070 | | |
1071 | | /*-------------------------------------------------------------* |
1072 | | * Rectangular region clear/set/set-to-arbitrary-value * |
1073 | | *-------------------------------------------------------------*/ |
1074 | | /*! |
1075 | | * \brief pixClearInRect() |
1076 | | * |
1077 | | * \param[in] pix all depths; can be cmapped |
1078 | | * \param[in] box in which all pixels will be cleared |
1079 | | * \return 0 if OK, 1 on error |
1080 | | * |
1081 | | * <pre> |
1082 | | * Notes: |
1083 | | * (1) Clears all data in rect to 0. For 1 bpp, this is white; |
1084 | | * for grayscale or color, this is black. |
1085 | | * (2) Caution: for colormapped pix, this sets the color to the first |
1086 | | * one in the colormap. Be sure that this is the intended color! |
1087 | | * </pre> |
1088 | | */ |
1089 | | l_ok |
1090 | | pixClearInRect(PIX *pix, |
1091 | | BOX *box) |
1092 | 0 | { |
1093 | 0 | l_int32 x, y, w, h; |
1094 | |
|
1095 | 0 | if (!pix) |
1096 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
1097 | 0 | if (!box) |
1098 | 0 | return ERROR_INT("box not defined", __func__, 1); |
1099 | | |
1100 | 0 | boxGetGeometry(box, &x, &y, &w, &h); |
1101 | 0 | pixRasterop(pix, x, y, w, h, PIX_CLR, NULL, 0, 0); |
1102 | 0 | return 0; |
1103 | 0 | } |
1104 | | |
1105 | | |
1106 | | /*! |
1107 | | * \brief pixSetInRect() |
1108 | | * |
1109 | | * \param[in] pix all depths, can be cmapped |
1110 | | * \param[in] box in which all pixels will be set |
1111 | | * \return 0 if OK, 1 on error |
1112 | | * |
1113 | | * <pre> |
1114 | | * Notes: |
1115 | | * (1) Sets all data in rect to 1. For 1 bpp, this is black; |
1116 | | * for grayscale or color, this is white. |
1117 | | * (2) Caution: for colormapped pix, this sets the pixel value to the |
1118 | | * maximum value supported by the colormap: 2^d - 1. However, this |
1119 | | * color may not be defined, because the colormap may not be full. |
1120 | | * </pre> |
1121 | | */ |
1122 | | l_ok |
1123 | | pixSetInRect(PIX *pix, |
1124 | | BOX *box) |
1125 | 0 | { |
1126 | 0 | l_int32 n, x, y, w, h; |
1127 | 0 | PIXCMAP *cmap; |
1128 | |
|
1129 | 0 | if (!pix) |
1130 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
1131 | 0 | if (!box) |
1132 | 0 | return ERROR_INT("box not defined", __func__, 1); |
1133 | 0 | if ((cmap = pixGetColormap(pix)) != NULL) { |
1134 | 0 | n = pixcmapGetCount(cmap); |
1135 | 0 | if (n < cmap->nalloc) /* cmap is not full */ |
1136 | 0 | return ERROR_INT("cmap entry does not exist", __func__, 1); |
1137 | 0 | } |
1138 | | |
1139 | 0 | boxGetGeometry(box, &x, &y, &w, &h); |
1140 | 0 | pixRasterop(pix, x, y, w, h, PIX_SET, NULL, 0, 0); |
1141 | 0 | return 0; |
1142 | 0 | } |
1143 | | |
1144 | | |
1145 | | /*! |
1146 | | * \brief pixSetInRectArbitrary() |
1147 | | * |
1148 | | * \param[in] pix all depths; can be cmapped |
1149 | | * \param[in] box in which all pixels will be set to val |
1150 | | * \param[in] val value to set all pixels |
1151 | | * \return 0 if OK; 1 on error |
1152 | | * |
1153 | | * <pre> |
1154 | | * Notes: |
1155 | | * (1) For colormapped pix, be sure the value is the intended |
1156 | | * one in the colormap. |
1157 | | * (2) Caution: for colormapped pix, this sets each pixel in the |
1158 | | * rect to the color at the index equal to val. Be sure that |
1159 | | * this index exists in the colormap and that it is the intended one! |
1160 | | * </pre> |
1161 | | */ |
1162 | | l_ok |
1163 | | pixSetInRectArbitrary(PIX *pix, |
1164 | | BOX *box, |
1165 | | l_uint32 val) |
1166 | 0 | { |
1167 | 0 | l_int32 n, x, y, xstart, xend, ystart, yend, bw, bh, w, h, d, wpl; |
1168 | 0 | l_uint32 maxval; |
1169 | 0 | l_uint32 *data, *line; |
1170 | 0 | BOX *boxc; |
1171 | 0 | PIXCMAP *cmap; |
1172 | |
|
1173 | 0 | if (!pix) |
1174 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
1175 | 0 | if (!box) |
1176 | 0 | return ERROR_INT("box not defined", __func__, 1); |
1177 | 0 | pixGetDimensions(pix, &w, &h, &d); |
1178 | 0 | if (d != 1 && d != 2 && d != 4 && d !=8 && d != 16 && d != 32) |
1179 | 0 | return ERROR_INT("depth must be in {1,2,4,8,16,32} bpp", __func__, 1); |
1180 | 0 | if ((cmap = pixGetColormap(pix)) != NULL) { |
1181 | 0 | n = pixcmapGetCount(cmap); |
1182 | 0 | if (val >= n) { |
1183 | 0 | L_WARNING("index not in colormap; using last color\n", __func__); |
1184 | 0 | val = n - 1; |
1185 | 0 | } |
1186 | 0 | } |
1187 | |
|
1188 | 0 | maxval = (d == 32) ? 0xffffff00 : (1 << d) - 1; |
1189 | 0 | if (val > maxval) val = maxval; |
1190 | | |
1191 | | /* Handle the simple cases: the min and max values */ |
1192 | 0 | if (val == 0) { |
1193 | 0 | pixClearInRect(pix, box); |
1194 | 0 | return 0; |
1195 | 0 | } |
1196 | 0 | if (d == 1 || |
1197 | 0 | (d == 2 && val == 3) || |
1198 | 0 | (d == 4 && val == 0xf) || |
1199 | 0 | (d == 8 && val == 0xff) || |
1200 | 0 | (d == 16 && val == 0xffff) || |
1201 | 0 | (d == 32 && ((val ^ 0xffffff00) >> 8 == 0))) { |
1202 | 0 | pixSetInRect(pix, box); |
1203 | 0 | return 0; |
1204 | 0 | } |
1205 | | |
1206 | | /* Find the overlap of box with the input pix */ |
1207 | 0 | if ((boxc = boxClipToRectangle(box, w, h)) == NULL) |
1208 | 0 | return ERROR_INT("no overlap of box with image", __func__, 1); |
1209 | 0 | boxGetGeometry(boxc, &xstart, &ystart, &bw, &bh); |
1210 | 0 | xend = xstart + bw - 1; |
1211 | 0 | yend = ystart + bh - 1; |
1212 | 0 | boxDestroy(&boxc); |
1213 | |
|
1214 | 0 | wpl = pixGetWpl(pix); |
1215 | 0 | data = pixGetData(pix); |
1216 | 0 | for (y = ystart; y <= yend; y++) { |
1217 | 0 | line = data + y * wpl; |
1218 | 0 | for (x = xstart; x <= xend; x++) { |
1219 | 0 | switch(d) |
1220 | 0 | { |
1221 | 0 | case 2: |
1222 | 0 | SET_DATA_DIBIT(line, x, val); |
1223 | 0 | break; |
1224 | 0 | case 4: |
1225 | 0 | SET_DATA_QBIT(line, x, val); |
1226 | 0 | break; |
1227 | 0 | case 8: |
1228 | 0 | SET_DATA_BYTE(line, x, val); |
1229 | 0 | break; |
1230 | 0 | case 16: |
1231 | 0 | SET_DATA_TWO_BYTES(line, x, val); |
1232 | 0 | break; |
1233 | 0 | case 32: |
1234 | 0 | line[x] = val; |
1235 | 0 | break; |
1236 | 0 | default: |
1237 | 0 | return ERROR_INT("depth not 2|4|8|16|32 bpp", __func__, 1); |
1238 | 0 | } |
1239 | 0 | } |
1240 | 0 | } |
1241 | | |
1242 | 0 | return 0; |
1243 | 0 | } |
1244 | | |
1245 | | |
1246 | | /*! |
1247 | | * \brief pixBlendInRect() |
1248 | | * |
1249 | | * \param[in] pixs 32 bpp rgb |
1250 | | * \param[in] box [optional] in which all pixels will be blended |
1251 | | * \param[in] val blend value; 0xrrggbb00 |
1252 | | * \param[in] fract fraction of color to be blended with each pixel in pixs |
1253 | | * \return 0 if OK; 1 on error |
1254 | | * |
1255 | | * <pre> |
1256 | | * Notes: |
1257 | | * (1) This is an in-place function. It blends the input color %val |
1258 | | * with the pixels in pixs in the specified rectangle. |
1259 | | * If no rectangle is specified, it blends over the entire image. |
1260 | | * </pre> |
1261 | | */ |
1262 | | l_ok |
1263 | | pixBlendInRect(PIX *pixs, |
1264 | | BOX *box, |
1265 | | l_uint32 val, |
1266 | | l_float32 fract) |
1267 | 0 | { |
1268 | 0 | l_int32 i, j, bx, by, bw, bh, w, h, wpls; |
1269 | 0 | l_int32 prval, pgval, pbval, rval, gval, bval; |
1270 | 0 | l_uint32 val32; |
1271 | 0 | l_uint32 *datas, *lines; |
1272 | |
|
1273 | 0 | if (!pixs || pixGetDepth(pixs) != 32) |
1274 | 0 | return ERROR_INT("pixs not defined or not 32 bpp", __func__, 1); |
1275 | | |
1276 | 0 | extractRGBValues(val, &rval, &gval, &bval); |
1277 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
1278 | 0 | datas = pixGetData(pixs); |
1279 | 0 | wpls = pixGetWpl(pixs); |
1280 | 0 | if (!box) { |
1281 | 0 | for (i = 0; i < h; i++) { /* scan over box */ |
1282 | 0 | lines = datas + i * wpls; |
1283 | 0 | for (j = 0; j < w; j++) { |
1284 | 0 | val32 = *(lines + j); |
1285 | 0 | extractRGBValues(val32, &prval, &pgval, &pbval); |
1286 | 0 | prval = (l_int32)((1. - fract) * prval + fract * rval); |
1287 | 0 | pgval = (l_int32)((1. - fract) * pgval + fract * gval); |
1288 | 0 | pbval = (l_int32)((1. - fract) * pbval + fract * bval); |
1289 | 0 | composeRGBPixel(prval, pgval, pbval, &val32); |
1290 | 0 | *(lines + j) = val32; |
1291 | 0 | } |
1292 | 0 | } |
1293 | 0 | return 0; |
1294 | 0 | } |
1295 | | |
1296 | 0 | boxGetGeometry(box, &bx, &by, &bw, &bh); |
1297 | 0 | for (i = 0; i < bh; i++) { /* scan over box */ |
1298 | 0 | if (by + i < 0 || by + i >= h) continue; |
1299 | 0 | lines = datas + (by + i) * wpls; |
1300 | 0 | for (j = 0; j < bw; j++) { |
1301 | 0 | if (bx + j < 0 || bx + j >= w) continue; |
1302 | 0 | val32 = *(lines + bx + j); |
1303 | 0 | extractRGBValues(val32, &prval, &pgval, &pbval); |
1304 | 0 | prval = (l_int32)((1. - fract) * prval + fract * rval); |
1305 | 0 | pgval = (l_int32)((1. - fract) * pgval + fract * gval); |
1306 | 0 | pbval = (l_int32)((1. - fract) * pbval + fract * bval); |
1307 | 0 | composeRGBPixel(prval, pgval, pbval, &val32); |
1308 | 0 | *(lines + bx + j) = val32; |
1309 | 0 | } |
1310 | 0 | } |
1311 | 0 | return 0; |
1312 | 0 | } |
1313 | | |
1314 | | |
1315 | | /*-------------------------------------------------------------* |
1316 | | * Set pad bits * |
1317 | | *-------------------------------------------------------------*/ |
1318 | | /*! |
1319 | | * \brief pixSetPadBits() |
1320 | | * |
1321 | | * \param[in] pix 1, 2, 4, 8, 16, 32 bpp |
1322 | | * \param[in] val 0 or 1 |
1323 | | * \return 0 if OK; 1 on error |
1324 | | * |
1325 | | * <pre> |
1326 | | * Notes: |
1327 | | * (1) The pad bits are the bits that expand each scanline to a |
1328 | | * multiple of 32 bits. They are usually not used in |
1329 | | * image processing operations. When boundary conditions |
1330 | | * are important, as in seedfill, they must be set properly. |
1331 | | * (2) This sets the value of the pad bits (if any) in the last |
1332 | | * 32-bit word in each scanline. |
1333 | | * (3) For 32 bpp pix, there are no pad bits, so this is a no-op. |
1334 | | * (4) For 24 bpp pix (which are not generally supported in leptonica), |
1335 | | * this operation would affect image components because the pixels |
1336 | | * are not aligned with 32-bit word boundaries. |
1337 | | * (5) When writing formatted output, such as tiff, png or jpeg, |
1338 | | * the pad bits have no effect on the raster image that is |
1339 | | * generated by reading back from the file. However, in some |
1340 | | * cases, the compressed file itself will depend on the pad |
1341 | | * bits. This is seen, for example, in Windows with 2 and 4 bpp |
1342 | | * tiff-compressed images that have pad bits on each scanline. |
1343 | | * It is sometimes convenient to use a golden file with a |
1344 | | * byte-by-byte check to verify invariance. Consequently, |
1345 | | * and because setting the pad bits is cheap, the pad bits are |
1346 | | * set to 0 before writing these compressed files. |
1347 | | * </pre> |
1348 | | */ |
1349 | | l_ok |
1350 | | pixSetPadBits(PIX *pix, |
1351 | | l_int32 val) |
1352 | 1.66k | { |
1353 | 1.66k | l_int32 i, w, h, d, wpl, endbits, fullwords; |
1354 | 1.66k | l_uint32 mask; |
1355 | 1.66k | l_uint32 *data, *pword; |
1356 | | |
1357 | 1.66k | if (!pix) |
1358 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
1359 | | |
1360 | 1.66k | pixGetDimensions(pix, &w, &h, &d); |
1361 | 1.66k | if (d == 32) /* no padding exists for 32 bpp */ |
1362 | 453 | return 0; |
1363 | 1.21k | if (d == 24) { /* pixels not aligned with 32-bit words */ |
1364 | 2 | L_INFO("pix is 24 bpp\n", __func__); |
1365 | 2 | return 1; |
1366 | 2 | } |
1367 | | |
1368 | 1.21k | data = pixGetData(pix); |
