/src/aom/av1/common/thread_common.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
3 | | * |
4 | | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | | * was not distributed with this source code in the LICENSE file, you can |
7 | | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | | * Media Patent License 1.0 was not distributed with this source code in the |
9 | | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | | */ |
11 | | |
12 | | #include "aom/aom_image.h" |
13 | | #include "config/aom_config.h" |
14 | | #include "config/aom_scale_rtcd.h" |
15 | | |
16 | | #include "aom_dsp/aom_dsp_common.h" |
17 | | #include "aom_dsp/txfm_common.h" |
18 | | #include "aom_mem/aom_mem.h" |
19 | | #include "aom_util/aom_pthread.h" |
20 | | #include "aom_util/aom_thread.h" |
21 | | #include "av1/common/av1_loopfilter.h" |
22 | | #include "av1/common/blockd.h" |
23 | | #include "av1/common/cdef.h" |
24 | | #include "av1/common/entropymode.h" |
25 | | #include "av1/common/enums.h" |
26 | | #include "av1/common/thread_common.h" |
27 | | #include "av1/common/reconinter.h" |
28 | | #include "av1/common/reconintra.h" |
29 | | #include "av1/common/restoration.h" |
30 | | |
31 | | // Set up nsync by width. |
32 | 3.41k | static inline int get_sync_range(int width) { |
33 | | // nsync numbers are picked by testing. For example, for 4k |
34 | | // video, using 4 gives best performance. |
35 | 3.41k | if (width < 640) |
36 | 3.17k | return 1; |
37 | 234 | else if (width <= 1280) |
38 | 25 | return 2; |
39 | 209 | else if (width <= 4096) |
40 | 159 | return 4; |
41 | 50 | else |
42 | 50 | return 8; |
43 | 3.41k | } |
44 | | |
45 | | #if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER |
46 | 1.19k | static inline int get_lr_sync_range(int width) { |
47 | | #if 0 |
48 | | // nsync numbers are picked by testing. For example, for 4k |
49 | | // video, using 4 gives best performance. |
50 | | if (width < 640) |
51 | | return 1; |
52 | | else if (width <= 1280) |
53 | | return 2; |
54 | | else if (width <= 4096) |
55 | | return 4; |
56 | | else |
57 | | return 8; |
58 | | #else |
59 | 1.19k | (void)width; |
60 | 1.19k | return 1; |
61 | 1.19k | #endif |
62 | 1.19k | } |
63 | | #endif // !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER |
64 | | |
65 | | // Allocate memory for lf row synchronization |
66 | | void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, |
67 | 3.41k | int width, int num_workers) { |
68 | 3.41k | lf_sync->rows = rows; |
69 | 3.41k | #if CONFIG_MULTITHREAD |
70 | 3.41k | { |
71 | 3.41k | int i, j; |
72 | | |
73 | 13.6k | for (j = 0; j < MAX_MB_PLANE; j++) { |
74 | 10.2k | CHECK_MEM_ERROR(cm, lf_sync->mutex_[j], |
75 | 10.2k | aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows)); |
76 | 10.2k | if (lf_sync->mutex_[j]) { |
77 | 44.9k | for (i = 0; i < rows; ++i) { |
78 | 34.7k | pthread_mutex_init(&lf_sync->mutex_[j][i], NULL); |
79 | 34.7k | } |
80 | 10.2k | } |
81 | | |
82 | 10.2k | CHECK_MEM_ERROR(cm, lf_sync->cond_[j], |
83 | 10.2k | aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows)); |
84 | 10.2k | if (lf_sync->cond_[j]) { |
85 | 44.9k | for (i = 0; i < rows; ++i) { |
86 | 34.7k | pthread_cond_init(&lf_sync->cond_[j][i], NULL); |
87 | 34.7k | } |
88 | 10.2k | } |
89 | 10.2k | } |
90 | | |
91 | 3.41k | CHECK_MEM_ERROR(cm, lf_sync->job_mutex, |
92 | 3.41k | aom_malloc(sizeof(*(lf_sync->job_mutex)))); |
93 | 3.41k | if (lf_sync->job_mutex) { |
94 | 3.41k | pthread_mutex_init(lf_sync->job_mutex, NULL); |
95 | 3.41k | } |
96 | 3.41k | } |
97 | 3.41k | #endif // CONFIG_MULTITHREAD |
98 | 3.41k | CHECK_MEM_ERROR(cm, lf_sync->lfdata, |
99 | 3.41k | aom_malloc(num_workers * sizeof(*(lf_sync->lfdata)))); |
100 | 3.41k | lf_sync->num_workers = num_workers; |
101 | | |
102 | 13.6k | for (int j = 0; j < MAX_MB_PLANE; j++) { |
103 | 10.2k | CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j], |
104 | 10.2k | aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows)); |
105 | 10.2k | } |
106 | 3.41k | CHECK_MEM_ERROR( |
107 | 3.41k | cm, lf_sync->job_queue, |
108 | 3.41k | aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2)); |
109 | | // Set up nsync. |
110 | 3.41k | lf_sync->sync_range = get_sync_range(width); |
111 | 3.41k | } |
112 | | |
113 | | // Deallocate lf synchronization related mutex and data |
114 | 6.93k | void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { |
115 | 6.93k | if (lf_sync != NULL) { |
116 | 6.93k | int j; |
117 | 6.93k | #if CONFIG_MULTITHREAD |
118 | 6.93k | int i; |
119 | 27.7k | for (j = 0; j < MAX_MB_PLANE; j++) { |
120 | 20.7k | if (lf_sync->mutex_[j] != NULL) { |
121 | 44.9k | for (i = 0; i < lf_sync->rows; ++i) { |
122 | 34.7k | pthread_mutex_destroy(&lf_sync->mutex_[j][i]); |
123 | 34.7k | } |
124 | 10.2k | aom_free(lf_sync->mutex_[j]); |
125 | 10.2k | } |
126 | 20.7k | if (lf_sync->cond_[j] != NULL) { |
127 | 44.9k | for (i = 0; i < lf_sync->rows; ++i) { |
128 | 34.7k | pthread_cond_destroy(&lf_sync->cond_[j][i]); |
129 | 34.7k | } |
130 | 10.2k | aom_free(lf_sync->cond_[j]); |
131 | 10.2k | } |
132 | 20.7k | } |
133 | 6.93k | if (lf_sync->job_mutex != NULL) { |
134 | 3.41k | pthread_mutex_destroy(lf_sync->job_mutex); |
135 | 3.41k | aom_free(lf_sync->job_mutex); |
136 | 3.41k | } |
137 | 6.93k | #endif // CONFIG_MULTITHREAD |
138 | 6.93k | aom_free(lf_sync->lfdata); |
139 | 27.7k | for (j = 0; j < MAX_MB_PLANE; j++) { |
140 | 20.7k | aom_free(lf_sync->cur_sb_col[j]); |
141 | 20.7k | } |
142 | | |
143 | 6.93k | aom_free(lf_sync->job_queue); |
144 | | // clear the structure as the source of this call may be a resize in which |
145 | | // case this call will be followed by an _alloc() which may fail. |
146 | 6.93k | av1_zero(*lf_sync); |
147 | 6.93k | } |
148 | 6.93k | } |
149 | | |
150 | | void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync, |
151 | 91.1k | int num_workers) { |
152 | 91.1k | if (num_workers < 1) return; |
153 | 60.3k | #if CONFIG_MULTITHREAD |
154 | 60.3k | if (cdef_sync->mutex_ == NULL) { |
155 | 2.82k | CHECK_MEM_ERROR(cm, cdef_sync->mutex_, |
156 | 2.82k | aom_malloc(sizeof(*(cdef_sync->mutex_)))); |
157 | 2.82k | if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL); |
158 | 2.82k | } |
159 | | #else |
160 | | (void)cm; |
161 | | (void)cdef_sync; |
162 | | #endif // CONFIG_MULTITHREAD |
163 | 60.3k | } |
164 | | |
165 | 16.1k | void av1_free_cdef_sync(AV1CdefSync *cdef_sync) { |
166 | 16.1k | if (cdef_sync == NULL) return; |
167 | 16.1k | #if CONFIG_MULTITHREAD |
168 | 16.1k | if (cdef_sync->mutex_ != NULL) { |
169 | 2.82k | pthread_mutex_destroy(cdef_sync->mutex_); |
170 | 2.82k | aom_free(cdef_sync->mutex_); |
171 | 2.82k | } |
172 | 16.1k | #endif // CONFIG_MULTITHREAD |
173 | 16.1k | } |
174 | | |
175 | | static inline void cdef_row_mt_sync_read(AV1CdefSync *const cdef_sync, |
176 | 69.4k | int row) { |
177 | 69.4k | if (!row) return; |
178 | 50.1k | #if CONFIG_MULTITHREAD |
179 | 50.1k | AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt; |
