/src/aom/av1/common/warped_motion.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
3 | | * |
4 | | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | | * was not distributed with this source code in the LICENSE file, you can |
7 | | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | | * Media Patent License 1.0 was not distributed with this source code in the |
9 | | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | | */ |
11 | | |
12 | | #include <stdio.h> |
13 | | #include <stdlib.h> |
14 | | #include <memory.h> |
15 | | #include <math.h> |
16 | | #include <assert.h> |
17 | | |
18 | | #include "config/av1_rtcd.h" |
19 | | |
20 | | #include "av1/common/av1_common_int.h" |
21 | | #include "av1/common/warped_motion.h" |
22 | | #include "av1/common/scale.h" |
23 | | |
24 | | // For warping, we really use a 6-tap filter, but we do blocks of 8 pixels |
25 | | // at a time. The zoom/rotation/shear in the model are applied to the |
26 | | // "fractional" position of each pixel, which therefore varies within |
27 | | // [-1, 2) * WARPEDPIXEL_PREC_SHIFTS. |
28 | | // We need an extra 2 taps to fit this in, for a total of 8 taps. |
29 | | /* clang-format off */ |
30 | | const WarpedFilterCoeff av1_warped_filter[WARPEDPIXEL_PREC_SHIFTS * 3 + 1] |
31 | | [8] = { |
32 | | // [-1, 0) |
33 | | { 0, 0, 127, 1, 0, 0, 0, 0 }, { 0, - 1, 127, 2, 0, 0, 0, 0 }, |
34 | | { 1, - 3, 127, 4, - 1, 0, 0, 0 }, { 1, - 4, 126, 6, - 2, 1, 0, 0 }, |
35 | | { 1, - 5, 126, 8, - 3, 1, 0, 0 }, { 1, - 6, 125, 11, - 4, 1, 0, 0 }, |
36 | | { 1, - 7, 124, 13, - 4, 1, 0, 0 }, { 2, - 8, 123, 15, - 5, 1, 0, 0 }, |
37 | | { 2, - 9, 122, 18, - 6, 1, 0, 0 }, { 2, -10, 121, 20, - 6, 1, 0, 0 }, |
38 | | { 2, -11, 120, 22, - 7, 2, 0, 0 }, { 2, -12, 119, 25, - 8, 2, 0, 0 }, |
39 | | { 3, -13, 117, 27, - 8, 2, 0, 0 }, { 3, -13, 116, 29, - 9, 2, 0, 0 }, |
40 | | { 3, -14, 114, 32, -10, 3, 0, 0 }, { 3, -15, 113, 35, -10, 2, 0, 0 }, |
41 | | { 3, -15, 111, 37, -11, 3, 0, 0 }, { 3, -16, 109, 40, -11, 3, 0, 0 }, |
42 | | { 3, -16, 108, 42, -12, 3, 0, 0 }, { 4, -17, 106, 45, -13, 3, 0, 0 }, |
43 | | { 4, -17, 104, 47, -13, 3, 0, 0 }, { 4, -17, 102, 50, -14, 3, 0, 0 }, |
44 | | { 4, -17, 100, 52, -14, 3, 0, 0 }, { 4, -18, 98, 55, -15, 4, 0, 0 }, |
45 | | { 4, -18, 96, 58, -15, 3, 0, 0 }, { 4, -18, 94, 60, -16, 4, 0, 0 }, |
46 | | { 4, -18, 91, 63, -16, 4, 0, 0 }, { 4, -18, 89, 65, -16, 4, 0, 0 }, |
47 | | { 4, -18, 87, 68, -17, 4, 0, 0 }, { 4, -18, 85, 70, -17, 4, 0, 0 }, |
48 | | { 4, -18, 82, 73, -17, 4, 0, 0 }, { 4, -18, 80, 75, -17, 4, 0, 0 }, |
49 | | { 4, -18, 78, 78, -18, 4, 0, 0 }, { 4, -17, 75, 80, -18, 4, 0, 0 }, |
50 | | { 4, -17, 73, 82, -18, 4, 0, 0 }, { 4, -17, 70, 85, -18, 4, 0, 0 }, |
51 | | { 4, -17, 68, 87, -18, 4, 0, 0 }, { 4, -16, 65, 89, -18, 4, 0, 0 }, |
52 | | { 4, -16, 63, 91, -18, 4, 0, 0 }, { 4, -16, 60, 94, -18, 4, 0, 0 }, |
53 | | { 3, -15, 58, 96, -18, 4, 0, 0 }, { 4, -15, 55, 98, -18, 4, 0, 0 }, |
54 | | { 3, -14, 52, 100, -17, 4, 0, 0 }, { 3, -14, 50, 102, -17, 4, 0, 0 }, |
55 | | { 3, -13, 47, 104, -17, 4, 0, 0 }, { 3, -13, 45, 106, -17, 4, 0, 0 }, |
56 | | { 3, -12, 42, 108, -16, 3, 0, 0 }, { 3, -11, 40, 109, -16, 3, 0, 0 }, |
57 | | { 3, -11, 37, 111, -15, 3, 0, 0 }, { 2, -10, 35, 113, -15, 3, 0, 0 }, |
58 | | { 3, -10, 32, 114, -14, 3, 0, 0 }, { 2, - 9, 29, 116, -13, 3, 0, 0 }, |
59 | | { 2, - 8, 27, 117, -13, 3, 0, 0 }, { 2, - 8, 25, 119, -12, 2, 0, 0 }, |
60 | | { 2, - 7, 22, 120, -11, 2, 0, 0 }, { 1, - 6, 20, 121, -10, 2, 0, 0 }, |
61 | | { 1, - 6, 18, 122, - 9, 2, 0, 0 }, { 1, - 5, 15, 123, - 8, 2, 0, 0 }, |
62 | | { 1, - 4, 13, 124, - 7, 1, 0, 0 }, { 1, - 4, 11, 125, - 6, 1, 0, 0 }, |
63 | | { 1, - 3, 8, 126, - 5, 1, 0, 0 }, { 1, - 2, 6, 126, - 4, 1, 0, 0 }, |
64 | | { 0, - 1, 4, 127, - 3, 1, 0, 0 }, { 0, 0, 2, 127, - 1, 0, 0, 0 }, |
65 | | |
66 | | // [0, 1) |
67 | | { 0, 0, 0, 127, 1, 0, 0, 0}, { 0, 0, -1, 127, 2, 0, 0, 0}, |
68 | | { 0, 1, -3, 127, 4, -2, 1, 0}, { 0, 1, -5, 127, 6, -2, 1, 0}, |
69 | | { 0, 2, -6, 126, 8, -3, 1, 0}, {-1, 2, -7, 126, 11, -4, 2, -1}, |
70 | | {-1, 3, -8, 125, 13, -5, 2, -1}, {-1, 3, -10, 124, 16, -6, 3, -1}, |
71 | | {-1, 4, -11, 123, 18, -7, 3, -1}, {-1, 4, -12, 122, 20, -7, 3, -1}, |
72 | | {-1, 4, -13, 121, 23, -8, 3, -1}, {-2, 5, -14, 120, 25, -9, 4, -1}, |
73 | | {-1, 5, -15, 119, 27, -10, 4, -1}, {-1, 5, -16, 118, 30, -11, 4, -1}, |
74 | | {-2, 6, -17, 116, 33, -12, 5, -1}, {-2, 6, -17, 114, 35, -12, 5, -1}, |
75 | | {-2, 6, -18, 113, 38, -13, 5, -1}, {-2, 7, -19, 111, 41, -14, 6, -2}, |
76 | | {-2, 7, -19, 110, 43, -15, 6, -2}, {-2, 7, -20, 108, 46, -15, 6, -2}, |
77 | | {-2, 7, -20, 106, 49, -16, 6, -2}, {-2, 7, -21, 104, 51, -16, 7, -2}, |
78 | | {-2, 7, -21, 102, 54, -17, 7, -2}, {-2, 8, -21, 100, 56, -18, 7, -2}, |
79 | | {-2, 8, -22, 98, 59, -18, 7, -2}, {-2, 8, -22, 96, 62, -19, 7, -2}, |
80 | | {-2, 8, -22, 94, 64, -19, 7, -2}, {-2, 8, -22, 91, 67, -20, 8, -2}, |
81 | | {-2, 8, -22, 89, 69, -20, 8, -2}, {-2, 8, -22, 87, 72, -21, 8, -2}, |
82 | | {-2, 8, -21, 84, 74, -21, 8, -2}, {-2, 8, -22, 82, 77, -21, 8, -2}, |
83 | | {-2, 8, -21, 79, 79, -21, 8, -2}, {-2, 8, -21, 77, 82, -22, 8, -2}, |
84 | | {-2, 8, -21, 74, 84, -21, 8, -2}, {-2, 8, -21, 72, 87, -22, 8, -2}, |
85 | | {-2, 8, -20, 69, 89, -22, 8, -2}, {-2, 8, -20, 67, 91, -22, 8, -2}, |
86 | | {-2, 7, -19, 64, 94, -22, 8, -2}, {-2, 7, -19, 62, 96, -22, 8, -2}, |
87 | | {-2, 7, -18, 59, 98, -22, 8, -2}, {-2, 7, -18, 56, 100, -21, 8, -2}, |
88 | | {-2, 7, -17, 54, 102, -21, 7, -2}, {-2, 7, -16, 51, 104, -21, 7, -2}, |
89 | | {-2, 6, -16, 49, 106, -20, 7, -2}, {-2, 6, -15, 46, 108, -20, 7, -2}, |
90 | | {-2, 6, -15, 43, 110, -19, 7, -2}, {-2, 6, -14, 41, 111, -19, 7, -2}, |
91 | | {-1, 5, -13, 38, 113, -18, 6, -2}, {-1, 5, -12, 35, 114, -17, 6, -2}, |
92 | | {-1, 5, -12, 33, 116, -17, 6, -2}, {-1, 4, -11, 30, 118, -16, 5, -1}, |
