Coverage Report

Created: 2025-10-10 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libavif/ext/aom/av1/common/restoration.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 *
11
 */
12
13
#include <math.h>
14
#include <stddef.h>
15
16
#include "config/aom_config.h"
17
#include "config/aom_scale_rtcd.h"
18
19
#include "aom/internal/aom_codec_internal.h"
20
#include "aom_mem/aom_mem.h"
21
#include "aom_dsp/aom_dsp_common.h"
22
#include "aom_mem/aom_mem.h"
23
#include "aom_ports/mem.h"
24
#include "aom_util/aom_pthread.h"
25
26
#include "av1/common/av1_common_int.h"
27
#include "av1/common/convolve.h"
28
#include "av1/common/enums.h"
29
#include "av1/common/resize.h"
30
#include "av1/common/restoration.h"
31
#include "av1/common/thread_common.h"
32
33
// The 's' values are calculated based on original 'r' and 'e' values in the
34
// spec using GenSgrprojVtable().
35
// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid).
36
const sgr_params_type av1_sgr_params[SGRPROJ_PARAMS] = {
37
  { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } },
38
  { { 2, 1 }, { 93, 1618 } },  { { 2, 1 }, { 80, 1438 } },
39
  { { 2, 1 }, { 70, 1295 } },  { { 2, 1 }, { 58, 1177 } },
40
  { { 2, 1 }, { 47, 1079 } },  { { 2, 1 }, { 37, 996 } },
41
  { { 2, 1 }, { 30, 925 } },   { { 2, 1 }, { 25, 863 } },
42
  { { 0, 1 }, { -1, 2589 } },  { { 0, 1 }, { -1, 1618 } },
43
  { { 0, 1 }, { -1, 1177 } },  { { 0, 1 }, { -1, 925 } },
44
  { { 2, 0 }, { 56, -1 } },    { { 2, 0 }, { 22, -1 } },
45
};
46
47
void av1_get_upsampled_plane_size(const AV1_COMMON *cm, int is_uv, int *plane_w,
48
210k
                                  int *plane_h) {
49
210k
  int ss_x = is_uv && cm->seq_params->subsampling_x;
50
210k
  int ss_y = is_uv && cm->seq_params->subsampling_y;
51
210k
  *plane_w = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
52
210k
  *plane_h = ROUND_POWER_OF_TWO(cm->height, ss_y);
53
210k
}
54
55
// Count horizontal or vertical units in a plane (use a width or height for
56
// plane_size, respectively). We basically want to divide the plane size by the
57
// size of a restoration unit. Rather than rounding up unconditionally as you
58
// might expect, we round to nearest, which models the way a right or bottom
59
// restoration unit can extend to up to 150% its normal width or height.
60
//
61
// The max with 1 is to deal with small frames, which may be smaller than
62
// half of an LR unit in size.
63
177k
int av1_lr_count_units(int unit_size, int plane_size) {
64
177k
  return AOMMAX((plane_size + (unit_size >> 1)) / unit_size, 1);
65
177k
}
66
67
void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
68
9.70k
                                  int is_uv) {
69
9.70k
  int plane_w, plane_h;
70
9.70k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
71
72
9.70k
  const int unit_size = rsi->restoration_unit_size;
73
9.70k
  const int horz_units = av1_lr_count_units(unit_size, plane_w);
74
9.70k
  const int vert_units = av1_lr_count_units(unit_size, plane_h);
75
76
9.70k
  rsi->num_rest_units = horz_units * vert_units;
77
9.70k
  rsi->horz_units = horz_units;
78
9.70k
  rsi->vert_units = vert_units;
79
80
9.70k
  aom_free(rsi->unit_info);
81
9.70k
  CHECK_MEM_ERROR(cm, rsi->unit_info,
82
9.70k
                  (RestorationUnitInfo *)aom_memalign(
83
9.70k
                      16, sizeof(*rsi->unit_info) * rsi->num_rest_units));
84
9.70k
}
85
86
362k
void av1_free_restoration_struct(RestorationInfo *rst_info) {
87
362k
  aom_free(rst_info->unit_info);
88
362k
  rst_info->unit_info = NULL;
89
362k
}
90
91
#if 0
92
// Pair of values for each sgrproj parameter:
93
// Index 0 corresponds to r[0], e[0]
94
// Index 1 corresponds to r[1], e[1]
95
int sgrproj_mtable[SGRPROJ_PARAMS][2];
96
97
static void GenSgrprojVtable(void) {
98
  for (int i = 0; i < SGRPROJ_PARAMS; ++i) {
99
    const sgr_params_type *const params = &av1_sgr_params[i];
100
    for (int j = 0; j < 2; ++j) {
101
      const int e = params->e[j];
102
      const int r = params->r[j];
103
      if (r == 0) {                 // filter is disabled
104
        sgrproj_mtable[i][j] = -1;  // mark invalid
105
      } else {                      // filter is enabled
106
        const int n = (2 * r + 1) * (2 * r + 1);
107
        const int n2e = n * n * e;
108
        assert(n2e != 0);
109
        sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
