/src/libwebp/src/enc/analysis_enc.c
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2011 Google Inc. All Rights Reserved. |
2 | | // |
3 | | // Use of this source code is governed by a BSD-style license |
4 | | // that can be found in the COPYING file in the root of the source |
5 | | // tree. An additional intellectual property rights grant can be found |
6 | | // in the file PATENTS. All contributing project authors may |
7 | | // be found in the AUTHORS file in the root of the source tree. |
8 | | // ----------------------------------------------------------------------------- |
9 | | // |
10 | | // Macroblock analysis |
11 | | // |
12 | | // Author: Skal (pascal.massimino@gmail.com) |
13 | | |
14 | | #include <assert.h> |
15 | | #include <stdlib.h> |
16 | | #include <string.h> |
17 | | |
18 | | #include "src/dec/common_dec.h" |
19 | | #include "src/dsp/dsp.h" |
20 | | #include "src/enc/vp8i_enc.h" |
21 | | #include "src/utils/thread_utils.h" |
22 | | #include "src/utils/utils.h" |
23 | | #include "src/webp/encode.h" |
24 | | #include "src/webp/types.h" |
25 | | |
26 | 0 | #define MAX_ITERS_K_MEANS 6 |
27 | | |
28 | | //------------------------------------------------------------------------------ |
29 | | // Smooth the segment map by replacing isolated block by the majority of its |
30 | | // neighbours. |
31 | | |
32 | 0 | static void SmoothSegmentMap(VP8Encoder* const enc) { |
33 | 0 | int n, x, y; |
34 | 0 | const int w = enc->mb_w; |
35 | 0 | const int h = enc->mb_h; |
36 | 0 | const int majority_cnt_3_x_3_grid = 5; |
37 | 0 | uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp)); |
38 | 0 | assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec |
39 | | |
40 | 0 | if (tmp == NULL) return; |
41 | 0 | for (y = 1; y < h - 1; ++y) { |
42 | 0 | for (x = 1; x < w - 1; ++x) { |
43 | 0 | int cnt[NUM_MB_SEGMENTS] = { 0 }; |
44 | 0 | const VP8MBInfo* const mb = &enc->mb_info[x + w * y]; |
45 | 0 | int majority_seg = mb->segment; |
46 | | // Check the 8 neighbouring segment values. |
47 | 0 | cnt[mb[-w - 1].segment]++; // top-left |
48 | 0 | cnt[mb[-w + 0].segment]++; // top |
49 | 0 | cnt[mb[-w + 1].segment]++; // top-right |
50 | 0 | cnt[mb[ - 1].segment]++; // left |
51 | 0 | cnt[mb[ + 1].segment]++; // right |
52 | 0 | cnt[mb[ w - 1].segment]++; // bottom-left |
53 | 0 | cnt[mb[ w + 0].segment]++; // bottom |
54 | 0 | cnt[mb[ w + 1].segment]++; // bottom-right |
55 | 0 | for (n = 0; n < NUM_MB_SEGMENTS; ++n) { |
56 | 0 | if (cnt[n] >= majority_cnt_3_x_3_grid) { |
57 | 0 | majority_seg = n; |
58 | 0 | break; |
59 | 0 | } |
60 | 0 | } |
61 | 0 | tmp[x + y * w] = majority_seg; |
62 | 0 | } |
63 | 0 | } |
64 | 0 | for (y = 1; y < h - 1; ++y) { |
65 | 0 | for (x = 1; x < w - 1; ++x) { |
66 | 0 | VP8MBInfo* const mb = &enc->mb_info[x + w * y]; |
67 | 0 | mb->segment = tmp[x + y * w]; |
68 | 0 | } |
69 | 0 | } |
70 | 0 | WebPSafeFree(tmp); |
71 | 0 | } |
72 | | |
73 | | //------------------------------------------------------------------------------ |
74 | | // set segment susceptibility 'alpha' / 'beta' |
75 | | |
76 | 0 | static WEBP_INLINE int clip(int v, int m, int M) { |
77 | 0 | return (v < m) ? m : (v > M) ? M : v; |
78 | 0 | } |
79 | | |
80 | | static void SetSegmentAlphas(VP8Encoder* const enc, |
81 | | const int centers[NUM_MB_SEGMENTS], |
82 | 0 | int mid) { |
