Coverage Report

Created: 2025-06-13 06:48

/src/libwebp/src/dsp/dec_sse2.c
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE2 version of some decoding functions (idct, loop filtering).
11
//
12
// Author: somnath@google.com (Somnath Banerjee)
13
//         cduvivier@google.com (Christian Duvivier)
14
15
#include "src/dsp/dsp.h"
16
17
#if defined(WEBP_USE_SSE2)
18
19
// The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20
// one it seems => disable it by default. Uncomment the following to enable:
21
#if !defined(USE_TRANSFORM_AC3)
22
#define USE_TRANSFORM_AC3 0   // ALTERNATE_CODE
23
#endif
24
25
#include <emmintrin.h>
26
27
#include "src/dec/vp8i_dec.h"
28
#include "src/dsp/common_sse2.h"
29
#include "src/dsp/cpu.h"
30
#include "src/utils/utils.h"
31
#include "src/webp/types.h"
32
33
//------------------------------------------------------------------------------
34
// Transforms (Paragraph 14.4)
35
36
static void Transform_SSE2(const int16_t* WEBP_RESTRICT in,
37
0
                           uint8_t* WEBP_RESTRICT dst, int do_two) {
38
  // This implementation makes use of 16-bit fixed point versions of two
39
  // multiply constants:
40
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
41
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
42
  //
43
  // To be able to use signed 16-bit integers, we use the following trick to
44
  // have constants within range:
45
  // - Associated constants are obtained by subtracting the 16-bit fixed point
46
  //   version of one:
47
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
48
  //      K1 = 85267  =>  k1 =  20091
49
  //      K2 = 35468  =>  k2 = -30068
50
  // - The multiplication of a variable by a constant become the sum of the
51
  //   variable and the multiplication of that variable by the associated
52
  //   constant:
53
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
54
0
  const __m128i k1 = _mm_set1_epi16(20091);
55
0
  const __m128i k2 = _mm_set1_epi16(-30068);
56
0
  __m128i T0, T1, T2, T3;
57
58
  // Load and concatenate the transform coefficients (we'll do two transforms
59
  // in parallel). In the case of only one transform, the second half of the
60
  // vectors will just contain random value we'll never use nor store.
61
0
  __m128i in0, in1, in2, in3;
62
0
  {
63
0
    in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
64
0
    in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
65
0
    in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
66
0
    in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
67
    // a00 a10 a20 a30   x x x x
68
    // a01 a11 a21 a31   x x x x
69
    // a02 a12 a22 a32   x x x x
70
    // a03 a13 a23 a33   x x x x
71
0
    if (do_two) {
72
0
      const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
73
0
      const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
74
0
      const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
75
0
      const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
76
0
      in0 = _mm_unpacklo_epi64(in0, inB0);
77
0
      in1 = _mm_unpacklo_epi64(in1, inB1);
78
0
      in2 = _mm_unpacklo_epi64(in2, inB2);
79
0
      in3 = _mm_unpacklo_epi64(in3, inB3);
80
      // a00 a10 a20 a30   b00 b10 b20 b30
81
      // a01 a11 a21 a31   b01 b11 b21 b31
82
      // a02 a12 a22 a32   b02 b12 b22 b32
83
      // a03 a13 a23 a33   b03 b13 b23 b33
84
0
    }
85
0
  }
86
87
  // Vertical pass and subsequent transpose.
88
0
  {
89
    // First pass, c and d calculations are longer because of the "trick"
90
    // multiplications.
91
0
    const __m128i a = _mm_add_epi16(in0, in2);
92
0
    const __m128i b = _mm_sub_epi16(in0, in2);
93
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
94
0
    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
95
0
    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
96
0
    const __m128i c3 = _mm_sub_epi16(in1, in3);
97
0
    const __m128i c4 = _mm_sub_epi16(c1, c2);
98
0
    const __m128i c = _mm_add_epi16(c3, c4);
99
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
100
0
    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
101
0
    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
102
0
    const __m128i d3 = _mm_add_epi16(in1, in3);
103
0
    const __m128i d4 = _mm_add_epi16(d1, d2);
104
0
    const __m128i d = _mm_add_epi16(d3, d4);
105
106
    // Second pass.
107
0
    const __m128i tmp0 = _mm_add_epi16(a, d);
108
0
    const __m128i tmp1 = _mm_add_epi16(b, c);
109
0
    const __m128i tmp2 = _mm_sub_epi16(b, c);
110
0
    const __m128i tmp3 = _mm_sub_epi16(a, d);
111
112
    // Transpose the two 4x4.
113
0
    VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
114
0
  }
115
116
  // Horizontal pass and subsequent transpose.
117
0
  {
118
    // First pass, c and d calculations are longer because of the "trick"
119
    // multiplications.
120
0
    const __m128i four = _mm_set1_epi16(4);
121
0
    const __m128i dc = _mm_add_epi16(T0, four);
122
0
    const __m128i a =  _mm_add_epi16(dc, T2);
123
0
    const __m128i b =  _mm_sub_epi16(dc, T2);
124
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
125
0
    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
126
0
    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
127
0
    const __m128i c3 = _mm_sub_epi16(T1, T3);
128
0
    const __m128i c4 = _mm_sub_epi16(c1, c2);
129
0
    const __m128i c = _mm_add_epi16(c3, c4);
130
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
131
0
    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
132
0
    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
133
0
    const __m128i d3 = _mm_add_epi16(T1, T3);
134
0
    const __m128i d4 = _mm_add_epi16(d1, d2);
135
0
    const __m128i d = _mm_add_epi16(d3, d4);
136
137
    // Second pass.
138
0
    const __m128i tmp0 = _mm_add_epi16(a, d);
139
0
    const __m128i tmp1 = _mm_add_epi16(b, c);
140
0
    const __m128i tmp2 = _mm_sub_epi16(b, c);
141
0
    const __m128i tmp3 = _mm_sub_epi16(a, d);
142
0
    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
143
0
    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
144
0
    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
145
0
    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
146
147
    // Transpose the two 4x4.