1369 | 1.21k | wpl = pixGetWpl(pix); |
1370 | 1.21k | endbits = 32 - (((l_int64)w * d) % 32); |
1371 | 1.21k | if (endbits == 32) /* no partial word */ |
1372 | 393 | return 0; |
1373 | 817 | fullwords = (1LL * w * d) / 32; |
1374 | 817 | mask = rmask32[endbits]; |
1375 | 817 | if (val == 0) |
1376 | 817 | mask = ~mask; |
1377 | | |
1378 | 217k | for (i = 0; i < h; i++) { |
1379 | 216k | pword = data + i * wpl + fullwords; |
1380 | 216k | if (val == 0) /* clear */ |
1381 | 216k | *pword = *pword & mask; |
1382 | 0 | else /* set */ |
1383 | 0 | *pword = *pword | mask; |
1384 | 216k | } |
1385 | | |
1386 | 817 | return 0; |
1387 | 1.21k | } |
1388 | | |
1389 | | |
1390 | | /*! |
1391 | | * \brief pixSetPadBitsBand() |
1392 | | * |
1393 | | * \param[in] pix 1, 2, 4, 8, 16, 32 bpp |
1394 | | * \param[in] by starting y value of band |
1395 | | * \param[in] bh height of band |
1396 | | * \param[in] val 0 or 1 |
1397 | | * \return 0 if OK; 1 on error |
1398 | | * |
1399 | | * <pre> |
1400 | | * Notes: |
1401 | | * (1) The pad bits are the bits that expand each scanline to a |
1402 | | * multiple of 32 bits. They are usually not used in |
1403 | | * image processing operations. When boundary conditions |
1404 | | * are important, as in seedfill, they must be set properly. |
1405 | | * (2) This sets the value of the pad bits (if any) in the last |
1406 | | * 32-bit word in each scanline, within the specified |
1407 | | * band of raster lines. |
1408 | | * (3) For 32 bpp pix, there are no pad bits, so this is a no-op. |
1409 | | * For 24 bpp pix, this function would change image components. |
1410 | | * </pre> |
1411 | | */ |
1412 | | l_ok |
1413 | | pixSetPadBitsBand(PIX *pix, |
1414 | | l_int32 by, |
1415 | | l_int32 bh, |
1416 | | l_int32 val) |
1417 | 0 | { |
1418 | 0 | l_int32 i, w, h, d, wpl, endbits, fullwords; |
1419 | 0 | l_uint32 mask; |
1420 | 0 | l_uint32 *data, *pword; |
1421 | |
|
1422 | 0 | if (!pix) |
1423 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
1424 | | |
1425 | 0 | pixGetDimensions(pix, &w, &h, &d); |
1426 | 0 | if (d == 32) /* no padding exists for 32 bpp */ |
1427 | 0 | return 0; |
1428 | 0 | if (d == 24) { /* pixels not aligned with 32-bit words */ |
1429 | 0 | L_INFO("pix is 24 bpp\n", __func__); |
1430 | 0 | return 1; |
1431 | 0 | } |
1432 | | |
1433 | 0 | if (by < 0) |
1434 | 0 | by = 0; |
1435 | 0 | if (by >= h) |
1436 | 0 | return ERROR_INT("start y not in image", __func__, 1); |
1437 | 0 | if (by + bh > h) |
1438 | 0 | bh = h - by; |
1439 | |
|
1440 | 0 | data = pixGetData(pix); |
1441 | 0 | wpl = pixGetWpl(pix); |
1442 | 0 | endbits = 32 - (((l_int64)w * d) % 32); |
1443 | 0 | if (endbits == 32) /* no partial word */ |
1444 | 0 | return 0; |
1445 | 0 | fullwords = (l_int64)w * d / 32; |
1446 | |
|
1447 | 0 | mask = rmask32[endbits]; |
1448 | 0 | if (val == 0) |
1449 | 0 | mask = ~mask; |
1450 | |
|
1451 | 0 | for (i = by; i < by + bh; i++) { |
1452 | 0 | pword = data + i * wpl + fullwords; |
1453 | 0 | if (val == 0) /* clear */ |
1454 | 0 | *pword = *pword & mask; |
1455 | 0 | else /* set */ |
1456 | 0 | *pword = *pword | mask; |
1457 | 0 | } |
1458 | |
|
1459 | 0 | return 0; |
1460 | 0 | } |
1461 | | |
1462 | | |
1463 | | /*-------------------------------------------------------------* |
1464 | | * Set border pixels * |
1465 | | *-------------------------------------------------------------*/ |
1466 | | /*! |
1467 | | * \brief pixSetOrClearBorder() |
1468 | | * |
1469 | | * \param[in] pixs all depths |
1470 | | * \param[in] left, right, top, bot border region amount to set or clear: these distances are from outside |
1471 | | * \param[in] op operation PIX_SET or PIX_CLR |
1472 | | * \return 0 if OK; 1 on error |
1473 | | * |
1474 | | * <pre> |
1475 | | * Notes: |
1476 | | * (1) The border region is defined to be the region in the |
1477 | | * image within a specific distance of each edge. Here, we |
1478 | | * allow the pixels within a specified distance of each |
1479 | | * edge to be set independently. This either sets or |
1480 | | * clears all pixels in the border region. |
1481 | | * (2) For binary images, use PIX_SET for black and PIX_CLR for white. |
1482 | | * (3) For grayscale or color images, use PIX_SET for white |
1483 | | * and PIX_CLR for black. |
1484 | | * </pre> |
1485 | | */ |
1486 | | l_ok |
1487 | | pixSetOrClearBorder(PIX *pixs, |
1488 | | l_int32 left, |
1489 | | l_int32 right, |
1490 | | l_int32 top, |
1491 | | l_int32 bot, |
1492 | | l_int32 op) |
1493 | 0 | { |
1494 | 0 | l_int32 w, h; |
1495 | |
|
1496 | 0 | if (!pixs) |
1497 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
1498 | 0 | if (op != PIX_SET && op != PIX_CLR) |
1499 | 0 | return ERROR_INT("op must be PIX_SET or PIX_CLR", __func__, 1); |
1500 | | |
1501 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
1502 | 0 | pixRasterop(pixs, 0, 0, left, h, op, NULL, 0, 0); |
1503 | 0 | pixRasterop(pixs, w - right, 0, right, h, op, NULL, 0, 0); |
1504 | 0 | pixRasterop(pixs, 0, 0, w, top, op, NULL, 0, 0); |
1505 | 0 | pixRasterop(pixs, 0, h - bot, w, bot, op, NULL, 0, 0); |
1506 | |
|
1507 | 0 | return 0; |
1508 | 0 | } |
1509 | | |
1510 | | |
1511 | | /*! |
1512 | | * \brief pixSetBorderVal() |
1513 | | * |
1514 | | * \param[in] pixs 8, 16 or 32 bpp |
1515 | | * \param[in] left, right, top, bot border region amount to set: these distances are from outside |
1516 | | * \param[in] val value to set at each border pixel |
1517 | | * \return 0 if OK; 1 on error |
1518 | | * |
1519 | | * <pre> |
1520 | | * Notes: |
1521 | | * (1) The border region is defined to be the region in the |
1522 | | * image within a specific distance of each edge. Here, we |
1523 | | * allow the pixels within a specified distance of each |
1524 | | * edge to be set independently. This sets the pixels |
1525 | | * in the border region to the given input value. |
1526 | | * (2) For efficiency, use pixSetOrClearBorder() if |
1527 | | * you're setting the border to either black or white. |
1528 | | * (3) If d != 32, the input value should be masked off |
1529 | | * to the appropriate number of least significant bits. |
1530 | | * (4) The code is easily generalized for 2 or 4 bpp. |
1531 | | * </pre> |
1532 | | */ |
1533 | | l_ok |
1534 | | pixSetBorderVal(PIX *pixs, |
1535 | | l_int32 left, |
1536 | | l_int32 right, |
1537 | | l_int32 top, |
1538 | | l_int32 bot, |
1539 | | l_uint32 val) |
1540 | 0 | { |
1541 | 0 | l_int32 w, h, d, wpls, i, j, bstart, rstart; |
1542 | 0 | l_uint32 *datas, *lines; |
1543 | |
|
1544 | 0 | if (!pixs) |
1545 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
1546 | 0 | pixGetDimensions(pixs, &w, &h, &d); |
1547 | 0 | if (d != 8 && d != 16 && d != 32) |
1548 | 0 | return ERROR_INT("depth must be 8, 16 or 32 bpp", __func__, 1); |
1549 | | |
1550 | 0 | datas = pixGetData(pixs); |
1551 | 0 | wpls = pixGetWpl(pixs); |
1552 | 0 | if (d == 8) { |
1553 | 0 | val &= 0xff; |
1554 | 0 | for (i = 0; i < top; i++) { |
1555 | 0 | lines = datas + i * wpls; |
1556 | 0 | for (j = 0; j < w; j++) |
1557 | 0 | SET_DATA_BYTE(lines, j, val); |
1558 | 0 | } |
1559 | 0 | rstart = w - right; |
1560 | 0 | bstart = h - bot; |
1561 | 0 | for (i = top; i < bstart; i++) { |
1562 | 0 | lines = datas + i * wpls; |
1563 | 0 | for (j = 0; j < left; j++) |
1564 | 0 | SET_DATA_BYTE(lines, j, val); |
1565 | 0 | for (j = rstart; j < w; j++) |
1566 | 0 | SET_DATA_BYTE(lines, j, val); |
1567 | 0 | } |
1568 | 0 | for (i = bstart; i < h; i++) { |
1569 | 0 | lines = datas + i * wpls; |
1570 | 0 | for (j = 0; j < w; j++) |
1571 | 0 | SET_DATA_BYTE(lines, j, val); |
1572 | 0 | } |
1573 | 0 | } else if (d == 16) { |
1574 | 0 | val &= 0xffff; |
1575 | 0 | for (i = 0; i < top; i++) { |
1576 | 0 | lines = datas + i * wpls; |
1577 | 0 | for (j = 0; j < w; j++) |
1578 | 0 | SET_DATA_TWO_BYTES(lines, j, val); |
1579 | 0 | } |
1580 | 0 | rstart = w - right; |
1581 | 0 | bstart = h - bot; |
1582 | 0 | for (i = top; i < bstart; i++) { |
1583 | 0 | lines = datas + i * wpls; |
1584 | 0 | for (j = 0; j < left; j++) |
1585 | 0 | SET_DATA_TWO_BYTES(lines, j, val); |
1586 | 0 | for (j = rstart; j < w; j++) |
1587 | 0 | SET_DATA_TWO_BYTES(lines, j, val); |
1588 | 0 | } |
1589 | 0 | for (i = bstart; i < h; i++) { |
1590 | 0 | lines = datas + i * wpls; |
1591 | 0 | for (j = 0; j < w; j++) |
1592 | 0 | SET_DATA_TWO_BYTES(lines, j, val); |
1593 | 0 | } |
1594 | 0 | } else { /* d == 32 */ |
1595 | 0 | for (i = 0; i < top; i++) { |
1596 | 0 | lines = datas + i * wpls; |
1597 | 0 | for (j = 0; j < w; j++) |
1598 | 0 | *(lines + j) = val; |
1599 | 0 | } |
1600 | 0 | rstart = w - right; |
1601 | 0 | bstart = h - bot; |
1602 | 0 | for (i = top; i < bstart; i++) { |
1603 | 0 | lines = datas + i * wpls; |
1604 | 0 | for (j = 0; j < left; j++) |
1605 | 0 | *(lines + j) = val; |
1606 | 0 | for (j = rstart; j < w; j++) |
1607 | 0 | *(lines + j) = val; |
1608 | 0 | } |
1609 | 0 | for (i = bstart; i < h; i++) { |
1610 | 0 | lines = datas + i * wpls; |
1611 | 0 | for (j = 0; j < w; j++) |
1612 | 0 | *(lines + j) = val; |
1613 | 0 | } |
1614 | 0 | } |
1615 | |
|
1616 | 0 | return 0; |
1617 | 0 | } |
1618 | | |
1619 | | |
1620 | | /*! |
1621 | | * \brief pixSetBorderRingVal() |
1622 | | * |
1623 | | * \param[in] pixs any depth; cmap OK |
1624 | | * \param[in] dist distance from outside; must be > 0; first ring is 1 |
1625 | | * \param[in] val value to set at each border pixel |
1626 | | * \return 0 if OK; 1 on error |
1627 | | * |
1628 | | * <pre> |
1629 | | * Notes: |
1630 | | * (1) The rings are single-pixel-wide rectangular sets of |
1631 | | * pixels at a given distance from the edge of the pix. |
1632 | | * This sets all pixels in a given ring to a value. |
1633 | | * </pre> |
1634 | | */ |
1635 | | l_ok |
1636 | | pixSetBorderRingVal(PIX *pixs, |
1637 | | l_int32 dist, |
1638 | | l_uint32 val) |
1639 | 0 | { |
1640 | 0 | l_int32 w, h, d, i, j, xend, yend; |
1641 | |
|
1642 | 0 | if (!pixs) |
1643 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
1644 | 0 | if (dist < 1) |
1645 | 0 | return ERROR_INT("dist must be > 0", __func__, 1); |
1646 | 0 | pixGetDimensions(pixs, &w, &h, &d); |
1647 | 0 | if (w < 2 * dist + 1 || h < 2 * dist + 1) |
1648 | 0 | return ERROR_INT("ring doesn't exist", __func__, 1); |
1649 | 0 | if (d < 32 && (val >= (1 << d))) |
1650 | 0 | return ERROR_INT("invalid pixel value", __func__, 1); |
1651 | | |
1652 | 0 | xend = w - dist; |
1653 | 0 | yend = h - dist; |
1654 | 0 | for (j = dist - 1; j <= xend; j++) |
1655 | 0 | pixSetPixel(pixs, j, dist - 1, val); |
1656 | 0 | for (j = dist - 1; j <= xend; j++) |
1657 | 0 | pixSetPixel(pixs, j, yend, val); |
1658 | 0 | for (i = dist - 1; i <= yend; i++) |
1659 | 0 | pixSetPixel(pixs, dist - 1, i, val); |
1660 | 0 | for (i = dist - 1; i <= yend; i++) |
1661 | 0 | pixSetPixel(pixs, xend, i, val); |
1662 | |
|
1663 | 0 | return 0; |
1664 | 0 | } |
1665 | | |
1666 | | |
1667 | | /*! |
1668 | | * \brief pixSetMirroredBorder() |
1669 | | * |
1670 | | * \param[in] pixs all depths; colormap ok |
1671 | | * \param[in] left, right, top, bot number of pixels to set |
1672 | | * \return 0 if OK, 1 on error |
1673 | | * |
1674 | | * <pre> |
1675 | | * Notes: |
1676 | | * (1) This applies what is effectively mirror boundary conditions |
1677 | | * to a border region in the image. It is in-place. |
1678 | | * (2) This is useful for setting pixels near the border to a |
1679 | | * value representative of the near pixels to the interior. |
1680 | | * (3) The general pixRasterop() is used for an in-place operation here |