93 | | {-1, 4, -10, 27, 119, -15, 5, -1}, {-1, 4, -9, 25, 120, -14, 5, -2}, |
94 | | {-1, 3, -8, 23, 121, -13, 4, -1}, {-1, 3, -7, 20, 122, -12, 4, -1}, |
95 | | {-1, 3, -7, 18, 123, -11, 4, -1}, {-1, 3, -6, 16, 124, -10, 3, -1}, |
96 | | {-1, 2, -5, 13, 125, -8, 3, -1}, {-1, 2, -4, 11, 126, -7, 2, -1}, |
97 | | { 0, 1, -3, 8, 126, -6, 2, 0}, { 0, 1, -2, 6, 127, -5, 1, 0}, |
98 | | { 0, 1, -2, 4, 127, -3, 1, 0}, { 0, 0, 0, 2, 127, -1, 0, 0}, |
99 | | |
100 | | // [1, 2) |
101 | | { 0, 0, 0, 1, 127, 0, 0, 0 }, { 0, 0, 0, - 1, 127, 2, 0, 0 }, |
102 | | { 0, 0, 1, - 3, 127, 4, - 1, 0 }, { 0, 0, 1, - 4, 126, 6, - 2, 1 }, |
103 | | { 0, 0, 1, - 5, 126, 8, - 3, 1 }, { 0, 0, 1, - 6, 125, 11, - 4, 1 }, |
104 | | { 0, 0, 1, - 7, 124, 13, - 4, 1 }, { 0, 0, 2, - 8, 123, 15, - 5, 1 }, |
105 | | { 0, 0, 2, - 9, 122, 18, - 6, 1 }, { 0, 0, 2, -10, 121, 20, - 6, 1 }, |
106 | | { 0, 0, 2, -11, 120, 22, - 7, 2 }, { 0, 0, 2, -12, 119, 25, - 8, 2 }, |
107 | | { 0, 0, 3, -13, 117, 27, - 8, 2 }, { 0, 0, 3, -13, 116, 29, - 9, 2 }, |
108 | | { 0, 0, 3, -14, 114, 32, -10, 3 }, { 0, 0, 3, -15, 113, 35, -10, 2 }, |
109 | | { 0, 0, 3, -15, 111, 37, -11, 3 }, { 0, 0, 3, -16, 109, 40, -11, 3 }, |
110 | | { 0, 0, 3, -16, 108, 42, -12, 3 }, { 0, 0, 4, -17, 106, 45, -13, 3 }, |
111 | | { 0, 0, 4, -17, 104, 47, -13, 3 }, { 0, 0, 4, -17, 102, 50, -14, 3 }, |
112 | | { 0, 0, 4, -17, 100, 52, -14, 3 }, { 0, 0, 4, -18, 98, 55, -15, 4 }, |
113 | | { 0, 0, 4, -18, 96, 58, -15, 3 }, { 0, 0, 4, -18, 94, 60, -16, 4 }, |
114 | | { 0, 0, 4, -18, 91, 63, -16, 4 }, { 0, 0, 4, -18, 89, 65, -16, 4 }, |
115 | | { 0, 0, 4, -18, 87, 68, -17, 4 }, { 0, 0, 4, -18, 85, 70, -17, 4 }, |
116 | | { 0, 0, 4, -18, 82, 73, -17, 4 }, { 0, 0, 4, -18, 80, 75, -17, 4 }, |
117 | | { 0, 0, 4, -18, 78, 78, -18, 4 }, { 0, 0, 4, -17, 75, 80, -18, 4 }, |
118 | | { 0, 0, 4, -17, 73, 82, -18, 4 }, { 0, 0, 4, -17, 70, 85, -18, 4 }, |
119 | | { 0, 0, 4, -17, 68, 87, -18, 4 }, { 0, 0, 4, -16, 65, 89, -18, 4 }, |
120 | | { 0, 0, 4, -16, 63, 91, -18, 4 }, { 0, 0, 4, -16, 60, 94, -18, 4 }, |
121 | | { 0, 0, 3, -15, 58, 96, -18, 4 }, { 0, 0, 4, -15, 55, 98, -18, 4 }, |
122 | | { 0, 0, 3, -14, 52, 100, -17, 4 }, { 0, 0, 3, -14, 50, 102, -17, 4 }, |
123 | | { 0, 0, 3, -13, 47, 104, -17, 4 }, { 0, 0, 3, -13, 45, 106, -17, 4 }, |
124 | | { 0, 0, 3, -12, 42, 108, -16, 3 }, { 0, 0, 3, -11, 40, 109, -16, 3 }, |
125 | | { 0, 0, 3, -11, 37, 111, -15, 3 }, { 0, 0, 2, -10, 35, 113, -15, 3 }, |
126 | | { 0, 0, 3, -10, 32, 114, -14, 3 }, { 0, 0, 2, - 9, 29, 116, -13, 3 }, |
127 | | { 0, 0, 2, - 8, 27, 117, -13, 3 }, { 0, 0, 2, - 8, 25, 119, -12, 2 }, |
128 | | { 0, 0, 2, - 7, 22, 120, -11, 2 }, { 0, 0, 1, - 6, 20, 121, -10, 2 }, |
129 | | { 0, 0, 1, - 6, 18, 122, - 9, 2 }, { 0, 0, 1, - 5, 15, 123, - 8, 2 }, |
130 | | { 0, 0, 1, - 4, 13, 124, - 7, 1 }, { 0, 0, 1, - 4, 11, 125, - 6, 1 }, |
131 | | { 0, 0, 1, - 3, 8, 126, - 5, 1 }, { 0, 0, 1, - 2, 6, 126, - 4, 1 }, |
132 | | { 0, 0, 0, - 1, 4, 127, - 3, 1 }, { 0, 0, 0, 0, 2, 127, - 1, 0 }, |
133 | | // dummy (replicate row index 191) |
134 | | { 0, 0, 0, 0, 2, 127, - 1, 0 }, |
135 | | }; |
136 | | |
137 | | /* clang-format on */ |
138 | | |
139 | 867k | #define DIV_LUT_PREC_BITS 14 |
140 | 867k | #define DIV_LUT_BITS 8 |
141 | | #define DIV_LUT_NUM (1 << DIV_LUT_BITS) |
142 | | |
143 | | static const uint16_t div_lut[DIV_LUT_NUM + 1] = { |
144 | | 16384, 16320, 16257, 16194, 16132, 16070, 16009, 15948, 15888, 15828, 15768, |
145 | | 15709, 15650, 15592, 15534, 15477, 15420, 15364, 15308, 15252, 15197, 15142, |
146 | | 15087, 15033, 14980, 14926, 14873, 14821, 14769, 14717, 14665, 14614, 14564, |
147 | | 14513, 14463, 14413, 14364, 14315, 14266, 14218, 14170, 14122, 14075, 14028, |
148 | | 13981, 13935, 13888, 13843, 13797, 13752, 13707, 13662, 13618, 13574, 13530, |
149 | | 13487, 13443, 13400, 13358, 13315, 13273, 13231, 13190, 13148, 13107, 13066, |
150 | | 13026, 12985, 12945, 12906, 12866, 12827, 12788, 12749, 12710, 12672, 12633, |
151 | | 12596, 12558, 12520, 12483, 12446, 12409, 12373, 12336, 12300, 12264, 12228, |
152 | | 12193, 12157, 12122, 12087, 12053, 12018, 11984, 11950, 11916, 11882, 11848, |
153 | | 11815, 11782, 11749, 11716, 11683, 11651, 11619, 11586, 11555, 11523, 11491, |
154 | | 11460, 11429, 11398, 11367, 11336, 11305, 11275, 11245, 11215, 11185, 11155, |
155 | | 11125, 11096, 11067, 11038, 11009, 10980, 10951, 10923, 10894, 10866, 10838, |
156 | | 10810, 10782, 10755, 10727, 10700, 10673, 10645, 10618, 10592, 10565, 10538, |
157 | | 10512, 10486, 10460, 10434, 10408, 10382, 10356, 10331, 10305, 10280, 10255, |
158 | | 10230, 10205, 10180, 10156, 10131, 10107, 10082, 10058, 10034, 10010, 9986, |
159 | | 9963, 9939, 9916, 9892, 9869, 9846, 9823, 9800, 9777, 9754, 9732, |
160 | | 9709, 9687, 9664, 9642, 9620, 9598, 9576, 9554, 9533, 9511, 9489, |
161 | | 9468, 9447, 9425, 9404, 9383, 9362, 9341, 9321, 9300, 9279, 9259, |
162 | | 9239, 9218, 9198, 9178, 9158, 9138, 9118, 9098, 9079, 9059, 9039, |
163 | | 9020, 9001, 8981, 8962, 8943, 8924, 8905, 8886, 8867, 8849, 8830, |
164 | | 8812, 8793, 8775, 8756, 8738, 8720, 8702, 8684, 8666, 8648, 8630, |
165 | | 8613, 8595, 8577, 8560, 8542, 8525, 8508, 8490, 8473, 8456, 8439, |
166 | | 8422, 8405, 8389, 8372, 8355, 8339, 8322, 8306, 8289, 8273, 8257, |
167 | | 8240, 8224, 8208, 8192, |
168 | | }; |
169 | | |
170 | | // Decomposes a divisor D such that 1/D = y/2^shift, where y is returned |
171 | | // at precision of DIV_LUT_PREC_BITS along with the shift. |
172 | 276k | static int16_t resolve_divisor_64(uint64_t D, int16_t *shift) { |
173 | 276k | int64_t f; |
174 | 276k | *shift = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32 |
175 | 276k | : get_msb((unsigned int)D)); |
176 | | // e is obtained from D after resetting the most significant 1 bit. |
177 | 276k | const int64_t e = D - ((uint64_t)1 << *shift); |
178 | | // Get the most significant DIV_LUT_BITS (8) bits of e into f |
