Coverage Report

Created: 2026-02-14 07:00

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aom/av1/common/restoration.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 *
11
 */
12
13
#include <math.h>
14
#include <stddef.h>
15
16
#include "config/aom_config.h"
17
#include "config/aom_scale_rtcd.h"
18
19
#include "aom/internal/aom_codec_internal.h"
20
#include "aom_mem/aom_mem.h"
21
#include "aom_dsp/aom_dsp_common.h"
22
#include "aom_mem/aom_mem.h"
23
#include "aom_ports/mem.h"
24
#include "aom_util/aom_pthread.h"
25
26
#include "av1/common/av1_common_int.h"
27
#include "av1/common/convolve.h"
28
#include "av1/common/enums.h"
29
#include "av1/common/resize.h"
30
#include "av1/common/restoration.h"
31
#include "av1/common/thread_common.h"
32
33
// The 's' values are calculated based on original 'r' and 'e' values in the
34
// spec using GenSgrprojVtable().
35
// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid).
36
const sgr_params_type av1_sgr_params[SGRPROJ_PARAMS] = {
37
  { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } },
38
  { { 2, 1 }, { 93, 1618 } },  { { 2, 1 }, { 80, 1438 } },
39
  { { 2, 1 }, { 70, 1295 } },  { { 2, 1 }, { 58, 1177 } },
40
  { { 2, 1 }, { 47, 1079 } },  { { 2, 1 }, { 37, 996 } },
41
  { { 2, 1 }, { 30, 925 } },   { { 2, 1 }, { 25, 863 } },
42
  { { 0, 1 }, { -1, 2589 } },  { { 0, 1 }, { -1, 1618 } },
43
  { { 0, 1 }, { -1, 1177 } },  { { 0, 1 }, { -1, 925 } },
44
  { { 2, 0 }, { 56, -1 } },    { { 2, 0 }, { 22, -1 } },
45
};
46
47
void av1_get_upsampled_plane_size(const AV1_COMMON *cm, int is_uv, int *plane_w,
48
171k
                                  int *plane_h) {
49
171k
  int ss_x = is_uv && cm->seq_params->subsampling_x;
50
171k
  int ss_y = is_uv && cm->seq_params->subsampling_y;
51
171k
  *plane_w = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
52
171k
  *plane_h = ROUND_POWER_OF_TWO(cm->height, ss_y);
53
171k
}
54
55
// Count horizontal or vertical units in a plane (use a width or height for
56
// plane_size, respectively). We basically want to divide the plane size by the
57
// size of a restoration unit. Rather than rounding up unconditionally as you
58
// might expect, we round to nearest, which models the way a right or bottom
59
// restoration unit can extend to up to 150% its normal width or height.
60
//
61
// The max with 1 is to deal with small frames, which may be smaller than
62
// half of an LR unit in size.
63
167k
int av1_lr_count_units(int unit_size, int plane_size) {
64
167k
  return AOMMAX((plane_size + (unit_size >> 1)) / unit_size, 1);
65
167k
}
66
67
void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
68
61.8k
                                  int is_uv) {
69
61.8k
  int plane_w, plane_h;
70
61.8k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
71
72
61.8k
  const int unit_size = rsi->restoration_unit_size;
73
61.8k
  const int horz_units = av1_lr_count_units(unit_size, plane_w);
74
61.8k
  const int vert_units = av1_lr_count_units(unit_size, plane_h);
75
76
61.8k
  rsi->num_rest_units = horz_units * vert_units;
77
61.8k
  rsi->horz_units = horz_units;
78
61.8k
  rsi->vert_units = vert_units;
79
80
61.8k
  aom_free(rsi->unit_info);
81
61.8k
  CHECK_MEM_ERROR(cm, rsi->unit_info,
82
61.8k
                  (RestorationUnitInfo *)aom_memalign(
83
61.8k
                      16, sizeof(*rsi->unit_info) * rsi->num_rest_units));
84
61.8k
}
85
86
31.8k
void av1_free_restoration_struct(RestorationInfo *rst_info) {
87
31.8k
  aom_free(rst_info->unit_info);
88
31.8k
  rst_info->unit_info = NULL;
89
31.8k
}
90
91
#if 0
92
// Pair of values for each sgrproj parameter:
93
// Index 0 corresponds to r[0], e[0]
94
// Index 1 corresponds to r[1], e[1]
95
int sgrproj_mtable[SGRPROJ_PARAMS][2];
96
97
static void GenSgrprojVtable(void) {
98
  for (int i = 0; i < SGRPROJ_PARAMS; ++i) {
99
    const sgr_params_type *const params = &av1_sgr_params[i];
100
    for (int j = 0; j < 2; ++j) {
101
      const int e = params->e[j];
102
      const int r = params->r[j];
103
      if (r == 0) {                 // filter is disabled
104
        sgrproj_mtable[i][j] = -1;  // mark invalid
105
      } else {                      // filter is enabled
106
        const int n = (2 * r + 1) * (2 * r + 1);
107
        const int n2e = n * n * e;
108
        assert(n2e != 0);
109
        sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
110
      }
111
    }
112
  }
113
}
114
#endif
115
116
10.6k
void av1_loop_restoration_precal(void) {
117
#if 0
118
  GenSgrprojVtable();
119
#endif
120
10.6k
}
121
122
static void extend_frame_lowbd(uint8_t *data, int width, int height,
123
                               ptrdiff_t stride, int border_horz,
124
17.4k
                               int border_vert) {
125
17.4k
  uint8_t *data_p;
126
17.4k
  int i;
127
2.34M
  for (i = 0; i < height; ++i) {
128
2.32M
    data_p = data + i * stride;
129
2.32M
    memset(data_p - border_horz, data_p[0], border_horz);
130
2.32M
    memset(data_p + width, data_p[width - 1], border_horz);
131
2.32M
  }
132
17.4k
  data_p = data - border_horz;
133
69.8k
  for (i = -border_vert; i < 0; ++i) {
134
52.3k
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
135
52.3k
  }
136
69.8k
  for (i = height; i < height + border_vert; ++i) {
137
52.3k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
138
52.3k
           width + 2 * border_horz);
139
52.3k
  }
140
17.4k
}
141
142
#if CONFIG_AV1_HIGHBITDEPTH
143
static void extend_frame_highbd(uint16_t *data, int width, int height,
144
                                ptrdiff_t stride, int border_horz,
145
14.2k
                                int border_vert) {
146
14.2k
  uint16_t *data_p;
147
14.2k
  int i, j;
148
2.26M
  for (i = 0; i < height; ++i) {
149
2.25M
    data_p = data + i * stride;
150
9.00M
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
151
9.00M
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
152
2.25M
  }
153
14.2k
  data_p = data - border_horz;
154
56.9k
  for (i = -border_vert; i < 0; ++i) {
155
42.7k
    memcpy(data_p + i * stride, data_p,
156
42.7k
           (width + 2 * border_horz) * sizeof(uint16_t));
157
42.7k
  }
158
56.9k
  for (i = height; i < height + border_vert; ++i) {
159
42.7k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
160
42.7k
           (width + 2 * border_horz) * sizeof(uint16_t));
161
42.7k
  }
162
14.2k
}
163
164
static void copy_rest_unit_highbd(int width, int height, const uint16_t *src,
165
                                  int src_stride, uint16_t *dst,
166
11.0k
                                  int dst_stride) {
167
1.43M
  for (int i = 0; i < height; ++i)
168
1.42M
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
169
11.0k
}
170
#endif
171
172
void av1_extend_frame(uint8_t *data, int width, int height, int stride,
173
31.7k
                      int border_horz, int border_vert, int highbd) {
174
31.7k
#if CONFIG_AV1_HIGHBITDEPTH
175
31.7k
  if (highbd) {
176
14.2k
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
177
14.2k
                        border_horz, border_vert);
178
14.2k
    return;
179
14.2k
  }
180
17.4k
#endif
181
17.4k
  (void)highbd;
182
17.4k
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
183
17.4k
}
184
185
static void copy_rest_unit_lowbd(int width, int height, const uint8_t *src,
186
22.5k
                                 int src_stride, uint8_t *dst, int dst_stride) {
187
2.05M
  for (int i = 0; i < height; ++i)
188
2.03M
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
189
22.5k
}
190
191
static void copy_rest_unit(int width, int height, const uint8_t *src,
192
                           int src_stride, uint8_t *dst, int dst_stride,
193
33.6k
                           int highbd) {
194
33.6k
#if CONFIG_AV1_HIGHBITDEPTH
195
33.6k
  if (highbd) {
196
11.0k
    copy_rest_unit_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
197
11.0k
                          CONVERT_TO_SHORTPTR(dst), dst_stride);
198
11.0k
    return;
199
11.0k
  }
200
22.5k
#endif
201
22.5k
  (void)highbd;
202
22.5k
  copy_rest_unit_lowbd(width, height, src, src_stride, dst, dst_stride);
203
22.5k
}
204
205
4.02M
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))
206
207
// With striped loop restoration, the filtering for each 64-pixel stripe gets
208
// most of its input from the output of CDEF (stored in data8), but we need to
209
// fill out a border of 3 pixels above/below the stripe according to the
210
// following rules:
211
//
212
// * At the top and bottom of the frame, we copy the outermost row of CDEF
213
//   pixels three times. This extension is done by a call to av1_extend_frame()
214
//   at the start of the loop restoration process, so the value of
215
//   copy_above/copy_below doesn't strictly matter.
