Coverage Report

Created: 2023-06-07 06:31

/src/aom/av1/common/restoration.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 *
11
 */
12
13
#include <math.h>
14
15
#include "config/aom_config.h"
16
#include "config/aom_dsp_rtcd.h"
17
#include "config/aom_scale_rtcd.h"
18
19
#include "aom_mem/aom_mem.h"
20
#include "av1/common/av1_common_int.h"
21
#include "av1/common/resize.h"
22
#include "av1/common/restoration.h"
23
#include "aom_dsp/aom_dsp_common.h"
24
#include "aom_mem/aom_mem.h"
25
26
#include "aom_ports/mem.h"
27
28
// The 's' values are calculated based on original 'r' and 'e' values in the
29
// spec using GenSgrprojVtable().
30
// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid).
31
const sgr_params_type av1_sgr_params[SGRPROJ_PARAMS] = {
32
  { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } },
33
  { { 2, 1 }, { 93, 1618 } },  { { 2, 1 }, { 80, 1438 } },
34
  { { 2, 1 }, { 70, 1295 } },  { { 2, 1 }, { 58, 1177 } },
35
  { { 2, 1 }, { 47, 1079 } },  { { 2, 1 }, { 37, 996 } },
36
  { { 2, 1 }, { 30, 925 } },   { { 2, 1 }, { 25, 863 } },
37
  { { 0, 1 }, { -1, 2589 } },  { { 0, 1 }, { -1, 1618 } },
38
  { { 0, 1 }, { -1, 1177 } },  { { 0, 1 }, { -1, 925 } },
39
  { { 2, 0 }, { 56, -1 } },    { { 2, 0 }, { 22, -1 } },
40
};
41
42
1.09M
PixelRect av1_whole_frame_rect(const AV1_COMMON *cm, int is_uv) {
43
1.09M
  PixelRect rect;
44
45
1.09M
  int ss_x = is_uv && cm->seq_params->subsampling_x;
46
1.09M
  int ss_y = is_uv && cm->seq_params->subsampling_y;
47
48
1.09M
  rect.top = 0;
49
1.09M
  rect.bottom = ROUND_POWER_OF_TWO(cm->height, ss_y);
50
1.09M
  rect.left = 0;
51
1.09M
  rect.right = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
52
1.09M
  return rect;
53
1.09M
}
54
55
// Count horizontal or vertical units per tile (use a width or height for
56
// tile_size, respectively). We basically want to divide the tile size by the
57
// size of a restoration unit. Rather than rounding up unconditionally as you
58
// might expect, we round to nearest, which models the way a right or bottom
59
// restoration unit can extend to up to 150% its normal width or height. The
60
// max with 1 is to deal with tiles that are smaller than half of a restoration
61
// unit.
62
2.01M
int av1_lr_count_units_in_tile(int unit_size, int tile_size) {
63
2.01M
  return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1);
64
2.01M
}
65
66
void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
67
62.6k
                                  int is_uv) {
68
  // We need to allocate enough space for restoration units to cover the
69
  // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the
70
  // top-left and we can use av1_get_tile_rect(). With CONFIG_MAX_TILE, we have
71
  // to do the computation ourselves, iterating over the tiles and keeping
72
  // track of the largest width and height, then upscaling.
73
62.6k
  const PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
74
62.6k
  const int max_tile_w = tile_rect.right - tile_rect.left;
75
62.6k
  const int max_tile_h = tile_rect.bottom - tile_rect.top;
76
77
  // To calculate hpertile and vpertile (horizontal and vertical units per
78
  // tile), we basically want to divide the largest tile width or height by the
79
  // size of a restoration unit. Rather than rounding up unconditionally as you
80
  // might expect, we round to nearest, which models the way a right or bottom
81
  // restoration unit can extend to up to 150% its normal width or height. The
82
  // max with 1 is to deal with tiles that are smaller than half of a
83
  // restoration unit.
84
62.6k
  const int unit_size = rsi->restoration_unit_size;
85
62.6k
  const int hpertile = av1_lr_count_units_in_tile(unit_size, max_tile_w);
86
62.6k
  const int vpertile = av1_lr_count_units_in_tile(unit_size, max_tile_h);
87
88
62.6k
  rsi->units_per_tile = hpertile * vpertile;
89
62.6k
  rsi->horz_units_per_tile = hpertile;
90
62.6k
  rsi->vert_units_per_tile = vpertile;
91
92
62.6k
  const int ntiles = 1;
93
62.6k
  const int nunits = ntiles * rsi->units_per_tile;
94
95
62.6k
  aom_free(rsi->unit_info);
96
62.6k
  CHECK_MEM_ERROR(cm, rsi->unit_info,
97
62.6k
                  (RestorationUnitInfo *)aom_memalign(
98
62.6k
                      16, sizeof(*rsi->unit_info) * nunits));
99
62.6k
}
100
101
42.6k
void av1_free_restoration_struct(RestorationInfo *rst_info) {
102
42.6k
  aom_free(rst_info->unit_info);
103
42.6k
  rst_info->unit_info = NULL;
104
42.6k
}
105
106
#if 0
107
// Pair of values for each sgrproj parameter:
108
// Index 0 corresponds to r[0], e[0]
109
// Index 1 corresponds to r[1], e[1]
110
int sgrproj_mtable[SGRPROJ_PARAMS][2];
111
112
static void GenSgrprojVtable() {
113
  for (int i = 0; i < SGRPROJ_PARAMS; ++i) {
114
    const sgr_params_type *const params = &av1_sgr_params[i];
115
    for (int j = 0; j < 2; ++j) {
116
      const int e = params->e[j];
117
      const int r = params->r[j];
118
      if (r == 0) {                 // filter is disabled
119
        sgrproj_mtable[i][j] = -1;  // mark invalid
120
      } else {                      // filter is enabled
121
        const int n = (2 * r + 1) * (2 * r + 1);
122
        const int n2e = n * n * e;
123
        assert(n2e != 0);
124
        sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
125
      }
126
    }
127
  }
128
}
129
#endif
130
131
14.2k
void av1_loop_restoration_precal() {
132
#if 0
133
  GenSgrprojVtable();
134
#endif
135
14.2k
}
136
137
static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
138
12.8k
                               int border_horz, int border_vert) {
139
12.8k
  uint8_t *data_p;
140
12.8k
  int i;
141
2.55M
  for (i = 0; i < height; ++i) {
142
2.54M
    data_p = data + i * stride;
143
2.54M
    memset(data_p - border_horz, data_p[0], border_horz);
144
2.54M
    memset(data_p + width, data_p[width - 1], border_horz);
145
2.54M
  }
146
12.8k
  data_p = data - border_horz;
147
51.5k
  for (i = -border_vert; i < 0; ++i) {
148
38.6k
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
149
38.6k
  }
150
51.5k
  for (i = height; i < height + border_vert; ++i) {
151
38.6k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
152
38.6k
           width + 2 * border_horz);
153
38.6k
  }
154
12.8k
}
155
156
#if CONFIG_AV1_HIGHBITDEPTH
157
static void extend_frame_highbd(uint16_t *data, int width, int height,
158
20.1k
                                int stride, int border_horz, int border_vert) {
159
20.1k
  uint16_t *data_p;
160
20.1k
  int i, j;
161
2.64M
  for (i = 0; i < height; ++i) {
162
2.62M
    data_p = data + i * stride;
163
10.5M
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
164
10.5M
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
165
2.62M
  }
166
20.1k
  data_p = data - border_horz;
167
80.7k
  for (i = -border_vert; i < 0; ++i) {
168
60.5k
    memcpy(data_p + i * stride, data_p,
169
60.5k
           (width + 2 * border_horz) * sizeof(uint16_t));
170
60.5k
  }
171
80.7k
  for (i = height; i < height + border_vert; ++i) {
172
60.5k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
173
60.5k
           (width + 2 * border_horz) * sizeof(uint16_t));
174
60.5k
  }
175
20.1k
}
176
177
static void copy_tile_highbd(int width, int height, const uint16_t *src,
178
12.3k
                             int src_stride, uint16_t *dst, int dst_stride) {
179
1.03M
  for (int i = 0; i < height; ++i)
180
1.02M
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
181
12.3k
}
182
#endif
183
184
void av1_extend_frame(uint8_t *data, int width, int height, int stride,
185
33.0k
                      int border_horz, int border_vert, int highbd) {
186
33.0k
#if CONFIG_AV1_HIGHBITDEPTH
187
33.0k
  if (highbd) {
188
20.1k
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
189
20.1k
                        border_horz, border_vert);
190
20.1k
    return;
191
20.1k
  }
192
12.8k
#endif
193
12.8k
  (void)highbd;
194
12.8k
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
195
12.8k
}
196
197
static void copy_tile_lowbd(int width, int height, const uint8_t *src,
198
59.8k
                            int src_stride, uint8_t *dst, int dst_stride) {
199
3.61M
  for (int i = 0; i < height; ++i)
200
3.55M
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
201
59.8k
}
202
203
static void copy_tile(int width, int height, const uint8_t *src, int src_stride,
204
72.2k
                      uint8_t *dst, int dst_stride, int highbd) {
205
72.2k
#if CONFIG_AV1_HIGHBITDEPTH
206
72.2k
  if (highbd) {
207
12.3k
    copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
208
12.3k
                     CONVERT_TO_SHORTPTR(dst), dst_stride);
209
12.3k
    return;
210
12.3k
  }
211
59.9k
#endif
212
59.9k
  (void)highbd;
213
59.9k
  copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride);
214
59.9k
}
215
216
4.42M
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))
217
218
// With striped loop restoration, the filtering for each 64-pixel stripe gets
219
// most of its input from the output of CDEF (stored in data8), but we need to
220
// fill out a border of 3 pixels above/below the stripe according to the
221
// following
222
// rules:
223
//
224
// * At a frame boundary, we copy the outermost row of CDEF pixels three times.
