/src/libwebp/src/enc/predictor_enc.c
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2016 Google Inc. All Rights Reserved. |
2 | | // |
3 | | // Use of this source code is governed by a BSD-style license |
4 | | // that can be found in the COPYING file in the root of the source |
5 | | // tree. An additional intellectual property rights grant can be found |
6 | | // in the file PATENTS. All contributing project authors may |
7 | | // be found in the AUTHORS file in the root of the source tree. |
8 | | // ----------------------------------------------------------------------------- |
9 | | // |
10 | | // Image transform methods for lossless encoder. |
11 | | // |
12 | | // Authors: Vikas Arora (vikaas.arora@gmail.com) |
13 | | // Jyrki Alakuijala (jyrki@google.com) |
14 | | // Urvang Joshi (urvang@google.com) |
15 | | // Vincent Rabaud (vrabaud@google.com) |
16 | | |
17 | | #include "src/dsp/lossless.h" |
18 | | #include "src/dsp/lossless_common.h" |
19 | | #include "src/enc/vp8i_enc.h" |
20 | | #include "src/enc/vp8li_enc.h" |
21 | | |
22 | 0 | #define MAX_DIFF_COST (1e30f) |
23 | 0 | #define HISTO_SIZE (4 * 256) |
24 | | static const float kSpatialPredictorBias = 15.f; |
25 | | static const int kPredLowEffort = 11; |
26 | | static const uint32_t kMaskAlpha = 0xff000000; |
27 | | |
28 | | // Mostly used to reduce code size + readability |
29 | 0 | static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; } |
30 | | |
31 | | //------------------------------------------------------------------------------ |
32 | | // Methods to calculate Entropy (Shannon). |
33 | | |
34 | | // Compute a bias for prediction entropy using a global heuristic to favor |
35 | | // values closer to 0. Hence the final negative sign. |
36 | | static float PredictionCostBias(const uint32_t counts[256], int weight_0, |
37 | 0 | float exp_val) { |
38 | 0 | const int significant_symbols = 256 >> 4; |
39 | 0 | const float exp_decay_factor = 0.6f; |
40 | 0 | float bits = (float)weight_0 * counts[0]; |
41 | 0 | int i; |
42 | 0 | for (i = 1; i < significant_symbols; ++i) { |
43 | 0 | bits += exp_val * (counts[i] + counts[256 - i]); |
44 | 0 | exp_val *= exp_decay_factor; |
45 | 0 | } |
46 | 0 | return (float)(-0.1 * bits); |
47 | 0 | } |
48 | | |
49 | | static float PredictionCostSpatialHistogram( |
50 | | const uint32_t accumulated[HISTO_SIZE], const uint32_t tile[HISTO_SIZE], |
51 | 0 | int mode, int left_mode, int above_mode) { |
52 | 0 | int i; |
53 | 0 | float retval = 0.f; |
54 | 0 | for (i = 0; i < 4; ++i) { |
55 | 0 | const float kExpValue = 0.94f; |
56 | 0 | retval += PredictionCostBias(&tile[i * 256], 1, kExpValue); |
57 | | // Compute the new cost if 'tile' is added to 'accumulate' but also add the |
58 | | // cost of the current histogram to guide the spatial predictor selection. |
59 | | // Basically, favor low entropy, locally and globally. |
60 | 0 | retval += VP8LCombinedShannonEntropy(&tile[i * 256], &accumulated[i * 256]); |
61 | 0 | } |
62 | | // Favor keeping the areas locally similar. |
63 | 0 | if (mode == left_mode) retval -= kSpatialPredictorBias; |
64 | 0 | if (mode == above_mode) retval -= kSpatialPredictorBias; |
65 | 0 | return retval; |
66 | 0 | } |
67 | | |
68 | | static WEBP_INLINE void UpdateHisto(uint32_t histo_argb[HISTO_SIZE], |
69 | 0 | uint32_t argb) { |
70 | 0 | ++histo_argb[0 * 256 + (argb >> 24)]; |
71 | 0 | ++histo_argb[1 * 256 + ((argb >> 16) & 0xff)]; |
72 | 0 | ++histo_argb[2 * 256 + ((argb >> 8) & 0xff)]; |
73 | 0 | ++histo_argb[3 * 256 + (argb & 0xff)]; |
74 | 0 | } |
75 | | |
76 | | //------------------------------------------------------------------------------ |
77 | | // Spatial transform functions. |
78 | | |
79 | | static WEBP_INLINE void PredictBatch(int mode, int x_start, int y, |
80 | | int num_pixels, const uint32_t* current, |
81 | 0 | const uint32_t* upper, uint32_t* out) { |
82 | 0 | if (x_start == 0) { |
83 | 0 | if (y == 0) { |
84 | | // ARGB_BLACK. |
85 | 0 | VP8LPredictorsSub[0](current, NULL, 1, out); |
86 | 0 | } else { |
87 | | // Top one. |
88 | 0 | VP8LPredictorsSub[2](current, upper, 1, out); |
89 | 0 | } |
90 | 0 | ++x_start; |
91 | 0 | ++out; |
92 | 0 | --num_pixels; |
93 | 0 | } |
94 | 0 | if (y == 0) { |
95 | | // Left one. |
96 | 0 | VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out); |
97 | 0 | } else { |
98 | 0 | VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels, |
99 | 0 | out); |
100 | 0 | } |
101 | 0 | } |
102 | | |
103 | | #if (WEBP_NEAR_LOSSLESS == 1) |
104 | 0 | static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; } |
105 | | |
