Coverage Report

Created: 2025-06-13 06:49

/src/libwebp/src/dsp/enc_sse41.c
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2015 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// SSE4 version of some encoding functions.
11
//
12
// Author: Skal (pascal.massimino@gmail.com)
13
14
#include "src/dsp/dsp.h"
15
16
#if defined(WEBP_USE_SSE41)
17
#include <emmintrin.h>
18
#include <smmintrin.h>
19
20
#include <stdlib.h>  // for abs()
21
22
#include "src/dsp/common_sse2.h"
23
#include "src/dsp/cpu.h"
24
#include "src/enc/vp8i_enc.h"
25
#include "src/webp/types.h"
26
27
//------------------------------------------------------------------------------
28
// Compute susceptibility based on DCT-coeff histograms.
29
30
static void CollectHistogram_SSE41(const uint8_t* WEBP_RESTRICT ref,
31
                                   const uint8_t* WEBP_RESTRICT pred,
32
                                   int start_block, int end_block,
33
0
                                   VP8Histogram* WEBP_RESTRICT const histo) {
34
0
  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
35
0
  int j;
36
0
  int distribution[MAX_COEFF_THRESH + 1] = { 0 };
37
0
  for (j = start_block; j < end_block; ++j) {
38
0
    int16_t out[16];
39
0
    int k;
40
41
0
    VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
42
43
    // Convert coefficients to bin (within out[]).
44
0
    {
45
      // Load.
46
0
      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
47
0
      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
48
      // v = abs(out) >> 3
49
0
      const __m128i abs0 = _mm_abs_epi16(out0);
50
0
      const __m128i abs1 = _mm_abs_epi16(out1);
51
0
      const __m128i v0 = _mm_srai_epi16(abs0, 3);
52
0
      const __m128i v1 = _mm_srai_epi16(abs1, 3);
53
      // bin = min(v, MAX_COEFF_THRESH)
54
0
      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
55
0
      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
56
      // Store.
57
0
      _mm_storeu_si128((__m128i*)&out[0], bin0);
58
0
      _mm_storeu_si128((__m128i*)&out[8], bin1);
59
0
    }
60
61
    // Convert coefficients to bin.
62
0
    for (k = 0; k < 16; ++k) {
63
0
      ++distribution[out[k]];
64
0
    }
65
0
  }
66
0
  VP8SetHistogramData(distribution, histo);
67
0
}
68
69
//------------------------------------------------------------------------------
70
// Texture distortion
71
//
72
// We try to match the spectral content (weighted) between source and
73
// reconstructed samples.
74
75
// Hadamard transform
76
// Returns the weighted sum of the absolute value of transformed coefficients.
77
// w[] contains a row-major 4 by 4 symmetric matrix.
78
static int TTransform_SSE41(const uint8_t* inA, const uint8_t* inB,
79
0
                            const uint16_t* const w) {
80
0
  int32_t sum[4];
81
0
  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
82
83
  // Load and combine inputs.
84
0
  {
85
0
    const __m128i inA_0 = _mm_loadu_si128((const __m128i*)&inA[BPS * 0]);
86
0
    const __m128i inA_1 = _mm_loadu_si128((const __m128i*)&inA[BPS * 1]);
87
0
    const __m128i inA_2 = _mm_loadu_si128((const __m128i*)&inA[BPS * 2]);
88
    // In SSE4.1, with gcc 4.8 at least (maybe other versions),
89
    // _mm_loadu_si128 is faster than _mm_loadl_epi64. But for the last lump
90
    // of inA and inB, _mm_loadl_epi64 is still used not to have an out of
91
    // bound read.
92
0
    const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
93
0
    const __m128i inB_0 = _mm_loadu_si128((const __m128i*)&inB[BPS * 0]);
94
0
    const __m128i inB_1 = _mm_loadu_si128((const __m128i*)&inB[BPS * 1]);
95
0
    const __m128i inB_2 = _mm_loadu_si128((const __m128i*)&inB[BPS * 2]);
96
0
    const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
97
98
    // Combine inA and inB (we'll do two transforms in parallel).
99
0
    const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
100
0
    const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
101
0
    const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
102
0
    const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
103
0
    tmp_0 = _mm_cvtepu8_epi16(inAB_0);
104
0
    tmp_1 = _mm_cvtepu8_epi16(inAB_1);
105
0
    tmp_2 = _mm_cvtepu8_epi16(inAB_2);
106
0
    tmp_3 = _mm_cvtepu8_epi16(inAB_3);
107
    // a00 a01 a02 a03   b00 b01 b02 b03
108
    // a10 a11 a12 a13   b10 b11 b12 b13
109
    // a20 a21 a22 a23   b20 b21 b22 b23
110
    // a30 a31 a32 a33   b30 b31 b32 b33
111
0
  }
112
113
  // Vertical pass first to avoid a transpose (vertical and horizontal passes
114
  // are commutative because w/kWeightY is symmetric) and subsequent transpose.
