Coverage Report

Created: 2025-07-23 06:32

/src/aom/av1/common/restoration.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 *
11
 */
12
13
#include <math.h>
14
#include <stddef.h>
15
16
#include "config/aom_config.h"
17
#include "config/aom_scale_rtcd.h"
18
19
#include "aom/internal/aom_codec_internal.h"
20
#include "aom_mem/aom_mem.h"
21
#include "aom_dsp/aom_dsp_common.h"
22
#include "aom_mem/aom_mem.h"
23
#include "aom_ports/mem.h"
24
#include "aom_util/aom_pthread.h"
25
26
#include "av1/common/av1_common_int.h"
27
#include "av1/common/convolve.h"
28
#include "av1/common/enums.h"
29
#include "av1/common/resize.h"
30
#include "av1/common/restoration.h"
31
#include "av1/common/thread_common.h"
32
33
// The 's' values are calculated based on original 'r' and 'e' values in the
34
// spec using GenSgrprojVtable().
35
// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid).
36
const sgr_params_type av1_sgr_params[SGRPROJ_PARAMS] = {
37
  { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } },
38
  { { 2, 1 }, { 93, 1618 } },  { { 2, 1 }, { 80, 1438 } },
39
  { { 2, 1 }, { 70, 1295 } },  { { 2, 1 }, { 58, 1177 } },
40
  { { 2, 1 }, { 47, 1079 } },  { { 2, 1 }, { 37, 996 } },
41
  { { 2, 1 }, { 30, 925 } },   { { 2, 1 }, { 25, 863 } },
42
  { { 0, 1 }, { -1, 2589 } },  { { 0, 1 }, { -1, 1618 } },
43
  { { 0, 1 }, { -1, 1177 } },  { { 0, 1 }, { -1, 925 } },
44
  { { 2, 0 }, { 56, -1 } },    { { 2, 0 }, { 22, -1 } },
45
};
46
47
void av1_get_upsampled_plane_size(const AV1_COMMON *cm, int is_uv, int *plane_w,
48
252k
                                  int *plane_h) {
49
252k
  int ss_x = is_uv && cm->seq_params->subsampling_x;
50
252k
  int ss_y = is_uv && cm->seq_params->subsampling_y;
51
252k
  *plane_w = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
52
252k
  *plane_h = ROUND_POWER_OF_TWO(cm->height, ss_y);
53
252k
}
54
55
// Count horizontal or vertical units in a plane (use a width or height for
56
// plane_size, respectively). We basically want to divide the plane size by the
57
// size of a restoration unit. Rather than rounding up unconditionally as you
58
// might expect, we round to nearest, which models the way a right or bottom
59
// restoration unit can extend to up to 150% its normal width or height.
60
//
61
// The max with 1 is to deal with small frames, which may be smaller than
62
// half of an LR unit in size.
63
238k
int av1_lr_count_units(int unit_size, int plane_size) {
64
238k
  return AOMMAX((plane_size + (unit_size >> 1)) / unit_size, 1);
65
238k
}
66
67
void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
68
86.1k
                                  int is_uv) {
69
86.1k
  int plane_w, plane_h;
70
86.1k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
71
72
86.1k
  const int unit_size = rsi->restoration_unit_size;
73
86.1k
  const int horz_units = av1_lr_count_units(unit_size, plane_w);
74
86.1k
  const int vert_units = av1_lr_count_units(unit_size, plane_h);
75
76
86.1k
  rsi->num_rest_units = horz_units * vert_units;
77
86.1k
  rsi->horz_units = horz_units;
78
86.1k
  rsi->vert_units = vert_units;
79
80
86.1k
  aom_free(rsi->unit_info);
81
86.1k
  CHECK_MEM_ERROR(cm, rsi->unit_info,
82
86.1k
                  (RestorationUnitInfo *)aom_memalign(
83
86.1k
                      16, sizeof(*rsi->unit_info) * rsi->num_rest_units));
84
86.1k
}
85
86
52.0k
void av1_free_restoration_struct(RestorationInfo *rst_info) {
87
52.0k
  aom_free(rst_info->unit_info);
88
52.0k
  rst_info->unit_info = NULL;
89
52.0k
}
90
91
#if 0
92
// Pair of values for each sgrproj parameter:
93
// Index 0 corresponds to r[0], e[0]
94
// Index 1 corresponds to r[1], e[1]
95
int sgrproj_mtable[SGRPROJ_PARAMS][2];
96
97
static void GenSgrprojVtable(void) {
98
  for (int i = 0; i < SGRPROJ_PARAMS; ++i) {
99
    const sgr_params_type *const params = &av1_sgr_params[i];
100
    for (int j = 0; j < 2; ++j) {
101
      const int e = params->e[j];
102
      const int r = params->r[j];
103
      if (r == 0) {                 // filter is disabled
104
        sgrproj_mtable[i][j] = -1;  // mark invalid
105
      } else {                      // filter is enabled
106
        const int n = (2 * r + 1) * (2 * r + 1);
107
        const int n2e = n * n * e;
108
        assert(n2e != 0);
109
        sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
110
      }
111
    }
112
  }
113
}
114
#endif
115
116
17.3k
void av1_loop_restoration_precal(void) {
117
#if 0
118
  GenSgrprojVtable();
119
#endif
120
17.3k
}
121
122
static void extend_frame_lowbd(uint8_t *data, int width, int height,
123
                               ptrdiff_t stride, int border_horz,
124
21.1k
                               int border_vert) {
125
21.1k
  uint8_t *data_p;
126
21.1k
  int i;
127
2.43M
  for (i = 0; i < height; ++i) {
128
2.41M
    data_p = data + i * stride;
129
2.41M
    memset(data_p - border_horz, data_p[0], border_horz);
130
2.41M
    memset(data_p + width, data_p[width - 1], border_horz);
131
2.41M
  }
132
21.1k
  data_p = data - border_horz;
133
84.6k
  for (i = -border_vert; i < 0; ++i) {
134
63.4k
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
135
63.4k
  }
136
84.6k
  for (i = height; i < height + border_vert; ++i) {
137
63.4k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
138
63.4k
           width + 2 * border_horz);
139
63.4k
  }
140
21.1k
}
141
142
#if CONFIG_AV1_HIGHBITDEPTH
143
static void extend_frame_highbd(uint16_t *data, int width, int height,
144
                                ptrdiff_t stride, int border_horz,
145
25.6k
                                int border_vert) {
146
25.6k
  uint16_t *data_p;
147
25.6k
  int i, j;
148
3.65M
  for (i = 0; i < height; ++i) {
149
3.63M
    data_p = data + i * stride;
150
14.5M
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
151
14.5M
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
152
3.63M
  }
153
25.6k
  data_p = data - border_horz;
154
102k
  for (i = -border_vert; i < 0; ++i) {
155
76.8k
    memcpy(data_p + i * stride, data_p,
156
76.8k
           (width + 2 * border_horz) * sizeof(uint16_t));
157
76.8k
  }
158
102k
  for (i = height; i < height + border_vert; ++i) {
159
76.8k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
160
76.8k
           (width + 2 * border_horz) * sizeof(uint16_t));
161
76.8k
  }
162
25.6k
}
163
164
static void copy_rest_unit_highbd(int width, int height, const uint16_t *src,
165
                                  int src_stride, uint16_t *dst,
166
15.0k
                                  int dst_stride) {
167
1.88M
  for (int i = 0; i < height; ++i)
168
1.87M
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
169
15.0k
}
170
#endif
171
172
void av1_extend_frame(uint8_t *data, int width, int height, int stride,
173
46.7k
                      int border_horz, int border_vert, int highbd) {
174
46.7k
#if CONFIG_AV1_HIGHBITDEPTH
175
46.7k
  if (highbd) {
176
25.6k
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
177
25.6k
                        border_horz, border_vert);
178
25.6k
    return;
179
25.6k
  }
180
21.1k
#endif
181
21.1k
  (void)highbd;
182
21.1k
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
183
21.1k
}
184
185
static void copy_rest_unit_lowbd(int width, int height, const uint8_t *src,
186
27.6k
                                 int src_stride, uint8_t *dst, int dst_stride) {
187
2.06M
  for (int i = 0; i < height; ++i)
188
2.04M
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
189
27.6k
}
190
191
static void copy_rest_unit(int width, int height, const uint8_t *src,
192
                           int src_stride, uint8_t *dst, int dst_stride,
193
42.7k
                           int highbd) {
194
42.7k
#if CONFIG_AV1_HIGHBITDEPTH
195
42.7k
  if (highbd) {
196
15.0k
    copy_rest_unit_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
197
15.0k
                          CONVERT_TO_SHORTPTR(dst), dst_stride);
198
15.0k
    return;
199
15.0k
  }
200
27.6k
#endif
201
27.6k
  (void)highbd;
202
27.6k
  copy_rest_unit_lowbd(width, height, src, src_stride, dst, dst_stride);
203
27.6k
}
204
205
3.62M
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))
206
207
// With striped loop restoration, the filtering for each 64-pixel stripe gets
208
// most of its input from the output of CDEF (stored in data8), but we need to
209
// fill out a border of 3 pixels above/below the stripe according to the
210
// following rules:
211
//
212
// * At the top and bottom of the frame, we copy the outermost row of CDEF
213
//   pixels three times. This extension is done by a call to av1_extend_frame()
214
//   at the start of the loop restoration process, so the value of
215
//   copy_above/copy_below doesn't strictly matter.
