Coverage Report

Created: 2025-11-16 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aom/av1/common/restoration.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 *
11
 */
12
13
#include <math.h>
14
#include <stddef.h>
15
16
#include "config/aom_config.h"
17
#include "config/aom_scale_rtcd.h"
18
19
#include "aom/internal/aom_codec_internal.h"
20
#include "aom_mem/aom_mem.h"
21
#include "aom_dsp/aom_dsp_common.h"
22
#include "aom_mem/aom_mem.h"
23
#include "aom_ports/mem.h"
24
#include "aom_util/aom_pthread.h"
25
26
#include "av1/common/av1_common_int.h"
27
#include "av1/common/convolve.h"
28
#include "av1/common/enums.h"
29
#include "av1/common/resize.h"
30
#include "av1/common/restoration.h"
31
#include "av1/common/thread_common.h"
32
33
// The 's' values are calculated based on original 'r' and 'e' values in the
34
// spec using GenSgrprojVtable().
35
// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid).
36
const sgr_params_type av1_sgr_params[SGRPROJ_PARAMS] = {
37
  { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } },
38
  { { 2, 1 }, { 93, 1618 } },  { { 2, 1 }, { 80, 1438 } },
39
  { { 2, 1 }, { 70, 1295 } },  { { 2, 1 }, { 58, 1177 } },
40
  { { 2, 1 }, { 47, 1079 } },  { { 2, 1 }, { 37, 996 } },
41
  { { 2, 1 }, { 30, 925 } },   { { 2, 1 }, { 25, 863 } },
42
  { { 0, 1 }, { -1, 2589 } },  { { 0, 1 }, { -1, 1618 } },
43
  { { 0, 1 }, { -1, 1177 } },  { { 0, 1 }, { -1, 925 } },
44
  { { 2, 0 }, { 56, -1 } },    { { 2, 0 }, { 22, -1 } },
45
};
46
47
void av1_get_upsampled_plane_size(const AV1_COMMON *cm, int is_uv, int *plane_w,
48
229k
                                  int *plane_h) {
49
229k
  int ss_x = is_uv && cm->seq_params->subsampling_x;
50
229k
  int ss_y = is_uv && cm->seq_params->subsampling_y;
51
229k
  *plane_w = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
52
229k
  *plane_h = ROUND_POWER_OF_TWO(cm->height, ss_y);
53
229k
}
54
55
// Count horizontal or vertical units in a plane (use a width or height for
56
// plane_size, respectively). We basically want to divide the plane size by the
57
// size of a restoration unit. Rather than rounding up unconditionally as you
58
// might expect, we round to nearest, which models the way a right or bottom
59
// restoration unit can extend to up to 150% its normal width or height.
60
//
61
// The max with 1 is to deal with small frames, which may be smaller than
62
// half of an LR unit in size.
63
211k
int av1_lr_count_units(int unit_size, int plane_size) {
64
211k
  return AOMMAX((plane_size + (unit_size >> 1)) / unit_size, 1);
65
211k
}
66
67
void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
68
79.7k
                                  int is_uv) {
69
79.7k
  int plane_w, plane_h;
70
79.7k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
71
72
79.7k
  const int unit_size = rsi->restoration_unit_size;
73
79.7k
  const int horz_units = av1_lr_count_units(unit_size, plane_w);
74
79.7k
  const int vert_units = av1_lr_count_units(unit_size, plane_h);
75
76
79.7k
  rsi->num_rest_units = horz_units * vert_units;
77
79.7k
  rsi->horz_units = horz_units;
78
79.7k
  rsi->vert_units = vert_units;
79
80
79.7k
  aom_free(rsi->unit_info);
81
79.7k
  CHECK_MEM_ERROR(cm, rsi->unit_info,
82
79.7k
                  (RestorationUnitInfo *)aom_memalign(
83
79.7k
                      16, sizeof(*rsi->unit_info) * rsi->num_rest_units));
84
79.7k
}
85
86
47.4k
void av1_free_restoration_struct(RestorationInfo *rst_info) {
87
47.4k
  aom_free(rst_info->unit_info);
88
47.4k
  rst_info->unit_info = NULL;
89
47.4k
}
90
91
#if 0
92
// Pair of values for each sgrproj parameter:
93
// Index 0 corresponds to r[0], e[0]
94
// Index 1 corresponds to r[1], e[1]
95
int sgrproj_mtable[SGRPROJ_PARAMS][2];
96
97
static void GenSgrprojVtable(void) {
98
  for (int i = 0; i < SGRPROJ_PARAMS; ++i) {
99
    const sgr_params_type *const params = &av1_sgr_params[i];
100
    for (int j = 0; j < 2; ++j) {
101
      const int e = params->e[j];
102
      const int r = params->r[j];
103
      if (r == 0) {                 // filter is disabled
104
        sgrproj_mtable[i][j] = -1;  // mark invalid
105
      } else {                      // filter is enabled
106
        const int n = (2 * r + 1) * (2 * r + 1);
107
        const int n2e = n * n * e;
108
        assert(n2e != 0);
109
        sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
110
      }
111
    }
112
  }
113
}
114
#endif
115
116
15.8k
void av1_loop_restoration_precal(void) {
117
#if 0
118
  GenSgrprojVtable();
119
#endif
120
15.8k
}
121
122
static void extend_frame_lowbd(uint8_t *data, int width, int height,
123
                               ptrdiff_t stride, int border_horz,
124
21.1k
                               int border_vert) {
125
21.1k
  uint8_t *data_p;
126
21.1k
  int i;
127
2.71M
  for (i = 0; i < height; ++i) {
128
2.69M
    data_p = data + i * stride;
129
2.69M
    memset(data_p - border_horz, data_p[0], border_horz);
130
2.69M
    memset(data_p + width, data_p[width - 1], border_horz);
131
2.69M
  }
132
21.1k
  data_p = data - border_horz;
133
84.4k
  for (i = -border_vert; i < 0; ++i) {
134
63.3k
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
135
63.3k
  }
136
84.4k
  for (i = height; i < height + border_vert; ++i) {
137
63.3k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
138
63.3k
           width + 2 * border_horz);
139
63.3k
  }
140
21.1k
}
141
142
#if CONFIG_AV1_HIGHBITDEPTH
143
static void extend_frame_highbd(uint16_t *data, int width, int height,
144
                                ptrdiff_t stride, int border_horz,
145
20.8k
                                int border_vert) {
146
20.8k
  uint16_t *data_p;
147
20.8k
  int i, j;
148
2.52M
  for (i = 0; i < height; ++i) {
149
2.50M
    data_p = data + i * stride;
150
10.0M
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
151
10.0M
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
152
2.50M
  }
153
20.8k
  data_p = data - border_horz;
154
83.3k
  for (i = -border_vert; i < 0; ++i) {
155
62.5k
    memcpy(data_p + i * stride, data_p,
156
62.5k
           (width + 2 * border_horz) * sizeof(uint16_t));
157
62.5k
  }
158
83.3k
  for (i = height; i < height + border_vert; ++i) {
159
62.5k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
160
62.5k
           (width + 2 * border_horz) * sizeof(uint16_t));
161
62.5k
  }
162
20.8k
}
163
164
static void copy_rest_unit_highbd(int width, int height, const uint16_t *src,
165
                                  int src_stride, uint16_t *dst,
166
10.1k
                                  int dst_stride) {
167
980k
  for (int i = 0; i < height; ++i)
168
970k
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
169
10.1k
}
170
#endif
171
172
void av1_extend_frame(uint8_t *data, int width, int height, int stride,
173
41.9k
                      int border_horz, int border_vert, int highbd) {
174
41.9k
#if CONFIG_AV1_HIGHBITDEPTH
175
41.9k
  if (highbd) {
176
20.8k
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
177
20.8k
                        border_horz, border_vert);
178
20.8k
    return;
179
20.8k
  }
180
21.1k
#endif
181
21.1k
  (void)highbd;
182
21.1k
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
183
21.1k
}
184
185
static void copy_rest_unit_lowbd(int width, int height, const uint8_t *src,
186
25.2k
                                 int src_stride, uint8_t *dst, int dst_stride) {
187
2.09M
  for (int i = 0; i < height; ++i)
188
2.07M
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
189
25.2k
}
190
191
static void copy_rest_unit(int width, int height, const uint8_t *src,
192
                           int src_stride, uint8_t *dst, int dst_stride,
193
35.4k
                           int highbd) {
194
35.4k
#if CONFIG_AV1_HIGHBITDEPTH
195
35.4k
  if (highbd) {
196
10.1k
    copy_rest_unit_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
197
10.1k
                          CONVERT_TO_SHORTPTR(dst), dst_stride);
198
10.1k
    return;
199
10.1k
  }
200
25.3k
#endif
201
25.3k
  (void)highbd;
202
25.3k
  copy_rest_unit_lowbd(width, height, src, src_stride, dst, dst_stride);
203
25.3k
}
204
205
3.90M
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))
206
207
// With striped loop restoration, the filtering for each 64-pixel stripe gets
208
// most of its input from the output of CDEF (stored in data8), but we need to
209
// fill out a border of 3 pixels above/below the stripe according to the
210
// following rules:
211
//
212
// * At the top and bottom of the frame, we copy the outermost row of CDEF
213
//   pixels three times. This extension is done by a call to av1_extend_frame()
214
//   at the start of the loop restoration process, so the value of
215
//   copy_above/copy_below doesn't strictly matter.
