Coverage Report

Created: 2025-07-23 06:14

/src/libavc/decoder/ih264d_mvpred.c
Line
Count
Source (jump to first uncovered line)
1
/******************************************************************************
2
 *
3
 * Copyright (C) 2015 The Android Open Source Project
4
 *
5
 * Licensed under the Apache License, Version 2.0 (the "License");
6
 * you may not use this file except in compliance with the License.
7
 * You may obtain a copy of the License at:
8
 *
9
 * http://www.apache.org/licenses/LICENSE-2.0
10
 *
11
 * Unless required by applicable law or agreed to in writing, software
12
 * distributed under the License is distributed on an "AS IS" BASIS,
13
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
 * See the License for the specific language governing permissions and
15
 * limitations under the License.
16
 *
17
 *****************************************************************************
18
 * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
19
*/
20
/*!
21
 **************************************************************************
22
 * \file ih264d_mvpred.c
23
 *
24
 * \brief
25
 *    This file contains function specific to decoding Motion vector.
26
 *
27
 * Detailed_description
28
 *
29
 * \date
30
 *    10-12-2002
31
 *
32
 * \author  Arvind Raman
33
 **************************************************************************
34
 */
35
#include <string.h>
36
#include "ih264d_parse_cavlc.h"
37
#include "ih264d_error_handler.h"
38
#include "ih264d_structs.h"
39
#include "ih264d_defs.h"
40
#include "ih264_typedefs.h"
41
#include "ih264_macros.h"
42
#include "ih264_platform_macros.h"
43
#include "ih264d_mb_utils.h"
44
#include "ih264d_defs.h"
45
#include "ih264d_debug.h"
46
#include "ih264d_tables.h"
47
#include "ih264d_process_bslice.h"
48
#include "ih264d_mvpred.h"
49
#include "ih264d_inter_pred.h"
50
#include "ih264d_tables.h"
51
52
/*!
53
 **************************************************************************
54
 * \if ih264d_get_motion_vector_predictor name : Name \endif
55
 *
56
 * \brief
57
 *    The routine calculates the motion vector predictor for a given block,
58
 *    given the candidate MV predictors.
59
 *
60
 * \param ps_mv_pred: Candidate predictors for the current block
61
 * \param ps_currMv: Pointer to the left top edge of the current block in
62
 *     the MV bank
63
 *
64
 * \return
65
 *    _mvPred: The x & y components of the MV predictor.
66
 *
67
 * \note
68
 *    The code implements the logic as described in sec 8.4.1.2.1. Given
69
 *    the candidate predictors and the pointer to the top left edge of the
70
 *    block in the MV bank.
71
 *
72
 **************************************************************************
73
 */
74
75
void ih264d_get_motion_vector_predictor(mv_pred_t * ps_result,
76
                                        mv_pred_t **ps_mv_pred,
77
                                        UWORD8 u1_ref_idx,
78
                                        UWORD8 u1_B,
79
                                        const UWORD8 *pu1_mv_pred_condition)
80
458k
{
81
458k
    WORD8 c_temp;
82
458k
    UWORD8 uc_B2 = (u1_B << 1);
83
84
    /* If only one of the candidate blocks has a reference frame equal to
85
     the current block then use the same block as the final predictor */
86
458k
    c_temp =
87
458k
                    (ps_mv_pred[LEFT]->i1_ref_frame[u1_B] == u1_ref_idx)
88
458k
                                    | ((ps_mv_pred[TOP]->i1_ref_frame[u1_B]
89
458k
                                                    == u1_ref_idx) << 1)
90
458k
                                    | ((ps_mv_pred[TOP_R]->i1_ref_frame[u1_B]
91
458k
                                                    == u1_ref_idx) << 2);
92
458k
    c_temp = pu1_mv_pred_condition[c_temp];
93
94
458k
    if(c_temp != -1)
95
77.7k
    {
96
        /* Case when only when one of the cadidate block has the same
97
         reference frame as the current block */
98
77.7k
        ps_result->i2_mv[uc_B2 + 0] = ps_mv_pred[c_temp]->i2_mv[uc_B2 + 0];
99
77.7k
        ps_result->i2_mv[uc_B2 + 1] = ps_mv_pred[c_temp]->i2_mv[uc_B2 + 1];
100
77.7k
    }
101
380k
    else
102
380k
    {
103
380k
        WORD32 D0, D1;
104
380k
        D0 = MIN(ps_mv_pred[0]->i2_mv[uc_B2 + 0],
105
380k
                 ps_mv_pred[1]->i2_mv[uc_B2 + 0]);
106
380k
        D1 = MAX(ps_mv_pred[0]->i2_mv[uc_B2 + 0],
107
380k
                 ps_mv_pred[1]->i2_mv[uc_B2 + 0]);
108
380k
        D1 = MIN(D1, ps_mv_pred[2]->i2_mv[uc_B2 + 0]);
109
380k
        ps_result->i2_mv[uc_B2 + 0] = (WORD16)(MAX(D0, D1));
110
111
380k
        D0 = MIN(ps_mv_pred[0]->i2_mv[uc_B2 + 1],
112
380k
                 ps_mv_pred[1]->i2_mv[uc_B2 + 1]);
113
380k
        D1 = MAX(ps_mv_pred[0]->i2_mv[uc_B2 + 1],
114
380k
                 ps_mv_pred[1]->i2_mv[uc_B2 + 1]);
115
380k
        D1 = MIN(D1, ps_mv_pred[2]->i2_mv[uc_B2 + 1]);
116
380k
        ps_result->i2_mv[uc_B2 + 1] = (WORD16)(MAX(D0, D1));
117
118
380k
    }
119
458k
}
120
121
/*!
122
 **************************************************************************
123
 * \if ih264d_mbaff_mv_pred name : Name \endif
124
 *
125
 * \brief
126
 *    The routine calculates the motion vector predictor for a given block,
127
 *    given the candidate MV predictors.
128
 *
129
 * \param ps_mv_pred: Candidate predictors for the current block
130
 * \param ps_currMv: Pointer to the left top edge of the current block in
131
 *     the MV bank
132
 *
133
 * \return
134
 *    _mvPred: The x & y components of the MV predictor.
135
 *
136
 * \note
137
 *    The code implements the logic as described in sec 8.4.1.2.1. Given
138
 *    the candidate predictors and the pointer to the top left edge of the
139
 *    block in the MV bank.
