Coverage Report

Created: 2025-07-23 06:34

/src/libwebp/src/enc/predictor_enc.c
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2016 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Image transform methods for lossless encoder.
11
//
12
// Authors: Vikas Arora (vikaas.arora@gmail.com)
13
//          Jyrki Alakuijala (jyrki@google.com)
14
//          Urvang Joshi (urvang@google.com)
15
//          Vincent Rabaud (vrabaud@google.com)
16
17
#include <assert.h>
18
#include <stdlib.h>
19
#include <string.h>
20
21
#include "src/dsp/lossless.h"
22
#include "src/dsp/lossless_common.h"
23
#include "src/enc/vp8i_enc.h"
24
#include "src/enc/vp8li_enc.h"
25
#include "src/utils/utils.h"
26
#include "src/webp/encode.h"
27
#include "src/webp/format_constants.h"
28
#include "src/webp/types.h"
29
30
0
#define HISTO_SIZE (4 * 256)
31
static const int64_t kSpatialPredictorBias = 15ll << LOG_2_PRECISION_BITS;
32
static const int kPredLowEffort = 11;
33
static const uint32_t kMaskAlpha = 0xff000000;
34
static const int kNumPredModes = 14;
35
36
// Mostly used to reduce code size + readability
37
0
static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
38
0
static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
39
40
//------------------------------------------------------------------------------
41
// Methods to calculate Entropy (Shannon).
42
43
// Compute a bias for prediction entropy using a global heuristic to favor
44
// values closer to 0. Hence the final negative sign.
45
// 'exp_val' has a scaling factor of 1/100.
46
static int64_t PredictionCostBias(const uint32_t counts[256], uint64_t weight_0,
47
0
                                  uint64_t exp_val) {
48
0
  const int significant_symbols = 256 >> 4;
49
0
  const uint64_t exp_decay_factor = 6;  // has a scaling factor of 1/10
50
0
  uint64_t bits = (weight_0 * counts[0]) << LOG_2_PRECISION_BITS;
51
0
  int i;
52
0
  exp_val <<= LOG_2_PRECISION_BITS;
53
0
  for (i = 1; i < significant_symbols; ++i) {
54
0
    bits += DivRound(exp_val * (counts[i] + counts[256 - i]), 100);
55
0
    exp_val = DivRound(exp_decay_factor * exp_val, 10);
56
0
  }
57
0
  return -DivRound((int64_t)bits, 10);
58
0
}
59
60
static int64_t PredictionCostSpatialHistogram(
61
    const uint32_t accumulated[HISTO_SIZE], const uint32_t tile[HISTO_SIZE],
62
0
    int mode, int left_mode, int above_mode) {
63
0
  int i;
64
0
  int64_t retval = 0;
65
0
  for (i = 0; i < 4; ++i) {
66
0
    const uint64_t kExpValue = 94;
67
0
    retval += PredictionCostBias(&tile[i * 256], 1, kExpValue);
68
    // Compute the new cost if 'tile' is added to 'accumulate' but also add the
69
    // cost of the current histogram to guide the spatial predictor selection.
70
    // Basically, favor low entropy, locally and globally.
71
0
    retval += (int64_t)VP8LCombinedShannonEntropy(&tile[i * 256],
72
0
                                                  &accumulated[i * 256]);
73
0
  }
74
  // Favor keeping the areas locally similar.
75
0
  if (mode == left_mode) retval -= kSpatialPredictorBias;
76
0
  if (mode == above_mode) retval -= kSpatialPredictorBias;
77
0
  return retval;
78
0
}
79
80
static WEBP_INLINE void UpdateHisto(uint32_t histo_argb[HISTO_SIZE],
81
0
                                    uint32_t argb) {
82
0
  ++histo_argb[0 * 256 + (argb >> 24)];
83
0
  ++histo_argb[1 * 256 + ((argb >> 16) & 0xff)];
84
0
  ++histo_argb[2 * 256 + ((argb >> 8) & 0xff)];
85
0
  ++histo_argb[3 * 256 + (argb & 0xff)];
86
0
}
87
88
//------------------------------------------------------------------------------
89
// Spatial transform functions.
90
91
static WEBP_INLINE void PredictBatch(int mode, int x_start, int y,
92
                                     int num_pixels, const uint32_t* current,
93
0
                                     const uint32_t* upper, uint32_t* out) {
94
0
  if (x_start == 0) {
95
0
    if (y == 0) {
96
      // ARGB_BLACK.
97
0
      VP8LPredictorsSub[0](current, NULL, 1, out);
98
0
    } else {
99
      // Top one.
100
0
      VP8LPredictorsSub[2](current, upper, 1, out);
101
0
    }
102
0
    ++x_start;
103
0
    ++out;
104
0
    --num_pixels;
105
0
  }
106
0
  if (y == 0) {
107
    // Left one.
108
0
    VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out);
109
0
  } else {
110
0
    VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels,
111
0
                            out);
112
0
  }
113
0
}
114
115
#if (WEBP_NEAR_LOSSLESS == 1)
116
0
static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
117
0
  const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
118
0
  const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
119
0
  const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
120
0
  const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
121
0
  return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
122
0
}
123
124
static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
125
0
                              uint32_t left, uint32_t right) {
126
0
  const int diff_up = MaxDiffBetweenPixels(current, up);
127
0
  const int diff_down = MaxDiffBetweenPixels(current, down);
128
0
  const int diff_left = MaxDiffBetweenPixels(current, left);
129
0
  const int diff_right = MaxDiffBetweenPixels(current, right);
130
0
  return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
131
0
}
132
133
0
static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
134
0
  const uint32_t green = (argb >> 8) & 0xff;
135
0
  uint32_t red_blue = argb & 0x00ff00ffu;
136
0
  red_blue += (green << 16) | green;
137
0
  red_blue &= 0x00ff00ffu;
138
0
  return (argb & 0xff00ff00u) | red_blue;
139
0
}
140
141
static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
142
0
                           uint8_t* const max_diffs, int used_subtract_green) {
143
0
  uint32_t current, up, down, left, right;
144
0
  int x;
145
0
  if (width <= 2) return;
146
0
  current = argb[0];
147
0
  right = argb[1];
148
0
  if (used_subtract_green) {
149
0
    current = AddGreenToBlueAndRed(current);
150
0
    right = AddGreenToBlueAndRed(right);
151
0
  }
152
  // max_diffs[0] and max_diffs[width - 1] are never used.
