Coverage Report

Created: 2026-02-14 07:00

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aom/av1/common/reconintra.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <assert.h>
13
#include <math.h>
14
15
#include "config/aom_config.h"
16
#include "config/aom_dsp_rtcd.h"
17
#include "config/av1_rtcd.h"
18
19
#include "aom_dsp/aom_dsp_common.h"
20
#include "aom_mem/aom_mem.h"
21
#include "aom_ports/aom_once.h"
22
#include "aom_ports/mem.h"
23
#include "av1/common/av1_common_int.h"
24
#include "av1/common/cfl.h"
25
#include "av1/common/reconintra.h"
26
27
enum {
28
  NEED_LEFT = 1 << 1,
29
  NEED_ABOVE = 1 << 2,
30
  NEED_ABOVERIGHT = 1 << 3,
31
  NEED_ABOVELEFT = 1 << 4,
32
  NEED_BOTTOMLEFT = 1 << 5,
33
};
34
35
#define INTRA_EDGE_FILT 3
36
0
#define INTRA_EDGE_TAPS 5
37
#define MAX_UPSAMPLE_SZ 16
38
151M
#define NUM_INTRA_NEIGHBOUR_PIXELS (MAX_TX_SIZE * 2 + 32)
39
40
static const uint8_t extend_modes[INTRA_MODES] = {
41
  NEED_ABOVE | NEED_LEFT,                   // DC
42
  NEED_ABOVE,                               // V
43
  NEED_LEFT,                                // H
44
  NEED_ABOVE | NEED_ABOVERIGHT,             // D45
45
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D135
46
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D113
47
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D157
48
  NEED_LEFT | NEED_BOTTOMLEFT,              // D203
49
  NEED_ABOVE | NEED_ABOVERIGHT,             // D67
50
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH
51
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH_V
52
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH_H
53
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // PAETH
54
};
55
56
// Tables to store if the top-right reference pixels are available. The flags
57
// are represented with bits, packed into 8-bit integers. E.g., for the 32x32
58
// blocks in a 128x128 superblock, the index of the "o" block is 10 (in raster
59
// order), so its flag is stored at the 3rd bit of the 2nd entry in the table,
60
// i.e. (table[10 / 8] >> (10 % 8)) & 1.
61
//       . . . .
62
//       . . . .
63
//       . . o .
64
//       . . . .
65
static uint8_t has_tr_4x4[128] = {
66
  255, 255, 255, 255, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
67
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
68
  255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
69
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
70
  255, 255, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
71
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
72
  255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
73
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
74
};
75
static uint8_t has_tr_4x8[64] = {
76
  255, 255, 255, 255, 119, 119, 119, 119, 127, 127, 127, 127, 119,
77
  119, 119, 119, 255, 127, 255, 127, 119, 119, 119, 119, 127, 127,
78
  127, 127, 119, 119, 119, 119, 255, 255, 255, 127, 119, 119, 119,
79
  119, 127, 127, 127, 127, 119, 119, 119, 119, 255, 127, 255, 127,
80
  119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119,
81
};
82
static uint8_t has_tr_8x4[64] = {
83
  255, 255, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
84
  127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
85
  255, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
86
  127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
87
};
88
static uint8_t has_tr_8x8[32] = {
89
  255, 255, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85,
90
  255, 127, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85,
91
};
92
static uint8_t has_tr_8x16[16] = {
93
  255, 255, 119, 119, 127, 127, 119, 119,
94
  255, 127, 119, 119, 127, 127, 119, 119,
95
};
96
static uint8_t has_tr_16x8[16] = {
97
  255, 0, 85, 0, 119, 0, 85, 0, 127, 0, 85, 0, 119, 0, 85, 0,
98
};
99
static uint8_t has_tr_16x16[8] = {
100
  255, 85, 119, 85, 127, 85, 119, 85,
101
};
102
static uint8_t has_tr_16x32[4] = { 255, 119, 127, 119 };
103
static uint8_t has_tr_32x16[4] = { 15, 5, 7, 5 };
104
static uint8_t has_tr_32x32[2] = { 95, 87 };
105
static uint8_t has_tr_32x64[1] = { 127 };
106
static uint8_t has_tr_64x32[1] = { 19 };
107
static uint8_t has_tr_64x64[1] = { 7 };
108
static uint8_t has_tr_64x128[1] = { 3 };
109
static uint8_t has_tr_128x64[1] = { 1 };
110
static uint8_t has_tr_128x128[1] = { 1 };
111
static uint8_t has_tr_4x16[32] = {
112
  255, 255, 255, 255, 127, 127, 127, 127, 255, 127, 255,
113
  127, 127, 127, 127, 127, 255, 255, 255, 127, 127, 127,
114
  127, 127, 255, 127, 255, 127, 127, 127, 127, 127,
115
};
116
static uint8_t has_tr_16x4[32] = {
117
  255, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0,
118
  127, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0,
119
};
120
static uint8_t has_tr_8x32[8] = {
121
  255, 255, 127, 127, 255, 127, 127, 127,
122
};
123
static uint8_t has_tr_32x8[8] = {
124
  15, 0, 5, 0, 7, 0, 5, 0,
125
};
126
static uint8_t has_tr_16x64[2] = { 255, 127 };
127
static uint8_t has_tr_64x16[2] = { 3, 1 };
128
129
static const uint8_t *const has_tr_tables[BLOCK_SIZES_ALL] = {
130
  // 4X4
131
  has_tr_4x4,
132
  // 4X8,       8X4,            8X8
133
  has_tr_4x8, has_tr_8x4, has_tr_8x8,
134
  // 8X16,      16X8,           16X16
135
  has_tr_8x16, has_tr_16x8, has_tr_16x16,
136
  // 16X32,     32X16,          32X32
137
  has_tr_16x32, has_tr_32x16, has_tr_32x32,
138
  // 32X64,     64X32,          64X64
139
  has_tr_32x64, has_tr_64x32, has_tr_64x64,
140
  // 64x128,    128x64,         128x128
141
  has_tr_64x128, has_tr_128x64, has_tr_128x128,
142
  // 4x16,      16x4,            8x32
143
  has_tr_4x16, has_tr_16x4, has_tr_8x32,
144
  // 32x8,      16x64,           64x16
145
  has_tr_32x8, has_tr_16x64, has_tr_64x16
146
};
147
148
static uint8_t has_tr_vert_8x8[32] = {
149
  255, 255, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0,
150
  255, 127, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0,
151
};
152
static uint8_t has_tr_vert_16x16[8] = {
153
  255, 0, 119, 0, 127, 0, 119, 0,
154
};
155
static uint8_t has_tr_vert_32x32[2] = { 15, 7 };
156
static uint8_t has_tr_vert_64x64[1] = { 3 };
157
158
// The _vert_* tables are like the ordinary tables above, but describe the
159
// order we visit square blocks when doing a PARTITION_VERT_A or
160
// PARTITION_VERT_B. This is the same order as normal except for on the last
161
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
162
// as a pair of squares, which means that these tables work correctly for both
163
// mixed vertical partition types.
164
//
165
// There are tables for each of the square sizes. Vertical rectangles (like
166
// BLOCK_16X32) use their respective "non-vert" table
167
static const uint8_t *const has_tr_vert_tables[BLOCK_SIZES] = {
168
  // 4X4
169
  NULL,
170
  // 4X8,      8X4,         8X8
171
  has_tr_4x8, NULL, has_tr_vert_8x8,
172
  // 8X16,     16X8,        16X16
173
  has_tr_8x16, NULL, has_tr_vert_16x16,
174
  // 16X32,    32X16,       32X32
175
  has_tr_16x32, NULL, has_tr_vert_32x32,
176
  // 32X64,    64X32,       64X64
177
  has_tr_32x64, NULL, has_tr_vert_64x64,
178
  // 64x128,   128x64,      128x128
179
  has_tr_64x128, NULL, has_tr_128x128
180
};
181
182
static const uint8_t *get_has_tr_table(PARTITION_TYPE partition,
183
592k
                                       BLOCK_SIZE bsize) {
184
592k
  const uint8_t *ret = NULL;
185
  // If this is a mixed vertical partition, look up bsize in orders_vert.
186
592k
  if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
187
59.5k
    assert(bsize < BLOCK_SIZES);
188
59.5k
    ret = has_tr_vert_tables[bsize];
189
532k
  } else {
190
532k
    ret = has_tr_tables[bsize];
191
532k
  }
192
592k
  assert(ret);
193
592k
  return ret;
194
592k
}
195
196
static int has_top_right(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row,
197
                         int mi_col, int top_available, int right_available,
198
                         PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
199
1.02M
                         int col_off, int ss_x, int ss_y) {
200
1.02M
  if (!top_available || !right_available) return 0;
201
202
960k
  const int bw_unit = mi_size_wide[bsize];
203
960k
  const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1);
204
960k
  const int top_right_count_unit = tx_size_wide_unit[txsz];
205
206
960k
  if (row_off > 0) {  // Just need to check if enough pixels on the right.
207
124k
    if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) {
208
      // Special case: For 128x128 blocks, the transform unit whose
209
      // top-right corner is at the center of the block does in fact have
210
      // pixels available at its top-right corner.
211
70.0k
      if (row_off == mi_size_high[BLOCK_64X64] >> ss_y &&
212
31.7k
          col_off + top_right_count_unit == mi_size_wide[BLOCK_64X64] >> ss_x) {
213
15.0k
        return 1;
214
15.0k
      }
215
55.0k
      const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
216
55.0k
      const int col_off_64 = col_off % plane_bw_unit_64;
217
55.0k
      return col_off_64 + top_right_count_unit < plane_bw_unit_64;
218
70.0k
    }
219
54.0k
    return col_off + top_right_count_unit < plane_bw_unit;
220
836k
  } else {
221
    // All top-right pixels are in the block above, which is already available.
222
836k
    if (col_off + top_right_count_unit < plane_bw_unit) return 1;
223
224
807k
    const int bw_in_mi_log2 = mi_size_wide_log2[bsize];
225
807k
    const int bh_in_mi_log2 = mi_size_high_log2[bsize];
226
807k
    const int sb_mi_size = mi_size_high[sb_size];
227
807k
    const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
228
807k
    const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
229
230
    // Top row of superblock: so top-right pixels are in the top and/or
231
    // top-right superblocks, both of which are already available.
232
807k
    if (blk_row_in_sb == 0) return 1;
233
234
    // Rightmost column of superblock (and not the top row): so top-right pixels
235
    // fall in the right superblock, which is not available yet.
236
693k
    if (((blk_col_in_sb + 1) << bw_in_mi_log2) >= sb_mi_size) {
237
101k
      return 0;
238
101k
    }
239
240
    // General case (neither top row nor rightmost column): check if the
241
    // top-right block is coded before the current block.
242
592k
    const int this_blk_index =
243
592k
        ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
244
592k
        blk_col_in_sb + 0;
245
592k
    const int idx1 = this_blk_index / 8;
246
592k
    const int idx2 = this_blk_index % 8;
247
592k
    const uint8_t *has_tr_table = get_has_tr_table(partition, bsize);
248
592k
    return (has_tr_table[idx1] >> idx2) & 1;
249
693k
  }
250
960k
}
251
252
// Similar to the has_tr_* tables, but store if the bottom-left reference
253
// pixels are available.