140
 *
141
 **************************************************************************
142
 */
143
144
void ih264d_mbaff_mv_pred(mv_pred_t **ps_mv_pred,
145
                          UWORD32 u4_sub_mb_num,
146
                          mv_pred_t *ps_mv_nmb,
147
                          mv_pred_t *ps_mv_ntop,
148
                          dec_struct_t *ps_dec,
149
                          UWORD8 uc_mb_part_width,
150
                          dec_mb_info_t *ps_cur_mb_info,
151
                          UWORD8* pu0_scale)
152
0
{
153
0
    UWORD16 u2_a_in = 0, u2_b_in = 0, u2_c_in = 0, u2_d_in = 0;
154
0
    mv_pred_t *ps_mvpred_l, *ps_mvpred_tmp;
155
0
    UWORD32 u4_sub_mb_x = (u4_sub_mb_num & 3), uc_sub_mb_y = (u4_sub_mb_num >> 2);
156
0
    UWORD8 u1_is_cur_mb_fld, u1_is_left_mb_fld, u1_is_top_mb_fld;
157
0
    UWORD8 u1_is_cur_mb_top;
158
159
0
    u1_is_cur_mb_fld = ps_cur_mb_info->u1_mb_field_decodingflag;
160
0
    u1_is_cur_mb_top = ps_cur_mb_info->u1_topmb;
161
162
0
    u1_is_left_mb_fld = ps_cur_mb_info->ps_left_mb->u1_mb_fld;
163
0
    u1_is_top_mb_fld = ps_cur_mb_info->ps_top_mb->u1_mb_fld;
164
165
    /* Checking in the subMB exists, calculating their motion vectors to be
166
     used as predictors and the reference frames of those subMBs */
167
0
    ps_mv_pred[LEFT] = &ps_dec->s_default_mv_pred;
168
0
    ps_mv_pred[TOP] = &(ps_dec->s_default_mv_pred);
169
0
    ps_mv_pred[TOP_R] = &(ps_dec->s_default_mv_pred);
170
171
    /* Check if the left subMb is available */
172
0
    if(u4_sub_mb_x)
173
0
    {
174
0
        u2_a_in = 1;
175
0
        ps_mv_pred[LEFT] = (ps_mv_nmb - 1);
176
0
    }
177
0
    else
178
0
    {
179
0
        UWORD8 uc_temp;
180
0
        u2_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity & LEFT_MB_AVAILABLE_MASK);
181
0
        if(u2_a_in)
182
0
        {
183
0
            ps_mvpred_l = (ps_dec->u4_num_pmbair) ?
184
0
                            ps_mv_nmb :
185
0
                            (ps_dec->ps_mv_left + (uc_sub_mb_y << 2) + 48
186
0
                                            - (u1_is_cur_mb_top << 4));
187
0
            uc_temp = 29;
188
0
            if(u1_is_cur_mb_fld ^ u1_is_left_mb_fld)
189
0
            {
190
0
                if(u1_is_left_mb_fld)
191
0
                {
192
0
                    uc_temp +=
193
0
                                    (((uc_sub_mb_y & 1) << 2)
194
0
                                                    + ((uc_sub_mb_y & 2) << 1));
195
0
                    uc_temp += ((u1_is_cur_mb_top) ? 0 : 8);
196
0
                }
197
0
                else
198
0
                {
199
0
                    uc_temp = uc_temp - (uc_sub_mb_y << 2);
200
0
                    uc_temp += ((u1_is_cur_mb_top) ? 0 : 16);
201
0
                }
202
0
            }
203
0
            ps_mv_pred[LEFT] = (ps_mvpred_l - uc_temp);
204
0
            pu0_scale[LEFT] = u1_is_cur_mb_fld - u1_is_left_mb_fld;
205
0
        }
206
0
    }
207
208
    /* Check if the top subMB is available */
209
0
    if((uc_sub_mb_y > 0) || ((u1_is_cur_mb_top | u1_is_cur_mb_fld) == 0))
210
0
    {
211
0
        u2_b_in = 1;
212
0
        ps_mv_pred[TOP] = ps_mv_nmb - 4;
213
0
    }
214
0
    else
215
0
    {
216
0
        u2_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity & TOP_MB_AVAILABLE_MASK);
217
0
        if(u2_b_in)
218
0
        {
219
            /* CHANGED CODE */
220
221
0
            if(u1_is_top_mb_fld && u1_is_cur_mb_fld)
222
0
                ps_mvpred_tmp = ps_mv_ntop;
223
0
            else
224
0
            {
225
0
                ps_mvpred_tmp = ps_mv_ntop;
226
0
                if(u1_is_cur_mb_top)
227
0
                    ps_mvpred_tmp += 16;
228
0
            }
229
230
0
            ps_mv_pred[TOP] = ps_mvpred_tmp;
231
0
            pu0_scale[TOP] = u1_is_cur_mb_fld - u1_is_top_mb_fld;
232
0
        }
233
0
    }
234
235
    /* Check if the top right subMb is available. The top right subMb is
236
     defined as the top right subMb at the top right corner of the MB
237
     partition. The top right subMb index starting from the top left
238
     corner of the MB partition is given by
239
     TopRightSubMbIndx = TopLeftSubMbIndx + (WidthOfMbPartition - 6) / 2
240
     */
241
0
    u2_c_in = CHECKBIT(ps_cur_mb_info->u2_top_right_avail_mask,
242
0
                        (u4_sub_mb_num + uc_mb_part_width - 1));
243
0
    if(u2_c_in)
244
0
    {
245
0
        ps_mv_pred[TOP_R] = ps_mv_pred[TOP] + uc_mb_part_width;
246
0
        pu0_scale[TOP_R] = pu0_scale[TOP];
247
0
        if((uc_sub_mb_y == 0) && ((u4_sub_mb_x + uc_mb_part_width) > 3))
248
0
        {
249
0
            UWORD8 uc_isTopRtMbFld;
250
0
            uc_isTopRtMbFld = ps_cur_mb_info->ps_top_right_mb->u1_mb_fld;
251
            /* CHANGED CODE */
252
0
            ps_mvpred_tmp = ps_mv_ntop + uc_mb_part_width + 12;
253
0
            ps_mvpred_tmp += (u1_is_cur_mb_top) ? 16 : 0;
254
0
            ps_mvpred_tmp += (u1_is_cur_mb_fld && u1_is_cur_mb_top && uc_isTopRtMbFld) ?
