/src/libwebp/sharpyuv/sharpyuv_gamma.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // Copyright 2022 Google Inc. All Rights Reserved.  | 
2  |  | //  | 
3  |  | // Use of this source code is governed by a BSD-style license  | 
4  |  | // that can be found in the COPYING file in the root of the source  | 
5  |  | // tree. An additional intellectual property rights grant can be found  | 
6  |  | // in the file PATENTS. All contributing project authors may  | 
7  |  | // be found in the AUTHORS file in the root of the source tree.  | 
8  |  | // -----------------------------------------------------------------------------  | 
9  |  | //  | 
10  |  | // Gamma correction utilities.  | 
11  |  |  | 
12  |  | #include "sharpyuv/sharpyuv_gamma.h"  | 
13  |  |  | 
14  |  | #include <assert.h>  | 
15  |  | #include <float.h>  | 
16  |  | #include <math.h>  | 
17  |  |  | 
18  |  | #include "sharpyuv/sharpyuv.h"  | 
19  |  | #include "src/webp/types.h"  | 
20  |  |  | 
21  |  | // Gamma correction compensates loss of resolution during chroma subsampling.  | 
22  |  | // Size of pre-computed table for converting from gamma to linear.  | 
23  | 0  | #define GAMMA_TO_LINEAR_TAB_BITS 10  | 
24  | 0  | #define GAMMA_TO_LINEAR_TAB_SIZE (1 << GAMMA_TO_LINEAR_TAB_BITS)  | 
25  |  | static uint32_t kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 2];  | 
26  | 0  | #define LINEAR_TO_GAMMA_TAB_BITS 9  | 
27  | 0  | #define LINEAR_TO_GAMMA_TAB_SIZE (1 << LINEAR_TO_GAMMA_TAB_BITS)  | 
28  |  | static uint32_t kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 2];  | 
29  |  |  | 
30  |  | static const double kGammaF = 1. / 0.45;  | 
31  | 0  | #define GAMMA_TO_LINEAR_BITS 16  | 
32  |  |  | 
33  |  | static volatile int kGammaTablesSOk = 0;  | 
34  | 0  | void SharpYuvInitGammaTables(void) { | 
35  | 0  |   assert(GAMMA_TO_LINEAR_BITS <= 16);  | 
36  | 0  |   if (!kGammaTablesSOk) { | 
37  | 0  |     int v;  | 
38  | 0  |     const double a = 0.09929682680944;  | 
39  | 0  |     const double thresh = 0.018053968510807;  | 
40  | 0  |     const double final_scale = 1 << GAMMA_TO_LINEAR_BITS;  | 
41  |  |     // Precompute gamma to linear table.  | 
42  | 0  |     { | 
43  | 0  |       const double norm = 1. / GAMMA_TO_LINEAR_TAB_SIZE;  | 
44  | 0  |       const double a_rec = 1. / (1. + a);  | 
45  | 0  |       for (v = 0; v <= GAMMA_TO_LINEAR_TAB_SIZE; ++v) { | 
46  | 0  |         const double g = norm * v;  | 
47  | 0  |         double value;  | 
48  | 0  |         if (g <= thresh * 4.5) { | 
49  | 0  |           value = g / 4.5;  | 
50  | 0  |         } else { | 
51  | 0  |           value = pow(a_rec * (g + a), kGammaF);  | 
52  | 0  |         }  | 
53  | 0  |         kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5);  | 
54  | 0  |       }  | 
55  |  |       // to prevent small rounding errors to cause read-overflow:  | 
56  | 0  |       kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 1] =  | 
57  | 0  |           kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE];  | 
58  | 0  |     }  | 
59  |  |     // Precompute linear to gamma table.  | 
60  | 0  |     { | 
61  | 0  |       const double scale = 1. / LINEAR_TO_GAMMA_TAB_SIZE;  | 
62  | 0  |       for (v = 0; v <= LINEAR_TO_GAMMA_TAB_SIZE; ++v) { | 
63  | 0  |         const double g = scale * v;  | 
