Coverage Report

Created: 2025-11-16 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aom/av1/common/warped_motion.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <stdio.h>
13
#include <stdlib.h>
14
#include <memory.h>
15
#include <math.h>
16
#include <assert.h>
17
18
#include "config/av1_rtcd.h"
19
20
#include "av1/common/av1_common_int.h"
21
#include "av1/common/warped_motion.h"
22
#include "av1/common/scale.h"
23
24
// For warping, we really use a 6-tap filter, but we do blocks of 8 pixels
25
// at a time. The zoom/rotation/shear in the model are applied to the
26
// "fractional" position of each pixel, which therefore varies within
27
// [-1, 2) * WARPEDPIXEL_PREC_SHIFTS.
28
// We need an extra 2 taps to fit this in, for a total of 8 taps.
29
/* clang-format off */
30
const WarpedFilterCoeff av1_warped_filter[WARPEDPIXEL_PREC_SHIFTS * 3 + 1]
31
                                         [8] = {
32
  // [-1, 0)
33
  { 0,   0, 127,   1,   0, 0, 0, 0 }, { 0, - 1, 127,   2,   0, 0, 0, 0 },
34
  { 1, - 3, 127,   4, - 1, 0, 0, 0 }, { 1, - 4, 126,   6, - 2, 1, 0, 0 },
35
  { 1, - 5, 126,   8, - 3, 1, 0, 0 }, { 1, - 6, 125,  11, - 4, 1, 0, 0 },
36
  { 1, - 7, 124,  13, - 4, 1, 0, 0 }, { 2, - 8, 123,  15, - 5, 1, 0, 0 },
37
  { 2, - 9, 122,  18, - 6, 1, 0, 0 }, { 2, -10, 121,  20, - 6, 1, 0, 0 },
38
  { 2, -11, 120,  22, - 7, 2, 0, 0 }, { 2, -12, 119,  25, - 8, 2, 0, 0 },
39
  { 3, -13, 117,  27, - 8, 2, 0, 0 }, { 3, -13, 116,  29, - 9, 2, 0, 0 },
40
  { 3, -14, 114,  32, -10, 3, 0, 0 }, { 3, -15, 113,  35, -10, 2, 0, 0 },
41
  { 3, -15, 111,  37, -11, 3, 0, 0 }, { 3, -16, 109,  40, -11, 3, 0, 0 },
42
  { 3, -16, 108,  42, -12, 3, 0, 0 }, { 4, -17, 106,  45, -13, 3, 0, 0 },
43
  { 4, -17, 104,  47, -13, 3, 0, 0 }, { 4, -17, 102,  50, -14, 3, 0, 0 },
44
  { 4, -17, 100,  52, -14, 3, 0, 0 }, { 4, -18,  98,  55, -15, 4, 0, 0 },
45
  { 4, -18,  96,  58, -15, 3, 0, 0 }, { 4, -18,  94,  60, -16, 4, 0, 0 },
46
  { 4, -18,  91,  63, -16, 4, 0, 0 }, { 4, -18,  89,  65, -16, 4, 0, 0 },
47
  { 4, -18,  87,  68, -17, 4, 0, 0 }, { 4, -18,  85,  70, -17, 4, 0, 0 },
48
  { 4, -18,  82,  73, -17, 4, 0, 0 }, { 4, -18,  80,  75, -17, 4, 0, 0 },
49
  { 4, -18,  78,  78, -18, 4, 0, 0 }, { 4, -17,  75,  80, -18, 4, 0, 0 },
50
  { 4, -17,  73,  82, -18, 4, 0, 0 }, { 4, -17,  70,  85, -18, 4, 0, 0 },
51
  { 4, -17,  68,  87, -18, 4, 0, 0 }, { 4, -16,  65,  89, -18, 4, 0, 0 },
52
  { 4, -16,  63,  91, -18, 4, 0, 0 }, { 4, -16,  60,  94, -18, 4, 0, 0 },
53
  { 3, -15,  58,  96, -18, 4, 0, 0 }, { 4, -15,  55,  98, -18, 4, 0, 0 },
54
  { 3, -14,  52, 100, -17, 4, 0, 0 }, { 3, -14,  50, 102, -17, 4, 0, 0 },
55
  { 3, -13,  47, 104, -17, 4, 0, 0 }, { 3, -13,  45, 106, -17, 4, 0, 0 },
56
  { 3, -12,  42, 108, -16, 3, 0, 0 }, { 3, -11,  40, 109, -16, 3, 0, 0 },
57
  { 3, -11,  37, 111, -15, 3, 0, 0 }, { 2, -10,  35, 113, -15, 3, 0, 0 },
58
  { 3, -10,  32, 114, -14, 3, 0, 0 }, { 2, - 9,  29, 116, -13, 3, 0, 0 },
59
  { 2, - 8,  27, 117, -13, 3, 0, 0 }, { 2, - 8,  25, 119, -12, 2, 0, 0 },
60
  { 2, - 7,  22, 120, -11, 2, 0, 0 }, { 1, - 6,  20, 121, -10, 2, 0, 0 },
61
  { 1, - 6,  18, 122, - 9, 2, 0, 0 }, { 1, - 5,  15, 123, - 8, 2, 0, 0 },
62
  { 1, - 4,  13, 124, - 7, 1, 0, 0 }, { 1, - 4,  11, 125, - 6, 1, 0, 0 },
63
  { 1, - 3,   8, 126, - 5, 1, 0, 0 }, { 1, - 2,   6, 126, - 4, 1, 0, 0 },
64
  { 0, - 1,   4, 127, - 3, 1, 0, 0 }, { 0,   0,   2, 127, - 1, 0, 0, 0 },
65
66
  // [0, 1)
67
  { 0,  0,   0, 127,   1,   0,  0,  0}, { 0,  0,  -1, 127,   2,   0,  0,  0},
68
  { 0,  1,  -3, 127,   4,  -2,  1,  0}, { 0,  1,  -5, 127,   6,  -2,  1,  0},
69
  { 0,  2,  -6, 126,   8,  -3,  1,  0}, {-1,  2,  -7, 126,  11,  -4,  2, -1},
70
  {-1,  3,  -8, 125,  13,  -5,  2, -1}, {-1,  3, -10, 124,  16,  -6,  3, -1},
71
  {-1,  4, -11, 123,  18,  -7,  3, -1}, {-1,  4, -12, 122,  20,  -7,  3, -1},
72
  {-1,  4, -13, 121,  23,  -8,  3, -1}, {-2,  5, -14, 120,  25,  -9,  4, -1},
73
  {-1,  5, -15, 119,  27, -10,  4, -1}, {-1,  5, -16, 118,  30, -11,  4, -1},
74
  {-2,  6, -17, 116,  33, -12,  5, -1}, {-2,  6, -17, 114,  35, -12,  5, -1},
75
  {-2,  6, -18, 113,  38, -13,  5, -1}, {-2,  7, -19, 111,  41, -14,  6, -2},
76
  {-2,  7, -19, 110,  43, -15,  6, -2}, {-2,  7, -20, 108,  46, -15,  6, -2},
77
  {-2,  7, -20, 106,  49, -16,  6, -2}, {-2,  7, -21, 104,  51, -16,  7, -2},
78
  {-2,  7, -21, 102,  54, -17,  7, -2}, {-2,  8, -21, 100,  56, -18,  7, -2},
79
  {-2,  8, -22,  98,  59, -18,  7, -2}, {-2,  8, -22,  96,  62, -19,  7, -2},
80
  {-2,  8, -22,  94,  64, -19,  7, -2}, {-2,  8, -22,  91,  67, -20,  8, -2},
81
  {-2,  8, -22,  89,  69, -20,  8, -2}, {-2,  8, -22,  87,  72, -21,  8, -2},
82
  {-2,  8, -21,  84,  74, -21,  8, -2}, {-2,  8, -22,  82,  77, -21,  8, -2},
83