1681 | | * because there is no overlap between the src and dest rectangles. |
1682 | | * </pre> |
1683 | | */ |
1684 | | l_ok |
1685 | | pixSetMirroredBorder(PIX *pixs, |
1686 | | l_int32 left, |
1687 | | l_int32 right, |
1688 | | l_int32 top, |
1689 | | l_int32 bot) |
1690 | 0 | { |
1691 | 0 | l_int32 i, j, w, h; |
1692 | |
|
1693 | 0 | if (!pixs) |
1694 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
1695 | | |
1696 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
1697 | 0 | for (j = 0; j < left; j++) |
1698 | 0 | pixRasterop(pixs, left - 1 - j, top, 1, h - top - bot, PIX_SRC, |
1699 | 0 | pixs, left + j, top); |
1700 | 0 | for (j = 0; j < right; j++) |
1701 | 0 | pixRasterop(pixs, w - right + j, top, 1, h - top - bot, PIX_SRC, |
1702 | 0 | pixs, w - right - 1 - j, top); |
1703 | 0 | for (i = 0; i < top; i++) |
1704 | 0 | pixRasterop(pixs, 0, top - 1 - i, w, 1, PIX_SRC, |
1705 | 0 | pixs, 0, top + i); |
1706 | 0 | for (i = 0; i < bot; i++) |
1707 | 0 | pixRasterop(pixs, 0, h - bot + i, w, 1, PIX_SRC, |
1708 | 0 | pixs, 0, h - bot - 1 - i); |
1709 | |
|
1710 | 0 | return 0; |
1711 | 0 | } |
1712 | | |
1713 | | |
1714 | | /*! |
1715 | | * \brief pixCopyBorder() |
1716 | | * |
1717 | | * \param[in] pixd all depths; colormap ok; can be NULL |
1718 | | * \param[in] pixs same depth and size as pixd |
1719 | | * \param[in] left, right, top, bot number of pixels to copy |
1720 | | * \return pixd, or NULL on error if pixd is not defined |
1721 | | * |
1722 | | * <pre> |
1723 | | * Notes: |
1724 | | * (1) pixd can be null, but otherwise it must be the same size |
1725 | | * and depth as pixs. Always returns pixd. |
1726 | | * (2) This is useful in situations where by setting a few border |
1727 | | * pixels we can avoid having to copy all pixels in pixs into |
1728 | | * pixd as an initialization step for some operation. |
1729 | | * Nevertheless, for safety, if making a new pixd, all the |
1730 | | * non-border pixels are initialized to 0. |
1731 | | * </pre> |
1732 | | */ |
1733 | | PIX * |
1734 | | pixCopyBorder(PIX *pixd, |
1735 | | PIX *pixs, |
1736 | | l_int32 left, |
1737 | | l_int32 right, |
1738 | | l_int32 top, |
1739 | | l_int32 bot) |
1740 | 0 | { |
1741 | 0 | l_int32 w, h; |
1742 | |
|
1743 | 0 | if (!pixs) |
1744 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, pixd); |
1745 | | |
1746 | 0 | if (pixd) { |
1747 | 0 | if (pixd == pixs) { |
1748 | 0 | L_WARNING("same: nothing to do\n", __func__); |
1749 | 0 | return pixd; |
1750 | 0 | } else if (!pixSizesEqual(pixs, pixd)) { |
1751 | 0 | return (PIX *)ERROR_PTR("pixs and pixd sizes differ", |
1752 | 0 | __func__, pixd); |
1753 | 0 | } |
1754 | 0 | } else { |
1755 | 0 | if ((pixd = pixCreateTemplate(pixs)) == NULL) |
1756 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, pixd); |
1757 | 0 | } |
1758 | | |
1759 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
1760 | 0 | pixRasterop(pixd, 0, 0, left, h, PIX_SRC, pixs, 0, 0); |
1761 | 0 | pixRasterop(pixd, w - right, 0, right, h, PIX_SRC, pixs, w - right, 0); |
1762 | 0 | pixRasterop(pixd, 0, 0, w, top, PIX_SRC, pixs, 0, 0); |
1763 | 0 | pixRasterop(pixd, 0, h - bot, w, bot, PIX_SRC, pixs, 0, h - bot); |
1764 | 0 | return pixd; |
1765 | 0 | } |
1766 | | |
1767 | | |
1768 | | |
1769 | | /*-------------------------------------------------------------* |
1770 | | * Add and remove border * |
1771 | | *-------------------------------------------------------------*/ |
1772 | | /*! |
1773 | | * \brief pixAddBorder() |
1774 | | * |
1775 | | * \param[in] pixs all depths; colormap ok |
1776 | | * \param[in] npix number of pixels to be added to each side |
1777 | | * \param[in] val value of added border pixels |
1778 | | * \return pixd with the added exterior pixels, or NULL on error |
1779 | | * |
1780 | | * <pre> |
1781 | | * Notes: |
1782 | | * (1) See pixGetBlackOrWhiteVal() for values of black and white pixels. |
1783 | | * </pre> |
1784 | | */ |
1785 | | PIX * |
1786 | | pixAddBorder(PIX *pixs, |
1787 | | l_int32 npix, |
1788 | | l_uint32 val) |
1789 | 0 | { |
1790 | 0 | if (!pixs) |
1791 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
1792 | 0 | if (npix == 0) |
1793 | 0 | return pixClone(pixs); |
1794 | 0 | return pixAddBorderGeneral(pixs, npix, npix, npix, npix, val); |
1795 | 0 | } |
1796 | | |
1797 | | |
1798 | | /*! |
1799 | | * \brief pixAddBlackOrWhiteBorder() |
1800 | | * |
1801 | | * \param[in] pixs all depths; colormap ok |
1802 | | * \param[in] left, right, top, bot number of pixels added |
1803 | | * \param[in] op L_GET_BLACK_VAL, L_GET_WHITE_VAL |
1804 | | * \return pixd with the added exterior pixels, or NULL on error |
1805 | | * |
1806 | | * <pre> |
1807 | | * Notes: |
1808 | | * (1) See pixGetBlackOrWhiteVal() for possible side effect (adding |
1809 | | * a color to a colormap). |
1810 | | * (2) The only complication is that pixs may have a colormap. |
1811 | | * There are two ways to add the black or white border: |
1812 | | * (a) As done here (simplest, most efficient) |
1813 | | * (b) l_int32 ws, hs, d; |
1814 | | * pixGetDimensions(pixs, &ws, &hs, &d); |
1815 | | * Pix *pixd = pixCreate(ws + left + right, hs + top + bot, d); |
1816 | | * PixColormap *cmap = pixGetColormap(pixs); |
1817 | | * if (cmap != NULL) |
1818 | | * pixSetColormap(pixd, pixcmapCopy(cmap)); |
1819 | | * pixSetBlackOrWhite(pixd, L_SET_WHITE); // uses cmap |
1820 | | * pixRasterop(pixd, left, top, ws, hs, PIX_SET, pixs, 0, 0); |
1821 | | * </pre> |
1822 | | */ |
1823 | | PIX * |
1824 | | pixAddBlackOrWhiteBorder(PIX *pixs, |
1825 | | l_int32 left, |
1826 | | l_int32 right, |
1827 | | l_int32 top, |
1828 | | l_int32 bot, |
1829 | | l_int32 op) |
1830 | 0 | { |
1831 | 0 | l_uint32 val; |
1832 | |
|
1833 | 0 | if (!pixs) |
1834 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
1835 | 0 | if (op != L_GET_BLACK_VAL && op != L_GET_WHITE_VAL) |
1836 | 0 | return (PIX *)ERROR_PTR("invalid op", __func__, NULL); |
1837 | | |
1838 | 0 | pixGetBlackOrWhiteVal(pixs, op, &val); |
1839 | 0 | return pixAddBorderGeneral(pixs, left, right, top, bot, val); |
1840 | 0 | } |
1841 | | |
1842 | | |
1843 | | /*! |
1844 | | * \brief pixAddBorderGeneral() |
1845 | | * |
1846 | | * \param[in] pixs all depths; colormap ok |
1847 | | * \param[in] left, right, top, bot number of pixels added |
1848 | | * \param[in] val value of added border pixels |
1849 | | * \return pixd with the added exterior pixels, or NULL on error |
1850 | | * |
1851 | | * <pre> |
1852 | | * Notes: |
1853 | | * (1) For binary images: |
1854 | | * white: val = 0 |
1855 | | * black: val = 1 |
1856 | | * For grayscale images: |
1857 | | * white: val = 2 ** d - 1 |
1858 | | * black: val = 0 |
1859 | | * For rgb color images: |
1860 | | * white: val = 0xffffff00 |
1861 | | * black: val = 0 |
1862 | | * For colormapped images, set val to the appropriate colormap index. |
1863 | | * (2) If the added border is either black or white, you can use |
1864 | | * pixAddBlackOrWhiteBorder() |
1865 | | * The black and white values for all images can be found with |
1866 | | * pixGetBlackOrWhiteVal() |
1867 | | * which, if pixs is cmapped, may add an entry to the colormap. |
1868 | | * Alternatively, if pixs has a colormap, you can find the index |
1869 | | * of the pixel whose intensity is closest to white or black: |
1870 | | * white: pixcmapGetRankIntensity(cmap, 1.0, &index); |
1871 | | * black: pixcmapGetRankIntensity(cmap, 0.0, &index); |
1872 | | * and use that for val. |
1873 | | * </pre> |
1874 | | */ |
1875 | | PIX * |
1876 | | pixAddBorderGeneral(PIX *pixs, |
1877 | | l_int32 left, |
1878 | | l_int32 right, |
1879 | | l_int32 top, |
1880 | | l_int32 bot, |
1881 | | l_uint32 val) |
1882 | 0 | { |
1883 | 0 | l_int32 ws, hs, wd, hd, d, op; |
1884 | 0 | l_uint32 maxval; |
1885 | 0 | PIX *pixd; |
1886 | |
|
1887 | 0 | if (!pixs) |
1888 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
1889 | 0 | if (left < 0 || right < 0 || top < 0 || bot < 0) |
1890 | 0 | return (PIX *)ERROR_PTR("negative border added!", __func__, NULL); |
1891 | | |
1892 | 0 | pixGetDimensions(pixs, &ws, &hs, &d); |
1893 | 0 | wd = ws + left + right; |
1894 | 0 | hd = hs + top + bot; |
1895 | 0 | if ((pixd = pixCreate(wd, hd, d)) == NULL) |
1896 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
1897 | 0 | pixCopyResolution(pixd, pixs); |
1898 | 0 | pixCopyColormap(pixd, pixs); |
1899 | | |
1900 | | /* Set the new border pixels */ |
1901 | 0 | maxval = (d == 32) ? 0xffffff00 : (1 << d) - 1; |
1902 | 0 | op = UNDEF; |
1903 | 0 | if (val == 0) |
1904 | 0 | op = PIX_CLR; |
1905 | 0 | else if (val >= maxval) |
1906 | 0 | op = PIX_SET; |
1907 | 0 | if (op == UNDEF) { |
1908 | 0 | pixSetAllArbitrary(pixd, val); |
1909 | 0 | } else { /* just set or clear the border pixels */ |
1910 | 0 | pixRasterop(pixd, 0, 0, left, hd, op, NULL, 0, 0); |
1911 | 0 | pixRasterop(pixd, wd - right, 0, right, hd, op, NULL, 0, 0); |
1912 | 0 | pixRasterop(pixd, 0, 0, wd, top, op, NULL, 0, 0); |
1913 | 0 | pixRasterop(pixd, 0, hd - bot, wd, bot, op, NULL, 0, 0); |
1914 | 0 | } |
1915 | | |
1916 | | /* Copy pixs into the interior */ |
1917 | 0 | pixRasterop(pixd, left, top, ws, hs, PIX_SRC, pixs, 0, 0); |
1918 | 0 | return pixd; |
1919 | 0 | } |
1920 | | |
1921 | | |
1922 | | /*! |
1923 | | * \brief pixAddMultipleBlackWhiteBorders() |
1924 | | * |
1925 | | * \param[in] pixs all depths; colormap ok |
1926 | | * \param[in] nblack1 width of first black border |
1927 | | * \param[in] nwhite1 width of first white border |
1928 | | * \param[in] nblack2 width of second black border |
1929 | | * \param[in] nwhite2 width of second white border |
1930 | | * \param[in] nblack3 width of third black border |
1931 | | * \param[in] nwhite3 width of third white border |
1932 | | * \return pixd with the added borders, or NULL on error |
1933 | | * |
1934 | | * <pre> |
1935 | | * Notes: |
1936 | | * (1) This is a convenience function for adding up to 3 black and |
1937 | | * 3 white borders, alternating black and white. |
1938 | | * (2) Each of the 6 args gives the width of the next border, starting |
1939 | | * with a black border. Any of the args can be 0, skipping |
1940 | | * the addition of that border. |
1941 | | * (3) Maximum allowed border width is 500 for any border. |
1942 | | * </pre> |
1943 | | */ |
1944 | | PIX * |
1945 | | pixAddMultipleBlackWhiteBorders(PIX *pixs, |
1946 | | l_int32 nblack1, |
1947 | | l_int32 nwhite1, |
1948 | | l_int32 nblack2, |
1949 | | l_int32 nwhite2, |
1950 | | l_int32 nblack3, |
1951 | | l_int32 nwhite3) |
1952 | 0 | { |
1953 | 0 | l_int32 i, color; |
1954 | 0 | l_int32 w[6]; |
1955 | 0 | PIX *pix1, *pixd; |
1956 | |
|
1957 | 0 | if (!pixs) |
1958 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
1959 | | |
1960 | 0 | w[0] = nblack1; |
1961 | 0 | w[1] = nwhite1; |
1962 | 0 | w[2] = nblack2; |
1963 | 0 | w[3] = nwhite2; |
1964 | 0 | w[4] = nblack3; |
1965 | 0 | w[5] = nwhite3; |
1966 | 0 | pixd = pixClone(pixs); |
1967 | 0 | for (i = 0; i < 6; i++) { |
1968 | 0 | if (w[i] > 500) |
1969 | 0 | L_WARNING("w = %d > 500; skipping\n", __func__, w[i]); |
1970 | 0 | if (w[i] > 0 && w[i] <= 500) { |
1971 | 0 | color = (i % 2 == 0) ? L_GET_BLACK_VAL : L_GET_WHITE_VAL; |
1972 | 0 | pix1 = pixAddBlackOrWhiteBorder(pixd, w[i], w[i], w[i], w[i], |
1973 | 0 | color); |
1974 | 0 | pixDestroy(&pixd); |
1975 | 0 | pixd = pix1; |
1976 | 0 | } |
1977 | 0 | } |
1978 | |
|
1979 | 0 | return pixd; |
1980 | 0 | } |
1981 | | |
1982 | | |
1983 | | /*! |
1984 | | * \brief pixRemoveBorder() |
1985 | | * |
1986 | | * \param[in] pixs all depths; colormap ok |
