Coverage Report

Created: 2025-07-12 06:35

/src/libavc/decoder/ih264d_mvpred.c
Line
Count
Source (jump to first uncovered line)
1
/******************************************************************************
2
 *
3
 * Copyright (C) 2015 The Android Open Source Project
4
 *
5
 * Licensed under the Apache License, Version 2.0 (the "License");
6
 * you may not use this file except in compliance with the License.
7
 * You may obtain a copy of the License at:
8
 *
9
 * http://www.apache.org/licenses/LICENSE-2.0
10
 *
11
 * Unless required by applicable law or agreed to in writing, software
12
 * distributed under the License is distributed on an "AS IS" BASIS,
13
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
 * See the License for the specific language governing permissions and
15
 * limitations under the License.
16
 *
17
 *****************************************************************************
18
 * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
19
*/
20
/*!
21
 **************************************************************************
22
 * \file ih264d_mvpred.c
23
 *
24
 * \brief
25
 *    This file contains function specific to decoding Motion vector.
26
 *
27
 * Detailed_description
28
 *
29
 * \date
30
 *    10-12-2002
31
 *
32
 * \author  Arvind Raman
33
 **************************************************************************
34
 */
35
#include <string.h>
36
#include "ih264d_parse_cavlc.h"
37
#include "ih264d_error_handler.h"
38
#include "ih264d_structs.h"
39
#include "ih264d_defs.h"
40
#include "ih264_typedefs.h"
41
#include "ih264_macros.h"
42
#include "ih264_platform_macros.h"
43
#include "ih264d_mb_utils.h"
44
#include "ih264d_defs.h"
45
#include "ih264d_debug.h"
46
#include "ih264d_tables.h"
47
#include "ih264d_process_bslice.h"
48
#include "ih264d_mvpred.h"
49
#include "ih264d_inter_pred.h"
50
#include "ih264d_tables.h"
51
52
/*!
53
 **************************************************************************
54
 * \if ih264d_get_motion_vector_predictor name : Name \endif
55
 *
56
 * \brief
57
 *    The routine calculates the motion vector predictor for a given block,
58
 *    given the candidate MV predictors.
59
 *
60
 * \param ps_mv_pred: Candidate predictors for the current block
61
 * \param ps_currMv: Pointer to the left top edge of the current block in
62
 *     the MV bank
63
 *
64
 * \return
65
 *    _mvPred: The x & y components of the MV predictor.
66
 *
67
 * \note
68
 *    The code implements the logic as described in sec 8.4.1.2.1. Given
69
 *    the candidate predictors and the pointer to the top left edge of the
70
 *    block in the MV bank.
71
 *
72
 **************************************************************************
73
 */
74
75
void ih264d_get_motion_vector_predictor(mv_pred_t * ps_result,
76
                                        mv_pred_t **ps_mv_pred,
77
                                        UWORD8 u1_ref_idx,
78
                                        UWORD8 u1_B,
79
                                        const UWORD8 *pu1_mv_pred_condition)
80
2.37M
{
81
2.37M
    WORD8 c_temp;
82
2.37M
    UWORD8 uc_B2 = (u1_B << 1);
83
84
    /* If only one of the candidate blocks has a reference frame equal to
85
     the current block then use the same block as the final predictor */
86
2.37M
    c_temp =
87
2.37M
                    (ps_mv_pred[LEFT]->i1_ref_frame[u1_B] == u1_ref_idx)
88
2.37M
                                    | ((ps_mv_pred[TOP]->i1_ref_frame[u1_B]
89
2.37M
                                                    == u1_ref_idx) << 1)
90
2.37M
                                    | ((ps_mv_pred[TOP_R]->i1_ref_frame[u1_B]
91
2.37M
                                                    == u1_ref_idx) << 2);
92
2.37M
    c_temp = pu1_mv_pred_condition[c_temp];
93
94
2.37M
    if(c_temp != -1)
95
120k
    {
96
        /* Case when only when one of the cadidate block has the same
97
         reference frame as the current block */
98
120k
        ps_result->i2_mv[uc_B2 + 0] = ps_mv_pred[c_temp]->i2_mv[uc_B2 + 0];
99
120k
        ps_result->i2_mv[uc_B2 + 1] = ps_mv_pred[c_temp]->i2_mv[uc_B2 + 1];
100
120k
    }
101
2.25M
    else
102
2.25M
    {
103
2.25M
        WORD32 D0, D1;
104
2.25M
        D0 = MIN(ps_mv_pred[0]->i2_mv[uc_B2 + 0],
105
2.25M
                 ps_mv_pred[1]->i2_mv[uc_B2 + 0]);
106
2.25M
        D1 = MAX(ps_mv_pred[0]->i2_mv[uc_B2 + 0],
107
2.25M
                 ps_mv_pred[1]->i2_mv[uc_B2 + 0]);
108
2.25M
        D1 = MIN(D1, ps_mv_pred[2]->i2_mv[uc_B2 + 0]);
109
2.25M
        ps_result->i2_mv[uc_B2 + 0] = (WORD16)(MAX(D0, D1));
110
111
2.25M
        D0 = MIN(ps_mv_pred[0]->i2_mv[uc_B2 + 1],
112
2.25M
                 ps_mv_pred[1]->i2_mv[uc_B2 + 1]);
113
2.25M
        D1 = MAX(ps_mv_pred[0]->i2_mv[uc_B2 + 1],
114
2.25M
                 ps_mv_pred[1]->i2_mv[uc_B2 + 1]);
115
2.25M
        D1 = MIN(D1, ps_mv_pred[2]->i2_mv[uc_B2 + 1]);
116
2.25M
        ps_result->i2_mv[uc_B2 + 1] = (WORD16)(MAX(D0, D1));
117
118
2.25M
    }
119
2.37M
}
120
121
/*!
122
 **************************************************************************
123
 * \if ih264d_mbaff_mv_pred name : Name \endif
124
 *
125
 * \brief
126
 *    The routine calculates the motion vector predictor for a given block,
127
 *    given the candidate MV predictors.
128
 *
129
 * \param ps_mv_pred: Candidate predictors for the current block
130
 * \param ps_currMv: Pointer to the left top edge of the current block in
131
 *     the MV bank
132
 *
133
 * \return
134
 *    _mvPred: The x & y components of the MV predictor.
135
 *
136
 * \note
137
 *    The code implements the logic as described in sec 8.4.1.2.1. Given
138
 *    the candidate predictors and the pointer to the top left edge of the
139
 *    block in the MV bank.