148
0
    VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
149
0
                           &T2, &T3);
150
0
  }
151
152
  // Add inverse transform to 'dst' and store.
153
0
  {
154
0
    const __m128i zero = _mm_setzero_si128();
155
    // Load the reference(s).
156
0
    __m128i dst0, dst1, dst2, dst3;
157
0
    if (do_two) {
158
      // Load eight bytes/pixels per line.
159
0
      dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
160
0
      dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
161
0
      dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
162
0
      dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
163
0
    } else {
164
      // Load four bytes/pixels per line.
165
0
      dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS));
166
0
      dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS));
167
0
      dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS));
168
0
      dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS));
169
0
    }
170
    // Convert to 16b.
171
0
    dst0 = _mm_unpacklo_epi8(dst0, zero);
172
0
    dst1 = _mm_unpacklo_epi8(dst1, zero);
173
0
    dst2 = _mm_unpacklo_epi8(dst2, zero);
174
0
    dst3 = _mm_unpacklo_epi8(dst3, zero);
175
    // Add the inverse transform(s).
176
0
    dst0 = _mm_add_epi16(dst0, T0);
177
0
    dst1 = _mm_add_epi16(dst1, T1);
178
0
    dst2 = _mm_add_epi16(dst2, T2);
179
0
    dst3 = _mm_add_epi16(dst3, T3);
180
    // Unsigned saturate to 8b.
181
0
    dst0 = _mm_packus_epi16(dst0, dst0);
182
0
    dst1 = _mm_packus_epi16(dst1, dst1);
183
0
    dst2 = _mm_packus_epi16(dst2, dst2);
184
0
    dst3 = _mm_packus_epi16(dst3, dst3);
185
    // Store the results.
186
0
    if (do_two) {
187
      // Store eight bytes/pixels per line.
188
0
      _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
189
0
      _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
190
0
      _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
191
0
      _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
192
0
    } else {
193
      // Store four bytes/pixels per line.
194
0
      WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
195
0
      WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
196
0
      WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
197
0
      WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
198
0
    }
199
0
  }
200
0
}
201
202
#if (USE_TRANSFORM_AC3 == 1)
203
204
static void TransformAC3_SSE2(const int16_t* WEBP_RESTRICT in,
205
                              uint8_t* WEBP_RESTRICT dst) {
206
  const __m128i A = _mm_set1_epi16(in[0] + 4);
207
  const __m128i c4 = _mm_set1_epi16(WEBP_TRANSFORM_AC3_MUL2(in[4]));
208
  const __m128i d4 = _mm_set1_epi16(WEBP_TRANSFORM_AC3_MUL1(in[4]));
209
  const int c1 = WEBP_TRANSFORM_AC3_MUL2(in[1]);
210
  const int d1 = WEBP_TRANSFORM_AC3_MUL1(in[1]);
211
  const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
212
  const __m128i B = _mm_adds_epi16(A, CD);
213
  const __m128i m0 = _mm_adds_epi16(B, d4);
214
  const __m128i m1 = _mm_adds_epi16(B, c4);
215
  const __m128i m2 = _mm_subs_epi16(B, c4);
216
  const __m128i m3 = _mm_subs_epi16(B, d4);
217
  const __m128i zero = _mm_setzero_si128();
218
  // Load the source pixels.
219
  __m128i dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS));
220
  __m128i dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS));
221
  __m128i dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS));
222
  __m128i dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS));
223
  // Convert to 16b.
224
  dst0 = _mm_unpacklo_epi8(dst0, zero);
225
  dst1 = _mm_unpacklo_epi8(dst1, zero);
226
  dst2 = _mm_unpacklo_epi8(dst2, zero);
227
  dst3 = _mm_unpacklo_epi8(dst3, zero);
228
  // Add the inverse transform.
229
  dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
230
  dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
231
  dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
232
  dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
233
  // Unsigned saturate to 8b.
234
  dst0 = _mm_packus_epi16(dst0, dst0);
235
  dst1 = _mm_packus_epi16(dst1, dst1);
236
  dst2 = _mm_packus_epi16(dst2, dst2);
237
  dst3 = _mm_packus_epi16(dst3, dst3);
238
  // Store the results.
239
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
240
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
241
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
242
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
243
}
244
245
#endif   // USE_TRANSFORM_AC3
246
247
//------------------------------------------------------------------------------
248
// Loop Filter (Paragraph 15)
249
250
// Compute abs(p - q) = subs(p - q) OR subs(q - p)
251
0
#define MM_ABS(p, q)  _mm_or_si128(                                            \
252
0
    _mm_subs_epu8((q), (p)),                                                   \
253
0
    _mm_subs_epu8((p), (q)))
254
255
// Shift each byte of "x" by 3 bits while preserving by the sign bit.