153
0
  for (x = 1; x < width - 1; ++x) {
154
0
    up = argb[-stride + x];
155
0
    down = argb[stride + x];
156
0
    left = current;
157
0
    current = right;
158
0
    right = argb[x + 1];
159
0
    if (used_subtract_green) {
160
0
      up = AddGreenToBlueAndRed(up);
161
0
      down = AddGreenToBlueAndRed(down);
162
0
      right = AddGreenToBlueAndRed(right);
163
0
    }
164
0
    max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
165
0
  }
166
0
}
167
168
// Quantize the difference between the actual component value and its prediction
169
// to a multiple of quantization, working modulo 256, taking care not to cross
170
// a boundary (inclusive upper limit).
171
static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
172
0
                                     uint8_t boundary, int quantization) {
173
0
  const int residual = (value - predict) & 0xff;
174
0
  const int boundary_residual = (boundary - predict) & 0xff;
175
0
  const int lower = residual & ~(quantization - 1);
176
0
  const int upper = lower + quantization;
177
  // Resolve ties towards a value closer to the prediction (i.e. towards lower
178
  // if value comes after prediction and towards upper otherwise).
179
0
  const int bias = ((boundary - value) & 0xff) < boundary_residual;
180
0
  if (residual - lower < upper - residual + bias) {
181
    // lower is closer to residual than upper.
182
0
    if (residual > boundary_residual && lower <= boundary_residual) {
183
      // Halve quantization step to avoid crossing boundary. This midpoint is
184
      // on the same side of boundary as residual because midpoint >= residual
185
      // (since lower is closer than upper) and residual is above the boundary.
186
0
      return lower + (quantization >> 1);
187
0
    }
188
0
    return lower;
189
0
  } else {
190
    // upper is closer to residual than lower.
191
0
    if (residual <= boundary_residual && upper > boundary_residual) {
192
      // Halve quantization step to avoid crossing boundary. This midpoint is
193
      // on the same side of boundary as residual because midpoint <= residual
194
      // (since upper is closer than lower) and residual is below the boundary.
195
0
      return lower + (quantization >> 1);
196
0
    }
197
0
    return upper & 0xff;
198
0
  }
199
0
}
200
201
0
static WEBP_INLINE uint8_t NearLosslessDiff(uint8_t a, uint8_t b) {
202
0
  return (uint8_t)((((int)(a) - (int)(b))) & 0xff);
203
0
}
204
205
// Quantize every component of the difference between the actual pixel value and
206
// its prediction to a multiple of a quantization (a power of 2, not larger than
207
// max_quantization which is a power of 2, smaller than max_diff). Take care if
208
// value and predict have undergone subtract green, which means that red and
209
// blue are represented as offsets from green.
210
static uint32_t NearLossless(uint32_t value, uint32_t predict,
211
                             int max_quantization, int max_diff,
212
0
                             int used_subtract_green) {
213
0
  int quantization;
214
0
  uint8_t new_green = 0;
215
0
  uint8_t green_diff = 0;
216
0
  uint8_t a, r, g, b;
217
0
  if (max_diff <= 2) {
218
0
    return VP8LSubPixels(value, predict);
219
0
  }
220
0
  quantization = max_quantization;
221
0
  while (quantization >= max_diff) {
222
0
    quantization >>= 1;
223
0
  }
224
0
  if ((value >> 24) == 0 || (value >> 24) == 0xff) {
225
    // Preserve transparency of fully transparent or fully opaque pixels.
226
0
    a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff);
227
0
  } else {
228
0
    a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
229
0
  }
230
0
  g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
231
0
                            quantization);
232
0
  if (used_subtract_green) {
233
    // The green offset will be added to red and blue components during decoding
234
    // to obtain the actual red and blue values.
235
0
    new_green = ((predict >> 8) + g) & 0xff;
236
    // The amount by which green has been adjusted during quantization. It is
237
    // subtracted from red and blue for compensation, to avoid accumulating two
238
    // quantization errors in them.
239
0
    green_diff = NearLosslessDiff(new_green, (value >> 8) & 0xff);
240
0
  }
241
0
  r = NearLosslessComponent(NearLosslessDiff((value >> 16) & 0xff, green_diff),
242
0
                            (predict >> 16) & 0xff, 0xff - new_green,
243
0
                            quantization);
244
0
  b = NearLosslessComponent(NearLosslessDiff(value & 0xff, green_diff),
245
0
                            predict & 0xff, 0xff - new_green, quantization);
246
0
  return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
247
0
}
248
#endif  // (WEBP_NEAR_LOSSLESS == 1)
249
250
// Stores the difference between the pixel and its prediction in "out".
251
// In case of a lossy encoding, updates the source image to avoid propagating
252
// the deviation further to pixels which depend on the current pixel for their
253
// predictions.
254
static WEBP_INLINE void GetResidual(
255
    int width, int height, uint32_t* const upper_row,
256
    uint32_t* const current_row, const uint8_t* const max_diffs, int mode,
257
    int x_start, int x_end, int y, int max_quantization, int exact,
258
0
    int used_subtract_green, uint32_t* const out) {
259
0
  if (exact) {
260
0
    PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row,
261
0
                 out);
262
0
  } else {
263
0
    const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
264
0
    int x;
265
0
    for (x = x_start; x < x_end; ++x) {
266
0
      uint32_t predict;
267
0
      uint32_t residual;
268
0
      if (y == 0) {
269
0
        predict = (x == 0) ? ARGB_BLACK : current_row[x - 1];  // Left.
270
0
      } else if (x == 0) {
271
0
        predict = upper_row[x];  // Top.
272
0
      } else {
273
0
        predict = pred_func(&current_row[x - 1], upper_row + x);
274
0
      }
275
0
#if (WEBP_NEAR_LOSSLESS == 1)
276
0
      if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
277
0
          x == 0 || x == width - 1) {
278
0
        residual = VP8LSubPixels(current_row[x], predict);
279
0
      } else {
280
0
        residual = NearLossless(current_row[x], predict, max_quantization,
281
0
                                max_diffs[x], used_subtract_green);
282
        // Update the source image.
283
0
        current_row[x] = VP8LAddPixels(predict, residual);
284
        // x is never 0 here so we do not need to update upper_row like below.
285
0
      }
286
#else
287
      (void)max_diffs;
288
      (void)height;
289
      (void)max_quantization;
290
      (void)used_subtract_green;
291
      residual = VP8LSubPixels(current_row[x], predict);
292
#endif
293
0
      if ((current_row[x] & kMaskAlpha) == 0) {
294
        // If alpha is 0, cleanup RGB. We can choose the RGB values of the
295
        // residual for best compression. The prediction of alpha itself can be
296
        // non-zero and must be kept though. We choose RGB of the residual to be
297
        // 0.
298
0
        residual &= kMaskAlpha;
299
        // Update the source image.