83 | 0 | const int nb = enc->segment_hdr.num_segments; |
84 | 0 | int min = centers[0], max = centers[0]; |
85 | 0 | int n; |
86 | |
|
87 | 0 | if (nb > 1) { |
88 | 0 | for (n = 0; n < nb; ++n) { |
89 | 0 | if (min > centers[n]) min = centers[n]; |
90 | 0 | if (max < centers[n]) max = centers[n]; |
91 | 0 | } |
92 | 0 | } |
93 | 0 | if (max == min) max = min + 1; |
94 | 0 | assert(mid <= max && mid >= min); |
95 | 0 | for (n = 0; n < nb; ++n) { |
96 | 0 | const int alpha = 255 * (centers[n] - mid) / (max - min); |
97 | 0 | const int beta = 255 * (centers[n] - min) / (max - min); |
98 | 0 | enc->dqm[n].alpha = clip(alpha, -127, 127); |
99 | 0 | enc->dqm[n].beta = clip(beta, 0, 255); |
100 | 0 | } |
101 | 0 | } |
102 | | |
103 | | //------------------------------------------------------------------------------ |
104 | | // Compute susceptibility based on DCT-coeff histograms: |
105 | | // the higher, the "easier" the macroblock is to compress. |
106 | | |
107 | 0 | #define MAX_ALPHA 255 // 8b of precision for susceptibilities. |
108 | 0 | #define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha. |
109 | 0 | #define DEFAULT_ALPHA (-1) |
110 | 0 | #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha)) |
111 | | |
112 | 0 | static int FinalAlphaValue(int alpha) { |
113 | 0 | alpha = MAX_ALPHA - alpha; |
114 | 0 | return clip(alpha, 0, MAX_ALPHA); |
115 | 0 | } |
116 | | |
117 | 0 | static int GetAlpha(const VP8Histogram* const histo) { |
118 | | // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer |
119 | | // values which happen to be mostly noise. This leaves the maximum precision |
120 | | // for handling the useful small values which contribute most. |
121 | 0 | const int max_value = histo->max_value; |
122 | 0 | const int last_non_zero = histo->last_non_zero; |
123 | 0 | const int alpha = |
124 | 0 | (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0; |
125 | 0 | return alpha; |
126 | 0 | } |
127 | | |
128 | 0 | static void InitHistogram(VP8Histogram* const histo) { |
129 | 0 | histo->max_value = 0; |
130 | 0 | histo->last_non_zero = 1; |
131 | 0 | } |
132 | | |
133 | | //------------------------------------------------------------------------------ |
134 | | // Simplified k-Means, to assign Nb segments based on alpha-histogram |
135 | | |
136 | | static void AssignSegments(VP8Encoder* const enc, |
137 | 0 | const int alphas[MAX_ALPHA + 1]) { |
138 | | // 'num_segments' is previously validated and <= NUM_MB_SEGMENTS, but an |
139 | | // explicit check is needed to avoid spurious warning about 'n + 1' exceeding |
140 | | // array bounds of 'centers' with some compilers (noticed with gcc-4.9). |
141 | 0 | const int nb = (enc->segment_hdr.num_segments < NUM_MB_SEGMENTS) ? |
142 | 0 | enc->segment_hdr.num_segments : NUM_MB_SEGMENTS; |
143 | 0 | int centers[NUM_MB_SEGMENTS]; |
144 | 0 | int weighted_average = 0; |
145 | 0 | int map[MAX_ALPHA + 1]; |
146 | 0 | int a, n, k; |
147 | 0 | int min_a = 0, max_a = MAX_ALPHA, range_a; |
148 | | // 'int' type is ok for histo, and won't overflow |
149 | 0 | int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; |
150 | |
|
151 | 0 | assert(nb >= 1); |
152 | 0 | assert(nb <= NUM_MB_SEGMENTS); |
153 | | |
154 | | // bracket the input |
155 | 0 | for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {} |
156 | 0 | min_a = n; |
157 | 0 | for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {} |