255
0
                            0 : 16;
256
0
            ps_mv_pred[TOP_R] = ps_mvpred_tmp;
257
0
            pu0_scale[TOP_R] = u1_is_cur_mb_fld - uc_isTopRtMbFld;
258
0
        }
259
0
    }
260
0
    else
261
0
    {
262
0
        u2_d_in = CHECKBIT(ps_cur_mb_info->u2_top_left_avail_mask, u4_sub_mb_num);
263
264
        /* Check if the the top left subMB is available */
265
0
        if(u2_d_in)
266
0
        {
267
0
            UWORD8 uc_isTopLtMbFld;
268
269
0
            ps_mv_pred[TOP_R] = ps_mv_pred[TOP] - 1;
270
0
            pu0_scale[TOP_R] = pu0_scale[TOP];
271
272
0
            if(u4_sub_mb_x == 0)
273
0
            {
274
0
                if((uc_sub_mb_y > 0) || ((u1_is_cur_mb_top | u1_is_cur_mb_fld) == 0))
275
0
                {
276
0
                    uc_isTopLtMbFld = u1_is_left_mb_fld;
277
0
                    ps_mvpred_tmp = ps_mv_pred[LEFT] - 4;
278
279
0
                    if((u1_is_cur_mb_fld == 0) && uc_isTopLtMbFld)
280
0
                    {
281
0
                        ps_mvpred_tmp = ps_mv_pred[LEFT] + 16;
282
0
                        ps_mvpred_tmp -= (uc_sub_mb_y & 1) ? 0 : 4;
283
0
                    }
284
0
                }
285
0
                else
286
0
                {
287
0
                    UWORD32 u4_cond = ps_dec->u4_num_pmbair;
288
0
                    uc_isTopLtMbFld = ps_cur_mb_info->u1_topleft_mb_fld;
289
290
                    /* CHANGED CODE */
291
0
                    ps_mvpred_tmp = ps_mv_ntop - 29;
292
0
                    ps_mvpred_tmp += (u1_is_cur_mb_top) ? 16 : 0;
293
0
                    if(u1_is_cur_mb_fld && u1_is_cur_mb_top)
294
0
                        ps_mvpred_tmp -= (uc_isTopLtMbFld) ? 16 : 0;
295
0
                }
296
0
                ps_mv_pred[TOP_R] = ps_mvpred_tmp;
297
0
                pu0_scale[TOP_R] = u1_is_cur_mb_fld - uc_isTopLtMbFld;
298
0
            }
299
0
        }
300
0
        else if(u2_b_in == 0)
301
0
        {
302
            /* If all the subMBs B, C, D are all out of the frame then their MV
303
             and their reference picture is equal to that of A */
304
0
            ps_mv_pred[TOP] = ps_mv_pred[LEFT];
305
0
            ps_mv_pred[TOP_R] = ps_mv_pred[LEFT];
306
0
            pu0_scale[TOP] = pu0_scale[LEFT];
307
0
            pu0_scale[TOP_R] = pu0_scale[LEFT];
308
0
        }
309
0
    }
310
0
}
311
312
/*!
313
 **************************************************************************
314
 * \if ih264d_non_mbaff_mv_pred name : Name \endif
315
 *
316
 * \brief
317
 *    The routine calculates the motion vector predictor for a given block,
318
 *    given the candidate MV predictors.
319
 *
320
 * \param ps_mv_pred: Candidate predictors for the current block
321
 * \param ps_currMv: Pointer to the left top edge of the current block in
322
 *     the MV bank
323
 *
324
 * \return
325
 *    _mvPred: The x & y components of the MV predictor.
326
 *
327
 * \note
328
 *    The code implements the logic as described in sec 8.4.1.2.1. Given
329
 *    the candidate predictors and the pointer to the top left edge of the
330
 *    block in the MV bank.
331
 *
332
 **************************************************************************
333
 */
334
#if(!MVPRED_NONMBAFF)
335
void ih264d_non_mbaff_mv_pred(mv_pred_t **ps_mv_pred,
336
                              UWORD32 u4_sub_mb_num,
337
                              mv_pred_t *ps_mv_nmb,
338
                              mv_pred_t *ps_mv_ntop,
339
                              dec_struct_t *ps_dec,
340
                              UWORD8 uc_mb_part_width,
341
                              dec_mb_info_t *ps_cur_mb_info)
342
1.84M
{
343
1.84M
    UWORD16 u2_b_in = 0, u2_c_in = 0, u2_d_in = 0;
344
1.84M
    UWORD32 u4_sub_mb_x = (u4_sub_mb_num & 3), uc_sub_mb_y = (u4_sub_mb_num >> 2);
345
346
    /* Checking in the subMB exists, calculating their motion vectors to be
347
     used as predictors and the reference frames of those subMBs */
348
349
1.84M
    ps_mv_pred[LEFT] = &ps_dec->s_default_mv_pred;
350
1.84M
    ps_mv_pred[TOP] = &(ps_dec->s_default_mv_pred);
351
1.84M
    ps_mv_pred[TOP_R] = &(ps_dec->s_default_mv_pred);
352
    /* Check if the left subMb is available */
353
354
1.84M
    if(u4_sub_mb_x)
355
100k
    {
356
100k
        ps_mv_pred[LEFT] = (ps_mv_nmb - 1);
357
100k
    }
358
1.74M
    else
359
1.74M
    {
360
1.74M
        if(ps_cur_mb_info->u1_mb_ngbr_availablity & LEFT_MB_AVAILABLE_MASK)
361
1.51M
        {
362
1.51M
            ps_mv_pred[LEFT] = (ps_mv_nmb - 13);
363
1.51M
        }
364
1.74M
    }
365
366
    /* Check if the top subMB is available */
367
1.84M
    if(uc_sub_mb_y)
368
107k
    {
369
107k
        u2_b_in = 1;
370
107k
        ps_mv_ntop = ps_mv_nmb - 4;
371
107k
        ps_mv_pred[TOP] = ps_mv_ntop;
372
373
107k
    }
374
1.73M
    else
375
1.73M
    {
376
1.73M
        u2_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity & TOP_MB_AVAILABLE_MASK);
377
1.73M
        if(u2_b_in)
378
1.51M
        {
379
1.51M
            ps_mv_pred[TOP] = ps_mv_ntop;
380
1.51M
        }
381
1.73M
    }
382
383
    /* Check if the top right subMb is available. The top right subMb is
384
     defined as the top right subMb at the top right corner of the MB
385
     partition. The top right subMb index starting from the top left
386
     corner of the MB partition is given by
387
     TopRightSubMbIndx = TopLeftSubMbIndx + (WidthOfMbPartition - 6) / 2
388
     */
389
1.84M
    u2_c_in = CHECKBIT(ps_cur_mb_info->u2_top_right_avail_mask,
390
1.84M
                        (u4_sub_mb_num + uc_mb_part_width - 1));
391
1.84M
    if(u2_c_in)
392
1.38M
    {
393
1.38M
        ps_mv_pred[TOP_R] = (ps_mv_ntop + uc_mb_part_width);
394
395
1.38M
        if(uc_sub_mb_y == 0)
396
1.35M
        {
397
            /* CHANGED CODE */
398
1.35M
            if((u4_sub_mb_x + uc_mb_part_width) > 3)
399
1.32M
                ps_mv_pred[TOP_R] += 12;
400
1.35M
        }
401
1.38M
    }
402
452k
    else
403
452k
    {
404
452k
        u2_d_in = CHECKBIT(ps_cur_mb_info->u2_top_left_avail_mask, u4_sub_mb_num);
405
        /* Check if the the top left subMB is available */
406
452k
        if(u2_d_in)
407
130k
        {
408
            /* CHANGED CODE */
409
130k
            ps_mv_pred[TOP_R] = (ps_mv_ntop - 1);
410
130k
            if(u4_sub_mb_x == 0)
411
85.6k
            {
412
85.6k
                if(uc_sub_mb_y)
413
24.6k
                {
414
24.6k
                    ps_mv_pred[TOP_R] = (ps_mv_nmb - 17);
415
24.6k
                }
416
61.0k
                else
417
61.0k
                {
418
                    /* CHANGED CODE */
419
61.0k
                    ps_mv_pred[TOP_R] -= 12;
420
61.0k
                }
421
85.6k
            }
422
130k
        }
423
322k
        else if(u2_b_in == 0)
424
223k
        {
425
            /* If all the subMBs B, C, D are all out of the frame then their MV
426
             and their reference picture is equal to that of A */
427
223k
            ps_mv_pred[TOP] = ps_mv_pred[LEFT];
428
223k
            ps_mv_pred[TOP_R] = ps_mv_pred[LEFT];
429
223k
        }
430
452k
    }
431
1.84M
}
432
#endif
433
434
/*****************************************************************************/
435
/*                                                                           */
436
/*  Function Name : ih264d_mvpred_nonmbaffB                                         */
437
/*                                                                           */
438
/*  Description   : This function calculates the motion vector predictor,    */
439
/*                  for B-Slices                                             */
440
/*  Inputs        : <What inputs does the function take?>                    */
441
/*  Globals       : None                                                     */
442
/*  Processing    : The neighbours A(Left),B(Top),C(TopRight) are calculated */
443
/*                  and based on the type of Mb the prediction is            */
444
/*                  appropriately done                                       */
445
/*  Outputs       : populates ps_mv_final_pred structure                       */
446