300
0
        current_row[x] = predict & ~kMaskAlpha;
301
        // The prediction for the rightmost pixel in a row uses the leftmost
302
        // pixel
303
        // in that row as its top-right context pixel. Hence if we change the
304
        // leftmost pixel of current_row, the corresponding change must be
305
        // applied
306
        // to upper_row as well where top-right context is being read from.
307
0
        if (x == 0 && y != 0) upper_row[width] = current_row[0];
308
0
      }
309
0
      out[x - x_start] = residual;
310
0
    }
311
0
  }
312
0
}
313
314
// Accessors to residual histograms.
315
static WEBP_INLINE uint32_t* GetHistoArgb(uint32_t* const all_histos,
316
0
                                          int subsampling_index, int mode) {
317
0
  return &all_histos[(subsampling_index * kNumPredModes + mode) * HISTO_SIZE];
318
0
}
319
320
static WEBP_INLINE const uint32_t* GetHistoArgbConst(
321
0
    const uint32_t* const all_histos, int subsampling_index, int mode) {
322
0
  return &all_histos[subsampling_index * kNumPredModes * HISTO_SIZE +
323
0
                     mode * HISTO_SIZE];
324
0
}
325
326
// Accessors to accumulated residual histogram.
327
static WEBP_INLINE uint32_t* GetAccumulatedHisto(uint32_t* all_accumulated,
328
0
                                                 int subsampling_index) {
329
0
  return &all_accumulated[subsampling_index * HISTO_SIZE];
330
0
}
331
332
// Find and store the best predictor for a tile at subsampling
333
// 'subsampling_index'.
334
static void GetBestPredictorForTile(const uint32_t* const all_argb,
335
                                    int subsampling_index, int tile_x,
336
                                    int tile_y, int tiles_per_row,
337
                                    uint32_t* all_accumulated_argb,
338
                                    uint32_t** const all_modes,
339
0
                                    uint32_t* const all_pred_histos) {
340
0
  uint32_t* const accumulated_argb =
341
0
      GetAccumulatedHisto(all_accumulated_argb, subsampling_index);
342
0
  uint32_t* const modes = all_modes[subsampling_index];
343
0
  uint32_t* const pred_histos =
344
0
      &all_pred_histos[subsampling_index * kNumPredModes];
345
  // Prediction modes of the left and above neighbor tiles.
346
0
  const int left_mode =
347
0
      (tile_x > 0) ? (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff
348
0
                   : 0xff;
349
0
  const int above_mode =
350
0
      (tile_y > 0) ? (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff
351
0
                   : 0xff;
352
0
  int mode;
353
0
  int64_t best_diff = WEBP_INT64_MAX;
354
0
  uint32_t best_mode = 0;
355
0
  const uint32_t* best_histo =
356
0
      GetHistoArgbConst(all_argb, /*subsampling_index=*/0, best_mode);
357
0
  for (mode = 0; mode < kNumPredModes; ++mode) {
358
0
    const uint32_t* const histo_argb =
359
0
        GetHistoArgbConst(all_argb, subsampling_index, mode);
360
0
    const int64_t cur_diff = PredictionCostSpatialHistogram(
361
0
        accumulated_argb, histo_argb, mode, left_mode, above_mode);
362
363
0
    if (cur_diff < best_diff) {
364
0
      best_histo = histo_argb;
365
0
      best_diff = cur_diff;
366
0
      best_mode = mode;
367
0
    }
368
0
  }
369
  // Update the accumulated histogram.
370
0
  VP8LAddVectorEq(best_histo, accumulated_argb, HISTO_SIZE);
371
0
  modes[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (best_mode << 8);
372
0
  ++pred_histos[best_mode];
373
0
}
374
375
// Computes the residuals for the different predictors.
376
// If max_quantization > 1, assumes that near lossless processing will be
377
// applied, quantizing residuals to multiples of quantization levels up to
378
// max_quantization (the actual quantization level depends on smoothness near
379
// the given pixel).
380
static void ComputeResidualsForTile(
381
    int width, int height, int tile_x, int tile_y, int min_bits,
382
    uint32_t update_up_to_index, uint32_t* const all_argb,
383
    uint32_t* const argb_scratch, const uint32_t* const argb,
384
0
    int max_quantization, int exact, int used_subtract_green) {
385
0
  const int start_x = tile_x << min_bits;
386
0
  const int start_y = tile_y << min_bits;
387
0
  const int tile_size = 1 << min_bits;
388
0
  const int max_y = GetMin(tile_size, height - start_y);
389
0
  const int max_x = GetMin(tile_size, width - start_x);
390
  // Whether there exist columns just outside the tile.
391
0
  const int have_left = (start_x > 0);
392
  // Position and size of the strip covering the tile and adjacent columns if
393
  // they exist.
394
0
  const int context_start_x = start_x - have_left;
395
0
#if (WEBP_NEAR_LOSSLESS == 1)
396
0
  const int context_width = max_x + have_left + (max_x < width - start_x);
397
0
#endif
398
  // The width of upper_row and current_row is one pixel larger than image width
399
  // to allow the top right pixel to point to the leftmost pixel of the next row
400
  // when at the right edge.
401
0
  uint32_t* upper_row = argb_scratch;
402
0
  uint32_t* current_row = upper_row + width + 1;
403
0
  uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
404
0
  int mode;
405
  // Need pointers to be able to swap arrays.
406
0
  uint32_t residuals[1 << MAX_TRANSFORM_BITS];
407
0
  assert(max_x <= (1 << MAX_TRANSFORM_BITS));
408
0
  for (mode = 0; mode < kNumPredModes; ++mode) {
409
0
    int relative_y;
410
0
    uint32_t* const histo_argb =
411
0
        GetHistoArgb(all_argb, /*subsampling_index=*/0, mode);
412
0
    if (start_y > 0) {
413
      // Read the row above the tile which will become the first upper_row.
414
      // Include a pixel to the left if it exists; include a pixel to the right
415
      // in all cases (wrapping to the leftmost pixel of the next row if it does
416
      // not exist).
417
0
      memcpy(current_row + context_start_x,
418
0
             argb + (start_y - 1) * width + context_start_x,
419
0
             sizeof(*argb) * (max_x + have_left + 1));
420
0
    }
421
0
    for (relative_y = 0; relative_y < max_y; ++relative_y) {
422
0
      const int y = start_y + relative_y;
423
0
      int relative_x;
424
0
      uint32_t* tmp = upper_row;
425
0
      upper_row = current_row;
426
0
      current_row = tmp;
427
      // Read current_row. Include a pixel to the left if it exists; include a
428
      // pixel to the right in all cases except at the bottom right corner of
429
      // the image (wrapping to the leftmost pixel of the next row if it does
430
      // not exist in the current row).