158 | 0 | max_a = n; |
159 | 0 | range_a = max_a - min_a; |
160 | | |
161 | | // Spread initial centers evenly |
162 | 0 | for (k = 0, n = 1; k < nb; ++k, n += 2) { |
163 | 0 | assert(n < 2 * nb); |
164 | 0 | centers[k] = min_a + (n * range_a) / (2 * nb); |
165 | 0 | } |
166 | | |
167 | 0 | for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough |
168 | 0 | int total_weight; |
169 | 0 | int displaced; |
170 | | // Reset stats |
171 | 0 | for (n = 0; n < nb; ++n) { |
172 | 0 | accum[n] = 0; |
173 | 0 | dist_accum[n] = 0; |
174 | 0 | } |
175 | | // Assign nearest center for each 'a' |
176 | 0 | n = 0; // track the nearest center for current 'a' |
177 | 0 | for (a = min_a; a <= max_a; ++a) { |
178 | 0 | if (alphas[a]) { |
179 | 0 | while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) { |
180 | 0 | n++; |
181 | 0 | } |
182 | 0 | map[a] = n; |
183 | | // accumulate contribution into best centroid |
184 | 0 | dist_accum[n] += a * alphas[a]; |
185 | 0 | accum[n] += alphas[a]; |
186 | 0 | } |
187 | 0 | } |
188 | | // All point are classified. Move the centroids to the |
189 | | // center of their respective cloud. |
190 | 0 | displaced = 0; |
191 | 0 | weighted_average = 0; |
192 | 0 | total_weight = 0; |
193 | 0 | for (n = 0; n < nb; ++n) { |
194 | 0 | if (accum[n]) { |
195 | 0 | const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n]; |
196 | 0 | displaced += abs(centers[n] - new_center); |
197 | 0 | centers[n] = new_center; |
198 | 0 | weighted_average += new_center * accum[n]; |
199 | 0 | total_weight += accum[n]; |
200 | 0 | } |
201 | 0 | } |
202 | 0 | weighted_average = (weighted_average + total_weight / 2) / total_weight; |
203 | 0 | if (displaced < 5) break; // no need to keep on looping... |
204 | 0 | } |
205 | | |
206 | | // Map each original value to the closest centroid |
207 | 0 | for (n = 0; n < enc->mb_w * enc->mb_h; ++n) { |
208 | 0 | VP8MBInfo* const mb = &enc->mb_info[n]; |
209 | 0 | const int alpha = mb->alpha; |
210 | 0 | mb->segment = map[alpha]; |
211 | 0 | mb->alpha = centers[map[alpha]]; // for the record. |
212 | 0 | } |
213 | |
|
214 | 0 | if (nb > 1) { |
215 | 0 | const int smooth = (enc->config->preprocessing & 1); |
216 | 0 | if (smooth) SmoothSegmentMap(enc); |
217 | 0 | } |
218 | |
|
219 | 0 | SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas. |
220 | 0 | } |
221 | | |
222 | | //------------------------------------------------------------------------------ |
223 | | // Macroblock analysis: collect histogram for each mode, deduce the maximal |
224 | | // susceptibility and set best modes for this macroblock. |
225 | | // Segment assignment is done later. |
226 | | |
227 | | // Number of modes to inspect for 'alpha' evaluation. We don't need to test all |
228 | | // the possible modes during the analysis phase: we risk falling into a local |
229 | | // optimum, or be subject to boundary effect |
230 | 0 | #define MAX_INTRA16_MODE 2 |
231 | | #define MAX_INTRA4_MODE 2 |
232 | 0 | #define MAX_UV_MODE 2 |
233 | | |
234 | 0 | static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { |
235 | 0 | const int max_mode = MAX_INTRA16_MODE; |
236 | 0 | int mode; |
237 | 0 | int best_alpha = DEFAULT_ALPHA; |
238 | 0 | int best_mode = 0; |
239 | |
|
240 | 0 | VP8MakeLuma16Preds(it); |
241 | 0 | for (mode = 0; mode < max_mode; ++mode) { |