216
//
217
// * All other boundaries are stripe boundaries within the frame. In that case,
218
//   we take 2 rows of deblocked pixels and extend them to 3 rows of context.
219
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
220
                                     int plane_w, int plane_h, int ss_y,
221
235k
                                     int *copy_above, int *copy_below) {
222
235k
  (void)plane_w;
223
224
235k
  *copy_above = 1;
225
235k
  *copy_below = 1;
226
227
235k
  const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
228
235k
  const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
229
230
235k
  const int first_stripe_in_plane = (limits->v_start == 0);
231
235k
  const int this_stripe_height =
232
235k
      full_stripe_height - (first_stripe_in_plane ? runit_offset : 0);
233
235k
  const int last_stripe_in_plane =
234
235k
      (limits->v_start + this_stripe_height >= plane_h);
235
236
235k
  if (first_stripe_in_plane) *copy_above = 0;
237
235k
  if (last_stripe_in_plane) *copy_below = 0;
238
235k
}
239
240
// Overwrite the border pixels around a processing stripe so that the conditions
241
// listed above get_stripe_boundary_info() are preserved.
242
// We save the pixels which get overwritten into a temporary buffer, so that
243
// they can be restored by restore_processing_stripe_boundary() after we've
244
// processed the stripe.
245
//
246
// limits gives the rectangular limits of the remaining stripes for the current
247
// restoration unit. rsb is the stored stripe boundaries (taken from either
248
// deblock or CDEF output as necessary).
249
static void setup_processing_stripe_boundary(
250
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
251
    int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride,
252
235k
    RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) {
253
  // Offsets within the line buffers. The buffer logically starts at column
254
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
255
  // has column x0 in the buffer.
256
235k
  const int buf_stride = rsb->stripe_boundary_stride;
257
235k
  const int buf_x0_off = limits->h_start;
258
235k
  const int line_width =
259
235k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
260
235k
  const int line_size = line_width << use_highbd;
261
262
235k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
263
264
  // Replace RESTORATION_BORDER pixels above the top of the stripe
265
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
266
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
267
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
268
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
269
235k
  if (!opt) {
270
224k
    if (copy_above) {
271
196k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
272
273
785k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
274
588k
        const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
275
588k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
276
588k
        const uint8_t *buf =
277
588k
            rsb->stripe_boundary_above + (buf_off << use_highbd);
278
588k
        uint8_t *dst8 = data8_tl + i * data_stride;
279
        // Save old pixels, then replace with data from stripe_boundary_above
280
588k
        memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
281
588k
               REAL_PTR(use_highbd, dst8), line_size);
282
588k
        memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
283
588k
      }
284
196k
    }
285
286
    // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
287
    // The second buffer row is repeated, so src_row gets the values 0, 1, 1
288
    // for i = 0, 1, 2.
289
224k
    if (copy_below) {
290
195k
      const int stripe_end = limits->v_start + h;
291
195k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
292
293
780k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
294
585k
        const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
295
585k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
296
585k
        const uint8_t *src =
297
585k
            rsb->stripe_boundary_below + (buf_off << use_highbd);
298
299
585k
        uint8_t *dst8 = data8_bl + i * data_stride;
300
        // Save old pixels, then replace with data from stripe_boundary_below
301
585k
        memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
302
585k
        memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
303
585k
      }
304
195k
    }
305
224k
  } else {
306
10.8k
    if (copy_above) {
307
6.10k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
308
309
      // Only save and overwrite i=-RESTORATION_BORDER line.
310
6.10k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
311
      // Save old pixels, then replace with data from stripe_boundary_above
312
6.10k
      memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size);
313
6.10k
      memcpy(REAL_PTR(use_highbd, dst8),
314
6.10k
             REAL_PTR(use_highbd,
315
6.10k
                      data8_tl + (-RESTORATION_BORDER + 1) * data_stride),
316
6.10k
             line_size);
317
6.10k
    }
318
319
10.8k
    if (copy_below) {
320
6.09k
      const int stripe_end = limits->v_start + h;
321
6.09k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
322
323
      // Only save and overwrite i=2 line.
324
6.09k
      uint8_t *dst8 = data8_bl + 2 * data_stride;
325
      // Save old pixels, then replace with data from stripe_boundary_below
326
6.09k
      memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size);
327
6.09k
      memcpy(REAL_PTR(use_highbd, dst8),
328
6.09k
             REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size);
329
6.09k
    }
330
10.8k
  }
331
235k
}
332
333
// Once a processing stripe is finished, this function sets the boundary
334
// pixels which were overwritten by setup_processing_stripe_boundary()
335
// back to their original values
336
static void restore_processing_stripe_boundary(
337
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
338
    int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above,
339
231k
    int copy_below, int opt) {
340
231k
  const int line_width =
341
231k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
342
231k
  const int line_size = line_width << use_highbd;
343
344
231k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
345
346
231k
  if (!opt) {
347
220k
    if (copy_above) {
348
193k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
349
773k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
350
579k
        uint8_t *dst8 = data8_tl + i * data_stride;
351
579k
        memcpy(REAL_PTR(use_highbd, dst8),
352
579k
               rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
353
579k
      }
354
193k
    }
355
356
220k
    if (copy_below) {
357
194k
      const int stripe_bottom = limits->v_start + h;
358
194k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
359
360
779k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
361
584k
        if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
362
363
584k
        uint8_t *dst8 = data8_bl + i * data_stride;
364
584k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
365
584k
      }
366
194k
    }
367
220k
  } else {
368
10.8k
    if (copy_above) {
369
6.09k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
370
371
      // Only restore i=-RESTORATION_BORDER line.
372
6.09k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
373
6.09k
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size);
374
6.09k
    }
375
376
10.8k
    if (copy_below) {
377
6.08k
      const int stripe_bottom = limits->v_start + h;
378
6.08k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
379
380
      // Only restore i=2 line.