225
//   This extension is done by a call to av1_extend_frame() at the start of the
226
//   loop restoration process, so the value of copy_above/copy_below doesn't
227
//   strictly matter. However, by setting *copy_above = *copy_below = 1 whenever
228
//   loop filtering across tiles is disabled, we can allow
229
//   {setup,restore}_processing_stripe_boundary to assume that the top/bottom
230
//   data has always been copied, simplifying the behaviour at the left and
231
//   right edges of tiles.
232
//
233
// * If we're at a tile boundary and loop filtering across tiles is enabled,
234
//   then there is a logical stripe which is 64 pixels high, but which is split
235
//   into an 8px high and a 56px high stripe so that the processing (and
236
//   coefficient set usage) can be aligned to tiles.
237
//   In this case, we use the 3 rows of CDEF output across the boundary for
238
//   context; this corresponds to leaving the frame buffer as-is.
239
//
240
// * If we're at a tile boundary and loop filtering across tiles is disabled,
241
//   then we take the outermost row of CDEF pixels *within the current tile*
242
//   and copy it three times. Thus we behave exactly as if the tile were a full
243
//   frame.
244
//
245
// * Otherwise, we're at a stripe boundary within a tile. In that case, we
246
//   take 2 rows of deblocked pixels and extend them to 3 rows of context.
247
//
248
// The distinction between the latter two cases is handled by the
249
// av1_loop_restoration_save_boundary_lines() function, so here we just need
250
// to decide if we're overwriting the above/below boundary pixels or not.
251
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
252
                                     const PixelRect *tile_rect, int ss_y,
253
263k
                                     int *copy_above, int *copy_below) {
254
263k
  *copy_above = 1;
255
263k
  *copy_below = 1;
256
257
263k
  const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
258
263k
  const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
259
260
263k
  const int first_stripe_in_tile = (limits->v_start == tile_rect->top);
261
263k
  const int this_stripe_height =
262
263k
      full_stripe_height - (first_stripe_in_tile ? runit_offset : 0);
263
263k
  const int last_stripe_in_tile =
264
263k
      (limits->v_start + this_stripe_height >= tile_rect->bottom);
265
266
263k
  if (first_stripe_in_tile) *copy_above = 0;
267
263k
  if (last_stripe_in_tile) *copy_below = 0;
268
263k
}
269
270
// Overwrite the border pixels around a processing stripe so that the conditions
271
// listed above get_stripe_boundary_info() are preserved.
272
// We save the pixels which get overwritten into a temporary buffer, so that
273
// they can be restored by restore_processing_stripe_boundary() after we've
274
// processed the stripe.
275
//
276
// limits gives the rectangular limits of the remaining stripes for the current
277
// restoration unit. rsb is the stored stripe boundaries (taken from either
278
// deblock or CDEF output as necessary).
279
//
280
// tile_rect is the limits of the current tile and tile_stripe0 is the index of
281
// the first stripe in this tile (needed to convert the tile-relative stripe
282
// index we get from limits into something we can look up in rsb).
283
static void setup_processing_stripe_boundary(
284
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
285
    int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride,
286
263k
    RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) {
287
  // Offsets within the line buffers. The buffer logically starts at column
288
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
289
  // has column x0 in the buffer.
290
263k
  const int buf_stride = rsb->stripe_boundary_stride;
291
263k
  const int buf_x0_off = limits->h_start;
292
263k
  const int line_width =
293
263k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
294
263k
  const int line_size = line_width << use_highbd;
295
296
263k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
297
298
  // Replace RESTORATION_BORDER pixels above the top of the stripe
299
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
300
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
301
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
302
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
303
  //
304
  // Special case: If we're at the top of a tile, which isn't on the topmost
305
  // tile row, and we're allowed to loop filter across tiles, then we have a
306
  // logical 64-pixel-high stripe which has been split into an 8-pixel high
307
  // stripe and a 56-pixel high stripe (the current one). So, in this case,
308
  // we want to leave the boundary alone!
309
263k
  if (!opt) {
310
246k
    if (copy_above) {
311
221k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
312
313
884k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
314
663k
        const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
315
663k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
316
663k
        const uint8_t *buf =
317
663k
            rsb->stripe_boundary_above + (buf_off << use_highbd);
318
663k
        uint8_t *dst8 = data8_tl + i * data_stride;
319
        // Save old pixels, then replace with data from stripe_boundary_above
320
663k
        memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
321
663k
               REAL_PTR(use_highbd, dst8), line_size);
322
663k
        memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
323
663k
      }
324
221k
    }
325
326
    // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
327
    // The second buffer row is repeated, so src_row gets the values 0, 1, 1
328
    // for i = 0, 1, 2.
329
246k
    if (copy_below) {
330
221k
      const int stripe_end = limits->v_start + h;
331
221k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
332
333
884k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
334
663k
        const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
335
663k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
336
663k
        const uint8_t *src =
337
663k
            rsb->stripe_boundary_below + (buf_off << use_highbd);
338
339
663k
        uint8_t *dst8 = data8_bl + i * data_stride;
340
        // Save old pixels, then replace with data from stripe_boundary_below
341
663k
        memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
342
663k
        memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
343
663k
      }
344
221k
    }
345
246k
  } else {
346
16.7k
    if (copy_above) {
347
11.1k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
348
349
      // Only save and overwrite i=-RESTORATION_BORDER line.
350
11.1k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
351
      // Save old pixels, then replace with data from stripe_boundary_above
352
11.1k
      memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size);
353
11.1k
      memcpy(REAL_PTR(use_highbd, dst8),
354
11.1k
             REAL_PTR(use_highbd,
355
11.1k
                      data8_tl + (-RESTORATION_BORDER + 1) * data_stride),
356
11.1k
             line_size);
357
11.1k
    }
358
359
16.7k
    if (copy_below) {
360
10.5k
      const int stripe_end = limits->v_start + h;
361
10.5k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
362
363
      // Only save and overwrite i=2 line.
364
10.5k
      uint8_t *dst8 = data8_bl + 2 * data_stride;
365
      // Save old pixels, then replace with data from stripe_boundary_below
366
10.5k
      memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size);
367
10.5k
      memcpy(REAL_PTR(use_highbd, dst8),
368
10.5k
             REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size);
369
10.5k
    }
370
16.7k
  }
371
263k
}
372
373
// This function restores the boundary lines modified by
374
// setup_processing_stripe_boundary.
375
//
376
// Note: We need to be careful when handling the corners of the processing
377
// unit, because (eg.) the top-left corner is considered to be part of
378
// both the left and top borders. This means that, depending on the
379
// loop_filter_across_tiles_enabled flag, the corner pixels might get
380
// overwritten twice, once as part of the "top" border and once as part
381
// of the "left" border (or similar for other corners).