242 | 0 | VP8Histogram histo; |
243 | 0 | int alpha; |
244 | |
|
245 | 0 | InitHistogram(&histo); |
246 | 0 | VP8CollectHistogram(it->yuv_in + Y_OFF_ENC, |
247 | 0 | it->yuv_p + VP8I16ModeOffsets[mode], |
248 | 0 | 0, 16, &histo); |
249 | 0 | alpha = GetAlpha(&histo); |
250 | 0 | if (IS_BETTER_ALPHA(alpha, best_alpha)) { |
251 | 0 | best_alpha = alpha; |
252 | 0 | best_mode = mode; |
253 | 0 | } |
254 | 0 | } |
255 | 0 | VP8SetIntra16Mode(it, best_mode); |
256 | 0 | return best_alpha; |
257 | 0 | } |
258 | | |
259 | 0 | static int FastMBAnalyze(VP8EncIterator* const it) { |
260 | | // Empirical cut-off value, should be around 16 (~=block size). We use the |
261 | | // [8-17] range and favor intra4 at high quality, intra16 for low quality. |
262 | 0 | const int q = (int)it->enc->config->quality; |
263 | 0 | const uint32_t kThreshold = 8 + (17 - 8) * q / 100; |
264 | 0 | int k; |
265 | 0 | uint32_t dc[16], m, m2; |
266 | 0 | for (k = 0; k < 16; k += 4) { |
267 | 0 | VP8Mean16x4(it->yuv_in + Y_OFF_ENC + k * BPS, &dc[k]); |
268 | 0 | } |
269 | 0 | for (m = 0, m2 = 0, k = 0; k < 16; ++k) { |
270 | 0 | m += dc[k]; |
271 | 0 | m2 += dc[k] * dc[k]; |
272 | 0 | } |
273 | 0 | if (kThreshold * m2 < m * m) { |
274 | 0 | VP8SetIntra16Mode(it, 0); // DC16 |
275 | 0 | } else { |
276 | 0 | const uint8_t modes[16] = { 0 }; // DC4 |
277 | 0 | VP8SetIntra4Mode(it, modes); |
278 | 0 | } |
279 | 0 | return 0; |
280 | 0 | } |
281 | | |
282 | 0 | static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { |
283 | 0 | int best_alpha = DEFAULT_ALPHA; |
284 | 0 | int smallest_alpha = 0; |
285 | 0 | int best_mode = 0; |
286 | 0 | const int max_mode = MAX_UV_MODE; |
287 | 0 | int mode; |
288 | |
|
289 | 0 | VP8MakeChroma8Preds(it); |
290 | 0 | for (mode = 0; mode < max_mode; ++mode) { |
291 | 0 | VP8Histogram histo; |
292 | 0 | int alpha; |
293 | 0 | InitHistogram(&histo); |
294 | 0 | VP8CollectHistogram(it->yuv_in + U_OFF_ENC, |
295 | 0 | it->yuv_p + VP8UVModeOffsets[mode], |
296 | 0 | 16, 16 + 4 + 4, &histo); |
297 | 0 | alpha = GetAlpha(&histo); |
298 | 0 | if (IS_BETTER_ALPHA(alpha, best_alpha)) { |
299 | 0 | best_alpha = alpha; |
300 | 0 | } |
301 | | // The best prediction mode tends to be the one with the smallest alpha. |
302 | 0 | if (mode == 0 || alpha < smallest_alpha) { |
303 | 0 | smallest_alpha = alpha; |
304 | 0 | best_mode = mode; |
305 | 0 | } |
306 | 0 | } |
307 | 0 | VP8SetIntraUVMode(it, best_mode); |
308 | 0 | return best_alpha; |
309 | 0 | } |
310 | | |
311 | | static void MBAnalyze(VP8EncIterator* const it, |
312 | | int alphas[MAX_ALPHA + 1], |
313 | 0 | int* const alpha, int* const uv_alpha) { |
314 | 0 | const VP8Encoder* const enc = it->enc; |
315 | 0 | int best_alpha, best_uv_alpha; |
316 | |
|
317 | 0 | VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED |
318 | 0 | VP8SetSkip(it, 0); // not skipped |
319 | 0 | VP8SetSegment(it, 0); // default segment, spec-wise. |
320 | |
|
321 | 0 | if (enc->method <= 1) { |
322 | 0 | best_alpha = FastMBAnalyze(it); |
323 | 0 | } else { |
324 | 0 | best_alpha = MBAnalyzeBestIntra16Mode(it); |
325 | 0 | } |
326 | 0 | best_uv_alpha = MBAnalyzeBestUVMode(it); |
327 | | |
328 | | // Final susceptibility mix |
329 | 0 | best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2; |
330 | 0 | best_alpha = FinalAlphaValue(best_alpha); |
331 | 0 | alphas[best_alpha]++; |