115
0
  {
116
    // Calculate a and b (two 4x4 at once).
117
0
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
118
0
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
119
0
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
120
0
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
121
0
    const __m128i b0 = _mm_add_epi16(a0, a1);
122
0
    const __m128i b1 = _mm_add_epi16(a3, a2);
123
0
    const __m128i b2 = _mm_sub_epi16(a3, a2);
124
0
    const __m128i b3 = _mm_sub_epi16(a0, a1);
125
    // a00 a01 a02 a03   b00 b01 b02 b03
126
    // a10 a11 a12 a13   b10 b11 b12 b13
127
    // a20 a21 a22 a23   b20 b21 b22 b23
128
    // a30 a31 a32 a33   b30 b31 b32 b33
129
130
    // Transpose the two 4x4.
131
0
    VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
132
0
  }
133
134
  // Horizontal pass and difference of weighted sums.
135
0
  {
136
    // Load all inputs.
137
0
    const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
138
0
    const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
139
140
    // Calculate a and b (two 4x4 at once).
141
0
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
142
0
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
143
0
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
144
0
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
145
0
    const __m128i b0 = _mm_add_epi16(a0, a1);
146
0
    const __m128i b1 = _mm_add_epi16(a3, a2);
147
0
    const __m128i b2 = _mm_sub_epi16(a3, a2);
148
0
    const __m128i b3 = _mm_sub_epi16(a0, a1);
149
150
    // Separate the transforms of inA and inB.
151
0
    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
152
0
    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
153
0
    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
154
0
    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
155
156
0
    A_b0 = _mm_abs_epi16(A_b0);
157
0
    A_b2 = _mm_abs_epi16(A_b2);
158
0
    B_b0 = _mm_abs_epi16(B_b0);
159
0
    B_b2 = _mm_abs_epi16(B_b2);
160
161
    // weighted sums
162
0
    A_b0 = _mm_madd_epi16(A_b0, w_0);
163
0
    A_b2 = _mm_madd_epi16(A_b2, w_8);
164
0
    B_b0 = _mm_madd_epi16(B_b0, w_0);
165
0
    B_b2 = _mm_madd_epi16(B_b2, w_8);
166
0
    A_b0 = _mm_add_epi32(A_b0, A_b2);
167
0
    B_b0 = _mm_add_epi32(B_b0, B_b2);
168
169
    // difference of weighted sums
170
0
    A_b2 = _mm_sub_epi32(A_b0, B_b0);
171
0
    _mm_storeu_si128((__m128i*)&sum[0], A_b2);
172
0
  }
173
0
  return sum[0] + sum[1] + sum[2] + sum[3];
174
0
}
175
176
static int Disto4x4_SSE41(const uint8_t* WEBP_RESTRICT const a,
177
                          const uint8_t* WEBP_RESTRICT const b,
178
0
                          const uint16_t* WEBP_RESTRICT const w) {
179
0
  const int diff_sum = TTransform_SSE41(a, b, w);
180
0
  return abs(diff_sum) >> 5;
181
0
}
182
183
static int Disto16x16_SSE41(const uint8_t* WEBP_RESTRICT const a,
184
                            const uint8_t* WEBP_RESTRICT const b,
185
0
                            const uint16_t* WEBP_RESTRICT const w) {
186
0
  int D = 0;
187
0
  int x, y;
188
0
  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
189
0
    for (x = 0; x < 16; x += 4) {
190
0
      D += Disto4x4_SSE41(a + x + y, b + x + y, w);
191
0
    }
192
0
  }
193
0
  return D;
194
0
}
195
196
//------------------------------------------------------------------------------
197
// Quantization
198
//
199
200
// Generates a pshufb constant for shuffling 16b words.
201
#define PSHUFB_CST(A,B,C,D,E,F,G,H) \
202
0
  _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \
203
0
               2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \
204
0
               2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \
205
0
               2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0)
206
207
static WEBP_INLINE int DoQuantizeBlock_SSE41(int16_t in[16], int16_t out[16],
208
                                             const uint16_t* const sharpen,
209
0
                                             const VP8Matrix* const mtx) {
210
0
  const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
211
0
  const __m128i zero = _mm_setzero_si128();
212
0
  __m128i out0, out8;
213
0
  __m128i packed_out;
214
215
  // Load all inputs.