110
      }
111
    }
112
  }
113
}
114
#endif
115
116
120k
void av1_loop_restoration_precal(void) {
117
#if 0
118
  GenSgrprojVtable();
119
#endif
120
120k
}
121
122
static void extend_frame_lowbd(uint8_t *data, int width, int height,
123
                               ptrdiff_t stride, int border_horz,
124
18.5k
                               int border_vert) {
125
18.5k
  uint8_t *data_p;
126
18.5k
  int i;
127
1.40M
  for (i = 0; i < height; ++i) {
128
1.38M
    data_p = data + i * stride;
129
1.38M
    memset(data_p - border_horz, data_p[0], border_horz);
130
1.38M
    memset(data_p + width, data_p[width - 1], border_horz);
131
1.38M
  }
132
18.5k
  data_p = data - border_horz;
133
74.0k
  for (i = -border_vert; i < 0; ++i) {
134
55.5k
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
135
55.5k
  }
136
74.0k
  for (i = height; i < height + border_vert; ++i) {
137
55.5k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
138
55.5k
           width + 2 * border_horz);
139
55.5k
  }
140
18.5k
}
141
142
#if CONFIG_AV1_HIGHBITDEPTH
143
static void extend_frame_highbd(uint16_t *data, int width, int height,
144
                                ptrdiff_t stride, int border_horz,
145
6.67k
                                int border_vert) {
146
6.67k
  uint16_t *data_p;
147
6.67k
  int i, j;
148
1.31M
  for (i = 0; i < height; ++i) {
149
1.31M
    data_p = data + i * stride;
150
5.24M
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
151
5.24M
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
152
1.31M
  }
153
6.67k
  data_p = data - border_horz;
154
26.6k
  for (i = -border_vert; i < 0; ++i) {
155
20.0k
    memcpy(data_p + i * stride, data_p,
156
20.0k
           (width + 2 * border_horz) * sizeof(uint16_t));
157
20.0k
  }
158
26.6k
  for (i = height; i < height + border_vert; ++i) {
159
20.0k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
160
20.0k
           (width + 2 * border_horz) * sizeof(uint16_t));
161
20.0k
  }
162
6.67k
}
163
164
static void copy_rest_unit_highbd(int width, int height, const uint16_t *src,
165
                                  int src_stride, uint16_t *dst,
166
3.91k
                                  int dst_stride) {
167
563k
  for (int i = 0; i < height; ++i)
168
559k
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
169
3.91k
}
170
#endif
171
172
void av1_extend_frame(uint8_t *data, int width, int height, int stride,
173
25.1k
                      int border_horz, int border_vert, int highbd) {
174
25.1k
#if CONFIG_AV1_HIGHBITDEPTH
175
25.1k
  if (highbd) {
176
6.67k
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
177
6.67k
                        border_horz, border_vert);
178
6.67k
    return;
179
6.67k
  }
180
18.5k
#endif
181
18.5k
  (void)highbd;
182
18.5k
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
183
18.5k
}
184
185
static void copy_rest_unit_lowbd(int width, int height, const uint8_t *src,
186
4.15k
                                 int src_stride, uint8_t *dst, int dst_stride) {
187
409k
  for (int i = 0; i < height; ++i)
188
404k
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
189
4.15k
}
190
191
static void copy_rest_unit(int width, int height, const uint8_t *src,
192
                           int src_stride, uint8_t *dst, int dst_stride,
193
8.07k
                           int highbd) {
194
8.07k
#if CONFIG_AV1_HIGHBITDEPTH
195
8.07k
  if (highbd) {
196
3.90k
    copy_rest_unit_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
197
3.90k
                          CONVERT_TO_SHORTPTR(dst), dst_stride);
198
3.90k
    return;
199
3.90k
  }
200
4.16k
#endif
201
4.16k
  (void)highbd;
202
4.16k
  copy_rest_unit_lowbd(width, height, src, src_stride, dst, dst_stride);
203
4.16k
}
204
205
528k
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))
206
207
// With striped loop restoration, the filtering for each 64-pixel stripe gets
208
// most of its input from the output of CDEF (stored in data8), but we need to
209
// fill out a border of 3 pixels above/below the stripe according to the
210
// following rules:
211
//
212
// * At the top and bottom of the frame, we copy the outermost row of CDEF
213
//   pixels three times. This extension is done by a call to av1_extend_frame()
214
//   at the start of the loop restoration process, so the value of
215
//   copy_above/copy_below doesn't strictly matter.