/*  Returns       : u1_direct_zero_pred_flag which is used only in              */
447
/*                    decodeSpatialdirect()                                  */
448
/*                                                                           */
449
/*  Issues        : <List any issues or problems with this function>         */
450
/*                                                                           */
451
/*  Revision History:                                                        */
452
/*                                                                           */
453
/*         DD MM YYYY   Author(s)       Changes (Describe the changes made)  */
454
/*         03 05 2005   TA              First Draft                          */
455
/*                                                                           */
456
/*****************************************************************************/
457
#if(!MVPRED_NONMBAFF)
458
UWORD8 ih264d_mvpred_nonmbaffB(dec_struct_t *ps_dec,
459
                               dec_mb_info_t *ps_cur_mb_info,
460
                               mv_pred_t *ps_mv_nmb,
461
                               mv_pred_t *ps_mv_ntop,
462
                               mv_pred_t *ps_mv_final_pred,
463
                               UWORD32 u4_sub_mb_num,
464
                               UWORD8 uc_mb_part_width,
465
                               UWORD8 u1_lx_start,
466
                               UWORD8 u1_lxend,
467
                               UWORD8 u1_mb_mc_mode)
468
300k
{
469
300k
    UWORD8 u1_a_in, u1_b_in, uc_temp1, uc_temp2, uc_temp3;
470
300k
    mv_pred_t *ps_mv_pred[3];
471
300k
    UWORD8 uc_B2, uc_lx, u1_ref_idx;
472
300k
    UWORD8 u1_direct_zero_pred_flag = 0;
473
474
300k
    ih264d_non_mbaff_mv_pred(ps_mv_pred, u4_sub_mb_num, ps_mv_nmb, ps_mv_ntop,
475
300k
                             ps_dec, uc_mb_part_width, ps_cur_mb_info);
476
477
632k
    for(uc_lx = u1_lx_start; uc_lx < u1_lxend; uc_lx++)
478
332k
    {
479
332k
        u1_ref_idx = ps_mv_final_pred->i1_ref_frame[uc_lx];
480
332k
        uc_B2 = (uc_lx << 1);
481
332k
        switch(u1_mb_mc_mode)
482
332k
        {
483
35.3k
            case PRED_16x8:
484
                /* Directional prediction for a 16x8 MB partition */
485
35.3k
                if(u4_sub_mb_num == 0)
486
16.9k
                {
487
                    /* Calculating the MV pred for the top 16x8 block */
488
16.9k
                    if(ps_mv_pred[TOP]->i1_ref_frame[uc_lx] == u1_ref_idx)
489
7.51k
                    {
490
                        /* If the reference frame used by the top subMB is same as the
491
                         reference frame used by the current block then MV predictor to
492
                         be used for the current block is same as the MV of the top
493
                         subMB */
494
7.51k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
495
7.51k
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 0];
496
7.51k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
497
7.51k
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 1];
498
7.51k
                    }
499
9.41k
                    else
500
9.41k
                    {
501
                        /* The MV predictor is calculated according to the process
502
                         defined in 8.4.1.2.1 */
503
9.41k
                        ih264d_get_motion_vector_predictor(
504
9.41k
                                        ps_mv_final_pred,
505
9.41k
                                        ps_mv_pred,
506
9.41k
                                        u1_ref_idx,
507
9.41k
                                        uc_lx,
508
9.41k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
509
9.41k
                    }
510
16.9k
                }
511
18.4k
                else
512
18.4k
                {
513
18.4k
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
514
10.2k
                    {
515
                        /* If the reference frame used by the left subMB is same as the
516
                         reference frame used by the current block then MV predictor to
517
                         be used for the current block is same as the MV of the left
518
                         subMB */
519
10.2k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
520
10.2k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
521
10.2k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
522
10.2k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
523
10.2k
                    }
524
8.19k
                    else
525
8.19k
                    {
526
                        /* The MV predictor is calculated according to the process
527
                         defined in 8.4.1.2.1 */
528
8.19k
                        ih264d_get_motion_vector_predictor(
529
8.19k
                                        ps_mv_final_pred,
530
8.19k
                                        ps_mv_pred,
531
8.19k
                                        u1_ref_idx,
532
8.19k
                                        uc_lx,
533
8.19k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
534
8.19k
                    }
535
18.4k
                }
536
35.3k
                break;
537
29.1k
            case PRED_8x16:
538
                /* Directional prediction for a 8x16 MB partition */
539
29.1k
                if(u4_sub_mb_num == 0)
540
13.6k
                {
541
13.6k
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
542
2.77k
                    {
543
                        /* If the reference frame used by the left subMB is same as the
544
                         reference frame used by the current block then MV predictor to
545
                         be used for the current block is same as the MV of the left
546
                         subMB */
547
2.77k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
548
2.77k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
549
2.77k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
550
2.77k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
551
2.77k
                    }
552
10.9k
                    else
553
10.9k
                    {
554
                        /* The MV predictor is calculated according to the process
555
                         defined in 8.4.1.2.1 */
556
10.9k
                        ih264d_get_motion_vector_predictor(
557
10.9k
                                        ps_mv_final_pred,
558
10.9k
                                        ps_mv_pred,
559
10.9k
                                        u1_ref_idx,
560
10.9k
                                        uc_lx,
561
10.9k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
562
10.9k
                    }
563
13.6k
                }
564
15.4k
                else
565
15.4k
                {
566
15.4k
                    if(ps_mv_pred[TOP_R]->i1_ref_frame[uc_lx] == u1_ref_idx)
567
9.22k
                    {
568
                        /* If the reference frame used by the top right subMB is same as
569
                         the reference frame used by the current block then MV
570
                         predictor to be used for the current block is same as the MV
571
                         of the left subMB */
572
9.22k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
573
9.22k
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 0];
574
9.22k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
575
9.22k
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 1];
576
9.22k
                    }
577
6.24k
                    else
578
6.24k
                    {
579
                        /* The MV predictor is calculated according to the process
580
                         defined in 8.4.1.2.1 */
581
6.24k
                        ih264d_get_motion_vector_predictor(
582
6.24k
                                        ps_mv_final_pred,
583
6.24k
                                        ps_mv_pred,
584
6.24k
                                        u1_ref_idx,
585
6.24k
                                        uc_lx,
586
6.24k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
587
6.24k
                    }
588
15.4k
                }
589
29.1k
