Coverage Report

Created: 2026-01-09 06:15

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libavc/decoder/ih264d_mvpred.c
Line
Count
Source
1
/******************************************************************************
2
 *
3
 * Copyright (C) 2015 The Android Open Source Project
4
 *
5
 * Licensed under the Apache License, Version 2.0 (the "License");
6
 * you may not use this file except in compliance with the License.
7
 * You may obtain a copy of the License at:
8
 *
9
 * http://www.apache.org/licenses/LICENSE-2.0
10
 *
11
 * Unless required by applicable law or agreed to in writing, software
12
 * distributed under the License is distributed on an "AS IS" BASIS,
13
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
 * See the License for the specific language governing permissions and
15
 * limitations under the License.
16
 *
17
 *****************************************************************************
18
 * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
19
*/
20
/*!
21
 **************************************************************************
22
 * \file ih264d_mvpred.c
23
 *
24
 * \brief
25
 *    This file contains function specific to decoding Motion vector.
26
 *
27
 * Detailed_description
28
 *
29
 * \date
30
 *    10-12-2002
31
 *
32
 * \author  Arvind Raman
33
 **************************************************************************
34
 */
35
#include <string.h>
36
#include "ih264d_parse_cavlc.h"
37
#include "ih264d_error_handler.h"
38
#include "ih264d_structs.h"
39
#include "ih264d_defs.h"
40
#include "ih264_typedefs.h"
41
#include "ih264_macros.h"
42
#include "ih264_platform_macros.h"
43
#include "ih264d_mb_utils.h"
44
#include "ih264d_defs.h"
45
#include "ih264d_debug.h"
46
#include "ih264d_tables.h"
47
#include "ih264d_process_bslice.h"
48
#include "ih264d_mvpred.h"
49
#include "ih264d_inter_pred.h"
50
#include "ih264d_tables.h"
51
52
/*!
53
 **************************************************************************
54
 * \if ih264d_get_motion_vector_predictor name : Name \endif
55
 *
56
 * \brief
57
 *    The routine calculates the motion vector predictor for a given block,
58
 *    given the candidate MV predictors.
59
 *
60
 * \param ps_mv_pred: Candidate predictors for the current block
61
 * \param ps_currMv: Pointer to the left top edge of the current block in
62
 *     the MV bank
63
 *
64
 * \return
65
 *    _mvPred: The x & y components of the MV predictor.
66
 *
67
 * \note
68
 *    The code implements the logic as described in sec 8.4.1.2.1. Given
69
 *    the candidate predictors and the pointer to the top left edge of the
70
 *    block in the MV bank.
71
 *
72
 **************************************************************************
73
 */
74
75
void ih264d_get_motion_vector_predictor(mv_pred_t * ps_result,
76
                                        mv_pred_t **ps_mv_pred,
77
                                        UWORD8 u1_ref_idx,
78
                                        UWORD8 u1_B,
79
                                        const UWORD8 *pu1_mv_pred_condition)
80
391k
{
81
391k
    WORD8 c_temp;
82
391k
    UWORD8 uc_B2 = (u1_B << 1);
83
84
    /* If only one of the candidate blocks has a reference frame equal to
85
     the current block then use the same block as the final predictor */
86
391k
    c_temp =
87
391k
                    (ps_mv_pred[LEFT]->i1_ref_frame[u1_B] == u1_ref_idx)
88
391k
                                    | ((ps_mv_pred[TOP]->i1_ref_frame[u1_B]
89
391k
                                                    == u1_ref_idx) << 1)
90
391k
                                    | ((ps_mv_pred[TOP_R]->i1_ref_frame[u1_B]
91
391k
                                                    == u1_ref_idx) << 2);
92
391k
    c_temp = pu1_mv_pred_condition[c_temp];
93
94
391k
    if(c_temp != -1)
95
45.8k
    {
96
        /* Case when only when one of the cadidate block has the same
97
         reference frame as the current block */
98
45.8k
        ps_result->i2_mv[uc_B2 + 0] = ps_mv_pred[c_temp]->i2_mv[uc_B2 + 0];
99
45.8k
        ps_result->i2_mv[uc_B2 + 1] = ps_mv_pred[c_temp]->i2_mv[uc_B2 + 1];
100
45.8k
    }
101
345k
    else
102
345k
    {
103
345k
        WORD32 D0, D1;
104
345k
        D0 = MIN(ps_mv_pred[0]->i2_mv[uc_B2 + 0],
105
345k
                 ps_mv_pred[1]->i2_mv[uc_B2 + 0]);
106
345k
        D1 = MAX(ps_mv_pred[0]->i2_mv[uc_B2 + 0],
107
345k
                 ps_mv_pred[1]->i2_mv[uc_B2 + 0]);
108
345k
        D1 = MIN(D1, ps_mv_pred[2]->i2_mv[uc_B2 + 0]);
109
345k
        ps_result->i2_mv[uc_B2 + 0] = (WORD16)(MAX(D0, D1));
110
111
345k
        D0 = MIN(ps_mv_pred[0]->i2_mv[uc_B2 + 1],
112
345k
                 ps_mv_pred[1]->i2_mv[uc_B2 + 1]);
113
345k
        D1 = MAX(ps_mv_pred[0]->i2_mv[uc_B2 + 1],
114
345k
                 ps_mv_pred[1]->i2_mv[uc_B2 + 1]);
115
345k
        D1 = MIN(D1, ps_mv_pred[2]->i2_mv[uc_B2 + 1]);
116
345k
        ps_result->i2_mv[uc_B2 + 1] = (WORD16)(MAX(D0, D1));
117
118
345k
    }
119
391k
}
120
121
/*!
122
 **************************************************************************
123
 * \if ih264d_mbaff_mv_pred name : Name \endif
124
 *
125
 * \brief
126
 *    The routine calculates the motion vector predictor for a given block,
127
 *    given the candidate MV predictors.
128
 *
129
 * \param ps_mv_pred: Candidate predictors for the current block
130
 * \param ps_currMv: Pointer to the left top edge of the current block in
131
 *     the MV bank
132
 *
133
 * \return
134
 *    _mvPred: The x & y components of the MV predictor.
135
 *
136
 * \note
137
 *    The code implements the logic as described in sec 8.4.1.2.1. Given
138
 *    the candidate predictors and the pointer to the top left edge of the
139
 *    block in the MV bank.