382
//
383
// Everything works out fine as long as we make sure to reverse the order
384
// when restoring, ie. we need to restore the left/right borders followed
385
// by the top/bottom borders.
386
static void restore_processing_stripe_boundary(
387
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
388
    int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above,
389
261k
    int copy_below, int opt) {
390
261k
  const int line_width =
391
261k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
392
261k
  const int line_size = line_width << use_highbd;
393
394
261k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
395
396
261k
  if (!opt) {
397
245k
    if (copy_above) {
398
220k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
399
880k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
400
660k
        uint8_t *dst8 = data8_tl + i * data_stride;
401
660k
        memcpy(REAL_PTR(use_highbd, dst8),
402
660k
               rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
403
660k
      }
404
220k
    }
405
406
245k
    if (copy_below) {
407
221k
      const int stripe_bottom = limits->v_start + h;
408
221k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
409
410
884k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
411
663k
        if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
412
413
663k
        uint8_t *dst8 = data8_bl + i * data_stride;
414
663k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
415
663k
      }
416
221k
    }
417
245k
  } else {
418
16.7k
    if (copy_above) {
419
11.0k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
420
421
      // Only restore i=-RESTORATION_BORDER line.
422
11.0k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
423
11.0k
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size);
424
11.0k
    }
425
426
16.7k
    if (copy_below) {
427
10.5k
      const int stripe_bottom = limits->v_start + h;
428
10.5k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
429
430
      // Only restore i=2 line.
431
10.5k
      if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) {
432
10.5k
        uint8_t *dst8 = data8_bl + 2 * data_stride;
433
10.5k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size);
434
10.5k
      }
435
10.5k
    }
436
16.7k
  }
437
261k
}
438
439
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
440
                                 int stripe_width, int stripe_height,
441
                                 int procunit_width, const uint8_t *src,
442
                                 int src_stride, uint8_t *dst, int dst_stride,
443
71.5k
                                 int32_t *tmpbuf, int bit_depth) {
444
71.5k
  (void)tmpbuf;
445
71.5k
  (void)bit_depth;
446
71.5k
  assert(bit_depth == 8);
447
0
  const ConvolveParams conv_params = get_conv_params_wiener(8);
448
449
503k
  for (int j = 0; j < stripe_width; j += procunit_width) {
450
432k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
451
432k
    const uint8_t *src_p = src + j;
452
432k
    uint8_t *dst_p = dst + j;
453
432k
    av1_wiener_convolve_add_src(
454
432k
        src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16,
455
432k
        rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params);
456
432k
  }
457
71.5k
}
458
459
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
460
   over the input. The window is of size (2r + 1)x(2r + 1), and we
461
   specialize to r = 1, 2, 3. A default function is used for r > 3.
462
463
   Each loop follows the same format: We keep a window's worth of input
464
   in individual variables and select data out of that as appropriate.
465
*/
466
static void boxsum1(int32_t *src, int width, int height, int src_stride,
467
0
                    int sqr, int32_t *dst, int dst_stride) {
468
0
  int i, j, a, b, c;
469
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
470
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
471
472
  // Vertical sum over 3-pixel regions, from src into dst.
473
0
  if (!sqr) {
474
0
    for (j = 0; j < width; ++j) {
475
0
      a = src[j];
476
0
      b = src[src_stride + j];
477
0
      c = src[2 * src_stride + j];
478
479
0
      dst[j] = a + b;
480
0
      for (i = 1; i < height - 2; ++i) {
481
        // Loop invariant: At the start of each iteration,
482
        // a = src[(i - 1) * src_stride + j]
483
        // b = src[(i    ) * src_stride + j]
484
        // c = src[(i + 1) * src_stride + j]
485
0
        dst[i * dst_stride + j] = a + b + c;
486
0
        a = b;
487
0
        b = c;
488
0
        c = src[(i + 2) * src_stride + j];
489
0
      }
490
0
      dst[i * dst_stride + j] = a + b + c;
491
0
      dst[(i + 1) * dst_stride + j] = b + c;
492
0
    }
493
0
  } else {
494
0
    for (j = 0; j < width; ++j) {
495
0
      a = src[j] * src[j];
496
0
      b = src[src_stride + j] * src[src_stride + j];
497
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
498
499
0
      dst[j] = a + b;
500
0
      for (i = 1; i < height - 2; ++i) {
501
0
        dst[i * dst_stride + j] = a + b + c;
502
0
        a = b;
503
0
        b = c;
504
0
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
505
0
      }
506
0
      dst[i * dst_stride + j] = a + b + c;
507
0
      dst[(i + 1) * dst_stride + j] = b + c;
508
0
    }
509
0
  }
510
511
  // Horizontal sum over 3-pixel regions of dst
512
0
  for (i = 0; i < height; ++i) {
513
0
    a = dst[i * dst_stride];
514
0
    b = dst[i * dst_stride + 1];
515
0
    c = dst[i * dst_stride + 2];
516
517
0
    dst[i * dst_stride] = a + b;
518
0
    for (j = 1; j < width - 2; ++j) {
519
      // Loop invariant: At the start of each iteration,
520
      // a = src[i * src_stride + (j - 1)]
521
      // b = src[i * src_stride + (j    )]
522
      // c = src[i * src_stride + (j + 1)]
523
0
      dst[i * dst_stride + j] = a + b + c;
524
0
      a = b;
525
0
      b = c;
526
0
      c = dst[i * dst_stride + (j + 2)];
527
0
    }
528
0
    dst[i * dst_stride + j] = a + b + c;
529
0
    dst[i * dst_stride + (j + 1)] = b + c;
530
0
  }
531
0
}
532
533
static void boxsum2(int32_t *src, int width, int height, int src_stride,
534
0
                    int sqr, int32_t *dst, int dst_stride) {
535
0
  int i, j, a, b, c, d, e;
536
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
537
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
538
539
  // Vertical sum over 5-pixel regions, from src into dst.