179 | 276k | if (*shift > DIV_LUT_BITS) |
180 | 276k | f = ROUND_POWER_OF_TWO_64(e, *shift - DIV_LUT_BITS); |
181 | 0 | else |
182 | 0 | f = e << (DIV_LUT_BITS - *shift); |
183 | 276k | assert(f <= DIV_LUT_NUM); |
184 | 276k | *shift += DIV_LUT_PREC_BITS; |
185 | | // Use f as lookup into the precomputed table of multipliers |
186 | 276k | return div_lut[f]; |
187 | 276k | } |
188 | | |
189 | 590k | static int16_t resolve_divisor_32(uint32_t D, int16_t *shift) { |
190 | 590k | int32_t f; |
191 | 590k | *shift = get_msb(D); |
192 | | // e is obtained from D after resetting the most significant 1 bit. |
193 | 590k | const int32_t e = D - ((uint32_t)1 << *shift); |
194 | | // Get the most significant DIV_LUT_BITS (8) bits of e into f |
195 | 590k | if (*shift > DIV_LUT_BITS) |
196 | 590k | f = ROUND_POWER_OF_TWO(e, *shift - DIV_LUT_BITS); |
197 | 310 | else |
198 | 310 | f = e << (DIV_LUT_BITS - *shift); |
199 | 590k | assert(f <= DIV_LUT_NUM); |
200 | 590k | *shift += DIV_LUT_PREC_BITS; |
201 | | // Use f as lookup into the precomputed table of multipliers |
202 | 590k | return div_lut[f]; |
203 | 590k | } |
204 | | |
205 | 592k | static int is_affine_valid(const WarpedMotionParams *const wm) { |
206 | 592k | const int32_t *mat = wm->wmmat; |
207 | 592k | return (mat[2] > 0); |
208 | 592k | } |
209 | | |
210 | | static int is_affine_shear_allowed(int16_t alpha, int16_t beta, int16_t gamma, |
211 | 590k | int16_t delta) { |
212 | 590k | if ((4 * abs(alpha) + 7 * abs(beta) >= (1 << WARPEDMODEL_PREC_BITS)) || |
213 | 590k | (4 * abs(gamma) + 4 * abs(delta) >= (1 << WARPEDMODEL_PREC_BITS))) |
214 | 26.5k | return 0; |
215 | 564k | else |
216 | 564k | return 1; |
217 | 590k | } |
218 | | |
219 | | #ifndef NDEBUG |
220 | | // Check that the given warp model satisfies the relevant constraints for |
221 | | // its stated model type |
222 | 592k | static void check_model_consistency(WarpedMotionParams *wm) { |
223 | 592k | switch (wm->wmtype) { |
224 | 289k | case IDENTITY: |
225 | 289k | assert(wm->wmmat[0] == 0); |
226 | 289k | assert(wm->wmmat[1] == 0); |
227 | 289k | AOM_FALLTHROUGH_INTENDED; |
228 | 293k | case TRANSLATION: |
229 | 293k | assert(wm->wmmat[2] == 1 << WARPEDMODEL_PREC_BITS); |
230 | 293k | assert(wm->wmmat[3] == 0); |
231 | 293k | AOM_FALLTHROUGH_INTENDED; |
232 | 310k | case ROTZOOM: |
233 | 310k | assert(wm->wmmat[4] == -wm->wmmat[3]); |
234 | 310k | assert(wm->wmmat[5] == wm->wmmat[2]); |
235 | 310k | AOM_FALLTHROUGH_INTENDED; |
236 | 592k | case AFFINE: break; |
237 | 0 | default: assert(0 && "Bad wmtype"); |
238 | 592k | } |
239 | 592k | } |
240 | | #endif // NDEBUG |
241 | | |
242 | | // Returns 1 on success or 0 on an invalid affine set |
243 | 592k | int av1_get_shear_params(WarpedMotionParams *wm) { |
244 | 592k | #ifndef NDEBUG |
245 | | // Check that models have been constructed sensibly |
246 | | // This is a good place to check, because this function does not need to |
247 | | // be called until after model construction is complete, but must be called |
248 | | // before the model can be used for prediction. |
249 | 592k | check_model_consistency(wm); |
250 | 592k | #endif // NDEBUG |
251 | | |
252 | 592k | const int32_t *mat = wm->wmmat; |
253 | 592k | if (!is_affine_valid(wm)) return 0; |
254 | | |
255 | 590k | wm->alpha = |
256 | 590k | clamp(mat[2] - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX); |
257 | 590k | wm->beta = clamp(mat[3], INT16_MIN, INT16_MAX); |
258 | 590k | int16_t shift; |
259 | 590k | int16_t y = resolve_divisor_32(abs(mat[2]), &shift) * (mat[2] < 0 ? -1 : 1); |
260 | 590k | int64_t v = ((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) * y; |
261 | 590k | wm->gamma = |
262 | 590k | clamp((int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift), INT16_MIN, INT16_MAX); |
263 | 590k | v = ((int64_t)mat[3] * mat[4]) * y; |
264 | 590k | wm->delta = clamp(mat[5] - (int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift) - |
265 | 590k | (1 << WARPEDMODEL_PREC_BITS), |
266 | 590k | INT16_MIN, INT16_MAX); |
267 | | |
268 | 590k | wm->alpha = ROUND_POWER_OF_TWO_SIGNED(wm->alpha, WARP_PARAM_REDUCE_BITS) * |
269 | 590k | (1 << WARP_PARAM_REDUCE_BITS); |
270 | 590k | wm->beta = ROUND_POWER_OF_TWO_SIGNED(wm->beta, WARP_PARAM_REDUCE_BITS) * |
271 | 590k | (1 << WARP_PARAM_REDUCE_BITS); |
272 | 590k | wm->gamma = ROUND_POWER_OF_TWO_SIGNED(wm->gamma, WARP_PARAM_REDUCE_BITS) * |
273 | 590k | (1 << WARP_PARAM_REDUCE_BITS); |
274 | 590k | wm->delta = ROUND_POWER_OF_TWO_SIGNED(wm->delta, WARP_PARAM_REDUCE_BITS) * |
275 | 590k | (1 << WARP_PARAM_REDUCE_BITS); |
276 | | |
277 | 590k | if (!is_affine_shear_allowed(wm->alpha, wm->beta, wm->gamma, wm->delta)) |
278 | 26.5k | return 0; |
279 | | |
280 | 564k | return 1; |
281 | 590k | } |
282 | | |
283 | | #if CONFIG_AV1_HIGHBITDEPTH |
284 | | /* Note: For an explanation of the warp algorithm, and some notes on bit widths |
285 | | for hardware implementations, see the comments above av1_warp_affine_c |
286 | | */ |
287 | | void av1_highbd_warp_affine_c(const int32_t *mat, const uint16_t *ref, |
288 | | int width, int height, int stride, uint16_t *pred, |
289 | | int p_col, int p_row, int p_width, int p_height, |
290 | | int p_stride, int subsampling_x, |
291 | | int subsampling_y, int bd, |
292 | | ConvolveParams *conv_params, int16_t alpha, |
293 | 0 | int16_t beta, int16_t gamma, int16_t delta) { |
294 | 0 | int32_t tmp[15 * 8]; |
295 | 0 | const int reduce_bits_horiz = conv_params->round_0; |
296 | 0 | const int reduce_bits_vert = conv_params->is_compound |
297 | 0 | ? conv_params->round_1 |
298 | 0 | : 2 * FILTER_BITS - reduce_bits_horiz; |
299 | 0 | const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz; |
300 | 0 | const int offset_bits_horiz = bd + FILTER_BITS - 1; |
301 | 0 | const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz; |