  {-2,  8, -21,  79,  79, -21,  8, -2}, {-2,  8, -21,  77,  82, -22,  8, -2},
84
  {-2,  8, -21,  74,  84, -21,  8, -2}, {-2,  8, -21,  72,  87, -22,  8, -2},
85
  {-2,  8, -20,  69,  89, -22,  8, -2}, {-2,  8, -20,  67,  91, -22,  8, -2},
86
  {-2,  7, -19,  64,  94, -22,  8, -2}, {-2,  7, -19,  62,  96, -22,  8, -2},
87
  {-2,  7, -18,  59,  98, -22,  8, -2}, {-2,  7, -18,  56, 100, -21,  8, -2},
88
  {-2,  7, -17,  54, 102, -21,  7, -2}, {-2,  7, -16,  51, 104, -21,  7, -2},
89
  {-2,  6, -16,  49, 106, -20,  7, -2}, {-2,  6, -15,  46, 108, -20,  7, -2},
90
  {-2,  6, -15,  43, 110, -19,  7, -2}, {-2,  6, -14,  41, 111, -19,  7, -2},
91
  {-1,  5, -13,  38, 113, -18,  6, -2}, {-1,  5, -12,  35, 114, -17,  6, -2},
92
  {-1,  5, -12,  33, 116, -17,  6, -2}, {-1,  4, -11,  30, 118, -16,  5, -1},
93
  {-1,  4, -10,  27, 119, -15,  5, -1}, {-1,  4,  -9,  25, 120, -14,  5, -2},
94
  {-1,  3,  -8,  23, 121, -13,  4, -1}, {-1,  3,  -7,  20, 122, -12,  4, -1},
95
  {-1,  3,  -7,  18, 123, -11,  4, -1}, {-1,  3,  -6,  16, 124, -10,  3, -1},
96
  {-1,  2,  -5,  13, 125,  -8,  3, -1}, {-1,  2,  -4,  11, 126,  -7,  2, -1},
97
  { 0,  1,  -3,   8, 126,  -6,  2,  0}, { 0,  1,  -2,   6, 127,  -5,  1,  0},
98
  { 0,  1,  -2,   4, 127,  -3,  1,  0}, { 0,  0,   0,   2, 127,  -1,  0,  0},
99
100
  // [1, 2)
101
  { 0, 0, 0,   1, 127,   0,   0, 0 }, { 0, 0, 0, - 1, 127,   2,   0, 0 },
102
  { 0, 0, 1, - 3, 127,   4, - 1, 0 }, { 0, 0, 1, - 4, 126,   6, - 2, 1 },
103
  { 0, 0, 1, - 5, 126,   8, - 3, 1 }, { 0, 0, 1, - 6, 125,  11, - 4, 1 },
104
  { 0, 0, 1, - 7, 124,  13, - 4, 1 }, { 0, 0, 2, - 8, 123,  15, - 5, 1 },
105
  { 0, 0, 2, - 9, 122,  18, - 6, 1 }, { 0, 0, 2, -10, 121,  20, - 6, 1 },
106
  { 0, 0, 2, -11, 120,  22, - 7, 2 }, { 0, 0, 2, -12, 119,  25, - 8, 2 },
107
  { 0, 0, 3, -13, 117,  27, - 8, 2 }, { 0, 0, 3, -13, 116,  29, - 9, 2 },
108
  { 0, 0, 3, -14, 114,  32, -10, 3 }, { 0, 0, 3, -15, 113,  35, -10, 2 },
109
  { 0, 0, 3, -15, 111,  37, -11, 3 }, { 0, 0, 3, -16, 109,  40, -11, 3 },
110
  { 0, 0, 3, -16, 108,  42, -12, 3 }, { 0, 0, 4, -17, 106,  45, -13, 3 },
111
  { 0, 0, 4, -17, 104,  47, -13, 3 }, { 0, 0, 4, -17, 102,  50, -14, 3 },
112
  { 0, 0, 4, -17, 100,  52, -14, 3 }, { 0, 0, 4, -18,  98,  55, -15, 4 },
113
  { 0, 0, 4, -18,  96,  58, -15, 3 }, { 0, 0, 4, -18,  94,  60, -16, 4 },
114
  { 0, 0, 4, -18,  91,  63, -16, 4 }, { 0, 0, 4, -18,  89,  65, -16, 4 },
115
  { 0, 0, 4, -18,  87,  68, -17, 4 }, { 0, 0, 4, -18,  85,  70, -17, 4 },
116
  { 0, 0, 4, -18,  82,  73, -17, 4 }, { 0, 0, 4, -18,  80,  75, -17, 4 },
117
  { 0, 0, 4, -18,  78,  78, -18, 4 }, { 0, 0, 4, -17,  75,  80, -18, 4 },
118
  { 0, 0, 4, -17,  73,  82, -18, 4 }, { 0, 0, 4, -17,  70,  85, -18, 4 },
119
  { 0, 0, 4, -17,  68,  87, -18, 4 }, { 0, 0, 4, -16,  65,  89, -18, 4 },
120
  { 0, 0, 4, -16,  63,  91, -18, 4 }, { 0, 0, 4, -16,  60,  94, -18, 4 },
121
  { 0, 0, 3, -15,  58,  96, -18, 4 }, { 0, 0, 4, -15,  55,  98, -18, 4 },
122
  { 0, 0, 3, -14,  52, 100, -17, 4 }, { 0, 0, 3, -14,  50, 102, -17, 4 },
123
  { 0, 0, 3, -13,  47, 104, -17, 4 }, { 0, 0, 3, -13,  45, 106, -17, 4 },
124
  { 0, 0, 3, -12,  42, 108, -16, 3 }, { 0, 0, 3, -11,  40, 109, -16, 3 },
125
  { 0, 0, 3, -11,  37, 111, -15, 3 }, { 0, 0, 2, -10,  35, 113, -15, 3 },
126
  { 0, 0, 3, -10,  32, 114, -14, 3 }, { 0, 0, 2, - 9,  29, 116, -13, 3 },
127
  { 0, 0, 2, - 8,  27, 117, -13, 3 }, { 0, 0, 2, - 8,  25, 119, -12, 2 },
128
  { 0, 0, 2, - 7,  22, 120, -11, 2 }, { 0, 0, 1, - 6,  20, 121, -10, 2 },
129
  { 0, 0, 1, - 6,  18, 122, - 9, 2 }, { 0, 0, 1, - 5,  15, 123, - 8, 2 },
130
  { 0, 0, 1, - 4,  13, 124, - 7, 1 }, { 0, 0, 1, - 4,  11, 125, - 6, 1 },
131
  { 0, 0, 1, - 3,   8, 126, - 5, 1 }, { 0, 0, 1, - 2,   6, 126, - 4, 1 },
132
  { 0, 0, 0, - 1,   4, 127, - 3, 1 }, { 0, 0, 0,   0,   2, 127, - 1, 0 },
133
  // dummy (replicate row index 191)
134
  { 0, 0, 0,   0,   2, 127, - 1, 0 },
135
};
136
137
/* clang-format on */
138
139
876k
#define DIV_LUT_PREC_BITS 14
140
876k
#define DIV_LUT_BITS 8
141
#define DIV_LUT_NUM (1 << DIV_LUT_BITS)
142
143
static const uint16_t div_lut[DIV_LUT_NUM + 1] = {
144
  16384, 16320, 16257, 16194, 16132, 16070, 16009, 15948, 15888, 15828, 15768,
145
  15709, 15650, 15592, 15534, 15477, 15420, 15364, 15308, 15252, 15197, 15142,
146
  15087, 15033, 14980, 14926, 14873, 14821, 14769, 14717, 14665, 14614, 14564,
147
  14513, 14463, 14413, 14364, 14315, 14266, 14218, 14170, 14122, 14075, 14028,
148
  13981, 13935, 13888, 13843, 13797, 13752, 13707, 13662, 13618, 13574, 13530,
149
  13487, 13443, 13400, 13358, 13315, 13273, 13231, 13190, 13148, 13107, 13066,
150
  13026, 12985, 12945, 12906, 12866, 12827, 12788, 12749, 12710, 12672, 12633,
151
  12596, 12558, 12520, 12483, 12446, 12409, 12373, 12336, 12300, 12264, 12228,