1987 | | * \param[in] npix number to be removed from each of the 4 sides |
1988 | | * \return pixd with pixels removed around border, or NULL on error |
1989 | | */ |
1990 | | PIX * |
1991 | | pixRemoveBorder(PIX *pixs, |
1992 | | l_int32 npix) |
1993 | 0 | { |
1994 | 0 | if (!pixs) |
1995 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
1996 | 0 | if (npix == 0) |
1997 | 0 | return pixClone(pixs); |
1998 | 0 | return pixRemoveBorderGeneral(pixs, npix, npix, npix, npix); |
1999 | 0 | } |
2000 | | |
2001 | | |
2002 | | /*! |
2003 | | * \brief pixRemoveBorderGeneral() |
2004 | | * |
2005 | | * \param[in] pixs all depths; colormap ok |
2006 | | * \param[in] left, right, top, bot number of pixels removed |
2007 | | * \return pixd with pixels removed around border, or NULL on error |
2008 | | */ |
2009 | | PIX * |
2010 | | pixRemoveBorderGeneral(PIX *pixs, |
2011 | | l_int32 left, |
2012 | | l_int32 right, |
2013 | | l_int32 top, |
2014 | | l_int32 bot) |
2015 | 0 | { |
2016 | 0 | l_int32 ws, hs, wd, hd, d; |
2017 | 0 | PIX *pixd; |
2018 | |
|
2019 | 0 | if (!pixs) |
2020 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
2021 | 0 | if (left < 0 || right < 0 || top < 0 || bot < 0) |
2022 | 0 | return (PIX *)ERROR_PTR("negative border removed!", __func__, NULL); |
2023 | | |
2024 | 0 | pixGetDimensions(pixs, &ws, &hs, &d); |
2025 | 0 | wd = ws - left - right; |
2026 | 0 | hd = hs - top - bot; |
2027 | 0 | if (wd <= 0) |
2028 | 0 | return (PIX *)ERROR_PTR("width must be > 0", __func__, NULL); |
2029 | 0 | if (hd <= 0) |
2030 | 0 | return (PIX *)ERROR_PTR("height must be > 0", __func__, NULL); |
2031 | 0 | if ((pixd = pixCreate(wd, hd, d)) == NULL) |
2032 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
2033 | 0 | pixCopyResolution(pixd, pixs); |
2034 | 0 | pixCopySpp(pixd, pixs); |
2035 | 0 | pixCopyColormap(pixd, pixs); |
2036 | |
|
2037 | 0 | pixRasterop(pixd, 0, 0, wd, hd, PIX_SRC, pixs, left, top); |
2038 | 0 | if (pixGetDepth(pixs) == 32 && pixGetSpp(pixs) == 4) |
2039 | 0 | pixShiftAndTransferAlpha(pixd, pixs, -left, -top); |
2040 | 0 | return pixd; |
2041 | 0 | } |
2042 | | |
2043 | | |
2044 | | /*! |
2045 | | * \brief pixRemoveBorderToSize() |
2046 | | * |
2047 | | * \param[in] pixs all depths; colormap ok |
2048 | | * \param[in] wd target width; use 0 if only removing from height |
2049 | | * \param[in] hd target height; use 0 if only removing from width |
2050 | | * \return pixd with pixels removed around border, or NULL on error |
2051 | | * |
2052 | | * <pre> |
2053 | | * Notes: |
2054 | | * (1) Removes pixels as evenly as possible from the sides of the |
2055 | | * image, leaving the central part. |
2056 | | * (2) Returns clone if no pixels requested removed, or the target |
2057 | | * sizes are larger than the image. |
2058 | | * </pre> |
2059 | | */ |
2060 | | PIX * |
2061 | | pixRemoveBorderToSize(PIX *pixs, |
2062 | | l_int32 wd, |
2063 | | l_int32 hd) |
2064 | 0 | { |
2065 | 0 | l_int32 w, h, top, bot, left, right, delta; |
2066 | |
|
2067 | 0 | if (!pixs) |
2068 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
2069 | | |
2070 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2071 | 0 | if ((wd <= 0 || wd >= w) && (hd <= 0 || hd >= h)) |
2072 | 0 | return pixClone(pixs); |
2073 | | |
2074 | 0 | left = right = (w - wd) / 2; |
2075 | 0 | delta = w - 2 * left - wd; |
2076 | 0 | right += delta; |
2077 | 0 | top = bot = (h - hd) / 2; |
2078 | 0 | delta = h - hd - 2 * top; |
2079 | 0 | bot += delta; |
2080 | 0 | if (wd <= 0 || wd > w) |
2081 | 0 | left = right = 0; |
2082 | 0 | else if (hd <= 0 || hd > h) |
2083 | 0 | top = bot = 0; |
2084 | |
|
2085 | 0 | return pixRemoveBorderGeneral(pixs, left, right, top, bot); |
2086 | 0 | } |
2087 | | |
2088 | | |
2089 | | /*! |
2090 | | * \brief pixAddMirroredBorder() |
2091 | | * |
2092 | | * \param[in] pixs all depths; colormap ok |
2093 | | * \param[in] left, right, top, bot number of pixels added |
2094 | | * \return pixd, or NULL on error |
2095 | | * |
2096 | | * <pre> |
2097 | | * Notes: |
2098 | | * (1) This applies what is effectively mirror boundary conditions. |
2099 | | * For the added border pixels in pixd, the pixels in pixs |
2100 | | * near the border are mirror-copied into the border region. |
2101 | | * (2) This is useful for avoiding special operations near |
2102 | | * boundaries when doing image processing operations |
2103 | | * such as rank filters and convolution. In use, one first |
2104 | | * adds mirrored pixels to each side of the image. The number |
2105 | | * of pixels added on each side is half the filter dimension. |
2106 | | * Then the image processing operations proceed over a |
2107 | | * region equal to the size of the original image, and |
2108 | | * write directly into a dest pix of the same size as pixs. |
2109 | | * (3) The general pixRasterop() is used for an in-place operation here |
2110 | | * because there is no overlap between the src and dest rectangles. |
2111 | | * </pre> |
2112 | | */ |
2113 | | PIX * |
2114 | | pixAddMirroredBorder(PIX *pixs, |
2115 | | l_int32 left, |
2116 | | l_int32 right, |
2117 | | l_int32 top, |
2118 | | l_int32 bot) |
2119 | 0 | { |
2120 | 0 | l_int32 i, j, w, h; |
2121 | 0 | PIX *pixd; |
2122 | |
|
2123 | 0 | if (!pixs) |
2124 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
2125 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2126 | 0 | if (left > w || right > w || top > h || bot > h) |
2127 | 0 | return (PIX *)ERROR_PTR("border too large", __func__, NULL); |
2128 | | |
2129 | | /* Set pixels on left, right, top and bottom, in that order */ |
2130 | 0 | pixd = pixAddBorderGeneral(pixs, left, right, top, bot, 0); |
2131 | 0 | for (j = 0; j < left; j++) |
2132 | 0 | pixRasterop(pixd, left - 1 - j, top, 1, h, PIX_SRC, |
2133 | 0 | pixd, left + j, top); |
2134 | 0 | for (j = 0; j < right; j++) |
2135 | 0 | pixRasterop(pixd, left + w + j, top, 1, h, PIX_SRC, |
2136 | 0 | pixd, left + w - 1 - j, top); |
2137 | 0 | for (i = 0; i < top; i++) |
2138 | 0 | pixRasterop(pixd, 0, top - 1 - i, left + w + right, 1, PIX_SRC, |
2139 | 0 | pixd, 0, top + i); |
2140 | 0 | for (i = 0; i < bot; i++) |
2141 | 0 | pixRasterop(pixd, 0, top + h + i, left + w + right, 1, PIX_SRC, |
2142 | 0 | pixd, 0, top + h - 1 - i); |
2143 | |
|
2144 | 0 | return pixd; |
2145 | 0 | } |
2146 | | |
2147 | | |
2148 | | /*! |
2149 | | * \brief pixAddRepeatedBorder() |
2150 | | * |
2151 | | * \param[in] pixs all depths; colormap ok |
2152 | | * \param[in] left, right, top, bot number of pixels added |
2153 | | * \return pixd, or NULL on error |
2154 | | * |
2155 | | * <pre> |
2156 | | * Notes: |
2157 | | * (1) This applies a repeated border, as if the central part of |
2158 | | * the image is tiled over the plane. So, for example, the |
2159 | | * pixels in the left border come from the right side of the image. |
2160 | | * (2) The general pixRasterop() is used for an in-place operation here |
2161 | | * because there is no overlap between the src and dest rectangles. |
2162 | | * </pre> |
2163 | | */ |
2164 | | PIX * |
2165 | | pixAddRepeatedBorder(PIX *pixs, |
2166 | | l_int32 left, |
2167 | | l_int32 right, |
2168 | | l_int32 top, |
2169 | | l_int32 bot) |
2170 | 0 | { |
2171 | 0 | l_int32 w, h; |
2172 | 0 | PIX *pixd; |
2173 | |
|
2174 | 0 | if (!pixs) |
2175 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
2176 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2177 | 0 | if (left > w || right > w || top > h || bot > h) |
2178 | 0 | return (PIX *)ERROR_PTR("border too large", __func__, NULL); |
2179 | | |
2180 | 0 | pixd = pixAddBorderGeneral(pixs, left, right, top, bot, 0); |
2181 | | |
2182 | | /* Set pixels on left, right, top and bottom, in that order */ |
2183 | 0 | pixRasterop(pixd, 0, top, left, h, PIX_SRC, pixd, w, top); |
2184 | 0 | pixRasterop(pixd, left + w, top, right, h, PIX_SRC, pixd, left, top); |
2185 | 0 | pixRasterop(pixd, 0, 0, left + w + right, top, PIX_SRC, pixd, 0, h); |
2186 | 0 | pixRasterop(pixd, 0, top + h, left + w + right, bot, PIX_SRC, pixd, 0, top); |
2187 | |
|
2188 | 0 | return pixd; |
2189 | 0 | } |
2190 | | |
2191 | | |
2192 | | /*! |
2193 | | * \brief pixAddMixedBorder() |
2194 | | * |
2195 | | * \param[in] pixs all depths; colormap ok |
2196 | | * \param[in] left, right, top, bot number of pixels added |
2197 | | * \return pixd, or NULL on error |
2198 | | * |
2199 | | * <pre> |
2200 | | * Notes: |
2201 | | * (1) This applies mirrored boundary conditions (b.c.) horizontally |
2202 | | * and repeated b.c. vertically. |
2203 | | * (2) It is specifically used for avoiding special operations |
2204 | | * near boundaries when convolving a hue-saturation histogram |
2205 | | * with a given window size. The repeated b.c. are used |
2206 | | * vertically for hue, and the mirrored b.c. are used |
2207 | | * horizontally for saturation. The number of pixels added |
2208 | | * on each side is approximately (but not quite) half the |
2209 | | * filter dimension. The image processing operations can |
2210 | | * then proceed over a region equal to the size of the original |
2211 | | * image, and write directly into a dest pix of the same |
2212 | | * size as pixs. |
2213 | | * (3) The general pixRasterop() can be used for an in-place |
2214 | | * operation here because there is no overlap between the |
2215 | | * src and dest rectangles. |
2216 | | * </pre> |
2217 | | */ |
2218 | | PIX * |
2219 | | pixAddMixedBorder(PIX *pixs, |
2220 | | l_int32 left, |
2221 | | l_int32 right, |
2222 | | l_int32 top, |
2223 | | l_int32 bot) |
2224 | 0 | { |
2225 | 0 | l_int32 j, w, h; |
2226 | 0 | PIX *pixd; |
2227 | |
|
2228 | 0 | if (!pixs) |
2229 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
2230 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2231 | 0 | if (left > w || right > w || top > h || bot > h) |
2232 | 0 | return (PIX *)ERROR_PTR("border too large", __func__, NULL); |
2233 | | |
2234 | | /* Set mirrored pixels on left and right; |
2235 | | * then set repeated pixels on top and bottom. */ |
2236 | 0 | pixd = pixAddBorderGeneral(pixs, left, right, top, bot, 0); |
2237 | 0 | for (j = 0; j < left; j++) |
2238 | 0 | pixRasterop(pixd, left - 1 - j, top, 1, h, PIX_SRC, |
2239 | 0 | pixd, left + j, top); |
2240 | 0 | for (j = 0; j < right; j++) |
2241 | 0 | pixRasterop(pixd, left + w + j, top, 1, h, PIX_SRC, |
2242 | 0 | pixd, left + w - 1 - j, top); |
2243 | 0 | pixRasterop(pixd, 0, 0, left + w + right, top, PIX_SRC, pixd, 0, h); |
2244 | 0 | pixRasterop(pixd, 0, top + h, left + w + right, bot, PIX_SRC, pixd, 0, top); |
2245 | |
|
2246 | 0 | return pixd; |
2247 | 0 | } |
2248 | | |
2249 | | |
2250 | | /*! |
2251 | | * \brief pixAddContinuedBorder() |
2252 | | * |
2253 | | * \param[in] pixs all depths; colormap ok |
2254 | | * \param[in] left, right, top, bot pixels on each side to be added |
2255 | | * \return pixd, or NULL on error |
2256 | | * |
2257 | | * <pre> |
2258 | | * Notes: |
2259 | | * (1) This adds pixels on each side whose values are equal to |
2260 | | * the value on the closest boundary pixel. |
2261 | | * </pre> |
2262 | | */ |
2263 | | PIX * |
2264 | | pixAddContinuedBorder(PIX *pixs, |
2265 | | l_int32 left, |
2266 | | l_int32 right, |
2267 | | l_int32 top, |
2268 | | l_int32 bot) |
2269 | 0 | { |
2270 | 0 | l_int32 i, j, w, h; |
2271 | 0 | PIX *pixd; |
2272 | |
|
2273 | 0 | if (!pixs) |
2274 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
2275 | | |
2276 | 0 | pixd = pixAddBorderGeneral(pixs, left, right, top, bot, 0); |
2277 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2278 | 0 | for (j = 0; j < left; j++) |