256
0
static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) {
257
0
  const __m128i zero = _mm_setzero_si128();
258
0
  const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
259
0
  const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
260
0
  const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
261
0
  const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
262
0
  *x = _mm_packs_epi16(lo_1, hi_1);
263
0
}
264
265
0
#define FLIP_SIGN_BIT2(a, b) do {                                              \
266
0
  (a) = _mm_xor_si128(a, sign_bit);                                            \
267
0
  (b) = _mm_xor_si128(b, sign_bit);                                            \
268
0
} while (0)
269
270
0
#define FLIP_SIGN_BIT4(a, b, c, d) do {                                        \
271
0
  FLIP_SIGN_BIT2(a, b);                                                        \
272
0
  FLIP_SIGN_BIT2(c, d);                                                        \
273
0
} while (0)
274
275
// input/output is uint8_t
276
static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1,
277
                                       const __m128i* const p0,
278
                                       const __m128i* const q0,
279
                                       const __m128i* const q1,
280
0
                                       int hev_thresh, __m128i* const not_hev) {
281
0
  const __m128i zero = _mm_setzero_si128();
282
0
  const __m128i t_1 = MM_ABS(*p1, *p0);
283
0
  const __m128i t_2 = MM_ABS(*q1, *q0);
284
285
0
  const __m128i h = _mm_set1_epi8(hev_thresh);
286
0
  const __m128i t_max = _mm_max_epu8(t_1, t_2);
287
288
0
  const __m128i t_max_h = _mm_subs_epu8(t_max, h);
289
0
  *not_hev = _mm_cmpeq_epi8(t_max_h, zero);  // not_hev <= t1 && not_hev <= t2
290
0
}
291
292
// input pixels are int8_t
293
static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1,
294
                                          const __m128i* const p0,
295
                                          const __m128i* const q0,
296
                                          const __m128i* const q1,
297
0
                                          __m128i* const delta) {
298
  // beware of addition order, for saturation!
299
0
  const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
300
0
  const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
301
0
  const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
302
0
  const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
303
0
  const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
304
0
  *delta = s3;
305
0
}
306
307
// input and output are int8_t
308
static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0,
309
                                            __m128i* const q0,
310
0
                                            const __m128i* const fl) {
311
0
  const __m128i k3 = _mm_set1_epi8(3);
312
0
  const __m128i k4 = _mm_set1_epi8(4);
313
0
  __m128i v3 = _mm_adds_epi8(*fl, k3);
314
0
  __m128i v4 = _mm_adds_epi8(*fl, k4);
315
316
0
  SignedShift8b_SSE2(&v4);             // v4 >> 3
317
0
  SignedShift8b_SSE2(&v3);             // v3 >> 3
318
0
  *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
319
0
  *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
320
0
}
321
322
// Updates values of 2 pixels at MB edge during complex filtering.
323
// Update operations:
324
// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
325
// Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
326
static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi,
327
                                           const __m128i* const a0_lo,
328
0
                                           const __m128i* const a0_hi) {
329
0
  const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
330
0
  const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
331
0
  const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
332
0
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
333
0
  *pi = _mm_adds_epi8(*pi, delta);
334
0
  *qi = _mm_subs_epi8(*qi, delta);
335
0
  FLIP_SIGN_BIT2(*pi, *qi);
336
0
}
337
338
// input pixels are uint8_t
339
static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1,
340
                                         const __m128i* const p0,
341
                                         const __m128i* const q0,
342
                                         const __m128i* const q1,
343
0
                                         int thresh, __m128i* const mask) {
344
0
  const __m128i m_thresh = _mm_set1_epi8((char)thresh);
345
0
  const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
346
0
  const __m128i kFE = _mm_set1_epi8((char)0xFE);
347
0
  const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
348
0
  const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
349
350
0
  const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
351
0
  const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
352
0
  const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
353
354
0
  const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
355
0
  *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
356
0
}
357
358
//------------------------------------------------------------------------------
359
// Edge filtering functions
360
361
// Applies filter on 2 pixels (p0 and q0)
362
static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0,
363
                                       __m128i* const q0, __m128i* const q1,
364
0
                                       int thresh) {
365
0
  __m128i a, mask;
366
0
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
367
  // convert p1/q1 to int8_t (for GetBaseDelta_SSE2)
368
0
  const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
369
0
  const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
370
371
0
  NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask);
372
373
0
  FLIP_SIGN_BIT2(*p0, *q0);
374
0
  GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a);
375
0
  a = _mm_and_si128(a, mask);     // mask filter values we don't care about
376
0
  DoSimpleFilter_SSE2(p0, q0, &a);
377
0
  FLIP_SIGN_BIT2(*p0, *q0);
378
0
}
379
380
// Applies filter on 4 pixels (p1, p0, q0 and q1)
381
static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0,
382
                                       __m128i* const q0, __m128i* const q1,
383
                                       const __m128i* const mask,
384
0
                                       int hev_thresh) {
385
0
  const __m128i zero = _mm_setzero_si128();
386
0
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
387
0
  const __m128i k64 = _mm_set1_epi8(64);
388
0
  const __m128i k3 = _mm_set1_epi8(3);
389
0
  const __m128i k4 = _mm_set1_epi8(4);
390
0
  __m128i not_hev;
391
0
  __m128i t1, t2, t3;
392
393
  // compute hev mask
394
0
  GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
395
396
  // convert to signed values
397
0
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
398
399
0
  t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
400
0
  t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
401
0
  t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
402
0
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
403
0
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
404
0
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
405
0
  t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
406
407
0
  t2 = _mm_adds_epi8(t1, k3);        // 3 * (q0 - p0) + hev(p1 - q1) + 3
408
0
  t3 = _mm_adds_epi8(t1, k4);        // 3 * (q0 - p0) + hev(p1 - q1) + 4
409
0
  SignedShift8b_SSE2(&t2);           // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
410
0
  SignedShift8b_SSE2(&t3);           // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
411
0
  *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
412
0
  *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
413
0
  FLIP_SIGN_BIT2(*p0, *q0);
414
415
  // this is equivalent to signed (a + 1) >> 1 calculation
416
0
  t2 = _mm_add_epi8(t3, sign_bit);
417
0
  t3 = _mm_avg_epu8(t2, zero);
418
0
  t3 = _mm_sub_epi8(t3, k64);
419
420
0
  t3 = _mm_and_si128(not_hev, t3);   // if !hev
421
0
  *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
422
0
  *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
423
0
  FLIP_SIGN_BIT2(*p1, *q1);
424
0
}
425
426
// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
427
static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1,
428
                                       __m128i* const p0, __m128i* const q0,
429
                                       __m128i* const q1, __m128i* const q2,
430
                                       const __m128i* const mask,
431
0
                                       int hev_thresh) {
432
0
  const __m128i zero = _mm_setzero_si128();
433
0
  const __m128i sign_bit = _mm_set1_epi8((char)0x80);
434
0
  __m128i a, not_hev;
435
436
  // compute hev mask
437
0
  GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, &not_hev);
438
439
0
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
440
0
  FLIP_SIGN_BIT2(*p2, *q2);
441
0
  GetBaseDelta_SSE2(p1, p0, q0, q1, &a);
442
443
0
  { // do simple filter on pixels with hev
444
0
    const __m128i m = _mm_andnot_si128(not_hev, *mask);
445
0
    const __m128i f = _mm_and_si128(a, m);
446
0
    DoSimpleFilter_SSE2(p0, q0, &f);
447
0
  }
448
449
0
  { // do strong filter on pixels with not hev
450
0
    const __m128i k9 = _mm_set1_epi16(0x0900);
451
0
    const __m128i k63 = _mm_set1_epi16(63);
452
453
0
    const __m128i m = _mm_and_si128(not_hev, *mask);
454
0
    const __m128i f = _mm_and_si128(a, m);
455
456
0
    const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
457
0
    const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
458
459
0
    const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
460
0
    const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
461
462
0
    const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
463
0
    const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
464
465
0
    const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
466
0
    const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
467
468
0
    const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
469
0
    const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
470
471
0
    Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi);
472
0
    Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi);
473
0
    Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi);
474
0
  }
475
0
}
476
477
// reads 8 rows across a vertical edge.