106 | 0 | static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) { |
107 | 0 | const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24)); |
108 | 0 | const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff)); |
109 | 0 | const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff)); |
110 | 0 | const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff)); |
111 | 0 | return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b)); |
112 | 0 | } |
113 | | |
114 | | static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down, |
115 | 0 | uint32_t left, uint32_t right) { |
116 | 0 | const int diff_up = MaxDiffBetweenPixels(current, up); |
117 | 0 | const int diff_down = MaxDiffBetweenPixels(current, down); |
118 | 0 | const int diff_left = MaxDiffBetweenPixels(current, left); |
119 | 0 | const int diff_right = MaxDiffBetweenPixels(current, right); |
120 | 0 | return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right)); |
121 | 0 | } |
122 | | |
123 | 0 | static uint32_t AddGreenToBlueAndRed(uint32_t argb) { |
124 | 0 | const uint32_t green = (argb >> 8) & 0xff; |
125 | 0 | uint32_t red_blue = argb & 0x00ff00ffu; |
126 | 0 | red_blue += (green << 16) | green; |
127 | 0 | red_blue &= 0x00ff00ffu; |
128 | 0 | return (argb & 0xff00ff00u) | red_blue; |
129 | 0 | } |
130 | | |
131 | | static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb, |
132 | 0 | uint8_t* const max_diffs, int used_subtract_green) { |
133 | 0 | uint32_t current, up, down, left, right; |
134 | 0 | int x; |
135 | 0 | if (width <= 2) return; |
136 | 0 | current = argb[0]; |
137 | 0 | right = argb[1]; |
138 | 0 | if (used_subtract_green) { |
139 | 0 | current = AddGreenToBlueAndRed(current); |
140 | 0 | right = AddGreenToBlueAndRed(right); |
141 | 0 | } |
142 | | // max_diffs[0] and max_diffs[width - 1] are never used. |
143 | 0 | for (x = 1; x < width - 1; ++x) { |
144 | 0 | up = argb[-stride + x]; |
145 | 0 | down = argb[stride + x]; |
146 | 0 | left = current; |
147 | 0 | current = right; |
148 | 0 | right = argb[x + 1]; |
149 | 0 | if (used_subtract_green) { |
150 | 0 | up = AddGreenToBlueAndRed(up); |
151 | 0 | down = AddGreenToBlueAndRed(down); |
152 | 0 | right = AddGreenToBlueAndRed(right); |
153 | 0 | } |
154 | 0 | max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right); |
155 | 0 | } |
156 | 0 | } |
157 | | |
158 | | // Quantize the difference between the actual component value and its prediction |
159 | | // to a multiple of quantization, working modulo 256, taking care not to cross |
160 | | // a boundary (inclusive upper limit). |
161 | | static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, |
162 | 0 | uint8_t boundary, int quantization) { |
163 | 0 | const int residual = (value - predict) & 0xff; |
164 | 0 | const int boundary_residual = (boundary - predict) & 0xff; |
165 | 0 | const int lower = residual & ~(quantization - 1); |
166 | 0 | const int upper = lower + quantization; |
167 | | // Resolve ties towards a value closer to the prediction (i.e. towards lower |
168 | | // if value comes after prediction and towards upper otherwise). |
169 | 0 | const int bias = ((boundary - value) & 0xff) < boundary_residual; |
170 | 0 | if (residual - lower < upper - residual + bias) { |
171 | | // lower is closer to residual than upper. |
172 | 0 | if (residual > boundary_residual && lower <= boundary_residual) { |
173 | | // Halve quantization step to avoid crossing boundary. This midpoint is |
174 | | // on the same side of boundary as residual because midpoint >= residual |
175 | | // (since lower is closer than upper) and residual is above the boundary. |
176 | 0 | return lower + (quantization >> 1); |
177 | 0 | } |
178 | 0 | return lower; |
179 | 0 | } else { |
180 | | // upper is closer to residual than lower. |
181 | 0 | if (residual <= boundary_residual && upper > boundary_residual) { |
182 | | // Halve quantization step to avoid crossing boundary. This midpoint is |
183 | | // on the same side of boundary as residual because midpoint <= residual |
184 | | // (since upper is closer than lower) and residual is below the boundary. |
185 | 0 | return lower + (quantization >> 1); |
186 | 0 | } |
187 | 0 | return upper & 0xff; |
188 | 0 | } |
189 | 0 | } |
190 | | |
191 | 0 | static WEBP_INLINE uint8_t NearLosslessDiff(uint8_t a, uint8_t b) { |
192 | 0 | return (uint8_t)((((int)(a) - (int)(b))) & 0xff); |
193 | 0 | } |
194 | | |
195 | | // Quantize every component of the difference between the actual pixel value and |
196 | | // its prediction to a multiple of a quantization (a power of 2, not larger than |