140
 *
141
 **************************************************************************
142
 */
143
144
void ih264d_mbaff_mv_pred(mv_pred_t **ps_mv_pred,
145
                          UWORD8 u1_sub_mb_num,
146
                          mv_pred_t *ps_mv_nmb,
147
                          mv_pred_t *ps_mv_ntop,
148
                          dec_struct_t *ps_dec,
149
                          UWORD8 uc_mb_part_width,
150
                          dec_mb_info_t *ps_cur_mb_info,
151
                          UWORD8* pu0_scale)
152
0
{
153
0
    UWORD16 u2_a_in = 0, u2_b_in = 0, u2_c_in = 0, u2_d_in = 0;
154
0
    mv_pred_t *ps_mvpred_l, *ps_mvpred_tmp;
155
0
    UWORD8 u1_sub_mb_x = (u1_sub_mb_num & 3), uc_sub_mb_y = (u1_sub_mb_num >> 2);
156
0
    UWORD8 u1_is_cur_mb_fld, u1_is_left_mb_fld, u1_is_top_mb_fld;
157
0
    UWORD8 u1_is_cur_mb_top;
158
159
0
    u1_is_cur_mb_fld = ps_cur_mb_info->u1_mb_field_decodingflag;
160
0
    u1_is_cur_mb_top = ps_cur_mb_info->u1_topmb;
161
162
0
    u1_is_left_mb_fld = ps_cur_mb_info->ps_left_mb->u1_mb_fld;
163
0
    u1_is_top_mb_fld = ps_cur_mb_info->ps_top_mb->u1_mb_fld;
164
165
    /* Checking in the subMB exists, calculating their motion vectors to be
166
     used as predictors and the reference frames of those subMBs */
167
0
    ps_mv_pred[LEFT] = &ps_dec->s_default_mv_pred;
168
0
    ps_mv_pred[TOP] = &(ps_dec->s_default_mv_pred);
169
0
    ps_mv_pred[TOP_R] = &(ps_dec->s_default_mv_pred);
170
171
    /* Check if the left subMb is available */
172
0
    if(u1_sub_mb_x)
173
0
    {
174
0
        u2_a_in = 1;
175
0
        ps_mv_pred[LEFT] = (ps_mv_nmb - 1);
176
0
    }
177
0
    else
178
0
    {
179
0
        UWORD8 uc_temp;
180
0
        u2_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity & LEFT_MB_AVAILABLE_MASK);
181
0
        if(u2_a_in)
182
0
        {
183
0
            ps_mvpred_l = (ps_dec->u4_num_pmbair) ?
184
0
                            ps_mv_nmb :
185
0
                            (ps_dec->ps_mv_left + (uc_sub_mb_y << 2) + 48
186
0
                                            - (u1_is_cur_mb_top << 4));
187
0
            uc_temp = 29;
188
0
            if(u1_is_cur_mb_fld ^ u1_is_left_mb_fld)
189
0
            {
190
0
                if(u1_is_left_mb_fld)
191
0
                {
192
0
                    uc_temp +=
193
0
                                    (((uc_sub_mb_y & 1) << 2)
194
0
                                                    + ((uc_sub_mb_y & 2) << 1));
195
0
                    uc_temp += ((u1_is_cur_mb_top) ? 0 : 8);
196
0
                }
197
0
                else
198
0
                {
199
0
                    uc_temp = uc_temp - (uc_sub_mb_y << 2);
200
0
                    uc_temp += ((u1_is_cur_mb_top) ? 0 : 16);
201
0
                }
202
0
            }
203
0
            ps_mv_pred[LEFT] = (ps_mvpred_l - uc_temp);
204
0
            pu0_scale[LEFT] = u1_is_cur_mb_fld - u1_is_left_mb_fld;
205
0
        }
206
0
    }
207
208
    /* Check if the top subMB is available */
209
0
    if((uc_sub_mb_y > 0) || ((u1_is_cur_mb_top | u1_is_cur_mb_fld) == 0))
210
0
    {
211
0
        u2_b_in = 1;
212
0
        ps_mv_pred[TOP] = ps_mv_nmb - 4;
213
0
    }
214
0
    else
215
0
    {
216
0
        u2_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity & TOP_MB_AVAILABLE_MASK);
217
0
        if(u2_b_in)
218
0
        {
219
            /* CHANGED CODE */
220
221
0
            if(u1_is_top_mb_fld && u1_is_cur_mb_fld)
222
0
                ps_mvpred_tmp = ps_mv_ntop;
223
0
            else
224
0
            {
225
0
                ps_mvpred_tmp = ps_mv_ntop;
226
0
                if(u1_is_cur_mb_top)
227
0
                    ps_mvpred_tmp += 16;
228
0
            }
229
230
0
            ps_mv_pred[TOP] = ps_mvpred_tmp;
231
0
            pu0_scale[TOP] = u1_is_cur_mb_fld - u1_is_top_mb_fld;
232
0
        }
233
0
    }
234
235
    /* Check if the top right subMb is available. The top right subMb is
236
     defined as the top right subMb at the top right corner of the MB
237
     partition. The top right subMb index starting from the top left
238
     corner of the MB partition is given by
239
     TopRightSubMbIndx = TopLeftSubMbIndx + (WidthOfMbPartition - 6) / 2
240
     */
241
0
    u2_c_in = CHECKBIT(ps_cur_mb_info->u2_top_right_avail_mask,
242
0
                        (u1_sub_mb_num + uc_mb_part_width - 1));
243
0
    if(u2_c_in)
244
0
    {
245
0
        ps_mv_pred[TOP_R] = ps_mv_pred[TOP] + uc_mb_part_width;
246
0
        pu0_scale[TOP_R] = pu0_scale[TOP];
247
0
        if((uc_sub_mb_y == 0) && ((u1_sub_mb_x + uc_mb_part_width) > 3))
248
0
        {
249
0
            UWORD8 uc_isTopRtMbFld;
250
0
            uc_isTopRtMbFld = ps_cur_mb_info->ps_top_right_mb->u1_mb_fld;
251
            /* CHANGED CODE */
252
0
            ps_mvpred_tmp = ps_mv_ntop + uc_mb_part_width + 12;
253
0
            ps_mvpred_tmp += (u1_is_cur_mb_top) ? 16 : 0;
254
0
            ps_mvpred_tmp += (u1_is_cur_mb_fld && u1_is_cur_mb_top && uc_isTopRtMbFld) ?