216
//
217
// * All other boundaries are stripe boundaries within the frame. In that case,
218
//   we take 2 rows of deblocked pixels and extend them to 3 rows of context.
219
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
220
                                     int plane_w, int plane_h, int ss_y,
221
36.8k
                                     int *copy_above, int *copy_below) {
222
36.8k
  (void)plane_w;
223
224
36.8k
  *copy_above = 1;
225
36.8k
  *copy_below = 1;
226
227
36.8k
  const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
228
36.8k
  const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
229
230
36.8k
  const int first_stripe_in_plane = (limits->v_start == 0);
231
36.8k
  const int this_stripe_height =
232
36.8k
      full_stripe_height - (first_stripe_in_plane ? runit_offset : 0);
233
36.8k
  const int last_stripe_in_plane =
234
36.8k
      (limits->v_start + this_stripe_height >= plane_h);
235
236
36.8k
  if (first_stripe_in_plane) *copy_above = 0;
237
36.8k
  if (last_stripe_in_plane) *copy_below = 0;
238
36.8k
}
239
240
// Overwrite the border pixels around a processing stripe so that the conditions
241
// listed above get_stripe_boundary_info() are preserved.
242
// We save the pixels which get overwritten into a temporary buffer, so that
243
// they can be restored by restore_processing_stripe_boundary() after we've
244
// processed the stripe.
245
//
246
// limits gives the rectangular limits of the remaining stripes for the current
247
// restoration unit. rsb is the stored stripe boundaries (taken from either
248
// deblock or CDEF output as necessary).
249
static void setup_processing_stripe_boundary(
250
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
251
    int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride,
252
36.8k
    RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) {
253
  // Offsets within the line buffers. The buffer logically starts at column
254
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
255
  // has column x0 in the buffer.
256
36.8k
  const int buf_stride = rsb->stripe_boundary_stride;
257
36.8k
  const int buf_x0_off = limits->h_start;
258
36.8k
  const int line_width =
259
36.8k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
260
36.8k
  const int line_size = line_width << use_highbd;
261
262
36.8k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
263
264
  // Replace RESTORATION_BORDER pixels above the top of the stripe
265
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
266
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
267
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
268
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
269
36.8k
  if (!opt) {
270
29.2k
    if (copy_above) {
271
19.1k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
272
273
76.2k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
274
57.1k
        const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
275
57.1k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
276
57.1k
        const uint8_t *buf =
277
57.1k
            rsb->stripe_boundary_above + (buf_off << use_highbd);
278
57.1k
        uint8_t *dst8 = data8_tl + i * data_stride;
279
        // Save old pixels, then replace with data from stripe_boundary_above
280
57.1k
        memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
281
57.1k
               REAL_PTR(use_highbd, dst8), line_size);
282
57.1k
        memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
283
57.1k
      }
284
19.1k
    }
285
286
    // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
287
    // The second buffer row is repeated, so src_row gets the values 0, 1, 1
288
    // for i = 0, 1, 2.