                break;
590
102k
            case B_DIRECT_SPATIAL:
591
                /* Case when the MB has been skipped */
592
                /* If either of left or the top subMB is not present
593
                 OR
594
                 If both the MV components of either the left or the top subMB are
595
                 zero and their reference frame pointer pointing to 0
596
                 then MV for the skipped MB is zero
597
                 else the Median of the mv_pred_t is used */
598
102k
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[0];
599
102k
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[0];
600
102k
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[0];
601
602
102k
                ps_mv_final_pred->i1_ref_frame[0] = MIN(uc_temp1,
603
102k
                                                      MIN(uc_temp2, uc_temp3));
604
605
102k
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[1];
606
102k
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[1];
607
102k
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[1];
608
609
102k
                ps_mv_final_pred->i1_ref_frame[1] = MIN(uc_temp1,
610
102k
                                                      MIN(uc_temp2, uc_temp3));
611
612
102k
                if((ps_mv_final_pred->i1_ref_frame[0] < 0)
613
102k
                                && (ps_mv_final_pred->i1_ref_frame[1] < 0))
614
7.04k
                {
615
7.04k
                    u1_direct_zero_pred_flag = 1;
616
7.04k
                    ps_mv_final_pred->i1_ref_frame[0] = 0;
617
7.04k
                    ps_mv_final_pred->i1_ref_frame[1] = 0;
618
7.04k
                }
619
102k
                ih264d_get_motion_vector_predictor(
620
102k
                                ps_mv_final_pred, ps_mv_pred,
621
102k
                                ps_mv_final_pred->i1_ref_frame[0], 0,
622
102k
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
623
624
102k
                ih264d_get_motion_vector_predictor(
625
102k
                                ps_mv_final_pred, ps_mv_pred,
626
102k
                                ps_mv_final_pred->i1_ref_frame[1], 1,
627
102k
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
628
629
102k
                break;
630
52.6k
            case MB_SKIP:
631
                /* Case when the MB has been skipped */
632
                /* If either of left or the top subMB is not present
633
                 OR
634
                 If both the MV components of either the left or the top subMB are
635
                 zero and their reference frame pointer pointing to 0
636
                 then MV for the skipped MB is zero
637
                 else the Median of the mv_pred_t is used */
638
52.6k
                u1_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
639
52.6k
                LEFT_MB_AVAILABLE_MASK);
640
52.6k
                u1_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
641
52.6k
                TOP_MB_AVAILABLE_MASK);
642
52.6k
                if(((u1_a_in * u1_b_in) == 0)
643
52.6k
                                || ((ps_mv_pred[LEFT]->i2_mv[0]
644
32.4k
                                                | ps_mv_pred[LEFT]->i2_mv[1]
645
32.4k
                                                | ps_mv_pred[LEFT]->i1_ref_frame[0])
646
32.4k
                                                == 0)
647
52.6k
                                || ((ps_mv_pred[TOP]->i2_mv[0]
648
0
                                                | ps_mv_pred[TOP]->i2_mv[1]
649
0
                                                | ps_mv_pred[TOP]->i1_ref_frame[0])
650
0
                                                == 0))
651
52.6k
                {
652
52.6k
                    ps_mv_final_pred->i2_mv[0] = 0;
653
52.6k
                    ps_mv_final_pred->i2_mv[1] = 0;
654
52.6k
                    break;
655
52.6k
                }
656
                /* If the condition above is not true calculate the MV predictor
657
                 according to the process defined in sec 8.4.1.2.1 */
658
112k
            default:
659
112k
                ih264d_get_motion_vector_predictor(
660
112k
                                ps_mv_final_pred, ps_mv_pred, u1_ref_idx, uc_lx,
661
112k
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
662
112k
                break;
663
332k
        }
664
332k
    }
665
300k
    return (u1_direct_zero_pred_flag);
666
300k
}
667
#endif
668
669
/*****************************************************************************/
670
/*                                                                           */
671
/*  Function Name : ih264d_mvpred_nonmbaff                                          */
672
/*                                                                           */
673
/*  Description   : This function calculates the motion vector predictor,    */
674
/*                  for all the slice types other than B_SLICE               */
675
/*  Inputs        : <What inputs does the function take?>                    */
676
/*  Globals       : None                                                     */
677
/*  Processing    : The neighbours A(Left),B(Top),C(TopRight) are calculated */
678
/*                  and based on the type of Mb the prediction is            */
679
/*                  appropriately done                                       */
680
/*  Outputs       : populates ps_mv_final_pred structure                       */
681
/*  Returns       : u1_direct_zero_pred_flag which is used only in              */
682
/*                    decodeSpatialdirect()                                  */
683
/*                                                                           */
684
/*  Issues        : <List any issues or problems with this function>         */
685
/*                                                                           */
686
/*  Revision History:                                                        */
687
/*                                                                           */
688
/*         DD MM YYYY   Author(s)       Changes (Describe the changes made)  */
689
/*         03 05 2005   TA              First Draft                          */
690
/*                                                                           */
691
/*****************************************************************************/
692
#if(!MVPRED_NONMBAFF)
693
UWORD8 ih264d_mvpred_nonmbaff(dec_struct_t *ps_dec,
694
                              dec_mb_info_t *ps_cur_mb_info,
695
                              mv_pred_t *ps_mv_nmb,
696
                              mv_pred_t *ps_mv_ntop,
697
                              mv_pred_t *ps_mv_final_pred,
698
                              UWORD32 u4_sub_mb_num,
699
                              UWORD8 uc_mb_part_width,
700
                              UWORD8 u1_lx_start,
701
                              UWORD8 u1_lxend,
702
                              UWORD8 u1_mb_mc_mode)
703
1.54M
{
704
1.54M
    UWORD8 u1_a_in, u1_b_in, uc_temp1, uc_temp2, uc_temp3;
705
1.54M
    mv_pred_t *ps_mv_pred[3];
706
1.54M
    UWORD8 u1_ref_idx;
707
1.54M
    UWORD8 u1_direct_zero_pred_flag = 0;
708
1.54M
    UNUSED(u1_lx_start);
709
1.54M
    UNUSED(u1_lxend);
710
1.54M
    ih264d_non_mbaff_mv_pred(ps_mv_pred, u4_sub_mb_num, ps_mv_nmb, ps_mv_ntop,
711
1.54M
                             ps_dec, uc_mb_part_width, ps_cur_mb_info);
712
713
1.54M
    u1_ref_idx = ps_mv_final_pred->i1_ref_frame[0];
714
715
1.54M
    switch(u1_mb_mc_mode)
716
1.54M
    {
717
22.1k
        case PRED_16x8:
718
            /* Directional prediction for a 16x8 MB partition */
719
22.1k
            if(u4_sub_mb_num == 0)
720
11.0k
            {
721
                /* Calculating the MV pred for the top 16x8 block */
722
11.0k
                if(ps_mv_pred[TOP]->i1_ref_frame[0] == u1_ref_idx)
723
3.57k
                {
724
                    /* If the reference frame used by the top subMB is same as the
725
                     reference frame used by the current block then MV predictor to
726
                     be used for the current block is same as the MV of the top
727
                     subMB */
728
729