255
0
                            0 : 16;
256
0
            ps_mv_pred[TOP_R] = ps_mvpred_tmp;
257
0
            pu0_scale[TOP_R] = u1_is_cur_mb_fld - uc_isTopRtMbFld;
258
0
        }
259
0
    }
260
0
    else
261
0
    {
262
0
        u2_d_in = CHECKBIT(ps_cur_mb_info->u2_top_left_avail_mask, u1_sub_mb_num);
263
264
        /* Check if the the top left subMB is available */
265
0
        if(u2_d_in)
266
0
        {
267
0
            UWORD8 uc_isTopLtMbFld;
268
269
0
            ps_mv_pred[TOP_R] = ps_mv_pred[TOP] - 1;
270
0
            pu0_scale[TOP_R] = pu0_scale[TOP];
271
272
0
            if(u1_sub_mb_x == 0)
273
0
            {
274
0
                if((uc_sub_mb_y > 0) || ((u1_is_cur_mb_top | u1_is_cur_mb_fld) == 0))
275
0
                {
276
0
                    uc_isTopLtMbFld = u1_is_left_mb_fld;
277
0
                    ps_mvpred_tmp = ps_mv_pred[LEFT] - 4;
278
279
0
                    if((u1_is_cur_mb_fld == 0) && uc_isTopLtMbFld)
280
0
                    {
281
0
                        ps_mvpred_tmp = ps_mv_pred[LEFT] + 16;
282
0
                        ps_mvpred_tmp -= (uc_sub_mb_y & 1) ? 0 : 4;
283
0
                    }
284
0
                }
285
0
                else
286
0
                {
287
0
                    UWORD32 u4_cond = ps_dec->u4_num_pmbair;
288
0
                    uc_isTopLtMbFld = ps_cur_mb_info->u1_topleft_mb_fld;
289
290
                    /* CHANGED CODE */
291
0
                    ps_mvpred_tmp = ps_mv_ntop - 29;
292
0
                    ps_mvpred_tmp += (u1_is_cur_mb_top) ? 16 : 0;
293
0
                    if(u1_is_cur_mb_fld && u1_is_cur_mb_top)
294
0
                        ps_mvpred_tmp -= (uc_isTopLtMbFld) ? 16 : 0;
295
0
                }
296
0
                ps_mv_pred[TOP_R] = ps_mvpred_tmp;
297
0
                pu0_scale[TOP_R] = u1_is_cur_mb_fld - uc_isTopLtMbFld;
298
0
            }
299
0
        }
300
0
        else if(u2_b_in == 0)
301
0
        {
302
            /* If all the subMBs B, C, D are all out of the frame then their MV
303
             and their reference picture is equal to that of A */
304
0
            ps_mv_pred[TOP] = ps_mv_pred[LEFT];
305
0
            ps_mv_pred[TOP_R] = ps_mv_pred[LEFT];
306
0
            pu0_scale[TOP] = pu0_scale[LEFT];
307
0
            pu0_scale[TOP_R] = pu0_scale[LEFT];
308
0
        }
309
0
    }
310
0
}
311
312
/*!
313
 **************************************************************************
314
 * \if ih264d_non_mbaff_mv_pred name : Name \endif
315
 *
316
 * \brief
317
 *    The routine calculates the motion vector predictor for a given block,
318
 *    given the candidate MV predictors.
319
 *
320
 * \param ps_mv_pred: Candidate predictors for the current block
321
 * \param ps_currMv: Pointer to the left top edge of the current block in
322
 *     the MV bank
323
 *
324
 * \return
325
 *    _mvPred: The x & y components of the MV predictor.
326
 *
327
 * \note
328
 *    The code implements the logic as described in sec 8.4.1.2.1. Given
329
 *    the candidate predictors and the pointer to the top left edge of the
330
 *    block in the MV bank.
331
 *
332
 **************************************************************************
333
 */
334
#if(!MVPRED_NONMBAFF)
335
void ih264d_non_mbaff_mv_pred(mv_pred_t **ps_mv_pred,
336
                              UWORD8 u1_sub_mb_num,
337
                              mv_pred_t *ps_mv_nmb,
338
                              mv_pred_t *ps_mv_ntop,
339
                              dec_struct_t *ps_dec,
340
                              UWORD8 uc_mb_part_width,
341
                              dec_mb_info_t *ps_cur_mb_info)
342
15.9M
{
343
15.9M
    UWORD16 u2_b_in = 0, u2_c_in = 0, u2_d_in = 0;
344
15.9M
    UWORD8 u1_sub_mb_x = (u1_sub_mb_num & 3), uc_sub_mb_y = (u1_sub_mb_num >> 2);
345
346
    /* Checking in the subMB exists, calculating their motion vectors to be
347
     used as predictors and the reference frames of those subMBs */
348
349
15.9M
    ps_mv_pred[LEFT] = &ps_dec->s_default_mv_pred;
350
15.9M
    ps_mv_pred[TOP] = &(ps_dec->s_default_mv_pred);
351
15.9M
    ps_mv_pred[TOP_R] = &(ps_dec->s_default_mv_pred);
352
    /* Check if the left subMb is available */
353
354
15.9M
    if(u1_sub_mb_x)
355
323k
    {
356
323k
        ps_mv_pred[LEFT] = (ps_mv_nmb - 1);
357
323k
    }
358
15.6M
    else
359
15.6M
    {
360
15.6M
        if(ps_cur_mb_info->u1_mb_ngbr_availablity & LEFT_MB_AVAILABLE_MASK)
361
13.3M
        {
362
13.3M
            ps_mv_pred[LEFT] = (ps_mv_nmb - 13);
363
13.3M
        }
364
15.6M
    }
365
366
    /* Check if the top subMB is available */
367
15.9M
    if(uc_sub_mb_y)
368
374k
    {
369
374k
        u2_b_in = 1;
370
374k
        ps_mv_ntop = ps_mv_nmb - 4;
371
374k
        ps_mv_pred[TOP] = ps_mv_ntop;
372
373
374k
    }
374
15.5M
    else
375
15.5M
    {
376
15.5M
        u2_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity & TOP_MB_AVAILABLE_MASK);
377
15.5M
        if(u2_b_in)
378
14.6M
        {
379
14.6M
            ps_mv_pred[TOP] = ps_mv_ntop;
380
14.6M
        }
381
15.5M
    }
382
383
    /* Check if the top right subMb is available. The top right subMb is
384
     defined as the top right subMb at the top right corner of the MB
385
     partition. The top right subMb index starting from the top left
386
     corner of the MB partition is given by
387
     TopRightSubMbIndx = TopLeftSubMbIndx + (WidthOfMbPartition - 6) / 2
388
     */
389
15.9M
    u2_c_in = CHECKBIT(ps_cur_mb_info->u2_top_right_avail_mask,
390
15.9M
                        (u1_sub_mb_num + uc_mb_part_width - 1));
391
15.9M
    if(u2_c_in)
392
12.7M
    {
393
12.7M
        ps_mv_pred[TOP_R] = (ps_mv_ntop + uc_mb_part_width);
394
395
12.7M
        if(uc_sub_mb_y == 0)
396
12.6M
        {
397
            /* CHANGED CODE */
398
12.6M
            if((u1_sub_mb_x + uc_mb_part_width) > 3)
399
12.4M
                ps_mv_pred[TOP_R] += 12;
400
12.6M
        }
401
12.7M
    }
402
3.22M
    else
403
3.22M
    {
404
3.22M
        u2_d_in = CHECKBIT(ps_cur_mb_info->u2_top_left_avail_mask, u1_sub_mb_num);
405
        /* Check if the the top left subMB is available */
406
3.22M
        if(u2_d_in)
407
2.29M
        {
408
            /* CHANGED CODE */
409
2.29M
            ps_mv_pred[TOP_R] = (ps_mv_ntop - 1);
410
2.29M
            if(u1_sub_mb_x == 0)
411
2.15M
            {
412
2.15M
                if(uc_sub_mb_y)
413
113k
                {
414
113k
                    ps_mv_pred[TOP_R] = (ps_mv_nmb - 17);
415
113k
                }
416
2.04M
                else
417
2.04M
                {
418
                    /* CHANGED CODE */
419
2.04M
                    ps_mv_pred[TOP_R] -= 12;
420
2.04M
                }
421
2.15M
            }
422
2.29M
        }
423
921k
        else if(u2_b_in == 0)
424
880k
        {
425
            /* If all the subMBs B, C, D are all out of the frame then their MV
426
             and their reference picture is equal to that of A */
427
880k
            ps_mv_pred[TOP] = ps_mv_pred[LEFT];
428
880k
            ps_mv_pred[TOP_R] = ps_mv_pred[LEFT];
429
880k
        }
430
3.22M
    }
431
15.9M
}
432
#endif
433
434
/*****************************************************************************/
435
/*                                                                           */
436
/*  Function Name : ih264d_mvpred_nonmbaffB                                         */
437
/*                                                                           */
438
/*  Description   : This function calculates the motion vector predictor,    */
439
/*                  for B-Slices                                             */
440
/*  Inputs        : <What inputs does the function take?>                    */
441
/*  Globals       : None                                                     */
442
/*  Processing    : The neighbours A(Left),B(Top),C(TopRight) are calculated */
443
/*                  and based on the type of Mb the prediction is            */
444
/*                  appropriately done                                       */
445
/*  Outputs       : populates ps_mv_final_pred structure                       */
446