180 | 50.1k | pthread_mutex_lock(cdef_row_mt[row - 1].row_mutex_); |
181 | 59.0k | while (cdef_row_mt[row - 1].is_row_done != 1) |
182 | 8.93k | pthread_cond_wait(cdef_row_mt[row - 1].row_cond_, |
183 | 8.93k | cdef_row_mt[row - 1].row_mutex_); |
184 | 50.1k | cdef_row_mt[row - 1].is_row_done = 0; |
185 | 50.1k | pthread_mutex_unlock(cdef_row_mt[row - 1].row_mutex_); |
186 | | #else |
187 | | (void)cdef_sync; |
188 | | #endif // CONFIG_MULTITHREAD |
189 | 50.1k | } |
190 | | |
191 | | static inline void cdef_row_mt_sync_write(AV1CdefSync *const cdef_sync, |
192 | 68.5k | int row) { |
193 | 68.5k | #if CONFIG_MULTITHREAD |
194 | 68.5k | AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt; |
195 | 68.5k | pthread_mutex_lock(cdef_row_mt[row].row_mutex_); |
196 | 68.5k | pthread_cond_signal(cdef_row_mt[row].row_cond_); |
197 | 68.5k | cdef_row_mt[row].is_row_done = 1; |
198 | 68.5k | pthread_mutex_unlock(cdef_row_mt[row].row_mutex_); |
199 | | #else |
200 | | (void)cdef_sync; |
201 | | (void)row; |
202 | | #endif // CONFIG_MULTITHREAD |
203 | 68.5k | } |
204 | | |
205 | | static inline void sync_read(AV1LfSync *const lf_sync, int r, int c, |
206 | 1.11M | int plane) { |
207 | 1.11M | #if CONFIG_MULTITHREAD |
208 | 1.11M | const int nsync = lf_sync->sync_range; |
209 | | |
210 | 1.11M | if (r && !(c & (nsync - 1))) { |
211 | 557k | pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1]; |
212 | 557k | pthread_mutex_lock(mutex); |
213 | | |
214 | 677k | while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) { |
215 | 120k | pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex); |
216 | 120k | } |
217 | 557k | pthread_mutex_unlock(mutex); |
218 | 557k | } |
219 | | #else |
220 | | (void)lf_sync; |
221 | | (void)r; |
222 | | (void)c; |
223 | | (void)plane; |
224 | | #endif // CONFIG_MULTITHREAD |
225 | 1.11M | } |
226 | | |
227 | | static inline void sync_write(AV1LfSync *const lf_sync, int r, int c, |
228 | 551k | const int sb_cols, int plane) { |
229 | 551k | #if CONFIG_MULTITHREAD |
230 | 551k | const int nsync = lf_sync->sync_range; |
231 | 551k | int cur; |
232 | | // Only signal when there are enough filtered SB for next row to run. |
233 | 551k | int sig = 1; |
234 | | |
235 | 551k | if (c < sb_cols - 1) { |
236 | 410k | cur = c; |
237 | 410k | if (c % nsync) sig = 0; |
238 | 410k | } else { |
239 | 140k | cur = sb_cols + nsync; |
240 | 140k | } |
241 | | |
242 | 551k | if (sig) { |
243 | 334k | pthread_mutex_lock(&lf_sync->mutex_[plane][r]); |
244 | | |
245 | | // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum |
246 | | // column number. In this case, the AOMMAX operation here ensures that |
247 | | // cur_sb_col[plane][r] is not overwritten with a smaller value thus |
248 | | // preventing the infinite waiting of threads in the relevant sync_read() |
249 | | // function. |
250 | 334k | lf_sync->cur_sb_col[plane][r] = AOMMAX(lf_sync->cur_sb_col[plane][r], cur); |
251 | | |
252 | 334k | pthread_cond_broadcast(&lf_sync->cond_[plane][r]); |
253 | 334k | pthread_mutex_unlock(&lf_sync->mutex_[plane][r]); |
254 | 334k | } |
255 | | #else |
256 | | (void)lf_sync; |
257 | | (void)r; |
258 | | (void)c; |
259 | | (void)sb_cols; |
260 | | (void)plane; |
261 | | #endif // CONFIG_MULTITHREAD |
262 | 551k | } |
263 | | |
264 | | // One job of row loopfiltering. |
265 | | void av1_thread_loop_filter_rows( |
266 | | const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, |
267 | | struct macroblockd_plane *planes, MACROBLOCKD *xd, int mi_row, int plane, |
268 | | int dir, int lpf_opt_level, AV1LfSync *const lf_sync, |
269 | | struct aom_internal_error_info *error_info, |
270 | | AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf, |
271 | 346k | int num_mis_in_lpf_unit_height_log2) { |
272 | | // TODO(aomedia:3276): Pass error_info to the low-level functions as required |
273 | | // in future to handle error propagation. |
274 | 346k | (void)error_info; |
275 | 346k | const int sb_cols = |
276 | 346k | CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2); |
277 | 346k | const int r = mi_row >> num_mis_in_lpf_unit_height_log2; |
278 | 346k | int mi_col, c; |
279 | | |
280 | 346k | const bool joint_filter_chroma = (lpf_opt_level == 2) && plane > AOM_PLANE_Y; |
281 | 346k | const int num_planes = joint_filter_chroma ? 2 : 1; |
282 | 346k | assert(IMPLIES(joint_filter_chroma, plane == AOM_PLANE_U)); |
283 | | |
284 | 346k | if (dir == 0) { |
285 | 796k | for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) { |
286 | 623k | c = mi_col >> MAX_MIB_SIZE_LOG2; |
287 | | |
288 | 623k | av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer, |
289 | 623k | mi_row, mi_col, plane, plane + num_planes); |
290 | 623k | if (lpf_opt_level) { |
291 | 0 | if (plane == AOM_PLANE_Y) { |
292 | 0 | av1_filter_block_plane_vert_opt(cm, xd, &planes[plane], mi_row, |
293 | 0 | mi_col, params_buf, tx_buf, |
294 | 0 | num_mis_in_lpf_unit_height_log2); |
295 | 0 | } else { |
296 | 0 | av1_filter_block_plane_vert_opt_chroma( |
297 | 0 | cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane, |
298 | 0 | joint_filter_chroma, num_mis_in_lpf_unit_height_log2); |
299 | 0 | } |
300 | 623k | } else { |
301 | 623k | av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row, |
302 | 623k | mi_col); |
303 | 623k | } |
304 | 623k | if (lf_sync != NULL) { |
305 | 551k | sync_write(lf_sync, r, c, sb_cols, plane); |
306 | 551k | } |
307 | 623k | } |
308 | 173k | } else if (dir == 1) { |
309 | 799k | for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) { |
310 | 626k | c = mi_col >> MAX_MIB_SIZE_LOG2; |
311 | | |
312 | 626k | if (lf_sync != NULL) { |
313 | | // Wait for vertical edge filtering of the top-right block to be |
314 | | // completed |
315 | 557k | sync_read(lf_sync, r, c, plane); |
316 | | |
317 | | // Wait for vertical edge filtering of the right block to be completed |
318 | 557k | sync_read(lf_sync, r + 1, c, plane); |
319 | 557k | } |
320 | | |
321 | 626k | #if CONFIG_MULTITHREAD |
322 | 626k | if (lf_sync && lf_sync->num_workers > 1) { |
323 | 558k | pthread_mutex_lock(lf_sync->job_mutex); |
324 | 558k | const bool lf_mt_exit = lf_sync->lf_mt_exit; |
325 | 558k | pthread_mutex_unlock(lf_sync->job_mutex); |
326 | | // Exit in case any worker has encountered an error. |
327 | 558k | if (lf_mt_exit) return; |
328 | 558k | } |
329 | 626k | #endif |
330 | | |
331 | 626k | av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer, |
332 | 626k | mi_row, mi_col, plane, plane + num_planes); |
333 | 626k | if (lpf_opt_level) { |
334 | 0 | if (plane == AOM_PLANE_Y) { |
335 | 0 | av1_filter_block_plane_horz_opt(cm, xd, &planes[plane], mi_row, |
336 | 0 | mi_col, params_buf, tx_buf, |
337 | 0 | num_mis_in_lpf_unit_height_log2); |
338 | 0 | } else { |
339 | 0 | av1_filter_block_plane_horz_opt_chroma( |
340 | 0 | cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane, |
341 | 0 | joint_filter_chroma, num_mis_in_lpf_unit_height_log2); |