302 | 0 | const int round_bits = |
303 | 0 | 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; |
304 | 0 | const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; |
305 | 0 | (void)max_bits_horiz; |
306 | 0 | assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); |
307 | | |
308 | | // Check that, even with 12-bit input, the intermediate values will fit |
309 | | // into an unsigned 16-bit intermediate array. |
310 | 0 | assert(bd + FILTER_BITS + 2 - conv_params->round_0 <= 16); |
311 | | |
312 | 0 | for (int i = p_row; i < p_row + p_height; i += 8) { |
313 | 0 | for (int j = p_col; j < p_col + p_width; j += 8) { |
314 | | // Calculate the center of this 8x8 block, |
315 | | // project to luma coordinates (if in a subsampled chroma plane), |
316 | | // apply the affine transformation, |
317 | | // then convert back to the original coordinates (if necessary) |
318 | 0 | const int32_t src_x = (j + 4) << subsampling_x; |
319 | 0 | const int32_t src_y = (i + 4) << subsampling_y; |
320 | 0 | const int64_t dst_x = |
321 | 0 | (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; |
322 | 0 | const int64_t dst_y = |
323 | 0 | (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; |
324 | 0 | const int64_t x4 = dst_x >> subsampling_x; |
325 | 0 | const int64_t y4 = dst_y >> subsampling_y; |
326 | |
|
327 | 0 | const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS); |
328 | 0 | int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
329 | 0 | const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS); |
330 | 0 | int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
331 | |
|
332 | 0 | sx4 += alpha * (-4) + beta * (-4); |
333 | 0 | sy4 += gamma * (-4) + delta * (-4); |
334 | |
|
335 | 0 | sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); |
336 | 0 | sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); |
337 | | |
338 | | // Horizontal filter |
339 | 0 | for (int k = -7; k < 8; ++k) { |
340 | 0 | const int iy = clamp(iy4 + k, 0, height - 1); |
341 | |
|
342 | 0 | int sx = sx4 + beta * (k + 4); |
343 | 0 | for (int l = -4; l < 4; ++l) { |
344 | 0 | int ix = ix4 + l - 3; |
345 | 0 | const int offs = ROUND_POWER_OF_TWO(sx, WARPEDDIFF_PREC_BITS) + |
346 | 0 | WARPEDPIXEL_PREC_SHIFTS; |
347 | 0 | assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3); |
348 | 0 | const WarpedFilterCoeff *coeffs = av1_warped_filter[offs]; |
349 | |
|
350 | 0 | int32_t sum = 1 << offset_bits_horiz; |
351 | 0 | for (int m = 0; m < 8; ++m) { |
352 | 0 | const int sample_x = clamp(ix + m, 0, width - 1); |
353 | 0 | sum += ref[iy * stride + sample_x] * coeffs[m]; |
354 | 0 | } |
355 | 0 | sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz); |
356 | 0 | assert(0 <= sum && sum < (1 << max_bits_horiz)); |
357 | 0 | tmp[(k + 7) * 8 + (l + 4)] = sum; |
358 | 0 | sx += alpha; |
359 | 0 | } |
360 | 0 | } |
361 | | |
362 | | // Vertical filter |
363 | 0 | for (int k = -4; k < AOMMIN(4, p_row + p_height - i - 4); ++k) { |
364 | 0 | int sy = sy4 + delta * (k + 4); |
365 | 0 | for (int l = -4; l < AOMMIN(4, p_col + p_width - j - 4); ++l) { |
366 | 0 | const int offs = ROUND_POWER_OF_TWO(sy, WARPEDDIFF_PREC_BITS) + |
367 | 0 | WARPEDPIXEL_PREC_SHIFTS; |
368 | 0 | assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3); |
369 | 0 | const WarpedFilterCoeff *coeffs = av1_warped_filter[offs]; |
370 | |
|
371 | 0 | int32_t sum = 1 << offset_bits_vert; |
372 | 0 | for (int m = 0; m < 8; ++m) { |
373 | 0 | sum += tmp[(k + m + 4) * 8 + (l + 4)] * coeffs[m]; |
374 | 0 | } |
375 | |
|
376 | 0 | if (conv_params->is_compound) { |
377 | 0 | CONV_BUF_TYPE *p = |
378 | 0 | &conv_params |
379 | 0 | ->dst[(i - p_row + k + 4) * conv_params->dst_stride + |
380 | 0 | (j - p_col + l + 4)]; |
381 | 0 | sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert); |
382 | 0 | if (conv_params->do_average) { |
383 | 0 | uint16_t *dst16 = |
384 | 0 | &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)]; |
385 | 0 | int32_t tmp32 = *p; |
386 | 0 | if (conv_params->use_dist_wtd_comp_avg) { |
387 | 0 | tmp32 = tmp32 * conv_params->fwd_offset + |
388 | 0 | sum * conv_params->bck_offset; |
389 | 0 | tmp32 = tmp32 >> DIST_PRECISION_BITS; |
390 | 0 | } else { |
391 | 0 | tmp32 += sum; |
392 | 0 | tmp32 = tmp32 >> 1; |
393 | 0 | } |
394 | 0 | tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) - |
395 | 0 | (1 << (offset_bits - conv_params->round_1 - 1)); |
396 | 0 | *dst16 = |
397 | 0 | clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp32, round_bits), bd); |
398 | 0 | } else { |
399 | 0 | *p = sum; |
400 | 0 | } |
401 | 0 | } else { |
402 | 0 | uint16_t *p = |
403 | 0 | &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)]; |
404 | 0 | sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert); |
405 | 0 | assert(0 <= sum && sum < (1 << (bd + 2))); |
406 | 0 | *p = clip_pixel_highbd(sum - (1 << (bd - 1)) - (1 << bd), bd); |
407 | 0 | } |
408 | 0 | sy += gamma; |
409 | 0 | } |
410 | 0 | } |
411 | 0 | } |
412 | 0 | } |
413 | 0 | } |
414 | | |
415 | | void highbd_warp_plane(WarpedMotionParams *wm, const uint16_t *const ref, |
416 | | int width, int height, int stride, uint16_t *const pred, |
417 | | int p_col, int p_row, int p_width, int p_height, |
418 | | int p_stride, int subsampling_x, int subsampling_y, |
419 | 264k | int bd, ConvolveParams *conv_params) { |
420 | 264k | const int32_t *const mat = wm->wmmat; |
421 | 264k | const int16_t alpha = wm->alpha; |
422 | 264k | const int16_t beta = wm->beta; |
423 | 264k | const int16_t gamma = wm->gamma; |
424 | 264k | const int16_t delta = wm->delta; |
425 | | |
426 | 264k | av1_highbd_warp_affine(mat, ref, width, height, stride, pred, p_col, p_row, |
427 | 264k | p_width, p_height, p_stride, subsampling_x, |
428 | 264k | subsampling_y, bd, conv_params, alpha, beta, gamma, |
429 | 264k | delta); |
430 | 264k | } |
431 | | #endif // CONFIG_AV1_HIGHBITDEPTH |