/*  Returns       : u1_direct_zero_pred_flag which is used only in              */
447
/*                    decodeSpatialdirect()                                  */
448
/*                                                                           */
449
/*  Issues        : <List any issues or problems with this function>         */
450
/*                                                                           */
451
/*  Revision History:                                                        */
452
/*                                                                           */
453
/*         DD MM YYYY   Author(s)       Changes (Describe the changes made)  */
454
/*         03 05 2005   TA              First Draft                          */
455
/*                                                                           */
456
/*****************************************************************************/
457
#if(!MVPRED_NONMBAFF)
458
UWORD8 ih264d_mvpred_nonmbaffB(dec_struct_t *ps_dec,
459
                               dec_mb_info_t *ps_cur_mb_info,
460
                               mv_pred_t *ps_mv_nmb,
461
                               mv_pred_t *ps_mv_ntop,
462
                               mv_pred_t *ps_mv_final_pred,
463
                               UWORD8 u1_sub_mb_num,
464
                               UWORD8 uc_mb_part_width,
465
                               UWORD8 u1_lx_start,
466
                               UWORD8 u1_lxend,
467
                               UWORD8 u1_mb_mc_mode)
468
4.12M
{
469
4.12M
    UWORD8 u1_a_in, u1_b_in, uc_temp1, uc_temp2, uc_temp3;
470
4.12M
    mv_pred_t *ps_mv_pred[3];
471
4.12M
    UWORD8 uc_B2, uc_lx, u1_ref_idx;
472
4.12M
    UWORD8 u1_direct_zero_pred_flag = 0;
473
474
4.12M
    ih264d_non_mbaff_mv_pred(ps_mv_pred, u1_sub_mb_num, ps_mv_nmb, ps_mv_ntop,
475
4.12M
                             ps_dec, uc_mb_part_width, ps_cur_mb_info);
476
477
8.35M
    for(uc_lx = u1_lx_start; uc_lx < u1_lxend; uc_lx++)
478
4.22M
    {
479
4.22M
        u1_ref_idx = ps_mv_final_pred->i1_ref_frame[uc_lx];
480
4.22M
        uc_B2 = (uc_lx << 1);
481
4.22M
        switch(u1_mb_mc_mode)
482
4.22M
        {
483
135k
            case PRED_16x8:
484
                /* Directional prediction for a 16x8 MB partition */
485
135k
                if(u1_sub_mb_num == 0)
486
55.2k
                {
487
                    /* Calculating the MV pred for the top 16x8 block */
488
55.2k
                    if(ps_mv_pred[TOP]->i1_ref_frame[uc_lx] == u1_ref_idx)
489
25.2k
                    {
490
                        /* If the reference frame used by the top subMB is same as the
491
                         reference frame used by the current block then MV predictor to
492
                         be used for the current block is same as the MV of the top
493
                         subMB */
494
25.2k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
495
25.2k
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 0];
496
25.2k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
497
25.2k
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 1];
498
25.2k
                    }
499
29.9k
                    else
500
29.9k
                    {
501
                        /* The MV predictor is calculated according to the process
502
                         defined in 8.4.1.2.1 */
503
29.9k
                        ih264d_get_motion_vector_predictor(
504
29.9k
                                        ps_mv_final_pred,
505
29.9k
                                        ps_mv_pred,
506
29.9k
                                        u1_ref_idx,
507
29.9k
                                        uc_lx,
508
29.9k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
509
29.9k
                    }
510
55.2k
                }
511
80.6k
                else
512
80.6k
                {
513
80.6k
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
514
31.3k
                    {
515
                        /* If the reference frame used by the left subMB is same as the
516
                         reference frame used by the current block then MV predictor to
517
                         be used for the current block is same as the MV of the left
518
                         subMB */
519
31.3k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
520
31.3k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
521
31.3k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
522
31.3k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
523
31.3k
                    }
524
49.3k
                    else
525
49.3k
                    {
526
                        /* The MV predictor is calculated according to the process
527
                         defined in 8.4.1.2.1 */
528
49.3k
                        ih264d_get_motion_vector_predictor(
529
49.3k
                                        ps_mv_final_pred,
530
49.3k
                                        ps_mv_pred,
531
49.3k
                                        u1_ref_idx,
532
49.3k
                                        uc_lx,
533
49.3k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
534
49.3k
                    }
535
80.6k
                }
536
135k
                break;
537
55.4k
            case PRED_8x16:
538
                /* Directional prediction for a 8x16 MB partition */
539
55.4k
                if(u1_sub_mb_num == 0)
540
27.0k
                {
541
27.0k
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
542
13.5k
                    {
543
                        /* If the reference frame used by the left subMB is same as the
544
                         reference frame used by the current block then MV predictor to
545
                         be used for the current block is same as the MV of the left
546
                         subMB */
547
13.5k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
548
13.5k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
549
13.5k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
550
13.5k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
551
13.5k
                    }
552
13.5k
                    else
553
13.5k
                    {
554
                        /* The MV predictor is calculated according to the process
555
                         defined in 8.4.1.2.1 */
556
13.5k
                        ih264d_get_motion_vector_predictor(
557
13.5k
                                        ps_mv_final_pred,
558
13.5k
                                        ps_mv_pred,
559
13.5k
                                        u1_ref_idx,
560
13.5k
                                        uc_lx,
561
13.5k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
562
13.5k
                    }
563
27.0k
                }
564
28.3k
                else
565
28.3k
                {
566
28.3k
                    if(ps_mv_pred[TOP_R]->i1_ref_frame[uc_lx] == u1_ref_idx)
567
15.2k
                    {
568
                        /* If the reference frame used by the top right subMB is same as
569
                         the reference frame used by the current block then MV
570
                         predictor to be used for the current block is same as the MV
571
                         of the left subMB */
572
15.2k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
573
15.2k
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 0];
574
15.2k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
575
15.2k
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 1];
576
15.2k
                    }
577
13.0k
                    else
578
13.0k
                    {
579
                        /* The MV predictor is calculated according to the process
580
                         defined in 8.4.1.2.1 */
581
13.0k
                        ih264d_get_motion_vector_predictor(
582
13.0k
                                        ps_mv_final_pred,
583
13.0k
                                        ps_mv_pred,
584
13.0k
                                        u1_ref_idx,
585
13.0k
                                        uc_lx,
586
13.0k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
587
13.0k
                    }
588
28.3k
                }
589
55.4k