254
static uint8_t has_bl_4x4[128] = {
255
  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85, 85,
256
  85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  1,  0,  84, 85, 85, 85, 16, 17,
257
  17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85, 85, 85, 16, 17, 17, 17, 84,
258
  85, 85, 85, 0,  0,  0,  0,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85,
259
  0,  1,  1,  1,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  1,
260
  0,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85,
261
  85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  0,  0,
262
};
263
static uint8_t has_bl_4x8[64] = {
264
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0,
265
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0,
266
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0,
267
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0,
268
};
269
static uint8_t has_bl_8x4[64] = {
270
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1,
271
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0,
272
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1,
273
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0,
274
};
275
static uint8_t has_bl_8x8[32] = {
276
  84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0,
277
  84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0,
278
};
279
static uint8_t has_bl_8x16[16] = {
280
  16, 17, 0, 1, 16, 17, 0, 0, 16, 17, 0, 1, 16, 17, 0, 0,
281
};
282
static uint8_t has_bl_16x8[16] = {
283
  254, 84, 254, 16, 254, 84, 254, 0, 254, 84, 254, 16, 254, 84, 254, 0,
284
};
285
static uint8_t has_bl_16x16[8] = {
286
  84, 16, 84, 0, 84, 16, 84, 0,
287
};
288
static uint8_t has_bl_16x32[4] = { 16, 0, 16, 0 };
289
static uint8_t has_bl_32x16[4] = { 78, 14, 78, 14 };
290
static uint8_t has_bl_32x32[2] = { 4, 4 };
291
static uint8_t has_bl_32x64[1] = { 0 };
292
static uint8_t has_bl_64x32[1] = { 34 };
293
static uint8_t has_bl_64x64[1] = { 0 };
294
static uint8_t has_bl_64x128[1] = { 0 };
295
static uint8_t has_bl_128x64[1] = { 0 };
296
static uint8_t has_bl_128x128[1] = { 0 };
297
static uint8_t has_bl_4x16[32] = {
298
  0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
299
  0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
300
};
301
static uint8_t has_bl_16x4[32] = {
302
  254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0,
303
  254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0,
304
};
305
static uint8_t has_bl_8x32[8] = {
306
  0, 1, 0, 0, 0, 1, 0, 0,
307
};
308
static uint8_t has_bl_32x8[8] = {
309
  238, 78, 238, 14, 238, 78, 238, 14,
310
};
311
static uint8_t has_bl_16x64[2] = { 0, 0 };
312
static uint8_t has_bl_64x16[2] = { 42, 42 };
313
314
static const uint8_t *const has_bl_tables[BLOCK_SIZES_ALL] = {
315
  // 4X4
316
  has_bl_4x4,
317
  // 4X8,         8X4,         8X8
318
  has_bl_4x8, has_bl_8x4, has_bl_8x8,
319
  // 8X16,        16X8,        16X16
320
  has_bl_8x16, has_bl_16x8, has_bl_16x16,
321
  // 16X32,       32X16,       32X32
322
  has_bl_16x32, has_bl_32x16, has_bl_32x32,
323
  // 32X64,       64X32,       64X64
324
  has_bl_32x64, has_bl_64x32, has_bl_64x64,
325
  // 64x128,      128x64,      128x128
326
  has_bl_64x128, has_bl_128x64, has_bl_128x128,
327
  // 4x16,        16x4,        8x32
328
  has_bl_4x16, has_bl_16x4, has_bl_8x32,
329
  // 32x8,        16x64,       64x16
330
  has_bl_32x8, has_bl_16x64, has_bl_64x16
331
};
332
333
static uint8_t has_bl_vert_8x8[32] = {
334
  254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0,
335
  254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0,
336
};
337
static uint8_t has_bl_vert_16x16[8] = {
338
  254, 16, 254, 0, 254, 16, 254, 0,
339
};
340
static uint8_t has_bl_vert_32x32[2] = { 14, 14 };
341
static uint8_t has_bl_vert_64x64[1] = { 2 };
342
343
// The _vert_* tables are like the ordinary tables above, but describe the
344
// order we visit square blocks when doing a PARTITION_VERT_A or
345
// PARTITION_VERT_B. This is the same order as normal except for on the last
346
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
347
// as a pair of squares, which means that these tables work correctly for both
348
// mixed vertical partition types.
349
//
350
// There are tables for each of the square sizes. Vertical rectangles (like
351
// BLOCK_16X32) use their respective "non-vert" table
352
static const uint8_t *const has_bl_vert_tables[BLOCK_SIZES] = {
353
  // 4X4
354
  NULL,
355
  // 4X8,     8X4,         8X8
356
  has_bl_4x8, NULL, has_bl_vert_8x8,
357
  // 8X16,    16X8,        16X16
358
  has_bl_8x16, NULL, has_bl_vert_16x16,
359
  // 16X32,   32X16,       32X32
360
  has_bl_16x32, NULL, has_bl_vert_32x32,
361
  // 32X64,   64X32,       64X64
362
  has_bl_32x64, NULL, has_bl_vert_64x64,
363
  // 64x128,  128x64,      128x128
364
  has_bl_64x128, NULL, has_bl_128x128
365
};
366
367
static const uint8_t *get_has_bl_table(PARTITION_TYPE partition,
368
849k
                                       BLOCK_SIZE bsize) {
369
849k
  const uint8_t *ret = NULL;
370
  // If this is a mixed vertical partition, look up bsize in orders_vert.
371
849k
  if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
372
71.3k
    assert(bsize < BLOCK_SIZES);
373
71.3k
    ret = has_bl_vert_tables[bsize];
374
778k
  } else {
375
778k
    ret = has_bl_tables[bsize];
376
778k
  }
377
849k
  assert(ret);
378
849k
  return ret;
379
849k
}
380
381
static int has_bottom_left(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row,
382
                           int mi_col, int bottom_available, int left_available,
383
                           PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
384
1.59M
                           int col_off, int ss_x, int ss_y) {
385
1.59M
  if (!bottom_available || !left_available) return 0;
386
387
  // Special case for 128x* blocks, when col_off is half the block width.
388
  // This is needed because 128x* superblocks are divided into 64x* blocks in
389
  // raster order
390
1.46M
  if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64] && col_off > 0) {
391
88.4k
    const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
392
88.4k
    const int col_off_64 = col_off % plane_bw_unit_64;
393
88.4k
    if (col_off_64 == 0) {
394
      // We are at the left edge of top-right or bottom-right 64x* block.
395
46.5k
      const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y;
396
46.5k
      const int row_off_64 = row_off % plane_bh_unit_64;
397
46.5k
      const int plane_bh_unit =
398
46.5k
          AOMMIN(mi_size_high[bsize] >> ss_y, plane_bh_unit_64);
399
      // Check if all bottom-left pixels are in the left 64x* block (which is
400
      // already coded).
401
46.5k
      return row_off_64 + tx_size_high_unit[txsz] < plane_bh_unit;
402
46.5k
    }
403
88.4k
  }
404
405
1.41M
  if (col_off > 0) {
406
    // Bottom-left pixels are in the bottom-left block, which is not available.
407
171k
    return 0;
408
1.24M
  } else {
409
1.24M
    const int bh_unit = mi_size_high[bsize];
410
1.24M
    const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1);
411
1.24M
    const int bottom_left_count_unit = tx_size_high_unit[txsz];
412
413
    // All bottom-left pixels are in the left block, which is already available.
414
1.24M
    if (row_off + bottom_left_count_unit < plane_bh_unit) return 1;
415
416
1.19M
    const int bw_in_mi_log2 = mi_size_wide_log2[bsize];
417
1.19M
    const int bh_in_mi_log2 = mi_size_high_log2[bsize];
418
1.19M
    const int sb_mi_size = mi_size_high[sb_size];
419
1.19M
    const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
420
1.19M
    const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
421
422
    // Leftmost column of superblock: so bottom-left pixels maybe in the left
423
    // and/or bottom-left superblocks. But only the left superblock is
424
    // available, so check if all required pixels fall in that superblock.
425
1.19M
    if (blk_col_in_sb == 0) {
426
203k
      const int blk_start_row_off =
427
203k
          blk_row_in_sb << (bh_in_mi_log2 + MI_SIZE_LOG2 - MI_SIZE_LOG2) >>
428
203k
          ss_y;
429
203k
      const int row_off_in_sb = blk_start_row_off + row_off;
430
203k
      const int sb_height_unit = sb_mi_size >> ss_y;
431
203k
      return row_off_in_sb + bottom_left_count_unit < sb_height_unit;
432
203k
    }
433
434
    // Bottom row of superblock (and not the leftmost column): so bottom-left
435
    // pixels fall in the bottom superblock, which is not available yet.
436
992k
    if (((blk_row_in_sb + 1) << bh_in_mi_log2) >= sb_mi_size) return 0;
437
438
    // General case (neither leftmost column nor bottom row): check if the
439
    // bottom-left block is coded before the current block.