431
0
      memcpy(current_row + context_start_x,
432
0
             argb + y * width + context_start_x,
433
0
             sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
434
0
#if (WEBP_NEAR_LOSSLESS == 1)
435
0
      if (max_quantization > 1 && y >= 1 && y + 1 < height) {
436
0
        MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
437
0
                       max_diffs + context_start_x, used_subtract_green);
438
0
      }
439
0
#endif
440
441
0
      GetResidual(width, height, upper_row, current_row, max_diffs, mode,
442
0
                  start_x, start_x + max_x, y, max_quantization, exact,
443
0
                  used_subtract_green, residuals);
444
0
      for (relative_x = 0; relative_x < max_x; ++relative_x) {
445
0
        UpdateHisto(histo_argb, residuals[relative_x]);
446
0
      }
447
0
      if (update_up_to_index > 0) {
448
0
        uint32_t subsampling_index;
449
0
        for (subsampling_index = 1; subsampling_index <= update_up_to_index;
450
0
             ++subsampling_index) {
451
0
          uint32_t* const super_histo =
452
0
              GetHistoArgb(all_argb, subsampling_index, mode);
453
0
          for (relative_x = 0; relative_x < max_x; ++relative_x) {
454
0
            UpdateHisto(super_histo, residuals[relative_x]);
455
0
          }
456
0
        }
457
0
      }
458
0
    }
459
0
  }
460
0
}
461
462
// Converts pixels of the image to residuals with respect to predictions.
463
// If max_quantization > 1, applies near lossless processing, quantizing
464
// residuals to multiples of quantization levels up to max_quantization
465
// (the actual quantization level depends on smoothness near the given pixel).
466
static void CopyImageWithPrediction(int width, int height, int bits,
467
                                    const uint32_t* const modes,
468
                                    uint32_t* const argb_scratch,
469
                                    uint32_t* const argb, int low_effort,
470
                                    int max_quantization, int exact,
471
0
                                    int used_subtract_green) {
472
0
  const int tiles_per_row = VP8LSubSampleSize(width, bits);
473
  // The width of upper_row and current_row is one pixel larger than image width
474
  // to allow the top right pixel to point to the leftmost pixel of the next row
475
  // when at the right edge.
476
0
  uint32_t* upper_row = argb_scratch;
477
0
  uint32_t* current_row = upper_row + width + 1;
478
0
  uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
479
0
#if (WEBP_NEAR_LOSSLESS == 1)
480
0
  uint8_t* lower_max_diffs = current_max_diffs + width;
481
0
#endif
482
0
  int y;
483
484
0
  for (y = 0; y < height; ++y) {
485
0
    int x;
486
0
    uint32_t* const tmp32 = upper_row;
487
0
    upper_row = current_row;
488
0
    current_row = tmp32;
489
0
    memcpy(current_row, argb + y * width,
490
0
           sizeof(*argb) * (width + (y + 1 < height)));
491
492
0
    if (low_effort) {
493
0
      PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row,
494
0
                   argb + y * width);
495
0
    } else {
496
0
#if (WEBP_NEAR_LOSSLESS == 1)
497
0
      if (max_quantization > 1) {
498
        // Compute max_diffs for the lower row now, because that needs the
499
        // contents of argb for the current row, which we will overwrite with
500
        // residuals before proceeding with the next row.
501
0
        uint8_t* const tmp8 = current_max_diffs;
502
0
        current_max_diffs = lower_max_diffs;
503
0
        lower_max_diffs = tmp8;
504
0
        if (y + 2 < height) {
505
0
          MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
506
0
                         used_subtract_green);
507
0
        }
508
0
      }
509
0
#endif
510
0
      for (x = 0; x < width;) {
511
0
        const int mode =
512
0
            (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
513
0
        int x_end = x + (1 << bits);
514
0
        if (x_end > width) x_end = width;
515
0
        GetResidual(width, height, upper_row, current_row, current_max_diffs,
516
0
                    mode, x, x_end, y, max_quantization, exact,
517
0
                    used_subtract_green, argb + y * width + x);
518
0
        x = x_end;
519
0
      }
520
0
    }
521
0
  }
522
0
}
523
524
// Checks whether 'image' can be subsampled by finding the biggest power of 2
525
// squares (defined by 'best_bits') of uniform value it is made out of.
526
void VP8LOptimizeSampling(uint32_t* const image, int full_width,
527
                          int full_height, int bits, int max_bits,
528
0
                          int* best_bits_out) {
529
0
  int width = VP8LSubSampleSize(full_width, bits);
530
0
  int height = VP8LSubSampleSize(full_height, bits);
531
0
  int old_width, x, y, square_size;
532
0
  int best_bits = bits;
533
0
  *best_bits_out = bits;
534
  // Check rows first.
535
0
  while (best_bits < max_bits) {
536
0
    const int new_square_size = 1 << (best_bits + 1 - bits);
537
0
    int is_good = 1;
538
0
    square_size = 1 << (best_bits - bits);
539
0
    for (y = 0; y + square_size < height; y += new_square_size) {
540
      // Check the first lines of consecutive line groups.
541
0
      if (memcmp(&image[y * width], &image[(y + square_size) * width],
542
0
                 width * sizeof(*image)) != 0) {
543
0
        is_good = 0;
544
0
        break;
545
0
      }
546
0
    }
547
0
    if (is_good) {
548
0
      ++best_bits;
549
0
    } else {
550
0
      break;
551
0
    }
552
0
  }
553
0
  if (best_bits == bits) return;
554
555
  // Check columns.
556
0
  while (best_bits > bits) {
557
0
    int is_good = 1;
558
0
    square_size = 1 << (best_bits - bits);
559
0
    for (y = 0; is_good && y < height; ++y) {
560
0
      for (x = 0; is_good && x < width; x += square_size) {
561
0
        int i;
562
0
        for (i = x + 1; i < GetMin(x + square_size, width); ++i) {
563
0
          if (image[y * width + i] != image[y * width + x]) {
564
0
            is_good = 0;
565
0
            break;
566
0
          }
567
0
        }
568
0
      }
569
0
    }
570
0
    if (is_good) {
571
0
      break;
572
0
    }
573
0
    --best_bits;
574
0
  }
575
0
  if (best_bits == bits) return;
576
577
  // Subsample the image.