140
 *
141
 **************************************************************************
142
 */
143
144
void ih264d_mbaff_mv_pred(mv_pred_t **ps_mv_pred,
145
                          UWORD32 u4_sub_mb_num,
146
                          mv_pred_t *ps_mv_nmb,
147
                          mv_pred_t *ps_mv_ntop,
148
                          dec_struct_t *ps_dec,
149
                          UWORD8 uc_mb_part_width,
150
                          dec_mb_info_t *ps_cur_mb_info,
151
                          UWORD8* pu0_scale)
152
0
{
153
0
    UWORD16 u2_a_in = 0, u2_b_in = 0, u2_c_in = 0, u2_d_in = 0;
154
0
    mv_pred_t *ps_mvpred_l, *ps_mvpred_tmp;
155
0
    UWORD32 u4_sub_mb_x = (u4_sub_mb_num & 3), uc_sub_mb_y = (u4_sub_mb_num >> 2);
156
0
    UWORD8 u1_is_cur_mb_fld, u1_is_left_mb_fld, u1_is_top_mb_fld;
157
0
    UWORD8 u1_is_cur_mb_top;
158
159
0
    u1_is_cur_mb_fld = ps_cur_mb_info->u1_mb_field_decodingflag;
160
0
    u1_is_cur_mb_top = ps_cur_mb_info->u1_topmb;
161
162
0
    u1_is_left_mb_fld = ps_cur_mb_info->ps_left_mb->u1_mb_fld;
163
0
    u1_is_top_mb_fld = ps_cur_mb_info->ps_top_mb->u1_mb_fld;
164
165
    /* Checking in the subMB exists, calculating their motion vectors to be
166
     used as predictors and the reference frames of those subMBs */
167
0
    ps_mv_pred[LEFT] = &ps_dec->s_default_mv_pred;
168
0
    ps_mv_pred[TOP] = &(ps_dec->s_default_mv_pred);
169
0
    ps_mv_pred[TOP_R] = &(ps_dec->s_default_mv_pred);
170
171
    /* Check if the left subMb is available */
172
0
    if(u4_sub_mb_x)
173
0
    {
174
0
        u2_a_in = 1;
175
0
        ps_mv_pred[LEFT] = (ps_mv_nmb - 1);
176
0
    }
177
0
    else
178
0
    {
179
0
        UWORD8 uc_temp;
180
0
        u2_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity & LEFT_MB_AVAILABLE_MASK);
181
0
        if(u2_a_in)
182
0
        {
183
0
            ps_mvpred_l = (ps_dec->u4_num_pmbair) ?
184
0
                            ps_mv_nmb :
185
0
                            (ps_dec->ps_mv_left + (uc_sub_mb_y << 2) + 48
186
0
                                            - (u1_is_cur_mb_top << 4));
187
0
            uc_temp = 29;
188
0
            if(u1_is_cur_mb_fld ^ u1_is_left_mb_fld)
189
0
            {
190
0
                if(u1_is_left_mb_fld)
191
0
                {
192
0
                    uc_temp +=
193
0
                                    (((uc_sub_mb_y & 1) << 2)
194
0
                                                    + ((uc_sub_mb_y & 2) << 1));
195
0
                    uc_temp += ((u1_is_cur_mb_top) ? 0 : 8);
196
0
                }
197
0
                else
198
0
                {
199
0
                    uc_temp = uc_temp - (uc_sub_mb_y << 2);
200
0
                    uc_temp += ((u1_is_cur_mb_top) ? 0 : 16);
201
0
                }
202
0
            }
203
0
            ps_mv_pred[LEFT] = (ps_mvpred_l - uc_temp);
204
0
            pu0_scale[LEFT] = u1_is_cur_mb_fld - u1_is_left_mb_fld;
205
0
        }
206
0
    }
207
208
    /* Check if the top subMB is available */
209
0
    if((uc_sub_mb_y > 0) || ((u1_is_cur_mb_top | u1_is_cur_mb_fld) == 0))
210
0
    {
211
0
        u2_b_in = 1;
212
0
        ps_mv_pred[TOP] = ps_mv_nmb - 4;
213
0
    }
214
0
    else
215
0
    {
216
0
        u2_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity & TOP_MB_AVAILABLE_MASK);
217
0
        if(u2_b_in)
218
0
        {
219
            /* CHANGED CODE */
220
221
0
            if(u1_is_top_mb_fld && u1_is_cur_mb_fld)
222
0
                ps_mvpred_tmp = ps_mv_ntop;
223
0
            else
224
0
            {
225
0
                ps_mvpred_tmp = ps_mv_ntop;
226
0
                if(u1_is_cur_mb_top)
227
0
                    ps_mvpred_tmp += 16;
228
0
            }
229
230
0
            ps_mv_pred[TOP] = ps_mvpred_tmp;
231
0
            pu0_scale[TOP] = u1_is_cur_mb_fld - u1_is_top_mb_fld;
232
0
        }
233
0
    }
234
235
    /* Check if the top right subMb is available. The top right subMb is
236
     defined as the top right subMb at the top right corner of the MB
237
     partition. The top right subMb index starting from the top left
238
     corner of the MB partition is given by
239
     TopRightSubMbIndx = TopLeftSubMbIndx + (WidthOfMbPartition - 6) / 2
240
     */
241
0
    u2_c_in = CHECKBIT(ps_cur_mb_info->u2_top_right_avail_mask,
242
0
                        (u4_sub_mb_num + uc_mb_part_width - 1));
243
0
    if(u2_c_in)
244
0
    {
245
0
        ps_mv_pred[TOP_R] = ps_mv_pred[TOP] + uc_mb_part_width;
246
0
        pu0_scale[TOP_R] = pu0_scale[TOP];
247
0
        if((uc_sub_mb_y == 0) && ((u4_sub_mb_x + uc_mb_part_width) > 3))
248
0
        {
249
0
            UWORD8 uc_isTopRtMbFld;
250
0
            uc_isTopRtMbFld = ps_cur_mb_info->ps_top_right_mb->u1_mb_fld;
251
            /* CHANGED CODE */
252
0
            ps_mvpred_tmp = ps_mv_ntop + uc_mb_part_width + 12;
253
0
            ps_mvpred_tmp += (u1_is_cur_mb_top) ? 16 : 0;
254
0
            ps_mvpred_tmp += (u1_is_cur_mb_fld && u1_is_cur_mb_top && uc_isTopRtMbFld) ?
255
0
                            0 : 16;
256
0
            ps_mv_pred[TOP_R] = ps_mvpred_tmp;
257
0
            pu0_scale[TOP_R] = u1_is_cur_mb_fld - uc_isTopRtMbFld;
258
0
        }
259
0
    }
260
0
    else
261
0
    {
262
0
        u2_d_in = CHECKBIT(ps_cur_mb_info->u2_top_left_avail_mask, u4_sub_mb_num);
263
264
        /* Check if the the top left subMB is available */
265
0
        if(u2_d_in)
266
0
        {
267
0
            UWORD8 uc_isTopLtMbFld;
268
269
0
            ps_mv_pred[TOP_R] = ps_mv_pred[TOP] - 1;
270
0
            pu0_scale[TOP_R] = pu0_scale[TOP];
271
272
0
            if(u4_sub_mb_x == 0)
273
0
            {
274
0
                if((uc_sub_mb_y > 0) || ((u1_is_cur_mb_top | u1_is_cur_mb_fld) == 0))
275
0
                {
276
0
                    uc_isTopLtMbFld = u1_is_left_mb_fld;
277
0
                    ps_mvpred_tmp = ps_mv_pred[LEFT] - 4;
278
279
0
                    if((u1_is_cur_mb_fld == 0) && uc_isTopLtMbFld)
280
0
                    {
281
0
                        ps_mvpred_tmp = ps_mv_pred[LEFT] + 16;
282
0
                        ps_mvpred_tmp -= (uc_sub_mb_y & 1) ? 0 : 4;
283
0
                    }
284
0
                }
285
0
                else
286
0
                {
287
0
                    UWORD32 u4_cond = ps_dec->u4_num_pmbair;
288
0
                    uc_isTopLtMbFld = ps_cur_mb_info->u1_topleft_mb_fld;
289
290
                    /* CHANGED CODE */
291
0
                    ps_mvpred_tmp = ps_mv_ntop - 29;
292
0
                    ps_mvpred_tmp += (u1_is_cur_mb_top) ? 16 : 0;
293
0
                    if(u1_is_cur_mb_fld && u1_is_cur_mb_top)
294
0
                        ps_mvpred_tmp -= (uc_isTopLtMbFld) ? 16 : 0;
295
0
                }
296
0
                ps_mv_pred[TOP_R] = ps_mvpred_tmp;
297
0
                pu0_scale[TOP_R] = u1_is_cur_mb_fld - uc_isTopLtMbFld;
298
0
            }
299
0
        }
300
0
        else if(u2_b_in == 0)
301
0
        {
302
            /* If all the subMBs B, C, D are all out of the frame then their MV
303
             and their reference picture is equal to that of A */
304
0
            ps_mv_pred[TOP] = ps_mv_pred[LEFT];
305
0
            ps_mv_pred[TOP_R] = ps_mv_pred[LEFT];
306
0
            pu0_scale[TOP] = pu0_scale[LEFT];
307
0
            pu0_scale[TOP_R] = pu0_scale[LEFT];
308
0
        }
309
0
    }
310
0
}
311
312
/*!