540
0
  if (!sqr) {
541
0
    for (j = 0; j < width; ++j) {
542
0
      a = src[j];
543
0
      b = src[src_stride + j];
544
0
      c = src[2 * src_stride + j];
545
0
      d = src[3 * src_stride + j];
546
0
      e = src[4 * src_stride + j];
547
548
0
      dst[j] = a + b + c;
549
0
      dst[dst_stride + j] = a + b + c + d;
550
0
      for (i = 2; i < height - 3; ++i) {
551
        // Loop invariant: At the start of each iteration,
552
        // a = src[(i - 2) * src_stride + j]
553
        // b = src[(i - 1) * src_stride + j]
554
        // c = src[(i    ) * src_stride + j]
555
        // d = src[(i + 1) * src_stride + j]
556
        // e = src[(i + 2) * src_stride + j]
557
0
        dst[i * dst_stride + j] = a + b + c + d + e;
558
0
        a = b;
559
0
        b = c;
560
0
        c = d;
561
0
        d = e;
562
0
        e = src[(i + 3) * src_stride + j];
563
0
      }
564
0
      dst[i * dst_stride + j] = a + b + c + d + e;
565
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
566
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
567
0
    }
568
0
  } else {
569
0
    for (j = 0; j < width; ++j) {
570
0
      a = src[j] * src[j];
571
0
      b = src[src_stride + j] * src[src_stride + j];
572
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
573
0
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
574
0
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
575
576
0
      dst[j] = a + b + c;
577
0
      dst[dst_stride + j] = a + b + c + d;
578
0
      for (i = 2; i < height - 3; ++i) {
579
0
        dst[i * dst_stride + j] = a + b + c + d + e;
580
0
        a = b;
581
0
        b = c;
582
0
        c = d;
583
0
        d = e;
584
0
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
585
0
      }
586
0
      dst[i * dst_stride + j] = a + b + c + d + e;
587
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
588
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
589
0
    }
590
0
  }
591
592
  // Horizontal sum over 5-pixel regions of dst
593
0
  for (i = 0; i < height; ++i) {
594
0
    a = dst[i * dst_stride];
595
0
    b = dst[i * dst_stride + 1];
596
0
    c = dst[i * dst_stride + 2];
597
0
    d = dst[i * dst_stride + 3];
598
0
    e = dst[i * dst_stride + 4];
599
600
0
    dst[i * dst_stride] = a + b + c;
601
0
    dst[i * dst_stride + 1] = a + b + c + d;
602
0
    for (j = 2; j < width - 3; ++j) {
603
      // Loop invariant: At the start of each iteration,
604
      // a = src[i * src_stride + (j - 2)]
605
      // b = src[i * src_stride + (j - 1)]
606
      // c = src[i * src_stride + (j    )]
607
      // d = src[i * src_stride + (j + 1)]
608
      // e = src[i * src_stride + (j + 2)]
609
0
      dst[i * dst_stride + j] = a + b + c + d + e;
610
0
      a = b;
611
0
      b = c;
612
0
      c = d;
613
0
      d = e;
614
0
      e = dst[i * dst_stride + (j + 3)];
615
0
    }
616
0
    dst[i * dst_stride + j] = a + b + c + d + e;
617
0
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
618
0
    dst[i * dst_stride + (j + 2)] = c + d + e;
619
0
  }
620
0
}
621
622
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
623
0
                   int sqr, int32_t *dst, int dst_stride) {
624
0
  if (r == 1)
625
0
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
626
0
  else if (r == 2)
627
0
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
628
0
  else
629
0
    assert(0 && "Invalid value of r in self-guided filter");
630
0
}
631
632
520k
void av1_decode_xq(const int *xqd, int *xq, const sgr_params_type *params) {
633
520k
  if (params->r[0] == 0) {
634
64.9k
    xq[0] = 0;
635
64.9k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1];
636
455k
  } else if (params->r[1] == 0) {
637
25.0k
    xq[0] = xqd[0];
638
25.0k
    xq[1] = 0;
639
430k
  } else {
640
430k
    xq[0] = xqd[0];
641
430k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
642
430k
  }
643
520k
}
644
645
const int32_t av1_x_by_xplus1[256] = {
646
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
647
  // instead of 0. See comments in selfguided_restoration_internal() for why
648
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
649
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
650
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
651
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
652
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
653
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
654
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
655
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
656
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
657
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
658
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
659
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
660
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
661
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
662
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
663
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
664
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
665
  256,
666
};
667
668
const int32_t av1_one_by_x[MAX_NELEM] = {
669
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
670
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
671
};
672
673
static void calculate_intermediate_result(int32_t *dgd, int width, int height,
674
                                          int dgd_stride, int bit_depth,
675
                                          int sgr_params_idx, int radius_idx,
676
0
                                          int pass, int32_t *A, int32_t *B) {
677
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
678
0
  const int r = params->r[radius_idx];
679
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
680
0
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
681
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
682
  // leading to a significant speed improvement.
683
  // We also align the stride to a multiple of 16 bytes, for consistency
684
  // with the SIMD version of this function.
685
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
686
0
  const int step = pass == 0 ? 1 : 2;
687
0
  int i, j;
688
689
0
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
690
0
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
691
0
         "Need SGRPROJ_BORDER_* >= r+1");
692
693
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
694
0
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
695
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
696
0
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
697
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
698
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
699
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
700
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
701
0
  for (i = -1; i < height + 1; i += step) {
702
0
    for (j = -1; j < width + 1; ++j) {
703
0
      const int k = i * buf_stride + j;
704
0
      const int n = (2 * r + 1) * (2 * r + 1);
705
706
      // a < 2^16 * n < 2^22 regardless of bit depth
707
0
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
708
      // b < 2^8 * n < 2^14 regardless of bit depth
709
0
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
710
711
      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
712
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
713
      // This bound on p is due to:
714
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
715
      //
716
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
717
      // This is an artefact of rounding, and can only happen if all pixels
718
      // are (almost) identical, so in this case we saturate to p=0.
719
0
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
720
721
0
      const uint32_t s = params->s[radius_idx];
722
723
      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
724
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
725
      // (this holds even after accounting for the rounding in s)
726
0
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
727
728
      // Note: We have to be quite careful about the value of A[k].
729
      // This is used as a blend factor between individual pixel values and the
730
      // local mean. So it logically has a range of [0, 256], including both
731
      // endpoints.
732
      //
733
      // This is a pain for hardware, as we'd like something which can be stored
734
      // in exactly 8 bits.
735
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
736
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
737
      // slightly above 2^(8 + bit depth), due to rounding in the value of
738
      // av1_one_by_x[25-1].
739
      //
740
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
741
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
742
      // overflow), without significantly affecting the final result: z == 0
743
      // implies that the image is essentially "flat", so the local mean and
744
      // individual pixel values are very similar.
745
      //
746
      // Note that saturating on the other side, ie. requring A[k] <= 255,
747
      // would be a bad idea, as that corresponds to the case where the image
748
      // is very variable, when we want to preserve the local pixel value as
749
      // much as possible.
750
0
      A[k] = av1_x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]
751
752
      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
753
      // av1_one_by_x[n - 1] = round(2^12 / n)
754
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
755
      // and B[k] is set to a value < 2^(8 + bit depth)
756
      // This holds even with the rounding in av1_one_by_x and in the overall
757
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
758
0
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
759
0
                                             (uint32_t)B[k] *
760
0
                                             (uint32_t)av1_one_by_x[n - 1],
761
0
                                         SGRPROJ_RECIP_BITS);
762
0
    }
763
0
  }
764
0
}
765
766
static void selfguided_restoration_fast_internal(
767
    int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst,
768
0
    int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) {
769
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
770
0
  const int r = params->r[radius_idx];
771
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
772
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
773
  // leading to a significant speed improvement.
774
  // We also align the stride to a multiple of 16 bytes, for consistency
775
  // with the SIMD version of this function.
776
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
777
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
778
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
779
0
  int32_t *A = A_;
780
0
  int32_t *B = B_;
781
0
  int i, j;
782
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
783
0
                                sgr_params_idx, radius_idx, 1, A, B);
784
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
785
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
786
787
  // Use the A[] and B[] arrays to calculate the filtered image
788
0
  (void)r;
789
0
  assert(r == 2);
790
0
  for (i = 0; i < height; ++i) {
791
0
    if (!(i & 1)) {  // even row
792
0
      for (j = 0; j < width; ++j) {
793
0
        const int k = i * buf_stride + j;
794
0
        const int l = i * dgd_stride + j;
795
0
        const int m = i * dst_stride + j;
796
0
        const int nb = 5;
797
0
        const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 +
798
0
                          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
799
0
                           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
800
0
                              5;
801
0
        const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 +
802
0
                          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
803
0
                           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
804
0
                              5;
805
0
        const int32_t v = a * dgd[l] + b;
806
0
        dst[m] =
807
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
808
0
      }
809
0
    } else {  // odd row
810
0
      for (j = 0; j < width; ++j) {
811
0
        const int k = i * buf_stride + j;
812
0
        const int l = i * dgd_stride + j;
813
0
        const int m = i * dst_stride + j;
814
0
        const int nb = 4;
815
0
        const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5;
816
0
        const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5;
817
0
        const int32_t v = a * dgd[l] + b;
818
0
        dst[m] =
819
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
820
0
      }
821
0
    }
822
0
  }
823
0
}
824
825
static void selfguided_restoration_internal(int32_t *dgd, int width, int height,
826
                                            int dgd_stride, int32_t *dst,
827
                                            int dst_stride, int bit_depth,
828
                                            int sgr_params_idx,
829
0
                                            int radius_idx) {
830
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
831
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
832
  // leading to a significant speed improvement.
833
  // We also align the stride to a multiple of 16 bytes, for consistency
834
  // with the SIMD version of this function.
835
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
836
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
837
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
838
0
  int32_t *A = A_;
839
0
  int32_t *B = B_;
840
0
  int i, j;
841
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
842
0
                                sgr_params_idx, radius_idx, 0, A, B);
843
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
844
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
845
846
  // Use the A[] and B[] arrays to calculate the filtered image
847
0
  for (i = 0; i < height; ++i) {
848
0
    for (j = 0; j < width; ++j) {
849
0
      const int k = i * buf_stride + j;
850
0
      const int l = i * dgd_stride + j;
851
0
      const int m = i * dst_stride + j;
852
0
      const int nb = 5;
853
0
      const int32_t a =
854
0
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
855
0
              4 +
856
0
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
857
0
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
858
0
              3;
859
0
      const int32_t b =
860
0
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
861
0
              4 +
862
0
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
863
0
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
864
0
              3;
865
0
      const int32_t v = a * dgd[l] + b;
866
0
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
867
0
    }
868
0
  }
869
0
}
870
871
int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
872
                                 int dgd_stride, int32_t *flt0, int32_t *flt1,
873
                                 int flt_stride, int sgr_params_idx,
874
0
                                 int bit_depth, int highbd) {
875
0
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
876
0
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
877
0
  int32_t *dgd32 =
878
0
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
879
880
0
  if (highbd) {
881
0
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
882
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
883
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
884
0
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
885
0
      }
886
0
    }
887
0
  } else {
888
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
889
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
890
0
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
891
0
      }
892
0
    }
893
0
  }
894
895
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
896
  // If params->r == 0 we skip the corresponding filter. We only allow one of
897
  // the radii to be 0, as having both equal to 0 would be equivalent to
898
  // skipping SGR entirely.