440
849k
    const int this_blk_index =
441
849k
        ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
442
849k
        blk_col_in_sb + 0;
443
849k
    const int idx1 = this_blk_index / 8;
444
849k
    const int idx2 = this_blk_index % 8;
445
849k
    const uint8_t *has_bl_table = get_has_bl_table(partition, bsize);
446
849k
    return (has_bl_table[idx1] >> idx2) & 1;
447
992k
  }
448
1.41M
}
449
450
typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride,
451
                              const uint8_t *above, const uint8_t *left);
452
453
static intra_pred_fn pred[INTRA_MODES][TX_SIZES_ALL];
454
static intra_pred_fn dc_pred[2][2][TX_SIZES_ALL];
455
456
#if CONFIG_AV1_HIGHBITDEPTH
457
typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride,
458
                                   const uint16_t *above, const uint16_t *left,
459
                                   int bd);
460
static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL];
461
static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL];
462
#endif
463
464
1
static void init_intra_predictors_internal(void) {
465
1
  assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES);
466
467
#if CONFIG_REALTIME_ONLY && !CONFIG_AV1_DECODER
468
#define INIT_RECTANGULAR(p, type)             \
469
  p[TX_4X8] = aom_##type##_predictor_4x8;     \
470
  p[TX_8X4] = aom_##type##_predictor_8x4;     \
471
  p[TX_8X16] = aom_##type##_predictor_8x16;   \
472
  p[TX_16X8] = aom_##type##_predictor_16x8;   \
473
  p[TX_16X32] = aom_##type##_predictor_16x32; \
474
  p[TX_32X16] = aom_##type##_predictor_32x16; \
475
  p[TX_32X64] = aom_##type##_predictor_32x64; \
476
  p[TX_64X32] = aom_##type##_predictor_64x32;
477
#else
478
1
#define INIT_RECTANGULAR(p, type)             \
479
20
  p[TX_4X8] = aom_##type##_predictor_4x8;     \
480
20
  p[TX_8X4] = aom_##type##_predictor_8x4;     \
481
20
  p[TX_8X16] = aom_##type##_predictor_8x16;   \
482
20
  p[TX_16X8] = aom_##type##_predictor_16x8;   \
483
20
  p[TX_16X32] = aom_##type##_predictor_16x32; \
484
20
  p[TX_32X16] = aom_##type##_predictor_32x16; \
485
20
  p[TX_32X64] = aom_##type##_predictor_32x64; \
486
20
  p[TX_64X32] = aom_##type##_predictor_64x32; \
487
20
  p[TX_4X16] = aom_##type##_predictor_4x16;   \
488
20
  p[TX_16X4] = aom_##type##_predictor_16x4;   \
489
20
  p[TX_8X32] = aom_##type##_predictor_8x32;   \
490
20
  p[TX_32X8] = aom_##type##_predictor_32x8;   \
491
20
  p[TX_16X64] = aom_##type##_predictor_16x64; \
492
20
  p[TX_64X16] = aom_##type##_predictor_64x16;
493
1
#endif  // CONFIG_REALTIME_ONLY && !CONFIG_AV1_DECODER
494
495
1
#define INIT_NO_4X4(p, type)                  \
496
20
  p[TX_8X8] = aom_##type##_predictor_8x8;     \
497
20
  p[TX_16X16] = aom_##type##_predictor_16x16; \
498
20
  p[TX_32X32] = aom_##type##_predictor_32x32; \
499
20
  p[TX_64X64] = aom_##type##_predictor_64x64; \
500
20
  INIT_RECTANGULAR(p, type)
501
502
1
#define INIT_ALL_SIZES(p, type)           \
503
20
  p[TX_4X4] = aom_##type##_predictor_4x4; \
504
20
  INIT_NO_4X4(p, type)
505
506
1
  INIT_ALL_SIZES(pred[V_PRED], v)
507
1
  INIT_ALL_SIZES(pred[H_PRED], h)
508
1
  INIT_ALL_SIZES(pred[PAETH_PRED], paeth)
509
1
  INIT_ALL_SIZES(pred[SMOOTH_PRED], smooth)
510
1
  INIT_ALL_SIZES(pred[SMOOTH_V_PRED], smooth_v)
511
1
  INIT_ALL_SIZES(pred[SMOOTH_H_PRED], smooth_h)
512
1
  INIT_ALL_SIZES(dc_pred[0][0], dc_128)
513
1
  INIT_ALL_SIZES(dc_pred[0][1], dc_top)
514
1
  INIT_ALL_SIZES(dc_pred[1][0], dc_left)
515
1
  INIT_ALL_SIZES(dc_pred[1][1], dc)
516
1
#if CONFIG_AV1_HIGHBITDEPTH
517
1
  INIT_ALL_SIZES(pred_high[V_PRED], highbd_v)
518
1
  INIT_ALL_SIZES(pred_high[H_PRED], highbd_h)
519
1
  INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth)
520
1
  INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth)
521
1
  INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v)
522
1
  INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h)
523
1
  INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128)
524
1
  INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top)
525
1
  INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left)
526
1
  INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc)
527
1
#endif
528
1
#undef intra_pred_allsizes
529
1
}
530
531
// Directional prediction, zone 1: 0 < angle < 90
532
void av1_dr_prediction_z1_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
533
                            const uint8_t *above, const uint8_t *left,
534
0
                            int upsample_above, int dx, int dy) {
535
0
  int r, c, x, base, shift, val;
536
537
0
  (void)left;
538
0
  (void)dy;
539
0
  assert(dy == 1);
540
0
  assert(dx > 0);
541
542
0
  const int max_base_x = ((bw + bh) - 1) << upsample_above;
543
0
  const int frac_bits = 6 - upsample_above;
544
0
  const int base_inc = 1 << upsample_above;
545
0
  x = dx;
546
0
  for (r = 0; r < bh; ++r, dst += stride, x += dx) {
547
0
    base = x >> frac_bits;
548
0
    shift = ((x << upsample_above) & 0x3F) >> 1;
549
550
0
    if (base >= max_base_x) {
551
0
      for (int i = r; i < bh; ++i) {
552
0
        memset(dst, above[max_base_x], bw * sizeof(dst[0]));
553
0
        dst += stride;
554
0
      }
555
0
      return;
556
0
    }
557
558
0
    for (c = 0; c < bw; ++c, base += base_inc) {
559
0
      if (base < max_base_x) {
560
0
        val = above[base] * (32 - shift) + above[base + 1] * shift;
561
0
        dst[c] = ROUND_POWER_OF_TWO(val, 5);
562
0
      } else {
563
0
        dst[c] = above[max_base_x];
564
0
      }
565
0
    }
566
0
  }
567
0
}
568
569
// Directional prediction, zone 2: 90 < angle < 180
570
void av1_dr_prediction_z2_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
571
                            const uint8_t *above, const uint8_t *left,
572
                            int upsample_above, int upsample_left, int dx,
573
0
                            int dy) {
574
0
  assert(dx > 0);
575
0
  assert(dy > 0);
576
577
0
  const int min_base_x = -(1 << upsample_above);
578
0
  const int min_base_y = -(1 << upsample_left);
579
0
  (void)min_base_y;
580
0
  const int frac_bits_x = 6 - upsample_above;
581
0
  const int frac_bits_y = 6 - upsample_left;
582
583
0
  for (int r = 0; r < bh; ++r) {
584
0
    for (int c = 0; c < bw; ++c) {
585
0
      int val;
586
0
      int y = r + 1;
587
0
      int x = (c << 6) - y * dx;
588
0
      const int base_x = x >> frac_bits_x;
589
0
      if (base_x >= min_base_x) {
590
0
        const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
591
0
        val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
592
0
        val = ROUND_POWER_OF_TWO(val, 5);
593
0
      } else {
594
0
        x = c + 1;
595
0
        y = (r << 6) - x * dy;
596
0
        const int base_y = y >> frac_bits_y;
597
0
        assert(base_y >= min_base_y);
598
0
        const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
599
0
        val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
600
0
        val = ROUND_POWER_OF_TWO(val, 5);
601
0
      }
602
0
      dst[c] = val;
603
0
    }
604
0
    dst += stride;
605
0
  }
606
0
}
607
608
// Directional prediction, zone 3: 180 < angle < 270
609
void av1_dr_prediction_z3_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
610
                            const uint8_t *above, const uint8_t *left,
611
0
                            int upsample_left, int dx, int dy) {
612
0
  int r, c, y, base, shift, val;
613
614
0
  (void)above;
615
0
  (void)dx;
616
617
0
  assert(dx == 1);
618
0
  assert(dy > 0);
619
620
0
  const int max_base_y = (bw + bh - 1) << upsample_left;
621
0
  const int frac_bits = 6 - upsample_left;
622
0
  const int base_inc = 1 << upsample_left;
623
0
  y = dy;
624
0
  for (c = 0; c < bw; ++c, y += dy) {
625
0
    base = y >> frac_bits;
626
0
    shift = ((y << upsample_left) & 0x3F) >> 1;
627
628
0
    for (r = 0; r < bh; ++r, base += base_inc) {
629
0
      if (base < max_base_y) {
630
0
        val = left[base] * (32 - shift) + left[base + 1] * shift;
631
0
        dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5);
632
0
      } else {
633
0
        for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
634
0
        break;
635
0
      }
636
0
    }
637
0
  }
638
0
}
639
640
static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size,
641
                         const uint8_t *above, const uint8_t *left,
642
3.72M
                         int upsample_above, int upsample_left, int angle) {
643
3.72M
  const int dx = av1_get_dx(angle);
644
3.72M
  const int dy = av1_get_dy(angle);
645
3.72M
  const int bw = tx_size_wide[tx_size];
646
3.72M
  const int bh = tx_size_high[tx_size];
647
3.72M
  assert(angle > 0 && angle < 270);
648
649
3.72M
  if (angle > 0 && angle < 90) {
650
415k
    av1_dr_prediction_z1(dst, stride, bw, bh, above, left, upsample_above, dx,
651
415k
                         dy);
652
3.31M
  } else if (angle > 90 && angle < 180) {
653
864k
    av1_dr_prediction_z2(dst, stride, bw, bh, above, left, upsample_above,
654
864k
                         upsample_left, dx, dy);
655
2.44M
  } else if (angle > 180 && angle < 270) {
656
611k
    av1_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, dx,
657
611k
                         dy);
658
1.83M
  } else if (angle == 90) {
659
447k
    pred[V_PRED][tx_size](dst, stride, above, left);
660
1.38M
  } else if (angle == 180) {
661
1.38M
    pred[H_PRED][tx_size](dst, stride, above, left);
662
1.38M
  }
663
3.72M
}
664
665
#if CONFIG_AV1_HIGHBITDEPTH
666
// Directional prediction, zone 1: 0 < angle < 90
667
void av1_highbd_dr_prediction_z1_c(uint16_t *dst, ptrdiff_t stride, int bw,
668
                                   int bh, const uint16_t *above,
669
                                   const uint16_t *left, int upsample_above,
670
0
                                   int dx, int dy, int bd) {
671
0
  int r, c, x, base, shift, val;
672
673
0
  (void)left;
674
0
  (void)dy;
675
0
  (void)bd;
676
0
  assert(dy == 1);
677
0
  assert(dx > 0);
678
679
0
  const int max_base_x = ((bw + bh) - 1) << upsample_above;
680
0
  const int frac_bits = 6 - upsample_above;
681
0
  const int base_inc = 1 << upsample_above;
682
0
  x = dx;
683
0
  for (r = 0; r < bh; ++r, dst += stride, x += dx) {
684
0
    base = x >> frac_bits;
685
0
    shift = ((x << upsample_above) & 0x3F) >> 1;
686
687
0
    if (base >= max_base_x) {
688
0
      for (int i = r; i < bh; ++i) {
689
0
        aom_memset16(dst, above[max_base_x], bw);
690
0
        dst += stride;
691
0
      }
692
0
      return;
693
0
    }
694
695
0
    for (c = 0; c < bw; ++c, base += base_inc) {
696
0
      if (base < max_base_x) {
697
0
        val = above[base] * (32 - shift) + above[base + 1] * shift;
698
0
        dst[c] = ROUND_POWER_OF_TWO(val, 5);
699
0
      } else {
700
0
        dst[c] = above[max_base_x];
701
0
      }
702
0
    }
703
0
  }
704
0
}
705
706
// Directional prediction, zone 2: 90 < angle < 180
707
void av1_highbd_dr_prediction_z2_c(uint16_t *dst, ptrdiff_t stride, int bw,