478
static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride,
479
0
                                     __m128i* const p, __m128i* const q) {
480
  // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
481
  // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
482
0
  const __m128i A0 = _mm_set_epi32(
483
0
      WebPMemToInt32(&b[6 * stride]), WebPMemToInt32(&b[2 * stride]),
484
0
      WebPMemToInt32(&b[4 * stride]), WebPMemToInt32(&b[0 * stride]));
485
0
  const __m128i A1 = _mm_set_epi32(
486
0
      WebPMemToInt32(&b[7 * stride]), WebPMemToInt32(&b[3 * stride]),
487
0
      WebPMemToInt32(&b[5 * stride]), WebPMemToInt32(&b[1 * stride]));
488
489
  // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
490
  // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
491
0
  const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
492
0
  const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
493
494
  // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
495
  // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
496
0
  const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
497
0
  const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
498
499
  // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
500
  // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
501
0
  *p = _mm_unpacklo_epi32(C0, C1);
502
0
  *q = _mm_unpackhi_epi32(C0, C1);
503
0
}
504
505
static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0,
506
                                      const uint8_t* const r8,
507
                                      int stride,
508
                                      __m128i* const p1, __m128i* const p0,
509
0
                                      __m128i* const q0, __m128i* const q1) {
510
  // Assume the pixels around the edge (|) are numbered as follows
511
  //                00 01 | 02 03
512
  //                10 11 | 12 13
513
  //                 ...  |  ...
514
  //                e0 e1 | e2 e3
515
  //                f0 f1 | f2 f3
516
  //
517
  // r0 is pointing to the 0th row (00)
518
  // r8 is pointing to the 8th row (80)
519
520
  // Load
521
  // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
522
  // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
523
  // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
524
  // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
525
0
  Load8x4_SSE2(r0, stride, p1, q0);
526
0
  Load8x4_SSE2(r8, stride, p0, q1);
527
528
0
  {
529
    // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
530
    // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
531
    // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
532
    // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
533
0
    const __m128i t1 = *p1;
534
0
    const __m128i t2 = *q0;
535
0
    *p1 = _mm_unpacklo_epi64(t1, *p0);
536
0
    *p0 = _mm_unpackhi_epi64(t1, *p0);
537
0
    *q0 = _mm_unpacklo_epi64(t2, *q1);
538
0
    *q1 = _mm_unpackhi_epi64(t2, *q1);
539
0
  }
540
0
}
541
542
static WEBP_INLINE void Store4x4_SSE2(__m128i* const x,
543
0
                                      uint8_t* dst, int stride) {
544
0
  int i;
545
0
  for (i = 0; i < 4; ++i, dst += stride) {
546
0
    WebPInt32ToMem(dst, _mm_cvtsi128_si32(*x));
547
0
    *x = _mm_srli_si128(*x, 4);
548
0
  }
549
0
}
550
551
// Transpose back and store
552
static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1,
553
                                       const __m128i* const p0,
554
                                       const __m128i* const q0,
555
                                       const __m128i* const q1,
556
                                       uint8_t* r0, uint8_t* r8,
557
0
                                       int stride) {
558
0
  __m128i t1, p1_s, p0_s, q0_s, q1_s;
559
560
  // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
561
  // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
562
0
  t1 = *p0;
563
0
  p0_s = _mm_unpacklo_epi8(*p1, t1);
564
0
  p1_s = _mm_unpackhi_epi8(*p1, t1);
565
566
  // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
567
  // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
568
0
  t1 = *q0;
569
0
  q0_s = _mm_unpacklo_epi8(t1, *q1);
570
0
  q1_s = _mm_unpackhi_epi8(t1, *q1);
571
572
  // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
573
  // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
574
0
  t1 = p0_s;
575
0
  p0_s = _mm_unpacklo_epi16(t1, q0_s);
576
0
  q0_s = _mm_unpackhi_epi16(t1, q0_s);
577
578
  // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
579
  // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
580
0
  t1 = p1_s;
581
0
  p1_s = _mm_unpacklo_epi16(t1, q1_s);
582
0
  q1_s = _mm_unpackhi_epi16(t1, q1_s);
583
584
0
  Store4x4_SSE2(&p0_s, r0, stride);
585
0
  r0 += 4 * stride;
586
0
  Store4x4_SSE2(&q0_s, r0, stride);
587
588
0
  Store4x4_SSE2(&p1_s, r8, stride);
589
0
  r8 += 4 * stride;
590
0
  Store4x4_SSE2(&q1_s, r8, stride);
591
0
}
592
593
//------------------------------------------------------------------------------
594
// Simple In-loop filtering (Paragraph 15.2)
595
596
0
static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) {
597
  // Load
598
0
  __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
599
0
  __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
600
0
  __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
601
0
  __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
602
603
0
  DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
604
605
  // Store
606
0
  _mm_storeu_si128((__m128i*)&p[-stride], p0);
607
0
  _mm_storeu_si128((__m128i*)&p[0], q0);
608
0
}
609
610
0
static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) {
611
0
  __m128i p1, p0, q0, q1;
612
613
0
  p -= 2;  // beginning of p1
614
615
0
  Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
616
0
  DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh);
617
0
  Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
618
0
}
619
620
0
static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
621
0
  int k;
622
0
  for (k = 3; k > 0; --k) {