152
  12193, 12157, 12122, 12087, 12053, 12018, 11984, 11950, 11916, 11882, 11848,
153
  11815, 11782, 11749, 11716, 11683, 11651, 11619, 11586, 11555, 11523, 11491,
154
  11460, 11429, 11398, 11367, 11336, 11305, 11275, 11245, 11215, 11185, 11155,
155
  11125, 11096, 11067, 11038, 11009, 10980, 10951, 10923, 10894, 10866, 10838,
156
  10810, 10782, 10755, 10727, 10700, 10673, 10645, 10618, 10592, 10565, 10538,
157
  10512, 10486, 10460, 10434, 10408, 10382, 10356, 10331, 10305, 10280, 10255,
158
  10230, 10205, 10180, 10156, 10131, 10107, 10082, 10058, 10034, 10010, 9986,
159
  9963,  9939,  9916,  9892,  9869,  9846,  9823,  9800,  9777,  9754,  9732,
160
  9709,  9687,  9664,  9642,  9620,  9598,  9576,  9554,  9533,  9511,  9489,
161
  9468,  9447,  9425,  9404,  9383,  9362,  9341,  9321,  9300,  9279,  9259,
162
  9239,  9218,  9198,  9178,  9158,  9138,  9118,  9098,  9079,  9059,  9039,
163
  9020,  9001,  8981,  8962,  8943,  8924,  8905,  8886,  8867,  8849,  8830,
164
  8812,  8793,  8775,  8756,  8738,  8720,  8702,  8684,  8666,  8648,  8630,
165
  8613,  8595,  8577,  8560,  8542,  8525,  8508,  8490,  8473,  8456,  8439,
166
  8422,  8405,  8389,  8372,  8355,  8339,  8322,  8306,  8289,  8273,  8257,
167
  8240,  8224,  8208,  8192,
168
};
169
170
// Decomposes a divisor D such that 1/D = y/2^shift, where y is returned
171
// at precision of DIV_LUT_PREC_BITS along with the shift.
172
303k
static int16_t resolve_divisor_64(uint64_t D, int16_t *shift) {
173
303k
  int64_t f;
174
303k
  *shift = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32
175
303k
                               : get_msb((unsigned int)D));
176
  // e is obtained from D after resetting the most significant 1 bit.
177
303k
  const int64_t e = D - ((uint64_t)1 << *shift);
178
  // Get the most significant DIV_LUT_BITS (8) bits of e into f
179
303k
  if (*shift > DIV_LUT_BITS)
180
303k
    f = ROUND_POWER_OF_TWO_64(e, *shift - DIV_LUT_BITS);
181
0
  else
182
0
    f = e << (DIV_LUT_BITS - *shift);
183
303k
  assert(f <= DIV_LUT_NUM);
184
303k
  *shift += DIV_LUT_PREC_BITS;
185
  // Use f as lookup into the precomputed table of multipliers
186
303k
  return div_lut[f];
187
303k
}
188
189
572k
static int16_t resolve_divisor_32(uint32_t D, int16_t *shift) {
190
572k
  int32_t f;
191
572k
  *shift = get_msb(D);
192
  // e is obtained from D after resetting the most significant 1 bit.
193
572k
  const int32_t e = D - ((uint32_t)1 << *shift);
194
  // Get the most significant DIV_LUT_BITS (8) bits of e into f
195
572k
  if (*shift > DIV_LUT_BITS)
196
572k
    f = ROUND_POWER_OF_TWO(e, *shift - DIV_LUT_BITS);
197
68
  else
198
68
    f = e << (DIV_LUT_BITS - *shift);
199
572k
  assert(f <= DIV_LUT_NUM);
200
572k
  *shift += DIV_LUT_PREC_BITS;
201
  // Use f as lookup into the precomputed table of multipliers
202
572k
  return div_lut[f];
203
572k
}
204
205
573k
static int is_affine_valid(const WarpedMotionParams *const wm) {
206
573k
  const int32_t *mat = wm->wmmat;
207
573k
  return (mat[2] > 0);
208
573k
}
209
210
static int is_affine_shear_allowed(int16_t alpha, int16_t beta, int16_t gamma,
211
572k
                                   int16_t delta) {
212
572k
  if ((4 * abs(alpha) + 7 * abs(beta) >= (1 << WARPEDMODEL_PREC_BITS)) ||
213
551k
      (4 * abs(gamma) + 4 * abs(delta) >= (1 << WARPEDMODEL_PREC_BITS)))
214
26.8k
    return 0;
215
545k
  else
216
545k
    return 1;
217
572k
}
218
219
#ifndef NDEBUG
220
// Check that the given warp model satisfies the relevant constraints for
221
// its stated model type
222
573k
static void check_model_consistency(WarpedMotionParams *wm) {
223
573k
  switch (wm->wmtype) {
224
245k
    case IDENTITY:
225
245k
      assert(wm->wmmat[0] == 0);
226
245k
      assert(wm->wmmat[1] == 0);
227
245k
      AOM_FALLTHROUGH_INTENDED;
228
247k
    case TRANSLATION:
229
247k
      assert(wm->wmmat[2] == 1 << WARPEDMODEL_PREC_BITS);
230
247k
      assert(wm->wmmat[3] == 0);
231
247k
      AOM_FALLTHROUGH_INTENDED;
232
264k
    case ROTZOOM:
233
264k
      assert(wm->wmmat[4] == -wm->wmmat[3]);
234
264k
      assert(wm->wmmat[5] == wm->wmmat[2]);
235
264k
      AOM_FALLTHROUGH_INTENDED;
236
573k
    case AFFINE: break;
237
0
    default: assert(0 && "Bad wmtype");
238
573k
  }
239
573k
}
240
#endif  // NDEBUG
241
242
// Returns 1 on success or 0 on an invalid affine set
243
573k
int av1_get_shear_params(WarpedMotionParams *wm) {
244
573k
#ifndef NDEBUG
245
  // Check that models have been constructed sensibly
246
  // This is a good place to check, because this function does not need to
247
  // be called until after model construction is complete, but must be called
248
  // before the model can be used for prediction.