216
//
217
// * All other boundaries are stripe boundaries within the frame. In that case,
218
//   we take 2 rows of deblocked pixels and extend them to 3 rows of context.
219
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
220
                                     int plane_w, int plane_h, int ss_y,
221
243k
                                     int *copy_above, int *copy_below) {
222
243k
  (void)plane_w;
223
224
243k
  *copy_above = 1;
225
243k
  *copy_below = 1;
226
227
243k
  const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
228
243k
  const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
229
230
243k
  const int first_stripe_in_plane = (limits->v_start == 0);
231
243k
  const int this_stripe_height =
232
243k
      full_stripe_height - (first_stripe_in_plane ? runit_offset : 0);
233
243k
  const int last_stripe_in_plane =
234
243k
      (limits->v_start + this_stripe_height >= plane_h);
235
236
243k
  if (first_stripe_in_plane) *copy_above = 0;
237
243k
  if (last_stripe_in_plane) *copy_below = 0;
238
243k
}
239
240
// Overwrite the border pixels around a processing stripe so that the conditions
241
// listed above get_stripe_boundary_info() are preserved.
242
// We save the pixels which get overwritten into a temporary buffer, so that
243
// they can be restored by restore_processing_stripe_boundary() after we've
244
// processed the stripe.
245
//
246
// limits gives the rectangular limits of the remaining stripes for the current
247
// restoration unit. rsb is the stored stripe boundaries (taken from either
248
// deblock or CDEF output as necessary).
249
static void setup_processing_stripe_boundary(
250
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
251
    int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride,
252
243k
    RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) {
253
  // Offsets within the line buffers. The buffer logically starts at column
254
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
255
  // has column x0 in the buffer.
256
243k
  const int buf_stride = rsb->stripe_boundary_stride;
257
243k
  const int buf_x0_off = limits->h_start;
258
243k
  const int line_width =
259
243k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
260
243k
  const int line_size = line_width << use_highbd;
261
262
243k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
263
264
  // Replace RESTORATION_BORDER pixels above the top of the stripe
265
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
266
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
267
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
268
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
269
243k
  if (!opt) {
270
225k
    if (copy_above) {
271
204k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
272
273
815k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
274
611k
        const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
275
611k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
276
611k
        const uint8_t *buf =
277
611k
            rsb->stripe_boundary_above + (buf_off << use_highbd);
278
611k
        uint8_t *dst8 = data8_tl + i * data_stride;
279
        // Save old pixels, then replace with data from stripe_boundary_above
280
611k
        memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
281
611k
               REAL_PTR(use_highbd, dst8), line_size);
282
611k
        memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
283
611k
      }
284
204k
    }
285
286
    // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
287
    // The second buffer row is repeated, so src_row gets the values 0, 1, 1
288
    // for i = 0, 1, 2.
289
225k
    if (copy_below) {
290
202k
      const int stripe_end = limits->v_start + h;
291
202k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
292
293
809k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
294
606k
        const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
295
606k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
296
606k
        const uint8_t *src =
297
606k
            rsb->stripe_boundary_below + (buf_off << use_highbd);
298
299
606k
        uint8_t *dst8 = data8_bl + i * data_stride;
300
        // Save old pixels, then replace with data from stripe_boundary_below
301
606k
        memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
302
606k
        memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
303
606k
      }
304
202k
    }
305
225k
  } else {
306
17.0k
    if (copy_above) {
307
11.0k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
308
309
      // Only save and overwrite i=-RESTORATION_BORDER line.
310
11.0k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
311
      // Save old pixels, then replace with data from stripe_boundary_above
312
11.0k
      memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size);
313
11.0k
      memcpy(REAL_PTR(use_highbd, dst8),
314
11.0k
             REAL_PTR(use_highbd,
315
11.0k
                      data8_tl + (-RESTORATION_BORDER + 1) * data_stride),
316
11.0k
             line_size);
317
11.0k
    }
318
319
17.0k
    if (copy_below) {
320
11.0k
      const int stripe_end = limits->v_start + h;
321
11.0k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
322
323
      // Only save and overwrite i=2 line.
324
11.0k
      uint8_t *dst8 = data8_bl + 2 * data_stride;
325
      // Save old pixels, then replace with data from stripe_boundary_below
326
11.0k
      memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size);
327
11.0k
      memcpy(REAL_PTR(use_highbd, dst8),
328
11.0k
             REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size);
329
11.0k
    }
330
17.0k
  }
331
243k
}
332
333
// Once a processing stripe is finished, this function sets the boundary
334
// pixels which were overwritten by setup_processing_stripe_boundary()
335
// back to their original values
336
static void restore_processing_stripe_boundary(
337
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
338
    int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above,
339
242k
    int copy_below, int opt) {
340
242k
  const int line_width =
341
242k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
342
242k
  const int line_size = line_width << use_highbd;
343
344
242k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
345
346
242k
  if (!opt) {
347
225k
    if (copy_above) {
348
204k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
349
815k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
350
611k
        uint8_t *dst8 = data8_tl + i * data_stride;
351
611k
        memcpy(REAL_PTR(use_highbd, dst8),
352
611k
               rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
353
611k
      }
354
204k
    }
355
356
225k
    if (copy_below) {
357
202k
      const int stripe_bottom = limits->v_start + h;
358
202k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
359
360
810k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
361
607k
        if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
362
363
607k
        uint8_t *dst8 = data8_bl + i * data_stride;
364
607k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
365
607k
      }
366
202k
    }
367
225k
  } else {
368
17.0k
    if (copy_above) {
369
11.0k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
370
371
      // Only restore i=-RESTORATION_BORDER line.
372
11.0k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
373
11.0k
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size);
374
11.0k
    }
375
376
17.0k
    if (copy_below) {
377
11.0k
      const int stripe_bottom = limits->v_start + h;
378
11.0k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
379
380
      // Only restore i=2 line.