197 | | // max_quantization which is a power of 2, smaller than max_diff). Take care if |
198 | | // value and predict have undergone subtract green, which means that red and |
199 | | // blue are represented as offsets from green. |
200 | | static uint32_t NearLossless(uint32_t value, uint32_t predict, |
201 | | int max_quantization, int max_diff, |
202 | 0 | int used_subtract_green) { |
203 | 0 | int quantization; |
204 | 0 | uint8_t new_green = 0; |
205 | 0 | uint8_t green_diff = 0; |
206 | 0 | uint8_t a, r, g, b; |
207 | 0 | if (max_diff <= 2) { |
208 | 0 | return VP8LSubPixels(value, predict); |
209 | 0 | } |
210 | 0 | quantization = max_quantization; |
211 | 0 | while (quantization >= max_diff) { |
212 | 0 | quantization >>= 1; |
213 | 0 | } |
214 | 0 | if ((value >> 24) == 0 || (value >> 24) == 0xff) { |
215 | | // Preserve transparency of fully transparent or fully opaque pixels. |
216 | 0 | a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff); |
217 | 0 | } else { |
218 | 0 | a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); |
219 | 0 | } |
220 | 0 | g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, |
221 | 0 | quantization); |
222 | 0 | if (used_subtract_green) { |
223 | | // The green offset will be added to red and blue components during decoding |
224 | | // to obtain the actual red and blue values. |
225 | 0 | new_green = ((predict >> 8) + g) & 0xff; |
226 | | // The amount by which green has been adjusted during quantization. It is |
227 | | // subtracted from red and blue for compensation, to avoid accumulating two |
228 | | // quantization errors in them. |
229 | 0 | green_diff = NearLosslessDiff(new_green, (value >> 8) & 0xff); |
230 | 0 | } |
231 | 0 | r = NearLosslessComponent(NearLosslessDiff((value >> 16) & 0xff, green_diff), |
232 | 0 | (predict >> 16) & 0xff, 0xff - new_green, |
233 | 0 | quantization); |
234 | 0 | b = NearLosslessComponent(NearLosslessDiff(value & 0xff, green_diff), |
235 | 0 | predict & 0xff, 0xff - new_green, quantization); |
236 | 0 | return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; |
237 | 0 | } |
238 | | #endif // (WEBP_NEAR_LOSSLESS == 1) |
239 | | |
240 | | // Stores the difference between the pixel and its prediction in "out". |
241 | | // In case of a lossy encoding, updates the source image to avoid propagating |
242 | | // the deviation further to pixels which depend on the current pixel for their |
243 | | // predictions. |
244 | | static WEBP_INLINE void GetResidual( |
245 | | int width, int height, uint32_t* const upper_row, |
246 | | uint32_t* const current_row, const uint8_t* const max_diffs, int mode, |
247 | | int x_start, int x_end, int y, int max_quantization, int exact, |
248 | 0 | int used_subtract_green, uint32_t* const out) { |
249 | 0 | if (exact) { |
250 | 0 | PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row, |
251 | 0 | out); |
252 | 0 | } else { |
253 | 0 | const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; |
254 | 0 | int x; |
255 | 0 | for (x = x_start; x < x_end; ++x) { |
256 | 0 | uint32_t predict; |
257 | 0 | uint32_t residual; |
258 | 0 | if (y == 0) { |
259 | 0 | predict = (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left. |
260 | 0 | } else if (x == 0) { |
261 | 0 | predict = upper_row[x]; // Top. |
262 | 0 | } else { |
263 | 0 | predict = pred_func(¤t_row[x - 1], upper_row + x); |
264 | 0 | } |
265 | 0 | #if (WEBP_NEAR_LOSSLESS == 1) |
266 | 0 | if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 || |
267 | 0 | x == 0 || x == width - 1) { |
268 | 0 | residual = VP8LSubPixels(current_row[x], predict); |
269 | 0 | } else { |
270 | 0 | residual = NearLossless(current_row[x], predict, max_quantization, |
271 | 0 | max_diffs[x], used_subtract_green); |
272 | | // Update the source image. |
273 | 0 | current_row[x] = VP8LAddPixels(predict, residual); |
274 | | // x is never 0 here so we do not need to update upper_row like below. |
275 | 0 | } |
276 | | #else |
277 | | (void)max_diffs; |
278 | | (void)height; |
279 | | (void)max_quantization; |
280 | | (void)used_subtract_green; |
281 | | residual = VP8LSubPixels(current_row[x], predict); |
282 | | #endif |
283 | 0 | if ((current_row[x] & kMaskAlpha) == 0) { |
284 | | // If alpha is 0, cleanup RGB. We can choose the RGB values of the |
285 | | // residual for best compression. The prediction of alpha itself can be |
286 | | // non-zero and must be kept though. We choose RGB of the residual to be |
287 | | // 0. |
288 | 0 | residual &= kMaskAlpha; |
289 | | // Update the source image. |
290 | 0 | current_row[x] = predict & ~kMaskAlpha; |