432 | | |
433 | | /* The warp filter for ROTZOOM and AFFINE models works as follows: |
434 | | * Split the input into 8x8 blocks |
435 | | * For each block, project the point (4, 4) within the block, to get the |
436 | | overall block position. Split into integer and fractional coordinates, |
437 | | maintaining full WARPEDMODEL precision |
438 | | * Filter horizontally: Generate 15 rows of 8 pixels each. Each pixel gets a |
439 | | variable horizontal offset. This means that, while the rows of the |
440 | | intermediate buffer align with the rows of the *reference* image, the |
441 | | columns align with the columns of the *destination* image. |
442 | | * Filter vertically: Generate the output block (up to 8x8 pixels, but if the |
443 | | destination is too small we crop the output at this stage). Each pixel has |
444 | | a variable vertical offset, so that the resulting rows are aligned with |
445 | | the rows of the destination image. |
446 | | |
447 | | To accomplish these alignments, we factor the warp matrix as a |
448 | | product of two shear / asymmetric zoom matrices: |
449 | | / a b \ = / 1 0 \ * / 1+alpha beta \ |
450 | | \ c d / \ gamma 1+delta / \ 0 1 / |
451 | | where a, b, c, d are wmmat[2], wmmat[3], wmmat[4], wmmat[5] respectively. |
452 | | The horizontal shear (with alpha and beta) is applied first, |
453 | | then the vertical shear (with gamma and delta) is applied second. |
454 | | |
455 | | The only limitation is that, to fit this in a fixed 8-tap filter size, |
456 | | the fractional pixel offsets must be at most +-1. Since the horizontal filter |
457 | | generates 15 rows of 8 columns, and the initial point we project is at (4, 4) |
458 | | within the block, the parameters must satisfy |
459 | | 4 * |alpha| + 7 * |beta| <= 1 and 4 * |gamma| + 4 * |delta| <= 1 |
460 | | for this filter to be applicable. |
461 | | |
462 | | Note: This function assumes that the caller has done all of the relevant |
463 | | checks, ie. that we have a ROTZOOM or AFFINE model, that wm[4] and wm[5] |
464 | | are set appropriately (if using a ROTZOOM model), and that alpha, beta, |
465 | | gamma, delta are all in range. |
466 | | |
467 | | TODO(rachelbarker): Maybe support scaled references? |
468 | | */ |
469 | | /* A note on hardware implementation: |
470 | | The warp filter is intended to be implementable using the same hardware as |
471 | | the high-precision convolve filters from the loop-restoration and |
472 | | convolve-round experiments. |
473 | | |
474 | | For a single filter stage, considering all of the coefficient sets for the |
475 | | warp filter and the regular convolution filter, an input in the range |
476 | | [0, 2^k - 1] is mapped into the range [-56 * (2^k - 1), 184 * (2^k - 1)] |
477 | | before rounding. |
478 | | |
479 | | Allowing for some changes to the filter coefficient sets, call the range |
480 | | [-64 * 2^k, 192 * 2^k]. Then, if we initialize the accumulator to 64 * 2^k, |
481 | | we can replace this by the range [0, 256 * 2^k], which can be stored in an |
482 | | unsigned value with 8 + k bits. |
483 | | |
484 | | This allows the derivation of the appropriate bit widths and offsets for |
485 | | the various intermediate values: If |
486 | | |
487 | | F := FILTER_BITS = 7 (or else the above ranges need adjusting) |
488 | | So a *single* filter stage maps a k-bit input to a (k + F + 1)-bit |
489 | | intermediate value. |
490 | | H := ROUND0_BITS |
491 | | V := VERSHEAR_REDUCE_PREC_BITS |
492 | | (and note that we must have H + V = 2*F for the output to have the same |
493 | | scale as the input) |
494 | | |
495 | | then we end up with the following offsets and ranges: |
496 | | Horizontal filter: Apply an offset of 1 << (bd + F - 1), sum fits into a |
497 | | uint{bd + F + 1} |
498 | | After rounding: The values stored in 'tmp' fit into a uint{bd + F + 1 - H}. |
499 | | Vertical filter: Apply an offset of 1 << (bd + 2*F - H), sum fits into a |
500 | | uint{bd + 2*F + 2 - H} |
501 | | After rounding: The final value, before undoing the offset, fits into a |
502 | | uint{bd + 2}. |
503 | | |
504 | | Then we need to undo the offsets before clamping to a pixel. Note that, |
505 | | if we do this at the end, the amount to subtract is actually independent |
506 | | of H and V: |
507 | | |
508 | | offset to subtract = (1 << ((bd + F - 1) - H + F - V)) + |
509 | | (1 << ((bd + 2*F - H) - V)) |
510 | | == (1 << (bd - 1)) + (1 << bd) |
511 | | |
512 | | This allows us to entirely avoid clamping in both the warp filter and |
513 | | the convolve-round experiment. As of the time of writing, the Wiener filter |
514 | | from loop-restoration can encode a central coefficient up to 216, which |
515 | | leads to a maximum value of about 282 * 2^k after applying the offset. |
516 | | So in that case we still need to clamp. |
517 | | */ |
518 | | void av1_warp_affine_c(const int32_t *mat, const uint8_t *ref, int width, |
519 | | int height, int stride, uint8_t *pred, int p_col, |
520 | | int p_row, int p_width, int p_height, int p_stride, |
521 | | int subsampling_x, int subsampling_y, |
522 | | ConvolveParams *conv_params, int16_t alpha, int16_t beta, |
523 | 0 | int16_t gamma, int16_t delta) { |
524 | 0 | int32_t tmp[15 * 8]; |
525 | 0 | const int bd = 8; |
526 | 0 | const int reduce_bits_horiz = conv_params->round_0; |
527 | 0 | const int reduce_bits_vert = conv_params->is_compound |
528 | 0 | ? conv_params->round_1 |
529 | 0 | : 2 * FILTER_BITS - reduce_bits_horiz; |
530 | 0 | const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz; |
531 | 0 | const int offset_bits_horiz = bd + FILTER_BITS - 1; |
532 | 0 | const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz; |
533 | 0 | const int round_bits = |
534 | 0 | 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; |
535 | 0 | const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; |