623
0
    p += 4 * stride;
624
0
    SimpleVFilter16_SSE2(p, stride, thresh);
625
0
  }
626
0
}
627
628
0
static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) {
629
0
  int k;
630
0
  for (k = 3; k > 0; --k) {
631
0
    p += 4;
632
0
    SimpleHFilter16_SSE2(p, stride, thresh);
633
0
  }
634
0
}
635
636
//------------------------------------------------------------------------------
637
// Complex In-loop filtering (Paragraph 15.3)
638
639
0
#define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
640
0
  (m) = MM_ABS(p1, p0);                                                        \
641
0
  (m) = _mm_max_epu8(m, MM_ABS(p3, p2));                                       \
642
0
  (m) = _mm_max_epu8(m, MM_ABS(p2, p1));                                       \
643
0
} while (0)
644
645
0
#define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
646
0
  (m) = _mm_max_epu8(m, MM_ABS(p1, p0));                                       \
647
0
  (m) = _mm_max_epu8(m, MM_ABS(p3, p2));                                       \
648
0
  (m) = _mm_max_epu8(m, MM_ABS(p2, p1));                                       \
649
0
} while (0)
650
651
0
#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) do {                          \
652
0
  (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]);                        \
653
0
  (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]);                        \
654
0
  (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]);                        \
655
0
  (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]);                        \
656
0
} while (0)
657
658
0
#define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
659
0
  const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
660
0
  const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
661
0
  (p) = _mm_unpacklo_epi64(U, V);                                              \
662
0
} while (0)
663
664
0
#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) do {                     \
665
0
  LOADUV_H_EDGE(e1, u, v, 0 * (stride));                                       \
666
0
  LOADUV_H_EDGE(e2, u, v, 1 * (stride));                                       \
667
0
  LOADUV_H_EDGE(e3, u, v, 2 * (stride));                                       \
668
0
  LOADUV_H_EDGE(e4, u, v, 3 * (stride));                                       \
669
0
} while (0)
670
671
0
#define STOREUV(p, u, v, stride) do {                                          \
672
0
  _mm_storel_epi64((__m128i*)&(u)[(stride)], p);                               \
673
0
  (p) = _mm_srli_si128(p, 8);                                                  \
674
0
  _mm_storel_epi64((__m128i*)&(v)[(stride)], p);                               \
675
0
} while (0)
676
677
static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1,
678
                                         const __m128i* const p0,
679
                                         const __m128i* const q0,
680
                                         const __m128i* const q1,
681
                                         int thresh, int ithresh,
682
0
                                         __m128i* const mask) {
683
0
  const __m128i it = _mm_set1_epi8(ithresh);
684
0
  const __m128i diff = _mm_subs_epu8(*mask, it);
685
0
  const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
686
0
  __m128i filter_mask;
687
0
  NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask);
688
0
  *mask = _mm_and_si128(thresh_mask, filter_mask);
689
0
}
690
691
// on macroblock edges
692
static void VFilter16_SSE2(uint8_t* p, int stride,
693
0
                           int thresh, int ithresh, int hev_thresh) {
694
0
  __m128i t1;
695
0
  __m128i mask;
696
0
  __m128i p2, p1, p0, q0, q1, q2;
697
698
  // Load p3, p2, p1, p0
699
0
  LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
700
0
  MAX_DIFF1(t1, p2, p1, p0, mask);
701
702
  // Load q0, q1, q2, q3
703
0
  LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
704
0
  MAX_DIFF2(t1, q2, q1, q0, mask);
705
706
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
707
0
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
708
709
  // Store
710
0
  _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
711
0
  _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
712
0
  _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
713
0
  _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
714
0
  _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
715
0
  _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
716
0
}
717
718
static void HFilter16_SSE2(uint8_t* p, int stride,
719
0
                           int thresh, int ithresh, int hev_thresh) {
720
0
  __m128i mask;
721
0
  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
722
723
0
  uint8_t* const b = p - 4;
724
0
  Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
725
0
  MAX_DIFF1(p3, p2, p1, p0, mask);
726
727
0
  Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
728
0
  MAX_DIFF2(q3, q2, q1, q0, mask);
729
730
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
731
0
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
732
733
0
  Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
734
0
  Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
735
0
}
736
737
// on three inner edges
738
static void VFilter16i_SSE2(uint8_t* p, int stride,
739
0
                            int thresh, int ithresh, int hev_thresh) {
740
0
  int k;
741
0
  __m128i p3, p2, p1, p0;   // loop invariants
742
743
0
  LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
744
745
0
  for (k = 3; k > 0; --k) {
746
0
    __m128i mask, tmp1, tmp2;
747
0
    uint8_t* const b = p + 2 * stride;   // beginning of p1
748
0
    p += 4 * stride;
749
750
0
    MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
751
0
    LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
752
0
    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
753
754
    // p3 and p2 are not just temporary variables here: they will be
755
    // re-used for next span. And q2/q3 will become p1/p0 accordingly.