291 | | // The prediction for the rightmost pixel in a row uses the leftmost |
292 | | // pixel |
293 | | // in that row as its top-right context pixel. Hence if we change the |
294 | | // leftmost pixel of current_row, the corresponding change must be |
295 | | // applied |
296 | | // to upper_row as well where top-right context is being read from. |
297 | 0 | if (x == 0 && y != 0) upper_row[width] = current_row[0]; |
298 | 0 | } |
299 | 0 | out[x - x_start] = residual; |
300 | 0 | } |
301 | 0 | } |
302 | 0 | } |
303 | | |
304 | | // Returns best predictor and updates the accumulated histogram. |
305 | | // If max_quantization > 1, assumes that near lossless processing will be |
306 | | // applied, quantizing residuals to multiples of quantization levels up to |
307 | | // max_quantization (the actual quantization level depends on smoothness near |
308 | | // the given pixel). |
309 | | static int GetBestPredictorForTile( |
310 | | int width, int height, int tile_x, int tile_y, int bits, |
311 | | uint32_t accumulated[HISTO_SIZE], uint32_t* const argb_scratch, |
312 | | const uint32_t* const argb, int max_quantization, int exact, |
313 | 0 | int used_subtract_green, const uint32_t* const modes) { |
314 | 0 | const int kNumPredModes = 14; |
315 | 0 | const int start_x = tile_x << bits; |
316 | 0 | const int start_y = tile_y << bits; |
317 | 0 | const int tile_size = 1 << bits; |
318 | 0 | const int max_y = GetMin(tile_size, height - start_y); |
319 | 0 | const int max_x = GetMin(tile_size, width - start_x); |
320 | | // Whether there exist columns just outside the tile. |
321 | 0 | const int have_left = (start_x > 0); |
322 | | // Position and size of the strip covering the tile and adjacent columns if |
323 | | // they exist. |
324 | 0 | const int context_start_x = start_x - have_left; |
325 | 0 | #if (WEBP_NEAR_LOSSLESS == 1) |
326 | 0 | const int context_width = max_x + have_left + (max_x < width - start_x); |
327 | 0 | #endif |
328 | 0 | const int tiles_per_row = VP8LSubSampleSize(width, bits); |
329 | | // Prediction modes of the left and above neighbor tiles. |
330 | 0 | const int left_mode = (tile_x > 0) ? |
331 | 0 | (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff : 0xff; |
332 | 0 | const int above_mode = (tile_y > 0) ? |
333 | 0 | (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff : 0xff; |
334 | | // The width of upper_row and current_row is one pixel larger than image width |
335 | | // to allow the top right pixel to point to the leftmost pixel of the next row |
336 | | // when at the right edge. |
337 | 0 | uint32_t* upper_row = argb_scratch; |
338 | 0 | uint32_t* current_row = upper_row + width + 1; |
339 | 0 | uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1); |
340 | 0 | float best_diff = MAX_DIFF_COST; |
341 | 0 | int best_mode = 0; |
342 | 0 | int mode; |
343 | 0 | uint32_t histo_stack_1[HISTO_SIZE]; |
344 | 0 | uint32_t histo_stack_2[HISTO_SIZE]; |
345 | | // Need pointers to be able to swap arrays. |
346 | 0 | uint32_t* histo_argb = histo_stack_1; |
347 | 0 | uint32_t* best_histo = histo_stack_2; |
348 | 0 | uint32_t residuals[1 << MAX_TRANSFORM_BITS]; |
349 | 0 | assert(bits <= MAX_TRANSFORM_BITS); |
350 | 0 | assert(max_x <= (1 << MAX_TRANSFORM_BITS)); |
351 | | |
352 | 0 | for (mode = 0; mode < kNumPredModes; ++mode) { |
353 | 0 | float cur_diff; |
354 | 0 | int relative_y; |
355 | 0 | memset(histo_argb, 0, sizeof(histo_stack_1)); |
356 | 0 | if (start_y > 0) { |
357 | | // Read the row above the tile which will become the first upper_row. |
358 | | // Include a pixel to the left if it exists; include a pixel to the right |
359 | | // in all cases (wrapping to the leftmost pixel of the next row if it does |
360 | | // not exist). |
361 | 0 | memcpy(current_row + context_start_x, |
362 | 0 | argb + (start_y - 1) * width + context_start_x, |
363 | 0 | sizeof(*argb) * (max_x + have_left + 1)); |
364 | 0 | } |
365 | 0 | for (relative_y = 0; relative_y < max_y; ++relative_y) { |
366 | 0 | const int y = start_y + relative_y; |
367 | 0 | int relative_x; |
368 | 0 | uint32_t* tmp = upper_row; |
369 | 0 | upper_row = current_row; |
370 | 0 | current_row = tmp; |
371 | | // Read current_row. Include a pixel to the left if it exists; include a |
372 | | // pixel to the right in all cases except at the bottom right corner of |
373 | | // the image (wrapping to the leftmost pixel of the next row if it does |
374 | | // not exist in the current row). |
375 | 0 | memcpy(current_row + context_start_x, |
376 | 0 | argb + y * width + context_start_x, |
377 | 0 | sizeof(*argb) * (max_x + have_left + (y + 1 < height))); |