2279 | 0 | pixRasterop(pixd, j, top, 1, h, PIX_SRC, pixd, left, top); |
2280 | 0 | for (j = 0; j < right; j++) |
2281 | 0 | pixRasterop(pixd, left + w + j, top, 1, h, |
2282 | 0 | PIX_SRC, pixd, left + w - 1, top); |
2283 | 0 | for (i = 0; i < top; i++) |
2284 | 0 | pixRasterop(pixd, 0, i, left + w + right, 1, PIX_SRC, pixd, 0, top); |
2285 | 0 | for (i = 0; i < bot; i++) |
2286 | 0 | pixRasterop(pixd, 0, top + h + i, left + w + right, 1, |
2287 | 0 | PIX_SRC, pixd, 0, top + h - 1); |
2288 | |
|
2289 | 0 | return pixd; |
2290 | 0 | } |
2291 | | |
2292 | | |
2293 | | /*-------------------------------------------------------------------* |
2294 | | * Helper functions using alpha * |
2295 | | *-------------------------------------------------------------------*/ |
2296 | | /*! |
2297 | | * \brief pixShiftAndTransferAlpha() |
2298 | | * |
2299 | | * \param[in] pixd 32 bpp |
2300 | | * \param[in] pixs 32 bpp |
2301 | | * \param[in] shiftx, shifty |
2302 | | * \return 0 if OK; 1 on error |
2303 | | */ |
2304 | | l_ok |
2305 | | pixShiftAndTransferAlpha(PIX *pixd, |
2306 | | PIX *pixs, |
2307 | | l_float32 shiftx, |
2308 | | l_float32 shifty) |
2309 | 0 | { |
2310 | 0 | l_int32 w, h; |
2311 | 0 | PIX *pix1, *pix2; |
2312 | |
|
2313 | 0 | if (!pixs || !pixd) |
2314 | 0 | return ERROR_INT("pixs and pixd not both defined", __func__, 1); |
2315 | 0 | if (pixGetDepth(pixs) != 32 || pixGetSpp(pixs) != 4) |
2316 | 0 | return ERROR_INT("pixs not 32 bpp and 4 spp", __func__, 1); |
2317 | 0 | if (pixGetDepth(pixd) != 32) |
2318 | 0 | return ERROR_INT("pixd not 32 bpp", __func__, 1); |
2319 | | |
2320 | 0 | if (shiftx == 0 && shifty == 0) { |
2321 | 0 | pixCopyRGBComponent(pixd, pixs, L_ALPHA_CHANNEL); |
2322 | 0 | return 0; |
2323 | 0 | } |
2324 | | |
2325 | 0 | pix1 = pixGetRGBComponent(pixs, L_ALPHA_CHANNEL); |
2326 | 0 | pixGetDimensions(pixd, &w, &h, NULL); |
2327 | 0 | pix2 = pixCreate(w, h, 8); |
2328 | 0 | pixRasterop(pix2, 0, 0, w, h, PIX_SRC, pix1, -shiftx, -shifty); |
2329 | 0 | pixSetRGBComponent(pixd, pix2, L_ALPHA_CHANNEL); |
2330 | 0 | pixDestroy(&pix1); |
2331 | 0 | pixDestroy(&pix2); |
2332 | 0 | return 0; |
2333 | 0 | } |
2334 | | |
2335 | | |
2336 | | /*! |
2337 | | * \brief pixDisplayLayersRGBA() |
2338 | | * |
2339 | | * \param[in] pixs cmap or 32 bpp rgba |
2340 | | * \param[in] val 32 bit unsigned color to use as background |
2341 | | * \param[in] maxw max output image width; 0 for no scaling |
2342 | | * \return pixd showing various image views, or NULL on error |
2343 | | * |
2344 | | * <pre> |
2345 | | * Notes: |
2346 | | * (1) Use %val == 0xffffff00 for white background. |
2347 | | * (2) Three views are given: |
2348 | | * ~ the image with a fully opaque alpha |
2349 | | * ~ the alpha layer |
2350 | | * ~ the image as it would appear with a white background. |
2351 | | * </pre> |
2352 | | */ |
2353 | | PIX * |
2354 | | pixDisplayLayersRGBA(PIX *pixs, |
2355 | | l_uint32 val, |
2356 | | l_int32 maxw) |
2357 | 0 | { |
2358 | 0 | l_int32 w, width; |
2359 | 0 | l_float32 scalefact; |
2360 | 0 | PIX *pix1, *pix2, *pixd; |
2361 | 0 | PIXA *pixa; |
2362 | 0 | PIXCMAP *cmap; |
2363 | |
|
2364 | 0 | if (!pixs) |
2365 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
2366 | 0 | cmap = pixGetColormap(pixs); |
2367 | 0 | if (!cmap && !(pixGetDepth(pixs) == 32 && pixGetSpp(pixs) == 4)) |
2368 | 0 | return (PIX *)ERROR_PTR("pixs not cmap and not 32 bpp rgba", |
2369 | 0 | __func__, NULL); |
2370 | 0 | if ((w = pixGetWidth(pixs)) == 0) |
2371 | 0 | return (PIX *)ERROR_PTR("pixs width 0 !!", __func__, NULL); |
2372 | | |
2373 | 0 | if (cmap) |
2374 | 0 | pix1 = pixRemoveColormap(pixs, REMOVE_CMAP_WITH_ALPHA); |
2375 | 0 | else |
2376 | 0 | pix1 = pixCopy(NULL, pixs); |
2377 | | |
2378 | | /* Scale if necessary so the output width is not larger than maxw */ |
2379 | 0 | scalefact = (maxw == 0) ? 1.0f : L_MIN(1.0f, (l_float32)(maxw) / w); |
2380 | 0 | width = (l_int32)(scalefact * w); |
2381 | |
|
2382 | 0 | pixa = pixaCreate(3); |
2383 | 0 | pixSetSpp(pix1, 3); |
2384 | 0 | pixaAddPix(pixa, pix1, L_INSERT); /* show the rgb values */ |
2385 | 0 | pix1 = pixGetRGBComponent(pixs, L_ALPHA_CHANNEL); |
2386 | 0 | pix2 = pixConvertTo32(pix1); |
2387 | 0 | pixaAddPix(pixa, pix2, L_INSERT); /* show the alpha channel */ |
2388 | 0 | pixDestroy(&pix1); |
2389 | 0 | pix1 = pixAlphaBlendUniform(pixs, (val & 0xffffff00)); |
2390 | 0 | pixaAddPix(pixa, pix1, L_INSERT); /* with %val color bg showing */ |
2391 | 0 | pixd = pixaDisplayTiledInRows(pixa, 32, width, scalefact, 0, 25, 2); |
2392 | 0 | pixaDestroy(&pixa); |
2393 | 0 | return pixd; |
2394 | 0 | } |
2395 | | |
2396 | | |
2397 | | /*-------------------------------------------------------------* |
2398 | | * Color sample setting and extraction * |
2399 | | *-------------------------------------------------------------*/ |
2400 | | /*! |
2401 | | * \brief pixCreateRGBImage() |
2402 | | * |
2403 | | * \param[in] pixr 8 bpp red pix |
2404 | | * \param[in] pixg 8 bpp green pix |
2405 | | * \param[in] pixb 8 bpp blue pix |
2406 | | * \return 32 bpp pix, interleaved with 4 samples/pixel, |
2407 | | * or NULL on error |
2408 | | * |
2409 | | * <pre> |
2410 | | * Notes: |
2411 | | * (1) the 4th byte, sometimes called the "alpha channel", |
2412 | | * and which is often used for blending between different |
2413 | | * images, is left with 0 value (fully opaque). |
2414 | | * (2) see Note (4) in pix.h for details on storage of |
2415 | | * 8-bit samples within each 32-bit word. |
2416 | | * (3) This implementation, setting the r, g and b components |
2417 | | * sequentially, is much faster than setting them in parallel |
2418 | | * by constructing an RGB dest pixel and writing it to dest. |
2419 | | * The reason is there are many more cache misses when reading |
2420 | | * from 3 input images simultaneously. |
2421 | | * </pre> |
2422 | | */ |
2423 | | PIX * |
2424 | | pixCreateRGBImage(PIX *pixr, |
2425 | | PIX *pixg, |
2426 | | PIX *pixb) |
2427 | 0 | { |
2428 | 0 | l_int32 wr, wg, wb, hr, hg, hb, dr, dg, db; |
2429 | 0 | PIX *pixd; |
2430 | |
|
2431 | 0 | if (!pixr) |
2432 | 0 | return (PIX *)ERROR_PTR("pixr not defined", __func__, NULL); |
2433 | 0 | if (!pixg) |
2434 | 0 | return (PIX *)ERROR_PTR("pixg not defined", __func__, NULL); |
2435 | 0 | if (!pixb) |
2436 | 0 | return (PIX *)ERROR_PTR("pixb not defined", __func__, NULL); |
2437 | 0 | pixGetDimensions(pixr, &wr, &hr, &dr); |
2438 | 0 | pixGetDimensions(pixg, &wg, &hg, &dg); |
2439 | 0 | pixGetDimensions(pixb, &wb, &hb, &db); |
2440 | 0 | if (dr != 8 || dg != 8 || db != 8) |
2441 | 0 | return (PIX *)ERROR_PTR("input pix not all 8 bpp", __func__, NULL); |
2442 | 0 | if (wr != wg || wr != wb) |
2443 | 0 | return (PIX *)ERROR_PTR("widths not the same", __func__, NULL); |
2444 | 0 | if (hr != hg || hr != hb) |
2445 | 0 | return (PIX *)ERROR_PTR("heights not the same", __func__, NULL); |
2446 | | |
2447 | 0 | if ((pixd = pixCreate(wr, hr, 32)) == NULL) |
2448 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
2449 | 0 | pixCopyResolution(pixd, pixr); |
2450 | 0 | pixSetRGBComponent(pixd, pixr, COLOR_RED); |
2451 | 0 | pixSetRGBComponent(pixd, pixg, COLOR_GREEN); |
2452 | 0 | pixSetRGBComponent(pixd, pixb, COLOR_BLUE); |
2453 | |
|
2454 | 0 | return pixd; |
2455 | 0 | } |
2456 | | |
2457 | | |
2458 | | /*! |
2459 | | * \brief pixGetRGBComponent() |
2460 | | * |
2461 | | * \param[in] pixs 32 bpp, or colormapped |
2462 | | * \param[in] comp one of {COLOR_RED, COLOR_GREEN, COLOR_BLUE, |
2463 | | * L_ALPHA_CHANNEL} |
2464 | | * \return pixd the selected 8 bpp component image of the |
2465 | | * input 32 bpp image or NULL on error |
2466 | | * |
2467 | | * <pre> |
2468 | | * Notes: |
2469 | | * (1) Three calls to this function generate the r, g and b 8 bpp |
2470 | | * component images. This is much faster than generating the |
2471 | | * three images in parallel, by extracting a src pixel and setting |
2472 | | * the pixels of each component image from it. The reason is |
2473 | | * there are many more cache misses when writing to three |
2474 | | * output images simultaneously. |
2475 | | * </pre> |
2476 | | */ |
2477 | | PIX * |
2478 | | pixGetRGBComponent(PIX *pixs, |
2479 | | l_int32 comp) |
2480 | 0 | { |
2481 | 0 | l_int32 i, j, w, h, wpls, wpld, val; |
2482 | 0 | l_uint32 *lines, *lined; |
2483 | 0 | l_uint32 *datas, *datad; |
2484 | 0 | PIX *pixd; |
2485 | |
|
2486 | 0 | if (!pixs) |
2487 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
2488 | 0 | if (pixGetColormap(pixs)) |
2489 | 0 | return pixGetRGBComponentCmap(pixs, comp); |
2490 | 0 | if (pixGetDepth(pixs) != 32) |
2491 | 0 | return (PIX *)ERROR_PTR("pixs not 32 bpp", __func__, NULL); |
2492 | 0 | if (comp != COLOR_RED && comp != COLOR_GREEN && |
2493 | 0 | comp != COLOR_BLUE && comp != L_ALPHA_CHANNEL) |
2494 | 0 | return (PIX *)ERROR_PTR("invalid comp", __func__, NULL); |
2495 | | |
2496 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2497 | 0 | if ((pixd = pixCreate(w, h, 8)) == NULL) |
2498 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
2499 | 0 | pixCopyResolution(pixd, pixs); |
2500 | 0 | wpls = pixGetWpl(pixs); |
2501 | 0 | wpld = pixGetWpl(pixd); |
2502 | 0 | datas = pixGetData(pixs); |
2503 | 0 | datad = pixGetData(pixd); |
2504 | 0 | for (i = 0; i < h; i++) { |
2505 | 0 | lines = datas + i * wpls; |
2506 | 0 | lined = datad + i * wpld; |
2507 | 0 | for (j = 0; j < w; j++) { |
2508 | 0 | val = GET_DATA_BYTE(lines + j, comp); |
2509 | 0 | SET_DATA_BYTE(lined, j, val); |
2510 | 0 | } |
2511 | 0 | } |
2512 | |
|
2513 | 0 | return pixd; |
2514 | 0 | } |
2515 | | |
2516 | | |
2517 | | /*! |
2518 | | * \brief pixSetRGBComponent() |
2519 | | * |
2520 | | * \param[in] pixd 32 bpp |
2521 | | * \param[in] pixs 8 bpp |
2522 | | * \param[in] comp one of the set: {COLOR_RED, COLOR_GREEN, |
2523 | | * COLOR_BLUE, L_ALPHA_CHANNEL} |
2524 | | * \return 0 if OK; 1 on error |
2525 | | * |
2526 | | * <pre> |
2527 | | * Notes: |
2528 | | * (1) This places the 8 bpp pixel in pixs into the |
2529 | | * specified component (properly interleaved) in pixd, |
2530 | | * (2) The two images are registered to the UL corner; the sizes |
2531 | | * need not be the same, but a warning is issued if they differ. |
2532 | | * </pre> |
2533 | | */ |
2534 | | l_ok |
2535 | | pixSetRGBComponent(PIX *pixd, |
2536 | | PIX *pixs, |
2537 | | l_int32 comp) |
2538 | 0 | { |
2539 | 0 | l_uint8 srcbyte; |
2540 | 0 | l_int32 i, j, w, h, ws, hs, wd, hd; |
2541 | 0 | l_int32 wpls, wpld; |
2542 | 0 | l_uint32 *lines, *lined; |
2543 | 0 | l_uint32 *datas, *datad; |
2544 | |
|
2545 | 0 | if (!pixd) |
2546 | 0 | return ERROR_INT("pixd not defined", __func__, 1); |
2547 | 0 | if (!pixs) |
2548 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
2549 | 0 | if (pixGetDepth(pixd) != 32) |
2550 | 0 | return ERROR_INT("pixd not 32 bpp", __func__, 1); |
2551 | 0 | if (pixGetDepth(pixs) != 8) |
2552 | 0 | return ERROR_INT("pixs not 8 bpp", __func__, 1); |
2553 | 0 | if (comp != COLOR_RED && comp != COLOR_GREEN && |
2554 | 0 | comp != COLOR_BLUE && comp != L_ALPHA_CHANNEL) |
2555 | 0 | return ERROR_INT("invalid comp", __func__, 1); |
2556 | 0 | pixGetDimensions(pixs, &ws, &hs, NULL); |
2557 | 0 | pixGetDimensions(pixd, &wd, &hd, NULL); |
2558 | 0 | if (ws != wd || hs != hd) |
2559 | 0 | L_WARNING("images sizes not equal\n", __func__); |
2560 | 0 | w = L_MIN(ws, wd); |
2561 | 0 | h = L_MIN(hs, hd); |
2562 | 0 | if (comp == L_ALPHA_CHANNEL) |
2563 | 0 | pixSetSpp(pixd, 4); |
2564 | 0 | datas = pixGetData(pixs); |
2565 | 0 | datad = pixGetData(pixd); |