536 | 0 | (void)max_bits_horiz; |
537 | 0 | assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); |
538 | 0 | assert(IMPLIES(conv_params->do_average, conv_params->is_compound)); |
539 | | |
540 | 0 | for (int i = p_row; i < p_row + p_height; i += 8) { |
541 | 0 | for (int j = p_col; j < p_col + p_width; j += 8) { |
542 | | // Calculate the center of this 8x8 block, |
543 | | // project to luma coordinates (if in a subsampled chroma plane), |
544 | | // apply the affine transformation, |
545 | | // then convert back to the original coordinates (if necessary) |
546 | 0 | const int32_t src_x = (j + 4) << subsampling_x; |
547 | 0 | const int32_t src_y = (i + 4) << subsampling_y; |
548 | 0 | const int64_t dst_x = |
549 | 0 | (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; |
550 | 0 | const int64_t dst_y = |
551 | 0 | (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; |
552 | 0 | const int64_t x4 = dst_x >> subsampling_x; |
553 | 0 | const int64_t y4 = dst_y >> subsampling_y; |
554 | |
|
555 | 0 | int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS); |
556 | 0 | int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
557 | 0 | int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS); |
558 | 0 | int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
559 | |
|
560 | 0 | sx4 += alpha * (-4) + beta * (-4); |
561 | 0 | sy4 += gamma * (-4) + delta * (-4); |
562 | |
|
563 | 0 | sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); |
564 | 0 | sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); |
565 | | |
566 | | // Horizontal filter |
567 | 0 | for (int k = -7; k < 8; ++k) { |
568 | | // Clamp to top/bottom edge of the frame |
569 | 0 | const int iy = clamp(iy4 + k, 0, height - 1); |
570 | |
|
571 | 0 | int sx = sx4 + beta * (k + 4); |
572 | |
|
573 | 0 | for (int l = -4; l < 4; ++l) { |
574 | 0 | int ix = ix4 + l - 3; |
575 | | // At this point, sx = sx4 + alpha * l + beta * k |
576 | 0 | const int offs = ROUND_POWER_OF_TWO(sx, WARPEDDIFF_PREC_BITS) + |
577 | 0 | WARPEDPIXEL_PREC_SHIFTS; |
578 | 0 | assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3); |
579 | 0 | const WarpedFilterCoeff *coeffs = av1_warped_filter[offs]; |
580 | |
|
581 | 0 | int32_t sum = 1 << offset_bits_horiz; |
582 | 0 | for (int m = 0; m < 8; ++m) { |
583 | | // Clamp to left/right edge of the frame |
584 | 0 | const int sample_x = clamp(ix + m, 0, width - 1); |
585 | |
|
586 | 0 | sum += ref[iy * stride + sample_x] * coeffs[m]; |
587 | 0 | } |
588 | 0 | sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz); |
589 | 0 | assert(0 <= sum && sum < (1 << max_bits_horiz)); |
590 | 0 | tmp[(k + 7) * 8 + (l + 4)] = sum; |
591 | 0 | sx += alpha; |
592 | 0 | } |
593 | 0 | } |
594 | | |
595 | | // Vertical filter |
596 | 0 | for (int k = -4; k < AOMMIN(4, p_row + p_height - i - 4); ++k) { |
597 | 0 | int sy = sy4 + delta * (k + 4); |
598 | 0 | for (int l = -4; l < AOMMIN(4, p_col + p_width - j - 4); ++l) { |
599 | | // At this point, sy = sy4 + gamma * l + delta * k |
600 | 0 | const int offs = ROUND_POWER_OF_TWO(sy, WARPEDDIFF_PREC_BITS) + |
601 | 0 | WARPEDPIXEL_PREC_SHIFTS; |
602 | 0 | assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3); |
603 | 0 | const WarpedFilterCoeff *coeffs = av1_warped_filter[offs]; |
604 | |
|
605 | 0 | int32_t sum = 1 << offset_bits_vert; |
606 | 0 | for (int m = 0; m < 8; ++m) { |
607 | 0 | sum += tmp[(k + m + 4) * 8 + (l + 4)] * coeffs[m]; |
608 | 0 | } |
609 | |
|
610 | 0 | if (conv_params->is_compound) { |
611 | 0 | CONV_BUF_TYPE *p = |
612 | 0 | &conv_params |
613 | 0 | ->dst[(i - p_row + k + 4) * conv_params->dst_stride + |
614 | 0 | (j - p_col + l + 4)]; |
615 | 0 | sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert); |
616 | 0 | if (conv_params->do_average) { |
617 | 0 | uint8_t *dst8 = |
618 | 0 | &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)]; |
619 | 0 | int32_t tmp32 = *p; |
620 | 0 | if (conv_params->use_dist_wtd_comp_avg) { |
621 | 0 | tmp32 = tmp32 * conv_params->fwd_offset + |
622 | 0 | sum * conv_params->bck_offset; |
623 | 0 | tmp32 = tmp32 >> DIST_PRECISION_BITS; |
624 | 0 | } else { |
625 | 0 | tmp32 += sum; |
626 | 0 | tmp32 = tmp32 >> 1; |
627 | 0 | } |
628 | 0 | tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) - |
629 | 0 | (1 << (offset_bits - conv_params->round_1 - 1)); |
630 | 0 | *dst8 = clip_pixel(ROUND_POWER_OF_TWO(tmp32, round_bits)); |
631 | 0 | } else { |
632 | 0 | *p = sum; |
633 | 0 | } |
634 | 0 | } else { |
635 | 0 | uint8_t *p = |
636 | 0 | &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)]; |
637 | 0 | sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert); |
638 | 0 | assert(0 <= sum && sum < (1 << (bd + 2))); |
639 | 0 | *p = clip_pixel(sum - (1 << (bd - 1)) - (1 << bd)); |
640 | 0 | } |
641 | 0 | sy += gamma; |
642 | 0 | } |
643 | 0 | } |
644 | 0 | } |
645 | 0 | } |
646 | 0 | } |
647 | | |
648 | | void warp_plane(WarpedMotionParams *wm, const uint8_t *const ref, int width, |
649 | | int height, int stride, uint8_t *pred, int p_col, int p_row, |
650 | | int p_width, int p_height, int p_stride, int subsampling_x, |
651 | 238k | int subsampling_y, ConvolveParams *conv_params) { |
652 | 238k | const int32_t *const mat = wm->wmmat; |
653 | 238k | const int16_t alpha = wm->alpha; |
654 | 238k | const int16_t beta = wm->beta; |
655 | 238k | const int16_t gamma = wm->gamma; |
656 | 238k | const int16_t delta = wm->delta; |
657 | 238k | av1_warp_affine(mat, ref, width, height, stride, pred, p_col, p_row, p_width, |
658 | 238k | p_height, p_stride, subsampling_x, subsampling_y, conv_params, |
659 | 238k | alpha, beta, gamma, delta); |
660 | 238k | } |
661 | | |
662 | | void av1_warp_plane(WarpedMotionParams *wm, int use_hbd, int bd, |
663 | | const uint8_t *ref, int width, int height, int stride, |
664 | | uint8_t *pred, int p_col, int p_row, int p_width, |