378 | 0 | #if (WEBP_NEAR_LOSSLESS == 1) |
379 | 0 | if (max_quantization > 1 && y >= 1 && y + 1 < height) { |
380 | 0 | MaxDiffsForRow(context_width, width, argb + y * width + context_start_x, |
381 | 0 | max_diffs + context_start_x, used_subtract_green); |
382 | 0 | } |
383 | 0 | #endif |
384 | |
|
385 | 0 | GetResidual(width, height, upper_row, current_row, max_diffs, mode, |
386 | 0 | start_x, start_x + max_x, y, max_quantization, exact, |
387 | 0 | used_subtract_green, residuals); |
388 | 0 | for (relative_x = 0; relative_x < max_x; ++relative_x) { |
389 | 0 | UpdateHisto(histo_argb, residuals[relative_x]); |
390 | 0 | } |
391 | 0 | } |
392 | 0 | cur_diff = PredictionCostSpatialHistogram(accumulated, histo_argb, mode, |
393 | 0 | left_mode, above_mode); |
394 | |
|
395 | 0 | if (cur_diff < best_diff) { |
396 | 0 | uint32_t* tmp = histo_argb; |
397 | 0 | histo_argb = best_histo; |
398 | 0 | best_histo = tmp; |
399 | 0 | best_diff = cur_diff; |
400 | 0 | best_mode = mode; |
401 | 0 | } |
402 | 0 | } |
403 | |
|
404 | 0 | VP8LAddVectorEq(best_histo, accumulated, HISTO_SIZE); |
405 | 0 | return best_mode; |
406 | 0 | } |
407 | | |
408 | | // Converts pixels of the image to residuals with respect to predictions. |
409 | | // If max_quantization > 1, applies near lossless processing, quantizing |
410 | | // residuals to multiples of quantization levels up to max_quantization |
411 | | // (the actual quantization level depends on smoothness near the given pixel). |
412 | | static void CopyImageWithPrediction(int width, int height, int bits, |
413 | | const uint32_t* const modes, |
414 | | uint32_t* const argb_scratch, |
415 | | uint32_t* const argb, int low_effort, |
416 | | int max_quantization, int exact, |
417 | 0 | int used_subtract_green) { |
418 | 0 | const int tiles_per_row = VP8LSubSampleSize(width, bits); |
419 | | // The width of upper_row and current_row is one pixel larger than image width |
420 | | // to allow the top right pixel to point to the leftmost pixel of the next row |
421 | | // when at the right edge. |
422 | 0 | uint32_t* upper_row = argb_scratch; |
423 | 0 | uint32_t* current_row = upper_row + width + 1; |
424 | 0 | uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1); |
425 | 0 | #if (WEBP_NEAR_LOSSLESS == 1) |
426 | 0 | uint8_t* lower_max_diffs = current_max_diffs + width; |
427 | 0 | #endif |
428 | 0 | int y; |
429 | |
|
430 | 0 | for (y = 0; y < height; ++y) { |
431 | 0 | int x; |
432 | 0 | uint32_t* const tmp32 = upper_row; |
433 | 0 | upper_row = current_row; |
434 | 0 | current_row = tmp32; |
435 | 0 | memcpy(current_row, argb + y * width, |
436 | 0 | sizeof(*argb) * (width + (y + 1 < height))); |
437 | |
|
438 | 0 | if (low_effort) { |
439 | 0 | PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row, |
440 | 0 | argb + y * width); |
441 | 0 | } else { |
442 | 0 | #if (WEBP_NEAR_LOSSLESS == 1) |
443 | 0 | if (max_quantization > 1) { |
444 | | // Compute max_diffs for the lower row now, because that needs the |
445 | | // contents of argb for the current row, which we will overwrite with |
446 | | // residuals before proceeding with the next row. |
447 | 0 | uint8_t* const tmp8 = current_max_diffs; |
448 | 0 | current_max_diffs = lower_max_diffs; |
449 | 0 | lower_max_diffs = tmp8; |
450 | 0 | if (y + 2 < height) { |
451 | 0 | MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs, |
452 | 0 | used_subtract_green); |
453 | 0 | } |
454 | 0 | } |
455 | 0 | #endif |
456 | 0 | for (x = 0; x < width;) { |
457 | 0 | const int mode = |
458 | 0 | (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff; |
459 | 0 | int x_end = x + (1 << bits); |
460 | 0 | if (x_end > width) x_end = width; |
461 | 0 | GetResidual(width, height, upper_row, current_row, current_max_diffs, |
462 | 0 | mode, x, x_end, y, max_quantization, exact, |
463 | 0 | used_subtract_green, argb + y * width + x); |
464 | 0 | x = x_end; |
465 | 0 | } |
466 | 0 | } |
467 | 0 | } |
468 | 0 | } |
469 | | |
470 | | // Finds the best predictor for each tile, and converts the image to residuals |
471 | | // with respect to predictions. If near_lossless_quality < 100, applies |
472 | | // near lossless processing, shaving off more bits of residuals for lower |
473 | | // qualities. |
474 | | int VP8LResidualImage(int width, int height, int bits, int low_effort, |
475 | | uint32_t* const argb, uint32_t* const argb_scratch, |
476 | | uint32_t* const image, int near_lossless_quality, |
477 | | int exact, int used_subtract_green, |
478 | | const WebPPicture* const pic, int percent_range, |
479 | 0 | int* const percent) { |