332 | 0 | it->mb->alpha = best_alpha; // for later remapping. |
333 | | |
334 | | // Accumulate for later complexity analysis. |
335 | 0 | *alpha += best_alpha; // mixed susceptibility (not just luma) |
336 | 0 | *uv_alpha += best_uv_alpha; |
337 | 0 | } |
338 | | |
339 | 0 | static void DefaultMBInfo(VP8MBInfo* const mb) { |
340 | 0 | mb->type = 1; // I16x16 |
341 | 0 | mb->uv_mode = 0; |
342 | 0 | mb->skip = 0; // not skipped |
343 | 0 | mb->segment = 0; // default segment |
344 | 0 | mb->alpha = 0; |
345 | 0 | } |
346 | | |
347 | | //------------------------------------------------------------------------------ |
348 | | // Main analysis loop: |
349 | | // Collect all susceptibilities for each macroblock and record their |
350 | | // distribution in alphas[]. Segments is assigned a-posteriori, based on |
351 | | // this histogram. |
352 | | // We also pick an intra16 prediction mode, which shouldn't be considered |
353 | | // final except for fast-encode settings. We can also pick some intra4 modes |
354 | | // and decide intra4/intra16, but that's usually almost always a bad choice at |
355 | | // this stage. |
356 | | |
357 | 0 | static void ResetAllMBInfo(VP8Encoder* const enc) { |
358 | 0 | int n; |
359 | 0 | for (n = 0; n < enc->mb_w * enc->mb_h; ++n) { |
360 | 0 | DefaultMBInfo(&enc->mb_info[n]); |
361 | 0 | } |
362 | | // Default susceptibilities. |
363 | 0 | enc->dqm[0].alpha = 0; |
364 | 0 | enc->dqm[0].beta = 0; |
365 | | // Note: we can't compute this 'alpha' / 'uv_alpha' -> set to default value. |
366 | 0 | enc->alpha = 0; |
367 | 0 | enc->uv_alpha = 0; |
368 | 0 | WebPReportProgress(enc->pic, enc->percent + 20, &enc->percent); |
369 | 0 | } |
370 | | |
371 | | // struct used to collect job result |
372 | | typedef struct { |
373 | | WebPWorker worker; |
374 | | int alphas[MAX_ALPHA + 1]; |
375 | | int alpha, uv_alpha; |
376 | | VP8EncIterator it; |
377 | | int delta_progress; |
378 | | } SegmentJob; |
379 | | |
380 | | // main work call |
381 | 0 | static int DoSegmentsJob(void* arg1, void* arg2) { |
382 | 0 | SegmentJob* const job = (SegmentJob*)arg1; |
383 | 0 | VP8EncIterator* const it = (VP8EncIterator*)arg2; |
384 | 0 | int ok = 1; |
385 | 0 | if (!VP8IteratorIsDone(it)) { |
386 | 0 | uint8_t tmp[32 + WEBP_ALIGN_CST]; |
387 | 0 | uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp); |
388 | 0 | do { |
389 | | // Let's pretend we have perfect lossless reconstruction. |
390 | 0 | VP8IteratorImport(it, scratch); |
391 | 0 | MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha); |
392 | 0 | ok = VP8IteratorProgress(it, job->delta_progress); |
393 | 0 | } while (ok && VP8IteratorNext(it)); |
394 | 0 | } |
395 | 0 | return ok; |
396 | 0 | } |
397 | | |
398 | | #ifdef WEBP_USE_THREAD |
399 | 0 | static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) { |
400 | 0 | int i; |
401 | 0 | for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i]; |
402 | 0 | dst->alpha += src->alpha; |
403 | 0 | dst->uv_alpha += src->uv_alpha; |
404 | 0 | } |
405 | | #endif |
406 | | |
407 | | // initialize the job struct with some tasks to perform |
408 | | static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job, |
409 | 0 | int start_row, int end_row) { |
410 | 0 | WebPGetWorkerInterface()->Init(&job->worker); |
411 | 0 | job->worker.data1 = job; |
412 | 0 | job->worker.data2 = &job->it; |