249
573k
  check_model_consistency(wm);
250
573k
#endif  // NDEBUG
251
252
573k
  const int32_t *mat = wm->wmmat;
253
573k
  if (!is_affine_valid(wm)) return 0;
254
255
572k
  wm->alpha =
256
572k
      clamp(mat[2] - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX);
257
572k
  wm->beta = clamp(mat[3], INT16_MIN, INT16_MAX);
258
572k
  int16_t shift;
259
572k
  int16_t y = resolve_divisor_32(abs(mat[2]), &shift) * (mat[2] < 0 ? -1 : 1);
260
572k
  int64_t v = ((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) * y;
261
572k
  wm->gamma =
262
572k
      clamp((int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift), INT16_MIN, INT16_MAX);
263
572k
  v = ((int64_t)mat[3] * mat[4]) * y;
264
572k
  wm->delta = clamp(mat[5] - (int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift) -
265
572k
                        (1 << WARPEDMODEL_PREC_BITS),
266
572k
                    INT16_MIN, INT16_MAX);
267
268
572k
  wm->alpha = ROUND_POWER_OF_TWO_SIGNED(wm->alpha, WARP_PARAM_REDUCE_BITS) *
269
572k
              (1 << WARP_PARAM_REDUCE_BITS);
270
572k
  wm->beta = ROUND_POWER_OF_TWO_SIGNED(wm->beta, WARP_PARAM_REDUCE_BITS) *
271
572k
             (1 << WARP_PARAM_REDUCE_BITS);
272
572k
  wm->gamma = ROUND_POWER_OF_TWO_SIGNED(wm->gamma, WARP_PARAM_REDUCE_BITS) *
273
572k
              (1 << WARP_PARAM_REDUCE_BITS);
274
572k
  wm->delta = ROUND_POWER_OF_TWO_SIGNED(wm->delta, WARP_PARAM_REDUCE_BITS) *
275
572k
              (1 << WARP_PARAM_REDUCE_BITS);
276
277
572k
  if (!is_affine_shear_allowed(wm->alpha, wm->beta, wm->gamma, wm->delta))
278
26.8k
    return 0;
279
280
545k
  return 1;
281
572k
}
282
283
#if CONFIG_AV1_HIGHBITDEPTH
284
/* Note: For an explanation of the warp algorithm, and some notes on bit widths
285
    for hardware implementations, see the comments above av1_warp_affine_c
286
*/
287
void av1_highbd_warp_affine_c(const int32_t *mat, const uint16_t *ref,
288
                              int width, int height, int stride, uint16_t *pred,
289
                              int p_col, int p_row, int p_width, int p_height,
290
                              int p_stride, int subsampling_x,
291
                              int subsampling_y, int bd,
292
                              ConvolveParams *conv_params, int16_t alpha,
293
0
                              int16_t beta, int16_t gamma, int16_t delta) {
294
0
  int32_t tmp[15 * 8];
295
0
  const int reduce_bits_horiz = conv_params->round_0;
296
0
  const int reduce_bits_vert = conv_params->is_compound
297
0
                                   ? conv_params->round_1
298
0
                                   : 2 * FILTER_BITS - reduce_bits_horiz;
299
0
  const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz;
300
0
  const int offset_bits_horiz = bd + FILTER_BITS - 1;
301
0
  const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz;
302
0
  const int round_bits =
303
0
      2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
304
0
  const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
305
0
  (void)max_bits_horiz;
306
0
  assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
307
308
  // Check that, even with 12-bit input, the intermediate values will fit
309
  // into an unsigned 16-bit intermediate array.
310
0
  assert(bd + FILTER_BITS + 2 - conv_params->round_0 <= 16);
311
312
0
  for (int i = p_row; i < p_row + p_height; i += 8) {
313
0
    for (int j = p_col; j < p_col + p_width; j += 8) {
314
      // Calculate the center of this 8x8 block,
315
      // project to luma coordinates (if in a subsampled chroma plane),
316
      // apply the affine transformation,
317
      // then convert back to the original coordinates (if necessary)
318
0
      const int32_t src_x = (j + 4) << subsampling_x;
319
0
      const int32_t src_y = (i + 4) << subsampling_y;
320
0
      const int64_t dst_x =
321
0
          (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0];
322
0
      const int64_t dst_y =
323
0
          (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1];
324
0
      const int64_t x4 = dst_x >> subsampling_x;
325
0
      const int64_t y4 = dst_y >> subsampling_y;
326
327
0
      const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS);
328
0
      int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
329
0
      const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS);
330
0
      int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
331
332
0
      sx4 += alpha * (-4) + beta * (-4);
333
0
      sy4 += gamma * (-4) + delta * (-4);
334
335
0
      sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
336
0
      sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
337
338
      // Horizontal filter
339
0
      for (int k = -7; k < 8; ++k) {
340
0
        const int iy = clamp(iy4 + k, 0, height - 1);
341
342
0
        int sx = sx4 + beta * (k + 4);
343
0
        for (int l = -4; l < 4; ++l) {
344
0
          int ix = ix4 + l - 3;
345
0
          const int offs = ROUND_POWER_OF_TWO(sx, WARPEDDIFF_PREC_BITS) +
346
0
                           WARPEDPIXEL_PREC_SHIFTS;
347
0
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
348
0
          const WarpedFilterCoeff *coeffs = av1_warped_filter[offs];
349
350
0
          int32_t sum = 1 << offset_bits_horiz;
351
0
          for (int m = 0; m < 8; ++m) {
352
0
            const int sample_x = clamp(ix + m, 0, width - 1);
353
0
            sum += ref[iy * stride + sample_x] * coeffs[m];
354
0
          }
355
0
          sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz);
356
0
          assert(0 <= sum && sum < (1 << max_bits_horiz));
357
0
          tmp[(k + 7) * 8 + (l + 4)] = sum;
358
0
          sx += alpha;
359
0
        }
360
0
      }
361
362
      // Vertical filter
363
0
      for (int k = -4; k < AOMMIN(4, p_row + p_height - i - 4); ++k) {
364
0
        int sy = sy4 + delta * (k + 4);
365
0
        for (int l = -4; l < AOMMIN(4, p_col + p_width - j - 4); ++l) {
366
0
          const int offs = ROUND_POWER_OF_TWO(sy, WARPEDDIFF_PREC_BITS) +
367
0
                           WARPEDPIXEL_PREC_SHIFTS;
368
0
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
369
0
          const WarpedFilterCoeff *coeffs = av1_warped_filter[offs];
370
371
0
          int32_t sum = 1 << offset_bits_vert;
372
0
          for (int m = 0; m < 8; ++m) {
373
0
            sum += tmp[(k + m + 4) * 8 + (l + 4)] * coeffs[m];
374
0