3.57k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[TOP]->i2_mv[0];
730
3.57k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[TOP]->i2_mv[1];
731
3.57k
                }
732
7.49k
                else
733
7.49k
                {
734
                    /* The MV predictor is calculated according to the process
735
                     defined in 8.4.1.2.1 */
736
7.49k
                    ih264d_get_motion_vector_predictor(
737
7.49k
                                    ps_mv_final_pred,
738
7.49k
                                    ps_mv_pred,
739
7.49k
                                    u1_ref_idx,
740
7.49k
                                    0,
741
7.49k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
742
7.49k
                }
743
11.0k
            }
744
11.0k
            else
745
11.0k
            {
746
11.0k
                if(ps_mv_pred[LEFT]->i1_ref_frame[0] == u1_ref_idx)
747
2.83k
                {
748
                    /* If the reference frame used by the left subMB is same as the
749
                     reference frame used by the current block then MV predictor to
750
                     be used for the current block is same as the MV of the left
751
                     subMB */
752
753
2.83k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[LEFT]->i2_mv[0];
754
2.83k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[LEFT]->i2_mv[1];
755
2.83k
                }
756
8.22k
                else
757
8.22k
                {
758
                    /* The MV predictor is calculated according to the process
759
                     defined in 8.4.1.2.1 */
760
8.22k
                    ih264d_get_motion_vector_predictor(
761
8.22k
                                    ps_mv_final_pred,
762
8.22k
                                    ps_mv_pred,
763
8.22k
                                    u1_ref_idx,
764
8.22k
                                    0,
765
8.22k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
766
8.22k
                }
767
11.0k
            }
768
22.1k
            break;
769
19.5k
        case PRED_8x16:
770
            /* Directional prediction for a 8x16 MB partition */
771
19.5k
            if(u4_sub_mb_num == 0)
772
9.79k
            {
773
9.79k
                if(ps_mv_pred[LEFT]->i1_ref_frame[0] == u1_ref_idx)
774
2.54k
                {
775
                    /* If the reference frame used by the left subMB is same as the
776
                     reference frame used by the current block then MV predictor to
777
                     be used for the current block is same as the MV of the left
778
                     subMB */
779
780
2.54k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[LEFT]->i2_mv[0];
781
2.54k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[LEFT]->i2_mv[1];
782
2.54k
                }
783
7.25k
                else
784
7.25k
                {
785
                    /* The MV predictor is calculated according to the process
786
                     defined in 8.4.1.2.1 */
787
7.25k
                    ih264d_get_motion_vector_predictor(
788
7.25k
                                    ps_mv_final_pred,
789
7.25k
                                    ps_mv_pred,
790
7.25k
                                    u1_ref_idx,
791
7.25k
                                    0,
792
7.25k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
793
7.25k
                }
794
9.79k
            }
795
9.79k
            else
796
9.79k
            {
797
9.79k
                if(ps_mv_pred[TOP_R]->i1_ref_frame[0] == u1_ref_idx)
798
6.08k
                {
799
                    /* If the reference frame used by the top right subMB is same as
800
                     the reference frame used by the current block then MV
801
                     predictor to be used for the current block is same as the MV
802
                     of the left subMB */
803
804
6.08k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[TOP_R]->i2_mv[0];
805
6.08k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[TOP_R]->i2_mv[1];
806
6.08k
                }
807
3.71k
                else
808
3.71k
                {
809
                    /* The MV predictor is calculated according to the process
810
                     defined in 8.4.1.2.1 */
811
3.71k
                    ih264d_get_motion_vector_predictor(
812
3.71k
                                    ps_mv_final_pred,
813
3.71k
                                    ps_mv_pred,
814
3.71k
                                    u1_ref_idx,
815
3.71k
                                    0,
816
3.71k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
817
3.71k
                }
818
9.79k
            }
819
19.5k
            break;
820
0
        case B_DIRECT_SPATIAL:
821
            /* Case when the MB has been skipped */
822
            /* If either of left or the top subMB is not present
823
             OR
824
             If both the MV components of either the left or the top subMB are
825
             zero and their reference frame pointer pointing to 0
826
             then MV for the skipped MB is zero
827
             else the Median of the mv_pred_t is used */
828
0
            uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[0];
829
0
            uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[0];
830
0
            uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[0];
831
832
0
            ps_mv_final_pred->i1_ref_frame[0] = MIN(uc_temp1,
833
0
                                                  MIN(uc_temp2, uc_temp3));
834
835
0
            uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[1];
836
0
            uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[1];
837
0
            uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[1];
838
839
0
            ps_mv_final_pred->i1_ref_frame[1] = MIN(uc_temp1,
840
0
                                                  MIN(uc_temp2, uc_temp3));
841
842
0
            if((ps_mv_final_pred->i1_ref_frame[0] < 0)
843
0
                            && (ps_mv_final_pred->i1_ref_frame[1] < 0))
844
0
            {
845
0
                u1_direct_zero_pred_flag = 1;
846
0
                ps_mv_final_pred->i1_ref_frame[0] = 0;
847
0
                ps_mv_final_pred->i1_ref_frame[1] = 0;
848
0
            }
849
0
            ih264d_get_motion_vector_predictor(
850
0
                            ps_mv_final_pred, ps_mv_pred,
851
0
                            ps_mv_final_pred->i1_ref_frame[0], 0,
852
0
                            (const UWORD8 *)gau1_ih264d_mv_pred_condition);
853
854
0
            ih264d_get_motion_vector_predictor(
855
0
                            ps_mv_final_pred, ps_mv_pred,
856
0
                            ps_mv_final_pred->i1_ref_frame[1], 1,
857
0
                            (const UWORD8 *)gau1_ih264d_mv_pred_condition);
858
859
0
            break;
860
1.42M
        case MB_SKIP:
861
            /* Case when the MB has been skipped */
862
            /* If either of left or the top subMB is not present
863
             OR
864
             If both the MV components of either the left or the top subMB are
865
             zero and their reference frame pointer pointing to 0
866
             then MV for the skipped MB is zero
867
             else the Median of the mv_pred_t is used */
868
1.42M
            u1_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
869
1.42M
            LEFT_MB_AVAILABLE_MASK);
870
1.42M
            u1_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
871
1.42M
            TOP_MB_AVAILABLE_MASK);
872
1.42M
            if(((u1_a_in * u1_b_in) == 0)
873
1.42M
                            || ((ps_mv_pred[LEFT]->i2_mv[0]
874
1.21M
                                            | ps_mv_pred[LEFT]->i2_mv[1]
875
1.21M
                                            | ps_mv_pred[LEFT]->i1_ref_frame[0])
876
1.21M
                                            == 0)
877
1.42M
                            || ((ps_mv_pred[TOP]->i2_mv[0]
878
2.66k
                                            | ps_mv_pred[TOP]->i2_mv[1]
879
2.66k
                                            | ps_mv_pred[TOP]->i1_ref_frame[0])
880
2.66k
                                            == 0))