216
//
217
// * All other boundaries are stripe boundaries within the frame. In that case,
218
//   we take 2 rows of deblocked pixels and extend them to 3 rows of context.
219
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
220
                                     int plane_w, int plane_h, int ss_y,
221
222k
                                     int *copy_above, int *copy_below) {
222
222k
  (void)plane_w;
223
224
222k
  *copy_above = 1;
225
222k
  *copy_below = 1;
226
227
222k
  const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
228
222k
  const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
229
230
222k
  const int first_stripe_in_plane = (limits->v_start == 0);
231
222k
  const int this_stripe_height =
232
222k
      full_stripe_height - (first_stripe_in_plane ? runit_offset : 0);
233
222k
  const int last_stripe_in_plane =
234
222k
      (limits->v_start + this_stripe_height >= plane_h);
235
236
222k
  if (first_stripe_in_plane) *copy_above = 0;
237
222k
  if (last_stripe_in_plane) *copy_below = 0;
238
222k
}
239
240
// Overwrite the border pixels around a processing stripe so that the conditions
241
// listed above get_stripe_boundary_info() are preserved.
242
// We save the pixels which get overwritten into a temporary buffer, so that
243
// they can be restored by restore_processing_stripe_boundary() after we've
244
// processed the stripe.
245
//
246
// limits gives the rectangular limits of the remaining stripes for the current
247
// restoration unit. rsb is the stored stripe boundaries (taken from either
248
// deblock or CDEF output as necessary).
249
static void setup_processing_stripe_boundary(
250
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
251
    int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride,
252
222k
    RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) {
253
  // Offsets within the line buffers. The buffer logically starts at column
254
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
255
  // has column x0 in the buffer.
256
222k
  const int buf_stride = rsb->stripe_boundary_stride;
257
222k
  const int buf_x0_off = limits->h_start;
258
222k
  const int line_width =
259
222k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
260
222k
  const int line_size = line_width << use_highbd;
261
262
222k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
263
264
  // Replace RESTORATION_BORDER pixels above the top of the stripe
265
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
266
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
267
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
268
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
269
222k
  if (!opt) {
270
202k
    if (copy_above) {
271
174k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
272
273
696k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
274
521k
        const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
275
521k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
276
521k
        const uint8_t *buf =
277
521k
            rsb->stripe_boundary_above + (buf_off << use_highbd);
278
521k
        uint8_t *dst8 = data8_tl + i * data_stride;
279
        // Save old pixels, then replace with data from stripe_boundary_above
280
521k
        memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
281
521k
               REAL_PTR(use_highbd, dst8), line_size);
282
521k
        memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
283
521k
      }
284
174k
    }
285
286
    // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
287
    // The second buffer row is repeated, so src_row gets the values 0, 1, 1
288
    // for i = 0, 1, 2.
289
202k
    if (copy_below) {
290
173k
      const int stripe_end = limits->v_start + h;
291
173k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
292
293
693k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
294
519k
        const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
295
519k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
296
519k
        const uint8_t *src =
297
519k
            rsb->stripe_boundary_below + (buf_off << use_highbd);
298
299
519k
        uint8_t *dst8 = data8_bl + i * data_stride;
300
        // Save old pixels, then replace with data from stripe_boundary_below
301
519k
        memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
302
519k
        memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
303
519k
      }
304
173k
    }
305
202k
  } else {
306
19.4k
    if (copy_above) {
307
12.5k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
308
309
      // Only save and overwrite i=-RESTORATION_BORDER line.
310
12.5k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
311
      // Save old pixels, then replace with data from stripe_boundary_above
312
12.5k
      memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size);
313
12.5k
      memcpy(REAL_PTR(use_highbd, dst8),
314
12.5k
             REAL_PTR(use_highbd,
315
12.5k
                      data8_tl + (-RESTORATION_BORDER + 1) * data_stride),
316
12.5k
             line_size);
317
12.5k
    }
318
319
19.4k
    if (copy_below) {
320
12.5k
      const int stripe_end = limits->v_start + h;
321
12.5k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
322
323
      // Only save and overwrite i=2 line.
324
12.5k
      uint8_t *dst8 = data8_bl + 2 * data_stride;
325
      // Save old pixels, then replace with data from stripe_boundary_below
326
12.5k
      memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size);
327
12.5k
      memcpy(REAL_PTR(use_highbd, dst8),
328
12.5k
             REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size);
329
12.5k
    }
330
19.4k
  }
331
222k
}
332
333
// Once a processing stripe is finished, this function sets the boundary
334
// pixels which were overwritten by setup_processing_stripe_boundary()
335
// back to their original values
336
static void restore_processing_stripe_boundary(
337
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
338
    int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above,
339
221k
    int copy_below, int opt) {
340
221k
  const int line_width =
341
221k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
342
221k
  const int line_size = line_width << use_highbd;
343
344
221k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
345
346
221k
  if (!opt) {
347
202k
    if (copy_above) {
348
173k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
349
695k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
350
521k
        uint8_t *dst8 = data8_tl + i * data_stride;
351
521k
        memcpy(REAL_PTR(use_highbd, dst8),
352
521k
               rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
353
521k
      }
354
173k
    }
355
356
202k
    if (copy_below) {
357
173k
      const int stripe_bottom = limits->v_start + h;
358
173k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
359
360
693k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
361
520k
        if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
362
363
520k
        uint8_t *dst8 = data8_bl + i * data_stride;
364
520k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
365
520k
      }
366
173k
    }
367
202k
  } else {
368
19.4k
    if (copy_above) {
369
12.5k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
370
371
      // Only restore i=-RESTORATION_BORDER line.
372
12.5k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
373
12.5k
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size);
374
12.5k
    }
375
376
19.4k
    if (copy_below) {
377
12.5k
      const int stripe_bottom = limits->v_start + h;
378
12.5k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
379
380
      // Only restore i=2 line.