          }
375
376
0
          if (conv_params->is_compound) {
377
0
            CONV_BUF_TYPE *p =
378
0
                &conv_params
379
0
                     ->dst[(i - p_row + k + 4) * conv_params->dst_stride +
380
0
                           (j - p_col + l + 4)];
381
0
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
382
0
            if (conv_params->do_average) {
383
0
              uint16_t *dst16 =
384
0
                  &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
385
0
              int32_t tmp32 = *p;
386
0
              if (conv_params->use_dist_wtd_comp_avg) {
387
0
                tmp32 = tmp32 * conv_params->fwd_offset +
388
0
                        sum * conv_params->bck_offset;
389
0
                tmp32 = tmp32 >> DIST_PRECISION_BITS;
390
0
              } else {
391
0
                tmp32 += sum;
392
0
                tmp32 = tmp32 >> 1;
393
0
              }
394
0
              tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) -
395
0
                      (1 << (offset_bits - conv_params->round_1 - 1));
396
0
              *dst16 =
397
0
                  clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp32, round_bits), bd);
398
0
            } else {
399
0
              *p = sum;
400
0
            }
401
0
          } else {
402
0
            uint16_t *p =
403
0
                &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
404
0
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
405
0
            assert(0 <= sum && sum < (1 << (bd + 2)));
406
0
            *p = clip_pixel_highbd(sum - (1 << (bd - 1)) - (1 << bd), bd);
407
0
          }
408
0
          sy += gamma;
409
0
        }
410
0
      }
411
0
    }
412
0
  }
413
0
}
414
415
void highbd_warp_plane(WarpedMotionParams *wm, const uint16_t *const ref,
416
                       int width, int height, int stride, uint16_t *const pred,
417
                       int p_col, int p_row, int p_width, int p_height,
418
                       int p_stride, int subsampling_x, int subsampling_y,
419
234k
                       int bd, ConvolveParams *conv_params) {
420
234k
  const int32_t *const mat = wm->wmmat;
421
234k
  const int16_t alpha = wm->alpha;
422
234k
  const int16_t beta = wm->beta;
423
234k
  const int16_t gamma = wm->gamma;
424
234k
  const int16_t delta = wm->delta;
425
426
234k
  av1_highbd_warp_affine(mat, ref, width, height, stride, pred, p_col, p_row,
427
234k
                         p_width, p_height, p_stride, subsampling_x,
428
234k
                         subsampling_y, bd, conv_params, alpha, beta, gamma,
429
234k
                         delta);
430
234k
}
431
#endif  // CONFIG_AV1_HIGHBITDEPTH
432
433
/* The warp filter for ROTZOOM and AFFINE models works as follows:
434
   * Split the input into 8x8 blocks
435
   * For each block, project the point (4, 4) within the block, to get the
436
     overall block position. Split into integer and fractional coordinates,
437
     maintaining full WARPEDMODEL precision
438
   * Filter horizontally: Generate 15 rows of 8 pixels each. Each pixel gets a
439
     variable horizontal offset. This means that, while the rows of the
440
     intermediate buffer align with the rows of the *reference* image, the
441
     columns align with the columns of the *destination* image.
442
   * Filter vertically: Generate the output block (up to 8x8 pixels, but if the
443
     destination is too small we crop the output at this stage). Each pixel has
444
     a variable vertical offset, so that the resulting rows are aligned with
445
     the rows of the destination image.
446
447
   To accomplish these alignments, we factor the warp matrix as a
448
   product of two shear / asymmetric zoom matrices:
449
   / a b \  = /   1       0    \ * / 1+alpha  beta \
450
   \ c d /    \ gamma  1+delta /   \    0      1   /
451
   where a, b, c, d are wmmat[2], wmmat[3], wmmat[4], wmmat[5] respectively.
452
   The horizontal shear (with alpha and beta) is applied first,
453
   then the vertical shear (with gamma and delta) is applied second.
454
455
   The only limitation is that, to fit this in a fixed 8-tap filter size,
456
   the fractional pixel offsets must be at most +-1. Since the horizontal filter
457
   generates 15 rows of 8 columns, and the initial point we project is at (4, 4)
458
   within the block, the parameters must satisfy
459
   4 * |alpha| + 7 * |beta| <= 1   and   4 * |gamma| + 4 * |delta| <= 1
460
   for this filter to be applicable.
461
462
   Note: This function assumes that the caller has done all of the relevant
463
   checks, ie. that we have a ROTZOOM or AFFINE model, that wm[4] and wm[5]
464
   are set appropriately (if using a ROTZOOM model), and that alpha, beta,
465
   gamma, delta are all in range.
466
467
   TODO(rachelbarker): Maybe support scaled references?
468
*/
469
/* A note on hardware implementation:
470
    The warp filter is intended to be implementable using the same hardware as
471
    the high-precision convolve filters from the loop-restoration and
472
    convolve-round experiments.
473
474
    For a single filter stage, considering all of the coefficient sets for the
475
    warp filter and the regular convolution filter, an input in the range
476
    [0, 2^k - 1] is mapped into the range [-56 * (2^k - 1), 184 * (2^k - 1)]
477
    before rounding.
478
479
    Allowing for some changes to the filter coefficient sets, call the range
480
    [-64 * 2^k, 192 * 2^k]. Then, if we initialize the accumulator to 64 * 2^k,
481
    we can replace this by the range [0, 256 * 2^k], which can be stored in an
482
    unsigned value with 8 + k bits.
483
484
    This allows the derivation of the appropriate bit widths and offsets for
485
    the various intermediate values: If
486
487
    F := FILTER_BITS = 7 (or else the above ranges need adjusting)
488
         So a *single* filter stage maps a k-bit input to a (k + F + 1)-bit
489
         intermediate value.
490
    H := ROUND0_BITS
491
    V := VERSHEAR_REDUCE_PREC_BITS
492
    (and note that we must have H + V = 2*F for the output to have the same
493
     scale as the input)
494
495
    then we end up with the following offsets and ranges:
496
    Horizontal filter: Apply an offset of 1 << (bd + F - 1), sum fits into a
497
                       uint{bd + F + 1}
498
    After rounding: The values stored in 'tmp' fit into a uint{bd + F + 1 - H}.