756
0
    ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
757
0
    DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
758
759
    // Store
760
0
    _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
761
0
    _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
762
0
    _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
763
0
    _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
764
765
    // rotate samples
766
0
    p1 = tmp1;
767
0
    p0 = tmp2;
768
0
  }
769
0
}
770
771
static void HFilter16i_SSE2(uint8_t* p, int stride,
772
0
                            int thresh, int ithresh, int hev_thresh) {
773
0
  int k;
774
0
  __m128i p3, p2, p1, p0;   // loop invariants
775
776
0
  Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
777
778
0
  for (k = 3; k > 0; --k) {
779
0
    __m128i mask, tmp1, tmp2;
780
0
    uint8_t* const b = p + 2;   // beginning of p1
781
782
0
    p += 4;  // beginning of q0 (and next span)
783
784
0
    MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
785
0
    Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
786
0
    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
787
788
0
    ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
789
0
    DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh);
790
791
0
    Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
792
793
    // rotate samples
794
0
    p1 = tmp1;
795
0
    p0 = tmp2;
796
0
  }
797
0
}
798
799
// 8-pixels wide variant, for chroma filtering
800
static void VFilter8_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
801
0
                          int stride, int thresh, int ithresh, int hev_thresh) {
802
0
  __m128i mask;
803
0
  __m128i t1, p2, p1, p0, q0, q1, q2;
804
805
  // Load p3, p2, p1, p0
806
0
  LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
807
0
  MAX_DIFF1(t1, p2, p1, p0, mask);
808
809
  // Load q0, q1, q2, q3
810
0
  LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
811
0
  MAX_DIFF2(t1, q2, q1, q0, mask);
812
813
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
814
0
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
815
816
  // Store
817
0
  STOREUV(p2, u, v, -3 * stride);
818
0
  STOREUV(p1, u, v, -2 * stride);
819
0
  STOREUV(p0, u, v, -1 * stride);
820
0
  STOREUV(q0, u, v, 0 * stride);
821
0
  STOREUV(q1, u, v, 1 * stride);
822
0
  STOREUV(q2, u, v, 2 * stride);
823
0
}
824
825
static void HFilter8_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
826
0
                          int stride, int thresh, int ithresh, int hev_thresh) {
827
0
  __m128i mask;
828
0
  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
829
830
0
  uint8_t* const tu = u - 4;
831
0
  uint8_t* const tv = v - 4;
832
0
  Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0);
833
0
  MAX_DIFF1(p3, p2, p1, p0, mask);
834
835
0
  Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3);
836
0
  MAX_DIFF2(q3, q2, q1, q0, mask);
837
838
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
839
0
  DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
840
841
0
  Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride);
842
0
  Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride);
843
0
}
844
845
static void VFilter8i_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
846
                           int stride,
847
0
                           int thresh, int ithresh, int hev_thresh) {
848
0
  __m128i mask;
849
0
  __m128i t1, t2, p1, p0, q0, q1;
850
851
  // Load p3, p2, p1, p0
852
0
  LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
853
0
  MAX_DIFF1(t2, t1, p1, p0, mask);
854
855
0
  u += 4 * stride;
856
0
  v += 4 * stride;
857
858
  // Load q0, q1, q2, q3
859
0
  LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
860
0
  MAX_DIFF2(t2, t1, q1, q0, mask);
861
862
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
863
0
  DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
864
865
  // Store
866
0
  STOREUV(p1, u, v, -2 * stride);
867
0
  STOREUV(p0, u, v, -1 * stride);
868
0
  STOREUV(q0, u, v, 0 * stride);
869
0
  STOREUV(q1, u, v, 1 * stride);
870
0
}
871
872
static void HFilter8i_SSE2(uint8_t* WEBP_RESTRICT u, uint8_t* WEBP_RESTRICT v,
873
                           int stride,
874
0
                           int thresh, int ithresh, int hev_thresh) {
875
0
  __m128i mask;
876
0
  __m128i t1, t2, p1, p0, q0, q1;
877
0
  Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
878
0
  MAX_DIFF1(t2, t1, p1, p0, mask);
879
880
0
  u += 4;  // beginning of q0
881
0
  v += 4;
882
0
  Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
883
0
  MAX_DIFF2(t2, t1, q1, q0, mask);
884
885
0
  ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
886
0
  DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh);
887
888
0
  u -= 2;  // beginning of p1
889
0
  v -= 2;
890
0
  Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride);
891
0
}
892
893
//------------------------------------------------------------------------------
894
// 4x4 predictions
895
896
0
#define DST(x, y) dst[(x) + (y) * BPS]
897
0
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
898
899
// We use the following 8b-arithmetic tricks:
900
//     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
901
//   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
902
// and:
903
//     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
904
//   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
905
//   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
906
907
0
static void VE4_SSE2(uint8_t* dst) {    // vertical
908
0
  const __m128i one = _mm_set1_epi8(1);
909
0
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
910
0
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
911
0
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
912
0
  const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
913
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
914
0
  const __m128i b = _mm_subs_epu8(a, lsb);
915
0
  const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
916
0
  const int vals = _mm_cvtsi128_si32(avg);
917
0
  int i;
918
0
  for (i = 0; i < 4; ++i) {
919
0
    WebPInt32ToMem(dst + i * BPS, vals);
920
0
  }
921
0
}
922
923
0
static void LD4_SSE2(uint8_t* dst) {   // Down-Left
924
0
  const __m128i one = _mm_set1_epi8(1);
925
0
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