381
6.08k
      if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) {
382
6.08k
        uint8_t *dst8 = data8_bl + 2 * data_stride;
383
6.08k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size);
384
6.08k
      }
385
6.08k
    }
386
10.8k
  }
387
231k
}
388
389
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
390
                                 int stripe_width, int stripe_height,
391
                                 int procunit_width, const uint8_t *src,
392
                                 int src_stride, uint8_t *dst, int dst_stride,
393
                                 int32_t *tmpbuf, int bit_depth,
394
44.2k
                                 struct aom_internal_error_info *error_info) {
395
44.2k
  (void)tmpbuf;
396
44.2k
  (void)bit_depth;
397
44.2k
  (void)error_info;
398
44.2k
  assert(bit_depth == 8);
399
44.2k
  const WienerConvolveParams conv_params = get_conv_params_wiener(8);
400
401
295k
  for (int j = 0; j < stripe_width; j += procunit_width) {
402
250k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
403
250k
    const uint8_t *src_p = src + j;
404
250k
    uint8_t *dst_p = dst + j;
405
250k
    av1_wiener_convolve_add_src(
406
250k
        src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16,
407
250k
        rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params);
408
250k
  }
409
44.2k
}
410
411
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
412
   over the input. The window is of size (2r + 1)x(2r + 1), and we
413
   specialize to r = 1, 2, 3. A default function is used for r > 3.
414
415
   Each loop follows the same format: We keep a window's worth of input
416
   in individual variables and select data out of that as appropriate.
417
*/
418
static void boxsum1(int32_t *src, int width, int height, int src_stride,
419
0
                    int sqr, int32_t *dst, int dst_stride) {
420
0
  int i, j, a, b, c;
421
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
422
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
423
424
  // Vertical sum over 3-pixel regions, from src into dst.
425
0
  if (!sqr) {
426
0
    for (j = 0; j < width; ++j) {
427
0
      a = src[j];
428
0
      b = src[src_stride + j];
429
0
      c = src[2 * src_stride + j];
430
431
0
      dst[j] = a + b;
432
0
      for (i = 1; i < height - 2; ++i) {
433
        // Loop invariant: At the start of each iteration,
434
        // a = src[(i - 1) * src_stride + j]
435
        // b = src[(i    ) * src_stride + j]
436
        // c = src[(i + 1) * src_stride + j]
437
0
        dst[i * dst_stride + j] = a + b + c;
438
0
        a = b;
439
0
        b = c;
440
0
        c = src[(i + 2) * src_stride + j];
441
0
      }
442
0
      dst[i * dst_stride + j] = a + b + c;
443
0
      dst[(i + 1) * dst_stride + j] = b + c;
444
0
    }
445
0
  } else {
446
0
    for (j = 0; j < width; ++j) {
447
0
      a = src[j] * src[j];
448
0
      b = src[src_stride + j] * src[src_stride + j];
449
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
450
451
0
      dst[j] = a + b;
452
0
      for (i = 1; i < height - 2; ++i) {
453
0
        dst[i * dst_stride + j] = a + b + c;
454
0
        a = b;
455
0
        b = c;
456
0
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
457
0
      }
458
0
      dst[i * dst_stride + j] = a + b + c;
459
0
      dst[(i + 1) * dst_stride + j] = b + c;
460
0
    }
461
0
  }
462
463
  // Horizontal sum over 3-pixel regions of dst
464
0
  for (i = 0; i < height; ++i) {
465
0
    a = dst[i * dst_stride];
466
0
    b = dst[i * dst_stride + 1];
467
0
    c = dst[i * dst_stride + 2];
468
469
0
    dst[i * dst_stride] = a + b;
470
0
    for (j = 1; j < width - 2; ++j) {
471
      // Loop invariant: At the start of each iteration,
472
      // a = src[i * src_stride + (j - 1)]
473
      // b = src[i * src_stride + (j    )]
474
      // c = src[i * src_stride + (j + 1)]
475
0
      dst[i * dst_stride + j] = a + b + c;
476
0
      a = b;
477
0
      b = c;
478
0
      c = dst[i * dst_stride + (j + 2)];
479
0
    }
480
0
    dst[i * dst_stride + j] = a + b + c;
481
0
    dst[i * dst_stride + (j + 1)] = b + c;
482
0
  }
483
0
}
484
485
static void boxsum2(int32_t *src, int width, int height, int src_stride,
486
0
                    int sqr, int32_t *dst, int dst_stride) {
487
0
  int i, j, a, b, c, d, e;
488
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
489
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
490
491
  // Vertical sum over 5-pixel regions, from src into dst.
492
0
  if (!sqr) {
493
0
    for (j = 0; j < width; ++j) {
494
0
      a = src[j];
495
0
      b = src[src_stride + j];
496
0
      c = src[2 * src_stride + j];
497
0
      d = src[3 * src_stride + j];
498
0
      e = src[4 * src_stride + j];
499
500
0
      dst[j] = a + b + c;
501
0
      dst[dst_stride + j] = a + b + c + d;
502
0
      for (i = 2; i < height - 3; ++i) {
503
        // Loop invariant: At the start of each iteration,
504
        // a = src[(i - 2) * src_stride + j]
505
        // b = src[(i - 1) * src_stride + j]
506
        // c = src[(i    ) * src_stride + j]
507
        // d = src[(i + 1) * src_stride + j]
508
        // e = src[(i + 2) * src_stride + j]
509
0
        dst[i * dst_stride + j] = a + b + c + d + e;
510
0
        a = b;
511
0
        b = c;
512
0
        c = d;
513
0
        d = e;
514
0
        e = src[(i + 3) * src_stride + j];
515
0
      }
516
0
      dst[i * dst_stride + j] = a + b + c + d + e;
517
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
518
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
519
0
    }
520
0
  } else {
521
0
    for (j = 0; j < width; ++j) {
522
0
      a = src[j] * src[j];
523
0
      b = src[src_stride + j] * src[src_stride + j];
524
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
525
0
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
526
0
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
527
528
0
      dst[j] = a + b + c;
529
0
      dst[dst_stride + j] = a + b + c + d;
530
0
      for (i = 2; i < height - 3; ++i) {
531
0
        dst[i * dst_stride + j] = a + b + c + d + e;
532
0
        a = b;
533
0
        b = c;
534
0
        c = d;
535
0
        d = e;
536
0
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
537
0
      }
538
0
      dst[i * dst_stride + j] = a + b + c + d + e;
539
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
540
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
541
0
    }
542
0
  }
543
544
  // Horizontal sum over 5-pixel regions of dst
545
0
  for (i = 0; i < height; ++i) {
546
0
    a = dst[i * dst_stride];
547
0
    b = dst[i * dst_stride + 1];
548
0
    c = dst[i * dst_stride + 2];
549
0
    d = dst[i * dst_stride + 3];
550
0
    e = dst[i * dst_stride + 4];
551
552
0
    dst[i * dst_stride] = a + b + c;
553
0
    dst[i * dst_stride + 1] = a + b + c + d;
554
0
    for (j = 2; j < width - 3; ++j) {
555
      // Loop invariant: At the start of each iteration,
556
      // a = src[i * src_stride + (j - 2)]
557
      // b = src[i * src_stride + (j - 1)]
558
      // c = src[i * src_stride + (j    )]
559
      // d = src[i * src_stride + (j + 1)]
560
      // e = src[i * src_stride + (j + 2)]
561
0
      dst[i * dst_stride + j] = a + b + c + d + e;
562
0
      a = b;
563
0
      b = c;
564
0
      c = d;
565
0
      d = e;
566
0
      e = dst[i * dst_stride + (j + 3)];
567
0
    }
568
0
    dst[i * dst_stride + j] = a + b + c + d + e;
569
0
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
570
0
    dst[i * dst_stride + (j + 2)] = c + d + e;
571
0
  }
572
0
}
573
574
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
575
0
                   int sqr, int32_t *dst, int dst_stride) {
576
0
  if (r == 1)
577
0
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
578
0
  else if (r == 2)
579
0
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
580
0
  else
581
0
    assert(0 && "Invalid value of r in self-guided filter");
582
0
}
583
584
468k
void av1_decode_xq(const int *xqd, int *xq, const sgr_params_type *params) {
585
468k
  if (params->r[0] == 0) {
586
63.9k
    xq[0] = 0;
587
63.9k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1];
588
404k
  } else if (params->r[1] == 0) {
589
28.3k
    xq[0] = xqd[0];
590
28.3k
    xq[1] = 0;
591
375k
  } else {
592
375k
    xq[0] = xqd[0];
593
375k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
594
375k
  }
595
468k
}
596
597
const int32_t av1_x_by_xplus1[256] = {
598
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
599
  // instead of 0. See comments in selfguided_restoration_internal() for why
600
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
601
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
602
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
603
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
604
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
605
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
606
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
607
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
608
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
609
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
610
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
611
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
612
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
613
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
614
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
615
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
616
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
617
  256,
618
};
619
620
const int32_t av1_one_by_x[MAX_NELEM] = {
621
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
622
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
623
};
624
625
static void calculate_intermediate_result(int32_t *dgd, int width, int height,
626
                                          int dgd_stride, int bit_depth,
627
                                          int sgr_params_idx, int radius_idx,
628
0
                                          int pass, int32_t *A, int32_t *B) {
629
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
630
0
  const int r = params->r[radius_idx];
631
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
632
0
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
633
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
634
  // leading to a significant speed improvement.