2566 | 0 | wpls = pixGetWpl(pixs); |
2567 | 0 | wpld = pixGetWpl(pixd); |
2568 | 0 | for (i = 0; i < h; i++) { |
2569 | 0 | lines = datas + i * wpls; |
2570 | 0 | lined = datad + i * wpld; |
2571 | 0 | for (j = 0; j < w; j++) { |
2572 | 0 | srcbyte = GET_DATA_BYTE(lines, j); |
2573 | 0 | SET_DATA_BYTE(lined + j, comp, srcbyte); |
2574 | 0 | } |
2575 | 0 | } |
2576 | |
|
2577 | 0 | return 0; |
2578 | 0 | } |
2579 | | |
2580 | | |
2581 | | /*! |
2582 | | * \brief pixGetRGBComponentCmap() |
2583 | | * |
2584 | | * \param[in] pixs colormapped |
2585 | | * \param[in] comp one of the set: {COLOR_RED, COLOR_GREEN, COLOR_BLUE} |
2586 | | * \return pixd the selected 8 bpp component image of the |
2587 | | * input cmapped image, or NULL on error |
2588 | | * |
2589 | | * <pre> |
2590 | | * Notes: |
2591 | | * (1) In leptonica, we do not support alpha in colormaps. |
2592 | | * </pre> |
2593 | | */ |
2594 | | PIX * |
2595 | | pixGetRGBComponentCmap(PIX *pixs, |
2596 | | l_int32 comp) |
2597 | 0 | { |
2598 | 0 | l_int32 i, j, w, h, val, index, valid; |
2599 | 0 | l_int32 wplc, wpld; |
2600 | 0 | l_uint32 *linec, *lined; |
2601 | 0 | l_uint32 *datac, *datad; |
2602 | 0 | PIX *pixc, *pixd; |
2603 | 0 | PIXCMAP *cmap; |
2604 | 0 | RGBA_QUAD *cta; |
2605 | |
|
2606 | 0 | if (!pixs) |
2607 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
2608 | 0 | if ((cmap = pixGetColormap(pixs)) == NULL) |
2609 | 0 | return (PIX *)ERROR_PTR("pixs not cmapped", __func__, NULL); |
2610 | 0 | if (comp == L_ALPHA_CHANNEL) |
2611 | 0 | return (PIX *)ERROR_PTR("alpha in cmaps not supported", __func__, NULL); |
2612 | 0 | if (comp != COLOR_RED && comp != COLOR_GREEN && comp != COLOR_BLUE) |
2613 | 0 | return (PIX *)ERROR_PTR("invalid comp", __func__, NULL); |
2614 | | |
2615 | | /* If not 8 bpp, make a cmapped 8 bpp pix */ |
2616 | 0 | if (pixGetDepth(pixs) == 8) |
2617 | 0 | pixc = pixClone(pixs); |
2618 | 0 | else |
2619 | 0 | pixc = pixConvertTo8(pixs, TRUE); |
2620 | 0 | pixcmapIsValid(cmap, pixc, &valid); |
2621 | 0 | if (!valid) { |
2622 | 0 | pixDestroy(&pixc); |
2623 | 0 | return (PIX *)ERROR_PTR("invalid colormap", __func__, NULL); |
2624 | 0 | } |
2625 | | |
2626 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2627 | 0 | if ((pixd = pixCreate(w, h, 8)) == NULL) { |
2628 | 0 | pixDestroy(&pixc); |
2629 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
2630 | 0 | } |
2631 | 0 | pixCopyResolution(pixd, pixs); |
2632 | 0 | wplc = pixGetWpl(pixc); |
2633 | 0 | wpld = pixGetWpl(pixd); |
2634 | 0 | datac = pixGetData(pixc); |
2635 | 0 | datad = pixGetData(pixd); |
2636 | 0 | cta = (RGBA_QUAD *)cmap->array; |
2637 | |
|
2638 | 0 | for (i = 0; i < h; i++) { |
2639 | 0 | linec = datac + i * wplc; |
2640 | 0 | lined = datad + i * wpld; |
2641 | 0 | if (comp == COLOR_RED) { |
2642 | 0 | for (j = 0; j < w; j++) { |
2643 | 0 | index = GET_DATA_BYTE(linec, j); |
2644 | 0 | val = cta[index].red; |
2645 | 0 | SET_DATA_BYTE(lined, j, val); |
2646 | 0 | } |
2647 | 0 | } else if (comp == COLOR_GREEN) { |
2648 | 0 | for (j = 0; j < w; j++) { |
2649 | 0 | index = GET_DATA_BYTE(linec, j); |
2650 | 0 | val = cta[index].green; |
2651 | 0 | SET_DATA_BYTE(lined, j, val); |
2652 | 0 | } |
2653 | 0 | } else if (comp == COLOR_BLUE) { |
2654 | 0 | for (j = 0; j < w; j++) { |
2655 | 0 | index = GET_DATA_BYTE(linec, j); |
2656 | 0 | val = cta[index].blue; |
2657 | 0 | SET_DATA_BYTE(lined, j, val); |
2658 | 0 | } |
2659 | 0 | } |
2660 | 0 | } |
2661 | |
|
2662 | 0 | pixDestroy(&pixc); |
2663 | 0 | return pixd; |
2664 | 0 | } |
2665 | | |
2666 | | |
2667 | | /*! |
2668 | | * \brief pixCopyRGBComponent() |
2669 | | * |
2670 | | * \param[in] pixd 32 bpp |
2671 | | * \param[in] pixs 32 bpp |
2672 | | * \param[in] comp one of the set: {COLOR_RED, COLOR_GREEN, |
2673 | | * COLOR_BLUE, L_ALPHA_CHANNEL} |
2674 | | * \return 0 if OK; 1 on error |
2675 | | * |
2676 | | * <pre> |
2677 | | * Notes: |
2678 | | * (1) The two images are registered to the UL corner. The sizes |
2679 | | * are usually the same, and a warning is issued if they differ. |
2680 | | * </pre> |
2681 | | */ |
2682 | | l_ok |
2683 | | pixCopyRGBComponent(PIX *pixd, |
2684 | | PIX *pixs, |
2685 | | l_int32 comp) |
2686 | 0 | { |
2687 | 0 | l_int32 i, j, w, h, ws, hs, wd, hd, val; |
2688 | 0 | l_int32 wpls, wpld; |
2689 | 0 | l_uint32 *lines, *lined; |
2690 | 0 | l_uint32 *datas, *datad; |
2691 | |
|
2692 | 0 | if (!pixd && pixGetDepth(pixd) != 32) |
2693 | 0 | return ERROR_INT("pixd not defined or not 32 bpp", __func__, 1); |
2694 | 0 | if (!pixs && pixGetDepth(pixs) != 32) |
2695 | 0 | return ERROR_INT("pixs not defined or not 32 bpp", __func__, 1); |
2696 | 0 | if (comp != COLOR_RED && comp != COLOR_GREEN && |
2697 | 0 | comp != COLOR_BLUE && comp != L_ALPHA_CHANNEL) |
2698 | 0 | return ERROR_INT("invalid component", __func__, 1); |
2699 | 0 | pixGetDimensions(pixs, &ws, &hs, NULL); |
2700 | 0 | pixGetDimensions(pixd, &wd, &hd, NULL); |
2701 | 0 | if (ws != wd || hs != hd) |
2702 | 0 | L_WARNING("images sizes not equal\n", __func__); |
2703 | 0 | w = L_MIN(ws, wd); |
2704 | 0 | h = L_MIN(hs, hd); |
2705 | 0 | if (comp == L_ALPHA_CHANNEL) |
2706 | 0 | pixSetSpp(pixd, 4); |
2707 | 0 | wpls = pixGetWpl(pixs); |
2708 | 0 | wpld = pixGetWpl(pixd); |
2709 | 0 | datas = pixGetData(pixs); |
2710 | 0 | datad = pixGetData(pixd); |
2711 | 0 | for (i = 0; i < h; i++) { |
2712 | 0 | lines = datas + i * wpls; |
2713 | 0 | lined = datad + i * wpld; |
2714 | 0 | for (j = 0; j < w; j++) { |
2715 | 0 | val = GET_DATA_BYTE(lines + j, comp); |
2716 | 0 | SET_DATA_BYTE(lined + j, comp, val); |
2717 | 0 | } |
2718 | 0 | } |
2719 | 0 | return 0; |
2720 | 0 | } |
2721 | | |
2722 | | |
2723 | | /*! |
2724 | | * \brief composeRGBPixel() |
2725 | | * |
2726 | | * \param[in] rval, gval, bval |
2727 | | * \param[out] ppixel 32-bit pixel |
2728 | | * \return 0 if OK; 1 on error |
2729 | | * |
2730 | | * <pre> |
2731 | | * Notes: |
2732 | | * (1) All channels are 8 bits: the input values must be between |
2733 | | * 0 and 255. For speed, this is not enforced by masking |
2734 | | * with 0xff before shifting. |
2735 | | * (2) A slower implementation uses macros: |
2736 | | * SET_DATA_BYTE(ppixel, COLOR_RED, rval); |
2737 | | * SET_DATA_BYTE(ppixel, COLOR_GREEN, gval); |
2738 | | * SET_DATA_BYTE(ppixel, COLOR_BLUE, bval); |
2739 | | * </pre> |
2740 | | */ |
2741 | | l_ok |
2742 | | composeRGBPixel(l_int32 rval, |
2743 | | l_int32 gval, |
2744 | | l_int32 bval, |
2745 | | l_uint32 *ppixel) |
2746 | 3.29k | { |
2747 | 3.29k | if (!ppixel) |
2748 | 0 | return ERROR_INT("&pixel not defined", __func__, 1); |
2749 | | |
2750 | 3.29k | *ppixel = ((l_uint32)rval << L_RED_SHIFT) | |
2751 | 3.29k | ((l_uint32)gval << L_GREEN_SHIFT) | |
2752 | 3.29k | ((l_uint32)bval << L_BLUE_SHIFT); |
2753 | 3.29k | return 0; |
2754 | 3.29k | } |
2755 | | |
2756 | | |
2757 | | /*! |
2758 | | * \brief composeRGBAPixel() |
2759 | | * |
2760 | | * \param[in] rval, gval, bval, aval |
2761 | | * \param[out] ppixel 32-bit pixel |
2762 | | * \return 0 if OK; 1 on error |
2763 | | * |
2764 | | * <pre> |
2765 | | * Notes: |
2766 | | * (1) All channels are 8 bits: the input values must be between |
2767 | | * 0 and 255. For speed, this is not enforced by masking |
2768 | | * with 0xff before shifting. |
2769 | | * </pre> |
2770 | | */ |
2771 | | l_ok |
2772 | | composeRGBAPixel(l_int32 rval, |
2773 | | l_int32 gval, |
2774 | | l_int32 bval, |
2775 | | l_int32 aval, |
2776 | | l_uint32 *ppixel) |
2777 | 0 | { |
2778 | 0 | if (!ppixel) |
2779 | 0 | return ERROR_INT("&pixel not defined", __func__, 1); |
2780 | | |
2781 | 0 | *ppixel = ((l_uint32)rval << L_RED_SHIFT) | |
2782 | 0 | ((l_uint32)gval << L_GREEN_SHIFT) | |
2783 | 0 | ((l_uint32)bval << L_BLUE_SHIFT) | |
2784 | 0 | aval; |
2785 | 0 | return 0; |
2786 | 0 | } |
2787 | | |
2788 | | |
2789 | | /*! |
2790 | | * \brief extractRGBValues() |
2791 | | * |
2792 | | * \param[in] pixel 32 bit |
2793 | | * \param[out] prval [optional] red component |
2794 | | * \param[out] pgval [optional] green component |
2795 | | * \param[out] pbval [optional] blue component |
2796 | | * \return void |
2797 | | * |
2798 | | * <pre> |
2799 | | * Notes: |
2800 | | * (1) A slower implementation uses macros: |
2801 | | * *prval = GET_DATA_BYTE(&pixel, COLOR_RED); |
2802 | | * *pgval = GET_DATA_BYTE(&pixel, COLOR_GREEN); |
2803 | | * *pbval = GET_DATA_BYTE(&pixel, COLOR_BLUE); |
2804 | | * </pre> |
2805 | | */ |
2806 | | void |
2807 | | extractRGBValues(l_uint32 pixel, |
2808 | | l_int32 *prval, |
2809 | | l_int32 *pgval, |
2810 | | l_int32 *pbval) |
2811 | 0 | { |
2812 | 0 | if (prval) *prval = (pixel >> L_RED_SHIFT) & 0xff; |
2813 | 0 | if (pgval) *pgval = (pixel >> L_GREEN_SHIFT) & 0xff; |
2814 | 0 | if (pbval) *pbval = (pixel >> L_BLUE_SHIFT) & 0xff; |
2815 | 0 | } |
2816 | | |
2817 | | |
2818 | | /*! |
2819 | | * \brief extractRGBAValues() |
2820 | | * |
2821 | | * \param[in] pixel 32 bit |
2822 | | * \param[out] prval [optional] red component |
2823 | | * \param[out] pgval [optional] green component |
2824 | | * \param[out] pbval [optional] blue component |
2825 | | * \param[out] paval [optional] alpha component |
2826 | | * \return void |
2827 | | */ |
2828 | | void |
2829 | | extractRGBAValues(l_uint32 pixel, |
2830 | | l_int32 *prval, |
2831 | | l_int32 *pgval, |
2832 | | l_int32 *pbval, |
2833 | | l_int32 *paval) |
2834 | 0 | { |
2835 | 0 | if (prval) *prval = (pixel >> L_RED_SHIFT) & 0xff; |
2836 | 0 | if (pgval) *pgval = (pixel >> L_GREEN_SHIFT) & 0xff; |
2837 | 0 | if (pbval) *pbval = (pixel >> L_BLUE_SHIFT) & 0xff; |
2838 | 0 | if (paval) *paval = (pixel >> L_ALPHA_SHIFT) & 0xff; |
2839 | 0 | } |
2840 | | |
2841 | | |
2842 | | /*! |
2843 | | * \brief extractMinMaxComponent() |
2844 | | * |
2845 | | * \param[in] pixel 32 bpp RGB |
2846 | | * \param[in] type L_CHOOSE_MIN or L_CHOOSE_MAX |
2847 | | * \return component in range [0 ... 255], or NULL on error |
2848 | | */ |
2849 | | l_int32 |
2850 | | extractMinMaxComponent(l_uint32 pixel, |
2851 | | l_int32 type) |
2852 | 0 | { |
2853 | 0 | l_int32 rval, gval, bval, val; |
2854 | |
|
2855 | 0 | extractRGBValues(pixel, &rval, &gval, &bval); |
2856 | 0 | if (type == L_CHOOSE_MIN) { |
2857 | 0 | val = L_MIN(rval, gval); |
2858 | 0 | val = L_MIN(val, bval); |
2859 | 0 | } else { /* type == L_CHOOSE_MAX */ |
2860 | 0 | val = L_MAX(rval, gval); |
2861 | 0 | val = L_MAX(val, bval); |
2862 | 0 | } |
2863 | 0 | return val; |
2864 | 0 | } |
2865 | | |
2866 | | |
2867 | | /*! |
2868 | | * \brief pixGetRGBLine() |
2869 | | * |
2870 | | * \param[in] pixs 32 bpp |
2871 | | * \param[in] row |
2872 | | * \param[in] bufr array of red samples; size w bytes |
2873 | | * \param[in] bufg array of green samples; size w bytes |
2874 | | * \param[in] bufb array of blue samples; size w bytes |
2875 | | * \return 0 if OK; 1 on error |
2876 | | * |
2877 | | * <pre> |
2878 | | * Notes: |
2879 | | * (1) This puts rgb components from the input line in pixs |
2880 | | * into the given buffers. |
2881 | | * </pre> |
2882 | | */ |
2883 | | l_ok |
2884 | | pixGetRGBLine(PIX *pixs, |
2885 | | l_int32 row, |
2886 | | l_uint8 *bufr, |
2887 | | l_uint8 *bufg, |
2888 | | l_uint8 *bufb) |
2889 | 0 | { |
2890 | 0 | l_uint32 *lines; |
2891 | 0 | l_int32 j, w, h; |
2892 | 0 | l_int32 wpls; |
2893 | |
|
2894 | 0 | if (!pixs) |
2895 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
2896 | 0 | if (pixGetDepth(pixs) != 32) |
2897 | 0 | return ERROR_INT("pixs not 32 bpp", __func__, 1); |
2898 | 0 | if (!bufr || !bufg || !bufb) |