926
0
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
927
0
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
928
0
  const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
929
0
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
930
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
931
0
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
932
0
  const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
933
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
934
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
935
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
936
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
937
0
}
938
939
0
static void VR4_SSE2(uint8_t* dst) {   // Vertical-Right
940
0
  const __m128i one = _mm_set1_epi8(1);
941
0
  const int I = dst[-1 + 0 * BPS];
942
0
  const int J = dst[-1 + 1 * BPS];
943
0
  const int K = dst[-1 + 2 * BPS];
944
0
  const int X = dst[-1 - BPS];
945
0
  const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
946
0
  const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
947
0
  const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
948
0
  const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
949
0
  const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
950
0
  const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
951
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
952
0
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
953
0
  const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
954
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
955
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
956
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
957
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
958
959
  // these two are hard to implement in SSE2, so we keep the C-version:
960
0
  DST(0, 2) = AVG3(J, I, X);
961
0
  DST(0, 3) = AVG3(K, J, I);
962
0
}
963
964
0
static void VL4_SSE2(uint8_t* dst) {   // Vertical-Left
965
0
  const __m128i one = _mm_set1_epi8(1);
966
0
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
967
0
  const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
968
0
  const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
969
0
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
970
0
  const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
971
0
  const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
972
0
  const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
973
0
  const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
974
0
  const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
975
0
  const __m128i abbc = _mm_or_si128(ab, bc);
976
0
  const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
977
0
  const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
978
0
  const uint32_t extra_out =
979
0
      (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
980
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
981
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
982
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
983
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
984
985
  // these two are hard to get and irregular
986
0
  DST(3, 2) = (extra_out >> 0) & 0xff;
987
0
  DST(3, 3) = (extra_out >> 8) & 0xff;
988
0
}
989
990
0
static void RD4_SSE2(uint8_t* dst) {   // Down-right
991
0
  const __m128i one = _mm_set1_epi8(1);
992
0
  const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
993
0
  const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
994
0
  const uint32_t I = dst[-1 + 0 * BPS];
995
0
  const uint32_t J = dst[-1 + 1 * BPS];
996
0
  const uint32_t K = dst[-1 + 2 * BPS];
997
0
  const uint32_t L = dst[-1 + 3 * BPS];
998
0
  const __m128i LKJI_____ =
999
0
      _mm_cvtsi32_si128((int)(L | (K << 8) | (J << 16) | (I << 24)));
1000
0
  const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
1001
0
  const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
1002
0
  const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
1003
0
  const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
1004
0
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
1005
0
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
1006
0
  const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1007
0
  WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
1008
0
  WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1009
0
  WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1010
0
  WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1011
0
}
1012
1013
#undef DST
1014
#undef AVG3
1015
1016
//------------------------------------------------------------------------------
1017
// Luma 16x16
1018
1019
0
static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) {
1020
0
  const uint8_t* top = dst - BPS;
1021
0
  const __m128i zero = _mm_setzero_si128();
1022
0
  int y;
1023
0
  if (size == 4) {
1024
0
    const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1025
0
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1026
0
    for (y = 0; y < 4; ++y, dst += BPS) {
1027
0
      const int val = dst[-1] - top[-1];
1028
0
      const __m128i base = _mm_set1_epi16(val);
1029
0
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1030
0
      WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1031
0
    }
1032
0
  } else if (size == 8) {
1033
0
    const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1034
0
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1035
0
    for (y = 0; y < 8; ++y, dst += BPS) {
1036
0
      const int val = dst[-1] - top[-1];
1037
0
      const __m128i base = _mm_set1_epi16(val);
1038
0
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1039
0
      _mm_storel_epi64((__m128i*)dst, out);
1040
0
    }
1041
0
  } else {
1042
0
    const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1043
0
    const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1044
0
    const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1045
0
    for (y = 0; y < 16; ++y, dst += BPS) {
1046
0
      const int val = dst[-1] - top[-1];
1047
0
      const __m128i base = _mm_set1_epi16(val);
1048
0
      const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1049
0
      const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1050
0
      const __m128i out = _mm_packus_epi16(out_0, out_1);