381
12.5k
      if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) {
382
12.5k
        uint8_t *dst8 = data8_bl + 2 * data_stride;
383
12.5k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size);
384
12.5k
      }
385
12.5k
    }
386
19.4k
  }
387
221k
}
388
389
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
390
                                 int stripe_width, int stripe_height,
391
                                 int procunit_width, const uint8_t *src,
392
                                 int src_stride, uint8_t *dst, int dst_stride,
393
                                 int32_t *tmpbuf, int bit_depth,
394
39.5k
                                 struct aom_internal_error_info *error_info) {
395
39.5k
  (void)tmpbuf;
396
39.5k
  (void)bit_depth;
397
39.5k
  (void)error_info;
398
39.5k
  assert(bit_depth == 8);
399
39.5k
  const WienerConvolveParams conv_params = get_conv_params_wiener(8);
400
401
303k
  for (int j = 0; j < stripe_width; j += procunit_width) {
402
264k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
403
264k
    const uint8_t *src_p = src + j;
404
264k
    uint8_t *dst_p = dst + j;
405
264k
    av1_wiener_convolve_add_src(
406
264k
        src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16,
407
264k
        rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params);
408
264k
  }
409
39.5k
}
410
411
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
412
   over the input. The window is of size (2r + 1)x(2r + 1), and we
413
   specialize to r = 1, 2, 3. A default function is used for r > 3.
414
415
   Each loop follows the same format: We keep a window's worth of input
416
   in individual variables and select data out of that as appropriate.
417
*/
418
static void boxsum1(int32_t *src, int width, int height, int src_stride,
419
0
                    int sqr, int32_t *dst, int dst_stride) {
420
0
  int i, j, a, b, c;
421
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
422
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
423
424
  // Vertical sum over 3-pixel regions, from src into dst.
425
0
  if (!sqr) {
426
0
    for (j = 0; j < width; ++j) {
427
0
      a = src[j];
428
0
      b = src[src_stride + j];
429
0
      c = src[2 * src_stride + j];
430
431
0
      dst[j] = a + b;
432
0
      for (i = 1; i < height - 2; ++i) {
433
        // Loop invariant: At the start of each iteration,
434
        // a = src[(i - 1) * src_stride + j]
435
        // b = src[(i    ) * src_stride + j]
436
        // c = src[(i + 1) * src_stride + j]
437
0
        dst[i * dst_stride + j] = a + b + c;
438
0
        a = b;
439
0
        b = c;
440
0
        c = src[(i + 2) * src_stride + j];
441
0
      }
442
0
      dst[i * dst_stride + j] = a + b + c;
443
0
      dst[(i + 1) * dst_stride + j] = b + c;
444
0
    }
445
0
  } else {
446
0
    for (j = 0; j < width; ++j) {
447
0
      a = src[j] * src[j];
448
0
      b = src[src_stride + j] * src[src_stride + j];
449
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
450
451
0
      dst[j] = a + b;
452
0
      for (i = 1; i < height - 2; ++i) {
453
0
        dst[i * dst_stride + j] = a + b + c;
454
0
        a = b;
455
0
        b = c;
456
0
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
457
0
      }
458
0
      dst[i * dst_stride + j] = a + b + c;
459
0
      dst[(i + 1) * dst_stride + j] = b + c;
460
0
    }
461
0
  }
462
463
  // Horizontal sum over 3-pixel regions of dst
464
0
  for (i = 0; i < height; ++i) {
465
0
    a = dst[i * dst_stride];
466
0
    b = dst[i * dst_stride + 1];
467
0
    c = dst[i * dst_stride + 2];
468
469
0
    dst[i * dst_stride] = a + b;
470
0
    for (j = 1; j < width - 2; ++j) {
471
      // Loop invariant: At the start of each iteration,
472
      // a = src[i * src_stride + (j - 1)]
473
      // b = src[i * src_stride + (j    )]
474
      // c = src[i * src_stride + (j + 1)]
475
0
      dst[i * dst_stride + j] = a + b + c;
476
0
      a = b;
477
0
      b = c;
478
0
      c = dst[i * dst_stride + (j + 2)];
479
0
    }
480
0
    dst[i * dst_stride + j] = a + b + c;
481
0
    dst[i * dst_stride + (j + 1)] = b + c;
482
0
  }
483
0
}
484
485
static void boxsum2(int32_t *src, int width, int height, int src_stride,
486
0
                    int sqr, int32_t *dst, int dst_stride) {
487
0
  int i, j, a, b, c, d, e;
488
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
489
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
490
491
  // Vertical sum over 5-pixel regions, from src into dst.
492
0
  if (!sqr) {
493
0
    for (j = 0; j < width; ++j) {
494
0
      a = src[j];
495
0
      b = src[src_stride + j];
496
0
      c = src[2 * src_stride + j];
497
0
      d = src[3 * src_stride + j];
498
0
      e = src[4 * src_stride + j];
499
500
0
      dst[j] = a + b + c;
501
0
      dst[dst_stride + j] = a + b + c + d;
502
0
      for (i = 2; i < height - 3; ++i) {
503
        // Loop invariant: At the start of each iteration,
504
        // a = src[(i - 2) * src_stride + j]
505
        // b = src[(i - 1) * src_stride + j]
506
        // c = src[(i    ) * src_stride + j]
507
        // d = src[(i + 1) * src_stride + j]
508
        // e = src[(i + 2) * src_stride + j]
509
0
        dst[i * dst_stride + j] = a + b + c + d + e;
510
0
        a = b;
511
0
        b = c;
512
0
        c = d;
513
0
        d = e;
514
0
        e = src[(i + 3) * src_stride + j];
515
0
      }
516
0
      dst[i * dst_stride + j] = a + b + c + d + e;
517
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
518
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
519
0
    }
520
0
  } else {
521
0
    for (j = 0; j < width; ++j) {
522
0
      a = src[j] * src[j];
523
0
      b = src[src_stride + j] * src[src_stride + j];
524
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
525
0
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
526
0
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
527
528
0
      dst[j] = a + b + c;
529
0
      dst[dst_stride + j] = a + b + c + d;
530
0
      for (i = 2; i < height - 3; ++i) {
531
0
        dst[i * dst_stride + j] = a + b + c + d + e;
532
0
        a = b;
533
0
        b = c;
534
0
        c = d;
535
0
        d = e;
536
0
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
537
0
      }
538
0
      dst[i * dst_stride + j] = a + b + c + d + e;
539
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
540
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
541
0
    }
542
0
  }
543
544
  // Horizontal sum over 5-pixel regions of dst
545
0
  for (i = 0; i < height; ++i) {
546
0
    a = dst[i * dst_stride];
547
0
    b = dst[i * dst_stride + 1];
548
0
    c = dst[i * dst_stride + 2];
549
0
    d = dst[i * dst_stride + 3];
550
0
    e = dst[i * dst_stride + 4];
551
552
0
    dst[i * dst_stride] = a + b + c;
553
0
    dst[i * dst_stride + 1] = a + b + c + d;
554
0
    for (j = 2; j < width - 3; ++j) {
555
      // Loop invariant: At the start of each iteration,
556
      // a = src[i * src_stride + (j - 2)]
557
      // b = src[i * src_stride + (j - 1)]
558
      // c = src[i * src_stride + (j    )]
559
      // d = src[i * src_stride + (j + 1)]
560
      // e = src[i * src_stride + (j + 2)]
561
0
      dst[i * dst_stride + j] = a + b + c + d + e;
562
0
      a = b;
563
0
      b = c;
564
0
      c = d;
565
0
      d = e;
566
0
      e = dst[i * dst_stride + (j + 3)];
567
0
    }
568
0
    dst[i * dst_stride + j] = a + b + c + d + e;
569
0
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
570
0
    dst[i * dst_stride + (j + 2)] = c + d + e;
571
0
  }
572
0
}
573
574
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
575
0
                   int sqr, int32_t *dst, int dst_stride) {
576
0
  if (r == 1)
577
0
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
578
0
  else if (r == 2)
579
0
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
580
0
  else
581
0
    assert(0 && "Invalid value of r in self-guided filter");
582
0
}
583
584
446k
void av1_decode_xq(const int *xqd, int *xq, const sgr_params_type *params) {
585
446k
  if (params->r[0] == 0) {
586
67.6k
    xq[0] = 0;
587
67.6k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1];
588
378k
  } else if (params->r[1] == 0) {
589
31.5k
    xq[0] = xqd[0];
590
31.5k
    xq[1] = 0;
591
347k
  } else {
592
347k
    xq[0] = xqd[0];
593
347k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
594
347k
  }
595
446k
}
596
597
const int32_t av1_x_by_xplus1[256] = {
598
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
599
  // instead of 0. See comments in selfguided_restoration_internal() for why
600
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
601
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
602
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
603
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
604
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
605
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
606
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
607
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
608
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
609
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
610
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
611
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
612
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
613
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
614
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
615
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
616
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
617
  256,
618
};
619
620
const int32_t av1_one_by_x[MAX_NELEM] = {
621
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
622
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
623
};
624
625
static void calculate_intermediate_result(int32_t *dgd, int width, int height,
626
                                          int dgd_stride, int bit_depth,
627
                                          int sgr_params_idx, int radius_idx,
628
0
                                          int pass, int32_t *A, int32_t *B) {
629
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
630
0
  const int r = params->r[radius_idx];
631
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
632
0
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
633
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
634
  // leading to a significant speed improvement.