                break;
590
755k
            case B_DIRECT_SPATIAL:
591
                /* Case when the MB has been skipped */
592
                /* If either of left or the top subMB is not present
593
                 OR
594
                 If both the MV components of either the left or the top subMB are
595
                 zero and their reference frame pointer pointing to 0
596
                 then MV for the skipped MB is zero
597
                 else the Median of the mv_pred_t is used */
598
755k
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[0];
599
755k
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[0];
600
755k
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[0];
601
602
755k
                ps_mv_final_pred->i1_ref_frame[0] = MIN(uc_temp1,
603
755k
                                                      MIN(uc_temp2, uc_temp3));
604
605
755k
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[1];
606
755k
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[1];
607
755k
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[1];
608
609
755k
                ps_mv_final_pred->i1_ref_frame[1] = MIN(uc_temp1,
610
755k
                                                      MIN(uc_temp2, uc_temp3));
611
612
755k
                if((ps_mv_final_pred->i1_ref_frame[0] < 0)
613
755k
                                && (ps_mv_final_pred->i1_ref_frame[1] < 0))
614
14.3k
                {
615
14.3k
                    u1_direct_zero_pred_flag = 1;
616
14.3k
                    ps_mv_final_pred->i1_ref_frame[0] = 0;
617
14.3k
                    ps_mv_final_pred->i1_ref_frame[1] = 0;
618
14.3k
                }
619
755k
                ih264d_get_motion_vector_predictor(
620
755k
                                ps_mv_final_pred, ps_mv_pred,
621
755k
                                ps_mv_final_pred->i1_ref_frame[0], 0,
622
755k
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
623
624
755k
                ih264d_get_motion_vector_predictor(
625
755k
                                ps_mv_final_pred, ps_mv_pred,
626
755k
                                ps_mv_final_pred->i1_ref_frame[1], 1,
627
755k
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
628
629
755k
                break;
630
2.94M
            case MB_SKIP:
631
                /* Case when the MB has been skipped */
632
                /* If either of left or the top subMB is not present
633
                 OR
634
                 If both the MV components of either the left or the top subMB are
635
                 zero and their reference frame pointer pointing to 0
636
                 then MV for the skipped MB is zero
637
                 else the Median of the mv_pred_t is used */
638
2.94M
                u1_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
639
2.94M
                LEFT_MB_AVAILABLE_MASK);
640
2.94M
                u1_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
641
2.94M
                TOP_MB_AVAILABLE_MASK);
642
2.94M
                if(((u1_a_in * u1_b_in) == 0)
643
2.94M
                                || ((ps_mv_pred[LEFT]->i2_mv[0]
644
2.55M
                                                | ps_mv_pred[LEFT]->i2_mv[1]
645
2.55M
                                                | ps_mv_pred[LEFT]->i1_ref_frame[0])
646
2.55M
                                                == 0)
647
2.94M
                                || ((ps_mv_pred[TOP]->i2_mv[0]
648
1.16k
                                                | ps_mv_pred[TOP]->i2_mv[1]
649
1.16k
                                                | ps_mv_pred[TOP]->i1_ref_frame[0])
650
1.16k
                                                == 0))
651
2.94M
                {
652
2.94M
                    ps_mv_final_pred->i2_mv[0] = 0;
653
2.94M
                    ps_mv_final_pred->i2_mv[1] = 0;
654
2.94M
                    break;
655
2.94M
                }
656
                /* If the condition above is not true calculate the MV predictor
657
                 according to the process defined in sec 8.4.1.2.1 */
658
329k
            default:
659
329k
                ih264d_get_motion_vector_predictor(
660
329k
                                ps_mv_final_pred, ps_mv_pred, u1_ref_idx, uc_lx,
661
329k
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
662
329k
                break;
663
4.22M
        }
664
4.22M
    }
665
4.12M
    return (u1_direct_zero_pred_flag);
666
4.12M
}
667
#endif
668
669
/*****************************************************************************/
670
/*                                                                           */
671
/*  Function Name : ih264d_mvpred_nonmbaff                                          */
672
/*                                                                           */
673
/*  Description   : This function calculates the motion vector predictor,    */
674
/*                  for all the slice types other than B_SLICE               */
675
/*  Inputs        : <What inputs does the function take?>                    */
676
/*  Globals       : None                                                     */
677
/*  Processing    : The neighbours A(Left),B(Top),C(TopRight) are calculated */
678
/*                  and based on the type of Mb the prediction is            */
679
/*                  appropriately done                                       */
680
/*  Outputs       : populates ps_mv_final_pred structure                       */
681
/*  Returns       : u1_direct_zero_pred_flag which is used only in              */
682
/*                    decodeSpatialdirect()                                  */
683
/*                                                                           */
684
/*  Issues        : <List any issues or problems with this function>         */
685
/*                                                                           */
686
/*  Revision History:                                                        */
687
/*                                                                           */
688
/*         DD MM YYYY   Author(s)       Changes (Describe the changes made)  */
689
/*         03 05 2005   TA              First Draft                          */
690
/*                                                                           */
691
/*****************************************************************************/
692
#if(!MVPRED_NONMBAFF)
693
UWORD8 ih264d_mvpred_nonmbaff(dec_struct_t *ps_dec,
694
                              dec_mb_info_t *ps_cur_mb_info,
695
                              mv_pred_t *ps_mv_nmb,
696
                              mv_pred_t *ps_mv_ntop,
697
                              mv_pred_t *ps_mv_final_pred,
698
                              UWORD8 u1_sub_mb_num,
699
                              UWORD8 uc_mb_part_width,
700
                              UWORD8 u1_lx_start,
701
                              UWORD8 u1_lxend,
702
                              UWORD8 u1_mb_mc_mode)
703
11.8M
{
704
11.8M
    UWORD8 u1_a_in, u1_b_in, uc_temp1, uc_temp2, uc_temp3;
705
11.8M
    mv_pred_t *ps_mv_pred[3];
706
11.8M
    UWORD8 u1_ref_idx;
707
11.8M
    UWORD8 u1_direct_zero_pred_flag = 0;
708
11.8M
    UNUSED(u1_lx_start);
709
11.8M
    UNUSED(u1_lxend);
710
11.8M
    ih264d_non_mbaff_mv_pred(ps_mv_pred, u1_sub_mb_num, ps_mv_nmb, ps_mv_ntop,
711
11.8M
                             ps_dec, uc_mb_part_width, ps_cur_mb_info);
712
713
11.8M
    u1_ref_idx = ps_mv_final_pred->i1_ref_frame[0];
714
715
11.8M
    switch(u1_mb_mc_mode)
716
11.8M
    {
717
87.9k
        case PRED_16x8:
718
            /* Directional prediction for a 16x8 MB partition */
719
87.9k
            if(u1_sub_mb_num == 0)
720
43.9k
            {
721
                /* Calculating the MV pred for the top 16x8 block */
722
43.9k
                if(ps_mv_pred[TOP]->i1_ref_frame[0] == u1_ref_idx)
723
24.2k
                {
724
                    /* If the reference frame used by the top subMB is same as the
725
                     reference frame used by the current block then MV predictor to
726
                     be used for the current block is same as the MV of the top
727
                     subMB */