342 | 0 | } |
343 | 626k | } else { |
344 | 626k | av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row, |
345 | 626k | mi_col); |
346 | 626k | } |
347 | 626k | } |
348 | 173k | } |
349 | 346k | } |
350 | | |
351 | | void av1_set_vert_loop_filter_done(AV1_COMMON *cm, AV1LfSync *lf_sync, |
352 | 0 | int num_mis_in_lpf_unit_height_log2) { |
353 | 0 | int plane, sb_row; |
354 | 0 | const int sb_cols = |
355 | 0 | CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, num_mis_in_lpf_unit_height_log2); |
356 | 0 | const int sb_rows = |
357 | 0 | CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, num_mis_in_lpf_unit_height_log2); |
358 | | |
359 | | // In case of loopfilter row-multithreading, the worker on an SB row waits for |
360 | | // the vertical edge filtering of the right and top-right SBs. Hence, in case |
361 | | // a thread (main/worker) encounters an error, update that vertical |
362 | | // loopfiltering of every SB row in the frame is complete in order to avoid |
363 | | // dependent workers waiting indefinitely. |
364 | 0 | for (sb_row = 0; sb_row < sb_rows; ++sb_row) |
365 | 0 | for (plane = 0; plane < MAX_MB_PLANE; ++plane) |
366 | 0 | sync_write(lf_sync, sb_row, sb_cols - 1, sb_cols, plane); |
367 | 0 | } |
368 | | |
369 | | static inline void sync_lf_workers(AVxWorker *const workers, |
370 | 22.7k | AV1_COMMON *const cm, int num_workers) { |
371 | 22.7k | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
372 | 22.7k | int had_error = workers[0].had_error; |
373 | 22.7k | struct aom_internal_error_info error_info; |
374 | | |
375 | | // Read the error_info of main thread. |
376 | 22.7k | if (had_error) { |
377 | 0 | AVxWorker *const worker = &workers[0]; |
378 | 0 | error_info = ((LFWorkerData *)worker->data2)->error_info; |
379 | 0 | } |
380 | | |
381 | | // Wait till all rows are finished. |
382 | 938k | for (int i = num_workers - 1; i > 0; --i) { |
383 | 915k | AVxWorker *const worker = &workers[i]; |
384 | 915k | if (!winterface->sync(worker)) { |
385 | 0 | had_error = 1; |
386 | 0 | error_info = ((LFWorkerData *)worker->data2)->error_info; |
387 | 0 | } |
388 | 915k | } |
389 | 22.7k | if (had_error) aom_internal_error_copy(cm->error, &error_info); |
390 | 22.7k | } |
391 | | |
392 | | // Row-based multi-threaded loopfilter hook |
393 | 936k | static int loop_filter_row_worker(void *arg1, void *arg2) { |
394 | 936k | AV1LfSync *const lf_sync = (AV1LfSync *)arg1; |
395 | 936k | LFWorkerData *const lf_data = (LFWorkerData *)arg2; |
396 | 936k | AV1LfMTInfo *cur_job_info; |
397 | | |
398 | 936k | #if CONFIG_MULTITHREAD |
399 | 936k | pthread_mutex_t *job_mutex_ = lf_sync->job_mutex; |
400 | 936k | #endif |
401 | | |
402 | 936k | struct aom_internal_error_info *const error_info = &lf_data->error_info; |
403 | | |
404 | | // The jmp_buf is valid only for the duration of the function that calls |
405 | | // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
406 | | // before it returns. |
407 | 936k | if (setjmp(error_info->jmp)) { |
408 | 0 | error_info->setjmp = 0; |
409 | 0 | #if CONFIG_MULTITHREAD |
410 | 0 | pthread_mutex_lock(job_mutex_); |
411 | 0 | lf_sync->lf_mt_exit = true; |
412 | 0 | pthread_mutex_unlock(job_mutex_); |
413 | 0 | #endif |
414 | 0 | av1_set_vert_loop_filter_done(lf_data->cm, lf_sync, MAX_MIB_SIZE_LOG2); |
415 | 0 | return 0; |
416 | 0 | } |
417 | 936k | error_info->setjmp = 1; |
418 | | |
419 | 1.22M | while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) { |
420 | 283k | const int lpf_opt_level = cur_job_info->lpf_opt_level; |
421 | 283k | av1_thread_loop_filter_rows( |
422 | 283k | lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd, |
423 | 283k | cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir, |
424 | 283k | lpf_opt_level, lf_sync, error_info, lf_data->params_buf, |
425 | 283k | lf_data->tx_buf, MAX_MIB_SIZE_LOG2); |
426 | 283k | } |
427 | 936k | error_info->setjmp = 0; |
428 | 936k | return 1; |
429 | 936k | } |
430 | | |
431 | | static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
432 | | MACROBLOCKD *xd, int start, int stop, |
433 | | const int planes_to_lf[MAX_MB_PLANE], |
434 | | AVxWorker *workers, int num_workers, |
435 | 22.7k | AV1LfSync *lf_sync, int lpf_opt_level) { |
436 | 22.7k | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
437 | 22.7k | int i; |
438 | 22.7k | loop_filter_frame_mt_init(cm, start, stop, planes_to_lf, num_workers, lf_sync, |
439 | 22.7k | lpf_opt_level, MAX_MIB_SIZE_LOG2); |
440 | | |
441 | | // Set up loopfilter thread data. |
442 | 961k | for (i = num_workers - 1; i >= 0; --i) { |
443 | 938k | AVxWorker *const worker = &workers[i]; |
444 | 938k | LFWorkerData *const lf_data = &lf_sync->lfdata[i]; |
445 | | |
446 | 938k | worker->hook = loop_filter_row_worker; |
447 | 938k | worker->data1 = lf_sync; |
448 | 938k | worker->data2 = lf_data; |
449 | | |
450 | | // Loopfilter data |
451 | 938k | loop_filter_data_reset(lf_data, frame, cm, xd); |
452 | | |
453 | | // Start loopfiltering |
454 | 938k | worker->had_error = 0; |
455 | 938k | if (i == 0) { |
456 | 22.7k | winterface->execute(worker); |
457 | 915k | } else { |
458 | 915k | winterface->launch(worker); |
459 | 915k | } |
460 | 938k | } |
461 | | |
462 | 22.7k | sync_lf_workers(workers, cm, num_workers); |
463 | 22.7k | } |
464 | | |
465 | | static void loop_filter_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
466 | | MACROBLOCKD *xd, int start, int stop, |
467 | | const int planes_to_lf[MAX_MB_PLANE], |
468 | 7.29k | int lpf_opt_level) { |
469 | | // Filter top rows of all planes first, in case the output can be partially |
470 | | // reconstructed row by row. |
471 | 7.29k | int mi_row, plane, dir; |
472 | | |
473 | 7.29k | AV1_DEBLOCKING_PARAMETERS params_buf[MAX_MIB_SIZE]; |
474 | 7.29k | TX_SIZE tx_buf[MAX_MIB_SIZE]; |
475 | 20.1k | for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
476 | 51.3k | for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
477 | 38.5k | if (skip_loop_filter_plane(planes_to_lf, plane, lpf_opt_level)) { |
478 | 7.10k | continue; |
479 | 7.10k | } |
480 | | |
481 | 94.3k | for (dir = 0; dir < 2; ++dir) { |
482 | 62.8k | av1_thread_loop_filter_rows(frame, cm, xd->plane, xd, mi_row, plane, |
483 | 62.8k | dir, lpf_opt_level, /*lf_sync=*/NULL, |
484 | 62.8k | xd->error_info, params_buf, tx_buf, |
485 | 62.8k | MAX_MIB_SIZE_LOG2); |
486 | 62.8k | } |
487 | 31.4k | } |
488 | 12.8k | } |
489 | 7.29k | } |
490 | | |
491 | | void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
492 | | MACROBLOCKD *xd, int plane_start, int plane_end, |
493 | | int partial_frame, AVxWorker *workers, |
494 | | int num_workers, AV1LfSync *lf_sync, |
495 | 30.0k | int lpf_opt_level) { |
496 | 30.0k | int start_mi_row, end_mi_row, mi_rows_to_filter; |
497 | 30.0k | int planes_to_lf[MAX_MB_PLANE]; |
498 | | |
499 | 30.0k | if (!check_planes_to_loop_filter(&cm->lf, planes_to_lf, plane_start, |
500 | 30.0k | plane_end)) |
501 | 0 | return; |
502 | | |