635
  // We also align the stride to a multiple of 16 bytes, for consistency
636
  // with the SIMD version of this function.
637
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
638
0
  const int step = pass == 0 ? 1 : 2;
639
0
  int i, j;
640
641
0
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
642
0
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
643
0
         "Need SGRPROJ_BORDER_* >= r+1");
644
645
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
646
0
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
647
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
648
0
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
649
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
650
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
651
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
652
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
653
0
  for (i = -1; i < height + 1; i += step) {
654
0
    for (j = -1; j < width + 1; ++j) {
655
0
      const int k = i * buf_stride + j;
656
0
      const int n = (2 * r + 1) * (2 * r + 1);
657
658
      // a < 2^16 * n < 2^22 regardless of bit depth
659
0
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
660
      // b < 2^8 * n < 2^14 regardless of bit depth
661
0
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
662
663
      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
664
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
665
      // This bound on p is due to:
666
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
667
      //
668
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
669
      // This is an artefact of rounding, and can only happen if all pixels
670
      // are (almost) identical, so in this case we saturate to p=0.
671
0
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
672
673
0
      const uint32_t s = params->s[radius_idx];
674
675
      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
676
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
677
      // (this holds even after accounting for the rounding in s)
678
0
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
679
680
      // Note: We have to be quite careful about the value of A[k].
681
      // This is used as a blend factor between individual pixel values and the
682
      // local mean. So it logically has a range of [0, 256], including both
683
      // endpoints.
684
      //
685
      // This is a pain for hardware, as we'd like something which can be stored
686
      // in exactly 8 bits.
687
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
688
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
689
      // slightly above 2^(8 + bit depth), due to rounding in the value of
690
      // av1_one_by_x[25-1].
691
      //
692
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
693
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
694
      // overflow), without significantly affecting the final result: z == 0
695
      // implies that the image is essentially "flat", so the local mean and
696
      // individual pixel values are very similar.
697
      //
698
      // Note that saturating on the other side, ie. requring A[k] <= 255,
699
      // would be a bad idea, as that corresponds to the case where the image
700
      // is very variable, when we want to preserve the local pixel value as
701
      // much as possible.
702
0
      A[k] = av1_x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]
703
704
      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
705
      // av1_one_by_x[n - 1] = round(2^12 / n)
706
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
707
      // and B[k] is set to a value < 2^(8 + bit depth)
708
      // This holds even with the rounding in av1_one_by_x and in the overall
709
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
710
0
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
711
0
                                             (uint32_t)B[k] *
712
0
                                             (uint32_t)av1_one_by_x[n - 1],
713
0
                                         SGRPROJ_RECIP_BITS);
714
0
    }
715
0
  }
716
0
}
717
718
static void selfguided_restoration_fast_internal(
719
    int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst,
720
0
    int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) {
721
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
722
0
  const int r = params->r[radius_idx];
723
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
724
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
725
  // leading to a significant speed improvement.
726
  // We also align the stride to a multiple of 16 bytes, for consistency
727
  // with the SIMD version of this function.
728
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
729
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
730
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
731
0
  int32_t *A = A_;
732
0
  int32_t *B = B_;
733
0
  int i, j;
734
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
735
0
                                sgr_params_idx, radius_idx, 1, A, B);
736
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
737
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
738
739
  // Use the A[] and B[] arrays to calculate the filtered image
740
0
  (void)r;
741
0
  assert(r == 2);
742
0
  for (i = 0; i < height; ++i) {
743
0
    if (!(i & 1)) {  // even row
744
0
      for (j = 0; j < width; ++j) {
745
0
        const int k = i * buf_stride + j;
746
0
        const int l = i * dgd_stride + j;
747
0
        const int m = i * dst_stride + j;
748
0
        const int nb = 5;
749
0
        const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 +
750
0
                          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
751
0
                           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
752
0
                              5;
753
0
        const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 +
754
0
                          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
755
0
                           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
756
0
                              5;
757
0
        const int32_t v = a * dgd[l] + b;
758
0
        dst[m] =
759
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
760
0
      }
761
0
    } else {  // odd row
762
0
      for (j = 0; j < width; ++j) {
763
0
        const int k = i * buf_stride + j;
764
0
        const int l = i * dgd_stride + j;
765
0
        const int m = i * dst_stride + j;
766
0
        const int nb = 4;
767
0
        const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5;
768
0
        const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5;
769
0
        const int32_t v = a * dgd[l] + b;
770
0
        dst[m] =
771
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
772
0
      }
773
0
    }
774
0
  }
775
0
}
776
777
static void selfguided_restoration_internal(int32_t *dgd, int width, int height,
778
                                            int dgd_stride, int32_t *dst,
779
                                            int dst_stride, int bit_depth,
780
                                            int sgr_params_idx,
781
0
                                            int radius_idx) {
782
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
783
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
784
  // leading to a significant speed improvement.
785
  // We also align the stride to a multiple of 16 bytes, for consistency
786
  // with the SIMD version of this function.
787
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
788
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
789
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
790
0
  int32_t *A = A_;
791
0
  int32_t *B = B_;
792
0
  int i, j;
793
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
794
0
                                sgr_params_idx, radius_idx, 0, A, B);
795
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
796
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
797
798
  // Use the A[] and B[] arrays to calculate the filtered image
799
0
  for (i = 0; i < height; ++i) {
800
0
    for (j = 0; j < width; ++j) {
801
0
      const int k = i * buf_stride + j;
802
0
      const int l = i * dgd_stride + j;
803
0
      const int m = i * dst_stride + j;
804
0
      const int nb = 5;
805
0
      const int32_t a =
806
0
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
807
0
              4 +
808
0
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
809
0
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
810
0
              3;
811
0
      const int32_t b =
812
0
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
813
0
              4 +
814
0
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
815
0
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
816
0
              3;
817
0
      const int32_t v = a * dgd[l] + b;
818
0
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
819
0
    }
820
0
  }
821
0
}
822
823
int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
824
                                 int dgd_stride, int32_t *flt0, int32_t *flt1,
825
                                 int flt_stride, int sgr_params_idx,
826
0
                                 int bit_depth, int highbd) {
827
0
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
828
0
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
829
0
  int32_t *dgd32 =
830
0
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
831
832
0
  if (highbd) {
833
0
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
834
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
835
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
836
0
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
837
0
      }
838
0
    }
839
0
  } else {
840
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
841
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
842
0
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
843
0
      }
844
0
    }
845
0
  }
846
847
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
848
  // If params->r == 0 we skip the corresponding filter. We only allow one of
849
  // the radii to be 0, as having both equal to 0 would be equivalent to
850
  // skipping SGR entirely.