881
1.42M
            {
882
883
1.42M
                ps_mv_final_pred->i2_mv[0] = 0;
884
1.42M
                ps_mv_final_pred->i2_mv[1] = 0;
885
1.42M
                break;
886
1.42M
            }
887
            /* If the condition above is not true calculate the MV predictor
888
             according to the process defined in sec 8.4.1.2.1 */
889
79.7k
        default:
890
79.7k
            ih264d_get_motion_vector_predictor(
891
79.7k
                            ps_mv_final_pred, ps_mv_pred, u1_ref_idx, 0,
892
79.7k
                            (const UWORD8 *)gau1_ih264d_mv_pred_condition);
893
79.7k
            break;
894
1.54M
    }
895
896
1.54M
    return (u1_direct_zero_pred_flag);
897
1.54M
}
898
#endif
899
900
/*****************************************************************************/
901
/*                                                                           */
902
/*  Function Name : ih264d_mvpred_mbaff                                             */
903
/*                                                                           */
904
/*  Description   : This function calculates the motion vector predictor,    */
905
/*  Inputs        : <What inputs does the function take?>                    */
906
/*  Globals       : None                                                     */
907
/*  Processing    : The neighbours A(Left),B(Top),C(TopRight) are calculated */
908
/*                  and based on the type of Mb the prediction is            */
909
/*                  appropriately done                                       */
910
/*  Outputs       : populates ps_mv_final_pred structure                       */
911
/*  Returns       : u1_direct_zero_pred_flag which is used only in              */
912
/*                    decodeSpatialdirect()                                  */
913
/*                                                                           */
914
/*  Issues        : <List any issues or problems with this function>         */
915
/*                                                                           */
916
/*  Revision History:                                                        */
917
/*                                                                           */
918
/*         DD MM YYYY   Author(s)       Changes (Describe the changes made)  */
919
/*         03 05 2005   TA              First Draft                          */
920
/*                                                                           */
921
/*****************************************************************************/
922
923
UWORD8 ih264d_mvpred_mbaff(dec_struct_t *ps_dec,
924
                           dec_mb_info_t *ps_cur_mb_info,
925
                           mv_pred_t *ps_mv_nmb,
926
                           mv_pred_t *ps_mv_ntop,
927
                           mv_pred_t *ps_mv_final_pred,
928
                           UWORD32 u4_sub_mb_num,
929
                           UWORD8 uc_mb_part_width,
930
                           UWORD8 u1_lx_start,
931
                           UWORD8 u1_lxend,
932
                           UWORD8 u1_mb_mc_mode)
933
0
{
934
0
    UWORD8 u1_a_in, u1_b_in, uc_temp1, uc_temp2, uc_temp3;
935
0
    mv_pred_t *ps_mv_pred[3], s_mvPred[3];
936
0
    UWORD8 uc_B2, pu0_scale[3], i, uc_lx, u1_ref_idx;
937
0
    UWORD8 u1_direct_zero_pred_flag = 0;
938
939
0
    pu0_scale[0] = pu0_scale[1] = pu0_scale[2] = 0;
940
0
    ih264d_mbaff_mv_pred(ps_mv_pred, u4_sub_mb_num, ps_mv_nmb, ps_mv_ntop, ps_dec,
941
0
                         uc_mb_part_width, ps_cur_mb_info, pu0_scale);
942
0
    for(i = 0; i < 3; i++)
943
0
    {
944
0
        if(pu0_scale[i] != 0)
945
0
        {
946
0
            memcpy(&s_mvPred[i], ps_mv_pred[i], sizeof(mv_pred_t));
947
0
            if(pu0_scale[i] == 1)
948
0
            {
949
0
                s_mvPred[i].i1_ref_frame[0] = s_mvPred[i].i1_ref_frame[0] << 1;
950
0
                s_mvPred[i].i1_ref_frame[1] = s_mvPred[i].i1_ref_frame[1] << 1;
951
0
                s_mvPred[i].i2_mv[1] = SIGN_POW2_DIV(s_mvPred[i].i2_mv[1], 1);
952
0
                s_mvPred[i].i2_mv[3] = SIGN_POW2_DIV(s_mvPred[i].i2_mv[3], 1);
953
0
            }
954
0
            else
955
0
            {
956
0
                s_mvPred[i].i1_ref_frame[0] = s_mvPred[i].i1_ref_frame[0] >> 1;
957
0
                s_mvPred[i].i1_ref_frame[1] = s_mvPred[i].i1_ref_frame[1] >> 1;
958
0
                s_mvPred[i].i2_mv[1] = s_mvPred[i].i2_mv[1] << 1;
959
0
                s_mvPred[i].i2_mv[3] = s_mvPred[i].i2_mv[3] << 1;
960
0
            }
961
0
            ps_mv_pred[i] = &s_mvPred[i];
962
0
        }
963
0
    }
964
965
0
    for(uc_lx = u1_lx_start; uc_lx < u1_lxend; uc_lx++)
966
0
    {
967
0
        u1_ref_idx = ps_mv_final_pred->i1_ref_frame[uc_lx];
968
0
        uc_B2 = (uc_lx << 1);
969
0
        switch(u1_mb_mc_mode)
970
0
        {
971
0
            case PRED_16x8:
972
                /* Directional prediction for a 16x8 MB partition */
973
0
                if(u4_sub_mb_num == 0)
974
0
                {
975
                    /* Calculating the MV pred for the top 16x8 block */
976
0
                    if(ps_mv_pred[TOP]->i1_ref_frame[uc_lx] == u1_ref_idx)
977
0
                    {
978
                        /* If the reference frame used by the top subMB is same as the
979
                         reference frame used by the current block then MV predictor to
980
                         be used for the current block is same as the MV of the top
981
                         subMB */
982
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
983
0
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 0];
984
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
985
0
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 1];
986
0
                    }
987
0
                    else
988
0
                    {
989
                        /* The MV predictor is calculated according to the process
990
                         defined in 8.4.1.2.1 */
991
0
                        ih264d_get_motion_vector_predictor(
992
0
                                        ps_mv_final_pred,
993
0
                                        ps_mv_pred,
994
0
                                        u1_ref_idx,
995
0
                                        uc_lx,
996
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
997
0
                    }
998
0
                }
999
0
                else
1000
0
                {
1001
0
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
1002
0
                    {
1003
                        /* If the reference frame used by the left subMB is same as the
1004
                         reference frame used by the current block then MV predictor to
1005
                         be used for the current block is same as the MV of the left
1006
                         subMB */
1007
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
1008
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
1009
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
1010
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
1011
0
                    }
1012
0
                    else
1013
0
                    {
1014
                        /* The MV predictor is calculated according to the process
1015
                         defined in 8.4.1.2.1 */
1016
0
                        ih264d_get_motion_vector_predictor(
1017
0
                                        ps_mv_final_pred,
1018
0
                                        ps_mv_pred,
1019
0
                                        u1_ref_idx,
1020
0
                                        uc_lx,
1021
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1022
0
                    }
1023
0
                }
1024
0
                break;
1025
0
            case PRED_8x16:
1026
                /* Directional prediction for a 8x16 MB partition */
1027
0
                if(u4_sub_mb_num == 0)
1028
0
                {
1029
0
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
1030
0
                    {
1031
                        /* If the reference frame used by the left subMB is same as the