381
11.0k
      if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) {
382
11.0k
        uint8_t *dst8 = data8_bl + 2 * data_stride;
383
11.0k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size);
384
11.0k
      }
385
11.0k
    }
386
17.0k
  }
387
242k
}
388
389
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
390
                                 int stripe_width, int stripe_height,
391
                                 int procunit_width, const uint8_t *src,
392
                                 int src_stride, uint8_t *dst, int dst_stride,
393
                                 int32_t *tmpbuf, int bit_depth,
394
44.5k
                                 struct aom_internal_error_info *error_info) {
395
44.5k
  (void)tmpbuf;
396
44.5k
  (void)bit_depth;
397
44.5k
  (void)error_info;
398
44.5k
  assert(bit_depth == 8);
399
44.5k
  const WienerConvolveParams conv_params = get_conv_params_wiener(8);
400
401
340k
  for (int j = 0; j < stripe_width; j += procunit_width) {
402
296k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
403
296k
    const uint8_t *src_p = src + j;
404
296k
    uint8_t *dst_p = dst + j;
405
296k
    av1_wiener_convolve_add_src(
406
296k
        src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16,
407
296k
        rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params);
408
296k
  }
409
44.5k
}
410
411
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
412
   over the input. The window is of size (2r + 1)x(2r + 1), and we
413
   specialize to r = 1, 2, 3. A default function is used for r > 3.
414
415
   Each loop follows the same format: We keep a window's worth of input
416
   in individual variables and select data out of that as appropriate.
417
*/
418
static void boxsum1(int32_t *src, int width, int height, int src_stride,
419
0
                    int sqr, int32_t *dst, int dst_stride) {
420
0
  int i, j, a, b, c;
421
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
422
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
423
424
  // Vertical sum over 3-pixel regions, from src into dst.
425
0
  if (!sqr) {
426
0
    for (j = 0; j < width; ++j) {
427
0
      a = src[j];
428
0
      b = src[src_stride + j];
429
0
      c = src[2 * src_stride + j];
430
431
0
      dst[j] = a + b;
432
0
      for (i = 1; i < height - 2; ++i) {
433
        // Loop invariant: At the start of each iteration,
434
        // a = src[(i - 1) * src_stride + j]
435
        // b = src[(i    ) * src_stride + j]
436
        // c = src[(i + 1) * src_stride + j]
437
0
        dst[i * dst_stride + j] = a + b + c;
438
0
        a = b;
439
0
        b = c;
440
0
        c = src[(i + 2) * src_stride + j];
441
0
      }
442
0
      dst[i * dst_stride + j] = a + b + c;
443
0
      dst[(i + 1) * dst_stride + j] = b + c;
444
0
    }
445
0
  } else {
446
0
    for (j = 0; j < width; ++j) {
447
0
      a = src[j] * src[j];
448
0
      b = src[src_stride + j] * src[src_stride + j];
449
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
450
451
0
      dst[j] = a + b;
452
0
      for (i = 1; i < height - 2; ++i) {
453
0
        dst[i * dst_stride + j] = a + b + c;
454
0
        a = b;
455
0
        b = c;
456
0
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
457
0
      }
458
0
      dst[i * dst_stride + j] = a + b + c;
459
0
      dst[(i + 1) * dst_stride + j] = b + c;
460
0
    }
461
0
  }
462
463
  // Horizontal sum over 3-pixel regions of dst
464
0
  for (i = 0; i < height; ++i) {
465
0
    a = dst[i * dst_stride];
466
0
    b = dst[i * dst_stride + 1];
467
0
    c = dst[i * dst_stride + 2];
468
469
0
    dst[i * dst_stride] = a + b;
470
0
    for (j = 1; j < width - 2; ++j) {
471
      // Loop invariant: At the start of each iteration,
472
      // a = src[i * src_stride + (j - 1)]
473
      // b = src[i * src_stride + (j    )]
474
      // c = src[i * src_stride + (j + 1)]
475
0
      dst[i * dst_stride + j] = a + b + c;
476
0
      a = b;
477
0
      b = c;
478
0
      c = dst[i * dst_stride + (j + 2)];
479
0
    }
480
0
    dst[i * dst_stride + j] = a + b + c;
481
0
    dst[i * dst_stride + (j + 1)] = b + c;
482
0
  }
483
0
}
484
485
static void boxsum2(int32_t *src, int width, int height, int src_stride,
486
0
                    int sqr, int32_t *dst, int dst_stride) {
487
0
  int i, j, a, b, c, d, e;
488
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
489
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
490
491
  // Vertical sum over 5-pixel regions, from src into dst.
492
0
  if (!sqr) {
493
0
    for (j = 0; j < width; ++j) {
494
0
      a = src[j];
495
0
      b = src[src_stride + j];
496
0
      c = src[2 * src_stride + j];
497
0
      d = src[3 * src_stride + j];
498
0
      e = src[4 * src_stride + j];
499
500
0
      dst[j] = a + b + c;
501
0
      dst[dst_stride + j] = a + b + c + d;
502
0
      for (i = 2; i < height - 3; ++i) {
503
        // Loop invariant: At the start of each iteration,
504
        // a = src[(i - 2) * src_stride + j]
505
        // b = src[(i - 1) * src_stride + j]
506
        // c = src[(i    ) * src_stride + j]
507
        // d = src[(i + 1) * src_stride + j]
508
        // e = src[(i + 2) * src_stride + j]
509
0
        dst[i * dst_stride + j] = a + b + c + d + e;
510
0
        a = b;
511
0
        b = c;
512
0
        c = d;
513
0
        d = e;
514
0
        e = src[(i + 3) * src_stride + j];
515
0
      }
516
0
      dst[i * dst_stride + j] = a + b + c + d + e;
517
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
518
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
519
0
    }
520
0
  } else {
521
0
    for (j = 0; j < width; ++j) {
522
0
      a = src[j] * src[j];
523
0
      b = src[src_stride + j] * src[src_stride + j];
524
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
525
0
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
526
0
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
527
528
0
      dst[j] = a + b + c;
529
0
      dst[dst_stride + j] = a + b + c + d;
530
0
      for (i = 2; i < height - 3; ++i) {
531
0
        dst[i * dst_stride + j] = a + b + c + d + e;
532
0
        a = b;
533
0
        b = c;
534
0
        c = d;
535
0
        d = e;
536
0
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
537
0
      }
538
0
      dst[i * dst_stride + j] = a + b + c + d + e;
539
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
540
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
541
0
    }
542
0
  }
543
544
  // Horizontal sum over 5-pixel regions of dst
545
0
  for (i = 0; i < height; ++i) {
546
0
    a = dst[i * dst_stride];
547
0
    b = dst[i * dst_stride + 1];
548
0
    c = dst[i * dst_stride + 2];
549
0
    d = dst[i * dst_stride + 3];
550
0
    e = dst[i * dst_stride + 4];
551
552
0
    dst[i * dst_stride] = a + b + c;
553
0
    dst[i * dst_stride + 1] = a + b + c + d;
554
0
    for (j = 2; j < width - 3; ++j) {
555
      // Loop invariant: At the start of each iteration,
556
      // a = src[i * src_stride + (j - 2)]
557
      // b = src[i * src_stride + (j - 1)]
558
      // c = src[i * src_stride + (j    )]
559
      // d = src[i * src_stride + (j + 1)]
560
      // e = src[i * src_stride + (j + 2)]
561
0
      dst[i * dst_stride + j] = a + b + c + d + e;
562
0
      a = b;
563
0
      b = c;
564
0
      c = d;
565
0
      d = e;
566
0
      e = dst[i * dst_stride + (j + 3)];
567
0
    }
568
0
    dst[i * dst_stride + j] = a + b + c + d + e;
569
0
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
570
0
    dst[i * dst_stride + (j + 2)] = c + d + e;
571
0
  }
572
0
}
573
574
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
575
0
                   int sqr, int32_t *dst, int dst_stride) {
576
0
  if (r == 1)
577
0
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
578
0
  else if (r == 2)
579
0
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
580
0
  else
581
0
    assert(0 && "Invalid value of r in self-guided filter");
582
0
}
583
584
495k
void av1_decode_xq(const int *xqd, int *xq, const sgr_params_type *params) {
585
495k
  if (params->r[0] == 0) {
586
73.1k
    xq[0] = 0;
587
73.1k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1];
588
421k
  } else if (params->r[1] == 0) {
589
19.2k
    xq[0] = xqd[0];
590
19.2k
    xq[1] = 0;
591
402k
  } else {
592
402k
    xq[0] = xqd[0];
593
402k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
594
402k
  }
595
495k
}
596
597
const int32_t av1_x_by_xplus1[256] = {
598
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
599
  // instead of 0. See comments in selfguided_restoration_internal() for why
600
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
601
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
602
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
603
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
604
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
605
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
606
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
607
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
608
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
609
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
610
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
611
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
612
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
613
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
614
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
615
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
616
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
617
  256,
618
};
619
620
const int32_t av1_one_by_x[MAX_NELEM] = {
621
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
622
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
623
};
624
625
static void calculate_intermediate_result(int32_t *dgd, int width, int height,
626
                                          int dgd_stride, int bit_depth,
627
                                          int sgr_params_idx, int radius_idx,
628
0
                                          int pass, int32_t *A, int32_t *B) {
629
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
630
0
  const int r = params->r[radius_idx];
631
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
632
0
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
633
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
634
  // leading to a significant speed improvement.