899
0
  assert(!(params->r[0] == 0 && params->r[1] == 0));
900
901
0
  if (params->r[0] > 0)
902
0
    selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride,
903
0
                                         flt0, flt_stride, bit_depth,
904
0
                                         sgr_params_idx, 0);
905
0
  if (params->r[1] > 0)
906
0
    selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
907
0
                                    flt_stride, bit_depth, sgr_params_idx, 1);
908
0
  return 0;
909
0
}
910
911
void av1_apply_selfguided_restoration_c(const uint8_t *dat8, int width,
912
                                        int height, int stride, int eps,
913
                                        const int *xqd, uint8_t *dst8,
914
                                        int dst_stride, int32_t *tmpbuf,
915
0
                                        int bit_depth, int highbd) {
916
0
  int32_t *flt0 = tmpbuf;
917
0
  int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
918
0
  assert(width * height <= RESTORATION_UNITPELS_MAX);
919
920
0
  const int ret = av1_selfguided_restoration_c(
921
0
      dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd);
922
0
  (void)ret;
923
0
  assert(!ret);
924
0
  const sgr_params_type *const params = &av1_sgr_params[eps];
925
0
  int xq[2];
926
0
  av1_decode_xq(xqd, xq, params);
927
0
  for (int i = 0; i < height; ++i) {
928
0
    for (int j = 0; j < width; ++j) {
929
0
      const int k = i * width + j;
930
0
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
931
0
      const uint8_t *dat8ij = dat8 + i * stride + j;
932
933
0
      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
934
0
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
935
0
      int32_t v = u << SGRPROJ_PRJ_BITS;
936
      // If params->r == 0 then we skipped the filtering in
937
      // av1_selfguided_restoration_c, i.e. flt[k] == u
938
0
      if (params->r[0] > 0) v += xq[0] * (flt0[k] - u);
939
0
      if (params->r[1] > 0) v += xq[1] * (flt1[k] - u);
940
0
      const int16_t w =
941
0
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
942
943
0
      const uint16_t out = clip_pixel_highbd(w, bit_depth);
944
0
      if (highbd)
945
0
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
946
0
      else
947
0
        *dst8ij = (uint8_t)out;
948
0
    }
949
0
  }
950
0
}
951
952
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
953
                                  int stripe_width, int stripe_height,
954
                                  int procunit_width, const uint8_t *src,
955
                                  int src_stride, uint8_t *dst, int dst_stride,
956
98.8k
                                  int32_t *tmpbuf, int bit_depth) {
957
98.8k
  (void)bit_depth;
958
98.8k
  assert(bit_depth == 8);
959
960
445k
  for (int j = 0; j < stripe_width; j += procunit_width) {
961
346k
    int w = AOMMIN(procunit_width, stripe_width - j);
962
346k
    av1_apply_selfguided_restoration(
963
346k
        src + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
964
346k
        rui->sgrproj_info.xqd, dst + j, dst_stride, tmpbuf, bit_depth, 0);
965
346k
  }
966
98.8k
}
967
968
#if CONFIG_AV1_HIGHBITDEPTH
969
static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui,
970
                                        int stripe_width, int stripe_height,
971
                                        int procunit_width, const uint8_t *src8,
972
                                        int src_stride, uint8_t *dst8,
973
                                        int dst_stride, int32_t *tmpbuf,
974
31.0k
                                        int bit_depth) {
975
31.0k
  (void)tmpbuf;
976
31.0k
  const ConvolveParams conv_params = get_conv_params_wiener(bit_depth);
977
978
214k
  for (int j = 0; j < stripe_width; j += procunit_width) {
979
183k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
980
183k
    const uint8_t *src8_p = src8 + j;
981
183k
    uint8_t *dst8_p = dst8 + j;
982
183k
    av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride,
983
183k
                                       rui->wiener_info.hfilter, 16,
984
183k
                                       rui->wiener_info.vfilter, 16, w,
985
183k
                                       stripe_height, &conv_params, bit_depth);
986
183k
  }
987
31.0k
}
988
989
static void sgrproj_filter_stripe_highbd(const RestorationUnitInfo *rui,
990
                                         int stripe_width, int stripe_height,
991
                                         int procunit_width,
992
                                         const uint8_t *src8, int src_stride,
993
                                         uint8_t *dst8, int dst_stride,
994
61.8k
                                         int32_t *tmpbuf, int bit_depth) {
995
235k
  for (int j = 0; j < stripe_width; j += procunit_width) {
996
173k
    int w = AOMMIN(procunit_width, stripe_width - j);
997
173k
    av1_apply_selfguided_restoration(
998
173k
        src8 + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
999
173k
        rui->sgrproj_info.xqd, dst8 + j, dst_stride, tmpbuf, bit_depth, 1);
1000
173k
  }
1001
61.8k
}
1002
#endif  // CONFIG_AV1_HIGHBITDEPTH
1003
1004
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
1005
                                  int stripe_width, int stripe_height,
1006
                                  int procunit_width, const uint8_t *src,
1007
                                  int src_stride, uint8_t *dst, int dst_stride,
1008
                                  int32_t *tmpbuf, int bit_depth);
1009
1010
#if CONFIG_AV1_HIGHBITDEPTH
1011
#define NUM_STRIPE_FILTERS 4
1012
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
1013
  wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd,
1014
  sgrproj_filter_stripe_highbd
1015
};
1016
#else
1017
#define NUM_STRIPE_FILTERS 2
1018
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
1019
  wiener_filter_stripe, sgrproj_filter_stripe
1020
};
1021
#endif  // CONFIG_AV1_HIGHBITDEPTH
1022
1023
// Filter one restoration unit
1024
void av1_loop_restoration_filter_unit(
1025
    const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
1026
    const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
1027
    const PixelRect *tile_rect, int tile_stripe0, int ss_x, int ss_y,
1028
    int highbd, int bit_depth, uint8_t *data8, int stride, uint8_t *dst8,
1029
146k
    int dst_stride, int32_t *tmpbuf, int optimized_lr) {
1030
146k
  RestorationType unit_rtype = rui->restoration_type;
1031
1032
146k
  int unit_h = limits->v_end - limits->v_start;
1033
146k
  int unit_w = limits->h_end - limits->h_start;
1034
146k
  uint8_t *data8_tl = data8 + limits->v_start * stride + limits->h_start;
1035
146k
  uint8_t *dst8_tl = dst8 + limits->v_start * dst_stride + limits->h_start;
1036
1037
146k
  if (unit_rtype == RESTORE_NONE) {
1038
72.2k
    copy_tile(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride, highbd);
1039
72.2k
    return;
1040
72.2k
  }
1041
1042
74.1k
  const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ);
1043
74.1k
  assert(filter_idx < NUM_STRIPE_FILTERS);
1044
0
  const stripe_filter_fun stripe_filter = stripe_filters[filter_idx];
1045
1046
74.1k
  const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
1047
1048
  // Convolve the whole tile one stripe at a time
1049
74.1k
  RestorationTileLimits remaining_stripes = *limits;
1050
74.1k
  int i = 0;
1051
337k
  while (i < unit_h) {
1052
263k
    int copy_above, copy_below;
1053
263k
    remaining_stripes.v_start = limits->v_start + i;
1054
1055
263k
    get_stripe_boundary_info(&remaining_stripes, tile_rect, ss_y, &copy_above,
1056
263k
                             &copy_below);
1057
1058
263k
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1059
263k
    const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
1060
1061
    // Work out where this stripe's boundaries are within
1062
    // rsb->stripe_boundary_{above,below}
1063
263k
    const int tile_stripe =
1064
263k
        (remaining_stripes.v_start - tile_rect->top + runit_offset) /
1065
263k
        full_stripe_height;
1066
263k
    const int frame_stripe = tile_stripe0 + tile_stripe;
1067
263k
    const int rsb_row = RESTORATION_CTX_VERT * frame_stripe;
1068
1069
    // Calculate this stripe's height, based on two rules:
1070
    // * The topmost stripe in each tile is 8 luma pixels shorter than usual.