64  | 0  |         double value;  | 
65  | 0  |         if (g <= thresh) { | 
66  | 0  |           value = 4.5 * g;  | 
67  | 0  |         } else { | 
68  | 0  |           value = (1. + a) * pow(g, 1. / kGammaF) - a;  | 
69  | 0  |         }  | 
70  | 0  |         kLinearToGammaTabS[v] =  | 
71  | 0  |             (uint32_t)(final_scale * value + 0.5);  | 
72  | 0  |       }  | 
73  |  |       // to prevent small rounding errors to cause read-overflow:  | 
74  | 0  |       kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 1] =  | 
75  | 0  |           kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE];  | 
76  | 0  |     }  | 
77  | 0  |     kGammaTablesSOk = 1;  | 
78  | 0  |   }  | 
79  | 0  | }  | 
80  |  |  | 
81  | 0  | static WEBP_INLINE int Shift(int v, int shift) { | 
82  | 0  |   return (shift >= 0) ? (v << shift) : (v >> -shift);  | 
83  | 0  | }  | 
84  |  |  | 
85  |  | static WEBP_INLINE uint32_t FixedPointInterpolation(int v, uint32_t* tab,  | 
86  |  |                                                     int tab_pos_shift_right,  | 
87  | 0  |                                                     int tab_value_shift) { | 
88  | 0  |   const uint32_t tab_pos = Shift(v, -tab_pos_shift_right);  | 
89  |  |   // fractional part, in 'tab_pos_shift' fixed-point precision  | 
90  | 0  |   const uint32_t x = v - (tab_pos << tab_pos_shift_right);  // fractional part  | 
91  |  |   // v0 / v1 are in kGammaToLinearBits fixed-point precision (range [0..1])  | 
92  | 0  |   const uint32_t v0 = Shift(tab[tab_pos + 0], tab_value_shift);  | 
93  | 0  |   const uint32_t v1 = Shift(tab[tab_pos + 1], tab_value_shift);  | 
94  |  |   // Final interpolation.  | 
95  | 0  |   const uint32_t v2 = (v1 - v0) * x;  // note: v1 >= v0.  | 
96  | 0  |   const int half =  | 
97  | 0  |       (tab_pos_shift_right > 0) ? 1 << (tab_pos_shift_right - 1) : 0;  | 
98  | 0  |   const uint32_t result = v0 + ((v2 + half) >> tab_pos_shift_right);  | 
99  | 0  |   return result;  | 
100  | 0  | }  | 
101  |  |  | 
102  | 0  | static uint32_t ToLinearSrgb(uint16_t v, int bit_depth) { | 
103  | 0  |   const int shift = GAMMA_TO_LINEAR_TAB_BITS - bit_depth;  | 
104  | 0  |   if (shift > 0) { | 
105  | 0  |     return kGammaToLinearTabS[v << shift];  | 
106  | 0  |   }  | 
107  | 0  |   return FixedPointInterpolation(v, kGammaToLinearTabS, -shift, 0);  | 
108  | 0  | }  | 
109  |  |  | 
110  | 0  | static uint16_t FromLinearSrgb(uint32_t value, int bit_depth) { | 
111  | 0  |   return FixedPointInterpolation(  | 
112  | 0  |       value, kLinearToGammaTabS,  | 
113  | 0  |       (GAMMA_TO_LINEAR_BITS - LINEAR_TO_GAMMA_TAB_BITS),  | 
114  | 0  |       bit_depth - GAMMA_TO_LINEAR_BITS);  | 
115  | 0  | }  | 
116  |  |  | 
117  |  | ////////////////////////////////////////////////////////////////////////////////  | 
118  |  |  | 
119  |  | #define CLAMP(x, low, high) \  | 
120  | 0  |   (((x) < (low)) ? (low) : (((high) < (x)) ? (high) : (x)))  | 
121  | 0  | #define MIN(a, b) (((a) < (b)) ? (a) : (b))  | 
122  | 0  | #define MAX(a, b) (((a) > (b)) ? (a) : (b))  | 
123  |  |  | 
124  | 0  | static WEBP_INLINE float Roundf(float x) { | 
125  | 0  |   if (x < 0)  | 
126  | 0  |     return (float)ceil((double)(x - 0.5f));  | 
127  | 0  |   else  | 
128  | 0  |     return (float)floor((double)(x + 0.5f));  | 