851
0
  assert(!(params->r[0] == 0 && params->r[1] == 0));
852
853
0
  if (params->r[0] > 0)
854
0
    selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride,
855
0
                                         flt0, flt_stride, bit_depth,
856
0
                                         sgr_params_idx, 0);
857
0
  if (params->r[1] > 0)
858
0
    selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
859
0
                                    flt_stride, bit_depth, sgr_params_idx, 1);
860
0
  return 0;
861
0
}
862
863
int av1_apply_selfguided_restoration_c(const uint8_t *dat8, int width,
864
                                       int height, int stride, int eps,
865
                                       const int *xqd, uint8_t *dst8,
866
                                       int dst_stride, int32_t *tmpbuf,
867
0
                                       int bit_depth, int highbd) {
868
0
  int32_t *flt0 = tmpbuf;
869
0
  int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
870
0
  assert(width * height <= RESTORATION_UNITPELS_MAX);
871
872
0
  const int ret = av1_selfguided_restoration_c(
873
0
      dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd);
874
0
  if (ret != 0) return ret;
875
0
  const sgr_params_type *const params = &av1_sgr_params[eps];
876
0
  int xq[2];
877
0
  av1_decode_xq(xqd, xq, params);
878
0
  for (int i = 0; i < height; ++i) {
879
0
    for (int j = 0; j < width; ++j) {
880
0
      const int k = i * width + j;
881
0
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
882
0
      const uint8_t *dat8ij = dat8 + i * stride + j;
883
884
0
      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
885
0
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
886
0
      int32_t v = u << SGRPROJ_PRJ_BITS;
887
      // If params->r == 0 then we skipped the filtering in
888
      // av1_selfguided_restoration_c, i.e. flt[k] == u
889
0
      if (params->r[0] > 0) v += xq[0] * (flt0[k] - u);
890
0
      if (params->r[1] > 0) v += xq[1] * (flt1[k] - u);
891
0
      const int16_t w =
892
0
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
893
894
0
      const uint16_t out = clip_pixel_highbd(w, bit_depth);
895
0
      if (highbd)
896
0
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
897
0
      else
898
0
        *dst8ij = (uint8_t)out;
899
0
    }
900
0
  }
901
0
  return 0;
902
0
}
903
904
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
905
                                  int stripe_width, int stripe_height,
906
                                  int procunit_width, const uint8_t *src,
907
                                  int src_stride, uint8_t *dst, int dst_stride,
908
                                  int32_t *tmpbuf, int bit_depth,
909
75.0k
                                  struct aom_internal_error_info *error_info) {
910
75.0k
  (void)bit_depth;
911
75.0k
  assert(bit_depth == 8);
912
913
323k
  for (int j = 0; j < stripe_width; j += procunit_width) {
914
248k
    int w = AOMMIN(procunit_width, stripe_width - j);
915
248k
    if (av1_apply_selfguided_restoration(
916
248k
            src + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
917
248k
            rui->sgrproj_info.xqd, dst + j, dst_stride, tmpbuf, bit_depth,
918
248k
            0) != 0) {
919
0
      aom_internal_error(
920
0
          error_info, AOM_CODEC_MEM_ERROR,
921
0
          "Error allocating buffer in av1_apply_selfguided_restoration");
922
0
    }
923
248k
  }
924
75.0k
}
925
926
#if CONFIG_AV1_HIGHBITDEPTH
927
static void wiener_filter_stripe_highbd(
928
    const RestorationUnitInfo *rui, int stripe_width, int stripe_height,
929
    int procunit_width, const uint8_t *src8, int src_stride, uint8_t *dst8,
930
    int dst_stride, int32_t *tmpbuf, int bit_depth,
931
40.6k
    struct aom_internal_error_info *error_info) {
932
40.6k
  (void)tmpbuf;
933
40.6k
  (void)error_info;
934
40.6k
  const WienerConvolveParams conv_params = get_conv_params_wiener(bit_depth);
935
936
276k
  for (int j = 0; j < stripe_width; j += procunit_width) {
937
235k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
938
235k
    const uint8_t *src8_p = src8 + j;
939
235k
    uint8_t *dst8_p = dst8 + j;
940
235k
    av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride,
941
235k
                                       rui->wiener_info.hfilter, 16,
942
235k
                                       rui->wiener_info.vfilter, 16, w,
943
235k
                                       stripe_height, &conv_params, bit_depth);
944
235k
  }
945
40.6k
}
946
947
static void sgrproj_filter_stripe_highbd(
948
    const RestorationUnitInfo *rui, int stripe_width, int stripe_height,
949
    int procunit_width, const uint8_t *src8, int src_stride, uint8_t *dst8,
950
    int dst_stride, int32_t *tmpbuf, int bit_depth,
951
75.0k
    struct aom_internal_error_info *error_info) {
952
287k
  for (int j = 0; j < stripe_width; j += procunit_width) {
953
212k
    int w = AOMMIN(procunit_width, stripe_width - j);
954
212k
    if (av1_apply_selfguided_restoration(
955
212k
            src8 + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
956
212k
            rui->sgrproj_info.xqd, dst8 + j, dst_stride, tmpbuf, bit_depth,
957
212k
            1) != 0) {
958
0
      aom_internal_error(
959
0
          error_info, AOM_CODEC_MEM_ERROR,
960
0
          "Error allocating buffer in av1_apply_selfguided_restoration");
961
0
    }
962
212k
  }
963
75.0k
}
964
#endif  // CONFIG_AV1_HIGHBITDEPTH
965
966
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
967
                                  int stripe_width, int stripe_height,
968
                                  int procunit_width, const uint8_t *src,
969
                                  int src_stride, uint8_t *dst, int dst_stride,
970
                                  int32_t *tmpbuf, int bit_depth,
971
                                  struct aom_internal_error_info *error_info);
972
973
#if CONFIG_AV1_HIGHBITDEPTH
974
#define NUM_STRIPE_FILTERS 4
975
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
976
  wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd,
977
  sgrproj_filter_stripe_highbd
978
};
979
#else
980
#define NUM_STRIPE_FILTERS 2
981
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
982
  wiener_filter_stripe, sgrproj_filter_stripe
983
};
984
#endif  // CONFIG_AV1_HIGHBITDEPTH
985
986
// Filter one restoration unit
987
void av1_loop_restoration_filter_unit(
988
    const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
989
    const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
990
    int plane_w, int plane_h, int ss_x, int ss_y, int highbd, int bit_depth,
991
    uint8_t *data8, int stride, uint8_t *dst8, int dst_stride, int32_t *tmpbuf,
992
101k
    int optimized_lr, struct aom_internal_error_info *error_info) {
993
101k
  RestorationType unit_rtype = rui->restoration_type;
994
995
101k
  int unit_h = limits->v_end - limits->v_start;
996
101k
  int unit_w = limits->h_end - limits->h_start;
997
101k
  uint8_t *data8_tl =
998
101k
      data8 + limits->v_start * (ptrdiff_t)stride + limits->h_start;
999
101k
  uint8_t *dst8_tl =
1000
101k
      dst8 + limits->v_start * (ptrdiff_t)dst_stride + limits->h_start;
1001
1002
101k
  if (unit_rtype == RESTORE_NONE) {
1003
35.5k
    copy_rest_unit(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride,
1004
35.5k
                   highbd);
1005
35.5k
    return;
1006
35.5k
  }
1007
1008
66.4k
  const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ);
1009
66.4k
  assert(filter_idx < NUM_STRIPE_FILTERS);
1010
66.5k
  const stripe_filter_fun stripe_filter = stripe_filters[filter_idx];
1011
1012
66.5k
  const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
1013
1014
  // Filter the whole image one stripe at a time
1015
66.5k
  RestorationTileLimits remaining_stripes = *limits;
1016
66.5k
  int i = 0;
1017
301k
  while (i < unit_h) {
1018
235k
    int copy_above, copy_below;
1019
235k
    remaining_stripes.v_start = limits->v_start + i;
1020
1021
235k
    get_stripe_boundary_info(&remaining_stripes, plane_w, plane_h, ss_y,
1022
235k
                             &copy_above, &copy_below);
1023
1024
235k
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1025
235k
    const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
1026
1027
    // Work out where this stripe's boundaries are within
1028
    // rsb->stripe_boundary_{above,below}
1029
235k
    const int frame_stripe =
1030
235k
        (remaining_stripes.v_start + runit_offset) / full_stripe_height;
1031
235k
    const int rsb_row = RESTORATION_CTX_VERT * frame_stripe;
1032
1033
    // Calculate this stripe's height, based on two rules:
1034
    // * The topmost stripe in the frame is 8 luma pixels shorter than usual.