313
 **************************************************************************
314
 * \if ih264d_non_mbaff_mv_pred name : Name \endif
315
 *
316
 * \brief
317
 *    The routine calculates the motion vector predictor for a given block,
318
 *    given the candidate MV predictors.
319
 *
320
 * \param ps_mv_pred: Candidate predictors for the current block
321
 * \param ps_currMv: Pointer to the left top edge of the current block in
322
 *     the MV bank
323
 *
324
 * \return
325
 *    _mvPred: The x & y components of the MV predictor.
326
 *
327
 * \note
328
 *    The code implements the logic as described in sec 8.4.1.2.1. Given
329
 *    the candidate predictors and the pointer to the top left edge of the
330
 *    block in the MV bank.
331
 *
332
 **************************************************************************
333
 */
334
#if(!MVPRED_NONMBAFF)
335
void ih264d_non_mbaff_mv_pred(mv_pred_t **ps_mv_pred,
336
                              UWORD32 u4_sub_mb_num,
337
                              mv_pred_t *ps_mv_nmb,
338
                              mv_pred_t *ps_mv_ntop,
339
                              dec_struct_t *ps_dec,
340
                              UWORD8 uc_mb_part_width,
341
                              dec_mb_info_t *ps_cur_mb_info)
342
1.16M
{
343
1.16M
    UWORD16 u2_b_in = 0, u2_c_in = 0, u2_d_in = 0;
344
1.16M
    UWORD32 u4_sub_mb_x = (u4_sub_mb_num & 3), uc_sub_mb_y = (u4_sub_mb_num >> 2);
345
346
    /* Checking in the subMB exists, calculating their motion vectors to be
347
     used as predictors and the reference frames of those subMBs */
348
349
1.16M
    ps_mv_pred[LEFT] = &ps_dec->s_default_mv_pred;
350
1.16M
    ps_mv_pred[TOP] = &(ps_dec->s_default_mv_pred);
351
1.16M
    ps_mv_pred[TOP_R] = &(ps_dec->s_default_mv_pred);
352
    /* Check if the left subMb is available */
353
354
1.16M
    if(u4_sub_mb_x)
355
96.0k
    {
356
96.0k
        ps_mv_pred[LEFT] = (ps_mv_nmb - 1);
357
96.0k
    }
358
1.06M
    else
359
1.06M
    {
360
1.06M
        if(ps_cur_mb_info->u1_mb_ngbr_availablity & LEFT_MB_AVAILABLE_MASK)
361
937k
        {
362
937k
            ps_mv_pred[LEFT] = (ps_mv_nmb - 13);
363
937k
        }
364
1.06M
    }
365
366
    /* Check if the top subMB is available */
367
1.16M
    if(uc_sub_mb_y)
368
100k
    {
369
100k
        u2_b_in = 1;
370
100k
        ps_mv_ntop = ps_mv_nmb - 4;
371
100k
        ps_mv_pred[TOP] = ps_mv_ntop;
372
373
100k
    }
374
1.06M
    else
375
1.06M
    {
376
1.06M
        u2_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity & TOP_MB_AVAILABLE_MASK);
377
1.06M
        if(u2_b_in)
378
873k
        {
379
873k
            ps_mv_pred[TOP] = ps_mv_ntop;
380
873k
        }
381
1.06M
    }
382
383
    /* Check if the top right subMb is available. The top right subMb is
384
     defined as the top right subMb at the top right corner of the MB
385
     partition. The top right subMb index starting from the top left
386
     corner of the MB partition is given by
387
     TopRightSubMbIndx = TopLeftSubMbIndx + (WidthOfMbPartition - 6) / 2
388
     */
389
1.16M
    u2_c_in = CHECKBIT(ps_cur_mb_info->u2_top_right_avail_mask,
390
1.16M
                        (u4_sub_mb_num + uc_mb_part_width - 1));
391
1.16M
    if(u2_c_in)
392
838k
    {
393
838k
        ps_mv_pred[TOP_R] = (ps_mv_ntop + uc_mb_part_width);
394
395
838k
        if(uc_sub_mb_y == 0)
396
803k
        {
397
            /* CHANGED CODE */
398
803k
            if((u4_sub_mb_x + uc_mb_part_width) > 3)
399
780k
                ps_mv_pred[TOP_R] += 12;
400
803k
        }
401
838k
    }
402
327k
    else
403
327k
    {
404
327k
        u2_d_in = CHECKBIT(ps_cur_mb_info->u2_top_left_avail_mask, u4_sub_mb_num);
405
        /* Check if the the top left subMB is available */
406
327k
        if(u2_d_in)
407
95.4k
        {
408
            /* CHANGED CODE */
409
95.4k
            ps_mv_pred[TOP_R] = (ps_mv_ntop - 1);
410
95.4k
            if(u4_sub_mb_x == 0)
411
59.6k
            {
412
59.6k
                if(uc_sub_mb_y)
413
28.2k
                {
414
28.2k
                    ps_mv_pred[TOP_R] = (ps_mv_nmb - 17);
415
28.2k
                }
416
31.4k
                else
417
31.4k
                {
418
                    /* CHANGED CODE */
419
31.4k
                    ps_mv_pred[TOP_R] -= 12;
420
31.4k
                }
421
59.6k
            }
422
95.4k
        }
423
231k
        else if(u2_b_in == 0)
424
191k
        {
425
            /* If all the subMBs B, C, D are all out of the frame then their MV
426
             and their reference picture is equal to that of A */
427
191k
            ps_mv_pred[TOP] = ps_mv_pred[LEFT];
428
191k
            ps_mv_pred[TOP_R] = ps_mv_pred[LEFT];
429
191k
        }
430
327k
    }
431
1.16M
}
432
#endif
433
434
/*****************************************************************************/
435
/*                                                                           */
436
/*  Function Name : ih264d_mvpred_nonmbaffB                                         */
437
/*                                                                           */
438
/*  Description   : This function calculates the motion vector predictor,    */
439
/*                  for B-Slices                                             */
440
/*  Inputs        : <What inputs does the function take?>                    */
441
/*  Globals       : None                                                     */
442
/*  Processing    : The neighbours A(Left),B(Top),C(TopRight) are calculated */
443
/*                  and based on the type of Mb the prediction is            */
444
/*                  appropriately done                                       */
445
/*  Outputs       : populates ps_mv_final_pred structure                       */
446
/*  Returns       : u1_direct_zero_pred_flag which is used only in              */
447
/*                    decodeSpatialdirect()                                  */
448
/*                                                                           */
449
/*  Issues        : <List any issues or problems with this function>         */
450
/*                                                                           */
451
/*  Revision History:                                                        */
452
/*                                                                           */
453
/*         DD MM YYYY   Author(s)       Changes (Describe the changes made)  */
454
/*         03 05 2005   TA              First Draft                          */
455
/*                                                                           */
456
/*****************************************************************************/
457
#if(!MVPRED_NONMBAFF)
458
UWORD8 ih264d_mvpred_nonmbaffB(dec_struct_t *ps_dec,
459
                               dec_mb_info_t *ps_cur_mb_info,
460
                               mv_pred_t *ps_mv_nmb,
461
                               mv_pred_t *ps_mv_ntop,
462
                               mv_pred_t *ps_mv_final_pred,
463
                               UWORD32 u4_sub_mb_num,
464
                               UWORD8 uc_mb_part_width,
465
                               UWORD8 u1_lx_start,
466
                               UWORD8 u1_lxend,
467
                               UWORD8 u1_mb_mc_mode)
468
310k
{
469
310k
    UWORD8 u1_a_in, u1_b_in, uc_temp1, uc_temp2, uc_temp3;
470
310k
    mv_pred_t *ps_mv_pred[3];
471
310k
    UWORD8 uc_B2, uc_lx, u1_ref_idx;
472
310k
    UWORD8 u1_direct_zero_pred_flag = 0;
473
474
310k
    ih264d_non_mbaff_mv_pred(ps_mv_pred, u4_sub_mb_num, ps_mv_nmb, ps_mv_ntop,
475
310k
                             ps_dec, uc_mb_part_width, ps_cur_mb_info);
476
477
642k
    for(uc_lx = u1_lx_start; uc_lx < u1_lxend; uc_lx++)
478
331k
    {
479
331k
        u1_ref_idx = ps_mv_final_pred->i1_ref_frame[uc_lx];