708
                                   int bh, const uint16_t *above,
709
                                   const uint16_t *left, int upsample_above,
710
0
                                   int upsample_left, int dx, int dy, int bd) {
711
0
  (void)bd;
712
0
  assert(dx > 0);
713
0
  assert(dy > 0);
714
715
0
  const int min_base_x = -(1 << upsample_above);
716
0
  const int min_base_y = -(1 << upsample_left);
717
0
  (void)min_base_y;
718
0
  const int frac_bits_x = 6 - upsample_above;
719
0
  const int frac_bits_y = 6 - upsample_left;
720
721
0
  for (int r = 0; r < bh; ++r) {
722
0
    for (int c = 0; c < bw; ++c) {
723
0
      int val;
724
0
      int y = r + 1;
725
0
      int x = (c << 6) - y * dx;
726
0
      const int base_x = x >> frac_bits_x;
727
0
      if (base_x >= min_base_x) {
728
0
        const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
729
0
        val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
730
0
        val = ROUND_POWER_OF_TWO(val, 5);
731
0
      } else {
732
0
        x = c + 1;
733
0
        y = (r << 6) - x * dy;
734
0
        const int base_y = y >> frac_bits_y;
735
0
        assert(base_y >= min_base_y);
736
0
        const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
737
0
        val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
738
0
        val = ROUND_POWER_OF_TWO(val, 5);
739
0
      }
740
0
      dst[c] = val;
741
0
    }
742
0
    dst += stride;
743
0
  }
744
0
}
745
746
// Directional prediction, zone 3: 180 < angle < 270
747
void av1_highbd_dr_prediction_z3_c(uint16_t *dst, ptrdiff_t stride, int bw,
748
                                   int bh, const uint16_t *above,
749
                                   const uint16_t *left, int upsample_left,
750
0
                                   int dx, int dy, int bd) {
751
0
  int r, c, y, base, shift, val;
752
753
0
  (void)above;
754
0
  (void)dx;
755
0
  (void)bd;
756
0
  assert(dx == 1);
757
0
  assert(dy > 0);
758
759
0
  const int max_base_y = (bw + bh - 1) << upsample_left;
760
0
  const int frac_bits = 6 - upsample_left;
761
0
  const int base_inc = 1 << upsample_left;
762
0
  y = dy;
763
0
  for (c = 0; c < bw; ++c, y += dy) {
764
0
    base = y >> frac_bits;
765
0
    shift = ((y << upsample_left) & 0x3F) >> 1;
766
767
0
    for (r = 0; r < bh; ++r, base += base_inc) {
768
0
      if (base < max_base_y) {
769
0
        val = left[base] * (32 - shift) + left[base + 1] * shift;
770
0
        dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5);
771
0
      } else {
772
0
        for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
773
0
        break;
774
0
      }
775
0
    }
776
0
  }
777
0
}
778
779
static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride,
780
                                TX_SIZE tx_size, const uint16_t *above,
781
                                const uint16_t *left, int upsample_above,
782
4.94M
                                int upsample_left, int angle, int bd) {
783
4.94M
  const int dx = av1_get_dx(angle);
784
4.94M
  const int dy = av1_get_dy(angle);
785
4.94M
  const int bw = tx_size_wide[tx_size];
786
4.94M
  const int bh = tx_size_high[tx_size];
787
4.94M
  assert(angle > 0 && angle < 270);
788
789
4.94M
  if (angle > 0 && angle < 90) {
790
570k
    av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left,
791
570k
                                upsample_above, dx, dy, bd);
792
4.37M
  } else if (angle > 90 && angle < 180) {
793
1.11M
    av1_highbd_dr_prediction_z2(dst, stride, bw, bh, above, left,
794
1.11M
                                upsample_above, upsample_left, dx, dy, bd);
795
3.25M
  } else if (angle > 180 && angle < 270) {
796
871k
    av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left,
797
871k
                                dx, dy, bd);
798
2.38M
  } else if (angle == 90) {
799
493k
    pred_high[V_PRED][tx_size](dst, stride, above, left, bd);
800
1.89M
  } else if (angle == 180) {
801
1.89M
    pred_high[H_PRED][tx_size](dst, stride, above, left, bd);
802
1.89M
  }
803
4.94M
}
804
#endif  // CONFIG_AV1_HIGHBITDEPTH
805
806
DECLARE_ALIGNED(16, const int8_t,
807
                av1_filter_intra_taps[FILTER_INTRA_MODES][8][8]) = {
808
  {
809
      { -6, 10, 0, 0, 0, 12, 0, 0 },
810
      { -5, 2, 10, 0, 0, 9, 0, 0 },
811
      { -3, 1, 1, 10, 0, 7, 0, 0 },
812
      { -3, 1, 1, 2, 10, 5, 0, 0 },
813
      { -4, 6, 0, 0, 0, 2, 12, 0 },
814
      { -3, 2, 6, 0, 0, 2, 9, 0 },
815
      { -3, 2, 2, 6, 0, 2, 7, 0 },
816
      { -3, 1, 2, 2, 6, 3, 5, 0 },
817
  },
818
  {
819
      { -10, 16, 0, 0, 0, 10, 0, 0 },
820
      { -6, 0, 16, 0, 0, 6, 0, 0 },
821
      { -4, 0, 0, 16, 0, 4, 0, 0 },
822
      { -2, 0, 0, 0, 16, 2, 0, 0 },
823
      { -10, 16, 0, 0, 0, 0, 10, 0 },
824
      { -6, 0, 16, 0, 0, 0, 6, 0 },
825
      { -4, 0, 0, 16, 0, 0, 4, 0 },
826
      { -2, 0, 0, 0, 16, 0, 2, 0 },
827
  },
828
  {
829
      { -8, 8, 0, 0, 0, 16, 0, 0 },
830
      { -8, 0, 8, 0, 0, 16, 0, 0 },
831
      { -8, 0, 0, 8, 0, 16, 0, 0 },
832
      { -8, 0, 0, 0, 8, 16, 0, 0 },
833
      { -4, 4, 0, 0, 0, 0, 16, 0 },
834
      { -4, 0, 4, 0, 0, 0, 16, 0 },
835
      { -4, 0, 0, 4, 0, 0, 16, 0 },
836
      { -4, 0, 0, 0, 4, 0, 16, 0 },
837
  },
838
  {
839
      { -2, 8, 0, 0, 0, 10, 0, 0 },
840
      { -1, 3, 8, 0, 0, 6, 0, 0 },
841
      { -1, 2, 3, 8, 0, 4, 0, 0 },
842
      { 0, 1, 2, 3, 8, 2, 0, 0 },
843
      { -1, 4, 0, 0, 0, 3, 10, 0 },
844
      { -1, 3, 4, 0, 0, 4, 6, 0 },
845
      { -1, 2, 3, 4, 0, 4, 4, 0 },
846
      { -1, 2, 2, 3, 4, 3, 3, 0 },
847
  },
848
  {
849
      { -12, 14, 0, 0, 0, 14, 0, 0 },
850
      { -10, 0, 14, 0, 0, 12, 0, 0 },
851
      { -9, 0, 0, 14, 0, 11, 0, 0 },
852
      { -8, 0, 0, 0, 14, 10, 0, 0 },
853
      { -10, 12, 0, 0, 0, 0, 14, 0 },
854
      { -9, 1, 12, 0, 0, 0, 12, 0 },
855
      { -8, 0, 0, 12, 0, 1, 11, 0 },
856
      { -7, 0, 0, 1, 12, 1, 9, 0 },
857
  },
858
};
859
860
void av1_filter_intra_predictor_c(uint8_t *dst, ptrdiff_t stride,
861
                                  TX_SIZE tx_size, const uint8_t *above,
862
0
                                  const uint8_t *left, int mode) {
863
0
  int r, c;
864
0
  uint8_t buffer[33][33];
865
0
  const int bw = tx_size_wide[tx_size];
866
0
  const int bh = tx_size_high[tx_size];
867
868
0
  assert(bw <= 32 && bh <= 32);
869
870
0
  for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r];
871
0
  memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(uint8_t));
872
873
0
  for (r = 1; r < bh + 1; r += 2)
874
0
    for (c = 1; c < bw + 1; c += 4) {
875
0
      const uint8_t p0 = buffer[r - 1][c - 1];
876
0
      const uint8_t p1 = buffer[r - 1][c];
877
0
      const uint8_t p2 = buffer[r - 1][c + 1];
878
0
      const uint8_t p3 = buffer[r - 1][c + 2];
879
0
      const uint8_t p4 = buffer[r - 1][c + 3];
880
0
      const uint8_t p5 = buffer[r][c - 1];
881
0
      const uint8_t p6 = buffer[r + 1][c - 1];
882
0
      for (int k = 0; k < 8; ++k) {
883
0
        int r_offset = k >> 2;
884
0
        int c_offset = k & 0x03;
885
0
        int pr = av1_filter_intra_taps[mode][k][0] * p0 +
886
0
                 av1_filter_intra_taps[mode][k][1] * p1 +
887
0
                 av1_filter_intra_taps[mode][k][2] * p2 +
888
0
                 av1_filter_intra_taps[mode][k][3] * p3 +
889
0
                 av1_filter_intra_taps[mode][k][4] * p4 +
890
0
                 av1_filter_intra_taps[mode][k][5] * p5 +
891
0
                 av1_filter_intra_taps[mode][k][6] * p6;
892
        // Section 7.11.2.3 specifies the right-hand side of the assignment as
893
        //   Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ).
894
        // Since Clip1() clips a negative value to 0, it is safe to replace
895
        // Round2Signed() with Round2().
896
0
        buffer[r + r_offset][c + c_offset] =
897
0
            clip_pixel(ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS));
898
0
      }
899
0
    }
900
901
0
  for (r = 0; r < bh; ++r) {
902
0
    memcpy(dst, &buffer[r + 1][1], bw * sizeof(uint8_t));
903
0
    dst += stride;
904
0
  }
905
0
}
906
907
#if CONFIG_AV1_HIGHBITDEPTH
908
static void highbd_filter_intra_predictor(uint16_t *dst, ptrdiff_t stride,
909
                                          TX_SIZE tx_size,
910
                                          const uint16_t *above,
911
                                          const uint16_t *left, int mode,
912
646k
                                          int bd) {
913
646k
  int r, c;
914
646k
  uint16_t buffer[33][33];
915
646k
  const int bw = tx_size_wide[tx_size];
916
646k
  const int bh = tx_size_high[tx_size];
917
918
646k
  assert(bw <= 32 && bh <= 32);
919
920
7.30M
  for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r];
921
646k
  memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(buffer[0][0]));
922
923
3.96M
  for (r = 1; r < bh + 1; r += 2)
924
15.8M
    for (c = 1; c < bw + 1; c += 4) {
925
12.4M
      const uint16_t p0 = buffer[r - 1][c - 1];
926
12.4M
      const uint16_t p1 = buffer[r - 1][c];
927
12.4M
      const uint16_t p2 = buffer[r - 1][c + 1];
928
12.4M
      const uint16_t p3 = buffer[r - 1][c + 2];
929
12.4M
      const uint16_t p4 = buffer[r - 1][c + 3];
930
12.4M
      const uint16_t p5 = buffer[r][c - 1];
931
12.4M
      const uint16_t p6 = buffer[r + 1][c - 1];
932
112M
      for (int k = 0; k < 8; ++k) {
933
99.9M
        int r_offset = k >> 2;
934
99.9M
        int c_offset = k & 0x03;
935
99.9M
        int pr = av1_filter_intra_taps[mode][k][0] * p0 +
936
99.9M
                 av1_filter_intra_taps[mode][k][1] * p1 +
937
99.9M
                 av1_filter_intra_taps[mode][k][2] * p2 +
938
99.9M
                 av1_filter_intra_taps[mode][k][3] * p3 +
939
99.9M
                 av1_filter_intra_taps[mode][k][4] * p4 +
940
99.9M
                 av1_filter_intra_taps[mode][k][5] * p5 +
941
99.9M
                 av1_filter_intra_taps[mode][k][6] * p6;
942
        // Section 7.11.2.3 specifies the right-hand side of the assignment as
943
        //   Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ).
944
        // Since Clip1() clips a negative value to 0, it is safe to replace
945
        // Round2Signed() with Round2().
946
99.9M
        buffer[r + r_offset][c + c_offset] = clip_pixel_highbd(
947
99.9M
            ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS), bd);
948
99.9M
      }
949
12.4M
    }
950
951
7.30M
  for (r = 0; r < bh; ++r) {
952
6.65M
    memcpy(dst, &buffer[r + 1][1], bw * sizeof(dst[0]));
953
6.65M
    dst += stride;
954
6.65M
  }
955
646k
}
956
#endif  // CONFIG_AV1_HIGHBITDEPTH
957
958
17.9M
static int is_smooth(const MB_MODE_INFO *mbmi, int plane) {
959
17.9M
  if (plane == 0) {
960
8.70M
    const PREDICTION_MODE mode = mbmi->mode;
961
8.70M
    return (mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
962
7.84M
            mode == SMOOTH_H_PRED);
963
9.21M
  } else {
964
    // uv_mode is not set for inter blocks, so need to explicitly
965
    // detect that case.