635
  // We also align the stride to a multiple of 16 bytes, for consistency
636
  // with the SIMD version of this function.
637
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
638
0
  const int step = pass == 0 ? 1 : 2;
639
0
  int i, j;
640
641
0
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
642
0
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
643
0
         "Need SGRPROJ_BORDER_* >= r+1");
644
645
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
646
0
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
647
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
648
0
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
649
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
650
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
651
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
652
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
653
0
  for (i = -1; i < height + 1; i += step) {
654
0
    for (j = -1; j < width + 1; ++j) {
655
0
      const int k = i * buf_stride + j;
656
0
      const int n = (2 * r + 1) * (2 * r + 1);
657
658
      // a < 2^16 * n < 2^22 regardless of bit depth
659
0
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
660
      // b < 2^8 * n < 2^14 regardless of bit depth
661
0
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
662
663
      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
664
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
665
      // This bound on p is due to:
666
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
667
      //
668
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
669
      // This is an artefact of rounding, and can only happen if all pixels
670
      // are (almost) identical, so in this case we saturate to p=0.
671
0
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
672
673
0
      const uint32_t s = params->s[radius_idx];
674
675
      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
676
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
677
      // (this holds even after accounting for the rounding in s)
678
0
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
679
680
      // Note: We have to be quite careful about the value of A[k].
681
      // This is used as a blend factor between individual pixel values and the
682
      // local mean. So it logically has a range of [0, 256], including both
683
      // endpoints.
684
      //
685
      // This is a pain for hardware, as we'd like something which can be stored
686
      // in exactly 8 bits.
687
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
688
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
689
      // slightly above 2^(8 + bit depth), due to rounding in the value of
690
      // av1_one_by_x[25-1].
691
      //
692
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
693
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
694
      // overflow), without significantly affecting the final result: z == 0
695
      // implies that the image is essentially "flat", so the local mean and
696
      // individual pixel values are very similar.
697
      //
698
      // Note that saturating on the other side, ie. requring A[k] <= 255,
699
      // would be a bad idea, as that corresponds to the case where the image
700
      // is very variable, when we want to preserve the local pixel value as
701
      // much as possible.
702
0
      A[k] = av1_x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]
703
704
      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
705
      // av1_one_by_x[n - 1] = round(2^12 / n)
706
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
707
      // and B[k] is set to a value < 2^(8 + bit depth)
708
      // This holds even with the rounding in av1_one_by_x and in the overall
709
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
710
0
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
711
0
                                             (uint32_t)B[k] *
712
0
                                             (uint32_t)av1_one_by_x[n - 1],
713
0
                                         SGRPROJ_RECIP_BITS);
714
0
    }
715
0
  }
716
0
}
717
718
static void selfguided_restoration_fast_internal(
719
    int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst,
720
0
    int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) {
721
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
722
0
  const int r = params->r[radius_idx];
723
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
724
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
725
  // leading to a significant speed improvement.
726
  // We also align the stride to a multiple of 16 bytes, for consistency
727
  // with the SIMD version of this function.
728
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
729
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
730
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
731
0
  int32_t *A = A_;
732
0
  int32_t *B = B_;
733
0
  int i, j;
734
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
735
0
                                sgr_params_idx, radius_idx, 1, A, B);
736
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
737
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
738
739
  // Use the A[] and B[] arrays to calculate the filtered image
740
0
  (void)r;
741
0
  assert(r == 2);
742
0
  for (i = 0; i < height; ++i) {
743
0
    if (!(i & 1)) {  // even row
744
0
      for (j = 0; j < width; ++j) {
745
0
        const int k = i * buf_stride + j;
746
0
        const int l = i * dgd_stride + j;
747
0
        const int m = i * dst_stride + j;
748
0
        const int nb = 5;
749
0
        const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 +
750
0
                          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
751
0
                           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
752
0
                              5;
753
0
        const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 +
754
0
                          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
755
0
                           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
756
0
                              5;
757
0
        const int32_t v = a * dgd[l] + b;
758
0
        dst[m] =
759
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
760
0
      }
761
0
    } else {  // odd row
762
0
      for (j = 0; j < width; ++j) {
763
0
        const int k = i * buf_stride + j;
764
0
        const int l = i * dgd_stride + j;
765
0
        const int m = i * dst_stride + j;
766
0
        const int nb = 4;
767
0
        const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5;
768
0
        const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5;
769
0
        const int32_t v = a * dgd[l] + b;
770
0
        dst[m] =
771
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
772
0
      }
773
0
    }
774
0
  }
775
0
}
776
777
static void selfguided_restoration_internal(int32_t *dgd, int width, int height,
778
                                            int dgd_stride, int32_t *dst,
779
                                            int dst_stride, int bit_depth,
780
                                            int sgr_params_idx,
781
0
                                            int radius_idx) {
782
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
783
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
784
  // leading to a significant speed improvement.
785
  // We also align the stride to a multiple of 16 bytes, for consistency
786
  // with the SIMD version of this function.
787
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
788
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
789
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
790
0
  int32_t *A = A_;
791
0
  int32_t *B = B_;
792
0
  int i, j;
793
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
794
0
                                sgr_params_idx, radius_idx, 0, A, B);
795
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
796
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
797
798
  // Use the A[] and B[] arrays to calculate the filtered image
799
0
  for (i = 0; i < height; ++i) {
800
0
    for (j = 0; j < width; ++j) {
801
0
      const int k = i * buf_stride + j;
802
0
      const int l = i * dgd_stride + j;
803
0
      const int m = i * dst_stride + j;
804
0
      const int nb = 5;
805
0
      const int32_t a =
806
0
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
807
0
              4 +
808
0
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
809
0
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
810
0
              3;
811
0
      const int32_t b =
812
0
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
813
0
              4 +
814
0
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
815
0
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
816
0
              3;
817
0
      const int32_t v = a * dgd[l] + b;
818
0
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
819
0
    }
820
0
  }
821
0
}
822
823
int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
824
                                 int dgd_stride, int32_t *flt0, int32_t *flt1,
825
                                 int flt_stride, int sgr_params_idx,
826
0
                                 int bit_depth, int highbd) {
827
0
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
828
0
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
829
0
  int32_t *dgd32 =
830
0
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
831
832
0
  if (highbd) {
833
0
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
834
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
835
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
836
0
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
837
0
      }
838
0
    }
839
0
  } else {
840
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
841
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
842
0
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
843
0
      }
844
0
    }
845
0
  }
846
847
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
848
  // If params->r == 0 we skip the corresponding filter. We only allow one of
849
  // the radii to be 0, as having both equal to 0 would be equivalent to
850
  // skipping SGR entirely.