413 | 0 | job->worker.hook = DoSegmentsJob; |
414 | 0 | VP8IteratorInit(enc, &job->it); |
415 | 0 | VP8IteratorSetRow(&job->it, start_row); |
416 | 0 | VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w); |
417 | 0 | memset(job->alphas, 0, sizeof(job->alphas)); |
418 | 0 | job->alpha = 0; |
419 | 0 | job->uv_alpha = 0; |
420 | | // only one of both jobs can record the progress, since we don't |
421 | | // expect the user's hook to be multi-thread safe |
422 | 0 | job->delta_progress = (start_row == 0) ? 20 : 0; |
423 | 0 | } |
424 | | |
425 | | // main entry point |
426 | 0 | int VP8EncAnalyze(VP8Encoder* const enc) { |
427 | 0 | int ok = 1; |
428 | 0 | const int do_segments = |
429 | 0 | enc->config->emulate_jpeg_size || // We need the complexity evaluation. |
430 | 0 | (enc->segment_hdr.num_segments > 1) || |
431 | 0 | (enc->method <= 1); // for method 0 - 1, we need preds[] to be filled. |
432 | 0 | if (do_segments) { |
433 | 0 | const int last_row = enc->mb_h; |
434 | 0 | const int total_mb = last_row * enc->mb_w; |
435 | 0 | #ifdef WEBP_USE_THREAD |
436 | | // We give a little more than a half work to the main thread. |
437 | 0 | const int split_row = (9 * last_row + 15) >> 4; |
438 | 0 | const int kMinSplitRow = 2; // minimal rows needed for mt to be worth it |
439 | 0 | const int do_mt = (enc->thread_level > 0) && (split_row >= kMinSplitRow); |
440 | | #else |
441 | | const int do_mt = 0; |
442 | | #endif |
443 | 0 | const WebPWorkerInterface* const worker_interface = |
444 | 0 | WebPGetWorkerInterface(); |
445 | 0 | SegmentJob main_job; |
446 | 0 | if (do_mt) { |
447 | 0 | #ifdef WEBP_USE_THREAD |
448 | 0 | SegmentJob side_job; |
449 | | // Note the use of '&' instead of '&&' because we must call the functions |
450 | | // no matter what. |
451 | 0 | InitSegmentJob(enc, &main_job, 0, split_row); |
452 | 0 | InitSegmentJob(enc, &side_job, split_row, last_row); |
453 | | // we don't need to call Reset() on main_job.worker, since we're calling |
454 | | // WebPWorkerExecute() on it |
455 | 0 | ok &= worker_interface->Reset(&side_job.worker); |
456 | | // launch the two jobs in parallel |
457 | 0 | if (ok) { |
458 | 0 | worker_interface->Launch(&side_job.worker); |
459 | 0 | worker_interface->Execute(&main_job.worker); |
460 | 0 | ok &= worker_interface->Sync(&side_job.worker); |
461 | 0 | ok &= worker_interface->Sync(&main_job.worker); |
462 | 0 | } |
463 | 0 | worker_interface->End(&side_job.worker); |
464 | 0 | if (ok) MergeJobs(&side_job, &main_job); // merge results together |
465 | 0 | #endif // WEBP_USE_THREAD |
466 | 0 | } else { |
467 | | // Even for single-thread case, we use the generic Worker tools. |
468 | 0 | InitSegmentJob(enc, &main_job, 0, last_row); |
469 | 0 | worker_interface->Execute(&main_job.worker); |
470 | 0 | ok &= worker_interface->Sync(&main_job.worker); |
471 | 0 | } |
472 | 0 | worker_interface->End(&main_job.worker); |
473 | 0 | if (ok) { |
474 | 0 | enc->alpha = main_job.alpha / total_mb; |
475 | 0 | enc->uv_alpha = main_job.uv_alpha / total_mb; |
476 | 0 | AssignSegments(enc, main_job.alphas); |
477 | 0 | } |
478 | 0 | } else { // Use only one default segment. |
479 | 0 | ResetAllMBInfo(enc); |
480 | 0 | } |
481 | 0 | if (!ok) { |
482 | 0 | return WebPEncodingSetError(enc->pic, |
483 | 0 | VP8_ENC_ERROR_OUT_OF_MEMORY); // imprecise |
484 | 0 | } |
485 | 0 | return ok; |
486 | 0 | } |