966
9.21M
    if (is_inter_block(mbmi)) return 0;
967
968
8.19M
    const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
969
8.19M
    return (uv_mode == UV_SMOOTH_PRED || uv_mode == UV_SMOOTH_V_PRED ||
970
7.64M
            uv_mode == UV_SMOOTH_H_PRED);
971
9.21M
  }
972
17.9M
}
973
974
10.0M
static int get_intra_edge_filter_type(const MACROBLOCKD *xd, int plane) {
975
10.0M
  const MB_MODE_INFO *above;
976
10.0M
  const MB_MODE_INFO *left;
977
978
10.0M
  if (plane == 0) {
979
5.05M
    above = xd->above_mbmi;
980
5.05M
    left = xd->left_mbmi;
981
5.05M
  } else {
982
5.04M
    above = xd->chroma_above_mbmi;
983
5.04M
    left = xd->chroma_left_mbmi;
984
5.04M
  }
985
986
10.0M
  return (above && is_smooth(above, plane)) || (left && is_smooth(left, plane));
987
10.0M
}
988
989
5.50M
static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) {
990
5.50M
  const int d = abs(delta);
991
5.50M
  int strength = 0;
992
993
5.50M
  const int blk_wh = bs0 + bs1;
994
5.50M
  if (type == 0) {
995
4.29M
    if (blk_wh <= 8) {
996
676k
      if (d >= 56) strength = 1;
997
3.62M
    } else if (blk_wh <= 12) {
998
468k
      if (d >= 40) strength = 1;
999
3.15M
    } else if (blk_wh <= 16) {
1000
680k
      if (d >= 40) strength = 1;
1001
2.47M
    } else if (blk_wh <= 24) {
1002
920k
      if (d >= 8) strength = 1;
1003
920k
      if (d >= 16) strength = 2;
1004
920k
      if (d >= 32) strength = 3;
1005
1.55M
    } else if (blk_wh <= 32) {
1006
503k
      if (d >= 1) strength = 1;
1007
503k
      if (d >= 4) strength = 2;
1008
503k
      if (d >= 32) strength = 3;
1009
1.04M
    } else {
1010
1.04M
      if (d >= 1) strength = 3;
1011
1.04M
    }
1012
4.29M
  } else {
1013
1.20M
    if (blk_wh <= 8) {
1014
141k
      if (d >= 40) strength = 1;
1015
141k
      if (d >= 64) strength = 2;
1016
1.05M
    } else if (blk_wh <= 16) {
1017
333k
      if (d >= 20) strength = 1;
1018
333k
      if (d >= 48) strength = 2;
1019
725k
    } else if (blk_wh <= 24) {
1020
273k
      if (d >= 4) strength = 3;
1021
451k
    } else {
1022
451k
      if (d >= 1) strength = 3;
1023
451k
    }
1024
1.20M
  }
1025
5.50M
  return strength;
1026
5.50M
}
1027
1028
0
void av1_filter_intra_edge_c(uint8_t *p, int sz, int strength) {
1029
0
  if (!strength) return;
1030
1031
0
  const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
1032
0
                                                         { 0, 5, 6, 5, 0 },
1033
0
                                                         { 2, 4, 4, 4, 2 } };
1034
0
  const int filt = strength - 1;
1035
0
  uint8_t edge[129];
1036
1037
0
  memcpy(edge, p, sz * sizeof(*p));
1038
0
  for (int i = 1; i < sz; i++) {
1039
0
    int s = 0;
1040
0
    for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
1041
0
      int k = i - 2 + j;
1042
0
      k = (k < 0) ? 0 : k;
1043
0
      k = (k > sz - 1) ? sz - 1 : k;
1044
0
      s += edge[k] * kernel[filt][j];
1045
0
    }
1046
0
    s = (s + 8) >> 4;
1047
0
    p[i] = s;
1048
0
  }
1049
0
}
1050
1051
354k
static void filter_intra_edge_corner(uint8_t *p_above, uint8_t *p_left) {
1052
354k
  const int kernel[3] = { 5, 6, 5 };
1053
1054
354k
  int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
1055
354k
          (p_above[0] * kernel[2]);
1056
354k
  s = (s + 8) >> 4;
1057
354k
  p_above[-1] = s;
1058
354k
  p_left[-1] = s;
1059
354k
}
1060
1061
0
void av1_upsample_intra_edge_c(uint8_t *p, int sz) {
1062
  // interpolate half-sample positions
1063
0
  assert(sz <= MAX_UPSAMPLE_SZ);
1064
1065
0
  uint8_t in[MAX_UPSAMPLE_SZ + 3];
1066
  // copy p[-1..(sz-1)] and extend first and last samples
1067
0
  in[0] = p[-1];
1068
0
  in[1] = p[-1];
1069
0
  for (int i = 0; i < sz; i++) {
1070
0
    in[i + 2] = p[i];
1071
0
  }
1072
0
  in[sz + 2] = p[sz - 1];
1073
1074
  // interpolate half-sample edge positions
1075
0
  p[-2] = in[0];
1076
0
  for (int i = 0; i < sz; i++) {
1077
0
    int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
1078
0
    s = clip_pixel((s + 8) >> 4);
1079
0
    p[2 * i - 1] = s;
1080
0
    p[2 * i] = in[i + 2];
1081
0
  }
1082
0
}
1083
1084
static void build_directional_and_filter_intra_predictors(
1085
    const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride,
1086
    PREDICTION_MODE mode, int p_angle, FILTER_INTRA_MODE filter_intra_mode,
1087
    TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px,
1088
4.36M
    int n_left_px, int n_bottomleft_px, int intra_edge_filter_type) {
1089
4.36M
  int i;
1090
4.36M
  const uint8_t *above_ref = ref - ref_stride;
1091
4.36M
  const uint8_t *left_ref = ref - 1;
1092
4.36M
  DECLARE_ALIGNED(16, uint8_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1093
4.36M
  DECLARE_ALIGNED(16, uint8_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1094
4.36M
  uint8_t *const above_row = above_data + 16;
1095
4.36M
  uint8_t *const left_col = left_data + 16;
1096
4.36M
  const int txwpx = tx_size_wide[tx_size];
1097
4.36M
  const int txhpx = tx_size_high[tx_size];
1098
4.36M
  int need_left = extend_modes[mode] & NEED_LEFT;
1099
4.36M
  int need_above = extend_modes[mode] & NEED_ABOVE;
1100
4.36M
  int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1101
4.36M
  const int is_dr_mode = av1_is_directional_mode(mode);
1102
4.36M
  const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
1103
4.36M
  assert(use_filter_intra || is_dr_mode);
1104
  // The left_data, above_data buffers must be zeroed to fix some intermittent
1105
  // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4
1106
  // path in av1_dr_prediction_z1_avx2()) from left_data, above_data are seen to
1107
  // be the potential reason for this issue.
1108
4.36M
  memset(left_data, 129, NUM_INTRA_NEIGHBOUR_PIXELS);
1109
4.36M
  memset(above_data, 127, NUM_INTRA_NEIGHBOUR_PIXELS);
1110
1111
  // The default values if ref pixels are not available:
1112
  // 128 127 127 .. 127 127 127 127 127 127
1113
  // 129  A   B  ..  Y   Z
1114
  // 129  C   D  ..  W   X
1115
  // 129  E   F  ..  U   V
1116
  // 129  G   H  ..  S   T   T   T   T   T
1117
  // ..
1118
1119
4.36M
  if (is_dr_mode) {
1120
3.78M
    if (p_angle <= 90)
1121
887k
      need_above = 1, need_left = 0, need_above_left = 1;
1122
2.89M
    else if (p_angle < 180)
1123
864k
      need_above = 1, need_left = 1, need_above_left = 1;
1124
2.02M
    else
1125
2.02M
      need_above = 0, need_left = 1, need_above_left = 1;
1126
3.78M
  }
1127
4.36M
  if (use_filter_intra) need_left = need_above = need_above_left = 1;
1128
1129
4.36M
  assert(n_top_px >= 0);
1130
4.36M
  assert(n_topright_px >= -1);
1131
4.36M
  assert(n_left_px >= 0);
1132
4.36M
  assert(n_bottomleft_px >= -1);
1133
1134
4.36M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1135
52.8k
    int val;
1136
52.8k
    if (need_left) {
1137
28.4k
      val = (n_top_px > 0) ? above_ref[0] : 129;
1138
28.4k
    } else {
1139
24.3k
      val = (n_left_px > 0) ? left_ref[0] : 127;
1140
24.3k
    }
1141
1.75M
    for (i = 0; i < txhpx; ++i) {
1142
1.70M
      memset(dst, val, txwpx);
1143
1.70M
      dst += dst_stride;
1144
1.70M
    }
1145
52.8k
    return;
1146
52.8k
  }
1147
1148
  // NEED_LEFT
1149
4.31M
  if (need_left) {
1150
3.44M
    const int num_left_pixels_needed =
1151
3.44M
        txhpx + (n_bottomleft_px >= 0 ? txwpx : 0);
1152
3.44M
    i = 0;
1153
3.44M
    if (n_left_px > 0) {
1154
47.0M
      for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1155
3.41M
      if (n_bottomleft_px > 0) {
1156
253k
        assert(i == txhpx);
1157
3.14M
        for (; i < txhpx + n_bottomleft_px; i++)
1158
2.88M
          left_col[i] = left_ref[i * ref_stride];
1159
253k
      }
1160
3.41M
      if (i < num_left_pixels_needed)
1161
512k
        memset(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
1162
3.41M
    } else if (n_top_px > 0) {
1163
22.5k
      memset(left_col, above_ref[0], num_left_pixels_needed);
1164
22.5k
    }
1165
3.44M
  }
1166
1167
  // NEED_ABOVE
1168
4.31M
  if (need_above) {
1169
2.31M
    const int num_top_pixels_needed = txwpx + (n_topright_px >= 0 ? txhpx : 0);
1170
2.31M
    if (n_top_px > 0) {
1171
2.26M
      memcpy(above_row, above_ref, n_top_px);
1172
2.26M
      i = n_top_px;
1173
2.26M
      if (n_topright_px > 0) {
1174
241k
        assert(n_top_px == txwpx);
1175
241k
        memcpy(above_row + txwpx, above_ref + txwpx, n_topright_px);
1176
241k
        i += n_topright_px;
1177
241k
      }
1178
2.26M
      if (i < num_top_pixels_needed)
1179
248k
        memset(&above_row[i], above_row[i - 1], num_top_pixels_needed - i);
1180
2.26M
    } else if (n_left_px > 0) {
1181
33.8k
      memset(above_row, left_ref[0], num_top_pixels_needed);
1182
33.8k
    }
1183
2.31M
  }
1184
1185
4.31M
  if (need_above_left) {
1186
4.31M
    if (n_top_px > 0 && n_left_px > 0) {
1187
4.16M
      above_row[-1] = above_ref[-1];
1188
4.16M
    } else if (n_top_px > 0) {
1189
49.7k
      above_row[-1] = above_ref[0];
1190
95.7k
    } else if (n_left_px > 0) {
1191
83.5k
      above_row[-1] = left_ref[0];
1192
83.5k
    } else {
1193
12.1k
      above_row[-1] = 128;
1194
12.1k
    }
1195
4.31M
    left_col[-1] = above_row[-1];
1196
4.31M
  }
1197
1198
4.31M
  if (use_filter_intra) {
1199
585k
    av1_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col,
1200
585k
                               filter_intra_mode);
1201
585k
    return;
1202
585k
  }
1203
1204
4.31M
  assert(is_dr_mode);
1205
3.72M
  int upsample_above = 0;
1206
3.72M
  int upsample_left = 0;
1207
3.72M
  if (!disable_edge_filter) {
1208
3.50M
    const int need_right = p_angle < 90;
1209
3.50M
    const int need_bottom = p_angle > 180;
1210
3.50M
    if (p_angle != 90 && p_angle != 180) {
1211
1.75M
      assert(need_above_left);
1212
1.75M
      const int ab_le = 1;
1213
1.75M
      if (need_above && need_left && (txwpx + txhpx >= 24)) {
1214
354k
        filter_intra_edge_corner(above_row, left_col);
1215
354k
      }
1216
1.75M
      if (need_above && n_top_px > 0) {
1217
1.15M
        const int strength = intra_edge_filter_strength(
1218
1.15M
            txwpx, txhpx, p_angle - 90, intra_edge_filter_type);
1219
1.15M
        const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
1220
1.15M
        av1_filter_intra_edge(above_row - ab_le, n_px, strength);
1221
1.15M
      }
1222
1.75M
      if (need_left && n_left_px > 0) {
1223
1.37M
        const int strength = intra_edge_filter_strength(
1224
1.37M
            txhpx, txwpx, p_angle - 180, intra_edge_filter_type);
1225
1.37M
        const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
1226
1.37M
        av1_filter_intra_edge(left_col - ab_le, n_px, strength);
1227
1.37M
      }
1228
1.75M
    }
1229
3.50M
    upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90,
1230
3.50M
                                                 intra_edge_filter_type);
1231
3.50M
    if (need_above && upsample_above) {
1232
191k
      const int n_px = txwpx + (need_right ? txhpx : 0);
1233
191k
      av1_upsample_intra_edge(above_row, n_px);
1234
191k
    }
1235
3.50M
    upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180,
1236
3.50M
                                                intra_edge_filter_type);
1237
3.50M
    if (need_left && upsample_left) {
1238
346k
      const int n_px = txhpx + (need_bottom ? txwpx : 0);
1239
346k
      av1_upsample_intra_edge(left_col, n_px);
1240
346k
    }
1241
3.50M
  }
1242
3.72M
  dr_predictor(dst, dst_stride, tx_size, above_row, left_col, upsample_above,
1243
3.72M
               upsample_left, p_angle);
1244
3.72M
}
1245
1246
// This function generates the pred data of a given block for non-directional
1247
// intra prediction modes (i.e., DC, SMOOTH, SMOOTH_H, SMOOTH_V and PAETH).