216
0
  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
217
0
  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
218
0
  const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq[0]);
219
0
  const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq[8]);
220
0
  const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q[0]);
221
0
  const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q[8]);
222
223
  // coeff = abs(in)
224
0
  __m128i coeff0 = _mm_abs_epi16(in0);
225
0
  __m128i coeff8 = _mm_abs_epi16(in8);
226
227
  // coeff = abs(in) + sharpen
228
0
  if (sharpen != NULL) {
229
0
    const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
230
0
    const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
231
0
    coeff0 = _mm_add_epi16(coeff0, sharpen0);
232
0
    coeff8 = _mm_add_epi16(coeff8, sharpen8);
233
0
  }
234
235
  // out = (coeff * iQ + B) >> QFIX
236
0
  {
237
    // doing calculations with 32b precision (QFIX=17)
238
    // out = (coeff * iQ)
239
0
    const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
240
0
    const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
241
0
    const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
242
0
    const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
243
0
    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
244
0
    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
245
0
    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
246
0
    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
247
    // out = (coeff * iQ + B)
248
0
    const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias[0]);
249
0
    const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias[4]);
250
0
    const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias[8]);
251
0
    const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias[12]);
252
0
    out_00 = _mm_add_epi32(out_00, bias_00);
253
0
    out_04 = _mm_add_epi32(out_04, bias_04);
254
0
    out_08 = _mm_add_epi32(out_08, bias_08);
255
0
    out_12 = _mm_add_epi32(out_12, bias_12);
256
    // out = QUANTDIV(coeff, iQ, B, QFIX)
257
0
    out_00 = _mm_srai_epi32(out_00, QFIX);
258
0
    out_04 = _mm_srai_epi32(out_04, QFIX);
259
0
    out_08 = _mm_srai_epi32(out_08, QFIX);
260
0
    out_12 = _mm_srai_epi32(out_12, QFIX);
261
262
    // pack result as 16b
263
0
    out0 = _mm_packs_epi32(out_00, out_04);
264
0
    out8 = _mm_packs_epi32(out_08, out_12);
265
266
    // if (coeff > 2047) coeff = 2047
267
0
    out0 = _mm_min_epi16(out0, max_coeff_2047);
268
0
    out8 = _mm_min_epi16(out8, max_coeff_2047);
269
0
  }
270
271
  // put sign back
272
0
  out0 = _mm_sign_epi16(out0, in0);
273
0
  out8 = _mm_sign_epi16(out8, in8);
274
275
  // in = out * Q
276
0
  in0 = _mm_mullo_epi16(out0, q0);
277
0
  in8 = _mm_mullo_epi16(out8, q8);
278
279
0
  _mm_storeu_si128((__m128i*)&in[0], in0);
280
0
  _mm_storeu_si128((__m128i*)&in[8], in8);
281
282
  // zigzag the output before storing it. The re-ordering is:
283
  //    0 1 2 3 4 5 6 7 | 8  9 10 11 12 13 14 15
284
  // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15
285
  // There's only two misplaced entries ([8] and [7]) that are crossing the
286
  // reg's boundaries.
287
  // We use pshufb instead of pshuflo/pshufhi.
288
0
  {
289
0
    const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6);
290
0
    const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1);
291
0
    const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo);
292
0
    const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7);  // extract #7
293
0
    const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7);
294
0
    const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1);
295
0
    const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi);
296
0
    const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8);  // extract #8
297
0
    const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8);
298
0
    const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7);
299
0
    _mm_storeu_si128((__m128i*)&out[0], out_z0);
300
0
    _mm_storeu_si128((__m128i*)&out[8], out_z8);
301
0
    packed_out = _mm_packs_epi16(out_z0, out_z8);
302
0
  }
303
304
  // detect if all 'out' values are zeroes or not
305
0
  return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
306
0
}
307
308
#undef PSHUFB_CST
309
310
static int QuantizeBlock_SSE41(int16_t in[16], int16_t out[16],
311
0
                               const VP8Matrix* WEBP_RESTRICT const mtx) {
312
0
  return DoQuantizeBlock_SSE41(in, out, &mtx->sharpen[0], mtx);
313
0
}
314
315
static int QuantizeBlockWHT_SSE41(int16_t in[16], int16_t out[16],
316
0
                                  const VP8Matrix* WEBP_RESTRICT const mtx) {
317
0
  return DoQuantizeBlock_SSE41(in, out, NULL, mtx);
318
0
}
319
320
static int Quantize2Blocks_SSE41(int16_t in[32], int16_t out[32],
321
0
                                 const VP8Matrix* WEBP_RESTRICT const mtx) {
322
0
  int nz;
323
0
  const uint16_t* const sharpen = &mtx->sharpen[0];
324
0
  nz  = DoQuantizeBlock_SSE41(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
325
0
  nz |= DoQuantizeBlock_SSE41(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
326
0
  return nz;
327
0
}
328
329
//------------------------------------------------------------------------------
330
// Entry point
331
332
extern void VP8EncDspInitSSE41(void);
333
0
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) {
334
0
  VP8CollectHistogram = CollectHistogram_SSE41;
335
0
  VP8EncQuantizeBlock = QuantizeBlock_SSE41;
336
0
  VP8EncQuantize2Blocks = Quantize2Blocks_SSE41;
337
0
  VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE41;
338
0
  VP8TDisto4x4 = Disto4x4_SSE41;
339
0
  VP8TDisto16x16 = Disto16x16_SSE41;
340
0
}
341
342
#else  // !WEBP_USE_SSE41
343
344
WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41)
345
346
#endif  // WEBP_USE_SSE41