480
331k
        uc_B2 = (uc_lx << 1);
481
331k
        switch(u1_mb_mc_mode)
482
331k
        {
483
31.6k
            case PRED_16x8:
484
                /* Directional prediction for a 16x8 MB partition */
485
31.6k
                if(u4_sub_mb_num == 0)
486
14.9k
                {
487
                    /* Calculating the MV pred for the top 16x8 block */
488
14.9k
                    if(ps_mv_pred[TOP]->i1_ref_frame[uc_lx] == u1_ref_idx)
489
6.59k
                    {
490
                        /* If the reference frame used by the top subMB is same as the
491
                         reference frame used by the current block then MV predictor to
492
                         be used for the current block is same as the MV of the top
493
                         subMB */
494
6.59k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
495
6.59k
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 0];
496
6.59k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
497
6.59k
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 1];
498
6.59k
                    }
499
8.35k
                    else
500
8.35k
                    {
501
                        /* The MV predictor is calculated according to the process
502
                         defined in 8.4.1.2.1 */
503
8.35k
                        ih264d_get_motion_vector_predictor(
504
8.35k
                                        ps_mv_final_pred,
505
8.35k
                                        ps_mv_pred,
506
8.35k
                                        u1_ref_idx,
507
8.35k
                                        uc_lx,
508
8.35k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
509
8.35k
                    }
510
14.9k
                }
511
16.6k
                else
512
16.6k
                {
513
16.6k
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
514
10.5k
                    {
515
                        /* If the reference frame used by the left subMB is same as the
516
                         reference frame used by the current block then MV predictor to
517
                         be used for the current block is same as the MV of the left
518
                         subMB */
519
10.5k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
520
10.5k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
521
10.5k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
522
10.5k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
523
10.5k
                    }
524
6.10k
                    else
525
6.10k
                    {
526
                        /* The MV predictor is calculated according to the process
527
                         defined in 8.4.1.2.1 */
528
6.10k
                        ih264d_get_motion_vector_predictor(
529
6.10k
                                        ps_mv_final_pred,
530
6.10k
                                        ps_mv_pred,
531
6.10k
                                        u1_ref_idx,
532
6.10k
                                        uc_lx,
533
6.10k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
534
6.10k
                    }
535
16.6k
                }
536
31.6k
                break;
537
23.6k
            case PRED_8x16:
538
                /* Directional prediction for a 8x16 MB partition */
539
23.6k
                if(u4_sub_mb_num == 0)
540
11.7k
                {
541
11.7k
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
542
1.45k
                    {
543
                        /* If the reference frame used by the left subMB is same as the
544
                         reference frame used by the current block then MV predictor to
545
                         be used for the current block is same as the MV of the left
546
                         subMB */
547
1.45k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
548
1.45k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
549
1.45k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
550
1.45k
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
551
1.45k
                    }
552
10.2k
                    else
553
10.2k
                    {
554
                        /* The MV predictor is calculated according to the process
555
                         defined in 8.4.1.2.1 */
556
10.2k
                        ih264d_get_motion_vector_predictor(
557
10.2k
                                        ps_mv_final_pred,
558
10.2k
                                        ps_mv_pred,
559
10.2k
                                        u1_ref_idx,
560
10.2k
                                        uc_lx,
561
10.2k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
562
10.2k
                    }
563
11.7k
                }
564
11.8k
                else
565
11.8k
                {
566
11.8k
                    if(ps_mv_pred[TOP_R]->i1_ref_frame[uc_lx] == u1_ref_idx)
567
7.05k
                    {
568
                        /* If the reference frame used by the top right subMB is same as
569
                         the reference frame used by the current block then MV
570
                         predictor to be used for the current block is same as the MV
571
                         of the left subMB */
572
7.05k
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
573
7.05k
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 0];
574
7.05k
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
575
7.05k
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 1];
576
7.05k
                    }
577
4.82k
                    else
578
4.82k
                    {
579
                        /* The MV predictor is calculated according to the process
580
                         defined in 8.4.1.2.1 */
581
4.82k
                        ih264d_get_motion_vector_predictor(
582
4.82k
                                        ps_mv_final_pred,
583
4.82k
                                        ps_mv_pred,
584
4.82k
                                        u1_ref_idx,
585
4.82k
                                        uc_lx,
586
4.82k
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
587
4.82k
                    }
588
11.8k
                }
589
23.6k
                break;
590
83.9k
            case B_DIRECT_SPATIAL:
591
                /* Case when the MB has been skipped */
592
                /* If either of left or the top subMB is not present
593
                 OR
594
                 If both the MV components of either the left or the top subMB are
595
                 zero and their reference frame pointer pointing to 0
596
                 then MV for the skipped MB is zero
597
                 else the Median of the mv_pred_t is used */
598
83.9k
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[0];
599
83.9k
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[0];
600
83.9k
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[0];
601
602
83.9k
                ps_mv_final_pred->i1_ref_frame[0] = MIN(uc_temp1,
603
83.9k
                                                      MIN(uc_temp2, uc_temp3));
604
605
83.9k
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[1];
606
83.9k
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[1];
607
83.9k
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[1];
608
609
83.9k
                ps_mv_final_pred->i1_ref_frame[1] = MIN(uc_temp1,
610
83.9k
                                                      MIN(uc_temp2, uc_temp3));
611
612
83.9k
                if((ps_mv_final_pred->i1_ref_frame[0] < 0)
613
16.8k
                                && (ps_mv_final_pred->i1_ref_frame[1] < 0))
614
5.63k
                {
615
5.63k
                    u1_direct_zero_pred_flag = 1;
616
5.63k
                    ps_mv_final_pred->i1_ref_frame[0] = 0;
617
5.63k
                    ps_mv_final_pred->i1_ref_frame[1] = 0;
618
5.63k