578
0
  old_width = width;
579
0
  square_size = 1 << (best_bits - bits);
580
0
  width = VP8LSubSampleSize(full_width, best_bits);
581
0
  height = VP8LSubSampleSize(full_height, best_bits);
582
0
  for (y = 0; y < height; ++y) {
583
0
    for (x = 0; x < width; ++x) {
584
0
      image[y * width + x] = image[square_size * (y * old_width + x)];
585
0
    }
586
0
  }
587
0
  *best_bits_out = best_bits;
588
0
}
589
590
// Computes the best predictor image.
591
// Finds the best predictors per tile. Once done, finds the best predictor image
592
// sampling.
593
// best_bits is set to 0 in case of error.
594
// The following requires some glossary:
595
// - a tile is a square of side 2^min_bits pixels.
596
// - a super-tile of a tile is a square of side 2^bits pixels with bits in
597
// [min_bits+1, max_bits].
598
// - the max-tile of a tile is the square of 2^max_bits pixels containing it.
599
//   If this max-tile crosses the border of an image, it is cropped.
600
// - tile, super-tiles and max_tile are aligned on powers of 2 in the original
601
//   image.
602
// - coordinates for tile, super-tile, max-tile are respectively named
603
//   tile_x, super_tile_x, max_tile_x at their bit scale.
604
// - in the max-tile, a tile has local coordinates (local_tile_x, local_tile_y).
605
// The tiles are processed in the following zigzag order to complete the
606
// super-tiles as soon as possible:
607
//   1  2|  5  6
608
//   3  4|  7  8
609
// --------------
610
//   9 10| 13 14
611
//  11 12| 15 16
612
// When computing the residuals for a tile, the histogram of the above
613
// super-tile is updated. If this super-tile is finished, its histogram is used
614
// to update the histogram of the next super-tile and so on up to the max-tile.
615
static void GetBestPredictorsAndSubSampling(
616
    int width, int height, const int min_bits, const int max_bits,
617
    uint32_t* const argb_scratch, const uint32_t* const argb,
618
    int max_quantization, int exact, int used_subtract_green,
619
    const WebPPicture* const pic, int percent_range, int* const percent,
620
0
    uint32_t** const all_modes, int* best_bits, uint32_t** best_mode) {
621
0
  const uint32_t tiles_per_row = VP8LSubSampleSize(width, min_bits);
622
0
  const uint32_t tiles_per_col = VP8LSubSampleSize(height, min_bits);
623
0
  int64_t best_cost;
624
0
  uint32_t subsampling_index;
625
0
  const uint32_t max_subsampling_index = max_bits - min_bits;
626
  // Compute the needed memory size for residual histograms, accumulated
627
  // residual histograms and predictor histograms.
628
0
  const int num_argb = (max_subsampling_index + 1) * kNumPredModes * HISTO_SIZE;
629
0
  const int num_accumulated_rgb = (max_subsampling_index + 1) * HISTO_SIZE;
630
0
  const int num_predictors = (max_subsampling_index + 1) * kNumPredModes;
631
0
  uint32_t* const raw_data = (uint32_t*)WebPSafeCalloc(
632
0
      num_argb + num_accumulated_rgb + num_predictors, sizeof(uint32_t));
633
0
  uint32_t* const all_argb = raw_data;
634
0
  uint32_t* const all_accumulated_argb = all_argb + num_argb;
635
0
  uint32_t* const all_pred_histos = all_accumulated_argb + num_accumulated_rgb;
636
0
  const int max_tile_size = 1 << max_subsampling_index;  // in tile size
637
0
  int percent_start = *percent;
638
  // When using the residuals of a tile for its super-tiles, you can either:
639
  // - use each residual to update the histogram of the super-tile, with a cost
640
  //   of 4 * (1<<n)^2 increment operations (4 for the number of channels, and
641
  //   (1<<n)^2 for the number of pixels in the tile)
642
  // - use the histogram of the tile to update the histogram of the super-tile,
643
  //   with a cost of HISTO_SIZE (1024)
644
  // The first method is therefore faster until n==4. 'update_up_to_index'
645
  // defines the maximum subsampling_index for which the residuals should be
646
  // individually added to the super-tile histogram.
647
0
  const uint32_t update_up_to_index =
648
0
      GetMax(GetMin(4, max_bits), min_bits) - min_bits;
649
  // Coordinates in the max-tile in tile units.
650
0
  uint32_t local_tile_x = 0, local_tile_y = 0;
651
0
  uint32_t max_tile_x = 0, max_tile_y = 0;
652
0
  uint32_t tile_x = 0, tile_y = 0;
653
654
0
  *best_bits = 0;
655
0
  *best_mode = NULL;
656
0
  if (raw_data == NULL) return;
657
658
0
  while (tile_y < tiles_per_col) {
659
0
    ComputeResidualsForTile(width, height, tile_x, tile_y, min_bits,
660
0
                            update_up_to_index, all_argb, argb_scratch, argb,
661
0
                            max_quantization, exact, used_subtract_green);
662
663
    // Update all the super-tiles that are complete.
664
0
    subsampling_index = 0;
665
0
    while (1) {
666
0
      const uint32_t super_tile_x = tile_x >> subsampling_index;
667
0
      const uint32_t super_tile_y = tile_y >> subsampling_index;
668
0
      const uint32_t super_tiles_per_row =
669
0
          VP8LSubSampleSize(width, min_bits + subsampling_index);
670
0
      GetBestPredictorForTile(all_argb, subsampling_index, super_tile_x,
671
0
                              super_tile_y, super_tiles_per_row,
672
0
                              all_accumulated_argb, all_modes, all_pred_histos);
673
0
      if (subsampling_index == max_subsampling_index) break;
674
675
      // Update the following super-tile histogram if it has not been updated
676
      // yet.
677
0
      ++subsampling_index;
678
0
      if (subsampling_index > update_up_to_index &&
679
0
          subsampling_index <= max_subsampling_index) {
680
0
        VP8LAddVectorEq(
681
0
            GetHistoArgbConst(all_argb, subsampling_index - 1, /*mode=*/0),
682
0
            GetHistoArgb(all_argb, subsampling_index, /*mode=*/0),
683
0
            HISTO_SIZE * kNumPredModes);
684
0
      }
685
      // Check whether the super-tile is not complete (if the smallest tile
686
      // is not at the end of a line/column or at the beginning of a super-tile
687
      // of size (1 << subsampling_index)).
688
0
      if (!((tile_x == (tiles_per_row - 1) ||
689
0
             (local_tile_x + 1) % (1 << subsampling_index) == 0) &&
690
0
            (tile_y == (tiles_per_col - 1) ||
691
0
             (local_tile_y + 1) % (1 << subsampling_index) == 0))) {
692
0
        --subsampling_index;
693
        // subsampling_index now is the index of the last finished super-tile.