665 | | int p_height, int p_stride, int subsampling_x, |
666 | 502k | int subsampling_y, ConvolveParams *conv_params) { |
667 | 502k | #if CONFIG_AV1_HIGHBITDEPTH |
668 | 502k | if (use_hbd) |
669 | 264k | highbd_warp_plane(wm, CONVERT_TO_SHORTPTR(ref), width, height, stride, |
670 | 264k | CONVERT_TO_SHORTPTR(pred), p_col, p_row, p_width, |
671 | 264k | p_height, p_stride, subsampling_x, subsampling_y, bd, |
672 | 264k | conv_params); |
673 | 238k | else |
674 | 238k | warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width, |
675 | 238k | p_height, p_stride, subsampling_x, subsampling_y, conv_params); |
676 | | #else |
677 | | (void)use_hbd; |
678 | | (void)bd; |
679 | | warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width, |
680 | | p_height, p_stride, subsampling_x, subsampling_y, conv_params); |
681 | | #endif |
682 | 502k | } |
683 | | |
684 | 1.66M | #define LS_MV_MAX 256 // max mv in 1/8-pel |
685 | | // Use LS_STEP = 8 so that 2 less bits needed for A, Bx, By. |
686 | 11.1M | #define LS_STEP 8 |
687 | | |
688 | | // Assuming LS_MV_MAX is < MAX_SB_SIZE * 8, |
689 | | // the precision needed is: |
690 | | // (MAX_SB_SIZE_LOG2 + 3) [for sx * sx magnitude] + |
691 | | // (MAX_SB_SIZE_LOG2 + 4) [for sx * dx magnitude] + |
692 | | // 1 [for sign] + |
693 | | // LEAST_SQUARES_SAMPLES_MAX_BITS |
694 | | // [for adding up to LEAST_SQUARES_SAMPLES_MAX samples] |
695 | | // The value is 23 |
696 | | #define LS_MAT_RANGE_BITS \ |
697 | | ((MAX_SB_SIZE_LOG2 + 4) * 2 + LEAST_SQUARES_SAMPLES_MAX_BITS) |
698 | | |
699 | | // Bit-depth reduction from the full-range |
700 | 3.72M | #define LS_MAT_DOWN_BITS 2 |
701 | | |
702 | | // bits range of A, Bx and By after downshifting |
703 | | #define LS_MAT_BITS (LS_MAT_RANGE_BITS - LS_MAT_DOWN_BITS) |
704 | | #define LS_MAT_MIN (-(1 << (LS_MAT_BITS - 1))) |
705 | | #define LS_MAT_MAX ((1 << (LS_MAT_BITS - 1)) - 1) |
706 | | |
707 | | // By setting LS_STEP = 8, the least 2 bits of every elements in A, Bx, By are |
708 | | // 0. So, we can reduce LS_MAT_RANGE_BITS(2) bits here. |
709 | | #define LS_SQUARE(a) \ |
710 | 1.06M | (((a) * (a)*4 + (a)*4 * LS_STEP + LS_STEP * LS_STEP * 2) >> \ |
711 | 1.06M | (2 + LS_MAT_DOWN_BITS)) |
712 | | #define LS_PRODUCT1(a, b) \ |
713 | 1.59M | (((a) * (b)*4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP) >> \ |
714 | 1.59M | (2 + LS_MAT_DOWN_BITS)) |
715 | | #define LS_PRODUCT2(a, b) \ |
716 | 1.06M | (((a) * (b)*4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP * 2) >> \ |
717 | 1.06M | (2 + LS_MAT_DOWN_BITS)) |
718 | | |
719 | | #define USE_LIMITED_PREC_MULT 0 |
720 | | |
721 | | #if USE_LIMITED_PREC_MULT |
722 | | |
723 | | #define MUL_PREC_BITS 16 |
724 | | static uint16_t resolve_multiplier_64(uint64_t D, int16_t *shift) { |
725 | | int msb = 0; |
726 | | uint16_t mult = 0; |
727 | | *shift = 0; |
728 | | if (D != 0) { |
729 | | msb = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32 |
730 | | : get_msb((unsigned int)D)); |
731 | | if (msb >= MUL_PREC_BITS) { |
732 | | mult = (uint16_t)ROUND_POWER_OF_TWO_64(D, msb + 1 - MUL_PREC_BITS); |
733 | | *shift = msb + 1 - MUL_PREC_BITS; |
734 | | } else { |
735 | | mult = (uint16_t)D; |
736 | | *shift = 0; |
737 | | } |
738 | | } |
739 | | return mult; |
740 | | } |
741 | | |
742 | | static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) { |
743 | | int32_t ret; |
744 | | int16_t mshift; |
745 | | uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift); |
746 | | int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1); |
747 | | shift -= mshift; |
748 | | if (shift > 0) { |
749 | | return (int32_t)clamp(ROUND_POWER_OF_TWO_SIGNED(v, shift), |
750 | | -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, |
751 | | WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); |
752 | | } else { |
753 | | return (int32_t)clamp(v * (1 << (-shift)), |
754 | | -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, |
755 | | WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); |
756 | | } |
757 | | return ret; |
758 | | } |
759 | | |
760 | | static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) { |
761 | | int16_t mshift; |
762 | | uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift); |
763 | | int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1); |
764 | | shift -= mshift; |
765 | | if (shift > 0) { |
766 | | return (int32_t)clamp( |
767 | | ROUND_POWER_OF_TWO_SIGNED(v, shift), |
768 | | (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, |
769 | | (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); |
770 | | } else { |
771 | | return (int32_t)clamp( |
772 | | v * (1 << (-shift)), |
773 | | (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, |
774 | | (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); |
775 | | } |
776 | | } |
777 | | |
778 | | #else |
779 | | |
780 | 552k | static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) { |
781 | 552k | int64_t v = Px * (int64_t)iDet; |
782 | 552k | return (int32_t)clamp64(ROUND_POWER_OF_TWO_SIGNED_64(v, shift), |
783 | 552k | -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, |
784 | 552k | WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); |
785 | 552k | } |
786 | | |
787 | 552k | static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) { |
788 | 552k | int64_t v = Px * (int64_t)iDet; |
789 | 552k | return (int32_t)clamp64( |
790 | 552k | ROUND_POWER_OF_TWO_SIGNED_64(v, shift), |
791 | 552k | (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1, |
792 | 552k | (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1); |
793 | 552k | } |
794 | | #endif // USE_LIMITED_PREC_MULT |
795 | | |
796 | | static int find_affine_int(int np, const int *pts1, const int *pts2, |
797 | | BLOCK_SIZE bsize, int mvy, int mvx, |
798 | 305k | WarpedMotionParams *wm, int mi_row, int mi_col) { |