851
0
  assert(!(params->r[0] == 0 && params->r[1] == 0));
852
853
0
  if (params->r[0] > 0)
854
0
    selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride,
855
0
                                         flt0, flt_stride, bit_depth,
856
0
                                         sgr_params_idx, 0);
857
0
  if (params->r[1] > 0)
858
0
    selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
859
0
                                    flt_stride, bit_depth, sgr_params_idx, 1);
860
0
  return 0;
861
0
}
862
863
int av1_apply_selfguided_restoration_c(const uint8_t *dat8, int width,
864
                                       int height, int stride, int eps,
865
                                       const int *xqd, uint8_t *dst8,
866
                                       int dst_stride, int32_t *tmpbuf,
867
0
                                       int bit_depth, int highbd) {
868
0
  int32_t *flt0 = tmpbuf;
869
0
  int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
870
0
  assert(width * height <= RESTORATION_UNITPELS_MAX);
871
872
0
  const int ret = av1_selfguided_restoration_c(
873
0
      dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd);
874
0
  if (ret != 0) return ret;
875
0
  const sgr_params_type *const params = &av1_sgr_params[eps];
876
0
  int xq[2];
877
0
  av1_decode_xq(xqd, xq, params);
878
0
  for (int i = 0; i < height; ++i) {
879
0
    for (int j = 0; j < width; ++j) {
880
0
      const int k = i * width + j;
881
0
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
882
0
      const uint8_t *dat8ij = dat8 + i * stride + j;
883
884
0
      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
885
0
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
886
0
      int32_t v = u << SGRPROJ_PRJ_BITS;
887
      // If params->r == 0 then we skipped the filtering in
888
      // av1_selfguided_restoration_c, i.e. flt[k] == u
889
0
      if (params->r[0] > 0) v += xq[0] * (flt0[k] - u);
890
0
      if (params->r[1] > 0) v += xq[1] * (flt1[k] - u);
891
0
      const int16_t w =
892
0
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
893
894
0
      const uint16_t out = clip_pixel_highbd(w, bit_depth);
895
0
      if (highbd)
896
0
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
897
0
      else
898
0
        *dst8ij = (uint8_t)out;
899
0
    }
900
0
  }
901
0
  return 0;
902
0
}
903
904
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
905
                                  int stripe_width, int stripe_height,
906
                                  int procunit_width, const uint8_t *src,
907
                                  int src_stride, uint8_t *dst, int dst_stride,
908
                                  int32_t *tmpbuf, int bit_depth,
909
69.5k
                                  struct aom_internal_error_info *error_info) {
910
69.5k
  (void)bit_depth;
911
69.5k
  assert(bit_depth == 8);
912
913
319k
  for (int j = 0; j < stripe_width; j += procunit_width) {
914
250k
    int w = AOMMIN(procunit_width, stripe_width - j);
915
250k
    if (av1_apply_selfguided_restoration(
916
250k
            src + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
917
250k
            rui->sgrproj_info.xqd, dst + j, dst_stride, tmpbuf, bit_depth,
918
250k
            0) != 0) {
919
0
      aom_internal_error(
920
0
          error_info, AOM_CODEC_MEM_ERROR,
921
0
          "Error allocating buffer in av1_apply_selfguided_restoration");
922
0
    }
923
250k
  }
924
69.5k
}
925
926
#if CONFIG_AV1_HIGHBITDEPTH
927
static void wiener_filter_stripe_highbd(
928
    const RestorationUnitInfo *rui, int stripe_width, int stripe_height,
929
    int procunit_width, const uint8_t *src8, int src_stride, uint8_t *dst8,
930
    int dst_stride, int32_t *tmpbuf, int bit_depth,
931
54.0k
    struct aom_internal_error_info *error_info) {
932
54.0k
  (void)tmpbuf;
933
54.0k
  (void)error_info;
934
54.0k
  const WienerConvolveParams conv_params = get_conv_params_wiener(bit_depth);
935
936
412k
  for (int j = 0; j < stripe_width; j += procunit_width) {
937
358k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
938
358k
    const uint8_t *src8_p = src8 + j;
939
358k
    uint8_t *dst8_p = dst8 + j;
940
358k
    av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride,
941
358k
                                       rui->wiener_info.hfilter, 16,
942
358k
                                       rui->wiener_info.vfilter, 16, w,
943
358k
                                       stripe_height, &conv_params, bit_depth);
944
358k
  }
945
54.0k
}
946
947
static void sgrproj_filter_stripe_highbd(
948
    const RestorationUnitInfo *rui, int stripe_width, int stripe_height,
949
    int procunit_width, const uint8_t *src8, int src_stride, uint8_t *dst8,
950
    int dst_stride, int32_t *tmpbuf, int bit_depth,
951
74.7k
    struct aom_internal_error_info *error_info) {
952
319k
  for (int j = 0; j < stripe_width; j += procunit_width) {
953
244k
    int w = AOMMIN(procunit_width, stripe_width - j);
954
244k
    if (av1_apply_selfguided_restoration(
955
244k
            src8 + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
956
244k
            rui->sgrproj_info.xqd, dst8 + j, dst_stride, tmpbuf, bit_depth,
957
244k
            1) != 0) {
958
0
      aom_internal_error(
959
0
          error_info, AOM_CODEC_MEM_ERROR,
960
0
          "Error allocating buffer in av1_apply_selfguided_restoration");
961
0
    }
962
244k
  }
963
74.7k
}
964
#endif  // CONFIG_AV1_HIGHBITDEPTH
965
966
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
967
                                  int stripe_width, int stripe_height,
968
                                  int procunit_width, const uint8_t *src,
969
                                  int src_stride, uint8_t *dst, int dst_stride,
970
                                  int32_t *tmpbuf, int bit_depth,
971
                                  struct aom_internal_error_info *error_info);
972
973
#if CONFIG_AV1_HIGHBITDEPTH
974
#define NUM_STRIPE_FILTERS 4
975
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
976
  wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd,
977
  sgrproj_filter_stripe_highbd
978
};
979
#else
980
#define NUM_STRIPE_FILTERS 2
981
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
982
  wiener_filter_stripe, sgrproj_filter_stripe
983
};
984
#endif  // CONFIG_AV1_HIGHBITDEPTH
985
986
// Filter one restoration unit
987
void av1_loop_restoration_filter_unit(
988
    const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
989
    const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
990
    int plane_w, int plane_h, int ss_x, int ss_y, int highbd, int bit_depth,
991
    uint8_t *data8, int stride, uint8_t *dst8, int dst_stride, int32_t *tmpbuf,
992
95.6k
    int optimized_lr, struct aom_internal_error_info *error_info) {
993
95.6k
  RestorationType unit_rtype = rui->restoration_type;
994
995
95.6k
  int unit_h = limits->v_end - limits->v_start;
996
95.6k
  int unit_w = limits->h_end - limits->h_start;
997
95.6k
  uint8_t *data8_tl =
998
95.6k
      data8 + limits->v_start * (ptrdiff_t)stride + limits->h_start;
999
95.6k
  uint8_t *dst8_tl =
1000
95.6k
      dst8 + limits->v_start * (ptrdiff_t)dst_stride + limits->h_start;
1001
1002
95.6k
  if (unit_rtype == RESTORE_NONE) {
1003
33.6k
    copy_rest_unit(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride,
1004
33.6k
                   highbd);
1005
33.6k
    return;
1006
33.6k
  }
1007
1008
62.0k
  const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ);
1009
62.0k
  assert(filter_idx < NUM_STRIPE_FILTERS);
1010
62.0k
  const stripe_filter_fun stripe_filter = stripe_filters[filter_idx];
1011
1012
62.0k
  const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
1013
1014
  // Filter the whole image one stripe at a time
1015
62.0k
  RestorationTileLimits remaining_stripes = *limits;
1016
62.0k
  int i = 0;
1017
305k
  while (i < unit_h) {
1018
243k
    int copy_above, copy_below;
1019
243k
    remaining_stripes.v_start = limits->v_start + i;
1020
1021
243k
    get_stripe_boundary_info(&remaining_stripes, plane_w, plane_h, ss_y,
1022
243k
                             &copy_above, &copy_below);
1023
1024
243k
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1025
243k
    const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
1026
1027
    // Work out where this stripe's boundaries are within
1028
    // rsb->stripe_boundary_{above,below}
1029
243k
    const int frame_stripe =
1030
243k
        (remaining_stripes.v_start + runit_offset) / full_stripe_height;
1031
243k
    const int rsb_row = RESTORATION_CTX_VERT * frame_stripe;
1032
1033
    // Calculate this stripe's height, based on two rules:
1034
    // * The topmost stripe in the frame is 8 luma pixels shorter than usual.