635
  // We also align the stride to a multiple of 16 bytes, for consistency
636
  // with the SIMD version of this function.
637
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
638
0
  const int step = pass == 0 ? 1 : 2;
639
0
  int i, j;
640
641
0
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
642
0
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
643
0
         "Need SGRPROJ_BORDER_* >= r+1");
644
645
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
646
0
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
647
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
648
0
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
649
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
650
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
651
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
652
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
653
0
  for (i = -1; i < height + 1; i += step) {
654
0
    for (j = -1; j < width + 1; ++j) {
655
0
      const int k = i * buf_stride + j;
656
0
      const int n = (2 * r + 1) * (2 * r + 1);
657
658
      // a < 2^16 * n < 2^22 regardless of bit depth
659
0
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
660
      // b < 2^8 * n < 2^14 regardless of bit depth
661
0
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
662
663
      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
664
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
665
      // This bound on p is due to:
666
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
667
      //
668
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
669
      // This is an artefact of rounding, and can only happen if all pixels
670
      // are (almost) identical, so in this case we saturate to p=0.
671
0
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
672
673
0
      const uint32_t s = params->s[radius_idx];
674
675
      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
676
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
677
      // (this holds even after accounting for the rounding in s)
678
0
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
679
680
      // Note: We have to be quite careful about the value of A[k].
681
      // This is used as a blend factor between individual pixel values and the
682
      // local mean. So it logically has a range of [0, 256], including both
683
      // endpoints.
684
      //
685
      // This is a pain for hardware, as we'd like something which can be stored
686
      // in exactly 8 bits.
687
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
688
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
689
      // slightly above 2^(8 + bit depth), due to rounding in the value of
690
      // av1_one_by_x[25-1].
691
      //
692
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
693
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
694
      // overflow), without significantly affecting the final result: z == 0
695
      // implies that the image is essentially "flat", so the local mean and
696
      // individual pixel values are very similar.
697
      //
698
      // Note that saturating on the other side, ie. requring A[k] <= 255,
699
      // would be a bad idea, as that corresponds to the case where the image
700
      // is very variable, when we want to preserve the local pixel value as
701
      // much as possible.
702
0
      A[k] = av1_x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]
703
704
      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
705
      // av1_one_by_x[n - 1] = round(2^12 / n)
706
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
707
      // and B[k] is set to a value < 2^(8 + bit depth)
708
      // This holds even with the rounding in av1_one_by_x and in the overall
709
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
710
0
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
711
0
                                             (uint32_t)B[k] *
712
0
                                             (uint32_t)av1_one_by_x[n - 1],
713
0
                                         SGRPROJ_RECIP_BITS);
714
0
    }
715
0
  }
716
0
}
717
718
static void selfguided_restoration_fast_internal(
719
    int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst,
720
0
    int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) {
721
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
722
0
  const int r = params->r[radius_idx];
723
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
724
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
725
  // leading to a significant speed improvement.
726
  // We also align the stride to a multiple of 16 bytes, for consistency
727
  // with the SIMD version of this function.
728
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
729
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
730
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
731
0
  int32_t *A = A_;
732
0
  int32_t *B = B_;
733
0
  int i, j;
734
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
735
0
                                sgr_params_idx, radius_idx, 1, A, B);
736
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
737
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
738
739
  // Use the A[] and B[] arrays to calculate the filtered image
740
0
  (void)r;
741
0
  assert(r == 2);
742
0
  for (i = 0; i < height; ++i) {
743
0
    if (!(i & 1)) {  // even row
744
0
      for (j = 0; j < width; ++j) {
745
0
        const int k = i * buf_stride + j;
746
0
        const int l = i * dgd_stride + j;
747
0
        const int m = i * dst_stride + j;
748
0
        const int nb = 5;
749
0
        const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 +
750
0
                          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
751
0
                           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
752
0
                              5;
753
0
        const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 +
754
0
                          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
755
0
                           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
756
0
                              5;
757
0
        const int32_t v = a * dgd[l] + b;
758
0
        dst[m] =
759
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
760
0
      }
761
0
    } else {  // odd row
762
0
      for (j = 0; j < width; ++j) {
763
0
        const int k = i * buf_stride + j;
764
0
        const int l = i * dgd_stride + j;
765
0
        const int m = i * dst_stride + j;
766
0
        const int nb = 4;
767
0
        const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5;
768
0
        const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5;
769
0
        const int32_t v = a * dgd[l] + b;
770
0
        dst[m] =
771
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
772
0
      }
773
0
    }
774
0
  }
775
0
}
776
777
static void selfguided_restoration_internal(int32_t *dgd, int width, int height,
778
                                            int dgd_stride, int32_t *dst,
779
                                            int dst_stride, int bit_depth,
780
                                            int sgr_params_idx,
781
0
                                            int radius_idx) {
782
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
783
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
784
  // leading to a significant speed improvement.
785
  // We also align the stride to a multiple of 16 bytes, for consistency
786
  // with the SIMD version of this function.
787
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
788
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
789
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
790
0
  int32_t *A = A_;
791
0
  int32_t *B = B_;
792
0
  int i, j;
793
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
794
0
                                sgr_params_idx, radius_idx, 0, A, B);
795
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
796
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
797
798
  // Use the A[] and B[] arrays to calculate the filtered image
799
0
  for (i = 0; i < height; ++i) {
800
0
    for (j = 0; j < width; ++j) {
801
0
      const int k = i * buf_stride + j;
802
0
      const int l = i * dgd_stride + j;
803
0
      const int m = i * dst_stride + j;
804
0
      const int nb = 5;
805
0
      const int32_t a =
806
0
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
807
0
              4 +
808
0
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
809
0
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
810
0
              3;
811
0
      const int32_t b =
812
0
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
813
0
              4 +
814
0
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
815
0
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
816
0
              3;
817
0
      const int32_t v = a * dgd[l] + b;
818
0
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
819
0
    }
820
0
  }
821
0
}
822
823
int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
824
                                 int dgd_stride, int32_t *flt0, int32_t *flt1,
825
                                 int flt_stride, int sgr_params_idx,
826
0
                                 int bit_depth, int highbd) {
827
0
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
828
0
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
829
0
  int32_t *dgd32 =
830
0
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
831
832
0
  if (highbd) {
833
0
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
834
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
835
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
836
0
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
837
0
      }
838
0
    }
839
0
  } else {
840
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
841
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
842
0
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
843
0
      }
844
0
    }
845
0
  }
846
847
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
848
  // If params->r == 0 we skip the corresponding filter. We only allow one of
849
  // the radii to be 0, as having both equal to 0 would be equivalent to
850
  // skipping SGR entirely.