799 | 305k | int32_t A[2][2] = { { 0, 0 }, { 0, 0 } }; |
800 | 305k | int32_t Bx[2] = { 0, 0 }; |
801 | 305k | int32_t By[2] = { 0, 0 }; |
802 | | |
803 | 305k | const int bw = block_size_wide[bsize]; |
804 | 305k | const int bh = block_size_high[bsize]; |
805 | 305k | const int rsuy = bh / 2 - 1; |
806 | 305k | const int rsux = bw / 2 - 1; |
807 | 305k | const int suy = rsuy * 8; |
808 | 305k | const int sux = rsux * 8; |
809 | 305k | const int duy = suy + mvy; |
810 | 305k | const int dux = sux + mvx; |
811 | | |
812 | | // Assume the center pixel of the block has exactly the same motion vector |
813 | | // as transmitted for the block. First shift the origin of the source |
814 | | // points to the block center, and the origin of the destination points to |
815 | | // the block center added to the motion vector transmitted. |
816 | | // Let (xi, yi) denote the source points and (xi', yi') denote destination |
817 | | // points after origin shfifting, for i = 0, 1, 2, .... n-1. |
818 | | // Then if P = [x0, y0, |
819 | | // x1, y1 |
820 | | // x2, y1, |
821 | | // .... |
822 | | // ] |
823 | | // q = [x0', x1', x2', ... ]' |
824 | | // r = [y0', y1', y2', ... ]' |
825 | | // the least squares problems that need to be solved are: |
826 | | // [h1, h2]' = inv(P'P)P'q and |
827 | | // [h3, h4]' = inv(P'P)P'r |
828 | | // where the affine transformation is given by: |
829 | | // x' = h1.x + h2.y |
830 | | // y' = h3.x + h4.y |
831 | | // |
832 | | // The loop below computes: A = P'P, Bx = P'q, By = P'r |
833 | | // We need to just compute inv(A).Bx and inv(A).By for the solutions. |
834 | | // Contribution from neighbor block |
835 | 867k | for (int i = 0; i < np; i++) { |
836 | 561k | const int dx = pts2[i * 2] - dux; |
837 | 561k | const int dy = pts2[i * 2 + 1] - duy; |
838 | 561k | const int sx = pts1[i * 2] - sux; |
839 | 561k | const int sy = pts1[i * 2 + 1] - suy; |
840 | | // (TODO)yunqing: This comparison wouldn't be necessary if the sample |
841 | | // selection is done in find_samples(). Also, global offset can be removed |
842 | | // while collecting samples. |
843 | 561k | if (abs(sx - dx) < LS_MV_MAX && abs(sy - dy) < LS_MV_MAX) { |
844 | 532k | A[0][0] += LS_SQUARE(sx); |
845 | 532k | A[0][1] += LS_PRODUCT1(sx, sy); |
846 | 532k | A[1][1] += LS_SQUARE(sy); |
847 | 532k | Bx[0] += LS_PRODUCT2(sx, dx); |
848 | 532k | Bx[1] += LS_PRODUCT1(sy, dx); |
849 | 532k | By[0] += LS_PRODUCT1(sx, dy); |
850 | 532k | By[1] += LS_PRODUCT2(sy, dy); |
851 | 532k | } |
852 | 561k | } |
853 | | |
854 | | // Just for debugging, and can be removed later. |
855 | 305k | assert(A[0][0] >= LS_MAT_MIN && A[0][0] <= LS_MAT_MAX); |
856 | 305k | assert(A[0][1] >= LS_MAT_MIN && A[0][1] <= LS_MAT_MAX); |
857 | 305k | assert(A[1][1] >= LS_MAT_MIN && A[1][1] <= LS_MAT_MAX); |
858 | 305k | assert(Bx[0] >= LS_MAT_MIN && Bx[0] <= LS_MAT_MAX); |
859 | 305k | assert(Bx[1] >= LS_MAT_MIN && Bx[1] <= LS_MAT_MAX); |
860 | 305k | assert(By[0] >= LS_MAT_MIN && By[0] <= LS_MAT_MAX); |
861 | 305k | assert(By[1] >= LS_MAT_MIN && By[1] <= LS_MAT_MAX); |
862 | | |
863 | | // Compute Determinant of A |
864 | 305k | const int64_t Det = (int64_t)A[0][0] * A[1][1] - (int64_t)A[0][1] * A[0][1]; |
865 | 305k | if (Det == 0) return 1; |
866 | | |
867 | 276k | int16_t shift; |
868 | 276k | int16_t iDet = resolve_divisor_64(llabs(Det), &shift) * (Det < 0 ? -1 : 1); |
869 | 276k | shift -= WARPEDMODEL_PREC_BITS; |
870 | 276k | if (shift < 0) { |
871 | 0 | iDet <<= (-shift); |
872 | 0 | shift = 0; |
873 | 0 | } |
874 | | |
875 | 276k | int64_t Px[2], Py[2]; |
876 | | // These divided by the Det, are the least squares solutions |
877 | 276k | Px[0] = (int64_t)A[1][1] * Bx[0] - (int64_t)A[0][1] * Bx[1]; |
878 | 276k | Px[1] = -(int64_t)A[0][1] * Bx[0] + (int64_t)A[0][0] * Bx[1]; |
879 | 276k | Py[0] = (int64_t)A[1][1] * By[0] - (int64_t)A[0][1] * By[1]; |
880 | 276k | Py[1] = -(int64_t)A[0][1] * By[0] + (int64_t)A[0][0] * By[1]; |
881 | | |
882 | 276k | wm->wmmat[2] = get_mult_shift_diag(Px[0], iDet, shift); |
883 | 276k | wm->wmmat[3] = get_mult_shift_ndiag(Px[1], iDet, shift); |
884 | 276k | wm->wmmat[4] = get_mult_shift_ndiag(Py[0], iDet, shift); |
885 | 276k | wm->wmmat[5] = get_mult_shift_diag(Py[1], iDet, shift); |
886 | | |
887 | 276k | const int isuy = (mi_row * MI_SIZE + rsuy); |
888 | 276k | const int isux = (mi_col * MI_SIZE + rsux); |
889 | | // Note: In the vx, vy expressions below, the max value of each of the |
890 | | // 2nd and 3rd terms are (2^16 - 1) * (2^13 - 1). That leaves enough room |
891 | | // for the first term so that the overall sum in the worst case fits |
892 | | // within 32 bits overall. |
893 | 276k | const int32_t vx = mvx * (1 << (WARPEDMODEL_PREC_BITS - 3)) - |
894 | 276k | (isux * (wm->wmmat[2] - (1 << WARPEDMODEL_PREC_BITS)) + |
895 | 276k | isuy * wm->wmmat[3]); |
896 | 276k | const int32_t vy = mvy * (1 << (WARPEDMODEL_PREC_BITS - 3)) - |
897 | 276k | (isux * wm->wmmat[4] + |
898 | 276k | isuy * (wm->wmmat[5] - (1 << WARPEDMODEL_PREC_BITS))); |
899 | 276k | wm->wmmat[0] = |
900 | 276k | clamp(vx, -WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1); |
901 | 276k | wm->wmmat[1] = |
902 | 276k | clamp(vy, -WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1); |
903 | 276k | return 0; |
904 | 305k | } |
905 | | |
906 | | int av1_find_projection(int np, const int *pts1, const int *pts2, |
907 | | BLOCK_SIZE bsize, int mvy, int mvx, |
908 | 305k | WarpedMotionParams *wm_params, int mi_row, int mi_col) { |
909 | 305k | assert(wm_params->wmtype == AFFINE); |
910 | | |
911 | 305k | if (find_affine_int(np, pts1, pts2, bsize, mvy, mvx, wm_params, mi_row, |
912 | 305k | mi_col)) |
913 | 29.7k | return 1; |
914 | | |
915 | | // check compatibility with the fast warp filter |
916 | 276k | if (!av1_get_shear_params(wm_params)) return 1; |
917 | | |
918 | 257k | return 0; |
919 | 276k | } |