2899 | 0 | return ERROR_INT("buffer not defined", __func__, 1); |
2900 | | |
2901 | 0 | pixGetDimensions(pixs, &w, &h, NULL); |
2902 | 0 | if (row < 0 || row >= h) |
2903 | 0 | return ERROR_INT("row out of bounds", __func__, 1); |
2904 | 0 | wpls = pixGetWpl(pixs); |
2905 | 0 | lines = pixGetData(pixs) + row * wpls; |
2906 | |
|
2907 | 0 | for (j = 0; j < w; j++) { |
2908 | 0 | bufr[j] = GET_DATA_BYTE(lines + j, COLOR_RED); |
2909 | 0 | bufg[j] = GET_DATA_BYTE(lines + j, COLOR_GREEN); |
2910 | 0 | bufb[j] = GET_DATA_BYTE(lines + j, COLOR_BLUE); |
2911 | 0 | } |
2912 | |
|
2913 | 0 | return 0; |
2914 | 0 | } |
2915 | | |
2916 | | |
2917 | | /*-------------------------------------------------------------* |
2918 | | * Raster line pixel setter * |
2919 | | *-------------------------------------------------------------*/ |
2920 | | /*! |
2921 | | * \brief setLineDataVal() |
2922 | | * |
2923 | | * \param[in] line ptr to first word in raster line data |
2924 | | * \param[in] j index of pixels into the raster line |
2925 | | * \param[in] d depth of the pixel |
2926 | | * \param[in] val pixel value to be set |
2927 | | * \return 0 if OK, 1 on error |
2928 | | * |
2929 | | * <pre> |
2930 | | * Notes: |
2931 | | * (1) This is a convenience function to set a pixel value in a |
2932 | | * raster line where the depth of the image can have different |
2933 | | * values (1, 2, 4, 8, 16 or 32). |
2934 | | * </pre> |
2935 | | */ |
2936 | | l_ok |
2937 | | setLineDataVal(l_uint32 *line, |
2938 | | l_int32 j, |
2939 | | l_int32 d, |
2940 | | l_uint32 val) |
2941 | 0 | { |
2942 | 0 | if (!line) |
2943 | 0 | return ERROR_INT("line not defined", __func__, 1); |
2944 | 0 | if (j < 0) |
2945 | 0 | return ERROR_INT("j must be >= 0", __func__, 1); |
2946 | 0 | if (d != 1 && d != 2 && d != 4 && d != 8 && d != 16 && d != 32) |
2947 | 0 | return ERROR_INT("invalid d", __func__, 1); |
2948 | | |
2949 | 0 | if (d == 1) |
2950 | 0 | SET_DATA_BIT_VAL(line, j, val); |
2951 | 0 | else if (d == 2) |
2952 | 0 | SET_DATA_DIBIT(line, j, val); |
2953 | 0 | else if (d == 4) |
2954 | 0 | SET_DATA_QBIT(line, j, val); |
2955 | 0 | else if (d == 8) |
2956 | 0 | SET_DATA_BYTE(line, j, val); |
2957 | 0 | else if (d == 16) |
2958 | 0 | SET_DATA_TWO_BYTES(line, j, val); |
2959 | 0 | else /* d == 32 */ |
2960 | 0 | *(line + j) = val; |
2961 | 0 | return 0; |
2962 | 0 | } |
2963 | | |
2964 | | |
2965 | | /*-------------------------------------------------------------* |
2966 | | * Pixel endian conversion * |
2967 | | *-------------------------------------------------------------*/ |
2968 | | /*! |
2969 | | * \brief pixEndianByteSwapNew() |
2970 | | * |
2971 | | * \param[in] pixs |
2972 | | * \return pixd, or NULL on error |
2973 | | * |
2974 | | * <pre> |
2975 | | * Notes: |
2976 | | * (1) This is used to convert the data in a pix to a |
2977 | | * serialized byte buffer in raster order, and, for RGB, |
2978 | | * in order RGBA. This requires flipping bytes within |
2979 | | * each 32-bit word for little-endian platforms, because the |
2980 | | * words have a MSB-to-the-left rule, whereas byte raster-order |
2981 | | * requires the left-most byte in each word to be byte 0. |
2982 | | * For big-endians, no swap is necessary, so this returns a clone. |
2983 | | * (2) Unlike pixEndianByteSwap(), which swaps the bytes in-place, |
2984 | | * this returns a new pix (or a clone). We provide this |
2985 | | * because often when serialization is done, the source |
2986 | | * pix needs to be restored to canonical little-endian order, |
2987 | | * and this requires a second byte swap. In such a situation, |
2988 | | * it is twice as fast to make a new pix in big-endian order, |
2989 | | * use it, and destroy it. |
2990 | | * </pre> |
2991 | | */ |
2992 | | PIX * |
2993 | | pixEndianByteSwapNew(PIX *pixs) |
2994 | 0 | { |
2995 | 0 | l_uint32 *datas, *datad; |
2996 | 0 | l_int32 i, j, h, wpl; |
2997 | 0 | l_uint32 word; |
2998 | 0 | PIX *pixd; |
2999 | |
|
3000 | | #ifdef L_BIG_ENDIAN |
3001 | | |
3002 | | return pixClone(pixs); |
3003 | | |
3004 | | #else /* L_LITTLE_ENDIAN */ |
3005 | |
|
3006 | 0 | if (!pixs) |
3007 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
3008 | | |
3009 | 0 | datas = pixGetData(pixs); |
3010 | 0 | wpl = pixGetWpl(pixs); |
3011 | 0 | h = pixGetHeight(pixs); |
3012 | 0 | if ((pixd = pixCreateTemplate(pixs)) == NULL) |
3013 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
3014 | 0 | datad = pixGetData(pixd); |
3015 | 0 | for (i = 0; i < h; i++) { |
3016 | 0 | for (j = 0; j < wpl; j++, datas++, datad++) { |
3017 | 0 | word = *datas; |
3018 | 0 | *datad = (word >> 24) | |
3019 | 0 | ((word >> 8) & 0x0000ff00) | |
3020 | 0 | ((word << 8) & 0x00ff0000) | |
3021 | 0 | (word << 24); |
3022 | 0 | } |
3023 | 0 | } |
3024 | |
|
3025 | 0 | return pixd; |
3026 | |
|
3027 | 0 | #endif /* L_BIG_ENDIAN */ |
3028 | |
|
3029 | 0 | } |
3030 | | |
3031 | | |
3032 | | /*! |
3033 | | * \brief pixEndianByteSwap() |
3034 | | * |
3035 | | * \param[in] pixs |
3036 | | * \return 0 if OK, 1 on error |
3037 | | * |
3038 | | * <pre> |
3039 | | * Notes: |
3040 | | * (1) This is used on little-endian platforms to swap |
3041 | | * the bytes within a word; bytes 0 and 3 are swapped, |
3042 | | * and bytes 1 and 2 are swapped. |
3043 | | * (2) This is required for little-endians in situations |
3044 | | * where we convert from a serialized byte order that is |
3045 | | * in raster order, as one typically has in file formats, |
3046 | | * to one with MSB-to-the-left in each 32-bit word, or v.v. |
3047 | | * See pix.h for a description of the canonical format |
3048 | | * (MSB-to-the left) that is used for both little-endian |
3049 | | * and big-endian platforms. For big-endians, the |
3050 | | * MSB-to-the-left word order has the bytes in raster |
3051 | | * order when serialized, so no byte flipping is required. |
3052 | | * </pre> |
3053 | | */ |
3054 | | l_ok |
3055 | | pixEndianByteSwap(PIX *pixs) |
3056 | 0 | { |
3057 | 0 | l_uint32 *data; |
3058 | 0 | l_int32 i, j, h, wpl; |
3059 | 0 | l_uint32 word; |
3060 | |
|
3061 | | #ifdef L_BIG_ENDIAN |
3062 | | |
3063 | | return 0; |
3064 | | |
3065 | | #else /* L_LITTLE_ENDIAN */ |
3066 | |
|
3067 | 0 | if (!pixs) |
3068 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
3069 | | |
3070 | 0 | data = pixGetData(pixs); |
3071 | 0 | wpl = pixGetWpl(pixs); |
3072 | 0 | h = pixGetHeight(pixs); |
3073 | 0 | for (i = 0; i < h; i++) { |
3074 | 0 | for (j = 0; j < wpl; j++, data++) { |
3075 | 0 | word = *data; |
3076 | 0 | *data = (word >> 24) | |
3077 | 0 | ((word >> 8) & 0x0000ff00) | |
3078 | 0 | ((word << 8) & 0x00ff0000) | |
3079 | 0 | (word << 24); |
3080 | 0 | } |
3081 | 0 | } |
3082 | |
|
3083 | 0 | return 0; |
3084 | |
|
3085 | 0 | #endif /* L_BIG_ENDIAN */ |
3086 | |
|
3087 | 0 | } |
3088 | | |
3089 | | |
3090 | | /*! |
3091 | | * \brief lineEndianByteSwap() |
3092 | | * |
3093 | | * \param[in] datad dest byte array data, reordered on little-endians |
3094 | | * \param[in] datas a src line of pix data) |
3095 | | * \param[in] wpl number of 32 bit words in the line |
3096 | | * \return 0 if OK, 1 on error |
3097 | | * |
3098 | | * <pre> |
3099 | | * Notes: |
3100 | | * (1) This is used on little-endian platforms to swap |
3101 | | * the bytes within each word in the line of image data. |
3102 | | * Bytes 0 <==> 3 and 1 <==> 2 are swapped in the dest |
3103 | | * byte array data8d, relative to the pix data in datas. |
3104 | | * (2) The bytes represent 8 bit pixel values. They are swapped |
3105 | | * for little endians so that when the dest array datad |
3106 | | * is addressed by bytes, the pixels are chosen sequentially |
3107 | | * from left to right in the image. |
3108 | | * </pre> |
3109 | | */ |
3110 | | l_int32 |
3111 | | lineEndianByteSwap(l_uint32 *datad, |
3112 | | l_uint32 *datas, |
3113 | | l_int32 wpl) |
3114 | 0 | { |
3115 | 0 | l_int32 j; |
3116 | 0 | l_uint32 word; |
3117 | |
|
3118 | 0 | if (!datad || !datas) |
3119 | 0 | return ERROR_INT("datad and datas not both defined", __func__, 1); |
3120 | | |
3121 | | #ifdef L_BIG_ENDIAN |
3122 | | |
3123 | | memcpy(datad, datas, 4 * wpl); |
3124 | | return 0; |
3125 | | |
3126 | | #else /* L_LITTLE_ENDIAN */ |
3127 | | |
3128 | 0 | for (j = 0; j < wpl; j++, datas++, datad++) { |
3129 | 0 | word = *datas; |
3130 | 0 | *datad = (word >> 24) | |
3131 | 0 | ((word >> 8) & 0x0000ff00) | |
3132 | 0 | ((word << 8) & 0x00ff0000) | |
3133 | 0 | (word << 24); |
3134 | 0 | } |
3135 | 0 | return 0; |
3136 | |
|
3137 | 0 | #endif /* L_BIG_ENDIAN */ |
3138 | |
|
3139 | 0 | } |
3140 | | |
3141 | | |
3142 | | /*! |
3143 | | * \brief pixEndianTwoByteSwapNew() |
3144 | | * |
3145 | | * \param[in] pixs |
3146 | | * \return 0 if OK, 1 on error |
3147 | | * |
3148 | | * <pre> |
3149 | | * Notes: |
3150 | | * (1) This is used on little-endian platforms to swap the |
3151 | | * 2-byte entities within a 32-bit word. |
3152 | | * (2) This is equivalent to a full byte swap, as performed |
3153 | | * by pixEndianByteSwap(), followed by byte swaps in |
3154 | | * each of the 16-bit entities separately. |
3155 | | * (3) Unlike pixEndianTwoByteSwap(), which swaps the shorts in-place, |
3156 | | * this returns a new pix (or a clone). We provide this |
3157 | | * to avoid having to swap twice in situations where the input |
3158 | | * pix must be restored to canonical little-endian order. |
3159 | | * </pre> |
3160 | | */ |
3161 | | PIX * |
3162 | | pixEndianTwoByteSwapNew(PIX *pixs) |
3163 | 0 | { |
3164 | 0 | l_uint32 *datas, *datad; |
3165 | 0 | l_int32 i, j, h, wpl; |
3166 | 0 | l_uint32 word; |
3167 | 0 | PIX *pixd; |
3168 | |
|
3169 | | #ifdef L_BIG_ENDIAN |
3170 | | |
3171 | | return pixClone(pixs); |
3172 | | |
3173 | | #else /* L_LITTLE_ENDIAN */ |
3174 | |
|
3175 | 0 | if (!pixs) |
3176 | 0 | return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); |
3177 | | |
3178 | 0 | datas = pixGetData(pixs); |
3179 | 0 | wpl = pixGetWpl(pixs); |
3180 | 0 | h = pixGetHeight(pixs); |
3181 | 0 | if ((pixd = pixCreateTemplate(pixs)) == NULL) |
3182 | 0 | return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); |
3183 | 0 | datad = pixGetData(pixd); |
3184 | 0 | for (i = 0; i < h; i++) { |
3185 | 0 | for (j = 0; j < wpl; j++, datas++, datad++) { |
3186 | 0 | word = *datas; |
3187 | 0 | *datad = (word << 16) | (word >> 16); |
3188 | 0 | } |
3189 | 0 | } |
3190 | |
|
3191 | 0 | return pixd; |
3192 | |
|
3193 | 0 | #endif /* L_BIG_ENDIAN */ |
3194 | |
|
3195 | 0 | } |
3196 | | |
3197 | | |
3198 | | /*! |
3199 | | * \brief pixEndianTwoByteSwap() |
3200 | | * |
3201 | | * \param[in] pixs |
3202 | | * \return 0 if OK, 1 on error |
3203 | | * |
3204 | | * <pre> |
3205 | | * Notes: |
3206 | | * (1) This is used on little-endian platforms to swap the |
3207 | | * 2-byte entities within a 32-bit word. |
3208 | | * (2) This is equivalent to a full byte swap, as performed |
3209 | | * by pixEndianByteSwap(), followed by byte swaps in |
3210 | | * each of the 16-bit entities separately. |
3211 | | * </pre> |
3212 | | */ |
3213 | | l_ok |
3214 | | pixEndianTwoByteSwap(PIX *pixs) |
3215 | 0 | { |
3216 | 0 | l_uint32 *data; |
3217 | 0 | l_int32 i, j, h, wpl; |
3218 | 0 | l_uint32 word; |
3219 | |
|
3220 | | #ifdef L_BIG_ENDIAN |
3221 | | |
3222 | | return 0; |
3223 | | |
3224 | | #else /* L_LITTLE_ENDIAN */ |
3225 | |
|
3226 | 0 | if (!pixs) |
3227 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
3228 | | |
3229 | 0 | data = pixGetData(pixs); |
3230 | 0 | wpl = pixGetWpl(pixs); |
3231 | 0 | h = pixGetHeight(pixs); |
3232 | 0 | for (i = 0; i < h; i++) { |