129  | 0  | }  | 
130  |  |  | 
131  | 0  | static WEBP_INLINE float Powf(float base, float exp) { | 
132  | 0  |   return (float)pow((double)base, (double)exp);  | 
133  | 0  | }  | 
134  |  |  | 
135  | 0  | static WEBP_INLINE float Log10f(float x) { return (float)log10((double)x); } | 
136  |  |  | 
137  | 0  | static float ToLinear709(float gamma) { | 
138  | 0  |   if (gamma < 0.f) { | 
139  | 0  |     return 0.f;  | 
140  | 0  |   } else if (gamma < 4.5f * 0.018053968510807f) { | 
141  | 0  |     return gamma / 4.5f;  | 
142  | 0  |   } else if (gamma < 1.f) { | 
143  | 0  |     return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);  | 
144  | 0  |   }  | 
145  | 0  |   return 1.f;  | 
146  | 0  | }  | 
147  |  |  | 
148  | 0  | static float FromLinear709(float linear) { | 
149  | 0  |   if (linear < 0.f) { | 
150  | 0  |     return 0.f;  | 
151  | 0  |   } else if (linear < 0.018053968510807f) { | 
152  | 0  |     return linear * 4.5f;  | 
153  | 0  |   } else if (linear < 1.f) { | 
154  | 0  |     return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;  | 
155  | 0  |   }  | 
156  | 0  |   return 1.f;  | 
157  | 0  | }  | 
158  |  |  | 
159  | 0  | static float ToLinear470M(float gamma) { | 
160  | 0  |   return Powf(CLAMP(gamma, 0.f, 1.f), 2.2f);  | 
161  | 0  | }  | 
162  |  |  | 
163  | 0  | static float FromLinear470M(float linear) { | 
164  | 0  |   return Powf(CLAMP(linear, 0.f, 1.f), 1.f / 2.2f);  | 
165  | 0  | }  | 
166  |  |  | 
167  | 0  | static float ToLinear470Bg(float gamma) { | 
168  | 0  |   return Powf(CLAMP(gamma, 0.f, 1.f), 2.8f);  | 
169  | 0  | }  | 
170  |  |  | 
171  | 0  | static float FromLinear470Bg(float linear) { | 
172  | 0  |   return Powf(CLAMP(linear, 0.f, 1.f), 1.f / 2.8f);  | 
173  | 0  | }  | 
174  |  |  | 
175  | 0  | static float ToLinearSmpte240(float gamma) { | 
176  | 0  |   if (gamma < 0.f) { | 
177  | 0  |     return 0.f;  | 
178  | 0  |   } else if (gamma < 4.f * 0.022821585529445f) { | 
179  | 0  |     return gamma / 4.f;  | 
180  | 0  |   } else if (gamma < 1.f) { | 
181  | 0  |     return Powf((gamma + 0.111572195921731f) / 1.111572195921731f, 1.f / 0.45f);  | 
182  | 0  |   }  | 
183  | 0  |   return 1.f;  | 
184  | 0  | }  | 
185  |  |  | 
186  | 0  | static float FromLinearSmpte240(float linear) { | 
187  | 0  |   if (linear < 0.f) { | 
188  | 0  |     return 0.f;  | 
189  | 0  |   } else if (linear < 0.022821585529445f) { | 
190  | 0  |     return linear * 4.f;  | 
191  | 0  |   } else if (linear < 1.f) { | 
192  | 0  |     return 1.111572195921731f * Powf(linear, 0.45f) - 0.111572195921731f;  | 
193  | 0  |   }  | 
194  | 0  |   return 1.f;  | 
195  | 0  | }  | 
196  |  |  | 
197  | 0  | static float ToLinearLog100(float gamma) { | 
198  |  |   // The function is non-bijective so choose the middle of [0, 0.01].  | 
199  | 0  |   const float mid_interval = 0.01f / 2.f;  | 
200  | 0  |   return (gamma <= 0.0f) ? mid_interval  | 
201  | 0  |                           : Powf(10.0f, 2.f * (MIN(gamma, 1.f) - 1.0f));  | 
202  | 0  | }  | 
203  |  |  | 
204  | 0  | static float FromLinearLog100(float linear) { | 
205  | 0  |   return (linear < 0.01f) ? 0.0f : 1.0f + Log10f(MIN(linear, 1.f)) / 2.0f;  | 
206  | 0  | }  | 
207  |  |  | 
208  | 0  | static float ToLinearLog100Sqrt10(float gamma) { | 