480 | 0 | const int tiles_per_row = VP8LSubSampleSize(width, bits); |
481 | 0 | const int tiles_per_col = VP8LSubSampleSize(height, bits); |
482 | 0 | int percent_start = *percent; |
483 | 0 | const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality); |
484 | 0 | if (low_effort) { |
485 | 0 | int i; |
486 | 0 | for (i = 0; i < tiles_per_row * tiles_per_col; ++i) { |
487 | 0 | image[i] = ARGB_BLACK | (kPredLowEffort << 8); |
488 | 0 | } |
489 | 0 | } else { |
490 | 0 | int tile_y; |
491 | 0 | uint32_t histo[HISTO_SIZE] = { 0 }; |
492 | 0 | for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { |
493 | 0 | int tile_x; |
494 | 0 | for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { |
495 | 0 | const int pred = GetBestPredictorForTile( |
496 | 0 | width, height, tile_x, tile_y, bits, histo, argb_scratch, argb, |
497 | 0 | max_quantization, exact, used_subtract_green, image); |
498 | 0 | image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8); |
499 | 0 | } |
500 | |
|
501 | 0 | if (!WebPReportProgress( |
502 | 0 | pic, percent_start + percent_range * tile_y / tiles_per_col, |
503 | 0 | percent)) { |
504 | 0 | return 0; |
505 | 0 | } |
506 | 0 | } |
507 | 0 | } |
508 | | |
509 | 0 | CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb, |
510 | 0 | low_effort, max_quantization, exact, |
511 | 0 | used_subtract_green); |
512 | 0 | return WebPReportProgress(pic, percent_start + percent_range, percent); |
513 | 0 | } |
514 | | |
515 | | //------------------------------------------------------------------------------ |
516 | | // Color transform functions. |
517 | | |
518 | 0 | static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) { |
519 | 0 | m->green_to_red_ = 0; |
520 | 0 | m->green_to_blue_ = 0; |
521 | 0 | m->red_to_blue_ = 0; |
522 | 0 | } |
523 | | |
524 | | static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, |
525 | 0 | VP8LMultipliers* const m) { |
526 | 0 | m->green_to_red_ = (color_code >> 0) & 0xff; |
527 | 0 | m->green_to_blue_ = (color_code >> 8) & 0xff; |
528 | 0 | m->red_to_blue_ = (color_code >> 16) & 0xff; |
529 | 0 | } |
530 | | |
531 | | static WEBP_INLINE uint32_t MultipliersToColorCode( |
532 | 0 | const VP8LMultipliers* const m) { |
533 | 0 | return 0xff000000u | |
534 | 0 | ((uint32_t)(m->red_to_blue_) << 16) | |
535 | 0 | ((uint32_t)(m->green_to_blue_) << 8) | |
536 | 0 | m->green_to_red_; |
537 | 0 | } |
538 | | |
539 | | static float PredictionCostCrossColor(const uint32_t accumulated[256], |
540 | 0 | const uint32_t counts[256]) { |
541 | | // Favor low entropy, locally and globally. |
542 | | // Favor small absolute values for PredictionCostSpatial |
543 | 0 | static const float kExpValue = 2.4f; |
544 | 0 | return VP8LCombinedShannonEntropy(counts, accumulated) + |
545 | 0 | PredictionCostBias(counts, 3, kExpValue); |
546 | 0 | } |
547 | | |
548 | | static float GetPredictionCostCrossColorRed( |
549 | | const uint32_t* argb, int stride, int tile_width, int tile_height, |
550 | | VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red, |
551 | 0 | const uint32_t accumulated_red_histo[256]) { |
552 | 0 | uint32_t histo[256] = { 0 }; |
553 | 0 | float cur_diff; |
554 | |
|
555 | 0 | VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height, |
556 | 0 | green_to_red, histo); |
557 | |
|
558 | 0 | cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo); |
559 | 0 | if ((uint8_t)green_to_red == prev_x.green_to_red_) { |
560 | 0 | cur_diff -= 3; // favor keeping the areas locally similar |
561 | 0 | } |
562 | 0 | if ((uint8_t)green_to_red == prev_y.green_to_red_) { |
563 | 0 | cur_diff -= 3; // favor keeping the areas locally similar |
564 | 0 | } |
565 | 0 | if (green_to_red == 0) { |
566 | 0 | cur_diff -= 3; |
567 | 0 | } |
568 | 0 | return cur_diff; |
569 | 0 | } |
570 | | |
571 | | static void GetBestGreenToRed(const uint32_t* argb, int stride, int tile_width, |
572 | | int tile_height, VP8LMultipliers prev_x, |
573 | | VP8LMultipliers prev_y, int quality, |
574 | | const uint32_t accumulated_red_histo[256], |
575 | 0 | VP8LMultipliers* const best_tx) { |
576 | 0 | const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6] |
577 | 0 | int green_to_red_best = 0; |
578 | 0 | int iter, offset; |
579 | 0 | float best_diff = GetPredictionCostCrossColorRed( |
580 | 0 | argb, stride, tile_width, tile_height, prev_x, prev_y, |
581 | 0 | green_to_red_best, accumulated_red_histo); |
582 | 0 | for (iter = 0; iter < kMaxIters; ++iter) { |
583 | | // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to |
584 | | // one in color computation. Having initial delta here as 1 is sufficient |