                }
619
83.9k
                ih264d_get_motion_vector_predictor(
620
83.9k
                                ps_mv_final_pred, ps_mv_pred,
621
83.9k
                                ps_mv_final_pred->i1_ref_frame[0], 0,
622
83.9k
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
623
624
83.9k
                ih264d_get_motion_vector_predictor(
625
83.9k
                                ps_mv_final_pred, ps_mv_pred,
626
83.9k
                                ps_mv_final_pred->i1_ref_frame[1], 1,
627
83.9k
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
628
629
83.9k
                break;
630
116k
            case MB_SKIP:
631
                /* Case when the MB has been skipped */
632
                /* If either of left or the top subMB is not present
633
                 OR
634
                 If both the MV components of either the left or the top subMB are
635
                 zero and their reference frame pointer pointing to 0
636
                 then MV for the skipped MB is zero
637
                 else the Median of the mv_pred_t is used */
638
116k
                u1_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
639
116k
                LEFT_MB_AVAILABLE_MASK);
640
116k
                u1_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
641
116k
                TOP_MB_AVAILABLE_MASK);
642
116k
                if(((u1_a_in * u1_b_in) == 0)
643
102k
                                || ((ps_mv_pred[LEFT]->i2_mv[0]
644
102k
                                                | ps_mv_pred[LEFT]->i2_mv[1]
645
102k
                                                | ps_mv_pred[LEFT]->i1_ref_frame[0])
646
102k
                                                == 0)
647
0
                                || ((ps_mv_pred[TOP]->i2_mv[0]
648
0
                                                | ps_mv_pred[TOP]->i2_mv[1]
649
0
                                                | ps_mv_pred[TOP]->i1_ref_frame[0])
650
0
                                                == 0))
651
116k
                {
652
116k
                    ps_mv_final_pred->i2_mv[0] = 0;
653
116k
                    ps_mv_final_pred->i2_mv[1] = 0;
654
116k
                    break;
655
116k
                }
656
                /* If the condition above is not true calculate the MV predictor
657
                 according to the process defined in sec 8.4.1.2.1 */
658
76.3k
            default:
659
76.3k
                ih264d_get_motion_vector_predictor(
660
76.3k
                                ps_mv_final_pred, ps_mv_pred, u1_ref_idx, uc_lx,
661
76.3k
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
662
76.3k
                break;
663
331k
        }
664
331k
    }
665
310k
    return (u1_direct_zero_pred_flag);
666
310k
}
667
#endif
668
669
/*****************************************************************************/
670
/*                                                                           */
671
/*  Function Name : ih264d_mvpred_nonmbaff                                          */
672
/*                                                                           */
673
/*  Description   : This function calculates the motion vector predictor,    */
674
/*                  for all the slice types other than B_SLICE               */
675
/*  Inputs        : <What inputs does the function take?>                    */
676
/*  Globals       : None                                                     */
677
/*  Processing    : The neighbours A(Left),B(Top),C(TopRight) are calculated */
678
/*                  and based on the type of Mb the prediction is            */
679
/*                  appropriately done                                       */
680
/*  Outputs       : populates ps_mv_final_pred structure                       */
681
/*  Returns       : u1_direct_zero_pred_flag which is used only in              */
682
/*                    decodeSpatialdirect()                                  */
683
/*                                                                           */
684
/*  Issues        : <List any issues or problems with this function>         */
685
/*                                                                           */
686
/*  Revision History:                                                        */
687
/*                                                                           */
688
/*         DD MM YYYY   Author(s)       Changes (Describe the changes made)  */
689
/*         03 05 2005   TA              First Draft                          */
690
/*                                                                           */
691
/*****************************************************************************/
692
#if(!MVPRED_NONMBAFF)
693
UWORD8 ih264d_mvpred_nonmbaff(dec_struct_t *ps_dec,
694
                              dec_mb_info_t *ps_cur_mb_info,
695
                              mv_pred_t *ps_mv_nmb,
696
                              mv_pred_t *ps_mv_ntop,
697
                              mv_pred_t *ps_mv_final_pred,
698
                              UWORD32 u4_sub_mb_num,
699
                              UWORD8 uc_mb_part_width,
700
                              UWORD8 u1_lx_start,
701
                              UWORD8 u1_lxend,
702
                              UWORD8 u1_mb_mc_mode)
703
854k
{
704
854k
    UWORD8 u1_a_in, u1_b_in, uc_temp1, uc_temp2, uc_temp3;
705
854k
    mv_pred_t *ps_mv_pred[3];
706
854k
    UWORD8 u1_ref_idx;
707
854k
    UWORD8 u1_direct_zero_pred_flag = 0;
708
854k
    UNUSED(u1_lx_start);
709
854k
    UNUSED(u1_lxend);
710
854k
    ih264d_non_mbaff_mv_pred(ps_mv_pred, u4_sub_mb_num, ps_mv_nmb, ps_mv_ntop,
711
854k
                             ps_dec, uc_mb_part_width, ps_cur_mb_info);
712
713
854k
    u1_ref_idx = ps_mv_final_pred->i1_ref_frame[0];
714
715
854k
    switch(u1_mb_mc_mode)
716
854k
    {
717
30.3k
        case PRED_16x8:
718
            /* Directional prediction for a 16x8 MB partition */
719
30.3k
            if(u4_sub_mb_num == 0)
720
15.1k
            {
721
                /* Calculating the MV pred for the top 16x8 block */
722
15.1k
                if(ps_mv_pred[TOP]->i1_ref_frame[0] == u1_ref_idx)
723
6.71k
                {
724
                    /* If the reference frame used by the top subMB is same as the
725
                     reference frame used by the current block then MV predictor to
726
                     be used for the current block is same as the MV of the top
727
                     subMB */
728
729
6.71k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[TOP]->i2_mv[0];
730
6.71k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[TOP]->i2_mv[1];
731
6.71k
                }
732
8.43k
                else
733
8.43k
                {
734
                    /* The MV predictor is calculated according to the process
735
                     defined in 8.4.1.2.1 */
736
8.43k
                    ih264d_get_motion_vector_predictor(
737
8.43k
                                    ps_mv_final_pred,
738
8.43k
                                    ps_mv_pred,
739
8.43k
                                    u1_ref_idx,
740
8.43k
                                    0,
741
8.43k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
742
8.43k
                }
743
15.1k
            }
744
15.1k
            else
745
15.1k
            {
746
15.1k
                if(ps_mv_pred[LEFT]->i1_ref_frame[0] == u1_ref_idx)
747
6.32k
                {
748
                    /* If the reference frame used by the left subMB is same as the
749
                     reference frame used by the current block then MV predictor to
750
                     be used for the current block is same as the MV of the left
751
                     subMB */
752
753
6.32k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[LEFT]->i2_mv[0];