851
0
  assert(!(params->r[0] == 0 && params->r[1] == 0));
852
853
0
  if (params->r[0] > 0)
854
0
    selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride,
855
0
                                         flt0, flt_stride, bit_depth,
856
0
                                         sgr_params_idx, 0);
857
0
  if (params->r[1] > 0)
858
0
    selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
859
0
                                    flt_stride, bit_depth, sgr_params_idx, 1);
860
0
  return 0;
861
0
}
862
863
int av1_apply_selfguided_restoration_c(const uint8_t *dat8, int width,
864
                                       int height, int stride, int eps,
865
                                       const int *xqd, uint8_t *dst8,
866
                                       int dst_stride, int32_t *tmpbuf,
867
0
                                       int bit_depth, int highbd) {
868
0
  int32_t *flt0 = tmpbuf;
869
0
  int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
870
0
  assert(width * height <= RESTORATION_UNITPELS_MAX);
871
872
0
  const int ret = av1_selfguided_restoration_c(
873
0
      dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd);
874
0
  if (ret != 0) return ret;
875
0
  const sgr_params_type *const params = &av1_sgr_params[eps];
876
0
  int xq[2];
877
0
  av1_decode_xq(xqd, xq, params);
878
0
  for (int i = 0; i < height; ++i) {
879
0
    for (int j = 0; j < width; ++j) {
880
0
      const int k = i * width + j;
881
0
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
882
0
      const uint8_t *dat8ij = dat8 + i * stride + j;
883
884
0
      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
885
0
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
886
0
      int32_t v = u << SGRPROJ_PRJ_BITS;
887
      // If params->r == 0 then we skipped the filtering in
888
      // av1_selfguided_restoration_c, i.e. flt[k] == u
889
0
      if (params->r[0] > 0) v += xq[0] * (flt0[k] - u);
890
0
      if (params->r[1] > 0) v += xq[1] * (flt1[k] - u);
891
0
      const int16_t w =
892
0
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
893
894
0
      const uint16_t out = clip_pixel_highbd(w, bit_depth);
895
0
      if (highbd)
896
0
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
897
0
      else
898
0
        *dst8ij = (uint8_t)out;
899
0
    }
900
0
  }
901
0
  return 0;
902
0
}
903
904
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
905
                                  int stripe_width, int stripe_height,
906
                                  int procunit_width, const uint8_t *src,
907
                                  int src_stride, uint8_t *dst, int dst_stride,
908
                                  int32_t *tmpbuf, int bit_depth,
909
69.6k
                                  struct aom_internal_error_info *error_info) {
910
69.6k
  (void)bit_depth;
911
69.6k
  assert(bit_depth == 8);
912
913
304k
  for (int j = 0; j < stripe_width; j += procunit_width) {
914
235k
    int w = AOMMIN(procunit_width, stripe_width - j);
915
235k
    if (av1_apply_selfguided_restoration(
916
235k
            src + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
917
235k
            rui->sgrproj_info.xqd, dst + j, dst_stride, tmpbuf, bit_depth,
918
235k
            0) != 0) {
919
0
      aom_internal_error(
920
0
          error_info, AOM_CODEC_MEM_ERROR,
921
0
          "Error allocating buffer in av1_apply_selfguided_restoration");
922
0
    }
923
235k
  }
924
69.6k
}
925
926
#if CONFIG_AV1_HIGHBITDEPTH
927
static void wiener_filter_stripe_highbd(
928
    const RestorationUnitInfo *rui, int stripe_width, int stripe_height,
929
    int procunit_width, const uint8_t *src8, int src_stride, uint8_t *dst8,
930
    int dst_stride, int32_t *tmpbuf, int bit_depth,
931
37.1k
    struct aom_internal_error_info *error_info) {
932
37.1k
  (void)tmpbuf;
933
37.1k
  (void)error_info;
934
37.1k
  const WienerConvolveParams conv_params = get_conv_params_wiener(bit_depth);
935
936
278k
  for (int j = 0; j < stripe_width; j += procunit_width) {
937
241k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
938
241k
    const uint8_t *src8_p = src8 + j;
939
241k
    uint8_t *dst8_p = dst8 + j;
940
241k
    av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride,
941
241k
                                       rui->wiener_info.hfilter, 16,
942
241k
                                       rui->wiener_info.vfilter, 16, w,
943
241k
                                       stripe_height, &conv_params, bit_depth);
944
241k
  }
945
37.1k
}
946
947
static void sgrproj_filter_stripe_highbd(
948
    const RestorationUnitInfo *rui, int stripe_width, int stripe_height,
949
    int procunit_width, const uint8_t *src8, int src_stride, uint8_t *dst8,
950
    int dst_stride, int32_t *tmpbuf, int bit_depth,
951
75.6k
    struct aom_internal_error_info *error_info) {
952
285k
  for (int j = 0; j < stripe_width; j += procunit_width) {
953
210k
    int w = AOMMIN(procunit_width, stripe_width - j);
954
210k
    if (av1_apply_selfguided_restoration(
955
210k
            src8 + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
956
210k
            rui->sgrproj_info.xqd, dst8 + j, dst_stride, tmpbuf, bit_depth,
957
210k
            1) != 0) {
958
0
      aom_internal_error(
959
0
          error_info, AOM_CODEC_MEM_ERROR,
960
0
          "Error allocating buffer in av1_apply_selfguided_restoration");
961
0
    }
962
210k
  }
963
75.6k
}
964
#endif  // CONFIG_AV1_HIGHBITDEPTH
965
966
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
967
                                  int stripe_width, int stripe_height,
968
                                  int procunit_width, const uint8_t *src,
969
                                  int src_stride, uint8_t *dst, int dst_stride,
970
                                  int32_t *tmpbuf, int bit_depth,
971
                                  struct aom_internal_error_info *error_info);
972
973
#if CONFIG_AV1_HIGHBITDEPTH
974
#define NUM_STRIPE_FILTERS 4
975
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
976
  wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd,
977
  sgrproj_filter_stripe_highbd
978
};
979
#else
980
#define NUM_STRIPE_FILTERS 2
981
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
982
  wiener_filter_stripe, sgrproj_filter_stripe
983
};
984
#endif  // CONFIG_AV1_HIGHBITDEPTH
985
986
// Filter one restoration unit
987
void av1_loop_restoration_filter_unit(
988
    const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
989
    const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
990
    int plane_w, int plane_h, int ss_x, int ss_y, int highbd, int bit_depth,
991
    uint8_t *data8, int stride, uint8_t *dst8, int dst_stride, int32_t *tmpbuf,
992
110k
    int optimized_lr, struct aom_internal_error_info *error_info) {
993
110k
  RestorationType unit_rtype = rui->restoration_type;
994
995
110k
  int unit_h = limits->v_end - limits->v_start;
996
110k
  int unit_w = limits->h_end - limits->h_start;
997
110k
  uint8_t *data8_tl =
998
110k
      data8 + limits->v_start * (ptrdiff_t)stride + limits->h_start;
999
110k
  uint8_t *dst8_tl =
1000
110k
      dst8 + limits->v_start * (ptrdiff_t)dst_stride + limits->h_start;
1001
1002
110k
  if (unit_rtype == RESTORE_NONE) {
1003
42.7k
    copy_rest_unit(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride,
1004
42.7k
                   highbd);
1005
42.7k
    return;
1006
42.7k
  }
1007
1008
67.8k
  const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ);
1009
67.8k
  assert(filter_idx < NUM_STRIPE_FILTERS);
1010
67.9k
  const stripe_filter_fun stripe_filter = stripe_filters[filter_idx];
1011
1012
67.9k
  const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
1013
1014
  // Filter the whole image one stripe at a time
1015
67.9k
  RestorationTileLimits remaining_stripes = *limits;
1016
67.9k
  int i = 0;
1017
290k
  while (i < unit_h) {
1018
222k
    int copy_above, copy_below;
1019
222k
    remaining_stripes.v_start = limits->v_start + i;
1020
1021
222k
    get_stripe_boundary_info(&remaining_stripes, plane_w, plane_h, ss_y,
1022
222k
                             &copy_above, &copy_below);
1023
1024
222k
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1025
222k
    const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
1026
1027
    // Work out where this stripe's boundaries are within
1028
    // rsb->stripe_boundary_{above,below}
1029
222k
    const int frame_stripe =
1030
222k
        (remaining_stripes.v_start + runit_offset) / full_stripe_height;
1031
222k
    const int rsb_row = RESTORATION_CTX_VERT * frame_stripe;
1032
1033
    // Calculate this stripe's height, based on two rules:
1034
    // * The topmost stripe in the frame is 8 luma pixels shorter than usual.