1035
    // * We can't extend past the end of the current restoration unit
1036
243k
    const int nominal_stripe_height =
1037
243k
        full_stripe_height - ((frame_stripe == 0) ? runit_offset : 0);
1038
243k
    const int h = AOMMIN(nominal_stripe_height,
1039
243k
                         remaining_stripes.v_end - remaining_stripes.v_start);
1040
1041
243k
    setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd,
1042
243k
                                     h, data8, stride, rlbs, copy_above,
1043
243k
                                     copy_below, optimized_lr);
1044
1045
243k
    stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride,
1046
243k
                  dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth,
1047
243k
                  error_info);
1048
1049
243k
    restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h,
1050
243k
                                       data8, stride, copy_above, copy_below,
1051
243k
                                       optimized_lr);
1052
1053
243k
    i += h;
1054
243k
  }
1055
62.0k
}
1056
1057
static void filter_frame_on_unit(const RestorationTileLimits *limits,
1058
                                 int rest_unit_idx, void *priv, int32_t *tmpbuf,
1059
                                 RestorationLineBuffers *rlbs,
1060
95.7k
                                 struct aom_internal_error_info *error_info) {
1061
95.7k
  FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
1062
95.7k
  const RestorationInfo *rsi = ctxt->rsi;
1063
1064
95.7k
  av1_loop_restoration_filter_unit(
1065
95.7k
      limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs,
1066
95.7k
      ctxt->plane_w, ctxt->plane_h, ctxt->ss_x, ctxt->ss_y, ctxt->highbd,
1067
95.7k
      ctxt->bit_depth, ctxt->data8, ctxt->data_stride, ctxt->dst8,
1068
95.7k
      ctxt->dst_stride, tmpbuf, rsi->optimized_lr, error_info);
1069
95.7k
}
1070
1071
void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
1072
                                            YV12_BUFFER_CONFIG *frame,
1073
                                            AV1_COMMON *cm, int optimized_lr,
1074
15.7k
                                            int num_planes) {
1075
15.7k
  const SequenceHeader *const seq_params = cm->seq_params;
1076
15.7k
  const int bit_depth = seq_params->bit_depth;
1077
15.7k
  const int highbd = seq_params->use_highbitdepth;
1078
15.7k
  lr_ctxt->dst = &cm->rst_frame;
1079
1080
15.7k
  const int frame_width = frame->crop_widths[0];
1081
15.7k
  const int frame_height = frame->crop_heights[0];
1082
15.7k
  if (aom_realloc_frame_buffer(
1083
15.7k
          lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
1084
15.7k
          seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
1085
15.7k
          cm->features.byte_alignment, NULL, NULL, NULL, false,
1086
15.7k
          0) != AOM_CODEC_OK)
1087
0
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1088
0
                       "Failed to allocate restoration dst buffer");
1089
1090
15.7k
  lr_ctxt->on_rest_unit = filter_frame_on_unit;
1091
15.7k
  lr_ctxt->frame = frame;
1092
56.9k
  for (int plane = 0; plane < num_planes; ++plane) {
1093
41.2k
    RestorationInfo *rsi = &cm->rst_info[plane];
1094
41.2k
    RestorationType rtype = rsi->frame_restoration_type;
1095
41.2k
    rsi->optimized_lr = optimized_lr;
1096
41.2k
    lr_ctxt->ctxt[plane].rsi = rsi;
1097
1098
41.2k
    if (rtype == RESTORE_NONE) {
1099
9.53k
      continue;
1100
9.53k
    }
1101
1102
31.7k
    const int is_uv = plane > 0;
1103
31.7k
    int plane_w, plane_h;
1104
31.7k
    av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1105
31.7k
    assert(plane_w == frame->crop_widths[is_uv]);
1106
31.7k
    assert(plane_h == frame->crop_heights[is_uv]);
1107
1108
31.7k
    av1_extend_frame(frame->buffers[plane], plane_w, plane_h,
1109
31.7k
                     frame->strides[is_uv], RESTORATION_BORDER,
1110
31.7k
                     RESTORATION_BORDER, highbd);
1111
1112
31.7k
    FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane];
1113
31.7k
    lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x;
1114
31.7k
    lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y;
1115
31.7k
    lr_plane_ctxt->plane_w = plane_w;
1116
31.7k
    lr_plane_ctxt->plane_h = plane_h;
1117
31.7k
    lr_plane_ctxt->highbd = highbd;
1118
31.7k
    lr_plane_ctxt->bit_depth = bit_depth;
1119
31.7k
    lr_plane_ctxt->data8 = frame->buffers[plane];
1120
31.7k
    lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane];
1121
31.7k
    lr_plane_ctxt->data_stride = frame->strides[is_uv];
1122
31.7k
    lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv];
1123
31.7k
  }
1124
15.7k
}
1125
1126
static void loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt,
1127
4.98k
                                         AV1_COMMON *cm, int num_planes) {
1128
4.98k
  typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
1129
4.98k
                           YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
1130
4.98k
                           int vstart, int vend);
1131
4.98k
  static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
1132
4.98k
                                         aom_yv12_partial_coloc_copy_u,
1133
4.98k
                                         aom_yv12_partial_coloc_copy_v };
1134
4.98k
  assert(num_planes <= 3);
1135
15.6k
  for (int plane = 0; plane < num_planes; ++plane) {
1136
10.6k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1137
8.30k
    FilterFrameCtxt *lr_plane_ctxt = &loop_rest_ctxt->ctxt[plane];
1138
8.30k
    copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, 0,
1139
8.30k
                     lr_plane_ctxt->plane_w, 0, lr_plane_ctxt->plane_h);
1140
8.30k
  }
1141
4.98k
}
1142
1143
// Call on_rest_unit for each loop restoration unit in the plane.