289
29.2k
    if (copy_below) {
290
19.0k
      const int stripe_end = limits->v_start + h;
291
19.0k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
292
293
76.0k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
294
57.0k
        const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
295
57.0k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
296
57.0k
        const uint8_t *src =
297
57.0k
            rsb->stripe_boundary_below + (buf_off << use_highbd);
298
299
57.0k
        uint8_t *dst8 = data8_bl + i * data_stride;
300
        // Save old pixels, then replace with data from stripe_boundary_below
301
57.0k
        memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
302
57.0k
        memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
303
57.0k
      }
304
19.0k
    }
305
29.2k
  } else {
306
7.59k
    if (copy_above) {
307
7.47k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
308
309
      // Only save and overwrite i=-RESTORATION_BORDER line.
310
7.47k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
311
      // Save old pixels, then replace with data from stripe_boundary_above
312
7.47k
      memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size);
313
7.47k
      memcpy(REAL_PTR(use_highbd, dst8),
314
7.47k
             REAL_PTR(use_highbd,
315
7.47k
                      data8_tl + (-RESTORATION_BORDER + 1) * data_stride),
316
7.47k
             line_size);
317
7.47k
    }
318
319
7.59k
    if (copy_below) {
320
7.55k
      const int stripe_end = limits->v_start + h;
321
7.55k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
322
323
      // Only save and overwrite i=2 line.
324
7.55k
      uint8_t *dst8 = data8_bl + 2 * data_stride;
325
      // Save old pixels, then replace with data from stripe_boundary_below
326
7.55k
      memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size);
327
7.55k
      memcpy(REAL_PTR(use_highbd, dst8),
328
7.55k
             REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size);
329
7.55k
    }
330
7.59k
  }
331
36.8k
}
332
333
// Once a processing stripe is finished, this function sets the boundary
334
// pixels which were overwritten by setup_processing_stripe_boundary()
335
// back to their original values
336
static void restore_processing_stripe_boundary(
337
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
338
    int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above,
339
36.7k
    int copy_below, int opt) {
340
36.7k
  const int line_width =
341
36.7k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
342
36.7k
  const int line_size = line_width << use_highbd;
343
344
36.7k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
345
346
36.7k
  if (!opt) {
347
29.2k
    if (copy_above) {
348
19.1k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
349
76.3k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
350
57.2k
        uint8_t *dst8 = data8_tl + i * data_stride;
351
57.2k
        memcpy(REAL_PTR(use_highbd, dst8),
352
57.2k
               rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
353
57.2k
      }
354
19.1k
    }
355
356
29.2k
    if (copy_below) {
357
19.0k
      const int stripe_bottom = limits->v_start + h;
358
19.0k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
359
360
76.3k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
361
57.2k
        if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
362
363
57.2k
        uint8_t *dst8 = data8_bl + i * data_stride;
364
57.2k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
365
57.2k
      }
366
19.0k
    }
367
29.2k
  } else {
368
7.53k
    if (copy_above) {
369
7.40k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
370
371
      // Only restore i=-RESTORATION_BORDER line.
372
7.40k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
373
7.40k
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size);
374
7.40k
    }
375
376
7.53k
    if (copy_below) {
377
7.40k
      const int stripe_bottom = limits->v_start + h;
378
7.40k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
379
380
      // Only restore i=2 line.
381
7.40k
      if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) {
382
7.40k
        uint8_t *dst8 = data8_bl + 2 * data_stride;
383
7.40k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size);
384
7.40k
      }
385
7.40k
    }
386
7.53k
  }
387
36.7k
}
388
389
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
390
                                 int stripe_width, int stripe_height,
391
                                 int procunit_width, const uint8_t *src,
392
                                 int src_stride, uint8_t *dst, int dst_stride,
393
                                 int32_t *tmpbuf, int bit_depth,
394
13.4k
                                 struct aom_internal_error_info *error_info) {
395
13.4k
  (void)tmpbuf;
396
13.4k
  (void)bit_depth;
397
13.4k
  (void)error_info;
398
13.4k
  assert(bit_depth == 8);
399
13.4k
  const WienerConvolveParams conv_params = get_conv_params_wiener(8);
400
401
37.3k
  for (int j = 0; j < stripe_width; j += procunit_width) {
402
23.8k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
403
23.8k
    const uint8_t *src_p = src + j;
404
23.8k
    uint8_t *dst_p = dst + j;
405
23.8k
    av1_wiener_convolve_add_src(
406
23.8k
        src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16,
407
23.8k
        rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params);
408
23.8k
  }
409
13.4k
}
410
411
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
412
   over the input. The window is of size (2r + 1)x(2r + 1), and we
413
   specialize to r = 1, 2, 3. A default function is used for r > 3.