1035
    // * We can't extend past the end of the current restoration unit
1036
222k
    const int nominal_stripe_height =
1037
222k
        full_stripe_height - ((frame_stripe == 0) ? runit_offset : 0);
1038
222k
    const int h = AOMMIN(nominal_stripe_height,
1039
222k
                         remaining_stripes.v_end - remaining_stripes.v_start);
1040
1041
222k
    setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd,
1042
222k
                                     h, data8, stride, rlbs, copy_above,
1043
222k
                                     copy_below, optimized_lr);
1044
1045
222k
    stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride,
1046
222k
                  dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth,
1047
222k
                  error_info);
1048
1049
222k
    restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h,
1050
222k
                                       data8, stride, copy_above, copy_below,
1051
222k
                                       optimized_lr);
1052
1053
222k
    i += h;
1054
222k
  }
1055
67.9k
}
1056
1057
static void filter_frame_on_unit(const RestorationTileLimits *limits,
1058
                                 int rest_unit_idx, void *priv, int32_t *tmpbuf,
1059
                                 RestorationLineBuffers *rlbs,
1060
110k
                                 struct aom_internal_error_info *error_info) {
1061
110k
  FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
1062
110k
  const RestorationInfo *rsi = ctxt->rsi;
1063
1064
110k
  av1_loop_restoration_filter_unit(
1065
110k
      limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs,
1066
110k
      ctxt->plane_w, ctxt->plane_h, ctxt->ss_x, ctxt->ss_y, ctxt->highbd,
1067
110k
      ctxt->bit_depth, ctxt->data8, ctxt->data_stride, ctxt->dst8,
1068
110k
      ctxt->dst_stride, tmpbuf, rsi->optimized_lr, error_info);
1069
110k
}
1070
1071
void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
1072
                                            YV12_BUFFER_CONFIG *frame,
1073
                                            AV1_COMMON *cm, int optimized_lr,
1074
23.1k
                                            int num_planes) {
1075
23.1k
  const SequenceHeader *const seq_params = cm->seq_params;
1076
23.1k
  const int bit_depth = seq_params->bit_depth;
1077
23.1k
  const int highbd = seq_params->use_highbitdepth;
1078
23.1k
  lr_ctxt->dst = &cm->rst_frame;
1079
1080
23.1k
  const int frame_width = frame->crop_widths[0];
1081
23.1k
  const int frame_height = frame->crop_heights[0];
1082
23.1k
  if (aom_realloc_frame_buffer(
1083
23.1k
          lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
1084
23.1k
          seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
1085
23.1k
          cm->features.byte_alignment, NULL, NULL, NULL, false,
1086
23.1k
          0) != AOM_CODEC_OK)
1087
0
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1088
0
                       "Failed to allocate restoration dst buffer");
1089
1090
23.1k
  lr_ctxt->on_rest_unit = filter_frame_on_unit;
1091
23.1k
  lr_ctxt->frame = frame;
1092
85.1k
  for (int plane = 0; plane < num_planes; ++plane) {
1093
62.0k
    RestorationInfo *rsi = &cm->rst_info[plane];
1094
62.0k
    RestorationType rtype = rsi->frame_restoration_type;
1095
62.0k
    rsi->optimized_lr = optimized_lr;
1096
62.0k
    lr_ctxt->ctxt[plane].rsi = rsi;
1097
1098
62.0k
    if (rtype == RESTORE_NONE) {
1099
15.2k
      continue;
1100
15.2k
    }
1101
1102
46.7k
    const int is_uv = plane > 0;
1103
46.7k
    int plane_w, plane_h;
1104
46.7k
    av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1105
46.7k
    assert(plane_w == frame->crop_widths[is_uv]);
1106
46.7k
    assert(plane_h == frame->crop_heights[is_uv]);
1107
1108
46.7k
    av1_extend_frame(frame->buffers[plane], plane_w, plane_h,
1109
46.7k
                     frame->strides[is_uv], RESTORATION_BORDER,
1110
46.7k
                     RESTORATION_BORDER, highbd);
1111
1112
46.7k
    FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane];
1113
46.7k
    lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x;
1114
46.7k
    lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y;
1115
46.7k
    lr_plane_ctxt->plane_w = plane_w;
1116
46.7k
    lr_plane_ctxt->plane_h = plane_h;
1117
46.7k
    lr_plane_ctxt->highbd = highbd;
1118
46.7k
    lr_plane_ctxt->bit_depth = bit_depth;
1119
46.7k
    lr_plane_ctxt->data8 = frame->buffers[plane];
1120
46.7k
    lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane];
1121
46.7k
    lr_plane_ctxt->data_stride = frame->strides[is_uv];
1122
46.7k
    lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv];
1123
46.7k
  }
1124
23.1k
}
1125
1126
static void loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt,
1127
7.95k
                                         AV1_COMMON *cm, int num_planes) {
1128
7.95k
  typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
1129
7.95k
                           YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
1130
7.95k
                           int vstart, int vend);
1131
7.95k
  static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
1132
7.95k
                                         aom_yv12_partial_coloc_copy_u,
1133
7.95k
                                         aom_yv12_partial_coloc_copy_v };
1134
7.95k
  assert(num_planes <= 3);
1135
26.1k
  for (int plane = 0; plane < num_planes; ++plane) {
1136
18.1k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1137
12.6k
    FilterFrameCtxt *lr_plane_ctxt = &loop_rest_ctxt->ctxt[plane];
1138
12.6k
    copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, 0,
1139
12.6k
                     lr_plane_ctxt->plane_w, 0, lr_plane_ctxt->plane_h);
1140
12.6k
  }
1141
7.95k
}
1142
1143
// Call on_rest_unit for each loop restoration unit in the plane.