1248
static void build_non_directional_intra_predictors(
1249
    const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride,
1250
9.26M
    PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, int n_left_px) {
1251
9.26M
  const uint8_t *above_ref = ref - ref_stride;
1252
9.26M
  const uint8_t *left_ref = ref - 1;
1253
9.26M
  const int txwpx = tx_size_wide[tx_size];
1254
9.26M
  const int txhpx = tx_size_high[tx_size];
1255
9.26M
  const int need_left = extend_modes[mode] & NEED_LEFT;
1256
9.26M
  const int need_above = extend_modes[mode] & NEED_ABOVE;
1257
9.26M
  const int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1258
9.26M
  int i = 0;
1259
9.26M
  assert(n_top_px >= 0);
1260
9.26M
  assert(n_left_px >= 0);
1261
9.26M
  assert(mode == DC_PRED || mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
1262
9.26M
         mode == SMOOTH_H_PRED || mode == PAETH_PRED);
1263
1264
9.26M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1265
0
    int val = 0;
1266
0
    if (need_left) {
1267
0
      val = (n_top_px > 0) ? above_ref[0] : 129;
1268
0
    } else {
1269
0
      val = (n_left_px > 0) ? left_ref[0] : 127;
1270
0
    }
1271
0
    for (i = 0; i < txhpx; ++i) {
1272
0
      memset(dst, val, txwpx);
1273
0
      dst += dst_stride;
1274
0
    }
1275
0
    return;
1276
0
  }
1277
1278
9.26M
  DECLARE_ALIGNED(16, uint8_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1279
9.26M
  DECLARE_ALIGNED(16, uint8_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1280
9.26M
  uint8_t *const above_row = above_data + 16;
1281
9.26M
  uint8_t *const left_col = left_data + 16;
1282
1283
9.26M
  if (need_left) {
1284
9.26M
    memset(left_data, 129, NUM_INTRA_NEIGHBOUR_PIXELS);
1285
9.26M
    if (n_left_px > 0) {
1286
153M
      for (i = 0; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1287
8.98M
      if (i < txhpx) memset(&left_col[i], left_col[i - 1], txhpx - i);
1288
8.98M
    } else if (n_top_px > 0) {
1289
207k
      memset(left_col, above_ref[0], txhpx);
1290
207k
    }
1291
9.26M
  }
1292
1293
9.26M
  if (need_above) {
1294
9.26M
    memset(above_data, 127, NUM_INTRA_NEIGHBOUR_PIXELS);
1295
9.26M
    if (n_top_px > 0) {
1296
8.86M
      memcpy(above_row, above_ref, n_top_px);
1297
8.86M
      i = n_top_px;
1298
8.86M
      if (i < txwpx) memset(&above_row[i], above_row[i - 1], txwpx - i);
1299
8.86M
    } else if (n_left_px > 0) {
1300
323k
      memset(above_row, left_ref[0], txwpx);
1301
323k
    }
1302
9.26M
  }
1303
1304
9.26M
  if (need_above_left) {
1305
1.71M
    if (n_top_px > 0 && n_left_px > 0) {
1306
1.62M
      above_row[-1] = above_ref[-1];
1307
1.62M
    } else if (n_top_px > 0) {
1308
38.5k
      above_row[-1] = above_ref[0];
1309
49.7k
    } else if (n_left_px > 0) {
1310
47.8k
      above_row[-1] = left_ref[0];
1311
47.8k
    } else {
1312
1.88k
      above_row[-1] = 128;
1313
1.88k
    }
1314
1.71M
    left_col[-1] = above_row[-1];
1315
1.71M
  }
1316
1317
9.26M
  if (mode == DC_PRED) {
1318
5.97M
    dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, above_row,
1319
5.97M
                                                  left_col);
1320
5.97M
  } else {
1321
3.29M
    pred[mode][tx_size](dst, dst_stride, above_row, left_col);
1322
3.29M
  }
1323
9.26M
}
1324
1325
#if CONFIG_AV1_HIGHBITDEPTH
1326
0
void av1_highbd_filter_intra_edge_c(uint16_t *p, int sz, int strength) {
1327
0
  if (!strength) return;
1328
1329
0
  const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
1330
0
                                                         { 0, 5, 6, 5, 0 },
1331
0
                                                         { 2, 4, 4, 4, 2 } };
1332
0
  const int filt = strength - 1;
1333
0
  uint16_t edge[129];
1334
1335
0
  memcpy(edge, p, sz * sizeof(*p));
1336
0
  for (int i = 1; i < sz; i++) {
1337
0
    int s = 0;
1338
0
    for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
1339
0
      int k = i - 2 + j;
1340
0
      k = (k < 0) ? 0 : k;
1341
0
      k = (k > sz - 1) ? sz - 1 : k;
1342
0
      s += edge[k] * kernel[filt][j];
1343
0
    }
1344
0
    s = (s + 8) >> 4;
1345
0
    p[i] = s;
1346
0
  }
1347
0
}
1348
1349
static void highbd_filter_intra_edge_corner(uint16_t *p_above,
1350
422k
                                            uint16_t *p_left) {
1351
422k
  const int kernel[3] = { 5, 6, 5 };
1352
1353
422k
  int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
1354
422k
          (p_above[0] * kernel[2]);
1355
422k
  s = (s + 8) >> 4;
1356
422k
  p_above[-1] = s;
1357
422k
  p_left[-1] = s;
1358
422k
}
1359
1360
0
void av1_highbd_upsample_intra_edge_c(uint16_t *p, int sz, int bd) {
1361
  // interpolate half-sample positions
1362
0
  assert(sz <= MAX_UPSAMPLE_SZ);
1363
1364
0
  uint16_t in[MAX_UPSAMPLE_SZ + 3];
1365
  // copy p[-1..(sz-1)] and extend first and last samples
1366
0
  in[0] = p[-1];
1367
0
  in[1] = p[-1];
1368
0
  for (int i = 0; i < sz; i++) {
1369
0
    in[i + 2] = p[i];
1370
0
  }
1371
0
  in[sz + 2] = p[sz - 1];
1372
1373
  // interpolate half-sample edge positions
1374
0
  p[-2] = in[0];
1375
0
  for (int i = 0; i < sz; i++) {
1376
0
    int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
1377
0
    s = (s + 8) >> 4;
1378
0
    s = clip_pixel_highbd(s, bd);
1379
0
    p[2 * i - 1] = s;
1380
0
    p[2 * i] = in[i + 2];
1381
0
  }
1382
0
}
1383
1384
static void highbd_build_directional_and_filter_intra_predictors(
1385
    const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride,
1386
    PREDICTION_MODE mode, int p_angle, FILTER_INTRA_MODE filter_intra_mode,
1387
    TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px,
1388
    int n_left_px, int n_bottomleft_px, int intra_edge_filter_type,
1389
5.73M
    int bit_depth) {
1390
5.73M
  int i;
1391
5.73M
  uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
1392
5.73M
  const uint16_t *const ref = CONVERT_TO_SHORTPTR(ref8);
1393
5.73M
  DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1394
5.73M
  DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1395
5.73M
  uint16_t *const above_row = above_data + 16;
1396
5.73M
  uint16_t *const left_col = left_data + 16;
1397
5.73M
  const int txwpx = tx_size_wide[tx_size];
1398
5.73M
  const int txhpx = tx_size_high[tx_size];
1399
5.73M
  int need_left = extend_modes[mode] & NEED_LEFT;
1400
5.73M
  int need_above = extend_modes[mode] & NEED_ABOVE;
1401
5.73M
  int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1402
5.73M
  const uint16_t *above_ref = ref - ref_stride;
1403
5.73M
  const uint16_t *left_ref = ref - 1;
1404
5.73M
  const int is_dr_mode = av1_is_directional_mode(mode);
1405
5.73M
  const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
1406
5.73M
  assert(use_filter_intra || is_dr_mode);
1407
5.73M
  const int base = 128 << (bit_depth - 8);
1408
  // The left_data, above_data buffers must be zeroed to fix some intermittent
1409
  // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4
1410
  // path in av1_highbd_dr_prediction_z2_avx2()) from left_data, above_data are
1411
  // seen to be the potential reason for this issue.