694
0
        break;
695
0
      }
696
0
    }
697
    // Reset all the histograms belonging to finished tiles.
698
0
    memset(all_argb, 0,
699
0
           HISTO_SIZE * kNumPredModes * (subsampling_index + 1) *
700
0
               sizeof(*all_argb));
701
702
0
    if (subsampling_index == max_subsampling_index) {
703
      // If a new max-tile is started.
704
0
      if (tile_x == (tiles_per_row - 1)) {
705
0
        max_tile_x = 0;
706
0
        ++max_tile_y;
707
0
      } else {
708
0
        ++max_tile_x;
709
0
      }
710
0
      local_tile_x = 0;
711
0
      local_tile_y = 0;
712
0
    } else {
713
      // Proceed with the Z traversal.
714
0
      uint32_t coord_x = local_tile_x >> subsampling_index;
715
0
      uint32_t coord_y = local_tile_y >> subsampling_index;
716
0
      if (tile_x == (tiles_per_row - 1) && coord_x % 2 == 0) {
717
0
        ++coord_y;
718
0
      } else {
719
0
        if (coord_x % 2 == 0) {
720
0
          ++coord_x;
721
0
        } else {
722
          // Z traversal.
723
0
          ++coord_y;
724
0
          --coord_x;
725
0
        }
726
0
      }
727
0
      local_tile_x = coord_x << subsampling_index;
728
0
      local_tile_y = coord_y << subsampling_index;
729
0
    }
730
0
    tile_x = max_tile_x * max_tile_size + local_tile_x;
731
0
    tile_y = max_tile_y * max_tile_size + local_tile_y;
732
733
0
    if (tile_x == 0 &&
734
0
        !WebPReportProgress(
735
0
            pic, percent_start + percent_range * tile_y / tiles_per_col,
736
0
            percent)) {
737
0
      WebPSafeFree(raw_data);
738
0
      return;
739
0
    }
740
0
  }
741
742
  // Figure out the best sampling.
743
0
  best_cost = WEBP_INT64_MAX;
744
0
  for (subsampling_index = 0; subsampling_index <= max_subsampling_index;
745
0
       ++subsampling_index) {
746
0
    int plane;
747
0
    const uint32_t* const accumulated =
748
0
        GetAccumulatedHisto(all_accumulated_argb, subsampling_index);
749
0
    int64_t cost = VP8LShannonEntropy(
750
0
        &all_pred_histos[subsampling_index * kNumPredModes], kNumPredModes);
751
0
    for (plane = 0; plane < 4; ++plane) {
752
0
      cost += VP8LShannonEntropy(&accumulated[plane * 256], 256);
753
0
    }
754
0
    if (cost < best_cost) {
755
0
      best_cost = cost;
756
0
      *best_bits = min_bits + subsampling_index;
757
0
      *best_mode = all_modes[subsampling_index];
758
0
    }
759
0
  }
760
761
0
  WebPSafeFree(raw_data);
762
763
0
  VP8LOptimizeSampling(*best_mode, width, height, *best_bits,
764
0
                       MAX_TRANSFORM_BITS, best_bits);
765
0
}
766
767
// Finds the best predictor for each tile, and converts the image to residuals
768
// with respect to predictions. If near_lossless_quality < 100, applies
769
// near lossless processing, shaving off more bits of residuals for lower
770
// qualities.
771
int VP8LResidualImage(int width, int height, int min_bits, int max_bits,
772
                      int low_effort, uint32_t* const argb,
773
                      uint32_t* const argb_scratch, uint32_t* const image,
774
                      int near_lossless_quality, int exact,
775
                      int used_subtract_green, const WebPPicture* const pic,
776
                      int percent_range, int* const percent,
777
0
                      int* const best_bits) {
778
0
  int percent_start = *percent;
779
0
  const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
780
0
  if (low_effort) {
781
0
    const int tiles_per_row = VP8LSubSampleSize(width, max_bits);
782
0
    const int tiles_per_col = VP8LSubSampleSize(height, max_bits);
783
0
    int i;
784
0
    for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
785
0
      image[i] = ARGB_BLACK | (kPredLowEffort << 8);
786
0
    }
787
0
    *best_bits = max_bits;
788
0
  } else {
789
    // Allocate data to try all samplings from min_bits to max_bits.
790
0
    int bits;
791
0
    uint32_t sum_num_pixels = 0u;
792
0
    uint32_t *modes_raw, *best_mode;
793
0
    uint32_t* modes[MAX_TRANSFORM_BITS + 1];
794
0
    uint32_t num_pixels[MAX_TRANSFORM_BITS + 1];
795
0
    for (bits = min_bits; bits <= max_bits; ++bits) {
796
0
      const int tiles_per_row = VP8LSubSampleSize(width, bits);
797
0
      const int tiles_per_col = VP8LSubSampleSize(height, bits);
798
0
      num_pixels[bits] = tiles_per_row * tiles_per_col;
799
0
      sum_num_pixels += num_pixels[bits];
800
0
    }
801
0
    modes_raw = (uint32_t*)WebPSafeMalloc(sum_num_pixels, sizeof(*modes_raw));
802
0
    if (modes_raw == NULL) return 0;
803
    // Have modes point to the right global memory modes_raw.
804
0
    modes[min_bits] = modes_raw;
805
0
    for (bits = min_bits + 1; bits <= max_bits; ++bits) {
806
0
      modes[bits] = modes[bits - 1] + num_pixels[bits - 1];
807
0
    }
808
    // Find the best sampling.
809
0
    GetBestPredictorsAndSubSampling(
810
0
        width, height, min_bits, max_bits, argb_scratch, argb, max_quantization,
811
0
        exact, used_subtract_green, pic, percent_range, percent,
812
0
        &modes[min_bits], best_bits, &best_mode);
813
0
    if (*best_bits == 0) {
814
0
      WebPSafeFree(modes_raw);
815
0
      return 0;
816
0
    }
817
    // Keep the best predictor image.
818
0
    memcpy(image, best_mode,
819
0
           VP8LSubSampleSize(width, *best_bits) *
820
0
               VP8LSubSampleSize(height, *best_bits) * sizeof(*image));
821
0
    WebPSafeFree(modes_raw);
822
0
  }
823
824
0
  CopyImageWithPrediction(width, height, *best_bits, image, argb_scratch, argb,
825
0
                          low_effort, max_quantization, exact,
826
0
                          used_subtract_green);
827
0
  return WebPReportProgress(pic, percent_start + percent_range, percent);
828
0
}
829
830
//------------------------------------------------------------------------------
831
// Color transform functions.