1144
static void foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane,
1145
                                       rest_unit_visitor_t on_rest_unit,
1146
                                       void *priv, int32_t *tmpbuf,
1147
12.6k
                                       RestorationLineBuffers *rlbs) {
1148
12.6k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1149
12.6k
  const int hnum_rest_units = rsi->horz_units;
1150
12.6k
  const int vnum_rest_units = rsi->vert_units;
1151
12.6k
  const int unit_size = rsi->restoration_unit_size;
1152
1153
12.6k
  const int is_uv = plane > 0;
1154
12.6k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1155
12.6k
  const int ext_size = unit_size * 3 / 2;
1156
12.6k
  int plane_w, plane_h;
1157
12.6k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1158
1159
12.6k
  int y0 = 0, i = 0;
1160
28.2k
  while (y0 < plane_h) {
1161
15.6k
    int remaining_h = plane_h - y0;
1162
15.6k
    int h = (remaining_h < ext_size) ? remaining_h : unit_size;
1163
1164
15.6k
    RestorationTileLimits limits;
1165
15.6k
    limits.v_start = y0;
1166
15.6k
    limits.v_end = y0 + h;
1167
15.6k
    assert(limits.v_end <= plane_h);
1168
    // Offset upwards to align with the restoration processing stripe
1169
15.6k
    const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
1170
15.6k
    limits.v_start = AOMMAX(0, limits.v_start - voffset);
1171
15.6k
    if (limits.v_end < plane_h) limits.v_end -= voffset;
1172
1173
15.6k
    av1_foreach_rest_unit_in_row(&limits, plane_w, on_rest_unit, i, unit_size,
1174
15.6k
                                 hnum_rest_units, vnum_rest_units, plane, priv,
1175
15.6k
                                 tmpbuf, rlbs, av1_lr_sync_read_dummy,
1176
15.6k
                                 av1_lr_sync_write_dummy, NULL, cm->error);
1177
1178
15.6k
    y0 += h;
1179
15.6k
    ++i;
1180
15.6k
  }
1181
12.6k
}
1182
1183
static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm,
1184
7.95k
                                        int num_planes) {
1185
7.95k
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
1186
1187
26.1k
  for (int plane = 0; plane < num_planes; ++plane) {
1188
18.1k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) {
1189
5.56k
      continue;
1190
5.56k
    }
1191
1192
12.6k
    foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit, &ctxt[plane],
1193
12.6k
                               cm->rst_tmpbuf, cm->rlbs);
1194
12.6k
  }
1195
7.95k
}
1196
1197
void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame,
1198
                                       AV1_COMMON *cm, int optimized_lr,
1199
7.95k
                                       void *lr_ctxt) {
1200
7.95k
  assert(!cm->features.all_lossless);
1201
7.95k
  const int num_planes = av1_num_planes(cm);
1202
1203
7.95k
  AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
1204
1205
7.95k
  av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
1206
7.95k
                                         optimized_lr, num_planes);
1207
1208
7.95k
  foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes);
1209
1210
7.95k
  loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes);
1211
7.95k
}
1212
1213
void av1_foreach_rest_unit_in_row(
1214
    RestorationTileLimits *limits, int plane_w,
1215
    rest_unit_visitor_t on_rest_unit, int row_number, int unit_size,
1216
    int hnum_rest_units, int vnum_rest_units, int plane, void *priv,
1217
    int32_t *tmpbuf, RestorationLineBuffers *rlbs, sync_read_fn_t on_sync_read,
1218
    sync_write_fn_t on_sync_write, struct AV1LrSyncData *const lr_sync,
1219
64.1k
    struct aom_internal_error_info *error_info) {
1220
64.1k
  const int ext_size = unit_size * 3 / 2;
1221
64.1k
  int x0 = 0, j = 0;
1222
174k
  while (x0 < plane_w) {
1223
110k
    int remaining_w = plane_w - x0;
1224
110k
    int w = (remaining_w < ext_size) ? remaining_w : unit_size;
1225
1226
110k
    limits->h_start = x0;
1227
110k
    limits->h_end = x0 + w;
1228
110k
    assert(limits->h_end <= plane_w);
1229
1230
110k
    const int unit_idx = row_number * hnum_rest_units + j;
1231
1232
    // No sync for even numbered rows
1233
    // For odd numbered rows, Loop Restoration of current block requires the LR
1234
    // of top-right and bottom-right blocks to be completed
1235
1236
    // top-right sync
1237
110k
    on_sync_read(lr_sync, row_number, j, plane);
1238
110k
    if ((row_number + 1) < vnum_rest_units)
1239
      // bottom-right sync
1240
46.3k
      on_sync_read(lr_sync, row_number + 2, j, plane);
1241
1242
110k
#if CONFIG_MULTITHREAD
1243
110k
    if (lr_sync && lr_sync->num_workers > 1) {
1244
89.4k
      pthread_mutex_lock(lr_sync->job_mutex);
1245
89.4k
      const bool lr_mt_exit = lr_sync->lr_mt_exit;
1246
89.4k
      pthread_mutex_unlock(lr_sync->job_mutex);
1247
      // Exit in case any worker has encountered an error.
1248
89.4k
      if (lr_mt_exit) return;
1249
89.4k
    }
1250
110k
#endif
1251
1252
110k
    on_rest_unit(limits, unit_idx, priv, tmpbuf, rlbs, error_info);
1253
1254
110k
    on_sync_write(lr_sync, row_number, j, hnum_rest_units, plane);
1255
1256
110k
    x0 += w;
1257
110k
    ++j;
1258
110k
  }
1259
64.1k
}
1260
1261
116k
void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) {
1262
116k
  (void)lr_sync;
1263
116k
  (void)r;
1264
116k
  (void)c;
1265
116k
  (void)plane;
1266
116k
}
1267
1268
void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c,
1269
50.6k
                             const int sb_cols, int plane) {
1270
50.6k
  (void)lr_sync;
1271
50.6k
  (void)r;
1272
50.6k
  (void)c;
1273
50.6k
  (void)sb_cols;
1274
50.6k
  (void)plane;
1275
50.6k
}
1276
1277
int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane,
1278
                                       int mi_row, int mi_col, BLOCK_SIZE bsize,
1279
                                       int *rcol0, int *rcol1, int *rrow0,
1280
13.7M
                                       int *rrow1) {
1281
13.7M
  assert(rcol0 && rcol1 && rrow0 && rrow1);
1282
1283
13.7M
  if (bsize != cm->seq_params->sb_size) return 0;
1284
1285
774k
  assert(!cm->features.all_lossless);
1286
1287
776k
  const int is_uv = plane > 0;
1288
1289
  // Compute the mi-unit corners of the superblock
1290
776k
  const int mi_row0 = mi_row;
1291
776k
  const int mi_col0 = mi_col;
1292
776k
  const int mi_row1 = mi_row0 + mi_size_high[bsize];
1293
776k
  const int mi_col1 = mi_col0 + mi_size_wide[bsize];
1294
1295
776k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1296
776k
  const int size = rsi->restoration_unit_size;
1297
776k
  const int horz_units = rsi->horz_units;
1298
776k
  const int vert_units = rsi->vert_units;
1299
1300
  // The size of an MI-unit on this plane of the image
1301
776k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1302
776k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1303
776k
  const int mi_size_x = MI_SIZE >> ss_x;
1304
776k
  const int mi_size_y = MI_SIZE >> ss_y;
1305
1306
  // Write m for the relative mi column or row, D for the superres denominator
1307
  // and N for the superres numerator. If u is the upscaled pixel offset then
1308
  // we can write the downscaled pixel offset in two ways as:
1309
  //
1310
  //   MI_SIZE * m = N / D u
1311
  //
1312
  // from which we get u = D * MI_SIZE * m / N
1313
776k
  const int mi_to_num_x = av1_superres_scaled(cm)
1314
776k
                              ? mi_size_x * cm->superres_scale_denominator
1315
776k
                              : mi_size_x;
1316
776k
  const int mi_to_num_y = mi_size_y;
1317
776k
  const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size;
1318
776k
  const int denom_y = size;
1319
1320
776k
  const int rnd_x = denom_x - 1;
1321
776k
  const int rnd_y = denom_y - 1;
1322
1323
  // rcol0/rrow0 should be the first column/row of restoration units that
1324
  // doesn't start left/below of mi_col/mi_row. For this calculation, we need
1325
  // to round up the division (if the sb starts at runit column 10.1, the first
1326
  // matching runit has column index 11)
1327
776k
  *rcol0 = (mi_col0 * mi_to_num_x + rnd_x) / denom_x;
1328
776k
  *rrow0 = (mi_row0 * mi_to_num_y + rnd_y) / denom_y;
1329
1330
  // rel_col1/rel_row1 is the equivalent calculation, but for the superblock
1331
  // below-right. If we're at the bottom or right of the frame, this restoration
1332
  // unit might not exist, in which case we'll clamp accordingly.