754
6.32k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[LEFT]->i2_mv[1];
755
6.32k
                }
756
8.83k
                else
757
8.83k
                {
758
                    /* The MV predictor is calculated according to the process
759
                     defined in 8.4.1.2.1 */
760
8.83k
                    ih264d_get_motion_vector_predictor(
761
8.83k
                                    ps_mv_final_pred,
762
8.83k
                                    ps_mv_pred,
763
8.83k
                                    u1_ref_idx,
764
8.83k
                                    0,
765
8.83k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
766
8.83k
                }
767
15.1k
            }
768
30.3k
            break;
769
31.0k
        case PRED_8x16:
770
            /* Directional prediction for a 8x16 MB partition */
771
31.0k
            if(u4_sub_mb_num == 0)
772
15.5k
            {
773
15.5k
                if(ps_mv_pred[LEFT]->i1_ref_frame[0] == u1_ref_idx)
774
8.92k
                {
775
                    /* If the reference frame used by the left subMB is same as the
776
                     reference frame used by the current block then MV predictor to
777
                     be used for the current block is same as the MV of the left
778
                     subMB */
779
780
8.92k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[LEFT]->i2_mv[0];
781
8.92k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[LEFT]->i2_mv[1];
782
8.92k
                }
783
6.61k
                else
784
6.61k
                {
785
                    /* The MV predictor is calculated according to the process
786
                     defined in 8.4.1.2.1 */
787
6.61k
                    ih264d_get_motion_vector_predictor(
788
6.61k
                                    ps_mv_final_pred,
789
6.61k
                                    ps_mv_pred,
790
6.61k
                                    u1_ref_idx,
791
6.61k
                                    0,
792
6.61k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
793
6.61k
                }
794
15.5k
            }
795
15.5k
            else
796
15.5k
            {
797
15.5k
                if(ps_mv_pred[TOP_R]->i1_ref_frame[0] == u1_ref_idx)
798
10.6k
                {
799
                    /* If the reference frame used by the top right subMB is same as
800
                     the reference frame used by the current block then MV
801
                     predictor to be used for the current block is same as the MV
802
                     of the left subMB */
803
804
10.6k
                    ps_mv_final_pred->i2_mv[0] = ps_mv_pred[TOP_R]->i2_mv[0];
805
10.6k
                    ps_mv_final_pred->i2_mv[1] = ps_mv_pred[TOP_R]->i2_mv[1];
806
10.6k
                }
807
4.93k
                else
808
4.93k
                {
809
                    /* The MV predictor is calculated according to the process
810
                     defined in 8.4.1.2.1 */
811
4.93k
                    ih264d_get_motion_vector_predictor(
812
4.93k
                                    ps_mv_final_pred,
813
4.93k
                                    ps_mv_pred,
814
4.93k
                                    u1_ref_idx,
815
4.93k
                                    0,
816
4.93k
                                    (const UWORD8 *)gau1_ih264d_mv_pred_condition);
817
4.93k
                }
818
15.5k
            }
819
31.0k
            break;
820
0
        case B_DIRECT_SPATIAL:
821
            /* Case when the MB has been skipped */
822
            /* If either of left or the top subMB is not present
823
             OR
824
             If both the MV components of either the left or the top subMB are
825
             zero and their reference frame pointer pointing to 0
826
             then MV for the skipped MB is zero
827
             else the Median of the mv_pred_t is used */
828
0
            uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[0];
829
0
            uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[0];
830
0
            uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[0];
831
832
0
            ps_mv_final_pred->i1_ref_frame[0] = MIN(uc_temp1,
833
0
                                                  MIN(uc_temp2, uc_temp3));
834
835
0
            uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[1];
836
0
            uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[1];
837
0
            uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[1];
838
839
0
            ps_mv_final_pred->i1_ref_frame[1] = MIN(uc_temp1,
840
0
                                                  MIN(uc_temp2, uc_temp3));
841
842
0
            if((ps_mv_final_pred->i1_ref_frame[0] < 0)
843
0
                            && (ps_mv_final_pred->i1_ref_frame[1] < 0))
844
0
            {
845
0
                u1_direct_zero_pred_flag = 1;
846
0
                ps_mv_final_pred->i1_ref_frame[0] = 0;
847
0
                ps_mv_final_pred->i1_ref_frame[1] = 0;
848
0
            }
849
0
            ih264d_get_motion_vector_predictor(
850
0
                            ps_mv_final_pred, ps_mv_pred,
851
0
                            ps_mv_final_pred->i1_ref_frame[0], 0,
852
0
                            (const UWORD8 *)gau1_ih264d_mv_pred_condition);
853
854
0
            ih264d_get_motion_vector_predictor(
855
0
                            ps_mv_final_pred, ps_mv_pred,
856
0
                            ps_mv_final_pred->i1_ref_frame[1], 1,
857
0
                            (const UWORD8 *)gau1_ih264d_mv_pred_condition);
858
859
0
            break;
860
709k
        case MB_SKIP:
861
            /* Case when the MB has been skipped */
862
            /* If either of left or the top subMB is not present
863
             OR
864
             If both the MV components of either the left or the top subMB are
865
             zero and their reference frame pointer pointing to 0
866
             then MV for the skipped MB is zero
867
             else the Median of the mv_pred_t is used */
868
709k
            u1_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
869
709k
            LEFT_MB_AVAILABLE_MASK);
870
709k
            u1_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
871
709k
            TOP_MB_AVAILABLE_MASK);
872
709k
            if(((u1_a_in * u1_b_in) == 0)
873
591k
                            || ((ps_mv_pred[LEFT]->i2_mv[0]
874
591k
                                            | ps_mv_pred[LEFT]->i2_mv[1]
875
591k
                                            | ps_mv_pred[LEFT]->i1_ref_frame[0])
876
591k
                                            == 0)
877
6.79k
                            || ((ps_mv_pred[TOP]->i2_mv[0]
878
6.79k
                                            | ps_mv_pred[TOP]->i2_mv[1]
879
6.79k
                                            | ps_mv_pred[TOP]->i1_ref_frame[0])
880
6.79k
                                            == 0))
881
704k
            {
882
883
704k
                ps_mv_final_pred->i2_mv[0] = 0;
884
704k
                ps_mv_final_pred->i2_mv[1] = 0;
885
704k
                break;
886
704k
            }
887
            /* If the condition above is not true calculate the MV predictor
888
             according to the process defined in sec 8.4.1.2.1 */
889
89.1k
        default:
890
89.1k
            ih264d_get_motion_vector_predictor(
891
89.1k
                            ps_mv_final_pred, ps_mv_pred, u1_ref_idx, 0,
892
89.1k
                            (const UWORD8 *)gau1_ih264d_mv_pred_condition);
893
89.1k
            break;
894
854k
    }
895
896
854k
    return (u1_direct_zero_pred_flag);
897
854k
}
898
#endif
899
900
/*****************************************************************************/
901
/*                                                                           */