585 | | // to explore the range of (-2, 2). |
586 | 0 | const int delta = 32 >> iter; |
587 | | // Try a negative and a positive delta from the best known value. |
588 | 0 | for (offset = -delta; offset <= delta; offset += 2 * delta) { |
589 | 0 | const int green_to_red_cur = offset + green_to_red_best; |
590 | 0 | const float cur_diff = GetPredictionCostCrossColorRed( |
591 | 0 | argb, stride, tile_width, tile_height, prev_x, prev_y, |
592 | 0 | green_to_red_cur, accumulated_red_histo); |
593 | 0 | if (cur_diff < best_diff) { |
594 | 0 | best_diff = cur_diff; |
595 | 0 | green_to_red_best = green_to_red_cur; |
596 | 0 | } |
597 | 0 | } |
598 | 0 | } |
599 | 0 | best_tx->green_to_red_ = (green_to_red_best & 0xff); |
600 | 0 | } |
601 | | |
602 | | static float GetPredictionCostCrossColorBlue( |
603 | | const uint32_t* argb, int stride, int tile_width, int tile_height, |
604 | | VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_blue, |
605 | 0 | int red_to_blue, const uint32_t accumulated_blue_histo[256]) { |
606 | 0 | uint32_t histo[256] = { 0 }; |
607 | 0 | float cur_diff; |
608 | |
|
609 | 0 | VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height, |
610 | 0 | green_to_blue, red_to_blue, histo); |
611 | |
|
612 | 0 | cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo); |
613 | 0 | if ((uint8_t)green_to_blue == prev_x.green_to_blue_) { |
614 | 0 | cur_diff -= 3; // favor keeping the areas locally similar |
615 | 0 | } |
616 | 0 | if ((uint8_t)green_to_blue == prev_y.green_to_blue_) { |
617 | 0 | cur_diff -= 3; // favor keeping the areas locally similar |
618 | 0 | } |
619 | 0 | if ((uint8_t)red_to_blue == prev_x.red_to_blue_) { |
620 | 0 | cur_diff -= 3; // favor keeping the areas locally similar |
621 | 0 | } |
622 | 0 | if ((uint8_t)red_to_blue == prev_y.red_to_blue_) { |
623 | 0 | cur_diff -= 3; // favor keeping the areas locally similar |
624 | 0 | } |
625 | 0 | if (green_to_blue == 0) { |
626 | 0 | cur_diff -= 3; |
627 | 0 | } |
628 | 0 | if (red_to_blue == 0) { |
629 | 0 | cur_diff -= 3; |
630 | 0 | } |
631 | 0 | return cur_diff; |
632 | 0 | } |
633 | | |
634 | 0 | #define kGreenRedToBlueNumAxis 8 |
635 | 0 | #define kGreenRedToBlueMaxIters 7 |
636 | | static void GetBestGreenRedToBlue(const uint32_t* argb, int stride, |
637 | | int tile_width, int tile_height, |
638 | | VP8LMultipliers prev_x, |
639 | | VP8LMultipliers prev_y, int quality, |
640 | | const uint32_t accumulated_blue_histo[256], |
641 | 0 | VP8LMultipliers* const best_tx) { |
642 | 0 | const int8_t offset[kGreenRedToBlueNumAxis][2] = |
643 | 0 | {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}}; |
644 | 0 | const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 }; |
645 | 0 | const int iters = |
646 | 0 | (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4; |
647 | 0 | int green_to_blue_best = 0; |
648 | 0 | int red_to_blue_best = 0; |
649 | 0 | int iter; |
650 | | // Initial value at origin: |
651 | 0 | float best_diff = GetPredictionCostCrossColorBlue( |
652 | 0 | argb, stride, tile_width, tile_height, prev_x, prev_y, |
653 | 0 | green_to_blue_best, red_to_blue_best, accumulated_blue_histo); |
654 | 0 | for (iter = 0; iter < iters; ++iter) { |
655 | 0 | const int delta = delta_lut[iter]; |
656 | 0 | int axis; |
657 | 0 | for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) { |
658 | 0 | const int green_to_blue_cur = |
659 | 0 | offset[axis][0] * delta + green_to_blue_best; |
660 | 0 | const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best; |
661 | 0 | const float cur_diff = GetPredictionCostCrossColorBlue( |
662 | 0 | argb, stride, tile_width, tile_height, prev_x, prev_y, |
663 | 0 | green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo); |
664 | 0 | if (cur_diff < best_diff) { |
665 | 0 | best_diff = cur_diff; |
666 | 0 | green_to_blue_best = green_to_blue_cur; |
667 | 0 | red_to_blue_best = red_to_blue_cur; |
668 | 0 | } |
669 | 0 | if (quality < 25 && iter == 4) { |
670 | | // Only axis aligned diffs for lower quality. |
671 | 0 | break; // next iter. |
672 | 0 | } |
673 | 0 | } |
674 | 0 | if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) { |
675 | | // Further iterations would not help. |
676 | 0 | break; // out of iter-loop. |
677 | 0 | } |
678 | 0 | } |
679 | 0 | best_tx->green_to_blue_ = green_to_blue_best & 0xff; |
680 | 0 | best_tx->red_to_blue_ = red_to_blue_best & 0xff; |
681 | 0 | } |
682 | | #undef kGreenRedToBlueMaxIters |
683 | | #undef kGreenRedToBlueNumAxis |
684 | | |
685 | | static VP8LMultipliers GetBestColorTransformForTile( |
686 | | int tile_x, int tile_y, int bits, VP8LMultipliers prev_x, |