1051
0
      _mm_storeu_si128((__m128i*)dst, out);
1052
0
    }
1053
0
  }
1054
0
}
1055
1056
0
static void TM4_SSE2(uint8_t* dst)   { TrueMotion_SSE2(dst, 4); }
1057
0
static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); }
1058
0
static void TM16_SSE2(uint8_t* dst)  { TrueMotion_SSE2(dst, 16); }
1059
1060
0
static void VE16_SSE2(uint8_t* dst) {
1061
0
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1062
0
  int j;
1063
0
  for (j = 0; j < 16; ++j) {
1064
0
    _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1065
0
  }
1066
0
}
1067
1068
0
static void HE16_SSE2(uint8_t* dst) {     // horizontal
1069
0
  int j;
1070
0
  for (j = 16; j > 0; --j) {
1071
0
    const __m128i values = _mm_set1_epi8((char)dst[-1]);
1072
0
    _mm_storeu_si128((__m128i*)dst, values);
1073
0
    dst += BPS;
1074
0
  }
1075
0
}
1076
1077
0
static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
1078
0
  int j;
1079
0
  const __m128i values = _mm_set1_epi8((char)v);
1080
0
  for (j = 0; j < 16; ++j) {
1081
0
    _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1082
0
  }
1083
0
}
1084
1085
0
static void DC16_SSE2(uint8_t* dst) {  // DC
1086
0
  const __m128i zero = _mm_setzero_si128();
1087
0
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1088
0
  const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1089
  // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1090
0
  const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1091
0
  int left = 0;
1092
0
  int j;
1093
0
  for (j = 0; j < 16; ++j) {
1094
0
    left += dst[-1 + j * BPS];
1095
0
  }
1096
0
  {
1097
0
    const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1098
0
    Put16_SSE2(DC >> 5, dst);
1099
0
  }
1100
0
}
1101
1102
0
static void DC16NoTop_SSE2(uint8_t* dst) {  // DC with top samples unavailable
1103
0
  int DC = 8;
1104
0
  int j;
1105
0
  for (j = 0; j < 16; ++j) {
1106
0
    DC += dst[-1 + j * BPS];
1107
0
  }
1108
0
  Put16_SSE2(DC >> 4, dst);
1109
0
}
1110
1111
0
static void DC16NoLeft_SSE2(uint8_t* dst) {  // DC with left samples unavailable
1112
0
  const __m128i zero = _mm_setzero_si128();
1113
0
  const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1114
0
  const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1115
  // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1116
0
  const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1117
0
  const int DC = _mm_cvtsi128_si32(sum) + 8;
1118
0
  Put16_SSE2(DC >> 4, dst);
1119
0
}
1120
1121
0
static void DC16NoTopLeft_SSE2(uint8_t* dst) {  // DC with no top & left samples
1122
0
  Put16_SSE2(0x80, dst);
1123
0
}
1124
1125
//------------------------------------------------------------------------------
1126
// Chroma
1127
1128
0
static void VE8uv_SSE2(uint8_t* dst) {    // vertical
1129
0
  int j;
1130
0
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1131
0
  for (j = 0; j < 8; ++j) {
1132
0
    _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1133
0
  }
1134
0
}
1135
1136
// helper for chroma-DC predictions
1137
0
static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
1138
0
  int j;
1139
0
  const __m128i values = _mm_set1_epi8((char)v);
1140
0
  for (j = 0; j < 8; ++j) {
1141
0
    _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1142
0
  }
1143
0
}
1144
1145
0
static void DC8uv_SSE2(uint8_t* dst) {     // DC
1146
0
  const __m128i zero = _mm_setzero_si128();
1147
0
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1148
0
  const __m128i sum = _mm_sad_epu8(top, zero);
1149
0
  int left = 0;
1150
0
  int j;
1151
0
  for (j = 0; j < 8; ++j) {
1152
0
    left += dst[-1 + j * BPS];
1153
0
  }
1154
0
  {
1155
0
    const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1156
0
    Put8x8uv_SSE2(DC >> 4, dst);
1157
0
  }
1158
0
}
1159
1160
0
static void DC8uvNoLeft_SSE2(uint8_t* dst) {   // DC with no left samples
1161
0
  const __m128i zero = _mm_setzero_si128();
1162
0
  const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1163
0
  const __m128i sum = _mm_sad_epu8(top, zero);
1164
0
  const int DC = _mm_cvtsi128_si32(sum) + 4;
1165
0
  Put8x8uv_SSE2(DC >> 3, dst);
1166
0
}
1167
1168
0
static void DC8uvNoTop_SSE2(uint8_t* dst) {  // DC with no top samples
1169
0
  int dc0 = 4;
1170
0
  int i;
1171
0
  for (i = 0; i < 8; ++i) {
1172
0
    dc0 += dst[-1 + i * BPS];
1173
0
  }
1174
0
  Put8x8uv_SSE2(dc0 >> 3, dst);
1175
0
}
1176
1177
0
static void DC8uvNoTopLeft_SSE2(uint8_t* dst) {    // DC with nothing
1178
0
  Put8x8uv_SSE2(0x80, dst);
1179
0
}
1180
1181
//------------------------------------------------------------------------------
1182
// Entry point
1183
1184
extern void VP8DspInitSSE2(void);
1185
1186
0
WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
1187
0
  VP8Transform = Transform_SSE2;
1188
#if (USE_TRANSFORM_AC3 == 1)
1189
  VP8TransformAC3 = TransformAC3_SSE2;
1190
#endif
1191
1192
0
  VP8VFilter16 = VFilter16_SSE2;
1193
0
  VP8HFilter16 = HFilter16_SSE2;
1194
0
  VP8VFilter8 = VFilter8_SSE2;
1195
0
  VP8HFilter8 = HFilter8_SSE2;
1196
0
  VP8VFilter16i = VFilter16i_SSE2;
1197
0
  VP8HFilter16i = HFilter16i_SSE2;
1198
0
  VP8VFilter8i = VFilter8i_SSE2;
1199
0
  VP8HFilter8i = HFilter8i_SSE2;
1200
1201
0
  VP8SimpleVFilter16 = SimpleVFilter16_SSE2;
1202
0
  VP8SimpleHFilter16 = SimpleHFilter16_SSE2;
1203
0
  VP8SimpleVFilter16i = SimpleVFilter16i_SSE2;
1204
0
  VP8SimpleHFilter16i = SimpleHFilter16i_SSE2;
1205
1206
0
  VP8PredLuma4[1] = TM4_SSE2;
1207
0
  VP8PredLuma4[2] = VE4_SSE2;
1208
0
  VP8PredLuma4[4] = RD4_SSE2;
1209
0
  VP8PredLuma4[5] = VR4_SSE2;
1210
0
  VP8PredLuma4[6] = LD4_SSE2;
1211
0
  VP8PredLuma4[7] = VL4_SSE2;
1212
1213
0
  VP8PredLuma16[0] = DC16_SSE2;
1214
0
  VP8PredLuma16[1] = TM16_SSE2;
1215
0
  VP8PredLuma16[2] = VE16_SSE2;
1216
0
  VP8PredLuma16[3] = HE16_SSE2;
1217
0
  VP8PredLuma16[4] = DC16NoTop_SSE2;
1218
0
  VP8PredLuma16[5] = DC16NoLeft_SSE2;
1219
0
  VP8PredLuma16[6] = DC16NoTopLeft_SSE2;
1220
1221
0
  VP8PredChroma8[0] = DC8uv_SSE2;
1222
0
  VP8PredChroma8[1] = TM8uv_SSE2;
1223
0
  VP8PredChroma8[2] = VE8uv_SSE2;
1224
0
  VP8PredChroma8[4] = DC8uvNoTop_SSE2;
1225
0
  VP8PredChroma8[5] = DC8uvNoLeft_SSE2;
1226
0
  VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2;
1227
0
}
1228
1229
#else  // !WEBP_USE_SSE2
1230
1231
WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1232
1233
#endif  // WEBP_USE_SSE2