1412
5.73M
  aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1413
5.73M
  aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1414
1415
  // The default values if ref pixels are not available:
1416
  // base   base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1
1417
  // base+1   A      B  ..     Y      Z
1418
  // base+1   C      D  ..     W      X
1419
  // base+1   E      F  ..     U      V
1420
  // base+1   G      H  ..     S      T      T      T      T      T
1421
1422
5.73M
  if (is_dr_mode) {
1423
5.08M
    if (p_angle <= 90)
1424
1.09M
      need_above = 1, need_left = 0, need_above_left = 1;
1425
3.99M
    else if (p_angle < 180)
1426
1.11M
      need_above = 1, need_left = 1, need_above_left = 1;
1427
2.87M
    else
1428
2.87M
      need_above = 0, need_left = 1, need_above_left = 1;
1429
5.08M
  }
1430
5.73M
  if (use_filter_intra) need_left = need_above = need_above_left = 1;
1431
1432
5.73M
  assert(n_top_px >= 0);
1433
5.73M
  assert(n_topright_px >= -1);
1434
5.72M
  assert(n_left_px >= 0);
1435
5.72M
  assert(n_bottomleft_px >= -1);
1436
1437
5.73M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1438
139k
    int val;
1439
139k
    if (need_left) {
1440
110k
      val = (n_top_px > 0) ? above_ref[0] : base + 1;
1441
110k
    } else {
1442
29.4k
      val = (n_left_px > 0) ? left_ref[0] : base - 1;
1443
29.4k
    }
1444
2.91M
    for (i = 0; i < txhpx; ++i) {
1445
2.77M
      aom_memset16(dst, val, txwpx);
1446
2.77M
      dst += dst_stride;
1447
2.77M
    }
1448
139k
    return;
1449
139k
  }
1450
1451
  // NEED_LEFT
1452
5.59M
  if (need_left) {
1453
4.52M
    const int num_left_pixels_needed =
1454
4.52M
        txhpx + (n_bottomleft_px >= 0 ? txwpx : 0);
1455
4.52M
    i = 0;
1456
4.52M
    if (n_left_px > 0) {
1457
62.3M
      for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1458
4.49M
      if (n_bottomleft_px > 0) {
1459
335k
        assert(i == txhpx);
1460
4.04M
        for (; i < txhpx + n_bottomleft_px; i++)
1461
3.71M
          left_col[i] = left_ref[i * ref_stride];
1462
335k
      }
1463
4.49M
      if (i < num_left_pixels_needed)
1464
750k
        aom_memset16(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
1465
4.49M
    } else if (n_top_px > 0) {
1466
24.1k
      aom_memset16(left_col, above_ref[0], num_left_pixels_needed);
1467
24.1k
    }
1468
4.52M
  }
1469
1470
  // NEED_ABOVE
1471
5.59M
  if (need_above) {
1472
2.82M
    const int num_top_pixels_needed = txwpx + (n_topright_px >= 0 ? txhpx : 0);
1473
2.82M
    if (n_top_px > 0) {
1474
2.79M
      memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0]));
1475
2.79M
      i = n_top_px;
1476
2.79M
      if (n_topright_px > 0) {
1477
323k
        assert(n_top_px == txwpx);
1478
323k
        memcpy(above_row + txwpx, above_ref + txwpx,
1479
323k
               n_topright_px * sizeof(above_ref[0]));
1480
323k
        i += n_topright_px;
1481
323k
      }
1482
2.79M
      if (i < num_top_pixels_needed)
1483
344k
        aom_memset16(&above_row[i], above_row[i - 1],
1484
344k
                     num_top_pixels_needed - i);
1485
2.79M
    } else if (n_left_px > 0) {
1486
32.9k
      aom_memset16(above_row, left_ref[0], num_top_pixels_needed);
1487
32.9k
    }
1488
2.82M
  }
1489
1490
5.59M
  if (need_above_left) {
1491
5.59M
    if (n_top_px > 0 && n_left_px > 0) {
1492
5.43M
      above_row[-1] = above_ref[-1];
1493
5.43M
    } else if (n_top_px > 0) {
1494
47.8k
      above_row[-1] = above_ref[0];
1495
112k
    } else if (n_left_px > 0) {
1496
108k
      above_row[-1] = left_ref[0];
1497
108k
    } else {
1498
3.89k
      above_row[-1] = base;
1499
3.89k
    }
1500
5.59M
    left_col[-1] = above_row[-1];
1501
5.59M
  }
1502
1503
5.59M
  if (use_filter_intra) {
1504
646k
    highbd_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col,
1505
646k
                                  filter_intra_mode, bit_depth);
1506
646k
    return;
1507
646k
  }
1508
1509
5.59M
  assert(is_dr_mode);
1510
4.94M
  int upsample_above = 0;
1511
4.94M
  int upsample_left = 0;
1512
4.94M
  if (!disable_edge_filter) {
1513
4.31M
    const int need_right = p_angle < 90;
1514
4.31M
    const int need_bottom = p_angle > 180;
1515
4.31M
    if (p_angle != 90 && p_angle != 180) {
1516
2.09M
      assert(need_above_left);
1517
2.09M
      const int ab_le = 1;
1518
2.09M
      if (need_above && need_left && (txwpx + txhpx >= 24)) {
1519
422k
        highbd_filter_intra_edge_corner(above_row, left_col);
1520
422k
      }
1521
2.09M
      if (need_above && n_top_px > 0) {
1522
1.33M
        const int strength = intra_edge_filter_strength(
1523
1.33M
            txwpx, txhpx, p_angle - 90, intra_edge_filter_type);
1524
1.33M
        const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
1525
1.33M
        av1_highbd_filter_intra_edge(above_row - ab_le, n_px, strength);
1526
1.33M
      }
1527
2.09M
      if (need_left && n_left_px > 0) {
1528
1.63M
        const int strength = intra_edge_filter_strength(
1529
1.63M
            txhpx, txwpx, p_angle - 180, intra_edge_filter_type);
1530
1.63M
        const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
1531
1.63M
        av1_highbd_filter_intra_edge(left_col - ab_le, n_px, strength);
1532
1.63M
      }
1533
2.09M
    }
1534
4.31M
    upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90,
1535
4.31M
                                                 intra_edge_filter_type);
1536
4.31M
    if (need_above && upsample_above) {
1537
216k
      const int n_px = txwpx + (need_right ? txhpx : 0);
1538
216k
      av1_highbd_upsample_intra_edge(above_row, n_px, bit_depth);
1539
216k
    }
1540
4.31M
    upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180,
1541
4.31M
                                                intra_edge_filter_type);
1542
4.31M
    if (need_left && upsample_left) {
1543
398k
      const int n_px = txhpx + (need_bottom ? txwpx : 0);
1544
398k
      av1_highbd_upsample_intra_edge(left_col, n_px, bit_depth);
1545
398k
    }
1546
4.31M
  }
1547
4.94M
  highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col,
1548
4.94M
                      upsample_above, upsample_left, p_angle, bit_depth);
1549
4.94M
}
1550
1551
// For HBD encode/decode, this function generates the pred data of a given
1552
// block for non-directional intra prediction modes (i.e., DC, SMOOTH, SMOOTH_H,
1553
// SMOOTH_V and PAETH).
1554
static void highbd_build_non_directional_intra_predictors(
1555
    const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride,
1556
    PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, int n_left_px,
1557
56.5M
    int bit_depth) {
1558
56.5M
  int i = 0;
1559
56.5M
  uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
1560
56.5M
  const uint16_t *const ref = CONVERT_TO_SHORTPTR(ref8);
1561
56.5M
  const int txwpx = tx_size_wide[tx_size];
1562
56.5M
  const int txhpx = tx_size_high[tx_size];
1563
56.5M
  int need_left = extend_modes[mode] & NEED_LEFT;
1564
56.5M
  int need_above = extend_modes[mode] & NEED_ABOVE;
1565
56.5M
  int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1566
56.5M
  const uint16_t *above_ref = ref - ref_stride;
1567
56.5M
  const uint16_t *left_ref = ref - 1;
1568
56.5M
  const int base = 128 << (bit_depth - 8);
1569
1570
56.5M
  assert(n_top_px >= 0);
1571
56.5M
  assert(n_left_px >= 0);
1572
56.5M
  assert(mode == DC_PRED || mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
1573
56.5M
         mode == SMOOTH_H_PRED || mode == PAETH_PRED);
1574
1575
56.5M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1576
0
    int val = 0;
1577
0
    if (need_left) {
1578
0
      val = (n_top_px > 0) ? above_ref[0] : base + 1;
1579
0
    } else {
1580
0
      val = (n_left_px > 0) ? left_ref[0] : base - 1;
1581
0
    }
1582
0
    for (i = 0; i < txhpx; ++i) {
1583
0
      aom_memset16(dst, val, txwpx);
1584
0
      dst += dst_stride;
1585
0
    }
1586
0
    return;
1587
0
  }
1588
1589
56.5M
  DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1590
56.5M
  DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1591
56.5M
  uint16_t *const above_row = above_data + 16;
1592
56.5M
  uint16_t *const left_col = left_data + 16;
1593
1594
56.5M
  if (need_left) {
1595
56.5M
    aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1596
56.5M
    if (n_left_px > 0) {
1597
405M
      for (i = 0; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1598
55.4M
      if (i < txhpx) aom_memset16(&left_col[i], left_col[i - 1], txhpx - i);
1599
55.4M
    } else if (n_top_px > 0) {
1600
1.07M
      aom_memset16(left_col, above_ref[0], txhpx);
1601
1.07M
    }
1602
56.5M
  }
1603
1604
56.5M
  if (need_above) {
1605
56.5M
    aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1606
56.5M
    if (n_top_px > 0) {
1607
56.1M
      memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0]));
1608
56.1M
      i = n_top_px;
1609
56.1M
      if (i < txwpx) aom_memset16(&above_row[i], above_row[i - 1], (txwpx - i));
1610
56.1M
    } else if (n_left_px > 0) {
1611
358k
      aom_memset16(above_row, left_ref[0], txwpx);
1612
358k
    }
1613
56.5M
  }
1614
1615
56.5M
  if (need_above_left) {
1616
2.20M
    if (n_top_px > 0 && n_left_px > 0) {
1617
2.07M
      above_row[-1] = above_ref[-1];
1618
2.07M
    } else if (n_top_px > 0) {
1619
60.0k
      above_row[-1] = above_ref[0];
1620
69.2k
    } else if (n_left_px > 0) {
1621
67.0k
      above_row[-1] = left_ref[0];
1622
67.0k
    } else {
1623
2.21k
      above_row[-1] = base;
1624
2.21k
    }
1625
2.20M
    left_col[-1] = above_row[-1];
1626
2.20M
  }
1627
1628
56.5M
  if (mode == DC_PRED) {
1629
52.4M
    dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size](
1630
52.4M
        dst, dst_stride, above_row, left_col, bit_depth);
1631
52.4M
  } else {
1632
4.13M
    pred_high[mode][tx_size](dst, dst_stride, above_row, left_col, bit_depth);
1633
4.13M
  }
1634
56.5M
}
1635
#endif  // CONFIG_AV1_HIGHBITDEPTH
1636
1637
static inline BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
1638
3.31M
                                            int subsampling_y) {
1639
3.31M
  assert(subsampling_x >= 0 && subsampling_x < 2);
1640
3.31M
  assert(subsampling_y >= 0 && subsampling_y < 2);
1641
3.31M
  BLOCK_SIZE bs = bsize;
1642
3.31M
  switch (bsize) {
1643
14.9k
    case BLOCK_4X4:
1644
14.9k
      if (subsampling_x == 1 && subsampling_y == 1)
1645
14.8k
        bs = BLOCK_8X8;
1646
84
      else if (subsampling_x == 1)
1647
84
        bs = BLOCK_8X4;
1648
0
      else if (subsampling_y == 1)
1649
0
        bs = BLOCK_4X8;
1650
14.9k
      break;
1651
32.3k
    case BLOCK_4X8:
1652
32.3k
      if (subsampling_x == 1 && subsampling_y == 1)
1653
32.3k
        bs = BLOCK_8X8;
1654
0
      else if (subsampling_x == 1)
1655
0
        bs = BLOCK_8X8;
1656
0
      else if (subsampling_y == 1)
1657
0
        bs = BLOCK_4X8;
1658
32.3k
      break;
1659
42.6k
    case BLOCK_8X4:
1660
42.6k
      if (subsampling_x == 1 && subsampling_y == 1)
1661
42.2k
        bs = BLOCK_8X8;
1662
452
      else if (subsampling_x == 1)
1663
452
        bs = BLOCK_8X4;
1664
0
      else if (subsampling_y == 1)
1665
0
        bs = BLOCK_8X8;
1666
42.6k
      break;
1667
39.1k
    case BLOCK_4X16:
1668
39.1k
      if (subsampling_x == 1 && subsampling_y == 1)
1669
39.1k
        bs = BLOCK_8X16;
1670
0
      else if (subsampling_x == 1)
1671
0
        bs = BLOCK_8X16;
1672
0
      else if (subsampling_y == 1)
1673
0
        bs = BLOCK_4X16;
1674
39.1k
      break;
1675
62.9k
    case BLOCK_16X4:
1676
62.9k
      if (subsampling_x == 1 && subsampling_y == 1)
1677
62.3k
        bs = BLOCK_16X8;
1678
564
      else if (subsampling_x == 1)
1679
564
        bs = BLOCK_16X4;
1680
0
      else if (subsampling_y == 1)
1681
0
        bs = BLOCK_16X8;
1682
62.9k
      break;
1683
3.12M
    default: break;
1684
3.31M
  }
1685
3.31M
  return bs;
1686
3.31M
}
1687
1688
void av1_predict_intra_block(const MACROBLOCKD *xd, BLOCK_SIZE sb_size,
1689
                             int enable_intra_edge_filter, int wpx, int hpx,
1690
                             TX_SIZE tx_size, PREDICTION_MODE mode,
1691
                             int angle_delta, int use_palette,
1692
                             FILTER_INTRA_MODE filter_intra_mode,
1693
                             const uint8_t *ref, int ref_stride, uint8_t *dst,
1694
                             int dst_stride, int col_off, int row_off,
1695
76.0M
                             int plane) {
1696
76.0M
  const MB_MODE_INFO *const mbmi = xd->mi[0];
1697
76.0M
  const int txwpx = tx_size_wide[tx_size];
1698
76.0M
  const int txhpx = tx_size_high[tx_size];
1699
76.0M
  const int x = col_off << MI_SIZE_LOG2;
1700
76.0M
  const int y = row_off << MI_SIZE_LOG2;
1701
76.0M
  const int is_hbd = is_cur_buf_hbd(xd);
1702
1703
76.0M
  assert(mode < INTRA_MODES);
1704
1705
76.0M
  if (use_palette) {
1706
125k
    int r, c;
1707
125k
    const uint8_t *const map = xd->plane[plane != 0].color_index_map +
1708
125k
                               xd->color_index_map_offset[plane != 0];
1709
125k
    const uint16_t *const palette =
1710
125k
        mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE;
1711
125k
    if (is_hbd) {
1712
28.9k
      uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
1713
321k
      for (r = 0; r < txhpx; ++r) {
1714
4.27M
        for (c = 0; c < txwpx; ++c) {
1715
3.97M
          dst16[r * dst_stride + c] = palette[map[(r + y) * wpx + c + x]];
1716
3.97M
        }
1717
292k
      }
1718
96.8k
    } else {
1719
1.04M
      for (r = 0; r < txhpx; ++r) {
1720
16.5M
        for (c = 0; c < txwpx; ++c) {
1721
15.6M
          dst[r * dst_stride + c] =
1722
15.6M
              (uint8_t)palette[map[(r + y) * wpx + c + x]];
1723
15.6M
        }
1724
948k
      }
1725
96.8k
    }
1726
125k
    return;
1727
125k
  }
1728
1729
75.9M
  const struct macroblockd_plane *const pd = &xd->plane[plane];
1730
75.9M
  const int ss_x = pd->subsampling_x;
1731
75.9M
  const int ss_y = pd->subsampling_y;
1732
75.9M
  const int have_top =
1733
75.9M
      row_off || (ss_y ? xd->chroma_up_available : xd->up_available);
1734
75.9M
  const int have_left =
1735
75.9M
      col_off || (ss_x ? xd->chroma_left_available : xd->left_available);
1736
1737
  // Distance between the right edge of this prediction block to
1738
  // the frame right edge
1739
75.9M
  const int xr = (xd->mb_to_right_edge >> (3 + ss_x)) + wpx - x - txwpx;
1740
  // Distance between the bottom edge of this prediction block to
1741
  // the frame bottom edge
1742
75.9M
  const int yd = (xd->mb_to_bottom_edge >> (3 + ss_y)) + hpx - y - txhpx;
1743
75.9M
  const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
1744
75.9M
  const int is_dr_mode = av1_is_directional_mode(mode);
1745
1746
  // The computations in this function, as well as in build_intra_predictors(),
1747
  // are generalized for all intra modes. Some of these operations are not
1748
  // required since non-directional intra modes (i.e., DC, SMOOTH, SMOOTH_H,
1749
  // SMOOTH_V, and PAETH) specifically require left and top neighbors. Hence, a
1750
  // separate function build_non_directional_intra_predictors() is introduced
1751
  // for these modes to avoid redundant computations while generating pred data.