687 | | VP8LMultipliers prev_y, int quality, int xsize, int ysize, |
688 | | const uint32_t accumulated_red_histo[256], |
689 | 0 | const uint32_t accumulated_blue_histo[256], const uint32_t* const argb) { |
690 | 0 | const int max_tile_size = 1 << bits; |
691 | 0 | const int tile_y_offset = tile_y * max_tile_size; |
692 | 0 | const int tile_x_offset = tile_x * max_tile_size; |
693 | 0 | const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize); |
694 | 0 | const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize); |
695 | 0 | const int tile_width = all_x_max - tile_x_offset; |
696 | 0 | const int tile_height = all_y_max - tile_y_offset; |
697 | 0 | const uint32_t* const tile_argb = argb + tile_y_offset * xsize |
698 | 0 | + tile_x_offset; |
699 | 0 | VP8LMultipliers best_tx; |
700 | 0 | MultipliersClear(&best_tx); |
701 | |
|
702 | 0 | GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height, |
703 | 0 | prev_x, prev_y, quality, accumulated_red_histo, &best_tx); |
704 | 0 | GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height, |
705 | 0 | prev_x, prev_y, quality, accumulated_blue_histo, |
706 | 0 | &best_tx); |
707 | 0 | return best_tx; |
708 | 0 | } |
709 | | |
710 | | static void CopyTileWithColorTransform(int xsize, int ysize, |
711 | | int tile_x, int tile_y, |
712 | | int max_tile_size, |
713 | | VP8LMultipliers color_transform, |
714 | 0 | uint32_t* argb) { |
715 | 0 | const int xscan = GetMin(max_tile_size, xsize - tile_x); |
716 | 0 | int yscan = GetMin(max_tile_size, ysize - tile_y); |
717 | 0 | argb += tile_y * xsize + tile_x; |
718 | 0 | while (yscan-- > 0) { |
719 | 0 | VP8LTransformColor(&color_transform, argb, xscan); |
720 | 0 | argb += xsize; |
721 | 0 | } |
722 | 0 | } |
723 | | |
724 | | int VP8LColorSpaceTransform(int width, int height, int bits, int quality, |
725 | | uint32_t* const argb, uint32_t* image, |
726 | | const WebPPicture* const pic, int percent_range, |
727 | 0 | int* const percent) { |
728 | 0 | const int max_tile_size = 1 << bits; |
729 | 0 | const int tile_xsize = VP8LSubSampleSize(width, bits); |
730 | 0 | const int tile_ysize = VP8LSubSampleSize(height, bits); |
731 | 0 | int percent_start = *percent; |
732 | 0 | uint32_t accumulated_red_histo[256] = { 0 }; |
733 | 0 | uint32_t accumulated_blue_histo[256] = { 0 }; |
734 | 0 | int tile_x, tile_y; |
735 | 0 | VP8LMultipliers prev_x, prev_y; |
736 | 0 | MultipliersClear(&prev_y); |
737 | 0 | MultipliersClear(&prev_x); |
738 | 0 | for (tile_y = 0; tile_y < tile_ysize; ++tile_y) { |
739 | 0 | for (tile_x = 0; tile_x < tile_xsize; ++tile_x) { |
740 | 0 | int y; |
741 | 0 | const int tile_x_offset = tile_x * max_tile_size; |
742 | 0 | const int tile_y_offset = tile_y * max_tile_size; |
743 | 0 | const int all_x_max = GetMin(tile_x_offset + max_tile_size, width); |
744 | 0 | const int all_y_max = GetMin(tile_y_offset + max_tile_size, height); |
745 | 0 | const int offset = tile_y * tile_xsize + tile_x; |
746 | 0 | if (tile_y != 0) { |
747 | 0 | ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y); |
748 | 0 | } |
749 | 0 | prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits, |
750 | 0 | prev_x, prev_y, |
751 | 0 | quality, width, height, |
752 | 0 | accumulated_red_histo, |
753 | 0 | accumulated_blue_histo, |
754 | 0 | argb); |
755 | 0 | image[offset] = MultipliersToColorCode(&prev_x); |
756 | 0 | CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset, |
757 | 0 | max_tile_size, prev_x, argb); |
758 | | |
759 | | // Gather accumulated histogram data. |
760 | 0 | for (y = tile_y_offset; y < all_y_max; ++y) { |
761 | 0 | int ix = y * width + tile_x_offset; |
762 | 0 | const int ix_end = ix + all_x_max - tile_x_offset; |
763 | 0 | for (; ix < ix_end; ++ix) { |
764 | 0 | const uint32_t pix = argb[ix]; |
765 | 0 | if (ix >= 2 && |
766 | 0 | pix == argb[ix - 2] && |
767 | 0 | pix == argb[ix - 1]) { |
768 | 0 | continue; // repeated pixels are handled by backward references |
769 | 0 | } |
770 | 0 | if (ix >= width + 2 && |
771 | 0 | argb[ix - 2] == argb[ix - width - 2] && |
772 | 0 | argb[ix - 1] == argb[ix - width - 1] && |
773 | 0 | pix == argb[ix - width]) { |
774 | 0 | continue; // repeated pixels are handled by backward references |
775 | 0 | } |
776 | 0 | ++accumulated_red_histo[(pix >> 16) & 0xff]; |
777 | 0 | ++accumulated_blue_histo[(pix >> 0) & 0xff]; |
778 | 0 | } |
779 | 0 | } |
780 | 0 | } |
781 | 0 | if (!WebPReportProgress( |
782 | 0 | pic, percent_start + percent_range * tile_y / tile_ysize, |
783 | 0 | percent)) { |
784 | 0 | return 0; |
785 | 0 | } |
786 | 0 | } |
787 | 0 | return 1; |
788 | 0 | } |