1032
                         reference frame used by the current block then MV predictor to
1033
                         be used for the current block is same as the MV of the left
1034
                         subMB */
1035
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
1036
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
1037
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
1038
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
1039
0
                    }
1040
0
                    else
1041
0
                    {
1042
                        /* The MV predictor is calculated according to the process
1043
                         defined in 8.4.1.2.1 */
1044
0
                        ih264d_get_motion_vector_predictor(
1045
0
                                        ps_mv_final_pred,
1046
0
                                        ps_mv_pred,
1047
0
                                        u1_ref_idx,
1048
0
                                        uc_lx,
1049
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1050
0
                    }
1051
0
                }
1052
0
                else
1053
0
                {
1054
0
                    if(ps_mv_pred[TOP_R]->i1_ref_frame[uc_lx] == u1_ref_idx)
1055
0
                    {
1056
                        /* If the reference frame used by the top right subMB is same as
1057
                         the reference frame used by the current block then MV
1058
                         predictor to be used for the current block is same as the MV
1059
                         of the left subMB */
1060
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
1061
0
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 0];
1062
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
1063
0
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 1];
1064
0
                    }
1065
0
                    else
1066
0
                    {
1067
                        /* The MV predictor is calculated according to the process
1068
                         defined in 8.4.1.2.1 */
1069
0
                        ih264d_get_motion_vector_predictor(
1070
0
                                        ps_mv_final_pred,
1071
0
                                        ps_mv_pred,
1072
0
                                        u1_ref_idx,
1073
0
                                        uc_lx,
1074
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1075
0
                    }
1076
0
                }
1077
0
                break;
1078
0
            case B_DIRECT_SPATIAL:
1079
                /* Case when the MB has been skipped */
1080
                /* If either of left or the top subMB is not present
1081
                 OR
1082
                 If both the MV components of either the left or the top subMB are
1083
                 zero and their reference frame pointer pointing to 0
1084
                 then MV for the skipped MB is zero
1085
                 else the Median of the mv_pred_t is used */
1086
0
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[0];
1087
0
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[0];
1088
0
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[0];
1089
1090
0
                ps_mv_final_pred->i1_ref_frame[0] = MIN(uc_temp1,
1091
0
                                                      MIN(uc_temp2, uc_temp3));
1092
1093
0
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[1];
1094
0
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[1];
1095
0
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[1];
1096
1097
0
                ps_mv_final_pred->i1_ref_frame[1] = MIN(uc_temp1,
1098
0
                                                      MIN(uc_temp2, uc_temp3));
1099
1100
                /* If the reference indices are negative clip the scaled reference indices to -1 */
1101
                /* i.e invalid reference index */
1102
1103
                /*if(ps_mv_final_pred->i1_ref_frame[0] < 0)
1104
                 ps_mv_final_pred->i1_ref_frame[0] = -1;
1105
1106
                 if(ps_mv_final_pred->i1_ref_frame[1] < 0)
1107
                 ps_mv_final_pred->i1_ref_frame[1] = -1; */
1108
1109
0
                if((ps_mv_final_pred->i1_ref_frame[0] < 0)
1110
0
                                && (ps_mv_final_pred->i1_ref_frame[1] < 0))
1111
0
                {
1112
0
                    u1_direct_zero_pred_flag = 1;
1113
0
                    ps_mv_final_pred->i1_ref_frame[0] = 0;
1114
0
                    ps_mv_final_pred->i1_ref_frame[1] = 0;
1115
0
                }
1116
0
                ih264d_get_motion_vector_predictor(
1117
0
                                ps_mv_final_pred, ps_mv_pred,
1118
0
                                ps_mv_final_pred->i1_ref_frame[0], 0,
1119
0
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1120
1121
0
                ih264d_get_motion_vector_predictor(
1122
0
                                ps_mv_final_pred, ps_mv_pred,
1123
0
                                ps_mv_final_pred->i1_ref_frame[1], 1,
1124
0
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1125
1126
0
                break;
1127
0
            case MB_SKIP:
1128
                /* Case when the MB has been skipped */
1129
                /* If either of left or the top subMB is not present
1130
                 OR
1131
                 If both the MV components of either the left or the top subMB are
1132
                 zero and their reference frame pointer pointing to 0
1133
                 then MV for the skipped MB is zero
1134
                 else the Median of the mv_pred_t is used */
1135
0
                u1_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
1136
0
                LEFT_MB_AVAILABLE_MASK);
1137
0
                u1_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
1138
0
                TOP_MB_AVAILABLE_MASK);
1139
0
                if(((u1_a_in * u1_b_in) == 0)
1140
0
                                || ((ps_mv_pred[LEFT]->i2_mv[0]
1141
0
                                                | ps_mv_pred[LEFT]->i2_mv[1]
1142
0
                                                | ps_mv_pred[LEFT]->i1_ref_frame[0])
1143
0
                                                == 0)
1144
0
                                || ((ps_mv_pred[TOP]->i2_mv[0]
1145
0
                                                | ps_mv_pred[TOP]->i2_mv[1]
1146
0
                                                | ps_mv_pred[TOP]->i1_ref_frame[0])
1147
0
                                                == 0))
1148
0
                {
1149
0
                    ps_mv_final_pred->i2_mv[0] = 0;
1150
0
                    ps_mv_final_pred->i2_mv[1] = 0;
1151
0
                    break;
1152
0
                }
1153
                /* If the condition above is not true calculate the MV predictor
1154
                 according to the process defined in sec 8.4.1.2.1 */
1155
0
            default:
1156
0
                ih264d_get_motion_vector_predictor(
1157
0
                                ps_mv_final_pred, ps_mv_pred, u1_ref_idx, uc_lx,
1158
0
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1159
0
                break;
1160
0
        }
1161
0
    }
1162
0
    return (u1_direct_zero_pred_flag);
1163
0
}
1164
1165
1166
1167
1168
void ih264d_rep_mv_colz(dec_struct_t *ps_dec,
1169
                        mv_pred_t *ps_mv_pred_src,
1170
                        mv_pred_t *ps_mv_pred_dst,
1171
                        UWORD32 u4_sub_mb_num,
1172
                        UWORD8 u1_colz,
1173
                        UWORD8 u1_ht,
1174
                        UWORD8 u1_wd)
1175
2.52M
{
1176
1177
2.52M
    UWORD8 k, m;
1178
2.52M
    UWORD8 *pu1_colz = ps_dec->pu1_col_zero_flag + ps_dec->i4_submb_ofst
1179
2.52M
                    + u4_sub_mb_num;
1180
1181
12.1M
    for(k = 0; k < u1_ht; k++)
1182
9.60M
    {
1183
47.1M
        for(m = 0; m < u1_wd; m++)
1184
37.5M
        {
1185
37.5M
            *(ps_mv_pred_dst + m) = *(ps_mv_pred_src);
1186
37.5M
            *(pu1_colz + m) = u1_colz;
1187
1188
37.5M
        }
1189
9.60M
        pu1_colz += SUB_BLK_WIDTH;
1190
9.60M
        ps_mv_pred_dst += SUB_BLK_WIDTH;
1191
9.60M
    }
1192
2.52M
}
1193