503 | 30.0k | start_mi_row = 0; |
504 | 30.0k | mi_rows_to_filter = cm->mi_params.mi_rows; |
505 | 30.0k | if (partial_frame && cm->mi_params.mi_rows > 8) { |
506 | 0 | start_mi_row = cm->mi_params.mi_rows >> 1; |
507 | 0 | start_mi_row &= 0xfffffff8; |
508 | 0 | mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8); |
509 | 0 | } |
510 | 30.0k | end_mi_row = start_mi_row + mi_rows_to_filter; |
511 | 30.0k | av1_loop_filter_frame_init(cm, plane_start, plane_end); |
512 | | |
513 | 30.0k | if (num_workers > 1) { |
514 | | // Enqueue and execute loopfiltering jobs. |
515 | 22.7k | loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf, |
516 | 22.7k | workers, num_workers, lf_sync, lpf_opt_level); |
517 | 22.7k | } else { |
518 | | // Directly filter in the main thread. |
519 | 7.29k | loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf, |
520 | 7.29k | lpf_opt_level); |
521 | 7.29k | } |
522 | 30.0k | } |
523 | | |
524 | | #if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER |
525 | 47.8k | static inline void lr_sync_read(void *const lr_sync, int r, int c, int plane) { |
526 | 47.8k | #if CONFIG_MULTITHREAD |
527 | 47.8k | AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; |
528 | 47.8k | const int nsync = loop_res_sync->sync_range; |
529 | | |
530 | 47.8k | if (r && !(c & (nsync - 1))) { |
531 | 47.8k | pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1]; |
532 | 47.8k | pthread_mutex_lock(mutex); |
533 | | |
534 | 66.2k | while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) { |
535 | 18.3k | pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex); |
536 | 18.3k | } |
537 | 47.8k | pthread_mutex_unlock(mutex); |
538 | 47.8k | } |
539 | | #else |
540 | | (void)lr_sync; |
541 | | (void)r; |
542 | | (void)c; |
543 | | (void)plane; |
544 | | #endif // CONFIG_MULTITHREAD |
545 | 47.8k | } |
546 | | |
547 | | static inline void lr_sync_write(void *const lr_sync, int r, int c, |
548 | 67.2k | const int sb_cols, int plane) { |
549 | 67.2k | #if CONFIG_MULTITHREAD |
550 | 67.2k | AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; |
551 | 67.2k | const int nsync = loop_res_sync->sync_range; |
552 | 67.2k | int cur; |
553 | | // Only signal when there are enough filtered SB for next row to run. |
554 | 67.2k | int sig = 1; |
555 | | |
556 | 67.2k | if (c < sb_cols - 1) { |
557 | 29.5k | cur = c; |
558 | 29.5k | if (c % nsync) sig = 0; |
559 | 37.7k | } else { |
560 | 37.7k | cur = sb_cols + nsync; |
561 | 37.7k | } |
562 | | |
563 | 67.2k | if (sig) { |
564 | 67.2k | pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]); |
565 | | |
566 | | // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum |
567 | | // column number. In this case, the AOMMAX operation here ensures that |
568 | | // cur_sb_col[plane][r] is not overwritten with a smaller value thus |
569 | | // preventing the infinite waiting of threads in the relevant sync_read() |
570 | | // function. |
571 | 67.2k | loop_res_sync->cur_sb_col[plane][r] = |
572 | 67.2k | AOMMAX(loop_res_sync->cur_sb_col[plane][r], cur); |
573 | | |
574 | 67.2k | pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]); |
575 | 67.2k | pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]); |
576 | 67.2k | } |
577 | | #else |
578 | | (void)lr_sync; |
579 | | (void)r; |
580 | | (void)c; |
581 | | (void)sb_cols; |
582 | | (void)plane; |
583 | | #endif // CONFIG_MULTITHREAD |
584 | 67.2k | } |
585 | | |
586 | | // Allocate memory for loop restoration row synchronization |
587 | | void av1_loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm, |
588 | | int num_workers, int num_rows_lr, |
589 | 1.19k | int num_planes, int width) { |
590 | 1.19k | lr_sync->rows = num_rows_lr; |
591 | 1.19k | lr_sync->num_planes = num_planes; |
592 | 1.19k | #if CONFIG_MULTITHREAD |
593 | 1.19k | { |
594 | 1.19k | int i, j; |
595 | | |
596 | 4.68k | for (j = 0; j < num_planes; j++) { |
597 | 3.48k | CHECK_MEM_ERROR(cm, lr_sync->mutex_[j], |
598 | 3.48k | aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr)); |
599 | 3.48k | if (lr_sync->mutex_[j]) { |
600 | 14.2k | for (i = 0; i < num_rows_lr; ++i) { |
601 | 10.8k | pthread_mutex_init(&lr_sync->mutex_[j][i], NULL); |
602 | 10.8k | } |
603 | 3.48k | } |
604 | | |
605 | 3.48k | CHECK_MEM_ERROR(cm, lr_sync->cond_[j], |
606 | 3.48k | aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr)); |
607 | 3.48k | if (lr_sync->cond_[j]) { |
608 | 14.2k | for (i = 0; i < num_rows_lr; ++i) { |
609 | 10.8k | pthread_cond_init(&lr_sync->cond_[j][i], NULL); |
610 | 10.8k | } |
611 | 3.48k | } |
612 | 3.48k | } |
613 | | |
614 | 1.19k | CHECK_MEM_ERROR(cm, lr_sync->job_mutex, |
615 | 1.19k | aom_malloc(sizeof(*(lr_sync->job_mutex)))); |
616 | 1.19k | if (lr_sync->job_mutex) { |
617 | 1.19k | pthread_mutex_init(lr_sync->job_mutex, NULL); |
618 | 1.19k | } |
619 | 1.19k | } |
620 | 1.19k | #endif // CONFIG_MULTITHREAD |
621 | 1.19k | CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata, |
622 | 1.19k | aom_calloc(num_workers, sizeof(*(lr_sync->lrworkerdata)))); |
623 | 1.19k | lr_sync->num_workers = num_workers; |
624 | | |
625 | 37.3k | for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { |
626 | 36.1k | if (worker_idx < num_workers - 1) { |
627 | 34.9k | CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf, |
628 | 34.9k | (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE)); |
629 | 34.9k | CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs, |
630 | 34.9k | aom_malloc(sizeof(RestorationLineBuffers))); |
631 | | |
632 | 34.9k | } else { |
633 | 1.19k | lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf; |
634 | 1.19k | lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs; |
635 | 1.19k | } |
636 | 36.1k | } |
637 | | |
638 | 4.68k | for (int j = 0; j < num_planes; j++) { |
639 | 3.48k | CHECK_MEM_ERROR( |
640 | 3.48k | cm, lr_sync->cur_sb_col[j], |
641 | 3.48k | aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr)); |
642 | 3.48k | } |
643 | 1.19k | CHECK_MEM_ERROR( |
644 | 1.19k | cm, lr_sync->job_queue, |
645 | 1.19k | aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes)); |
646 | | // Set up nsync. |
647 | 1.19k | lr_sync->sync_range = get_lr_sync_range(width); |
648 | 1.19k | } |
649 | | |
650 | | // Deallocate loop restoration synchronization related mutex and data |
651 | 4.71k | void av1_loop_restoration_dealloc(AV1LrSync *lr_sync) { |
652 | 4.71k | if (lr_sync != NULL) { |
653 | 4.71k | int j; |
654 | 4.71k | #if CONFIG_MULTITHREAD |
655 | 4.71k | int i; |
656 | 18.8k | for (j = 0; j < MAX_MB_PLANE; j++) { |
657 | 14.1k | if (lr_sync->mutex_[j] != NULL) { |
658 | 14.2k | for (i = 0; i < lr_sync->rows; ++i) { |
659 | 10.8k | pthread_mutex_destroy(&lr_sync->mutex_[j][i]); |
660 | 10.8k | } |
661 | 3.48k | aom_free(lr_sync->mutex_[j]); |
662 | 3.48k | } |
663 | 14.1k | if (lr_sync->cond_[j] != NULL) { |
664 | 14.2k | for (i = 0; i < lr_sync->rows; ++i) { |
665 | 10.8k | pthread_cond_destroy(&lr_sync->cond_[j][i]); |
666 | 10.8k | } |