1035
    // * We can't extend past the end of the current restoration unit
1036
235k
    const int nominal_stripe_height =
1037
235k
        full_stripe_height - ((frame_stripe == 0) ? runit_offset : 0);
1038
235k
    const int h = AOMMIN(nominal_stripe_height,
1039
235k
                         remaining_stripes.v_end - remaining_stripes.v_start);
1040
1041
235k
    setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd,
1042
235k
                                     h, data8, stride, rlbs, copy_above,
1043
235k
                                     copy_below, optimized_lr);
1044
1045
235k
    stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride,
1046
235k
                  dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth,
1047
235k
                  error_info);
1048
1049
235k
    restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h,
1050
235k
                                       data8, stride, copy_above, copy_below,
1051
235k
                                       optimized_lr);
1052
1053
235k
    i += h;
1054
235k
  }
1055
66.5k
}
1056
1057
static void filter_frame_on_unit(const RestorationTileLimits *limits,
1058
                                 int rest_unit_idx, void *priv, int32_t *tmpbuf,
1059
                                 RestorationLineBuffers *rlbs,
1060
102k
                                 struct aom_internal_error_info *error_info) {
1061
102k
  FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
1062
102k
  const RestorationInfo *rsi = ctxt->rsi;
1063
1064
102k
  av1_loop_restoration_filter_unit(
1065
102k
      limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs,
1066
102k
      ctxt->plane_w, ctxt->plane_h, ctxt->ss_x, ctxt->ss_y, ctxt->highbd,
1067
102k
      ctxt->bit_depth, ctxt->data8, ctxt->data_stride, ctxt->dst8,
1068
102k
      ctxt->dst_stride, tmpbuf, rsi->optimized_lr, error_info);
1069
102k
}
1070
1071
void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
1072
                                            YV12_BUFFER_CONFIG *frame,
1073
                                            AV1_COMMON *cm, int optimized_lr,
1074
21.7k
                                            int num_planes) {
1075
21.7k
  const SequenceHeader *const seq_params = cm->seq_params;
1076
21.7k
  const int bit_depth = seq_params->bit_depth;
1077
21.7k
  const int highbd = seq_params->use_highbitdepth;
1078
21.7k
  lr_ctxt->dst = &cm->rst_frame;
1079
1080
21.7k
  const int frame_width = frame->crop_widths[0];
1081
21.7k
  const int frame_height = frame->crop_heights[0];
1082
21.7k
  if (aom_realloc_frame_buffer(
1083
21.7k
          lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
1084
21.7k
          seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
1085
21.7k
          cm->features.byte_alignment, NULL, NULL, NULL, false,
1086
21.7k
          0) != AOM_CODEC_OK)
1087
0
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1088
0
                       "Failed to allocate restoration dst buffer");
1089
1090
21.7k
  lr_ctxt->on_rest_unit = filter_frame_on_unit;
1091
21.7k
  lr_ctxt->frame = frame;
1092
77.3k
  for (int plane = 0; plane < num_planes; ++plane) {
1093
55.6k
    RestorationInfo *rsi = &cm->rst_info[plane];
1094
55.6k
    RestorationType rtype = rsi->frame_restoration_type;
1095
55.6k
    rsi->optimized_lr = optimized_lr;
1096
55.6k
    lr_ctxt->ctxt[plane].rsi = rsi;
1097
1098
55.6k
    if (rtype == RESTORE_NONE) {
1099
13.7k
      continue;
1100
13.7k
    }
1101
1102
41.9k
    const int is_uv = plane > 0;
1103
41.9k
    int plane_w, plane_h;
1104
41.9k
    av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1105
41.9k
    assert(plane_w == frame->crop_widths[is_uv]);
1106
41.9k
    assert(plane_h == frame->crop_heights[is_uv]);
1107
1108
41.9k
    av1_extend_frame(frame->buffers[plane], plane_w, plane_h,
1109
41.9k
                     frame->strides[is_uv], RESTORATION_BORDER,
1110
41.9k
                     RESTORATION_BORDER, highbd);
1111
1112
41.9k
    FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane];
1113
41.9k
    lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x;
1114
41.9k
    lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y;
1115
41.9k
    lr_plane_ctxt->plane_w = plane_w;
1116
41.9k
    lr_plane_ctxt->plane_h = plane_h;
1117
41.9k
    lr_plane_ctxt->highbd = highbd;
1118
41.9k
    lr_plane_ctxt->bit_depth = bit_depth;
1119
41.9k
    lr_plane_ctxt->data8 = frame->buffers[plane];
1120
41.9k
    lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane];
1121
41.9k
    lr_plane_ctxt->data_stride = frame->strides[is_uv];
1122
41.9k
    lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv];
1123
41.9k
  }
1124
21.7k
}
1125
1126
static void loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt,
1127
8.50k
                                         AV1_COMMON *cm, int num_planes) {
1128
8.50k
  typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
1129
8.50k
                           YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
1130
8.50k
                           int vstart, int vend);
1131
8.50k
  static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
1132
8.50k
                                         aom_yv12_partial_coloc_copy_u,
1133
8.50k
                                         aom_yv12_partial_coloc_copy_v };
1134
8.50k
  assert(num_planes <= 3);
1135
27.0k
  for (int plane = 0; plane < num_planes; ++plane) {
1136
18.5k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1137
14.8k
    FilterFrameCtxt *lr_plane_ctxt = &loop_rest_ctxt->ctxt[plane];
1138
14.8k
    copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, 0,
1139
14.8k
                     lr_plane_ctxt->plane_w, 0, lr_plane_ctxt->plane_h);
1140
14.8k
  }
1141
8.50k
}
1142
1143
// Call on_rest_unit for each loop restoration unit in the plane.