728
729
24.2k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[TOP]->i2_mv[0];
730
24.2k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[TOP]->i2_mv[1];
731
24.2k
                }
732
19.7k
                else
733
19.7k
                {
734
                    /* The MV predictor is calculated according to the process
735
                     defined in 8.4.1.2.1 */
736
19.7k
                    ih264d_get_motion_vector_predictor(
737
19.7k
                                    ps_mv_final_pred,
738
19.7k
                                    ps_mv_pred,
739
19.7k
                                    u1_ref_idx,
740
19.7k
                                    0,
741
19.7k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
742
19.7k
                }
743
43.9k
            }
744
44.0k
            else
745
44.0k
            {
746
44.0k
                if(ps_mv_pred[LEFT]->i1_ref_frame[0] == u1_ref_idx)
747
20.8k
                {
748
                    /* If the reference frame used by the left subMB is same as the
749
                     reference frame used by the current block then MV predictor to
750
                     be used for the current block is same as the MV of the left
751
                     subMB */
752
753
20.8k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[LEFT]->i2_mv[0];
754
20.8k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[LEFT]->i2_mv[1];
755
20.8k
                }
756
23.2k
                else
757
23.2k
                {
758
                    /* The MV predictor is calculated according to the process
759
                     defined in 8.4.1.2.1 */
760
23.2k
                    ih264d_get_motion_vector_predictor(
761
23.2k
                                    ps_mv_final_pred,
762
23.2k
                                    ps_mv_pred,
763
23.2k
                                    u1_ref_idx,
764
23.2k
                                    0,
765
23.2k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
766
23.2k
                }
767
44.0k
            }
768
87.9k
            break;
769
68.0k
        case PRED_8x16:
770
            /* Directional prediction for a 8x16 MB partition */
771
68.0k
            if(u1_sub_mb_num == 0)
772
35.4k
            {
773
35.4k
                if(ps_mv_pred[LEFT]->i1_ref_frame[0] == u1_ref_idx)
774
13.2k
                {
775
                    /* If the reference frame used by the left subMB is same as the
776
                     reference frame used by the current block then MV predictor to
777
                     be used for the current block is same as the MV of the left
778
                     subMB */
779
780
13.2k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[LEFT]->i2_mv[0];
781
13.2k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[LEFT]->i2_mv[1];
782
13.2k
                }
783
22.1k
                else
784
22.1k
                {
785
                    /* The MV predictor is calculated according to the process
786
                     defined in 8.4.1.2.1 */
787
22.1k
                    ih264d_get_motion_vector_predictor(
788
22.1k
                                    ps_mv_final_pred,
789
22.1k
                                    ps_mv_pred,
790
22.1k
                                    u1_ref_idx,
791
22.1k
                                    0,
792
22.1k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
793
22.1k
                }
794
35.4k
            }
795
32.6k
            else
796
32.6k
            {
797
32.6k
                if(ps_mv_pred[TOP_R]->i1_ref_frame[0] == u1_ref_idx)
798
20.4k
                {
799
                    /* If the reference frame used by the top right subMB is same as
800
                     the reference frame used by the current block then MV
801
                     predictor to be used for the current block is same as the MV
802
                     of the left subMB */
803
804
20.4k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[TOP_R]->i2_mv[0];
805
20.4k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[TOP_R]->i2_mv[1];
806
20.4k
                }
807
12.1k
                else
808
12.1k
                {
809
                    /* The MV predictor is calculated according to the process
810
                     defined in 8.4.1.2.1 */
811
12.1k
                    ih264d_get_motion_vector_predictor(
812
12.1k
                                    ps_mv_final_pred,
813
12.1k
                                    ps_mv_pred,
814
12.1k
                                    u1_ref_idx,
815
12.1k
                                    0,
816
12.1k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
817
12.1k
                }
818
32.6k
            }
819
68.0k
            break;
820
0
        case B_DIRECT_SPATIAL:
821
            /* Case when the MB has been skipped */
822
            /* If either of left or the top subMB is not present
823
             OR
824
             If both the MV components of either the left or the top subMB are
825
             zero and their reference frame pointer pointing to 0
826
             then MV for the skipped MB is zero
827
             else the Median of the mv_pred_t is used */
828
0
            uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[0];
829
0
            uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[0];
830
0
            uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[0];
831
832
0
            ps_mv_final_pred->i1_ref_frame[0] = MIN(uc_temp1,
833
0
                                                  MIN(uc_temp2, uc_temp3));
834
835
0
            uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[1];
836
0
            uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[1];
837
0
            uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[1];
838
839
0
            ps_mv_final_pred->i1_ref_frame[1] = MIN(uc_temp1,
840
0
                                                  MIN(uc_temp2, uc_temp3));
841
842
0
            if((ps_mv_final_pred->i1_ref_frame[0] < 0)
843
0
                            && (ps_mv_final_pred->i1_ref_frame[1] < 0))
844
0
            {
845
0
                u1_direct_zero_pred_flag = 1;
846
0
                ps_mv_final_pred->i1_ref_frame[0] = 0;
847
0
                ps_mv_final_pred->i1_ref_frame[1] = 0;
848
0
            }
849
0
            ih264d_get_motion_vector_predictor(
850
0
                            ps_mv_final_pred, ps_mv_pred,
851
0
                            ps_mv_final_pred->i1_ref_frame[0], 0,
852
0
                            (const UWORD8 *)gau1_ih264d_mv_pred_condition);
853
854
0
            ih264d_get_motion_vector_predictor(
855
0
                            ps_mv_final_pred, ps_mv_pred,
856
0
                            ps_mv_final_pred->i1_ref_frame[1], 1,
857
0
                            (const UWORD8 *)gau1_ih264d_mv_pred_condition);
858
859
0
            break;
860
11.3M
        case MB_SKIP:
861
            /* Case when the MB has been skipped */
862
            /* If either of left or the top subMB is not present
863
             OR
864
             If both the MV components of either the left or the top subMB are
865
             zero and their reference frame pointer pointing to 0
866
             then MV for the skipped MB is zero
867
             else the Median of the mv_pred_t is used */
868
11.3M
            u1_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
869
11.3M
            LEFT_MB_AVAILABLE_MASK);
870
11.3M
            u1_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
871
11.3M
            TOP_MB_AVAILABLE_MASK);
872
11.3M
            if(((u1_a_in * u1_b_in) == 0)
873
11.3M
                            || ((ps_mv_pred[LEFT]->i2_mv[0]
874
9.09M
                                            | ps_mv_pred[LEFT]->i2_mv[1]
875
9.09M
                                            | ps_mv_pred[LEFT]->i1_ref_frame[0])
876
9.09M
                                            == 0)
877
11.3M
                            || ((ps_mv_pred[TOP]->i2_mv[0]
878
45.7k
                                            | ps_mv_pred[TOP]->i2_mv[1]
879
45.7k
                                            | ps_mv_pred[TOP]->i1_ref_frame[0])
880
45.7k