1333
776k
  *rcol1 = AOMMIN((mi_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units);
1334
776k
  *rrow1 = AOMMIN((mi_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units);
1335
1336
776k
  return *rcol0 < *rcol1 && *rrow0 < *rrow1;
1337
774k
}
1338
1339
// Extend to left and right
1340
static void extend_lines(uint8_t *buf, int width, int height, int stride,
1341
403k
                         int extend, int use_highbitdepth) {
1342
1.21M
  for (int i = 0; i < height; ++i) {
1343
806k
    if (use_highbitdepth) {
1344
463k
      uint16_t *buf16 = (uint16_t *)buf;
1345
463k
      aom_memset16(buf16 - extend, buf16[0], extend);
1346
463k
      aom_memset16(buf16 + width, buf16[width - 1], extend);
1347
463k
    } else {
1348
342k
      memset(buf - extend, buf[0], extend);
1349
342k
      memset(buf + width, buf[width - 1], extend);
1350
342k
    }
1351
806k
    buf += stride;
1352
806k
  }
1353
403k
}
1354
1355
static void save_deblock_boundary_lines(
1356
    const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row,
1357
    int stripe, int use_highbd, int is_above,
1358
296k
    RestorationStripeBoundaries *boundaries) {
1359
296k
  const int is_uv = plane > 0;
1360
296k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1361
296k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1362
296k
  const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
1363
1364
296k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1365
296k
                               : boundaries->stripe_boundary_below;
1366
296k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1367
296k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1368
296k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1369
1370
  // There is a rare case in which a processing stripe can end 1px above the
1371
  // crop border. In this case, we do want to use deblocked pixels from below
1372
  // the stripe (hence why we ended up in this function), but instead of
1373
  // fetching 2 "below" rows we need to fetch one and duplicate it.
1374
  // This is equivalent to clamping the sample locations against the crop border
1375
296k
  const int lines_to_save =
1376
296k
      AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row);
1377
296k
  assert(lines_to_save == 1 || lines_to_save == 2);
1378
1379
296k
  int upscaled_width;
1380
296k
  int line_bytes;
1381
296k
  if (av1_superres_scaled(cm)) {
1382
35.6k
    const int ss_x = is_uv && cm->seq_params->subsampling_x;
1383
35.6k
    upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
1384
35.6k
    line_bytes = upscaled_width << use_highbd;
1385
35.6k
    if (use_highbd)
1386
9.63k
      av1_upscale_normative_rows(
1387
9.63k
          cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv],
1388
9.63k
          CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride,
1389
9.63k
          plane, lines_to_save);
1390
26.0k
    else
1391
26.0k
      av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows,
1392
26.0k
                                 boundaries->stripe_boundary_stride, plane,
1393
26.0k
                                 lines_to_save);
1394
260k
  } else {
1395
260k
    upscaled_width = frame->crop_widths[is_uv];
1396
260k
    line_bytes = upscaled_width << use_highbd;
1397
778k
    for (int i = 0; i < lines_to_save; i++) {
1398
517k
      memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride,
1399
517k
             line_bytes);
1400
517k
    }
1401
260k
  }
1402
  // If we only saved one line, then copy it into the second line buffer
1403
296k
  if (lines_to_save == 1)
1404
5.40k
    memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes);
1405
1406
296k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1407
296k
               RESTORATION_EXTRA_HORZ, use_highbd);
1408
296k
}
1409
1410
static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1411
                                     const AV1_COMMON *cm, int plane, int row,
1412
                                     int stripe, int use_highbd, int is_above,
1413
106k
                                     RestorationStripeBoundaries *boundaries) {
1414
106k
  const int is_uv = plane > 0;
1415
106k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1416
106k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1417
106k
  const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
1418
1419
106k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1420
106k
                               : boundaries->stripe_boundary_below;
1421
106k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1422
106k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1423
106k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1424
106k
  const int src_width = frame->crop_widths[is_uv];
1425
1426
  // At the point where this function is called, we've already applied
1427
  // superres. So we don't need to extend the lines here, we can just
1428
  // pull directly from the topmost row of the upscaled frame.
1429
106k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1430
106k
  const int upscaled_width = av1_superres_scaled(cm)
1431
106k
                                 ? (cm->superres_upscaled_width + ss_x) >> ss_x
1432
106k
                                 : src_width;
1433
106k
  const int line_bytes = upscaled_width << use_highbd;
1434
320k
  for (int i = 0; i < RESTORATION_CTX_VERT; i++) {
1435
    // Copy the line at 'src_rows' into both context lines
1436
213k
    memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes);
1437
213k
  }
1438
106k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1439
106k
               RESTORATION_EXTRA_HORZ, use_highbd);
1440
106k
}
1441
1442
static void save_boundary_lines(const YV12_BUFFER_CONFIG *frame, int use_highbd,
1443
106k
                                int plane, AV1_COMMON *cm, int after_cdef) {
1444
106k
  const int is_uv = plane > 0;
1445
106k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1446
106k
  const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1447
106k
  const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y;
1448
1449
106k
  int plane_w, plane_h;
1450
106k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1451
1452
106k
  RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries;
1453
1454
106k
  const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y);
1455
1456
106k
  int stripe_idx;
1457
510k
  for (stripe_idx = 0;; ++stripe_idx) {
1458
510k
    const int rel_y0 = AOMMAX(0, stripe_idx * stripe_height - stripe_off);
1459
510k
    const int y0 = rel_y0;
1460
510k
    if (y0 >= plane_h) break;
1461
1462
403k
    const int rel_y1 = (stripe_idx + 1) * stripe_height - stripe_off;
1463
403k
    const int y1 = AOMMIN(rel_y1, plane_h);
1464
1465
    // Extend using CDEF pixels at the top and bottom of the frame,
1466
    // and deblocked pixels at internal stripe boundaries
1467
403k
    const int use_deblock_above = (stripe_idx > 0);
1468
403k
    const int use_deblock_below = (y1 < plane_height);
1469
1470
403k
    if (!after_cdef) {
1471
      // Save deblocked context at internal stripe boundaries
1472
201k
      if (use_deblock_above) {
1473
148k
        save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT,
1474
148k
                                    stripe_idx, use_highbd, 1, boundaries);
1475
148k
      }
1476
201k
      if (use_deblock_below) {
1477
148k
        save_deblock_boundary_lines(frame, cm, plane, y1, stripe_idx,
1478
148k
                                    use_highbd, 0, boundaries);
1479
148k
      }
1480
201k
    } else {
1481
      // Save CDEF context at frame boundaries
1482
201k
      if (!use_deblock_above) {
1483
53.3k
        save_cdef_boundary_lines(frame, cm, plane, y0, stripe_idx, use_highbd,
1484
53.3k
                                 1, boundaries);
1485
53.3k
      }
1486
201k
      if (!use_deblock_below) {
1487
53.3k
        save_cdef_boundary_lines(frame, cm, plane, y1 - 1, stripe_idx,
1488
53.3k
                                 use_highbd, 0, boundaries);
1489
53.3k
      }
1490
201k
    }
1491
403k
  }
1492
106k
}
1493
1494
// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan
1495
// lines to be used as boundary in the loop restoration process. The
1496
// lines are saved in rst_internal.stripe_boundary_lines
1497
void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1498
40.4k
                                              AV1_COMMON *cm, int after_cdef) {
1499
40.4k
  const int num_planes = av1_num_planes(cm);
1500
40.4k
  const int use_highbd = cm->seq_params->use_highbitdepth;
1501
147k
  for (int p = 0; p < num_planes; ++p) {
1502
106k
    save_boundary_lines(frame, use_highbd, p, cm, after_cdef);
1503
106k
  }
1504
40.4k
}