1071
    // * We can't extend past the end of the current restoration unit
1072
263k
    const int nominal_stripe_height =
1073
263k
        full_stripe_height - ((tile_stripe == 0) ? runit_offset : 0);
1074
263k
    const int h = AOMMIN(nominal_stripe_height,
1075
263k
                         remaining_stripes.v_end - remaining_stripes.v_start);
1076
1077
263k
    setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd,
1078
263k
                                     h, data8, stride, rlbs, copy_above,
1079
263k
                                     copy_below, optimized_lr);
1080
1081
263k
    stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride,
1082
263k
                  dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth);
1083
1084
263k
    restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h,
1085
263k
                                       data8, stride, copy_above, copy_below,
1086
263k
                                       optimized_lr);
1087
1088
263k
    i += h;
1089
263k
  }
1090
74.1k
}
1091
1092
static void filter_frame_on_unit(const RestorationTileLimits *limits,
1093
                                 const PixelRect *tile_rect, int rest_unit_idx,
1094
                                 void *priv, int32_t *tmpbuf,
1095
146k
                                 RestorationLineBuffers *rlbs) {
1096
146k
  FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
1097
146k
  const RestorationInfo *rsi = ctxt->rsi;
1098
1099
146k
  av1_loop_restoration_filter_unit(
1100
146k
      limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs, tile_rect,
1101
146k
      ctxt->tile_stripe0, ctxt->ss_x, ctxt->ss_y, ctxt->highbd, ctxt->bit_depth,
1102
146k
      ctxt->data8, ctxt->data_stride, ctxt->dst8, ctxt->dst_stride, tmpbuf,
1103
146k
      rsi->optimized_lr);
1104
146k
}
1105
1106
void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
1107
                                            YV12_BUFFER_CONFIG *frame,
1108
                                            AV1_COMMON *cm, int optimized_lr,
1109
16.9k
                                            int num_planes) {
1110
16.9k
  const SequenceHeader *const seq_params = cm->seq_params;
1111
16.9k
  const int bit_depth = seq_params->bit_depth;
1112
16.9k
  const int highbd = seq_params->use_highbitdepth;
1113
16.9k
  lr_ctxt->dst = &cm->rst_frame;
1114
1115
16.9k
  const int frame_width = frame->crop_widths[0];
1116
16.9k
  const int frame_height = frame->crop_heights[0];
1117
16.9k
  if (aom_realloc_frame_buffer(
1118
16.9k
          lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
1119
16.9k
          seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
1120
16.9k
          cm->features.byte_alignment, NULL, NULL, NULL, 0, 0) != AOM_CODEC_OK)
1121
0
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1122
0
                       "Failed to allocate restoration dst buffer");
1123
1124
16.9k
  lr_ctxt->on_rest_unit = filter_frame_on_unit;
1125
16.9k
  lr_ctxt->frame = frame;
1126
63.8k
  for (int plane = 0; plane < num_planes; ++plane) {
1127
46.8k
    RestorationInfo *rsi = &cm->rst_info[plane];
1128
46.8k
    RestorationType rtype = rsi->frame_restoration_type;
1129
46.8k
    rsi->optimized_lr = optimized_lr;
1130
1131
46.8k
    if (rtype == RESTORE_NONE) {
1132
13.7k
      continue;
1133
13.7k
    }
1134
1135
33.0k
    const int is_uv = plane > 0;
1136
33.0k
    const int plane_width = frame->crop_widths[is_uv];
1137
33.0k
    const int plane_height = frame->crop_heights[is_uv];
1138
33.0k
    FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane];
1139
1140
33.0k
    av1_extend_frame(frame->buffers[plane], plane_width, plane_height,
1141
33.0k
                     frame->strides[is_uv], RESTORATION_BORDER,
1142
33.0k
                     RESTORATION_BORDER, highbd);
1143
1144
33.0k
    lr_plane_ctxt->rsi = rsi;
1145
33.0k
    lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x;
1146
33.0k
    lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y;
1147
33.0k
    lr_plane_ctxt->highbd = highbd;
1148
33.0k
    lr_plane_ctxt->bit_depth = bit_depth;
1149
33.0k
    lr_plane_ctxt->data8 = frame->buffers[plane];
1150
33.0k
    lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane];
1151
33.0k
    lr_plane_ctxt->data_stride = frame->strides[is_uv];
1152
33.0k
    lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv];
1153
33.0k
    lr_plane_ctxt->tile_rect = av1_whole_frame_rect(cm, is_uv);
1154
33.0k
    lr_plane_ctxt->tile_stripe0 = 0;
1155
33.0k
  }
1156
16.9k
}
1157
1158
void av1_loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt,
1159
3.70k
                                      AV1_COMMON *cm, int num_planes) {
1160
3.70k
  typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
1161
3.70k
                           YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
1162
3.70k
                           int vstart, int vend);
1163
3.70k
  static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
1164
3.70k
                                         aom_yv12_partial_coloc_copy_u,
1165
3.70k
                                         aom_yv12_partial_coloc_copy_v };
1166
3.70k
  assert(num_planes <= 3);
1167
14.0k
  for (int plane = 0; plane < num_planes; ++plane) {
1168
10.3k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1169
6.86k
    PixelRect tile_rect = loop_rest_ctxt->ctxt[plane].tile_rect;
1170
6.86k
    copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, tile_rect.left,
1171
6.86k
                     tile_rect.right, tile_rect.top, tile_rect.bottom);
1172
6.86k
  }
1173
3.70k
}
1174
1175
static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm,
1176
3.70k
                                        int num_planes) {
1177
3.70k
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
1178
1179
14.0k
  for (int plane = 0; plane < num_planes; ++plane) {
1180
10.3k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) {
1181
3.47k
      continue;
1182
3.47k
    }
1183
1184
6.86k
    av1_foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit,
1185
6.86k
                                   &ctxt[plane], &ctxt[plane].tile_rect,
1186
6.86k
                                   cm->rst_tmpbuf, cm->rlbs);
1187
6.86k
  }
1188
3.70k
}
1189
1190
void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame,
1191
                                       AV1_COMMON *cm, int optimized_lr,
1192
3.70k
                                       void *lr_ctxt) {
1193
3.70k
  assert(!cm->features.all_lossless);
1194
0
  const int num_planes = av1_num_planes(cm);
1195
1196
3.70k
  AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
1197
1198
3.70k
  av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
1199
3.70k
                                         optimized_lr, num_planes);
1200
1201
3.70k
  foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes);
1202
1203
3.70k
  av1_loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes);
1204
3.70k
}
1205
1206
void av1_foreach_rest_unit_in_row(
1207
    RestorationTileLimits *limits, const PixelRect *tile_rect,
1208
    rest_unit_visitor_t on_rest_unit, int row_number, int unit_size,
1209
    int unit_idx0, int hunits_per_tile, int vunits_per_tile, int plane,
1210
    void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs,
1211
    sync_read_fn_t on_sync_read, sync_write_fn_t on_sync_write,
1212
55.8k
    struct AV1LrSyncData *const lr_sync) {
1213
55.8k
  const int tile_w = tile_rect->right - tile_rect->left;
1214
55.8k
  const int ext_size = unit_size * 3 / 2;
1215
55.8k
  int x0 = 0, j = 0;
1216
202k
  while (x0 < tile_w) {