3233 | 0 | for (j = 0; j < wpl; j++, data++) { |
3234 | 0 | word = *data; |
3235 | 0 | *data = (word << 16) | (word >> 16); |
3236 | 0 | } |
3237 | 0 | } |
3238 | |
|
3239 | 0 | return 0; |
3240 | |
|
3241 | 0 | #endif /* L_BIG_ENDIAN */ |
3242 | |
|
3243 | 0 | } |
3244 | | |
3245 | | |
3246 | | /*-------------------------------------------------------------* |
3247 | | * Extract raster data as binary string * |
3248 | | *-------------------------------------------------------------*/ |
3249 | | /*! |
3250 | | * \brief pixGetRasterData() |
3251 | | * |
3252 | | * \param[in] pixs 1, 8, 32 bpp |
3253 | | * \param[out] pdata raster data in memory |
3254 | | * \param[out] pnbytes number of bytes in data string |
3255 | | * \return 0 if OK, 1 on error |
3256 | | * |
3257 | | * <pre> |
3258 | | * Notes: |
3259 | | * (1) This returns the raster data as a byte string, padded to the |
3260 | | * byte. For 1 bpp, the first pixel is the MSbit in the first byte. |
3261 | | * For rgb, the bytes are in (rgb) order. This is the format |
3262 | | * required for flate encoding of pixels in a PostScript file. |
3263 | | * </pre> |
3264 | | */ |
3265 | | l_ok |
3266 | | pixGetRasterData(PIX *pixs, |
3267 | | l_uint8 **pdata, |
3268 | | size_t *pnbytes) |
3269 | 0 | { |
3270 | 0 | l_int32 w, h, d, wpl, i, j, rval, gval, bval; |
3271 | 0 | l_int32 databpl; /* bytes for each raster line in returned data */ |
3272 | 0 | l_uint8 *line, *data; /* packed data in returned array */ |
3273 | 0 | l_uint32 *rline, *rdata; /* data in pix raster */ |
3274 | |
|
3275 | 0 | if (pdata) *pdata = NULL; |
3276 | 0 | if (pnbytes) *pnbytes = 0; |
3277 | 0 | if (!pdata || !pnbytes) |
3278 | 0 | return ERROR_INT("&data and &nbytes not both defined", __func__, 1); |
3279 | 0 | if (!pixs) |
3280 | 0 | return ERROR_INT("pixs not defined", __func__, 1); |
3281 | 0 | pixGetDimensions(pixs, &w, &h, &d); |
3282 | 0 | if (d != 1 && d != 2 && d != 4 && d != 8 && d != 16 && d != 32) |
3283 | 0 | return ERROR_INT("depth not in {1,2,4,8,16,32}", __func__, 1); |
3284 | | |
3285 | 0 | pixSetPadBits(pixs, 0); |
3286 | 0 | rdata = pixGetData(pixs); |
3287 | 0 | wpl = pixGetWpl(pixs); |
3288 | 0 | if (d == 1) |
3289 | 0 | databpl = (w + 7) / 8; |
3290 | 0 | else if (d == 2) |
3291 | 0 | databpl = (w + 3) / 4; |
3292 | 0 | else if (d == 4) |
3293 | 0 | databpl = (w + 1) / 2; |
3294 | 0 | else if (d == 8 || d == 16) |
3295 | 0 | databpl = w * (d / 8); |
3296 | 0 | else /* d == 32 bpp rgb */ |
3297 | 0 | databpl = 3 * w; |
3298 | 0 | if ((data = (l_uint8 *)LEPT_CALLOC((size_t)databpl * h, sizeof(l_uint8))) |
3299 | 0 | == NULL) |
3300 | 0 | return ERROR_INT("data not allocated", __func__, 1); |
3301 | 0 | *pdata = data; |
3302 | 0 | *pnbytes = (size_t)databpl * h; |
3303 | |
|
3304 | 0 | for (i = 0; i < h; i++) { |
3305 | 0 | rline = rdata + i * wpl; |
3306 | 0 | line = data + i * databpl; |
3307 | 0 | if (d <= 8) { |
3308 | 0 | for (j = 0; j < databpl; j++) |
3309 | 0 | line[j] = GET_DATA_BYTE(rline, j); |
3310 | 0 | } else if (d == 16) { |
3311 | 0 | for (j = 0; j < w; j++) |
3312 | 0 | line[2 * j] = GET_DATA_TWO_BYTES(rline, j); |
3313 | 0 | } else { /* d == 32 bpp rgb */ |
3314 | 0 | for (j = 0; j < w; j++) { |
3315 | 0 | extractRGBValues(rline[j], &rval, &gval, &bval); |
3316 | 0 | *(line + 3 * j) = rval; |
3317 | 0 | *(line + 3 * j + 1) = gval; |
3318 | 0 | *(line + 3 * j + 2) = bval; |
3319 | 0 | } |
3320 | 0 | } |
3321 | 0 | } |
3322 | |
|
3323 | 0 | return 0; |
3324 | 0 | } |
3325 | | |
3326 | | |
3327 | | /*-------------------------------------------------------------* |
3328 | | * Infer resolution from image size * |
3329 | | *-------------------------------------------------------------*/ |
3330 | | /*! |
3331 | | * \brief pixInferResolution() |
3332 | | * |
3333 | | * \param[in] pix |
3334 | | * \param[in] longside assumed max dimension, in inches |
3335 | | * \param[out] pres resolution (ppi) |
3336 | | * \return 0 if OK, 1 on error |
3337 | | * |
3338 | | * <pre> |
3339 | | * Notes: |
3340 | | * (1) This finds the resolution, assuming that the longest side |
3341 | | * of the image is %longside. On error, returns 300 ppi. |
3342 | | * (2) This is useful for computing resolution for generating pdfs, |
3343 | | * when the images are scanned from pages of known size. |
3344 | | * There, %longside is typically about 11.0. |
3345 | | * </pre> |
3346 | | */ |
3347 | | l_ok |
3348 | | pixInferResolution(PIX *pix, |
3349 | | l_float32 longside, |
3350 | | l_int32 *pres) |
3351 | 0 | { |
3352 | 0 | l_int32 w, h, maxdim, res; |
3353 | |
|
3354 | 0 | if (!pres) |
3355 | 0 | return ERROR_INT("&res not defined", __func__, 1); |
3356 | 0 | *pres = 300; |
3357 | 0 | if (!pix) |
3358 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
3359 | 0 | if (longside <= 0.0) |
3360 | 0 | return ERROR_INT("longside not > 0", __func__, 1); |
3361 | | |
3362 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
3363 | 0 | maxdim = L_MAX(w, h); |
3364 | 0 | res = (l_int32)(maxdim / longside + 0.5); |
3365 | 0 | res = L_MAX(res, 1); /* don't let it be 0 */ |
3366 | 0 | if (res < 10) |
3367 | 0 | L_WARNING("low inferred resolution: %d ppi\n", __func__, res); |
3368 | 0 | if (res > 10000) |
3369 | 0 | L_WARNING("high inferred resolution: %d ppi\n", __func__, res); |
3370 | 0 | *pres = res; |
3371 | 0 | return 0; |
3372 | 0 | } |
3373 | | |
3374 | | |
3375 | | /*-------------------------------------------------------------* |
3376 | | * Test alpha component opaqueness * |
3377 | | *-------------------------------------------------------------*/ |
3378 | | /*! |
3379 | | * \brief pixAlphaIsOpaque() |
3380 | | * |
3381 | | * \param[in] pix 32 bpp, spp == 4 |
3382 | | * \param[out] popaque 1 if spp == 4 and all alpha component |
3383 | | * values are 255 (opaque); 0 otherwise |
3384 | | * \return 0 if OK, 1 on error |
3385 | | * |
3386 | | * <pre> |
3387 | | * Notes: |
3388 | | * 1) On error, opaque is returned as 0 (FALSE). |
3389 | | * </pre> |
3390 | | */ |
3391 | | l_ok |
3392 | | pixAlphaIsOpaque(PIX *pix, |
3393 | | l_int32 *popaque) |
3394 | 0 | { |
3395 | 0 | l_int32 w, h, wpl, i, j, alpha; |
3396 | 0 | l_uint32 *data, *line; |
3397 | |
|
3398 | 0 | if (!popaque) |
3399 | 0 | return ERROR_INT("&opaque not defined", __func__, 1); |
3400 | 0 | *popaque = FALSE; |
3401 | 0 | if (!pix) |
3402 | 0 | return ERROR_INT("&pix not defined", __func__, 1); |
3403 | 0 | if (pixGetDepth(pix) != 32) |
3404 | 0 | return ERROR_INT("&pix not 32 bpp", __func__, 1); |
3405 | 0 | if (pixGetSpp(pix) != 4) |
3406 | 0 | return ERROR_INT("&pix not 4 spp", __func__, 1); |
3407 | | |
3408 | 0 | data = pixGetData(pix); |
3409 | 0 | wpl = pixGetWpl(pix); |
3410 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
3411 | 0 | for (i = 0; i < h; i++) { |
3412 | 0 | line = data + i * wpl; |
3413 | 0 | for (j = 0; j < w; j++) { |
3414 | 0 | alpha = GET_DATA_BYTE(line + j, L_ALPHA_CHANNEL); |
3415 | 0 | if (alpha ^ 0xff) /* not opaque */ |
3416 | 0 | return 0; |
3417 | 0 | } |
3418 | 0 | } |
3419 | | |
3420 | 0 | *popaque = TRUE; |
3421 | 0 | return 0; |
3422 | 0 | } |
3423 | | |
3424 | | |
3425 | | /*-------------------------------------------------------------* |
3426 | | * Setup helpers for 8 bpp byte processing * |
3427 | | *-------------------------------------------------------------*/ |
3428 | | /*! |
3429 | | * \brief pixSetupByteProcessing() |
3430 | | * |
3431 | | * \param[in] pix 8 bpp, no colormap |
3432 | | * \param[out] pw [optional] width |
3433 | | * \param[out] ph [optional] height |
3434 | | * \return line ptr array, or NULL on error |
3435 | | * |
3436 | | * <pre> |
3437 | | * Notes: |
3438 | | * (1) This is a simple helper for processing 8 bpp images with |
3439 | | * direct byte access. It can swap byte order within each word. |
3440 | | * (2) After processing, you must call pixCleanupByteProcessing(), |
3441 | | * which frees the lineptr array and restores byte order. |
3442 | | * (3) Usage: |
3443 | | * l_uint8 **lineptrs = pixSetupByteProcessing(pix, &w, &h); |
3444 | | * for (i = 0; i < h; i++) { |
3445 | | * l_uint8 *line = lineptrs[i]; |
3446 | | * for (j = 0; j < w; j++) { |
3447 | | * val = line[j]; |
3448 | | * ... |
3449 | | * } |
3450 | | * } |
3451 | | * pixCleanupByteProcessing(pix, lineptrs); |
3452 | | * </pre> |
3453 | | */ |
3454 | | l_uint8 ** |
3455 | | pixSetupByteProcessing(PIX *pix, |
3456 | | l_int32 *pw, |
3457 | | l_int32 *ph) |
3458 | 0 | { |
3459 | 0 | l_int32 w, h; |
3460 | |
|
3461 | 0 | if (pw) *pw = 0; |
3462 | 0 | if (ph) *ph = 0; |
3463 | 0 | if (!pix || pixGetDepth(pix) != 8) |
3464 | 0 | return (l_uint8 **)ERROR_PTR("pix not defined or not 8 bpp", |
3465 | 0 | __func__, NULL); |
3466 | 0 | pixGetDimensions(pix, &w, &h, NULL); |
3467 | 0 | if (pw) *pw = w; |
3468 | 0 | if (ph) *ph = h; |
3469 | 0 | if (pixGetColormap(pix)) |
3470 | 0 | return (l_uint8 **)ERROR_PTR("pix has colormap", __func__, NULL); |
3471 | | |
3472 | 0 | pixEndianByteSwap(pix); |
3473 | 0 | return (l_uint8 **)pixGetLinePtrs(pix, NULL); |
3474 | 0 | } |
3475 | | |
3476 | | |
3477 | | /*! |
3478 | | * \brief pixCleanupByteProcessing() |
3479 | | * |
3480 | | * \param[in] pix 8 bpp, no colormap |
3481 | | * \param[in] lineptrs ptrs to the beginning of each raster line of data |
3482 | | * \return 0 if OK, 1 on error |
3483 | | * |
3484 | | * <pre> |
3485 | | * Notes: |
3486 | | * (1) This must be called after processing that was initiated |
3487 | | * by pixSetupByteProcessing() has finished. |
3488 | | * </pre> |
3489 | | */ |
3490 | | l_ok |
3491 | | pixCleanupByteProcessing(PIX *pix, |
3492 | | l_uint8 **lineptrs) |
3493 | 0 | { |
3494 | 0 | if (!pix) |
3495 | 0 | return ERROR_INT("pix not defined", __func__, 1); |
3496 | 0 | if (!lineptrs) |
3497 | 0 | return ERROR_INT("lineptrs not defined", __func__, 1); |
3498 | | |
3499 | 0 | pixEndianByteSwap(pix); |
3500 | 0 | LEPT_FREE(lineptrs); |
3501 | 0 | return 0; |
3502 | 0 | } |
3503 | | |
3504 | | |
3505 | | /*------------------------------------------------------------------------* |
3506 | | * Setting parameters for antialias masking with alpha transforms * |
3507 | | *------------------------------------------------------------------------*/ |
3508 | | /*! |
3509 | | * \brief l_setAlphaMaskBorder() |
3510 | | * |
3511 | | * \param[in] val1, val2 in [0.0 ... 1.0] |
3512 | | * \return void |
3513 | | * |
3514 | | * <pre> |
3515 | | * Notes: |
3516 | | * (1) This sets the opacity values used to generate the two outer |
3517 | | * boundary rings in the alpha mask associated with geometric |
3518 | | * transforms such as pixRotateWithAlpha(). |
3519 | | * (2) The default values are val1 = 0.0 (completely transparent |
3520 | | * in the outermost ring) and val2 = 0.5 (half transparent |
3521 | | * in the second ring). When the image is blended, this |
3522 | | * completely removes the outer ring (shrinking the image by |
3523 | | * 2 in each direction), and alpha-blends with 0.5 the second ring. |
3524 | | * Using val1 = 0.25 and val2 = 0.75 gives a slightly more |
3525 | | * blurred border, with no perceptual difference at screen resolution. |
3526 | | * (3) The actual mask values are found by multiplying these |
3527 | | * normalized opacity values by 255. |
3528 | | * </pre> |
3529 | | */ |
3530 | | void |
3531 | | l_setAlphaMaskBorder(l_float32 val1, |
3532 | | l_float32 val2) |
3533 | 0 | { |
3534 | 0 | val1 = L_MAX(0.0f, L_MIN(1.0f, val1)); |
3535 | 0 | val2 = L_MAX(0.0f, L_MIN(1.0f, val2)); |
3536 | 0 | AlphaMaskBorderVals[0] = val1; |
3537 | 0 | AlphaMaskBorderVals[1] = val2; |
3538 | 0 | } |