499
    Vertical filter: Apply an offset of 1 << (bd + 2*F - H), sum fits into a
500
                     uint{bd + 2*F + 2 - H}
501
    After rounding: The final value, before undoing the offset, fits into a
502
                    uint{bd + 2}.
503
504
    Then we need to undo the offsets before clamping to a pixel. Note that,
505
    if we do this at the end, the amount to subtract is actually independent
506
    of H and V:
507
508
    offset to subtract = (1 << ((bd + F - 1) - H + F - V)) +
509
                         (1 << ((bd + 2*F - H) - V))
510
                      == (1 << (bd - 1)) + (1 << bd)
511
512
    This allows us to entirely avoid clamping in both the warp filter and
513
    the convolve-round experiment. As of the time of writing, the Wiener filter
514
    from loop-restoration can encode a central coefficient up to 216, which
515
    leads to a maximum value of about 282 * 2^k after applying the offset.
516
    So in that case we still need to clamp.
517
*/
518
void av1_warp_affine_c(const int32_t *mat, const uint8_t *ref, int width,
519
                       int height, int stride, uint8_t *pred, int p_col,
520
                       int p_row, int p_width, int p_height, int p_stride,
521
                       int subsampling_x, int subsampling_y,
522
                       ConvolveParams *conv_params, int16_t alpha, int16_t beta,
523
0
                       int16_t gamma, int16_t delta) {
524
0
  int32_t tmp[15 * 8];
525
0
  const int bd = 8;
526
0
  const int reduce_bits_horiz = conv_params->round_0;
527
0
  const int reduce_bits_vert = conv_params->is_compound
528
0
                                   ? conv_params->round_1
529
0
                                   : 2 * FILTER_BITS - reduce_bits_horiz;
530
0
  const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz;
531
0
  const int offset_bits_horiz = bd + FILTER_BITS - 1;
532
0
  const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz;
533
0
  const int round_bits =
534
0
      2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
535
0
  const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
536
0
  (void)max_bits_horiz;
537
0
  assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
538
0
  assert(IMPLIES(conv_params->do_average, conv_params->is_compound));
539
540
0
  for (int i = p_row; i < p_row + p_height; i += 8) {
541
0
    for (int j = p_col; j < p_col + p_width; j += 8) {
542
      // Calculate the center of this 8x8 block,
543
      // project to luma coordinates (if in a subsampled chroma plane),
544
      // apply the affine transformation,
545
      // then convert back to the original coordinates (if necessary)
546
0
      const int32_t src_x = (j + 4) << subsampling_x;
547
0
      const int32_t src_y = (i + 4) << subsampling_y;
548
0
      const int64_t dst_x =
549
0
          (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0];
550
0
      const int64_t dst_y =
551
0
          (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1];
552
0
      const int64_t x4 = dst_x >> subsampling_x;
553
0
      const int64_t y4 = dst_y >> subsampling_y;
554
555
0
      int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS);
556
0
      int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
557
0
      int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS);
558
0
      int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
559
560
0
      sx4 += alpha * (-4) + beta * (-4);
561
0
      sy4 += gamma * (-4) + delta * (-4);
562
563
0
      sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
564
0
      sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
565
566
      // Horizontal filter
567
0
      for (int k = -7; k < 8; ++k) {
568
        // Clamp to top/bottom edge of the frame
569
0
        const int iy = clamp(iy4 + k, 0, height - 1);
570
571
0
        int sx = sx4 + beta * (k + 4);
572
573
0
        for (int l = -4; l < 4; ++l) {
574
0
          int ix = ix4 + l - 3;
575
          // At this point, sx = sx4 + alpha * l + beta * k
576
0
          const int offs = ROUND_POWER_OF_TWO(sx, WARPEDDIFF_PREC_BITS) +
577
0
                           WARPEDPIXEL_PREC_SHIFTS;
578
0
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
579
0
          const WarpedFilterCoeff *coeffs = av1_warped_filter[offs];
580
581
0
          int32_t sum = 1 << offset_bits_horiz;
582
0
          for (int m = 0; m < 8; ++m) {
583
            // Clamp to left/right edge of the frame
584
0
            const int sample_x = clamp(ix + m, 0, width - 1);
585
586
0
            sum += ref[iy * stride + sample_x] * coeffs[m];
587
0
          }
588
0
          sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz);
589
0
          assert(0 <= sum && sum < (1 << max_bits_horiz));
590
0
          tmp[(k + 7) * 8 + (l + 4)] = sum;
591
0
          sx += alpha;
592
0
        }
593
0
      }
594
595
      // Vertical filter
596
0
      for (int k = -4; k < AOMMIN(4, p_row + p_height - i - 4); ++k) {
597
0
        int sy = sy4 + delta * (k + 4);
598
0
        for (int l = -4; l < AOMMIN(4, p_col + p_width - j - 4); ++l) {
599
          // At this point, sy = sy4 + gamma * l + delta * k
600
0
          const int offs = ROUND_POWER_OF_TWO(sy, WARPEDDIFF_PREC_BITS) +
601
0
                           WARPEDPIXEL_PREC_SHIFTS;
602
0
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
603
0
          const WarpedFilterCoeff *coeffs = av1_warped_filter[offs];
604
605
0
          int32_t sum = 1 << offset_bits_vert;
606
0
          for (int m = 0; m < 8; ++m) {
607
0
            sum += tmp[(k + m + 4) * 8 + (l + 4)] * coeffs[m];
608
0
          }
609
610
0
          if (conv_params->is_compound) {
611
0
            CONV_BUF_TYPE *p =
612
0
                &conv_params
613
0
                     ->dst[(i - p_row + k + 4) * conv_params->dst_stride +
614
0
                           (j - p_col + l + 4)];
615
0
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
616
0
            if (conv_params->do_average) {
617
0
              uint8_t *dst8 =
618
0
                  &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
619
0
              int32_t tmp32 = *p;
620
0
              if (conv_params->use_dist_wtd_comp_avg) {
621
0
                tmp32 = tmp32 * conv_params->fwd_offset +
622
0
                        sum * conv_params->bck_offset;
623
0
                tmp32 = tmp32 >> DIST_PRECISION_BITS;
624
0
              } else {
625
0
                tmp32 += sum;
626
0
                tmp32 = tmp32 >> 1;
627
0
              }
628
0
              tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) -
629
0
                      (1 << (offset_bits - conv_params->round_1 - 1));
630
0
              *dst8 = clip_pixel(ROUND_POWER_OF_TWO(tmp32, round_bits));
631
0
            } else {
632
0
              *p = sum;
633
0
            }
634
0
          } else {
635
0
            uint8_t *p =
636
0
                &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
637
0
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
638
0
            assert(0 <= sum && sum < (1 << (bd + 2)));
639
0
            *p = clip_pixel(sum - (1 << (bd - 1)) - (1 << bd));
640
0
          }
641
0
          sy += gamma;
642
0
        }
643
0
      }
644
0
    }
645
0
  }
646
0
}
647
648
void warp_plane(WarpedMotionParams *wm, const uint8_t *const ref, int width,
649
                int height, int stride, uint8_t *pred, int p_col, int p_row,
650
                int p_width, int p_height, int p_stride, int subsampling_x,
651
280k
                int subsampling_y, ConvolveParams *conv_params) {
652
280k
  const int32_t *const mat = wm->wmmat;
653
280k
  const int16_t alpha = wm->alpha;
654
280k
  const int16_t beta = wm->beta;
655
280k
  const int16_t gamma = wm->gamma;
656
280k
  const int16_t delta = wm->delta;
657
280k
  av1_warp_affine(mat, ref, width, height, stride, pred, p_col, p_row, p_width,
658
280k
                  p_height, p_stride, subsampling_x, subsampling_y, conv_params,
659
280k
                  alpha, beta, gamma, delta);
660
280k
}
661
662
void av1_warp_plane(WarpedMotionParams *wm, int use_hbd, int bd,
663
                    const uint8_t *ref, int width, int height, int stride,
664
                    uint8_t *pred, int p_col, int p_row, int p_width,
665
                    int p_height, int p_stride, int subsampling_x,
666
515k
                    int subsampling_y, ConvolveParams *conv_params) {
667
515k
#if CONFIG_AV1_HIGHBITDEPTH
668
515k
  if (use_hbd)
669
234k
    highbd_warp_plane(wm, CONVERT_TO_SHORTPTR(ref), width, height, stride,
670
234k
                      CONVERT_TO_SHORTPTR(pred), p_col, p_row, p_width,
671
234k
                      p_height, p_stride, subsampling_x, subsampling_y, bd,
672
234k
                      conv_params);
673
280k
  else
674
280k
    warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width,
675
280k
               p_height, p_stride, subsampling_x, subsampling_y, conv_params);
676
#else
677
  (void)use_hbd;
678
  (void)bd;
679
  warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width,
680
             p_height, p_stride, subsampling_x, subsampling_y, conv_params);
681
#endif
682
515k
}
683
684
1.78M
#define LS_MV_MAX 256  // max mv in 1/8-pel
685
// Use LS_STEP = 8 so that 2 less bits needed for A, Bx, By.