667 | 3.48k | aom_free(lr_sync->cond_[j]); |
668 | 3.48k | } |
669 | 14.1k | } |
670 | 4.71k | if (lr_sync->job_mutex != NULL) { |
671 | 1.19k | pthread_mutex_destroy(lr_sync->job_mutex); |
672 | 1.19k | aom_free(lr_sync->job_mutex); |
673 | 1.19k | } |
674 | 4.71k | #endif // CONFIG_MULTITHREAD |
675 | 18.8k | for (j = 0; j < MAX_MB_PLANE; j++) { |
676 | 14.1k | aom_free(lr_sync->cur_sb_col[j]); |
677 | 14.1k | } |
678 | | |
679 | 4.71k | aom_free(lr_sync->job_queue); |
680 | | |
681 | 4.71k | if (lr_sync->lrworkerdata) { |
682 | 36.1k | for (int worker_idx = 0; worker_idx < lr_sync->num_workers - 1; |
683 | 34.9k | worker_idx++) { |
684 | 34.9k | LRWorkerData *const workerdata_data = |
685 | 34.9k | lr_sync->lrworkerdata + worker_idx; |
686 | | |
687 | 34.9k | aom_free(workerdata_data->rst_tmpbuf); |
688 | 34.9k | aom_free(workerdata_data->rlbs); |
689 | 34.9k | } |
690 | 1.19k | aom_free(lr_sync->lrworkerdata); |
691 | 1.19k | } |
692 | | |
693 | | // clear the structure as the source of this call may be a resize in which |
694 | | // case this call will be followed by an _alloc() which may fail. |
695 | 4.71k | av1_zero(*lr_sync); |
696 | 4.71k | } |
697 | 4.71k | } |
698 | | |
699 | | static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt, |
700 | 15.7k | AV1_COMMON *cm) { |
701 | 15.7k | FilterFrameCtxt *ctxt = lr_ctxt->ctxt; |
702 | | |
703 | 15.7k | const int num_planes = av1_num_planes(cm); |
704 | 15.7k | AV1LrMTInfo *lr_job_queue = lr_sync->job_queue; |
705 | 15.7k | int32_t lr_job_counter[2], num_even_lr_jobs = 0; |
706 | 15.7k | lr_sync->jobs_enqueued = 0; |
707 | 15.7k | lr_sync->jobs_dequeued = 0; |
708 | | |
709 | 60.9k | for (int plane = 0; plane < num_planes; plane++) { |
710 | 45.2k | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; |
711 | 36.1k | num_even_lr_jobs = |
712 | 36.1k | num_even_lr_jobs + ((ctxt[plane].rsi->vert_units + 1) >> 1); |
713 | 36.1k | } |
714 | 15.7k | lr_job_counter[0] = 0; |
715 | 15.7k | lr_job_counter[1] = num_even_lr_jobs; |
716 | | |
717 | 60.9k | for (int plane = 0; plane < num_planes; plane++) { |
718 | 45.2k | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; |
719 | 36.1k | const int is_uv = plane > 0; |
720 | 36.1k | const int ss_y = is_uv && cm->seq_params->subsampling_y; |
721 | 36.1k | const int unit_size = ctxt[plane].rsi->restoration_unit_size; |
722 | 36.1k | const int plane_h = ctxt[plane].plane_h; |
723 | 36.1k | const int ext_size = unit_size * 3 / 2; |
724 | | |
725 | 36.1k | int y0 = 0, i = 0; |
726 | 88.9k | while (y0 < plane_h) { |
727 | 52.7k | int remaining_h = plane_h - y0; |
728 | 52.7k | int h = (remaining_h < ext_size) ? remaining_h : unit_size; |
729 | | |
730 | 52.7k | RestorationTileLimits limits; |
731 | 52.7k | limits.v_start = y0; |
732 | 52.7k | limits.v_end = y0 + h; |
733 | 52.7k | assert(limits.v_end <= plane_h); |
734 | | // Offset upwards to align with the restoration processing stripe |
735 | 52.7k | const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; |
736 | 52.7k | limits.v_start = AOMMAX(0, limits.v_start - voffset); |
737 | 52.7k | if (limits.v_end < plane_h) limits.v_end -= voffset; |
738 | | |
739 | 52.7k | assert(lr_job_counter[0] <= num_even_lr_jobs); |
740 | | |
741 | 52.7k | lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i; |
742 | 52.7k | lr_job_queue[lr_job_counter[i & 1]].plane = plane; |
743 | 52.7k | lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start; |
744 | 52.7k | lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end; |
745 | 52.7k | lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1; |
746 | 52.7k | if ((i & 1) == 0) { |
747 | 37.7k | lr_job_queue[lr_job_counter[i & 1]].v_copy_start = |
748 | 37.7k | limits.v_start + RESTORATION_BORDER; |
749 | 37.7k | lr_job_queue[lr_job_counter[i & 1]].v_copy_end = |
750 | 37.7k | limits.v_end - RESTORATION_BORDER; |
751 | 37.7k | if (i == 0) { |
752 | 36.1k | assert(limits.v_start == 0); |
753 | 36.1k | lr_job_queue[lr_job_counter[i & 1]].v_copy_start = 0; |
754 | 36.1k | } |
755 | 37.7k | if (i == (ctxt[plane].rsi->vert_units - 1)) { |
756 | 22.7k | assert(limits.v_end == plane_h); |
757 | 22.7k | lr_job_queue[lr_job_counter[i & 1]].v_copy_end = plane_h; |
758 | 22.7k | } |
759 | 37.7k | } else { |
760 | 15.0k | lr_job_queue[lr_job_counter[i & 1]].v_copy_start = |
761 | 15.0k | AOMMAX(limits.v_start - RESTORATION_BORDER, 0); |
762 | 15.0k | lr_job_queue[lr_job_counter[i & 1]].v_copy_end = |
763 | 15.0k | AOMMIN(limits.v_end + RESTORATION_BORDER, plane_h); |
764 | 15.0k | } |
765 | 52.7k | lr_job_counter[i & 1]++; |
766 | 52.7k | lr_sync->jobs_enqueued++; |
767 | | |
768 | 52.7k | y0 += h; |
769 | 52.7k | ++i; |
770 | 52.7k | } |
771 | 36.1k | } |
772 | 15.7k | } |
773 | | |
774 | 677k | static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) { |
775 | 677k | AV1LrMTInfo *cur_job_info = NULL; |
776 | | |
777 | 677k | #if CONFIG_MULTITHREAD |
778 | 677k | pthread_mutex_lock(lr_sync->job_mutex); |
779 | | |
780 | 679k | if (!lr_sync->lr_mt_exit && lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) { |
781 | 52.7k | cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued; |
782 | 52.7k | lr_sync->jobs_dequeued++; |
783 | 52.7k | } |
784 | | |
785 | 677k | pthread_mutex_unlock(lr_sync->job_mutex); |
786 | | #else |
787 | | (void)lr_sync; |
788 | | #endif |
789 | | |
790 | 677k | return cur_job_info; |
791 | 677k | } |
792 | | |
793 | | static void set_loop_restoration_done(AV1LrSync *const lr_sync, |
794 | 0 | FilterFrameCtxt *const ctxt) { |
795 | 0 | for (int plane = 0; plane < MAX_MB_PLANE; ++plane) { |
796 | 0 | if (ctxt[plane].rsi->frame_restoration_type == RESTORE_NONE) continue; |
797 | 0 | int y0 = 0, row_number = 0; |
798 | 0 | const int unit_size = ctxt[plane].rsi->restoration_unit_size; |
799 | 0 | const int plane_h = ctxt[plane].plane_h; |
800 | 0 | const int ext_size = unit_size * 3 / 2; |
801 | 0 | const int hnum_rest_units = ctxt[plane].rsi->horz_units; |
802 | 0 | while (y0 < plane_h) { |
803 | 0 | const int remaining_h = plane_h - y0; |
804 | 0 | const int h = (remaining_h < ext_size) ? remaining_h : unit_size; |
805 | 0 | lr_sync_write(lr_sync, row_number, hnum_rest_units - 1, hnum_rest_units, |
806 | 0 | plane); |
807 | 0 | y0 += h; |
808 | 0 | ++row_number; |
809 | 0 | } |
810 | 0 | } |
811 | 0 | } |
812 | | |
813 | | // Implement row loop restoration for each thread. |
814 | 625k | static int loop_restoration_row_worker(void *arg1, void *arg2) { |
815 | 625k | AV1LrSync *const lr_sync = (AV1LrSync *)arg1; |
816 | 625k | LRWorkerData *lrworkerdata = (LRWorkerData *)arg2; |
817 | 625k | AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt; |
818 | 625k | FilterFrameCtxt *ctxt = lr_ctxt->ctxt; |
819 | 625k | int lr_unit_row; |
820 | 625k | int plane; |
821 | 625k | int plane_w; |
822 | 625k | #if CONFIG_MULTITHREAD |
823 | 625k | pthread_mutex_t *job_mutex_ = lr_sync->job_mutex; |
824 | 625k | #endif |