                                            == 0))
881
11.3M
            {
882
883
11.3M
                ps_mv_final_pred->i2_mv[0] = 0;
884
11.3M
                ps_mv_final_pred->i2_mv[1] = 0;
885
11.3M
                break;
886
11.3M
            }
887
            /* If the condition above is not true calculate the MV predictor
888
             according to the process defined in sec 8.4.1.2.1 */
889
347k
        default:
890
347k
            ih264d_get_motion_vector_predictor(
891
347k
                            ps_mv_final_pred, ps_mv_pred, u1_ref_idx, 0,
892
347k
                            (const UWORD8 *)gau1_ih264d_mv_pred_condition);
893
347k
            break;
894
11.8M
    }
895
896
11.8M
    return (u1_direct_zero_pred_flag);
897
11.8M
}
898
#endif
899
900
/*****************************************************************************/
901
/*                                                                           */
902
/*  Function Name : ih264d_mvpred_mbaff                                             */
903
/*                                                                           */
904
/*  Description   : This function calculates the motion vector predictor,    */
905
/*  Inputs        : <What inputs does the function take?>                    */
906
/*  Globals       : None                                                     */
907
/*  Processing    : The neighbours A(Left),B(Top),C(TopRight) are calculated */
908
/*                  and based on the type of Mb the prediction is            */
909
/*                  appropriately done                                       */
910
/*  Outputs       : populates ps_mv_final_pred structure                       */
911
/*  Returns       : u1_direct_zero_pred_flag which is used only in              */
912
/*                    decodeSpatialdirect()                                  */
913
/*                                                                           */
914
/*  Issues        : <List any issues or problems with this function>         */
915
/*                                                                           */
916
/*  Revision History:                                                        */
917
/*                                                                           */
918
/*         DD MM YYYY   Author(s)       Changes (Describe the changes made)  */
919
/*         03 05 2005   TA              First Draft                          */
920
/*                                                                           */
921
/*****************************************************************************/
922
923
UWORD8 ih264d_mvpred_mbaff(dec_struct_t *ps_dec,
924
                           dec_mb_info_t *ps_cur_mb_info,
925
                           mv_pred_t *ps_mv_nmb,
926
                           mv_pred_t *ps_mv_ntop,
927
                           mv_pred_t *ps_mv_final_pred,
928
                           UWORD8 u1_sub_mb_num,
929
                           UWORD8 uc_mb_part_width,
930
                           UWORD8 u1_lx_start,
931
                           UWORD8 u1_lxend,
932
                           UWORD8 u1_mb_mc_mode)
933
0
{
934
0
    UWORD8 u1_a_in, u1_b_in, uc_temp1, uc_temp2, uc_temp3;
935
0
    mv_pred_t *ps_mv_pred[3], s_mvPred[3];
936
0
    UWORD8 uc_B2, pu0_scale[3], i, uc_lx, u1_ref_idx;
937
0
    UWORD8 u1_direct_zero_pred_flag = 0;
938
939
0
    pu0_scale[0] = pu0_scale[1] = pu0_scale[2] = 0;
940
0
    ih264d_mbaff_mv_pred(ps_mv_pred, u1_sub_mb_num, ps_mv_nmb, ps_mv_ntop, ps_dec,
941
0
                         uc_mb_part_width, ps_cur_mb_info, pu0_scale);
942
0
    for(i = 0; i < 3; i++)
943
0
    {
944
0
        if(pu0_scale[i] != 0)
945
0
        {
946
0
            memcpy(&s_mvPred[i], ps_mv_pred[i], sizeof(mv_pred_t));
947
0
            if(pu0_scale[i] == 1)
948
0
            {
949
0
                s_mvPred[i].i1_ref_frame[0] = s_mvPred[i].i1_ref_frame[0] << 1;
950
0
                s_mvPred[i].i1_ref_frame[1] = s_mvPred[i].i1_ref_frame[1] << 1;
951
0
                s_mvPred[i].i2_mv[1] = SIGN_POW2_DIV(s_mvPred[i].i2_mv[1], 1);
952
0
                s_mvPred[i].i2_mv[3] = SIGN_POW2_DIV(s_mvPred[i].i2_mv[3], 1);
953
0
            }
954
0
            else
955
0
            {
956
0
                s_mvPred[i].i1_ref_frame[0] = s_mvPred[i].i1_ref_frame[0] >> 1;
957
0
                s_mvPred[i].i1_ref_frame[1] = s_mvPred[i].i1_ref_frame[1] >> 1;
958
0
                s_mvPred[i].i2_mv[1] = s_mvPred[i].i2_mv[1] << 1;
959
0
                s_mvPred[i].i2_mv[3] = s_mvPred[i].i2_mv[3] << 1;
960
0
            }
961
0
            ps_mv_pred[i] = &s_mvPred[i];
962
0
        }
963
0
    }
964
965
0
    for(uc_lx = u1_lx_start; uc_lx < u1_lxend; uc_lx++)
966
0
    {
967
0
        u1_ref_idx = ps_mv_final_pred->i1_ref_frame[uc_lx];
968
0
        uc_B2 = (uc_lx << 1);
969
0
        switch(u1_mb_mc_mode)
970
0
        {
971
0
            case PRED_16x8:
972
                /* Directional prediction for a 16x8 MB partition */
973
0
                if(u1_sub_mb_num == 0)
974
0
                {
975
                    /* Calculating the MV pred for the top 16x8 block */
976
0
                    if(ps_mv_pred[TOP]->i1_ref_frame[uc_lx] == u1_ref_idx)
977
0
                    {
978
                        /* If the reference frame used by the top subMB is same as the
979
                         reference frame used by the current block then MV predictor to
980
                         be used for the current block is same as the MV of the top
981
                         subMB */
982
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
983
0
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 0];
984
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
985
0
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 1];
986
0
                    }
987
0
                    else
988
0
                    {
989
                        /* The MV predictor is calculated according to the process
990
                         defined in 8.4.1.2.1 */
991
0
                        ih264d_get_motion_vector_predictor(
992
0
                                        ps_mv_final_pred,
993
0
                                        ps_mv_pred,
994
0
                                        u1_ref_idx,
995
0
                                        uc_lx,
996
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
997
0
                    }
998
0
                }
999
0
                else
1000
0
                {
1001
0
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
1002
0
                    {
1003
                        /* If the reference frame used by the left subMB is same as the
1004
                         reference frame used by the current block then MV predictor to
1005
                         be used for the current block is same as the MV of the left
1006
                         subMB */
1007
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
1008
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
1009
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
1010
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
1011
0
                    }
1012
0
                    else
1013
0
                    {
1014
                        /* The MV predictor is calculated according to the process
1015
                         defined in 8.4.1.2.1 */
1016
0
                        ih264d_get_motion_vector_predictor(
1017
0
                                        ps_mv_final_pred,
1018
0
                                        ps_mv_pred,
1019
0
                                        u1_ref_idx,
1020
0
                                        uc_lx,
1021
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1022
0
                    }
1023
0
                }
1024
0
                break;
1025
0
            case PRED_8x16:
1026
                /* Directional prediction for a 8x16 MB partition */
1027
0
                if(u1_sub_mb_num == 0)
1028
0
                {
1029
0
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
1030
0
                    {
1031
                        /* If the reference frame used by the left subMB is same as the