414
415
   Each loop follows the same format: We keep a window's worth of input
416
   in individual variables and select data out of that as appropriate.
417
*/
418
static void boxsum1(int32_t *src, int width, int height, int src_stride,
419
0
                    int sqr, int32_t *dst, int dst_stride) {
420
0
  int i, j, a, b, c;
421
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
422
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
423
424
  // Vertical sum over 3-pixel regions, from src into dst.
425
0
  if (!sqr) {
426
0
    for (j = 0; j < width; ++j) {
427
0
      a = src[j];
428
0
      b = src[src_stride + j];
429
0
      c = src[2 * src_stride + j];
430
431
0
      dst[j] = a + b;
432
0
      for (i = 1; i < height - 2; ++i) {
433
        // Loop invariant: At the start of each iteration,
434
        // a = src[(i - 1) * src_stride + j]
435
        // b = src[(i    ) * src_stride + j]
436
        // c = src[(i + 1) * src_stride + j]
437
0
        dst[i * dst_stride + j] = a + b + c;
438
0
        a = b;
439
0
        b = c;
440
0
        c = src[(i + 2) * src_stride + j];
441
0
      }
442
0
      dst[i * dst_stride + j] = a + b + c;
443
0
      dst[(i + 1) * dst_stride + j] = b + c;
444
0
    }
445
0
  } else {
446
0
    for (j = 0; j < width; ++j) {
447
0
      a = src[j] * src[j];
448
0
      b = src[src_stride + j] * src[src_stride + j];
449
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
450
451
0
      dst[j] = a + b;
452
0
      for (i = 1; i < height - 2; ++i) {
453
0
        dst[i * dst_stride + j] = a + b + c;
454
0
        a = b;
455
0
        b = c;
456
0
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
457
0
      }
458
0
      dst[i * dst_stride + j] = a + b + c;
459
0
      dst[(i + 1) * dst_stride + j] = b + c;
460
0
    }
461
0
  }
462
463
  // Horizontal sum over 3-pixel regions of dst
464
0
  for (i = 0; i < height; ++i) {
465
0
    a = dst[i * dst_stride];
466
0
    b = dst[i * dst_stride + 1];
467
0
    c = dst[i * dst_stride + 2];
468
469
0
    dst[i * dst_stride] = a + b;
470
0
    for (j = 1; j < width - 2; ++j) {
471
      // Loop invariant: At the start of each iteration,
472
      // a = src[i * src_stride + (j - 1)]
473
      // b = src[i * src_stride + (j    )]
474
      // c = src[i * src_stride + (j + 1)]
475
0
      dst[i * dst_stride + j] = a + b + c;
476
0
      a = b;
477
0
      b = c;
478
0
      c = dst[i * dst_stride + (j + 2)];
479
0
    }
480
0
    dst[i * dst_stride + j] = a + b + c;
481
0
    dst[i * dst_stride + (j + 1)] = b + c;
482
0
  }
483
0
}
484
485
static void boxsum2(int32_t *src, int width, int height, int src_stride,
486
0
                    int sqr, int32_t *dst, int dst_stride) {
487
0
  int i, j, a, b, c, d, e;
488
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
489
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
490
491
  // Vertical sum over 5-pixel regions, from src into dst.