825 | 625k | struct aom_internal_error_info *const error_info = &lrworkerdata->error_info; |
826 | | |
827 | | // The jmp_buf is valid only for the duration of the function that calls |
828 | | // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
829 | | // before it returns. |
830 | 625k | if (setjmp(error_info->jmp)) { |
831 | 0 | error_info->setjmp = 0; |
832 | 0 | #if CONFIG_MULTITHREAD |
833 | 0 | pthread_mutex_lock(job_mutex_); |
834 | 0 | lr_sync->lr_mt_exit = true; |
835 | 0 | pthread_mutex_unlock(job_mutex_); |
836 | 0 | #endif |
837 | | // In case of loop restoration multithreading, the worker on an even lr |
838 | | // block row waits for the completion of the filtering of the top-right and |
839 | | // bottom-right blocks. Hence, in case a thread (main/worker) encounters an |
840 | | // error, update that filtering of every row in the frame is complete in |
841 | | // order to avoid the dependent workers from waiting indefinitely. |
842 | 0 | set_loop_restoration_done(lr_sync, lr_ctxt->ctxt); |
843 | 0 | return 0; |
844 | 0 | } |
845 | 625k | error_info->setjmp = 1; |
846 | | |
847 | 625k | typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, |
848 | 625k | YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, |
849 | 625k | int vstart, int vend); |
850 | 625k | static const copy_fun copy_funs[MAX_MB_PLANE] = { |
851 | 625k | aom_yv12_partial_coloc_copy_y, aom_yv12_partial_coloc_copy_u, |
852 | 625k | aom_yv12_partial_coloc_copy_v |
853 | 625k | }; |
854 | | |
855 | 678k | while (1) { |
856 | 676k | AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync); |
857 | 676k | if (cur_job_info != NULL) { |
858 | 52.7k | RestorationTileLimits limits; |
859 | 52.7k | sync_read_fn_t on_sync_read; |
860 | 52.7k | sync_write_fn_t on_sync_write; |
861 | 52.7k | limits.v_start = cur_job_info->v_start; |
862 | 52.7k | limits.v_end = cur_job_info->v_end; |
863 | 52.7k | lr_unit_row = cur_job_info->lr_unit_row; |
864 | 52.7k | plane = cur_job_info->plane; |
865 | 52.7k | plane_w = ctxt[plane].plane_w; |
866 | | |
867 | | // sync_mode == 1 implies only sync read is required in LR Multi-threading |
868 | | // sync_mode == 0 implies only sync write is required. |
869 | 52.7k | on_sync_read = |
870 | 52.7k | cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy; |
871 | 52.7k | on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write |
872 | 52.7k | : av1_lr_sync_write_dummy; |
873 | | |
874 | 52.7k | av1_foreach_rest_unit_in_row( |
875 | 52.7k | &limits, plane_w, lr_ctxt->on_rest_unit, lr_unit_row, |
876 | 52.7k | ctxt[plane].rsi->restoration_unit_size, ctxt[plane].rsi->horz_units, |
877 | 52.7k | ctxt[plane].rsi->vert_units, plane, &ctxt[plane], |
878 | 52.7k | lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read, |
879 | 52.7k | on_sync_write, lr_sync, error_info); |
880 | | |
881 | 52.7k | copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, 0, plane_w, |
882 | 52.7k | cur_job_info->v_copy_start, cur_job_info->v_copy_end); |
883 | | |
884 | 52.7k | if (lrworkerdata->do_extend_border) { |
885 | 0 | aom_extend_frame_borders_plane_row(lr_ctxt->frame, plane, |
886 | 0 | cur_job_info->v_copy_start, |
887 | 0 | cur_job_info->v_copy_end); |
888 | 0 | } |
889 | 624k | } else { |
890 | 624k | break; |
891 | 624k | } |
892 | 676k | } |
893 | 625k | error_info->setjmp = 0; |
894 | 625k | return 1; |
895 | 625k | } |
896 | | |
897 | | static inline void sync_lr_workers(AVxWorker *const workers, |
898 | 15.7k | AV1_COMMON *const cm, int num_workers) { |
899 | 15.7k | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
900 | 15.7k | int had_error = workers[0].had_error; |
901 | 15.7k | struct aom_internal_error_info error_info; |
902 | | |
903 | | // Read the error_info of main thread. |
904 | 15.7k | if (had_error) { |
905 | 0 | AVxWorker *const worker = &workers[0]; |
906 | 0 | error_info = ((LRWorkerData *)worker->data2)->error_info; |
907 | 0 | } |
908 | | |
909 | | // Wait till all rows are finished. |
910 | 626k | for (int i = num_workers - 1; i > 0; --i) { |
911 | 611k | AVxWorker *const worker = &workers[i]; |
912 | 611k | if (!winterface->sync(worker)) { |
913 | 0 | had_error = 1; |
914 | 0 | error_info = ((LRWorkerData *)worker->data2)->error_info; |
915 | 0 | } |
916 | 611k | } |
917 | 15.7k | if (had_error) aom_internal_error_copy(cm->error, &error_info); |
918 | 15.7k | } |
919 | | |
920 | | static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt, |
921 | | AVxWorker *workers, int num_workers, |
922 | | AV1LrSync *lr_sync, AV1_COMMON *cm, |
923 | 15.7k | int do_extend_border) { |
924 | 15.7k | FilterFrameCtxt *ctxt = lr_ctxt->ctxt; |
925 | | |
926 | 15.7k | const int num_planes = av1_num_planes(cm); |
927 | | |
928 | 15.7k | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
929 | 15.7k | int num_rows_lr = 0; |
930 | | |
931 | 60.9k | for (int plane = 0; plane < num_planes; plane++) { |
932 | 45.2k | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; |
933 | | |
934 | 36.1k | const int plane_h = ctxt[plane].plane_h; |
935 | 36.1k | const int unit_size = cm->rst_info[plane].restoration_unit_size; |
936 | | |
937 | 36.1k | num_rows_lr = AOMMAX(num_rows_lr, av1_lr_count_units(unit_size, plane_h)); |
938 | 36.1k | } |
939 | | |
940 | 15.7k | int i; |
941 | 15.7k | assert(MAX_MB_PLANE == 3); |
942 | | |
943 | 15.7k | if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows || |
944 | 15.7k | num_workers > lr_sync->num_workers || num_planes > lr_sync->num_planes) { |
945 | 1.19k | av1_loop_restoration_dealloc(lr_sync); |
946 | 1.19k | av1_loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, |
947 | 1.19k | num_planes, cm->width); |
948 | 1.19k | } |
949 | 15.7k | lr_sync->lr_mt_exit = false; |
950 | | |
951 | | // Initialize cur_sb_col to -1 for all SB rows. |
952 | 60.9k | for (i = 0; i < num_planes; i++) { |
953 | 45.2k | memset(lr_sync->cur_sb_col[i], -1, |
954 | 45.2k | sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr); |
955 | 45.2k | } |
956 | | |
957 | 15.7k | enqueue_lr_jobs(lr_sync, lr_ctxt, cm); |
958 | | |
959 | | // Set up looprestoration thread data. |
960 | 642k | for (i = num_workers - 1; i >= 0; --i) { |
961 | 626k | AVxWorker *const worker = &workers[i]; |
962 | 626k | lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt; |
963 | 626k | lr_sync->lrworkerdata[i].do_extend_border = do_extend_border; |
964 | 626k | worker->hook = loop_restoration_row_worker; |
965 | 626k | worker->data1 = lr_sync; |
966 | 626k | worker->data2 = &lr_sync->lrworkerdata[i]; |
967 | | |
968 | | // Start loop restoration |
969 | 626k | worker->had_error = 0; |
970 | 626k | if (i == 0) { |
971 | 15.7k | winterface->execute(worker); |
972 | 611k | } else { |
973 | 611k | winterface->launch(worker); |
974 | 611k | } |
975 | 626k | } |
976 | | |
977 | 15.7k | sync_lr_workers(workers, cm, num_workers); |
978 | 15.7k | } |
979 | | |
980 | | void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame, |
981 | | AV1_COMMON *cm, int optimized_lr, |