1144
static void foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane,
1145
                                       rest_unit_visitor_t on_rest_unit,
1146
                                       void *priv, int32_t *tmpbuf,
1147
8.30k
                                       RestorationLineBuffers *rlbs) {
1148
8.30k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1149
8.30k
  const int hnum_rest_units = rsi->horz_units;
1150
8.30k
  const int vnum_rest_units = rsi->vert_units;
1151
8.30k
  const int unit_size = rsi->restoration_unit_size;
1152
1153
8.30k
  const int is_uv = plane > 0;
1154
8.30k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1155
8.30k
  const int ext_size = unit_size * 3 / 2;
1156
8.30k
  int plane_w, plane_h;
1157
8.30k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1158
1159
8.30k
  int y0 = 0, i = 0;
1160
17.9k
  while (y0 < plane_h) {
1161
9.63k
    int remaining_h = plane_h - y0;
1162
9.63k
    int h = (remaining_h < ext_size) ? remaining_h : unit_size;
1163
1164
9.63k
    RestorationTileLimits limits;
1165
9.63k
    limits.v_start = y0;
1166
9.63k
    limits.v_end = y0 + h;
1167
9.63k
    assert(limits.v_end <= plane_h);
1168
    // Offset upwards to align with the restoration processing stripe
1169
9.63k
    const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
1170
9.63k
    limits.v_start = AOMMAX(0, limits.v_start - voffset);
1171
9.63k
    if (limits.v_end < plane_h) limits.v_end -= voffset;
1172
1173
9.63k
    av1_foreach_rest_unit_in_row(&limits, plane_w, on_rest_unit, i, unit_size,
1174
9.63k
                                 hnum_rest_units, vnum_rest_units, plane, priv,
1175
9.63k
                                 tmpbuf, rlbs, av1_lr_sync_read_dummy,
1176
9.63k
                                 av1_lr_sync_write_dummy, NULL, cm->error);
1177
1178
9.63k
    y0 += h;
1179
9.63k
    ++i;
1180
9.63k
  }
1181
8.30k
}
1182
1183
static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm,
1184
4.98k
                                        int num_planes) {
1185
4.98k
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
1186
1187
15.6k
  for (int plane = 0; plane < num_planes; ++plane) {
1188
10.6k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) {
1189
2.32k
      continue;
1190
2.32k
    }
1191
1192
8.30k
    foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit, &ctxt[plane],
1193
8.30k
                               cm->rst_tmpbuf, cm->rlbs);
1194
8.30k
  }
1195
4.98k
}
1196
1197
void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame,
1198
                                       AV1_COMMON *cm, int optimized_lr,
1199
4.98k
                                       void *lr_ctxt) {
1200
4.98k
  assert(!cm->features.all_lossless);
1201
4.98k
  const int num_planes = av1_num_planes(cm);
1202
1203
4.98k
  AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
1204
1205
4.98k
  av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
1206
4.98k
                                         optimized_lr, num_planes);
1207
1208
4.98k
  foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes);
1209
1210
4.98k
  loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes);
1211
4.98k
}
1212
1213
void av1_foreach_rest_unit_in_row(
1214
    RestorationTileLimits *limits, int plane_w,
1215
    rest_unit_visitor_t on_rest_unit, int row_number, int unit_size,
1216
    int hnum_rest_units, int vnum_rest_units, int plane, void *priv,
1217
    int32_t *tmpbuf, RestorationLineBuffers *rlbs, sync_read_fn_t on_sync_read,
1218
    sync_write_fn_t on_sync_write, struct AV1LrSyncData *const lr_sync,
1219
44.9k
    struct aom_internal_error_info *error_info) {
1220
44.9k
  const int ext_size = unit_size * 3 / 2;
1221
44.9k
  int x0 = 0, j = 0;
1222
140k
  while (x0 < plane_w) {
1223
95.7k
    int remaining_w = plane_w - x0;
1224
95.7k
    int w = (remaining_w < ext_size) ? remaining_w : unit_size;
1225
1226
95.7k
    limits->h_start = x0;
1227
95.7k
    limits->h_end = x0 + w;
1228
95.7k
    assert(limits->h_end <= plane_w);
1229
1230
95.7k
    const int unit_idx = row_number * hnum_rest_units + j;
1231
1232
    // No sync for even numbered rows
1233
    // For odd numbered rows, Loop Restoration of current block requires the LR
1234
    // of top-right and bottom-right blocks to be completed
1235
1236
    // top-right sync
1237
95.7k
    on_sync_read(lr_sync, row_number, j, plane);
1238
95.7k
    if ((row_number + 1) < vnum_rest_units)
1239
      // bottom-right sync
1240
45.7k
      on_sync_read(lr_sync, row_number + 2, j, plane);
1241
1242
95.7k
#if CONFIG_MULTITHREAD
1243
95.7k
    if (lr_sync && lr_sync->num_workers > 1) {
1244
81.4k
      pthread_mutex_lock(lr_sync->job_mutex);
1245
81.4k
      const bool lr_mt_exit = lr_sync->lr_mt_exit;
1246
81.4k
      pthread_mutex_unlock(lr_sync->job_mutex);
1247
      // Exit in case any worker has encountered an error.
1248
81.4k
      if (lr_mt_exit) return;
1249
81.4k
    }
1250
95.7k
#endif
1251
1252
95.7k
    on_rest_unit(limits, unit_idx, priv, tmpbuf, rlbs, error_info);
1253
1254
95.7k
    on_sync_write(lr_sync, row_number, j, hnum_rest_units, plane);
1255
1256
95.7k
    x0 += w;
1257
95.7k
    ++j;
1258
95.7k
  }
1259
44.9k
}
1260
1261
99.8k
void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) {
1262
99.8k
  (void)lr_sync;
1263
99.8k
  (void)r;
1264
99.8k
  (void)c;
1265
99.8k
  (void)plane;
1266
99.8k
}
1267
1268
void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c,
1269
44.1k
                             const int sb_cols, int plane) {
1270
44.1k
  (void)lr_sync;
1271
44.1k
  (void)r;
1272
44.1k
  (void)c;
1273
44.1k
  (void)sb_cols;
1274
44.1k
  (void)plane;
1275
44.1k
}
1276
1277
int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane,
1278
                                       int mi_row, int mi_col, BLOCK_SIZE bsize,
1279
                                       int *rcol0, int *rcol1, int *rrow0,
1280
16.7M
                                       int *rrow1) {
1281
16.7M
  assert(rcol0 && rcol1 && rrow0 && rrow1);
1282
1283
16.7M
  if (bsize != cm->seq_params->sb_size) return 0;
1284
1285
16.7M
  assert(!cm->features.all_lossless);
1286
1287
818k
  const int is_uv = plane > 0;
1288
1289
  // Compute the mi-unit corners of the superblock
1290
818k
  const int mi_row0 = mi_row;
1291
818k
  const int mi_col0 = mi_col;
1292
818k
  const int mi_row1 = mi_row0 + mi_size_high[bsize];
1293
818k
  const int mi_col1 = mi_col0 + mi_size_wide[bsize];
1294
1295
818k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1296
818k
  const int size = rsi->restoration_unit_size;
1297
818k
  const int horz_units = rsi->horz_units;
1298
818k
  const int vert_units = rsi->vert_units;
1299
1300
  // The size of an MI-unit on this plane of the image
1301
818k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1302
818k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1303
818k
  const int mi_size_x = MI_SIZE >> ss_x;
1304
818k
  const int mi_size_y = MI_SIZE >> ss_y;
1305
1306
  // Write m for the relative mi column or row, D for the superres denominator
1307
  // and N for the superres numerator. If u is the upscaled pixel offset then
1308
  // we can write the downscaled pixel offset in two ways as:
1309
  //
1310
  //   MI_SIZE * m = N / D u
1311
  //
1312
  // from which we get u = D * MI_SIZE * m / N
1313
818k
  const int mi_to_num_x = av1_superres_scaled(cm)
1314
818k
                              ? mi_size_x * cm->superres_scale_denominator
1315
818k
                              : mi_size_x;
1316
818k
  const int mi_to_num_y = mi_size_y;
1317
818k
  const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size;
1318
818k
  const int denom_y = size;
1319
1320
818k
  const int rnd_x = denom_x - 1;
1321
818k
  const int rnd_y = denom_y - 1;
1322
1323
  // rcol0/rrow0 should be the first column/row of restoration units that
1324
  // doesn't start left/below of mi_col/mi_row. For this calculation, we need
1325
  // to round up the division (if the sb starts at runit column 10.1, the first
1326
  // matching runit has column index 11)
1327
818k
  *rcol0 = (mi_col0 * mi_to_num_x + rnd_x) / denom_x;
1328
818k
  *rrow0 = (mi_row0 * mi_to_num_y + rnd_y) / denom_y;
1329
1330
  // rel_col1/rel_row1 is the equivalent calculation, but for the superblock
1331
  // below-right. If we're at the bottom or right of the frame, this restoration
1332
  // unit might not exist, in which case we'll clamp accordingly.