209  |  |   // The function is non-bijective so choose the middle of [0, 0.00316227766f[.  | 
210  | 0  |   const float mid_interval = 0.00316227766f / 2.f;  | 
211  | 0  |   return (gamma <= 0.0f) ? mid_interval  | 
212  | 0  |                           : Powf(10.0f, 2.5f * (MIN(gamma, 1.f) - 1.0f));  | 
213  | 0  | }  | 
214  |  |  | 
215  | 0  | static float FromLinearLog100Sqrt10(float linear) { | 
216  | 0  |   return (linear < 0.00316227766f) ? 0.0f  | 
217  | 0  |                                   : 1.0f + Log10f(MIN(linear, 1.f)) / 2.5f;  | 
218  | 0  | }  | 
219  |  |  | 
220  | 0  | static float ToLinearIec61966(float gamma) { | 
221  | 0  |   if (gamma <= -4.5f * 0.018053968510807f) { | 
222  | 0  |     return Powf((-gamma + 0.09929682680944f) / -1.09929682680944f, 1.f / 0.45f);  | 
223  | 0  |   } else if (gamma < 4.5f * 0.018053968510807f) { | 
224  | 0  |     return gamma / 4.5f;  | 
225  | 0  |   }  | 
226  | 0  |   return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);  | 
227  | 0  | }  | 
228  |  |  | 
229  | 0  | static float FromLinearIec61966(float linear) { | 
230  | 0  |   if (linear <= -0.018053968510807f) { | 
231  | 0  |     return -1.09929682680944f * Powf(-linear, 0.45f) + 0.09929682680944f;  | 
232  | 0  |   } else if (linear < 0.018053968510807f) { | 
233  | 0  |     return linear * 4.5f;  | 
234  | 0  |   }  | 
235  | 0  |   return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;  | 
236  | 0  | }  | 
237  |  |  | 
238  | 0  | static float ToLinearBt1361(float gamma) { | 
239  | 0  |   if (gamma < -0.25f) { | 
240  | 0  |     return -0.25f;  | 
241  | 0  |   } else if (gamma < 0.f) { | 
242  | 0  |     return Powf((gamma - 0.02482420670236f) / -0.27482420670236f, 1.f / 0.45f) /  | 
243  | 0  |            -4.f;  | 
244  | 0  |   } else if (gamma < 4.5f * 0.018053968510807f) { | 
245  | 0  |     return gamma / 4.5f;  | 
246  | 0  |   } else if (gamma < 1.f) { | 
247  | 0  |     return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);  | 
248  | 0  |   }  | 
249  | 0  |   return 1.f;  | 
250  | 0  | }  | 
251  |  |  | 
252  | 0  | static float FromLinearBt1361(float linear) { | 
253  | 0  |   if (linear < -0.25f) { | 
254  | 0  |     return -0.25f;  | 
255  | 0  |   } else if (linear < 0.f) { | 
256  | 0  |     return -0.27482420670236f * Powf(-4.f * linear, 0.45f) + 0.02482420670236f;  | 
257  | 0  |   } else if (linear < 0.018053968510807f) { | 
258  | 0  |     return linear * 4.5f;  | 
259  | 0  |   } else if (linear < 1.f) { | 
260  | 0  |     return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;  | 
261  | 0  |   }  | 
262  | 0  |   return 1.f;  | 
263  | 0  | }  | 
264  |  |  | 
265  | 0  | static float ToLinearPq(float gamma) { | 
266  | 0  |   if (gamma > 0.f) { | 
267  | 0  |     const float pow_gamma = Powf(gamma, 32.f / 2523.f);  | 
268  | 0  |     const float num = MAX(pow_gamma - 107.f / 128.f, 0.0f);  | 
269  | 0  |     const float den = MAX(2413.f / 128.f - 2392.f / 128.f * pow_gamma, FLT_MIN);  | 
270  | 0  |     return Powf(num / den, 4096.f / 653.f);  | 
271  | 0  |   }  | 
272  | 0  |   return 0.f;  | 
273  | 0  | }  | 
274  |  |  | 
275  | 0  | static float FromLinearPq(float linear) { | 
276  | 0  |   if (linear > 0.f) { | 
277  | 0  |     const float pow_linear = Powf(linear, 653.f / 4096.f);  | 