902
/*  Function Name : ih264d_mvpred_mbaff                                             */
903
/*                                                                           */
904
/*  Description   : This function calculates the motion vector predictor,    */
905
/*  Inputs        : <What inputs does the function take?>                    */
906
/*  Globals       : None                                                     */
907
/*  Processing    : The neighbours A(Left),B(Top),C(TopRight) are calculated */
908
/*                  and based on the type of Mb the prediction is            */
909
/*                  appropriately done                                       */
910
/*  Outputs       : populates ps_mv_final_pred structure                       */
911
/*  Returns       : u1_direct_zero_pred_flag which is used only in              */
912
/*                    decodeSpatialdirect()                                  */
913
/*                                                                           */
914
/*  Issues        : <List any issues or problems with this function>         */
915
/*                                                                           */
916
/*  Revision History:                                                        */
917
/*                                                                           */
918
/*         DD MM YYYY   Author(s)       Changes (Describe the changes made)  */
919
/*         03 05 2005   TA              First Draft                          */
920
/*                                                                           */
921
/*****************************************************************************/
922
923
UWORD8 ih264d_mvpred_mbaff(dec_struct_t *ps_dec,
924
                           dec_mb_info_t *ps_cur_mb_info,
925
                           mv_pred_t *ps_mv_nmb,
926
                           mv_pred_t *ps_mv_ntop,
927
                           mv_pred_t *ps_mv_final_pred,
928
                           UWORD32 u4_sub_mb_num,
929
                           UWORD8 uc_mb_part_width,
930
                           UWORD8 u1_lx_start,
931
                           UWORD8 u1_lxend,
932
                           UWORD8 u1_mb_mc_mode)
933
0
{
934
0
    UWORD8 u1_a_in, u1_b_in, uc_temp1, uc_temp2, uc_temp3;
935
0
    mv_pred_t *ps_mv_pred[3], s_mvPred[3];
936
0
    UWORD8 uc_B2, pu0_scale[3], i, uc_lx, u1_ref_idx;
937
0
    UWORD8 u1_direct_zero_pred_flag = 0;
938
939
0
    pu0_scale[0] = pu0_scale[1] = pu0_scale[2] = 0;
940
0
    ih264d_mbaff_mv_pred(ps_mv_pred, u4_sub_mb_num, ps_mv_nmb, ps_mv_ntop, ps_dec,
941
0
                         uc_mb_part_width, ps_cur_mb_info, pu0_scale);
942
0
    for(i = 0; i < 3; i++)
943
0
    {
944
0
        if(pu0_scale[i] != 0)
945
0
        {
946
0
            memcpy(&s_mvPred[i], ps_mv_pred[i], sizeof(mv_pred_t));
947
0
            if(pu0_scale[i] == 1)
948
0
            {
949
0
                s_mvPred[i].i1_ref_frame[0] = s_mvPred[i].i1_ref_frame[0] << 1;
950
0
                s_mvPred[i].i1_ref_frame[1] = s_mvPred[i].i1_ref_frame[1] << 1;
951
0
                s_mvPred[i].i2_mv[1] = SIGN_POW2_DIV(s_mvPred[i].i2_mv[1], 1);
952
0
                s_mvPred[i].i2_mv[3] = SIGN_POW2_DIV(s_mvPred[i].i2_mv[3], 1);
953
0
            }
954
0
            else
955
0
            {
956
0
                s_mvPred[i].i1_ref_frame[0] = s_mvPred[i].i1_ref_frame[0] >> 1;
957
0
                s_mvPred[i].i1_ref_frame[1] = s_mvPred[i].i1_ref_frame[1] >> 1;
958
0
                s_mvPred[i].i2_mv[1] = s_mvPred[i].i2_mv[1] << 1;
959
0
                s_mvPred[i].i2_mv[3] = s_mvPred[i].i2_mv[3] << 1;
960
0
            }
961
0
            ps_mv_pred[i] = &s_mvPred[i];
962
0
        }
963
0
    }
964
965
0
    for(uc_lx = u1_lx_start; uc_lx < u1_lxend; uc_lx++)
966
0
    {
967
0
        u1_ref_idx = ps_mv_final_pred->i1_ref_frame[uc_lx];
968
0
        uc_B2 = (uc_lx << 1);
969
0
        switch(u1_mb_mc_mode)
970
0
        {
971
0
            case PRED_16x8:
972
                /* Directional prediction for a 16x8 MB partition */
973
0
                if(u4_sub_mb_num == 0)
974
0
                {
975
                    /* Calculating the MV pred for the top 16x8 block */
976
0
                    if(ps_mv_pred[TOP]->i1_ref_frame[uc_lx] == u1_ref_idx)
977
0
                    {
978
                        /* If the reference frame used by the top subMB is same as the
979
                         reference frame used by the current block then MV predictor to
980
                         be used for the current block is same as the MV of the top
981
                         subMB */
982
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
983
0
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 0];
984
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
985
0
                                        ps_mv_pred[TOP]->i2_mv[uc_B2 + 1];
986
0
                    }
987
0
                    else
988
0
                    {
989
                        /* The MV predictor is calculated according to the process
990
                         defined in 8.4.1.2.1 */
991
0
                        ih264d_get_motion_vector_predictor(
992
0
                                        ps_mv_final_pred,
993
0
                                        ps_mv_pred,
994
0
                                        u1_ref_idx,
995
0
                                        uc_lx,
996
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
997
0
                    }
998
0
                }
999
0
                else
1000
0
                {
1001
0
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
1002
0
                    {
1003
                        /* If the reference frame used by the left subMB is same as the
1004
                         reference frame used by the current block then MV predictor to
1005
                         be used for the current block is same as the MV of the left
1006
                         subMB */
1007
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
1008
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
1009
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
1010
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
1011
0
                    }
1012
0
                    else
1013
0
                    {
1014
                        /* The MV predictor is calculated according to the process
1015
                         defined in 8.4.1.2.1 */
1016
0
                        ih264d_get_motion_vector_predictor(
1017
0
                                        ps_mv_final_pred,
1018
0
                                        ps_mv_pred,
1019
0
                                        u1_ref_idx,
1020
0
                                        uc_lx,
1021
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1022
0
                    }
1023
0
                }
1024
0
                break;
1025
0
            case PRED_8x16:
1026
                /* Directional prediction for a 8x16 MB partition */
1027
0
                if(u4_sub_mb_num == 0)
1028
0
                {
1029
0
                    if(ps_mv_pred[LEFT]->i1_ref_frame[uc_lx] == u1_ref_idx)
1030
0
                    {
1031
                        /* If the reference frame used by the left subMB is same as the
1032
                         reference frame used by the current block then MV predictor to
1033
                         be used for the current block is same as the MV of the left
1034
                         subMB */
1035
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
1036
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 0];
1037
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
1038
0
                                        ps_mv_pred[LEFT]->i2_mv[uc_B2 + 1];
1039
0
                    }
1040
0