492
0
  if (!sqr) {
493
0
    for (j = 0; j < width; ++j) {
494
0
      a = src[j];
495
0
      b = src[src_stride + j];
496
0
      c = src[2 * src_stride + j];
497
0
      d = src[3 * src_stride + j];
498
0
      e = src[4 * src_stride + j];
499
500
0
      dst[j] = a + b + c;
501
0
      dst[dst_stride + j] = a + b + c + d;
502
0
      for (i = 2; i < height - 3; ++i) {
503
        // Loop invariant: At the start of each iteration,
504
        // a = src[(i - 2) * src_stride + j]
505
        // b = src[(i - 1) * src_stride + j]
506
        // c = src[(i    ) * src_stride + j]
507
        // d = src[(i + 1) * src_stride + j]
508
        // e = src[(i + 2) * src_stride + j]
509
0
        dst[i * dst_stride + j] = a + b + c + d + e;
510
0
        a = b;
511
0
        b = c;
512
0
        c = d;
513
0
        d = e;
514
0
        e = src[(i + 3) * src_stride + j];
515
0
      }
516
0
      dst[i * dst_stride + j] = a + b + c + d + e;
517
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
518
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
519
0
    }
520
0
  } else {
521
0
    for (j = 0; j < width; ++j) {
522
0
      a = src[j] * src[j];
523
0
      b = src[src_stride + j] * src[src_stride + j];
524
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
525
0
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
526
0
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
527
528
0
      dst[j] = a + b + c;
529
0
      dst[dst_stride + j] = a + b + c + d;
530
0
      for (i = 2; i < height - 3; ++i) {
531
0
        dst[i * dst_stride + j] = a + b + c + d + e;
532
0
        a = b;
533
0
        b = c;
534
0
        c = d;
535
0
        d = e;
536
0
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
537
0
      }
538
0
      dst[i * dst_stride + j] = a + b + c + d + e;
539
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
540
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
541
0
    }
542
0
  }
543
544
  // Horizontal sum over 5-pixel regions of dst
545
0
  for (i = 0; i < height; ++i) {
546
0
    a = dst[i * dst_stride];
547
0
    b = dst[i * dst_stride + 1];
548
0
    c = dst[i * dst_stride + 2];
549
0
    d = dst[i * dst_stride + 3];
550
0
    e = dst[i * dst_stride + 4];
551
552
0
    dst[i * dst_stride] = a + b + c;
553
0
    dst[i * dst_stride + 1] = a + b + c + d;
554
0
    for (j = 2; j < width - 3; ++j) {
555
      // Loop invariant: At the start of each iteration,
556
      // a = src[i * src_stride + (j - 2)]
557
      // b = src[i * src_stride + (j - 1)]
558
      // c = src[i * src_stride + (j    )]
559
      // d = src[i * src_stride + (j + 1)]
560
      // e = src[i * src_stride + (j + 2)]
561
0
      dst[i * dst_stride + j] = a + b + c + d + e;
562
0
      a = b;
563
0
      b = c;
564
0
      c = d;
565
0
      d = e;
566
0
      e = dst[i * dst_stride + (j + 3)];
567
0
    }
568
0
    dst[i * dst_stride + j] = a + b + c + d + e;
569
0
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
570
0
    dst[i * dst_stride + (j + 2)] = c + d + e;
571
0
  }
572
0
}
573
574
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
575
0
                   int sqr, int32_t *dst, int dst_stride) {
576
0
  if (r == 1)
577
0
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
578
0
  else if (r == 2)
579
0
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
580
0
  else
581
0
    assert(0 && "Invalid value of r in self-guided filter");
582
0
}
583
584
21.8k
void av1_decode_xq(const int *xqd, int *xq, const sgr_params_type *params) {
585
21.8k
  if (params->r[0] == 0) {
586
4.60k
    xq[0] = 0;
587
4.60k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1];
588
17.2k
  } else if (params->r[1] == 0) {
589
5.72k
    xq[0] = xqd[0];
590
5.72k
    xq[1] = 0;
591
11.4k
  } else {
592
11.4k
    xq[0] = xqd[0];
593
11.4k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
594
11.4k
  }
595
21.8k
}
596
597
const int32_t av1_x_by_xplus1[256] = {
598
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
599
  // instead of 0. See comments in selfguided_restoration_internal() for why
600
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
601
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
602
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
603
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
604
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
605
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
606
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
607
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
608
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
609
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
610
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
611
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
612
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
613
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
614
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
615
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
616
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
617
  256,
618
};
619
620
const int32_t av1_one_by_x[MAX_NELEM] = {
621
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
622
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
623
};
624
625
static void calculate_intermediate_result(int32_t *dgd, int width, int height,
626
                                          int dgd_stride, int bit_depth,
627
                                          int sgr_params_idx, int radius_idx,
628
0
                                          int pass, int32_t *A, int32_t *B) {
629
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
630
0
  const int r = params->r[radius_idx];
631
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
632
0
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
633
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
634
  // leading to a significant speed improvement.