1752
1753
75.9M
  const int n_top_px = have_top ? AOMMIN(txwpx, xr + txwpx) : 0;
1754
75.9M
  const int n_left_px = have_left ? AOMMIN(txhpx, yd + txhpx) : 0;
1755
75.9M
  if (!use_filter_intra && !is_dr_mode) {
1756
65.8M
#if CONFIG_AV1_HIGHBITDEPTH
1757
65.8M
    if (is_hbd) {
1758
56.5M
      highbd_build_non_directional_intra_predictors(
1759
56.5M
          ref, ref_stride, dst, dst_stride, mode, tx_size, n_top_px, n_left_px,
1760
56.5M
          xd->bd);
1761
56.5M
      return;
1762
56.5M
    }
1763
9.26M
#endif  // CONFIG_AV1_HIGHBITDEPTH
1764
9.26M
    build_non_directional_intra_predictors(ref, ref_stride, dst, dst_stride,
1765
9.26M
                                           mode, tx_size, n_top_px, n_left_px);
1766
9.26M
    return;
1767
65.8M
  }
1768
1769
10.0M
  const int txw = tx_size_wide_unit[tx_size];
1770
10.0M
  const int txh = tx_size_high_unit[tx_size];
1771
10.0M
  const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
1772
10.0M
  const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
1773
10.0M
  const int right_available =
1774
10.0M
      mi_col + ((col_off + txw) << ss_x) < xd->tile.mi_col_end;
1775
10.0M
  const int bottom_available =
1776
10.0M
      (yd > 0) && (mi_row + ((row_off + txh) << ss_y) < xd->tile.mi_row_end);
1777
1778
10.0M
  const PARTITION_TYPE partition = mbmi->partition;
1779
1780
10.0M
  BLOCK_SIZE bsize = mbmi->bsize;
1781
  // force 4x4 chroma component block size.
1782
10.0M
  if (ss_x || ss_y) {
1783
3.31M
    bsize = scale_chroma_bsize(bsize, ss_x, ss_y);
1784
3.31M
  }
1785
1786
10.0M
  int p_angle = 0;
1787
10.0M
  int need_top_right = extend_modes[mode] & NEED_ABOVERIGHT;
1788
10.0M
  int need_bottom_left = extend_modes[mode] & NEED_BOTTOMLEFT;
1789
1790
10.0M
  if (use_filter_intra) {
1791
1.23M
    need_top_right = 0;
1792
1.23M
    need_bottom_left = 0;
1793
1.23M
  }
1794
10.0M
  if (is_dr_mode) {
1795
8.86M
    p_angle = mode_to_angle_map[mode] + angle_delta;
1796
8.86M
    need_top_right = p_angle < 90;
1797
8.86M
    need_bottom_left = p_angle > 180;
1798
8.86M
  }
1799
1800
  // Possible states for have_top_right(TR) and have_bottom_left(BL)
1801
  // -1 : TR and BL are not needed
1802
  //  0 : TR and BL are needed but not available
1803
  // > 0 : TR and BL are needed and pixels are available
1804
10.0M
  const int have_top_right =
1805
10.0M
      need_top_right ? has_top_right(sb_size, bsize, mi_row, mi_col, have_top,
1806
1.02M
                                     right_available, partition, tx_size,
1807
1.02M
                                     row_off, col_off, ss_x, ss_y)
1808
10.0M
                     : -1;
1809
10.0M
  const int have_bottom_left =
1810
10.0M
      need_bottom_left ? has_bottom_left(sb_size, bsize, mi_row, mi_col,
1811
1.59M
                                         bottom_available, have_left, partition,
1812
1.59M
                                         tx_size, row_off, col_off, ss_x, ss_y)
1813
10.0M
                       : -1;
1814
1815
10.0M
  const int disable_edge_filter = !enable_intra_edge_filter;
1816
10.0M
  const int intra_edge_filter_type = get_intra_edge_filter_type(xd, plane);
1817
10.0M
  const int n_topright_px =
1818
10.0M
      have_top_right > 0 ? AOMMIN(txwpx, xr) : have_top_right;
1819
10.0M
  const int n_bottomleft_px =
1820
10.0M
      have_bottom_left > 0 ? AOMMIN(txhpx, yd) : have_bottom_left;
1821
10.0M
#if CONFIG_AV1_HIGHBITDEPTH
1822
10.0M
  if (is_hbd) {
1823
5.73M
    highbd_build_directional_and_filter_intra_predictors(
1824
5.73M
        ref, ref_stride, dst, dst_stride, mode, p_angle, filter_intra_mode,
1825
5.73M
        tx_size, disable_edge_filter, n_top_px, n_topright_px, n_left_px,
1826
5.73M
        n_bottomleft_px, intra_edge_filter_type, xd->bd);
1827
5.73M
    return;
1828
5.73M
  }
1829
4.34M
#endif
1830
4.34M
  build_directional_and_filter_intra_predictors(
1831
4.34M
      ref, ref_stride, dst, dst_stride, mode, p_angle, filter_intra_mode,
1832
4.34M
      tx_size, disable_edge_filter, n_top_px, n_topright_px, n_left_px,
1833
4.34M
      n_bottomleft_px, intra_edge_filter_type);
1834
4.34M
}
1835
1836
void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd,
1837
                                    int plane, int blk_col, int blk_row,
1838
75.1M
                                    TX_SIZE tx_size) {
1839
75.1M
  const MB_MODE_INFO *const mbmi = xd->mi[0];
1840
75.1M
  struct macroblockd_plane *const pd = &xd->plane[plane];
1841
75.1M
  const int dst_stride = pd->dst.stride;
1842
75.1M
  uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
1843
75.1M
  const PREDICTION_MODE mode =
1844
75.1M
      (plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1845
75.1M
  const int use_palette = mbmi->palette_mode_info.palette_size[plane != 0] > 0;
1846
75.1M
  const FILTER_INTRA_MODE filter_intra_mode =
1847
75.1M
      (plane == AOM_PLANE_Y && mbmi->filter_intra_mode_info.use_filter_intra)
1848
75.1M
          ? mbmi->filter_intra_mode_info.filter_intra_mode
1849
75.1M
          : FILTER_INTRA_MODES;
1850
75.1M
  const int angle_delta = mbmi->angle_delta[plane != AOM_PLANE_Y] * ANGLE_STEP;
1851
75.1M
  const SequenceHeader *seq_params = cm->seq_params;
1852
1853
75.1M
#if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
1854
75.1M
  if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED) {
1855
#if CONFIG_DEBUG
1856
    assert(is_cfl_allowed(xd));
1857
    const BLOCK_SIZE plane_bsize =
1858
        get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
1859
    (void)plane_bsize;
1860
    assert(plane_bsize < BLOCK_SIZES_ALL);
1861
    if (!xd->lossless[mbmi->segment_id]) {
1862
      assert(blk_col == 0);
1863
      assert(blk_row == 0);
1864
      assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
1865
      assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
1866
    }
1867
#endif
1868
2.36M
    CFL_CTX *const cfl = &xd->cfl;
1869
2.36M
    CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane);
1870
2.36M
    if (!cfl->dc_pred_is_cached[pred_plane]) {
1871
2.36M
      av1_predict_intra_block(xd, seq_params->sb_size,
1872
2.36M
                              seq_params->enable_intra_edge_filter, pd->width,
1873
2.36M
                              pd->height, tx_size, mode, angle_delta,
1874
2.36M
                              use_palette, filter_intra_mode, dst, dst_stride,
1875
2.36M
                              dst, dst_stride, blk_col, blk_row, plane);
1876
2.36M
      if (cfl->use_dc_pred_cache) {
1877
0
        cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]);
1878
0
        cfl->dc_pred_is_cached[pred_plane] = true;
1879
0
      }
1880
2.36M
    } else {
1881
0
      cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane);
1882
0
    }
1883
2.36M
    av1_cfl_predict_block(xd, dst, dst_stride, tx_size, plane);
1884
2.36M
    return;
1885
2.36M
  }
1886
72.7M
#endif  // !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
1887
72.7M
  av1_predict_intra_block(
1888
72.7M
      xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width,
1889
72.7M
      pd->height, tx_size, mode, angle_delta, use_palette, filter_intra_mode,
1890
72.7M
      dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane);
1891
72.7M
}
1892
1893
10.6k
void av1_init_intra_predictors(void) {
1894
10.6k
  aom_once(init_intra_predictors_internal);
1895
10.6k
}