982 | | AVxWorker *workers, int num_workers, |
983 | | AV1LrSync *lr_sync, void *lr_ctxt, |
984 | 15.7k | int do_extend_border) { |
985 | 15.7k | assert(!cm->features.all_lossless); |
986 | | |
987 | 15.7k | const int num_planes = av1_num_planes(cm); |
988 | | |
989 | 15.7k | AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; |
990 | | |
991 | 15.7k | av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, |
992 | 15.7k | optimized_lr, num_planes); |
993 | | |
994 | 15.7k | foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync, |
995 | 15.7k | cm, do_extend_border); |
996 | 15.7k | } |
997 | | #endif // !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER |
998 | | |
999 | | // Initializes cdef_sync parameters. |
1000 | 19.3k | static inline void reset_cdef_job_info(AV1CdefSync *const cdef_sync) { |
1001 | 19.3k | cdef_sync->end_of_frame = 0; |
1002 | 19.3k | cdef_sync->fbr = 0; |
1003 | 19.3k | cdef_sync->fbc = 0; |
1004 | 19.3k | cdef_sync->cdef_mt_exit = false; |
1005 | 19.3k | } |
1006 | | |
1007 | | static inline void launch_cdef_workers(AVxWorker *const workers, |
1008 | 19.3k | int num_workers) { |
1009 | 19.3k | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
1010 | 776k | for (int i = num_workers - 1; i >= 0; i--) { |
1011 | 756k | AVxWorker *const worker = &workers[i]; |
1012 | 756k | worker->had_error = 0; |
1013 | 756k | if (i == 0) |
1014 | 19.3k | winterface->execute(worker); |
1015 | 737k | else |
1016 | 737k | winterface->launch(worker); |
1017 | 756k | } |
1018 | 19.3k | } |
1019 | | |
1020 | | static inline void sync_cdef_workers(AVxWorker *const workers, |
1021 | 19.3k | AV1_COMMON *const cm, int num_workers) { |
1022 | 19.3k | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
1023 | 19.3k | int had_error = workers[0].had_error; |
1024 | 19.3k | struct aom_internal_error_info error_info; |
1025 | | |
1026 | | // Read the error_info of main thread. |
1027 | 19.3k | if (had_error) { |
1028 | 0 | AVxWorker *const worker = &workers[0]; |
1029 | 0 | error_info = ((AV1CdefWorkerData *)worker->data2)->error_info; |
1030 | 0 | } |
1031 | | |
1032 | | // Wait till all rows are finished. |
1033 | 756k | for (int i = num_workers - 1; i > 0; --i) { |
1034 | 737k | AVxWorker *const worker = &workers[i]; |
1035 | 737k | if (!winterface->sync(worker)) { |
1036 | 0 | had_error = 1; |
1037 | 0 | error_info = ((AV1CdefWorkerData *)worker->data2)->error_info; |
1038 | 0 | } |
1039 | 737k | } |
1040 | 19.3k | if (had_error) aom_internal_error_copy(cm->error, &error_info); |
1041 | 19.3k | } |
1042 | | |
1043 | | // Updates the row index of the next job to be processed. |
1044 | | // Also updates end_of_frame flag when the processing of all rows is complete. |
1045 | | static void update_cdef_row_next_job_info(AV1CdefSync *const cdef_sync, |
1046 | 69.4k | const int nvfb) { |
1047 | 69.4k | cdef_sync->fbr++; |
1048 | 69.4k | if (cdef_sync->fbr == nvfb) { |
1049 | 19.3k | cdef_sync->end_of_frame = 1; |
1050 | 19.3k | } |
1051 | 69.4k | } |
1052 | | |
1053 | | // Checks if a job is available. If job is available, |
1054 | | // populates next job information and returns 1, else returns 0. |
1055 | | static inline int get_cdef_row_next_job(AV1CdefSync *const cdef_sync, |
1056 | 820k | volatile int *cur_fbr, const int nvfb) { |
1057 | 820k | #if CONFIG_MULTITHREAD |
1058 | 820k | pthread_mutex_lock(cdef_sync->mutex_); |
1059 | 820k | #endif // CONFIG_MULTITHREAD |
1060 | 820k | int do_next_row = 0; |
1061 | | // Populates information needed for current job and update the row |
1062 | | // index of the next row to be processed. |
1063 | 826k | if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) { |
1064 | 69.4k | do_next_row = 1; |
1065 | 69.4k | *cur_fbr = cdef_sync->fbr; |
1066 | 69.4k | update_cdef_row_next_job_info(cdef_sync, nvfb); |
1067 | 69.4k | } |
1068 | 820k | #if CONFIG_MULTITHREAD |
1069 | 820k | pthread_mutex_unlock(cdef_sync->mutex_); |
1070 | 820k | #endif // CONFIG_MULTITHREAD |
1071 | 820k | return do_next_row; |
1072 | 820k | } |
1073 | | |
1074 | 0 | static void set_cdef_init_fb_row_done(AV1CdefSync *const cdef_sync, int nvfb) { |
1075 | 0 | for (int fbr = 0; fbr < nvfb; fbr++) cdef_row_mt_sync_write(cdef_sync, fbr); |
1076 | 0 | } |
1077 | | |
1078 | | // Hook function for each thread in CDEF multi-threading. |
1079 | 755k | static int cdef_sb_row_worker_hook(void *arg1, void *arg2) { |
1080 | 755k | AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1; |
1081 | 755k | AV1CdefWorkerData *const cdef_worker = (AV1CdefWorkerData *)arg2; |
1082 | 755k | AV1_COMMON *cm = cdef_worker->cm; |
1083 | 755k | const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; |
1084 | | |
1085 | 755k | #if CONFIG_MULTITHREAD |
1086 | 755k | pthread_mutex_t *job_mutex_ = cdef_sync->mutex_; |
1087 | 755k | #endif |
1088 | 755k | struct aom_internal_error_info *const error_info = &cdef_worker->error_info; |
1089 | | |
1090 | | // The jmp_buf is valid only for the duration of the function that calls |
1091 | | // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
1092 | | // before it returns. |
1093 | 755k | if (setjmp(error_info->jmp)) { |
1094 | 0 | error_info->setjmp = 0; |
1095 | 0 | #if CONFIG_MULTITHREAD |
1096 | 0 | pthread_mutex_lock(job_mutex_); |
1097 | 0 | cdef_sync->cdef_mt_exit = true; |
1098 | 0 | pthread_mutex_unlock(job_mutex_); |
1099 | 0 | #endif |
1100 | | // In case of cdef row-multithreading, the worker on a filter block row |
1101 | | // (fbr) waits for the line buffers (top and bottom) copy of the above row. |
1102 | | // Hence, in case a thread (main/worker) encounters an error before copying |
1103 | | // of the line buffers, update that line buffer copy is complete in order to |
1104 | | // avoid dependent workers waiting indefinitely. |
1105 | 0 | set_cdef_init_fb_row_done(cdef_sync, nvfb); |
1106 | 0 | return 0; |
1107 | 0 | } |
1108 | 755k | error_info->setjmp = 1; |
1109 | | |
1110 | 755k | volatile int cur_fbr; |
1111 | 755k | const int num_planes = av1_num_planes(cm); |
1112 | 825k | while (get_cdef_row_next_job(cdef_sync, &cur_fbr, nvfb)) { |
1113 | 69.4k | MACROBLOCKD *xd = cdef_worker->xd; |
1114 | 69.4k | av1_cdef_fb_row(cm, xd, cdef_worker->linebuf, cdef_worker->colbuf, |
1115 | 69.4k | cdef_worker->srcbuf, cur_fbr, |
1116 | 69.4k | cdef_worker->cdef_init_fb_row_fn, cdef_sync, error_info); |
1117 | 69.4k | if (cdef_worker->do_extend_border) { |
1118 | 0 | for (int plane = 0; plane < num_planes; ++plane) { |
1119 | 0 | const YV12_BUFFER_CONFIG *ybf = &cm->cur_frame->buf; |
1120 | 0 | const int is_uv = plane > 0; |
1121 | 0 | const int mi_high = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y; |
1122 | 0 | const int unit_height = MI_SIZE_64X64 << mi_high; |
1123 | 0 | const int v_start = cur_fbr * unit_height; |
1124 | 0 | const int v_end = |
1125 | 0 | AOMMIN(v_start + unit_height, ybf->crop_heights[is_uv]); |
1126 | 0 | aom_extend_frame_borders_plane_row(ybf, plane, v_start, v_end); |