635
  // We also align the stride to a multiple of 16 bytes, for consistency
636
  // with the SIMD version of this function.
637
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
638
0
  const int step = pass == 0 ? 1 : 2;
639
0
  int i, j;
640
641
0
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
642
0
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
643
0
         "Need SGRPROJ_BORDER_* >= r+1");
644
645
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
646
0
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
647
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
648
0
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
649
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
650
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
651
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
652
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
653
0
  for (i = -1; i < height + 1; i += step) {
654
0
    for (j = -1; j < width + 1; ++j) {
655
0
      const int k = i * buf_stride + j;
656
0
      const int n = (2 * r + 1) * (2 * r + 1);
657
658
      // a < 2^16 * n < 2^22 regardless of bit depth
659
0
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
660
      // b < 2^8 * n < 2^14 regardless of bit depth
661
0
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
662
663
      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
664
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
665
      // This bound on p is due to:
666
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
667
      //
668
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
669
      // This is an artefact of rounding, and can only happen if all pixels
670
      // are (almost) identical, so in this case we saturate to p=0.
671
0
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
672
673
0
      const uint32_t s = params->s[radius_idx];
674
675
      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
676
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
677
      // (this holds even after accounting for the rounding in s)
678
0
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
679
680
      // Note: We have to be quite careful about the value of A[k].
681
      // This is used as a blend factor between individual pixel values and the
682
      // local mean. So it logically has a range of [0, 256], including both
683
      // endpoints.
684
      //
685
      // This is a pain for hardware, as we'd like something which can be stored
686
      // in exactly 8 bits.
687
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
688
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
689
      // slightly above 2^(8 + bit depth), due to rounding in the value of
690
      // av1_one_by_x[25-1].
691
      //
692
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
693
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
694
      // overflow), without significantly affecting the final result: z == 0
695
      // implies that the image is essentially "flat", so the local mean and
696
      // individual pixel values are very similar.
697
      //
698
      // Note that saturating on the other side, ie. requring A[k] <= 255,
699
      // would be a bad idea, as that corresponds to the case where the image
700
      // is very variable, when we want to preserve the local pixel value as
701
      // much as possible.
702
0
      A[k] = av1_x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]
703
704
      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
705
      // av1_one_by_x[n - 1] = round(2^12 / n)
706
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
707
      // and B[k] is set to a value < 2^(8 + bit depth)
708
      // This holds even with the rounding in av1_one_by_x and in the overall
709
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
710
0
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
711
0
                                             (uint32_t)B[k] *
712
0
                                             (uint32_t)av1_one_by_x[n - 1],
713
0
                                         SGRPROJ_RECIP_BITS);
714
0
    }
715
0
  }
716
0
}
717
718
static void selfguided_restoration_fast_internal(
719
    int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst,
720
0
    int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) {
721
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
722
0
  const int r = params->r[radius_idx];
723
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
724
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
725
  // leading to a significant speed improvement.
726
  // We also align the stride to a multiple of 16 bytes, for consistency
727
  // with the SIMD version of this function.
728
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
729
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
730
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
731
0
  int32_t *A = A_;
732
0
  int32_t *B = B_;
733
0
  int i, j;
734
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
735
0
                                sgr_params_idx, radius_idx, 1, A, B);
736
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
737
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
738
739
  // Use the A[] and B[] arrays to calculate the filtered image
740
0
  (void)r;
741
0
  assert(r == 2);
742
0
  for (i = 0; i < height; ++i) {
743
0
    if (!(i & 1)) {  // even row
744
0
      for (j = 0; j < width; ++j) {
745
0
        const int k = i * buf_stride + j;
746
0
        const int l = i * dgd_stride + j;
747
0
        const int m = i * dst_stride + j;
748
0
        const int nb = 5;
749
0
        const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 +
750
0
                          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
751
0
                           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
752
0
                              5;
753
0
        const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 +
754
0
                          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
755
0
                           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
756
0
                              5;
757
0
        const int32_t v = a * dgd[l] + b;
758
0
        dst[m] =
759
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
760
0
      }
761
0
    } else {  // odd row
762
0
      for (j = 0; j < width; ++j) {
763
0
        const int k = i * buf_stride + j;
764
0
        const int l = i * dgd_stride + j;
765
0
        const int m = i * dst_stride + j;
766
0
        const int nb = 4;
767
0
        const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5;
768
0
        const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5;
769
0
        const int32_t v = a * dgd[l] + b;
770
0
        dst[m] =
771
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
772
0
      }
773
0
    }
774
0
  }
775
0
}
776
777
static void selfguided_restoration_internal(int32_t *dgd, int width, int height,
778
                                            int dgd_stride, int32_t *dst,
779
                                            int dst_stride, int bit_depth,
780
                                            int sgr_params_idx,
781
0
                                            int radius_idx) {
782
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
783
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
784
  // leading to a significant speed improvement.