278  | 0  |     const float num = 107.f / 128.f + 2413.f / 128.f * pow_linear;  | 
279  | 0  |     const float den = 1.0f + 2392.f / 128.f * pow_linear;  | 
280  | 0  |     return Powf(num / den, 2523.f / 32.f);  | 
281  | 0  |   }  | 
282  | 0  |   return 0.f;  | 
283  | 0  | }  | 
284  |  |  | 
285  | 0  | static float ToLinearSmpte428(float gamma) { | 
286  | 0  |   return Powf(MAX(gamma, 0.f), 2.6f) / 0.91655527974030934f;  | 
287  | 0  | }  | 
288  |  |  | 
289  | 0  | static float FromLinearSmpte428(float linear) { | 
290  | 0  |   return Powf(0.91655527974030934f * MAX(linear, 0.f), 1.f / 2.6f);  | 
291  | 0  | }  | 
292  |  |  | 
293  |  | // Conversion in BT.2100 requires RGB info. Simplify to gamma correction here.  | 
294  | 0  | static float ToLinearHlg(float gamma) { | 
295  | 0  |   if (gamma < 0.f) { | 
296  | 0  |     return 0.f;  | 
297  | 0  |   } else if (gamma <= 0.5f) { | 
298  | 0  |     return Powf((gamma * gamma) * (1.f / 3.f), 1.2f);  | 
299  | 0  |   }  | 
300  | 0  |   return Powf((expf((gamma - 0.55991073f) / 0.17883277f) + 0.28466892f) / 12.0f,  | 
301  | 0  |               1.2f);  | 
302  | 0  | }  | 
303  |  |  | 
304  | 0  | static float FromLinearHlg(float linear) { | 
305  | 0  |   linear = Powf(linear, 1.f / 1.2f);  | 
306  | 0  |   if (linear < 0.f) { | 
307  | 0  |     return 0.f;  | 
308  | 0  |   } else if (linear <= (1.f / 12.f)) { | 
309  | 0  |     return sqrtf(3.f * linear);  | 
310  | 0  |   }  | 
311  | 0  |   return 0.17883277f * logf(12.f * linear - 0.28466892f) + 0.55991073f;  | 
312  | 0  | }  | 
313  |  |  | 
314  |  | uint32_t SharpYuvGammaToLinear(uint16_t v, int bit_depth,  | 
315  | 0  |                                SharpYuvTransferFunctionType transfer_type) { | 
316  | 0  |   float v_float, linear;  | 
317  | 0  |   if (transfer_type == kSharpYuvTransferFunctionSrgb) { | 
318  | 0  |     return ToLinearSrgb(v, bit_depth);  | 
319  | 0  |   }  | 
320  | 0  |   v_float = (float)v / ((1 << bit_depth) - 1);  | 
321  | 0  |   switch (transfer_type) { | 
322  | 0  |     case kSharpYuvTransferFunctionBt709:  | 
323  | 0  |     case kSharpYuvTransferFunctionBt601:  | 
324  | 0  |     case kSharpYuvTransferFunctionBt2020_10Bit:  | 
325  | 0  |     case kSharpYuvTransferFunctionBt2020_12Bit:  | 
326  | 0  |       linear = ToLinear709(v_float);  | 
327  | 0  |       break;  | 
328  | 0  |     case kSharpYuvTransferFunctionBt470M:  | 
329  | 0  |       linear = ToLinear470M(v_float);  | 
330  | 0  |       break;  | 
331  | 0  |     case kSharpYuvTransferFunctionBt470Bg:  | 
332  | 0  |       linear = ToLinear470Bg(v_float);  | 
333  | 0  |       break;  | 
334  | 0  |     case kSharpYuvTransferFunctionSmpte240:  | 
335  | 0  |       linear = ToLinearSmpte240(v_float);  | 
336  | 0  |       break;  | 
337  | 0  |     case kSharpYuvTransferFunctionLinear:  | 
338  | 0  |       return v;  | 
339  | 0  |     case kSharpYuvTransferFunctionLog100:  | 
340  | 0  |       linear = ToLinearLog100(v_float);  | 
341  | 0  |       break;  | 
342  | 0  |     case kSharpYuvTransferFunctionLog100_Sqrt10:  | 
343  | 0  |       linear = ToLinearLog100Sqrt10(v_float);  | 
344  | 0  |       break;  | 
345  | 0  |     case kSharpYuvTransferFunctionIec61966:  | 
346  | 0  |       linear = ToLinearIec61966(v_float);  | 
347  | 0  |       break;  | 
348  | 0  |     case kSharpYuvTransferFunctionBt1361:  | 