1032
                         reference frame used by the current block then MV predictor to
1033
                         be used for the current block is same as the MV of the left
1034
                         subMB */
1035
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
1036
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
1037
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
1038
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
1039
0
                    }
1040
0
                    else
1041
0
                    {
1042
                        /* The MV predictor is calculated according to the process
1043
                         defined in 8.4.1.2.1 */
1044
0
                        ih264d_get_motion_vector_predictor(
1045
0
                                        ps_mv_final_pred,
1046
0
                                        ps_mv_pred,
1047
0
                                        u1_ref_idx,
1048
0
                                        uc_lx,
1049
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1050
0
                    }
1051
0
                }
1052
0
                else
1053
0
                {
1054
0
                    if(ps_mv_pred[TOP_R]->i1_ref_frame[uc_lx] == u1_ref_idx)
1055
0
                    {
1056
                        /* If the reference frame used by the top right subMB is same as
1057
                         the reference frame used by the current block then MV
1058
                         predictor to be used for the current block is same as the MV
1059
                         of the left subMB */
1060
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
1061
0
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 0];
1062
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
1063
0
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 1];
1064
0
                    }
1065
0
                    else
1066
0
                    {
1067
                        /* The MV predictor is calculated according to the process
1068
                         defined in 8.4.1.2.1 */
1069
0
                        ih264d_get_motion_vector_predictor(
1070
0
                                        ps_mv_final_pred,
1071
0
                                        ps_mv_pred,
1072
0
                                        u1_ref_idx,
1073
0
                                        uc_lx,
1074
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1075
0
                    }
1076
0
                }
1077
0
                break;
1078
0
            case B_DIRECT_SPATIAL:
1079
                /* Case when the MB has been skipped */
1080
                /* If either of left or the top subMB is not present
1081
                 OR
1082
                 If both the MV components of either the left or the top subMB are
1083
                 zero and their reference frame pointer pointing to 0
1084
                 then MV for the skipped MB is zero
1085
                 else the Median of the mv_pred_t is used */
1086
0
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[0];
1087
0
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[0];
1088
0
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[0];
1089
1090
0
                ps_mv_final_pred->i1_ref_frame[0] = MIN(uc_temp1,
1091
0
                                                      MIN(uc_temp2, uc_temp3));
1092
1093
0
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[1];
1094
0
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[1];
1095
0
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[1];
1096
1097
0
                ps_mv_final_pred->i1_ref_frame[1] = MIN(uc_temp1,
1098
0
                                                      MIN(uc_temp2, uc_temp3));
1099
1100
                /* If the reference indices are negative clip the scaled reference indices to -1 */
1101
                /* i.e invalid reference index */
1102
1103
                /*if(ps_mv_final_pred->i1_ref_frame[0] < 0)
1104
                 ps_mv_final_pred->i1_ref_frame[0] = -1;
1105
1106
                 if(ps_mv_final_pred->i1_ref_frame[1] < 0)
1107
                 ps_mv_final_pred->i1_ref_frame[1] = -1; */
1108
1109
0
                if((ps_mv_final_pred->i1_ref_frame[0] < 0)
1110
0
                                && (ps_mv_final_pred->i1_ref_frame[1] < 0))
1111
0
                {
1112
0
                    u1_direct_zero_pred_flag = 1;
1113
0
                    ps_mv_final_pred->i1_ref_frame[0] = 0;
1114
0
                    ps_mv_final_pred->i1_ref_frame[1] = 0;
1115
0
                }
1116
0
                ih264d_get_motion_vector_predictor(
1117
0
                                ps_mv_final_pred, ps_mv_pred,
1118
0
                                ps_mv_final_pred->i1_ref_frame[0], 0,
1119
0
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1120
1121
0
                ih264d_get_motion_vector_predictor(
1122
0
                                ps_mv_final_pred, ps_mv_pred,
1123
0
                                ps_mv_final_pred->i1_ref_frame[1], 1,
1124
0
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1125
1126
0
                break;
1127
0
            case MB_SKIP:
1128
                /* Case when the MB has been skipped */
1129
                /* If either of left or the top subMB is not present
1130
                 OR
1131
                 If both the MV components of either the left or the top subMB are
1132
                 zero and their reference frame pointer pointing to 0
1133
                 then MV for the skipped MB is zero
1134
                 else the Median of the mv_pred_t is used */
1135
0
                u1_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
1136
0
                LEFT_MB_AVAILABLE_MASK);
1137
0
                u1_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
1138
0
                TOP_MB_AVAILABLE_MASK);
1139
0
                if(((u1_a_in * u1_b_in) == 0)
1140
0
                                || ((ps_mv_pred[LEFT]->i2_mv[0]
1141
0
                                                | ps_mv_pred[LEFT]->i2_mv[1]
1142
0
                                                | ps_mv_pred[LEFT]->i1_ref_frame[0])
1143
0
                                                == 0)
1144
0
                                || ((ps_mv_pred[TOP]->i2_mv[0]
1145
0
                                                | ps_mv_pred[TOP]->i2_mv[1]
1146
0
                                                | ps_mv_pred[TOP]->i1_ref_frame[0])
1147
0
                                                == 0))
1148
0
                {
1149
0
                    ps_mv_final_pred->i2_mv[0] = 0;
1150
0
                    ps_mv_final_pred->i2_mv[1] = 0;
1151
0
                    break;
1152
0
                }
1153
                /* If the condition above is not true calculate the MV predictor
1154
                 according to the process defined in sec 8.4.1.2.1 */
1155
0
            default:
1156
0
                ih264d_get_motion_vector_predictor(
1157
0
                                ps_mv_final_pred, ps_mv_pred, u1_ref_idx, uc_lx,
1158
0
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1159
0
                break;
1160
0
        }
1161
0
    }
1162
0
    return (u1_direct_zero_pred_flag);
1163
0
}
1164
1165
1166
1167
1168
void ih264d_rep_mv_colz(dec_struct_t *ps_dec,
1169
                        mv_pred_t *ps_mv_pred_src,
1170
                        mv_pred_t *ps_mv_pred_dst,
1171
                        UWORD8 u1_sub_mb_num,
1172
                        UWORD8 u1_colz,
1173
                        UWORD8 u1_ht,
1174
                        UWORD8 u1_wd)
1175
16.9M
{
1176
1177
16.9M
    UWORD8 k, m;
1178
16.9M
    UWORD8 *pu1_colz = ps_dec->pu1_col_zero_flag + ps_dec->i4_submb_ofst
1179
16.9M
                    + u1_sub_mb_num;
1180
1181
82.7M
    for(k = 0; k < u1_ht; k++)
1182
65.8M
    {
1183
325M
        for(m = 0; m < u1_wd; m++)
1184
259M
        {
1185
259M
            *(ps_mv_pred_dst + m) = *(ps_mv_pred_src);
1186
259M
            *(pu1_colz + m) = u1_colz;
1187
1188
259M
        }
1189
65.8M
        pu1_colz += SUB_BLK_WIDTH;
1190
65.8M
        ps_mv_pred_dst += SUB_BLK_WIDTH;
1191
65.8M
    }
1192
16.9M
}
1193