1144
static void foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane,
1145
                                       rest_unit_visitor_t on_rest_unit,
1146
                                       void *priv, int32_t *tmpbuf,
1147
14.8k
                                       RestorationLineBuffers *rlbs) {
1148
14.8k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1149
14.8k
  const int hnum_rest_units = rsi->horz_units;
1150
14.8k
  const int vnum_rest_units = rsi->vert_units;
1151
14.8k
  const int unit_size = rsi->restoration_unit_size;
1152
1153
14.8k
  const int is_uv = plane > 0;
1154
14.8k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1155
14.8k
  const int ext_size = unit_size * 3 / 2;
1156
14.8k
  int plane_w, plane_h;
1157
14.8k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1158
1159
14.8k
  int y0 = 0, i = 0;
1160
31.2k
  while (y0 < plane_h) {
1161
16.3k
    int remaining_h = plane_h - y0;
1162
16.3k
    int h = (remaining_h < ext_size) ? remaining_h : unit_size;
1163
1164
16.3k
    RestorationTileLimits limits;
1165
16.3k
    limits.v_start = y0;
1166
16.3k
    limits.v_end = y0 + h;
1167
16.3k
    assert(limits.v_end <= plane_h);
1168
    // Offset upwards to align with the restoration processing stripe
1169
16.3k
    const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
1170
16.3k
    limits.v_start = AOMMAX(0, limits.v_start - voffset);
1171
16.3k
    if (limits.v_end < plane_h) limits.v_end -= voffset;
1172
1173
16.3k
    av1_foreach_rest_unit_in_row(&limits, plane_w, on_rest_unit, i, unit_size,
1174
16.3k
                                 hnum_rest_units, vnum_rest_units, plane, priv,
1175
16.3k
                                 tmpbuf, rlbs, av1_lr_sync_read_dummy,
1176
16.3k
                                 av1_lr_sync_write_dummy, NULL, cm->error);
1177
1178
16.3k
    y0 += h;
1179
16.3k
    ++i;
1180
16.3k
  }
1181
14.8k
}
1182
1183
static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm,
1184
8.50k
                                        int num_planes) {
1185
8.50k
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
1186
1187
27.0k
  for (int plane = 0; plane < num_planes; ++plane) {
1188
18.5k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) {
1189
3.64k
      continue;
1190
3.64k
    }
1191
1192
14.8k
    foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit, &ctxt[plane],
1193
14.8k
                               cm->rst_tmpbuf, cm->rlbs);
1194
14.8k
  }
1195
8.50k
}
1196
1197
void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame,
1198
                                       AV1_COMMON *cm, int optimized_lr,
1199
8.50k
                                       void *lr_ctxt) {
1200
8.50k
  assert(!cm->features.all_lossless);
1201
8.50k
  const int num_planes = av1_num_planes(cm);
1202
1203
8.50k
  AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
1204
1205
8.50k
  av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
1206
8.50k
                                         optimized_lr, num_planes);
1207
1208
8.50k
  foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes);
1209
1210
8.50k
  loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes);
1211
8.50k
}
1212
1213
void av1_foreach_rest_unit_in_row(
1214
    RestorationTileLimits *limits, int plane_w,
1215
    rest_unit_visitor_t on_rest_unit, int row_number, int unit_size,
1216
    int hnum_rest_units, int vnum_rest_units, int plane, void *priv,
1217
    int32_t *tmpbuf, RestorationLineBuffers *rlbs, sync_read_fn_t on_sync_read,
1218
    sync_write_fn_t on_sync_write, struct AV1LrSyncData *const lr_sync,
1219
56.9k
    struct aom_internal_error_info *error_info) {
1220
56.9k
  const int ext_size = unit_size * 3 / 2;
1221
56.9k
  int x0 = 0, j = 0;
1222
158k
  while (x0 < plane_w) {
1223
102k
    int remaining_w = plane_w - x0;
1224
102k
    int w = (remaining_w < ext_size) ? remaining_w : unit_size;
1225
1226
102k
    limits->h_start = x0;
1227
102k
    limits->h_end = x0 + w;
1228
102k
    assert(limits->h_end <= plane_w);
1229
1230
102k
    const int unit_idx = row_number * hnum_rest_units + j;
1231
1232
    // No sync for even numbered rows
1233
    // For odd numbered rows, Loop Restoration of current block requires the LR
1234
    // of top-right and bottom-right blocks to be completed
1235
1236
    // top-right sync
1237
102k
    on_sync_read(lr_sync, row_number, j, plane);
1238
102k
    if ((row_number + 1) < vnum_rest_units)
1239
      // bottom-right sync
1240
45.2k
      on_sync_read(lr_sync, row_number + 2, j, plane);
1241
1242
102k
#if CONFIG_MULTITHREAD
1243
102k
    if (lr_sync && lr_sync->num_workers > 1) {
1244
81.9k
      pthread_mutex_lock(lr_sync->job_mutex);
1245
81.9k
      const bool lr_mt_exit = lr_sync->lr_mt_exit;
1246
81.9k
      pthread_mutex_unlock(lr_sync->job_mutex);
1247
      // Exit in case any worker has encountered an error.
1248
81.9k
      if (lr_mt_exit) return;
1249
81.9k
    }
1250
102k
#endif
1251
1252
102k
    on_rest_unit(limits, unit_idx, priv, tmpbuf, rlbs, error_info);
1253
1254
102k
    on_sync_write(lr_sync, row_number, j, hnum_rest_units, plane);
1255
1256
102k
    x0 += w;
1257
102k
    ++j;
1258
102k
  }
1259
56.9k
}
1260
1261
104k
void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) {
1262
104k
  (void)lr_sync;
1263
104k
  (void)r;
1264
104k
  (void)c;
1265
104k
  (void)plane;
1266
104k
}
1267
1268
void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c,
1269
50.3k
                             const int sb_cols, int plane) {
1270
50.3k
  (void)lr_sync;
1271
50.3k
  (void)r;
1272
50.3k
  (void)c;
1273
50.3k
  (void)sb_cols;
1274
50.3k
  (void)plane;
1275
50.3k
}
1276
1277
int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane,
1278
                                       int mi_row, int mi_col, BLOCK_SIZE bsize,
1279
                                       int *rcol0, int *rcol1, int *rrow0,
1280
16.6M
                                       int *rrow1) {
1281
16.6M
  assert(rcol0 && rcol1 && rrow0 && rrow1);
1282
1283
16.6M
  if (bsize != cm->seq_params->sb_size) return 0;
1284
1285
16.6M
  assert(!cm->features.all_lossless);
1286
1287
811k
  const int is_uv = plane > 0;
1288
1289
  // Compute the mi-unit corners of the superblock
1290
811k
  const int mi_row0 = mi_row;
1291
811k
  const int mi_col0 = mi_col;
1292
811k
  const int mi_row1 = mi_row0 + mi_size_high[bsize];
1293
811k
  const int mi_col1 = mi_col0 + mi_size_wide[bsize];
1294
1295
811k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1296
811k
  const int size = rsi->restoration_unit_size;
1297
811k
  const int horz_units = rsi->horz_units;
1298
811k
  const int vert_units = rsi->vert_units;
1299
1300
  // The size of an MI-unit on this plane of the image
1301
811k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1302
811k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1303
811k
  const int mi_size_x = MI_SIZE >> ss_x;
1304
811k
  const int mi_size_y = MI_SIZE >> ss_y;
1305
1306
  // Write m for the relative mi column or row, D for the superres denominator
1307
  // and N for the superres numerator. If u is the upscaled pixel offset then
1308
  // we can write the downscaled pixel offset in two ways as:
1309
  //
1310
  //   MI_SIZE * m = N / D u
1311
  //
1312
  // from which we get u = D * MI_SIZE * m / N
1313
811k
  const int mi_to_num_x = av1_superres_scaled(cm)
1314
811k
                              ? mi_size_x * cm->superres_scale_denominator
1315
811k
                              : mi_size_x;
1316
811k
  const int mi_to_num_y = mi_size_y;
1317
811k
  const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size;
1318
811k
  const int denom_y = size;
1319
1320
811k
  const int rnd_x = denom_x - 1;
1321
811k
  const int rnd_y = denom_y - 1;
1322
1323
  // rcol0/rrow0 should be the first column/row of restoration units that
1324
  // doesn't start left/below of mi_col/mi_row. For this calculation, we need
1325
  // to round up the division (if the sb starts at runit column 10.1, the first
1326
  // matching runit has column index 11)
1327
811k
  *rcol0 = (mi_col0 * mi_to_num_x + rnd_x) / denom_x;
1328
811k
  *rrow0 = (mi_row0 * mi_to_num_y + rnd_y) / denom_y;
1329
1330
  // rel_col1/rel_row1 is the equivalent calculation, but for the superblock
1331
  // below-right. If we're at the bottom or right of the frame, this restoration
1332
  // unit might not exist, in which case we'll clamp accordingly.