1217
146k
    int remaining_w = tile_w - x0;
1218
146k
    int w = (remaining_w < ext_size) ? remaining_w : unit_size;
1219
1220
146k
    limits->h_start = tile_rect->left + x0;
1221
146k
    limits->h_end = tile_rect->left + x0 + w;
1222
146k
    assert(limits->h_end <= tile_rect->right);
1223
1224
0
    const int unit_idx = unit_idx0 + row_number * hunits_per_tile + j;
1225
1226
    // No sync for even numbered rows
1227
    // For odd numbered rows, Loop Restoration of current block requires the LR
1228
    // of top-right and bottom-right blocks to be completed
1229
1230
    // top-right sync
1231
146k
    on_sync_read(lr_sync, row_number, j, plane);
1232
146k
    if ((row_number + 1) < vunits_per_tile)
1233
      // bottom-right sync
1234
88.8k
      on_sync_read(lr_sync, row_number + 2, j, plane);
1235
1236
146k
    on_rest_unit(limits, tile_rect, unit_idx, priv, tmpbuf, rlbs);
1237
1238
146k
    on_sync_write(lr_sync, row_number, j, hunits_per_tile, plane);
1239
1240
146k
    x0 += w;
1241
146k
    ++j;
1242
146k
  }
1243
55.8k
}
1244
1245
152k
void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) {
1246
152k
  (void)lr_sync;
1247
152k
  (void)r;
1248
152k
  (void)c;
1249
152k
  (void)plane;
1250
152k
}
1251
1252
void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c,
1253
69.5k
                             const int sb_cols, int plane) {
1254
69.5k
  (void)lr_sync;
1255
69.5k
  (void)r;
1256
69.5k
  (void)c;
1257
69.5k
  (void)sb_cols;
1258
69.5k
  (void)plane;
1259
69.5k
}
1260
1261
static void foreach_rest_unit_in_tile(
1262
    const PixelRect *tile_rect, int tile_row, int tile_col, int tile_cols,
1263
    int hunits_per_tile, int vunits_per_tile, int units_per_tile, int unit_size,
1264
    int ss_y, int plane, rest_unit_visitor_t on_rest_unit, void *priv,
1265
6.86k
    int32_t *tmpbuf, RestorationLineBuffers *rlbs) {
1266
6.86k
  const int tile_h = tile_rect->bottom - tile_rect->top;
1267
6.86k
  const int ext_size = unit_size * 3 / 2;
1268
1269
6.86k
  const int tile_idx = tile_col + tile_row * tile_cols;
1270
6.86k
  const int unit_idx0 = tile_idx * units_per_tile;
1271
1272
6.86k
  int y0 = 0, i = 0;
1273
16.8k
  while (y0 < tile_h) {
1274
9.94k
    int remaining_h = tile_h - y0;
1275
9.94k
    int h = (remaining_h < ext_size) ? remaining_h : unit_size;
1276
1277
9.94k
    RestorationTileLimits limits;
1278
9.94k
    limits.v_start = tile_rect->top + y0;
1279
9.94k
    limits.v_end = tile_rect->top + y0 + h;
1280
9.94k
    assert(limits.v_end <= tile_rect->bottom);
1281
    // Offset the tile upwards to align with the restoration processing stripe
1282
9.94k
    const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
1283
9.94k
    limits.v_start = AOMMAX(tile_rect->top, limits.v_start - voffset);
1284
9.94k
    if (limits.v_end < tile_rect->bottom) limits.v_end -= voffset;
1285
1286
9.94k
    av1_foreach_rest_unit_in_row(
1287
9.94k
        &limits, tile_rect, on_rest_unit, i, unit_size, unit_idx0,
1288
9.94k
        hunits_per_tile, vunits_per_tile, plane, priv, tmpbuf, rlbs,
1289
9.94k
        av1_lr_sync_read_dummy, av1_lr_sync_write_dummy, NULL);
1290
1291
9.94k
    y0 += h;
1292
9.94k
    ++i;
1293
9.94k
  }
1294
6.86k
}
1295
1296
void av1_foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane,
1297
                                    rest_unit_visitor_t on_rest_unit,
1298
                                    void *priv, PixelRect *tile_rect,
1299
                                    int32_t *tmpbuf,
1300
6.86k
                                    RestorationLineBuffers *rlbs) {
1301
6.86k
  const int is_uv = plane > 0;
1302
6.86k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1303
1304
6.86k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1305
1306
6.86k
  foreach_rest_unit_in_tile(tile_rect, LR_TILE_ROW, LR_TILE_COL, LR_TILE_COLS,
1307
6.86k
                            rsi->horz_units_per_tile, rsi->vert_units_per_tile,
1308
6.86k
                            rsi->units_per_tile, rsi->restoration_unit_size,
1309
6.86k
                            ss_y, plane, on_rest_unit, priv, tmpbuf, rlbs);
1310
6.86k
}
1311
1312
int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane,
1313
                                       int mi_row, int mi_col, BLOCK_SIZE bsize,
1314
                                       int *rcol0, int *rcol1, int *rrow0,
1315
36.0M
                                       int *rrow1) {
1316
36.0M
  assert(rcol0 && rcol1 && rrow0 && rrow1);
1317
1318
36.0M
  if (bsize != cm->seq_params->sb_size) return 0;
1319
3.31M
  if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) return 0;
1320
1321
917k
  assert(!cm->features.all_lossless);
1322
1323
0
  const int is_uv = plane > 0;
1324
1325
917k
  const PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
1326
917k
  const int tile_w = tile_rect.right - tile_rect.left;
1327
917k
  const int tile_h = tile_rect.bottom - tile_rect.top;
1328
1329
917k
  const int mi_top = 0;
1330
917k
  const int mi_left = 0;
1331
1332
  // Compute the mi-unit corners of the superblock relative to the top-left of
1333
  // the tile
1334
917k
  const int mi_rel_row0 = mi_row - mi_top;
1335
917k
  const int mi_rel_col0 = mi_col - mi_left;
1336
917k
  const int mi_rel_row1 = mi_rel_row0 + mi_size_high[bsize];
1337
917k
  const int mi_rel_col1 = mi_rel_col0 + mi_size_wide[bsize];
1338
1339
917k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1340
917k
  const int size = rsi->restoration_unit_size;
1341
1342
  // Calculate the number of restoration units in this tile (which might be
1343
  // strictly less than rsi->horz_units_per_tile and rsi->vert_units_per_tile)
1344
917k
  const int horz_units = av1_lr_count_units_in_tile(size, tile_w);
1345
917k
  const int vert_units = av1_lr_count_units_in_tile(size, tile_h);
1346
1347
  // The size of an MI-unit on this plane of the image
1348
917k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1349
917k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1350
917k
  const int mi_size_x = MI_SIZE >> ss_x;
1351
917k
  const int mi_size_y = MI_SIZE >> ss_y;
1352
1353
  // Write m for the relative mi column or row, D for the superres denominator
1354
  // and N for the superres numerator. If u is the upscaled pixel offset then
1355
  // we can write the downscaled pixel offset in two ways as:
1356
  //
1357
  //   MI_SIZE * m = N / D u
1358
  //
1359
  // from which we get u = D * MI_SIZE * m / N
1360
917k
  const int mi_to_num_x = av1_superres_scaled(cm)
1361
917k
                              ? mi_size_x * cm->superres_scale_denominator
1362
917k
                              : mi_size_x;
1363
917k
  const int mi_to_num_y = mi_size_y;
1364
917k
  const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size;
1365
917k
  const int denom_y = size;
1366
1367
917k
  const int rnd_x = denom_x - 1;
1368
917k
  const int rnd_y = denom_y - 1;
1369
1370
  // rcol0/rrow0 should be the first column/row of restoration units (relative
1371
  // to the top-left of the tile) that doesn't start left/below of
1372
  // mi_col/mi_row. For this calculation, we need to round up the division (if
1373
  // the sb starts at runit column 10.1, the first matching runit has column
1374
  // index 11)
1375
917k
  *rcol0 = (mi_rel_col0 * mi_to_num_x + rnd_x) / denom_x;
1376
917k
  *rrow0 = (mi_rel_row0 * mi_to_num_y + rnd_y) / denom_y;
1377
1378
  // rel_col1/rel_row1 is the equivalent calculation, but for the superblock
1379
  // below-right. If we're at the bottom or right of the tile, this restoration
1380
  // unit might not exist, in which case we'll clamp accordingly.