1127 | 0 | } |
1128 | 0 | } |
1129 | 69.4k | } |
1130 | 755k | error_info->setjmp = 0; |
1131 | 755k | return 1; |
1132 | 755k | } |
1133 | | |
1134 | | // Assigns CDEF hook function and thread data to each worker. |
1135 | | static void prepare_cdef_frame_workers( |
1136 | | AV1_COMMON *const cm, MACROBLOCKD *xd, AV1CdefWorkerData *const cdef_worker, |
1137 | | AVxWorkerHook hook, AVxWorker *const workers, AV1CdefSync *const cdef_sync, |
1138 | | int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn, |
1139 | 19.3k | int do_extend_border) { |
1140 | 19.3k | const int num_planes = av1_num_planes(cm); |
1141 | | |
1142 | 19.3k | cdef_worker[0].srcbuf = cm->cdef_info.srcbuf; |
1143 | 75.2k | for (int plane = 0; plane < num_planes; plane++) |
1144 | 55.9k | cdef_worker[0].colbuf[plane] = cm->cdef_info.colbuf[plane]; |
1145 | 776k | for (int i = num_workers - 1; i >= 0; i--) { |
1146 | 756k | AVxWorker *const worker = &workers[i]; |
1147 | 756k | cdef_worker[i].cm = cm; |
1148 | 756k | cdef_worker[i].xd = xd; |
1149 | 756k | cdef_worker[i].cdef_init_fb_row_fn = cdef_init_fb_row_fn; |
1150 | 756k | cdef_worker[i].do_extend_border = do_extend_border; |
1151 | 2.95M | for (int plane = 0; plane < num_planes; plane++) |
1152 | 2.19M | cdef_worker[i].linebuf[plane] = cm->cdef_info.linebuf[plane]; |
1153 | | |
1154 | 756k | worker->hook = hook; |
1155 | 756k | worker->data1 = cdef_sync; |
1156 | 756k | worker->data2 = &cdef_worker[i]; |
1157 | 756k | } |
1158 | 19.3k | } |
1159 | | |
1160 | | // Initializes row-level parameters for CDEF frame. |
1161 | | void av1_cdef_init_fb_row_mt(const AV1_COMMON *const cm, |
1162 | | const MACROBLOCKD *const xd, |
1163 | | CdefBlockInfo *const fb_info, |
1164 | | uint16_t **const linebuf, uint16_t *const src, |
1165 | 69.3k | struct AV1CdefSyncData *const cdef_sync, int fbr) { |
1166 | 69.3k | const int num_planes = av1_num_planes(cm); |
1167 | 69.3k | const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; |
1168 | 69.3k | const int luma_stride = |
1169 | 69.3k | ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4); |
1170 | | |
1171 | | // for the current filter block, it's top left corner mi structure (mi_tl) |
1172 | | // is first accessed to check whether the top and left boundaries are |
1173 | | // frame boundaries. Then bottom-left and top-right mi structures are |
1174 | | // accessed to check whether the bottom and right boundaries |
1175 | | // (respectively) are frame boundaries. |
1176 | | // |
1177 | | // Note that we can't just check the bottom-right mi structure - eg. if |
1178 | | // we're at the right-hand edge of the frame but not the bottom, then |
1179 | | // the bottom-right mi is NULL but the bottom-left is not. |
1180 | 69.3k | fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0; |
1181 | 69.3k | if (fbr != nvfb - 1) |
1182 | 49.9k | fb_info->frame_boundary[BOTTOM] = |
1183 | 49.9k | (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0; |
1184 | 19.4k | else |
1185 | 19.4k | fb_info->frame_boundary[BOTTOM] = 1; |
1186 | | |
1187 | 69.3k | fb_info->src = src; |
1188 | 69.3k | fb_info->damping = cm->cdef_info.cdef_damping; |
1189 | 69.3k | fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0); |
1190 | 69.3k | av1_zero(fb_info->dir); |
1191 | 69.3k | av1_zero(fb_info->var); |
1192 | | |
1193 | 266k | for (int plane = 0; plane < num_planes; plane++) { |
1194 | 197k | const int stride = luma_stride >> xd->plane[plane].subsampling_x; |
1195 | 197k | uint16_t *top_linebuf = &linebuf[plane][0]; |
1196 | 197k | uint16_t *bot_linebuf = &linebuf[plane][nvfb * CDEF_VBORDER * stride]; |
1197 | 197k | { |
1198 | 197k | const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y; |
1199 | 197k | const int top_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2; |
1200 | 197k | const int bot_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2; |
1201 | | |
1202 | 197k | if (fbr != nvfb - 1) // if (fbr != 0) // top line buffer copy |
1203 | 144k | av1_cdef_copy_sb8_16( |
1204 | 144k | cm, &top_linebuf[(fbr + 1) * CDEF_VBORDER * stride], stride, |
1205 | 144k | xd->plane[plane].dst.buf, top_offset - CDEF_VBORDER, 0, |
1206 | 144k | xd->plane[plane].dst.stride, CDEF_VBORDER, stride); |
1207 | 197k | if (fbr != nvfb - 1) // bottom line buffer copy |
1208 | 143k | av1_cdef_copy_sb8_16(cm, &bot_linebuf[fbr * CDEF_VBORDER * stride], |
1209 | 143k | stride, xd->plane[plane].dst.buf, bot_offset, 0, |
1210 | 143k | xd->plane[plane].dst.stride, CDEF_VBORDER, stride); |
1211 | 197k | } |
1212 | | |
1213 | 197k | fb_info->top_linebuf[plane] = &linebuf[plane][fbr * CDEF_VBORDER * stride]; |
1214 | 197k | fb_info->bot_linebuf[plane] = |
1215 | 197k | &linebuf[plane] |
1216 | 197k | [nvfb * CDEF_VBORDER * stride + (fbr * CDEF_VBORDER * stride)]; |
1217 | 197k | } |
1218 | | |
1219 | 69.3k | cdef_row_mt_sync_write(cdef_sync, fbr); |
1220 | 69.3k | cdef_row_mt_sync_read(cdef_sync, fbr); |
1221 | 69.3k | } |
1222 | | |
1223 | | // Implements multi-threading for CDEF. |
1224 | | // Perform CDEF on input frame. |
1225 | | // Inputs: |
1226 | | // frame: Pointer to input frame buffer. |
1227 | | // cm: Pointer to common structure. |
1228 | | // xd: Pointer to common current coding block structure. |
1229 | | // Returns: |
1230 | | // Nothing will be returned. |
1231 | | void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd, |
1232 | | AV1CdefWorkerData *const cdef_worker, |
1233 | | AVxWorker *const workers, AV1CdefSync *const cdef_sync, |
1234 | | int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn, |
1235 | 19.3k | int do_extend_border) { |
1236 | 19.3k | YV12_BUFFER_CONFIG *frame = &cm->cur_frame->buf; |
1237 | 19.3k | const int num_planes = av1_num_planes(cm); |
1238 | | |
1239 | 19.3k | av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0, |
1240 | 19.3k | num_planes); |
1241 | | |
1242 | 19.3k | reset_cdef_job_info(cdef_sync); |
1243 | 19.3k | prepare_cdef_frame_workers(cm, xd, cdef_worker, cdef_sb_row_worker_hook, |
1244 | 19.3k | workers, cdef_sync, num_workers, |
1245 | 19.3k | cdef_init_fb_row_fn, do_extend_border); |
1246 | 19.3k | launch_cdef_workers(workers, num_workers); |
1247 | 19.3k | sync_cdef_workers(workers, cm, num_workers); |
1248 | 19.3k | } |
1249 | | |
1250 | 91.5k | int av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON *cm) { |
1251 | | // No additional top-right delay when intraBC tool is not enabled. |
1252 | 91.5k | if (!av1_allow_intrabc(cm)) return 0; |
1253 | | // Due to the hardware constraints on processing the intraBC tool with row |
1254 | | // multithreading, a top-right delay of 3 superblocks of size 128x128 or 5 |
1255 | | // superblocks of size 64x64 is mandated. However, a minimum top-right delay |
1256 | | // of 1 superblock is assured with 'sync_range'. Hence return only the |
1257 | | // additional superblock delay when the intraBC tool is enabled. |
1258 | 7.06k | return cm->seq_params->sb_size == BLOCK_128X128 ? 2 : 4; |
1259 | 91.5k | } |