1333
818k
  *rcol1 = AOMMIN((mi_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units);
1334
818k
  *rrow1 = AOMMIN((mi_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units);
1335
1336
818k
  return *rcol0 < *rcol1 && *rrow0 < *rrow1;
1337
818k
}
1338
1339
// Extend to left and right
1340
static void extend_lines(uint8_t *buf, int width, int height, int stride,
1341
284k
                         int extend, int use_highbitdepth) {
1342
854k
  for (int i = 0; i < height; ++i) {
1343
569k
    if (use_highbitdepth) {
1344
261k
      uint16_t *buf16 = (uint16_t *)buf;
1345
261k
      aom_memset16(buf16 - extend, buf16[0], extend);
1346
261k
      aom_memset16(buf16 + width, buf16[width - 1], extend);
1347
307k
    } else {
1348
307k
      memset(buf - extend, buf[0], extend);
1349
307k
      memset(buf + width, buf[width - 1], extend);
1350
307k
    }
1351
569k
    buf += stride;
1352
569k
  }
1353
284k
}
1354
1355
static void save_deblock_boundary_lines(
1356
    const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row,
1357
    int stripe, int use_highbd, int is_above,
1358
215k
    RestorationStripeBoundaries *boundaries) {
1359
215k
  const int is_uv = plane > 0;
1360
215k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1361
215k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1362
215k
  const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
1363
1364
215k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1365
215k
                               : boundaries->stripe_boundary_below;
1366
215k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1367
215k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1368
215k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1369
1370
  // There is a rare case in which a processing stripe can end 1px above the
1371
  // crop border. In this case, we do want to use deblocked pixels from below
1372
  // the stripe (hence why we ended up in this function), but instead of
1373
  // fetching 2 "below" rows we need to fetch one and duplicate it.
1374
  // This is equivalent to clamping the sample locations against the crop border
1375
215k
  const int lines_to_save =
1376
215k
      AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row);
1377
215k
  assert(lines_to_save == 1 || lines_to_save == 2);
1378
1379
215k
  int upscaled_width;
1380
215k
  int line_bytes;
1381
215k
  if (av1_superres_scaled(cm)) {
1382
29.1k
    const int ss_x = is_uv && cm->seq_params->subsampling_x;
1383
29.1k
    upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
1384
29.1k
    line_bytes = upscaled_width << use_highbd;
1385
29.1k
    if (use_highbd)
1386
8.47k
      av1_upscale_normative_rows(
1387
8.47k
          cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv],
1388
8.47k
          CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride,
1389
8.47k
          plane, lines_to_save);
1390
20.6k
    else
1391
20.6k
      av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows,
1392
20.6k
                                 boundaries->stripe_boundary_stride, plane,
1393
20.6k
                                 lines_to_save);
1394
186k
  } else {
1395
186k
    upscaled_width = frame->crop_widths[is_uv];
1396
186k
    line_bytes = upscaled_width << use_highbd;
1397
555k
    for (int i = 0; i < lines_to_save; i++) {
1398
368k
      memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride,
1399
368k
             line_bytes);
1400
368k
    }
1401
186k
  }
1402
  // If we only saved one line, then copy it into the second line buffer
1403
215k
  if (lines_to_save == 1)
1404
5.94k
    memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes);
1405
1406
215k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1407
215k
               RESTORATION_EXTRA_HORZ, use_highbd);
1408
215k
}
1409
1410
static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1411
                                     const AV1_COMMON *cm, int plane, int row,
1412
                                     int stripe, int use_highbd, int is_above,
1413
69.1k
                                     RestorationStripeBoundaries *boundaries) {
1414
69.1k
  const int is_uv = plane > 0;
1415
69.1k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1416
69.1k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1417
69.1k
  const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
1418
1419
69.1k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1420
69.1k
                               : boundaries->stripe_boundary_below;
1421
69.1k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1422
69.1k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1423
69.1k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1424
69.1k
  const int src_width = frame->crop_widths[is_uv];
1425
1426
  // At the point where this function is called, we've already applied
1427
  // superres. So we don't need to extend the lines here, we can just
1428
  // pull directly from the topmost row of the upscaled frame.
1429
69.1k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1430
69.1k
  const int upscaled_width = av1_superres_scaled(cm)
1431
69.1k
                                 ? (cm->superres_upscaled_width + ss_x) >> ss_x
1432
69.1k
                                 : src_width;
1433
69.1k
  const int line_bytes = upscaled_width << use_highbd;
1434
207k
  for (int i = 0; i < RESTORATION_CTX_VERT; i++) {
1435
    // Copy the line at 'src_rows' into both context lines
1436
138k
    memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes);
1437
138k
  }
1438
69.1k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1439
69.1k
               RESTORATION_EXTRA_HORZ, use_highbd);
1440
69.1k
}
1441
1442
static void save_boundary_lines(const YV12_BUFFER_CONFIG *frame, int use_highbd,
1443
69.1k
                                int plane, AV1_COMMON *cm, int after_cdef) {
1444
69.1k
  const int is_uv = plane > 0;
1445
69.1k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1446
69.1k
  const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1447
69.1k
  const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y;
1448
1449
69.1k
  int plane_w, plane_h;
1450
69.1k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1451
1452
69.1k
  RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries;
1453
1454
69.1k
  const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y);
1455
1456
69.1k
  int stripe_idx;
1457
354k
  for (stripe_idx = 0;; ++stripe_idx) {
1458
354k
    const int rel_y0 = AOMMAX(0, stripe_idx * stripe_height - stripe_off);
1459
354k
    const int y0 = rel_y0;
1460
354k
    if (y0 >= plane_h) break;
1461
1462
284k
    const int rel_y1 = (stripe_idx + 1) * stripe_height - stripe_off;
1463
284k
    const int y1 = AOMMIN(rel_y1, plane_h);
1464
1465
    // Extend using CDEF pixels at the top and bottom of the frame,
1466
    // and deblocked pixels at internal stripe boundaries
1467
284k
    const int use_deblock_above = (stripe_idx > 0);
1468
284k
    const int use_deblock_below = (y1 < plane_height);
1469
1470
284k
    if (!after_cdef) {
1471
      // Save deblocked context at internal stripe boundaries
1472
142k
      if (use_deblock_above) {
1473
107k
        save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT,
1474
107k
                                    stripe_idx, use_highbd, 1, boundaries);
1475
107k
      }
1476
142k
      if (use_deblock_below) {
1477
107k
        save_deblock_boundary_lines(frame, cm, plane, y1, stripe_idx,
1478
107k
                                    use_highbd, 0, boundaries);
1479
107k
      }
1480
142k
    } else {
1481
      // Save CDEF context at frame boundaries
1482
142k
      if (!use_deblock_above) {
1483
34.5k
        save_cdef_boundary_lines(frame, cm, plane, y0, stripe_idx, use_highbd,
1484
34.5k
                                 1, boundaries);
1485
34.5k
      }
1486
142k
      if (!use_deblock_below) {
1487
34.5k
        save_cdef_boundary_lines(frame, cm, plane, y1 - 1, stripe_idx,
1488
34.5k
                                 use_highbd, 0, boundaries);
1489
34.5k
      }
1490
142k
    }
1491
284k
  }
1492
69.1k
}
1493
1494
// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan
1495
// lines to be used as boundary in the loop restoration process. The
1496
// lines are saved in rst_internal.stripe_boundary_lines
1497
void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1498
26.9k
                                              AV1_COMMON *cm, int after_cdef) {
1499
26.9k
  const int num_planes = av1_num_planes(cm);
1500
26.9k
  const int use_highbd = cm->seq_params->use_highbitdepth;
1501
96.1k
  for (int p = 0; p < num_planes; ++p) {
1502
69.1k
    save_boundary_lines(frame, use_highbd, p, cm, after_cdef);
1503
69.1k
  }
1504
26.9k
}