                    else
1041
0
                    {
1042
                        /* The MV predictor is calculated according to the process
1043
                         defined in 8.4.1.2.1 */
1044
0
                        ih264d_get_motion_vector_predictor(
1045
0
                                        ps_mv_final_pred,
1046
0
                                        ps_mv_pred,
1047
0
                                        u1_ref_idx,
1048
0
                                        uc_lx,
1049
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1050
0
                    }
1051
0
                }
1052
0
                else
1053
0
                {
1054
0
                    if(ps_mv_pred[TOP_R]->i1_ref_frame[uc_lx] == u1_ref_idx)
1055
0
                    {
1056
                        /* If the reference frame used by the top right subMB is same as
1057
                         the reference frame used by the current block then MV
1058
                         predictor to be used for the current block is same as the MV
1059
                         of the left subMB */
1060
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 0] =
1061
0
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 0];
1062
0
                        ps_mv_final_pred->i2_mv[uc_B2 + 1] =
1063
0
                                        ps_mv_pred[TOP_R]->i2_mv[uc_B2 + 1];
1064
0
                    }
1065
0
                    else
1066
0
                    {
1067
                        /* The MV predictor is calculated according to the process
1068
                         defined in 8.4.1.2.1 */
1069
0
                        ih264d_get_motion_vector_predictor(
1070
0
                                        ps_mv_final_pred,
1071
0
                                        ps_mv_pred,
1072
0
                                        u1_ref_idx,
1073
0
                                        uc_lx,
1074
0
                                        (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1075
0
                    }
1076
0
                }
1077
0
                break;
1078
0
            case B_DIRECT_SPATIAL:
1079
                /* Case when the MB has been skipped */
1080
                /* If either of left or the top subMB is not present
1081
                 OR
1082
                 If both the MV components of either the left or the top subMB are
1083
                 zero and their reference frame pointer pointing to 0
1084
                 then MV for the skipped MB is zero
1085
                 else the Median of the mv_pred_t is used */
1086
0
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[0];
1087
0
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[0];
1088
0
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[0];
1089
1090
0
                ps_mv_final_pred->i1_ref_frame[0] = MIN(uc_temp1,
1091
0
                                                      MIN(uc_temp2, uc_temp3));
1092
1093
0
                uc_temp1 = (UWORD8)ps_mv_pred[LEFT]->i1_ref_frame[1];
1094
0
                uc_temp2 = (UWORD8)ps_mv_pred[TOP]->i1_ref_frame[1];
1095
0
                uc_temp3 = (UWORD8)ps_mv_pred[TOP_R]->i1_ref_frame[1];
1096
1097
0
                ps_mv_final_pred->i1_ref_frame[1] = MIN(uc_temp1,
1098
0
                                                      MIN(uc_temp2, uc_temp3));
1099
1100
                /* If the reference indices are negative clip the scaled reference indices to -1 */
1101
                /* i.e invalid reference index */
1102
1103
                /*if(ps_mv_final_pred->i1_ref_frame[0] < 0)
1104
                 ps_mv_final_pred->i1_ref_frame[0] = -1;
1105
1106
                 if(ps_mv_final_pred->i1_ref_frame[1] < 0)
1107
                 ps_mv_final_pred->i1_ref_frame[1] = -1; */
1108
1109
0
                if((ps_mv_final_pred->i1_ref_frame[0] < 0)
1110
0
                                && (ps_mv_final_pred->i1_ref_frame[1] < 0))
1111
0
                {
1112
0
                    u1_direct_zero_pred_flag = 1;
1113
0
                    ps_mv_final_pred->i1_ref_frame[0] = 0;
1114
0
                    ps_mv_final_pred->i1_ref_frame[1] = 0;
1115
0
                }
1116
0
                ih264d_get_motion_vector_predictor(
1117
0
                                ps_mv_final_pred, ps_mv_pred,
1118
0
                                ps_mv_final_pred->i1_ref_frame[0], 0,
1119
0
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1120
1121
0
                ih264d_get_motion_vector_predictor(
1122
0
                                ps_mv_final_pred, ps_mv_pred,
1123
0
                                ps_mv_final_pred->i1_ref_frame[1], 1,
1124
0
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1125
1126
0
                break;
1127
0
            case MB_SKIP:
1128
                /* Case when the MB has been skipped */
1129
                /* If either of left or the top subMB is not present
1130
                 OR
1131
                 If both the MV components of either the left or the top subMB are
1132
                 zero and their reference frame pointer pointing to 0
1133
                 then MV for the skipped MB is zero
1134
                 else the Median of the mv_pred_t is used */
1135
0
                u1_a_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
1136
0
                LEFT_MB_AVAILABLE_MASK);
1137
0
                u1_b_in = (ps_cur_mb_info->u1_mb_ngbr_availablity &
1138
0
                TOP_MB_AVAILABLE_MASK);
1139
0
                if(((u1_a_in * u1_b_in) == 0)
1140
0
                                || ((ps_mv_pred[LEFT]->i2_mv[0]
1141
0
                                                | ps_mv_pred[LEFT]->i2_mv[1]
1142
0
                                                | ps_mv_pred[LEFT]->i1_ref_frame[0])
1143
0
                                                == 0)
1144
0
                                || ((ps_mv_pred[TOP]->i2_mv[0]
1145
0
                                                | ps_mv_pred[TOP]->i2_mv[1]
1146
0
                                                | ps_mv_pred[TOP]->i1_ref_frame[0])
1147
0
                                                == 0))
1148
0
                {
1149
0
                    ps_mv_final_pred->i2_mv[0] = 0;
1150
0
                    ps_mv_final_pred->i2_mv[1] = 0;
1151
0
                    break;
1152
0
                }
1153
                /* If the condition above is not true calculate the MV predictor
1154
                 according to the process defined in sec 8.4.1.2.1 */
1155
0
            default:
1156
0
                ih264d_get_motion_vector_predictor(
1157
0
                                ps_mv_final_pred, ps_mv_pred, u1_ref_idx, uc_lx,
1158
0
                                (const UWORD8 *)gau1_ih264d_mv_pred_condition);
1159
0
                break;
1160
0
        }
1161
0
    }
1162
0
    return (u1_direct_zero_pred_flag);
1163
0
}
1164
1165
1166
1167
1168
void ih264d_rep_mv_colz(dec_struct_t *ps_dec,
1169
                        mv_pred_t *ps_mv_pred_src,
1170
                        mv_pred_t *ps_mv_pred_dst,
1171
                        UWORD32 u4_sub_mb_num,
1172
                        UWORD8 u1_colz,
1173
                        UWORD8 u1_ht,
1174
                        UWORD8 u1_wd)
1175
2.02M
{
1176
1177
2.02M
    UWORD8 k, m;
1178
2.02M
    UWORD8 *pu1_colz = ps_dec->pu1_col_zero_flag + ps_dec->i4_submb_ofst
1179
2.02M
                    + u4_sub_mb_num;
1180
1181
9.67M
    for(k = 0; k < u1_ht; k++)
1182
7.65M
    {
1183
37.3M
        for(m = 0; m < u1_wd; m++)
1184
29.7M
        {
1185
29.7M
            *(ps_mv_pred_dst + m) = *(ps_mv_pred_src);
1186
29.7M
            *(pu1_colz + m) = u1_colz;
1187
1188
29.7M
        }
1189
7.65M
        pu1_colz += SUB_BLK_WIDTH;
1190
7.65M
        ps_mv_pred_dst += SUB_BLK_WIDTH;
1191
7.65M
    }
1192
2.02M
}
1193