832
833
0
static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
834
0
  m->green_to_red = 0;
835
0
  m->green_to_blue = 0;
836
0
  m->red_to_blue = 0;
837
0
}
838
839
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
840
0
                                               VP8LMultipliers* const m) {
841
0
  m->green_to_red  = (color_code >>  0) & 0xff;
842
0
  m->green_to_blue = (color_code >>  8) & 0xff;
843
0
  m->red_to_blue   = (color_code >> 16) & 0xff;
844
0
}
845
846
static WEBP_INLINE uint32_t MultipliersToColorCode(
847
0
    const VP8LMultipliers* const m) {
848
0
  return 0xff000000u |
849
0
         ((uint32_t)(m->red_to_blue) << 16) |
850
0
         ((uint32_t)(m->green_to_blue) << 8) |
851
0
         m->green_to_red;
852
0
}
853
854
static int64_t PredictionCostCrossColor(const uint32_t accumulated[256],
855
0
                                        const uint32_t counts[256]) {
856
  // Favor low entropy, locally and globally.
857
  // Favor small absolute values for PredictionCostSpatial
858
0
  static const uint64_t kExpValue = 240;
859
0
  return (int64_t)VP8LCombinedShannonEntropy(counts, accumulated) +
860
0
         PredictionCostBias(counts, 3, kExpValue);
861
0
}
862
863
static int64_t GetPredictionCostCrossColorRed(
864
    const uint32_t* argb, int stride, int tile_width, int tile_height,
865
    VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
866
0
    const uint32_t accumulated_red_histo[256]) {
867
0
  uint32_t histo[256] = { 0 };
868
0
  int64_t cur_diff;
869
870
0
  VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
871
0
                                green_to_red, histo);
872
873
0
  cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
874
0
  if ((uint8_t)green_to_red == prev_x.green_to_red) {
875
    // favor keeping the areas locally similar
876
0
    cur_diff -= 3ll << LOG_2_PRECISION_BITS;
877
0
  }
878
0
  if ((uint8_t)green_to_red == prev_y.green_to_red) {
879
    // favor keeping the areas locally similar
880
0
    cur_diff -= 3ll << LOG_2_PRECISION_BITS;
881
0
  }
882
0
  if (green_to_red == 0) {
883
0
    cur_diff -= 3ll << LOG_2_PRECISION_BITS;
884
0
  }
885
0
  return cur_diff;
886
0
}
887
888
static void GetBestGreenToRed(const uint32_t* argb, int stride, int tile_width,
889
                              int tile_height, VP8LMultipliers prev_x,
890
                              VP8LMultipliers prev_y, int quality,
891
                              const uint32_t accumulated_red_histo[256],
892
0
                              VP8LMultipliers* const best_tx) {
893
0
  const int kMaxIters = 4 + ((7 * quality) >> 8);  // in range [4..6]
894
0
  int green_to_red_best = 0;
895
0
  int iter, offset;
896
0
  int64_t best_diff = GetPredictionCostCrossColorRed(
897
0
      argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_red_best,
898
0
      accumulated_red_histo);
899
0
  for (iter = 0; iter < kMaxIters; ++iter) {
900
    // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
901
    // one in color computation. Having initial delta here as 1 is sufficient
902
    // to explore the range of (-2, 2).
903
0
    const int delta = 32 >> iter;
904
    // Try a negative and a positive delta from the best known value.
905
0
    for (offset = -delta; offset <= delta; offset += 2 * delta) {
906
0
      const int green_to_red_cur = offset + green_to_red_best;
907
0
      const int64_t cur_diff = GetPredictionCostCrossColorRed(
908
0
          argb, stride, tile_width, tile_height, prev_x, prev_y,
909
0
          green_to_red_cur, accumulated_red_histo);
910
0
      if (cur_diff < best_diff) {
911
0
        best_diff = cur_diff;
912
0
        green_to_red_best = green_to_red_cur;
913
0
      }
914
0
    }
915
0
  }
916
0
  best_tx->green_to_red = (green_to_red_best & 0xff);
917
0
}
918
919
static int64_t GetPredictionCostCrossColorBlue(
920
    const uint32_t* argb, int stride, int tile_width, int tile_height,
921
    VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_blue,
922
0
    int red_to_blue, const uint32_t accumulated_blue_histo[256]) {
923
0
  uint32_t histo[256] = { 0 };
924
0
  int64_t cur_diff;
925
926
0
  VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
927
0
                                 green_to_blue, red_to_blue, histo);
928
929
0
  cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
930
0
  if ((uint8_t)green_to_blue == prev_x.green_to_blue) {
931
    // favor keeping the areas locally similar
932
0
    cur_diff -= 3ll << LOG_2_PRECISION_BITS;
933
0
  }
934
0
  if ((uint8_t)green_to_blue == prev_y.green_to_blue) {
935
    // favor keeping the areas locally similar
936
0
    cur_diff -= 3ll << LOG_2_PRECISION_BITS;
937
0
  }
938
0
  if ((uint8_t)red_to_blue == prev_x.red_to_blue) {
939
    // favor keeping the areas locally similar
940
0
    cur_diff -= 3ll << LOG_2_PRECISION_BITS;
941
0
  }
942
0
  if ((uint8_t)red_to_blue == prev_y.red_to_blue) {
943
    // favor keeping the areas locally similar
944
0
    cur_diff -= 3ll << LOG_2_PRECISION_BITS;
945
0
  }
946
0
  if (green_to_blue == 0) {
947
0
    cur_diff -= 3ll << LOG_2_PRECISION_BITS;
948
0
  }
949
0
  if (red_to_blue == 0) {
950
0
    cur_diff -= 3ll << LOG_2_PRECISION_BITS;
951
0
  }
952
0
  return cur_diff;
953
0
}
954
955
0
#define kGreenRedToBlueNumAxis 8
956
0
#define kGreenRedToBlueMaxIters 7
957
static void GetBestGreenRedToBlue(const uint32_t* argb, int stride,
958
                                  int tile_width, int tile_height,
959
                                  VP8LMultipliers prev_x,
960
                                  VP8LMultipliers prev_y, int quality,
961
                                  const uint32_t accumulated_blue_histo[256],
962
0
                                  VP8LMultipliers* const best_tx) {
963
0
  const int8_t offset[kGreenRedToBlueNumAxis][2] =
964
0
      {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
965
0
  const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
966
0
  const int iters =
967
0
      (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
968
0
  int green_to_blue_best = 0;
969
0
  int red_to_blue_best = 0;
970
0
  int iter;
971
  // Initial value at origin:
972
0
  int64_t best_diff = GetPredictionCostCrossColorBlue(
973
0
      argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_blue_best,
974
0
      red_to_blue_best, accumulated_blue_histo);
975
0
  for (iter = 0; iter < iters; ++iter) {
976
0
    const int delta = delta_lut[iter];
977
0
    int axis;
978
0
    for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
979
0
      const int green_to_blue_cur =
980
0
          offset[axis][0] * delta + green_to_blue_best;
981
0
      const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
982
0
      const int64_t cur_diff = GetPredictionCostCrossColorBlue(
983
0
          argb, stride, tile_width, tile_height, prev_x, prev_y,
984
0
          green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
985
0
      if (cur_diff < best_diff) {
986
0
        best_diff = cur_diff;
987
0
        green_to_blue_best = green_to_blue_cur;
988
0
        red_to_blue_best = red_to_blue_cur;
989
0
      }
990
0
      if (quality < 25 && iter == 4) {
991
        // Only axis aligned diffs for lower quality.