349  | 0  |       linear = ToLinearBt1361(v_float);  | 
350  | 0  |       break;  | 
351  | 0  |     case kSharpYuvTransferFunctionSmpte2084:  | 
352  | 0  |       linear = ToLinearPq(v_float);  | 
353  | 0  |       break;  | 
354  | 0  |     case kSharpYuvTransferFunctionSmpte428:  | 
355  | 0  |       linear = ToLinearSmpte428(v_float);  | 
356  | 0  |       break;  | 
357  | 0  |     case kSharpYuvTransferFunctionHlg:  | 
358  | 0  |       linear = ToLinearHlg(v_float);  | 
359  | 0  |       break;  | 
360  | 0  |     default:  | 
361  | 0  |       assert(0);  | 
362  | 0  |       linear = 0;  | 
363  | 0  |       break;  | 
364  | 0  |   }  | 
365  | 0  |   return (uint32_t)Roundf(linear * ((1 << 16) - 1));  | 
366  | 0  | }  | 
367  |  |  | 
368  |  | uint16_t SharpYuvLinearToGamma(uint32_t v, int bit_depth,  | 
369  | 0  |                                SharpYuvTransferFunctionType transfer_type) { | 
370  | 0  |   float v_float, linear;  | 
371  | 0  |   if (transfer_type == kSharpYuvTransferFunctionSrgb) { | 
372  | 0  |     return FromLinearSrgb(v, bit_depth);  | 
373  | 0  |   }  | 
374  | 0  |   v_float = (float)v / ((1 << 16) - 1);  | 
375  | 0  |   switch (transfer_type) { | 
376  | 0  |     case kSharpYuvTransferFunctionBt709:  | 
377  | 0  |     case kSharpYuvTransferFunctionBt601:  | 
378  | 0  |     case kSharpYuvTransferFunctionBt2020_10Bit:  | 
379  | 0  |     case kSharpYuvTransferFunctionBt2020_12Bit:  | 
380  | 0  |       linear = FromLinear709(v_float);  | 
381  | 0  |       break;  | 
382  | 0  |     case kSharpYuvTransferFunctionBt470M:  | 
383  | 0  |       linear = FromLinear470M(v_float);  | 
384  | 0  |       break;  | 
385  | 0  |     case kSharpYuvTransferFunctionBt470Bg:  | 
386  | 0  |       linear = FromLinear470Bg(v_float);  | 
387  | 0  |       break;  | 
388  | 0  |     case kSharpYuvTransferFunctionSmpte240:  | 
389  | 0  |       linear = FromLinearSmpte240(v_float);  | 
390  | 0  |       break;  | 
391  | 0  |     case kSharpYuvTransferFunctionLinear:  | 
392  | 0  |       return v;  | 
393  | 0  |     case kSharpYuvTransferFunctionLog100:  | 
394  | 0  |       linear = FromLinearLog100(v_float);  | 
395  | 0  |       break;  | 
396  | 0  |     case kSharpYuvTransferFunctionLog100_Sqrt10:  | 
397  | 0  |       linear = FromLinearLog100Sqrt10(v_float);  | 
398  | 0  |       break;  | 
399  | 0  |     case kSharpYuvTransferFunctionIec61966:  | 
400  | 0  |       linear = FromLinearIec61966(v_float);  | 
401  | 0  |       break;  | 
402  | 0  |     case kSharpYuvTransferFunctionBt1361:  | 
403  | 0  |       linear = FromLinearBt1361(v_float);  | 
404  | 0  |       break;  | 
405  | 0  |     case kSharpYuvTransferFunctionSmpte2084:  | 
406  | 0  |       linear = FromLinearPq(v_float);  | 
407  | 0  |       break;  | 
408  | 0  |     case kSharpYuvTransferFunctionSmpte428:  | 
409  | 0  |       linear = FromLinearSmpte428(v_float);  | 
410  | 0  |       break;  | 
411  | 0  |     case kSharpYuvTransferFunctionHlg:  | 
412  | 0  |       linear = FromLinearHlg(v_float);  | 
413  | 0  |       break;  | 
414  | 0  |     default:  | 
415  | 0  |       assert(0);  | 
416  | 0  |       linear = 0;  | 
417  | 0  |       break;  | 
418  | 0  |   }  | 
419  | 0  |   return (uint16_t)Roundf(linear * ((1 << bit_depth) - 1));  | 
420  | 0  | }  |