1333
811k
  *rcol1 = AOMMIN((mi_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units);
1334
811k
  *rrow1 = AOMMIN((mi_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units);
1335
1336
811k
  return *rcol0 < *rcol1 && *rrow0 < *rrow1;
1337
807k
}
1338
1339
// Extend to left and right
1340
static void extend_lines(uint8_t *buf, int width, int height, int stride,
1341
340k
                         int extend, int use_highbitdepth) {
1342
1.02M
  for (int i = 0; i < height; ++i) {
1343
681k
    if (use_highbitdepth) {
1344
315k
      uint16_t *buf16 = (uint16_t *)buf;
1345
315k
      aom_memset16(buf16 - extend, buf16[0], extend);
1346
315k
      aom_memset16(buf16 + width, buf16[width - 1], extend);
1347
366k
    } else {
1348
366k
      memset(buf - extend, buf[0], extend);
1349
366k
      memset(buf + width, buf[width - 1], extend);
1350
366k
    }
1351
681k
    buf += stride;
1352
681k
  }
1353
340k
}
1354
1355
static void save_deblock_boundary_lines(
1356
    const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row,
1357
    int stripe, int use_highbd, int is_above,
1358
248k
    RestorationStripeBoundaries *boundaries) {
1359
248k
  const int is_uv = plane > 0;
1360
248k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1361
248k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1362
248k
  const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
1363
1364
248k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1365
248k
                               : boundaries->stripe_boundary_below;
1366
248k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1367
248k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1368
248k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1369
1370
  // There is a rare case in which a processing stripe can end 1px above the
1371
  // crop border. In this case, we do want to use deblocked pixels from below
1372
  // the stripe (hence why we ended up in this function), but instead of
1373
  // fetching 2 "below" rows we need to fetch one and duplicate it.
1374
  // This is equivalent to clamping the sample locations against the crop border
1375
248k
  const int lines_to_save =
1376
248k
      AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row);
1377
248k
  assert(lines_to_save == 1 || lines_to_save == 2);
1378
1379
248k
  int upscaled_width;
1380
248k
  int line_bytes;
1381
248k
  if (av1_superres_scaled(cm)) {
1382
40.0k
    const int ss_x = is_uv && cm->seq_params->subsampling_x;
1383
40.0k
    upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
1384
40.0k
    line_bytes = upscaled_width << use_highbd;
1385
40.0k
    if (use_highbd)
1386
9.38k
      av1_upscale_normative_rows(
1387
9.38k
          cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv],
1388
9.38k
          CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride,
1389
9.38k
          plane, lines_to_save);
1390
30.6k
    else
1391
30.6k
      av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows,
1392
30.6k
                                 boundaries->stripe_boundary_stride, plane,
1393
30.6k
                                 lines_to_save);
1394
208k
  } else {
1395
208k
    upscaled_width = frame->crop_widths[is_uv];
1396
208k
    line_bytes = upscaled_width << use_highbd;
1397
620k
    for (int i = 0; i < lines_to_save; i++) {
1398
412k
      memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride,
1399
412k
             line_bytes);
1400
412k
    }
1401
208k
  }
1402
  // If we only saved one line, then copy it into the second line buffer
1403
248k
  if (lines_to_save == 1)
1404
5.14k
    memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes);
1405
1406
248k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1407
248k
               RESTORATION_EXTRA_HORZ, use_highbd);
1408
248k
}
1409
1410
static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1411
                                     const AV1_COMMON *cm, int plane, int row,
1412
                                     int stripe, int use_highbd, int is_above,
1413
92.6k
                                     RestorationStripeBoundaries *boundaries) {
1414
92.6k
  const int is_uv = plane > 0;
1415
92.6k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1416
92.6k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1417
92.6k
  const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
1418
1419
92.6k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1420
92.6k
                               : boundaries->stripe_boundary_below;
1421
92.6k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1422
92.6k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1423
92.6k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1424
92.6k
  const int src_width = frame->crop_widths[is_uv];
1425
1426
  // At the point where this function is called, we've already applied
1427
  // superres. So we don't need to extend the lines here, we can just
1428
  // pull directly from the topmost row of the upscaled frame.
1429
92.6k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1430
92.6k
  const int upscaled_width = av1_superres_scaled(cm)
1431
92.6k
                                 ? (cm->superres_upscaled_width + ss_x) >> ss_x
1432
92.6k
                                 : src_width;
1433
92.6k
  const int line_bytes = upscaled_width << use_highbd;
1434
277k
  for (int i = 0; i < RESTORATION_CTX_VERT; i++) {
1435
    // Copy the line at 'src_rows' into both context lines
1436
185k
    memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes);
1437
185k
  }
1438
92.6k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1439
92.6k
               RESTORATION_EXTRA_HORZ, use_highbd);
1440
92.6k
}
1441
1442
static void save_boundary_lines(const YV12_BUFFER_CONFIG *frame, int use_highbd,
1443
92.6k
                                int plane, AV1_COMMON *cm, int after_cdef) {
1444
92.6k
  const int is_uv = plane > 0;
1445
92.6k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1446
92.6k
  const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1447
92.6k
  const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y;
1448
1449
92.6k
  int plane_w, plane_h;
1450
92.6k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1451
1452
92.6k
  RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries;
1453
1454
92.6k
  const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y);
1455
1456
92.6k
  int stripe_idx;
1457
433k
  for (stripe_idx = 0;; ++stripe_idx) {
1458
433k
    const int rel_y0 = AOMMAX(0, stripe_idx * stripe_height - stripe_off);
1459
433k
    const int y0 = rel_y0;
1460
433k
    if (y0 >= plane_h) break;
1461
1462
340k
    const int rel_y1 = (stripe_idx + 1) * stripe_height - stripe_off;
1463
340k
    const int y1 = AOMMIN(rel_y1, plane_h);
1464
1465
    // Extend using CDEF pixels at the top and bottom of the frame,
1466
    // and deblocked pixels at internal stripe boundaries
1467
340k
    const int use_deblock_above = (stripe_idx > 0);
1468
340k
    const int use_deblock_below = (y1 < plane_height);
1469
1470
340k
    if (!after_cdef) {
1471
      // Save deblocked context at internal stripe boundaries
1472
170k
      if (use_deblock_above) {
1473
124k
        save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT,
1474
124k
                                    stripe_idx, use_highbd, 1, boundaries);
1475
124k
      }
1476
170k
      if (use_deblock_below) {
1477
124k
        save_deblock_boundary_lines(frame, cm, plane, y1, stripe_idx,
1478
124k
                                    use_highbd, 0, boundaries);
1479
124k
      }
1480
170k
    } else {
1481
      // Save CDEF context at frame boundaries
1482
170k
      if (!use_deblock_above) {
1483
46.3k
        save_cdef_boundary_lines(frame, cm, plane, y0, stripe_idx, use_highbd,
1484
46.3k
                                 1, boundaries);
1485
46.3k
      }
1486
170k
      if (!use_deblock_below) {
1487
46.3k
        save_cdef_boundary_lines(frame, cm, plane, y1 - 1, stripe_idx,
1488
46.3k
                                 use_highbd, 0, boundaries);
1489
46.3k
      }
1490
170k
    }
1491
340k
  }
1492
92.6k
}
1493
1494
// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan
1495
// lines to be used as boundary in the loop restoration process. The
1496
// lines are saved in rst_internal.stripe_boundary_lines
1497
void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1498
37.1k
                                              AV1_COMMON *cm, int after_cdef) {
1499
37.1k
  const int num_planes = av1_num_planes(cm);
1500
37.1k
  const int use_highbd = cm->seq_params->use_highbitdepth;
1501
129k
  for (int p = 0; p < num_planes; ++p) {
1502
92.6k
    save_boundary_lines(frame, use_highbd, p, cm, after_cdef);
1503
92.6k
  }
1504
37.1k
}