686
12.0M
#define LS_STEP 8
687
688
// Assuming LS_MV_MAX is < MAX_SB_SIZE * 8,
689
// the precision needed is:
690
//   (MAX_SB_SIZE_LOG2 + 3) [for sx * sx magnitude] +
691
//   (MAX_SB_SIZE_LOG2 + 4) [for sx * dx magnitude] +
692
//   1 [for sign] +
693
//   LEAST_SQUARES_SAMPLES_MAX_BITS
694
//        [for adding up to LEAST_SQUARES_SAMPLES_MAX samples]
695
// The value is 23
696
#define LS_MAT_RANGE_BITS \
697
  ((MAX_SB_SIZE_LOG2 + 4) * 2 + LEAST_SQUARES_SAMPLES_MAX_BITS)
698
699
// Bit-depth reduction from the full-range
700
4.03M
#define LS_MAT_DOWN_BITS 2
701
702
// bits range of A, Bx and By after downshifting
703
#define LS_MAT_BITS (LS_MAT_RANGE_BITS - LS_MAT_DOWN_BITS)
704
#define LS_MAT_MIN (-(1 << (LS_MAT_BITS - 1)))
705
#define LS_MAT_MAX ((1 << (LS_MAT_BITS - 1)) - 1)
706
707
// By setting LS_STEP = 8, the least 2 bits of every elements in A, Bx, By are
708
// 0. So, we can reduce LS_MAT_RANGE_BITS(2) bits here.
709
#define LS_SQUARE(a)                                              \
710
1.15M
  (((a) * (a) * 4 + (a) * 4 * LS_STEP + LS_STEP * LS_STEP * 2) >> \
711
1.15M
   (2 + LS_MAT_DOWN_BITS))
712
#define LS_PRODUCT1(a, b)                                             \
713
1.72M
  (((a) * (b) * 4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP) >> \
714
1.72M
   (2 + LS_MAT_DOWN_BITS))
715
#define LS_PRODUCT2(a, b)                                                 \
716
1.15M
  (((a) * (b) * 4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP * 2) >> \
717
1.15M
   (2 + LS_MAT_DOWN_BITS))
718
719
#define USE_LIMITED_PREC_MULT 0
720
721
#if USE_LIMITED_PREC_MULT
722
723
#define MUL_PREC_BITS 16
724
static uint16_t resolve_multiplier_64(uint64_t D, int16_t *shift) {
725
  int msb = 0;
726
  uint16_t mult = 0;
727
  *shift = 0;
728
  if (D != 0) {
729
    msb = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32
730
                              : get_msb((unsigned int)D));
731
    if (msb >= MUL_PREC_BITS) {
732
      mult = (uint16_t)ROUND_POWER_OF_TWO_64(D, msb + 1 - MUL_PREC_BITS);
733
      *shift = msb + 1 - MUL_PREC_BITS;
734
    } else {
735
      mult = (uint16_t)D;
736
      *shift = 0;
737
    }
738
  }
739
  return mult;
740
}
741
742
static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) {
743
  int32_t ret;
744
  int16_t mshift;
745
  uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift);
746
  int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1);
747
  shift -= mshift;
748
  if (shift > 0) {
749
    return (int32_t)clamp(ROUND_POWER_OF_TWO_SIGNED(v, shift),
750
                          -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
751
                          WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
752
  } else {
753
    return (int32_t)clamp(v * (1 << (-shift)),
754
                          -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
755
                          WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
756
  }
757
  return ret;
758
}
759
760
static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) {
761
  int16_t mshift;
762
  uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift);
763
  int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1);
764
  shift -= mshift;
765
  if (shift > 0) {
766
    return (int32_t)clamp(
767
        ROUND_POWER_OF_TWO_SIGNED(v, shift),
768
        (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
769
        (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
770
  } else {
771
    return (int32_t)clamp(
772
        v * (1 << (-shift)),
773
        (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
774
        (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
775
  }
776
}
777
778
#else
779
780
607k
static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) {
781
607k
  int64_t v = Px * (int64_t)iDet;
782
607k
  return (int32_t)clamp64(ROUND_POWER_OF_TWO_SIGNED_64(v, shift),
783
607k
                          -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
784
607k
                          WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
785
607k
}
786
787
607k
static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) {
788
607k
  int64_t v = Px * (int64_t)iDet;
789
607k
  return (int32_t)clamp64(
790
607k
      ROUND_POWER_OF_TWO_SIGNED_64(v, shift),
791
607k
      (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
792
607k
      (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
793
607k
}
794
#endif  // USE_LIMITED_PREC_MULT
795
796
static int find_affine_int(int np, const int *pts1, const int *pts2,
797
                           BLOCK_SIZE bsize, int mvy, int mvx,
798
326k
                           WarpedMotionParams *wm, int mi_row, int mi_col) {
799
326k
  int32_t A[2][2] = { { 0, 0 }, { 0, 0 } };
800
326k
  int32_t Bx[2] = { 0, 0 };
801
326k
  int32_t By[2] = { 0, 0 };
802
803
326k
  const int bw = block_size_wide[bsize];
804
326k
  const int bh = block_size_high[bsize];
805
326k
  const int rsuy = bh / 2 - 1;
806
326k
  const int rsux = bw / 2 - 1;
807
326k
  const int suy = rsuy * 8;
808
326k
  const int sux = rsux * 8;
809
326k
  const int duy = suy + mvy;
810
326k
  const int dux = sux + mvx;
811
812
  // Assume the center pixel of the block has exactly the same motion vector
813
  // as transmitted for the block. First shift the origin of the source
814
  // points to the block center, and the origin of the destination points to
815
  // the block center added to the motion vector transmitted.