992
0
        break;  // next iter.
993
0
      }
994
0
    }
995
0
    if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
996
      // Further iterations would not help.
997
0
      break;  // out of iter-loop.
998
0
    }
999
0
  }
1000
0
  best_tx->green_to_blue = green_to_blue_best & 0xff;
1001
0
  best_tx->red_to_blue = red_to_blue_best & 0xff;
1002
0
}
1003
#undef kGreenRedToBlueMaxIters
1004
#undef kGreenRedToBlueNumAxis
1005
1006
static VP8LMultipliers GetBestColorTransformForTile(
1007
    int tile_x, int tile_y, int bits, VP8LMultipliers prev_x,
1008
    VP8LMultipliers prev_y, int quality, int xsize, int ysize,
1009
    const uint32_t accumulated_red_histo[256],
1010
0
    const uint32_t accumulated_blue_histo[256], const uint32_t* const argb) {
1011
0
  const int max_tile_size = 1 << bits;
1012
0
  const int tile_y_offset = tile_y * max_tile_size;
1013
0
  const int tile_x_offset = tile_x * max_tile_size;
1014
0
  const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
1015
0
  const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
1016
0
  const int tile_width = all_x_max - tile_x_offset;
1017
0
  const int tile_height = all_y_max - tile_y_offset;
1018
0
  const uint32_t* const tile_argb = argb + tile_y_offset * xsize
1019
0
                                  + tile_x_offset;
1020
0
  VP8LMultipliers best_tx;
1021
0
  MultipliersClear(&best_tx);
1022
1023
0
  GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
1024
0
                    prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
1025
0
  GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
1026
0
                        prev_x, prev_y, quality, accumulated_blue_histo,
1027
0
                        &best_tx);
1028
0
  return best_tx;
1029
0
}
1030
1031
static void CopyTileWithColorTransform(int xsize, int ysize,
1032
                                       int tile_x, int tile_y,
1033
                                       int max_tile_size,
1034
                                       VP8LMultipliers color_transform,
1035
0
                                       uint32_t* argb) {
1036
0
  const int xscan = GetMin(max_tile_size, xsize - tile_x);
1037
0
  int yscan = GetMin(max_tile_size, ysize - tile_y);
1038
0
  argb += tile_y * xsize + tile_x;
1039
0
  while (yscan-- > 0) {
1040
0
    VP8LTransformColor(&color_transform, argb, xscan);
1041
0
    argb += xsize;
1042
0
  }
1043
0
}
1044
1045
int VP8LColorSpaceTransform(int width, int height, int bits, int quality,
1046
                            uint32_t* const argb, uint32_t* image,
1047
                            const WebPPicture* const pic, int percent_range,
1048
0
                            int* const percent, int* const best_bits) {
1049
0
  const int max_tile_size = 1 << bits;
1050
0
  const int tile_xsize = VP8LSubSampleSize(width, bits);
1051
0
  const int tile_ysize = VP8LSubSampleSize(height, bits);
1052
0
  int percent_start = *percent;
1053
0
  uint32_t accumulated_red_histo[256] = { 0 };
1054
0
  uint32_t accumulated_blue_histo[256] = { 0 };
1055
0
  int tile_x, tile_y;
1056
0
  VP8LMultipliers prev_x, prev_y;
1057
0
  MultipliersClear(&prev_y);
1058
0
  MultipliersClear(&prev_x);
1059
0
  for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
1060
0
    for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
1061
0
      int y;
1062
0
      const int tile_x_offset = tile_x * max_tile_size;
1063
0
      const int tile_y_offset = tile_y * max_tile_size;
1064
0
      const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
1065
0
      const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
1066
0
      const int offset = tile_y * tile_xsize + tile_x;
1067
0
      if (tile_y != 0) {
1068
0
        ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
1069
0
      }
1070
0
      prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
1071
0
                                            prev_x, prev_y,
1072
0
                                            quality, width, height,
1073
0
                                            accumulated_red_histo,
1074
0
                                            accumulated_blue_histo,
1075
0
                                            argb);
1076
0
      image[offset] = MultipliersToColorCode(&prev_x);
1077
0
      CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
1078
0
                                 max_tile_size, prev_x, argb);
1079
1080
      // Gather accumulated histogram data.
1081
0
      for (y = tile_y_offset; y < all_y_max; ++y) {
1082
0
        int ix = y * width + tile_x_offset;
1083
0
        const int ix_end = ix + all_x_max - tile_x_offset;
1084
0
        for (; ix < ix_end; ++ix) {
1085
0
          const uint32_t pix = argb[ix];
1086
0
          if (ix >= 2 &&
1087
0
              pix == argb[ix - 2] &&
1088
0
              pix == argb[ix - 1]) {
1089
0
            continue;  // repeated pixels are handled by backward references
1090
0
          }
1091
0
          if (ix >= width + 2 &&
1092
0
              argb[ix - 2] == argb[ix - width - 2] &&
1093
0
              argb[ix - 1] == argb[ix - width - 1] &&
1094
0
              pix == argb[ix - width]) {
1095
0
            continue;  // repeated pixels are handled by backward references
1096
0
          }
1097
0
          ++accumulated_red_histo[(pix >> 16) & 0xff];
1098
0
          ++accumulated_blue_histo[(pix >> 0) & 0xff];
1099
0
        }
1100
0
      }
1101
0
    }
1102
0
    if (!WebPReportProgress(
1103
0
            pic, percent_start + percent_range * tile_y / tile_ysize,
1104
0
            percent)) {
1105
0
      return 0;
1106
0
    }
1107
0
  }
1108
0
  VP8LOptimizeSampling(image, width, height, bits, MAX_TRANSFORM_BITS,
1109
0
                       best_bits);
1110
0
  return 1;
1111
0
}