1381
917k
  *rcol1 = AOMMIN((mi_rel_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units);
1382
917k
  *rrow1 = AOMMIN((mi_rel_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units);
1383
1384
917k
  return *rcol0 < *rcol1 && *rrow0 < *rrow1;
1385
3.31M
}
1386
1387
// Extend to left and right
1388
static void extend_lines(uint8_t *buf, int width, int height, int stride,
1389
357k
                         int extend, int use_highbitdepth) {
1390
1.07M
  for (int i = 0; i < height; ++i) {
1391
714k
    if (use_highbitdepth) {
1392
326k
      uint16_t *buf16 = (uint16_t *)buf;
1393
326k
      aom_memset16(buf16 - extend, buf16[0], extend);
1394
326k
      aom_memset16(buf16 + width, buf16[width - 1], extend);
1395
388k
    } else {
1396
388k
      memset(buf - extend, buf[0], extend);
1397
388k
      memset(buf + width, buf[width - 1], extend);
1398
388k
    }
1399
714k
    buf += stride;
1400
714k
  }
1401
357k
}
1402
1403
static void save_deblock_boundary_lines(
1404
    const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row,
1405
    int stripe, int use_highbd, int is_above,
1406
283k
    RestorationStripeBoundaries *boundaries) {
1407
283k
  const int is_uv = plane > 0;
1408
283k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1409
283k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1410
283k
  const uint8_t *src_rows = src_buf + row * src_stride;
1411
1412
283k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1413
283k
                               : boundaries->stripe_boundary_below;
1414
283k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1415
283k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1416
283k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1417
1418
  // There is a rare case in which a processing stripe can end 1px above the
1419
  // crop border. In this case, we do want to use deblocked pixels from below
1420
  // the stripe (hence why we ended up in this function), but instead of
1421
  // fetching 2 "below" rows we need to fetch one and duplicate it.
1422
  // This is equivalent to clamping the sample locations against the crop border
1423
283k
  const int lines_to_save =
1424
283k
      AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row);
1425
283k
  assert(lines_to_save == 1 || lines_to_save == 2);
1426
1427
0
  int upscaled_width;
1428
283k
  int line_bytes;
1429
283k
  if (av1_superres_scaled(cm)) {
1430
15.9k
    const int ss_x = is_uv && cm->seq_params->subsampling_x;
1431
15.9k
    upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
1432
15.9k
    line_bytes = upscaled_width << use_highbd;
1433
15.9k
    if (use_highbd)
1434
5.37k
      av1_upscale_normative_rows(
1435
5.37k
          cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv],
1436
5.37k
          CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride,
1437
5.37k
          plane, lines_to_save);
1438
10.6k
    else
1439
10.6k
      av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows,
1440
10.6k
                                 boundaries->stripe_boundary_stride, plane,
1441
10.6k
                                 lines_to_save);
1442
267k
  } else {
1443
267k
    upscaled_width = frame->crop_widths[is_uv];
1444
267k
    line_bytes = upscaled_width << use_highbd;
1445
793k
    for (int i = 0; i < lines_to_save; i++) {
1446
525k
      memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride,
1447
525k
             line_bytes);
1448
525k
    }
1449
267k
  }
1450
  // If we only saved one line, then copy it into the second line buffer
1451
283k
  if (lines_to_save == 1)
1452
10.3k
    memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes);
1453
1454
283k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1455
283k
               RESTORATION_EXTRA_HORZ, use_highbd);
1456
283k
}
1457
1458
static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1459
                                     const AV1_COMMON *cm, int plane, int row,
1460
                                     int stripe, int use_highbd, int is_above,
1461
73.7k
                                     RestorationStripeBoundaries *boundaries) {
1462
73.7k
  const int is_uv = plane > 0;
1463
73.7k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1464
73.7k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1465
73.7k
  const uint8_t *src_rows = src_buf + row * src_stride;
1466
1467
73.7k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1468
73.7k
                               : boundaries->stripe_boundary_below;
1469
73.7k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1470
73.7k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1471
73.7k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1472
73.7k
  const int src_width = frame->crop_widths[is_uv];
1473
1474
  // At the point where this function is called, we've already applied
1475
  // superres. So we don't need to extend the lines here, we can just
1476
  // pull directly from the topmost row of the upscaled frame.
1477
73.7k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1478
73.7k
  const int upscaled_width = av1_superres_scaled(cm)
1479
73.7k
                                 ? (cm->superres_upscaled_width + ss_x) >> ss_x
1480
73.7k
                                 : src_width;
1481
73.7k
  const int line_bytes = upscaled_width << use_highbd;
1482
221k
  for (int i = 0; i < RESTORATION_CTX_VERT; i++) {
1483
    // Copy the line at 'row' into both context lines. This is because
1484
    // we want to (effectively) extend the outermost row of CDEF data
1485
    // from this tile to produce a border, rather than using deblocked
1486
    // pixels from the tile above/below.
1487
147k
    memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes);
1488
147k
  }
1489
73.7k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1490
73.7k
               RESTORATION_EXTRA_HORZ, use_highbd);
1491
73.7k
}
1492
1493
static void save_tile_row_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1494
                                         int use_highbd, int plane,
1495
73.8k
                                         AV1_COMMON *cm, int after_cdef) {
1496
73.8k
  const int is_uv = plane > 0;
1497
73.8k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1498
73.8k
  const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1499
73.8k
  const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y;
1500
1501
  // Get the tile rectangle, with height rounded up to the next multiple of 8
1502
  // luma pixels (only relevant for the bottom tile of the frame)
1503
73.8k
  const PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
1504
73.8k
  const int stripe0 = 0;
1505
1506
73.8k
  RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries;
1507
1508
73.8k
  const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y);
1509
1510
73.8k
  int tile_stripe;
1511
431k
  for (tile_stripe = 0;; ++tile_stripe) {
1512
431k
    const int rel_y0 = AOMMAX(0, tile_stripe * stripe_height - stripe_off);
1513
431k
    const int y0 = tile_rect.top + rel_y0;
1514
431k
    if (y0 >= tile_rect.bottom) break;
1515
1516
357k
    const int rel_y1 = (tile_stripe + 1) * stripe_height - stripe_off;
1517
357k
    const int y1 = AOMMIN(tile_rect.top + rel_y1, tile_rect.bottom);
1518
1519
357k
    const int frame_stripe = stripe0 + tile_stripe;
1520
1521
    // In this case, we should only use CDEF pixels at the top
1522
    // and bottom of the frame as a whole; internal tile boundaries
1523
    // can use deblocked pixels from adjacent tiles for context.
1524
357k
    const int use_deblock_above = (frame_stripe > 0);
1525
357k
    const int use_deblock_below = (y1 < plane_height);
1526
1527
357k
    if (!after_cdef) {
1528
      // Save deblocked context where needed.
1529
178k
      if (use_deblock_above) {
1530
141k
        save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT,
1531
141k
                                    frame_stripe, use_highbd, 1, boundaries);
1532
141k
      }
1533
178k
      if (use_deblock_below) {
1534
141k
        save_deblock_boundary_lines(frame, cm, plane, y1, frame_stripe,
1535
141k
                                    use_highbd, 0, boundaries);
1536
141k
      }
1537
178k
    } else {
1538
      // Save CDEF context where needed. Note that we need to save the CDEF
1539
      // context for a particular boundary iff we *didn't* save deblocked
1540
      // context for that boundary.
1541
      //
1542
      // In addition, we need to save copies of the outermost line within
1543
      // the tile, rather than using data from outside the tile.
1544
178k
      if (!use_deblock_above) {
1545
36.8k
        save_cdef_boundary_lines(frame, cm, plane, y0, frame_stripe, use_highbd,
1546
36.8k
                                 1, boundaries);
1547
36.8k
      }
1548
178k
      if (!use_deblock_below) {
1549
36.8k
        save_cdef_boundary_lines(frame, cm, plane, y1 - 1, frame_stripe,
1550
36.8k
                                 use_highbd, 0, boundaries);
1551
36.8k
      }
1552
178k
    }
1553
357k
  }
1554
73.8k
}
1555
1556
// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan
1557
// lines to be used as boundary in the loop restoration process. The
1558
// lines are saved in rst_internal.stripe_boundary_lines
1559
void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1560
26.6k
                                              AV1_COMMON *cm, int after_cdef) {
1561
26.6k
  const int num_planes = av1_num_planes(cm);
1562
26.6k
  const int use_highbd = cm->seq_params->use_highbitdepth;
1563
100k
  for (int p = 0; p < num_planes; ++p) {
1564
73.8k
    save_tile_row_boundary_lines(frame, use_highbd, p, cm, after_cdef);
1565
73.8k
  }
1566
26.6k
}