816
  // Let (xi, yi) denote the source points and (xi', yi') denote destination
817
  // points after origin shfifting, for i = 0, 1, 2, .... n-1.
818
  // Then if  P = [x0, y0,
819
  //               x1, y1
820
  //               x2, y1,
821
  //                ....
822
  //              ]
823
  //          q = [x0', x1', x2', ... ]'
824
  //          r = [y0', y1', y2', ... ]'
825
  // the least squares problems that need to be solved are:
826
  //          [h1, h2]' = inv(P'P)P'q and
827
  //          [h3, h4]' = inv(P'P)P'r
828
  // where the affine transformation is given by:
829
  //          x' = h1.x + h2.y
830
  //          y' = h3.x + h4.y
831
  //
832
  // The loop below computes: A = P'P, Bx = P'q, By = P'r
833
  // We need to just compute inv(A).Bx and inv(A).By for the solutions.
834
  // Contribution from neighbor block
835
925k
  for (int i = 0; i < np; i++) {
836
599k
    const int dx = pts2[i * 2] - dux;
837
599k
    const int dy = pts2[i * 2 + 1] - duy;
838
599k
    const int sx = pts1[i * 2] - sux;
839
599k
    const int sy = pts1[i * 2 + 1] - suy;
840
    // (TODO)yunqing: This comparison wouldn't be necessary if the sample
841
    // selection is done in find_samples(). Also, global offset can be removed
842
    // while collecting samples.
843
599k
    if (abs(sx - dx) < LS_MV_MAX && abs(sy - dy) < LS_MV_MAX) {
844
576k
      A[0][0] += LS_SQUARE(sx);
845
576k
      A[0][1] += LS_PRODUCT1(sx, sy);
846
576k
      A[1][1] += LS_SQUARE(sy);
847
576k
      Bx[0] += LS_PRODUCT2(sx, dx);
848
576k
      Bx[1] += LS_PRODUCT1(sy, dx);
849
576k
      By[0] += LS_PRODUCT1(sx, dy);
850
576k
      By[1] += LS_PRODUCT2(sy, dy);
851
576k
    }
852
599k
  }
853
854
  // Just for debugging, and can be removed later.
855
326k
  assert(A[0][0] >= LS_MAT_MIN && A[0][0] <= LS_MAT_MAX);
856
326k
  assert(A[0][1] >= LS_MAT_MIN && A[0][1] <= LS_MAT_MAX);
857
326k
  assert(A[1][1] >= LS_MAT_MIN && A[1][1] <= LS_MAT_MAX);
858
326k
  assert(Bx[0] >= LS_MAT_MIN && Bx[0] <= LS_MAT_MAX);
859
326k
  assert(Bx[1] >= LS_MAT_MIN && Bx[1] <= LS_MAT_MAX);
860
326k
  assert(By[0] >= LS_MAT_MIN && By[0] <= LS_MAT_MAX);
861
326k
  assert(By[1] >= LS_MAT_MIN && By[1] <= LS_MAT_MAX);
862
863
  // Compute Determinant of A
864
326k
  const int64_t Det = (int64_t)A[0][0] * A[1][1] - (int64_t)A[0][1] * A[0][1];
865
326k
  if (Det == 0) return 1;
866
867
303k
  int16_t shift;
868
303k
  int16_t iDet = resolve_divisor_64(llabs(Det), &shift) * (Det < 0 ? -1 : 1);
869
303k
  shift -= WARPEDMODEL_PREC_BITS;
870
303k
  if (shift < 0) {
871
0
    iDet <<= (-shift);
872
0
    shift = 0;
873
0
  }
874
875
303k
  int64_t Px[2], Py[2];
876
  // These divided by the Det, are the least squares solutions
877
303k
  Px[0] = (int64_t)A[1][1] * Bx[0] - (int64_t)A[0][1] * Bx[1];
878
303k
  Px[1] = -(int64_t)A[0][1] * Bx[0] + (int64_t)A[0][0] * Bx[1];
879
303k
  Py[0] = (int64_t)A[1][1] * By[0] - (int64_t)A[0][1] * By[1];
880
303k
  Py[1] = -(int64_t)A[0][1] * By[0] + (int64_t)A[0][0] * By[1];
881
882
303k
  wm->wmmat[2] = get_mult_shift_diag(Px[0], iDet, shift);
883
303k
  wm->wmmat[3] = get_mult_shift_ndiag(Px[1], iDet, shift);
884
303k
  wm->wmmat[4] = get_mult_shift_ndiag(Py[0], iDet, shift);
885
303k
  wm->wmmat[5] = get_mult_shift_diag(Py[1], iDet, shift);
886
887
303k
  const int isuy = (mi_row * MI_SIZE + rsuy);
888
303k
  const int isux = (mi_col * MI_SIZE + rsux);
889
  // Note: In the vx, vy expressions below, the max value of each of the
890
  // 2nd and 3rd terms are (2^16 - 1) * (2^13 - 1). That leaves enough room
891
  // for the first term so that the overall sum in the worst case fits
892
  // within 32 bits overall.
893
303k
  const int32_t vx = mvx * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
894
303k
                     (isux * (wm->wmmat[2] - (1 << WARPEDMODEL_PREC_BITS)) +
895
303k
                      isuy * wm->wmmat[3]);
896
303k
  const int32_t vy = mvy * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
897
303k
                     (isux * wm->wmmat[4] +
898
303k
                      isuy * (wm->wmmat[5] - (1 << WARPEDMODEL_PREC_BITS)));
899
303k
  wm->wmmat[0] =
900
303k
      clamp(vx, -WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1);
901
303k
  wm->wmmat[1] =
902
303k
      clamp(vy, -WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1);
903
303k
  return 0;
904
326k
}
905
906
int av1_find_projection(int np, const int *pts1, const int *pts2,
907
                        BLOCK_SIZE bsize, int mvy, int mvx,
908
326k
                        WarpedMotionParams *wm_params, int mi_row, int mi_col) {
909
326k
  assert(wm_params->wmtype == AFFINE);
910
911
326k
  if (find_affine_int(np, pts1, pts2, bsize, mvy, mvx, wm_params, mi_row,
912
326k
                      mi_col))
913
22.9k
    return 1;
914
915
  // check compatibility with the fast warp filter
916
303k
  if (!av1_get_shear_params(wm_params)) return 1;
917
918
283k
  return 0;
919
303k
}