785
  // We also align the stride to a multiple of 16 bytes, for consistency
786
  // with the SIMD version of this function.
787
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
788
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
789
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
790
0
  int32_t *A = A_;
791
0
  int32_t *B = B_;
792
0
  int i, j;
793
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
794
0
                                sgr_params_idx, radius_idx, 0, A, B);
795
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
796
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
797
798
  // Use the A[] and B[] arrays to calculate the filtered image
799
0
  for (i = 0; i < height; ++i) {
800
0
    for (j = 0; j < width; ++j) {
801
0
      const int k = i * buf_stride + j;
802
0
      const int l = i * dgd_stride + j;
803
0
      const int m = i * dst_stride + j;
804
0
      const int nb = 5;
805
0
      const int32_t a =
806
0
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
807
0
              4 +
808
0
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
809
0
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
810
0
              3;
811
0
      const int32_t b =
812
0
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
813
0
              4 +
814
0
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
815
0
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
816
0
              3;
817
0
      const int32_t v = a * dgd[l] + b;
818
0
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
819
0
    }
820
0
  }
821
0
}
822
823
int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
824
                                 int dgd_stride, int32_t *flt0, int32_t *flt1,
825
                                 int flt_stride, int sgr_params_idx,
826
0
                                 int bit_depth, int highbd) {
827
0
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
828
0
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
829
0
  int32_t *dgd32 =
830
0
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
831
832
0
  if (highbd) {
833
0
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
834
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
835
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
836
0
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
837
0
      }
838
0
    }
839
0
  } else {
840
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
841
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
842
0
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
843
0
      }
844
0
    }
845
0
  }
846
847
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
848
  // If params->r == 0 we skip the corresponding filter. We only allow one of
849
  // the radii to be 0, as having both equal to 0 would be equivalent to
850
  // skipping SGR entirely.
851
0
  assert(!(params->r[0] == 0 && params->r[1] == 0));
852
853
0
  if (params->r[0] > 0)
854
0
    selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride,
855
0
                                         flt0, flt_stride, bit_depth,
856
0
                                         sgr_params_idx, 0);
857
0
  if (params->r[1] > 0)
858
0
    selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
859
0
                                    flt_stride, bit_depth, sgr_params_idx, 1);
860
0
  return 0;
861
0
}
862
863
int av1_apply_selfguided_restoration_c(const uint8_t *dat8, int width,
864
                                       int height, int stride, int eps,
865
                                       const int *xqd, uint8_t *dst8,
866
                                       int dst_stride, int32_t *tmpbuf,
867
0
                                       int bit_depth, int highbd) {
868
0
  int32_t *flt0 = tmpbuf;
869
0
  int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
870
0
  assert(width * height <= RESTORATION_UNITPELS_MAX);
871
872
0
  const int ret = av1_selfguided_restoration_c(
873
0
      dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd);
874
0
  if (ret != 0) return ret;
875
0
  const sgr_params_type *const params = &av1_sgr_params[eps];
876
0
  int xq[2];
877
0
  av1_decode_xq(xqd, xq, params);
878
0
  for (int i = 0; i < height; ++i) {
879
0
    for (int j = 0; j < width; ++j) {
880
0
      const int k = i * width + j;
881
0
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
882
0
      const uint8_t *dat8ij = dat8 + i * stride + j;
883
884
0
      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
885
0
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
886
0
      int32_t v = u << SGRPROJ_PRJ_BITS;
887
      // If params->r == 0 then we skipped the filtering in
888
      // av1_selfguided_restoration_c, i.e. flt[k] == u
889
0
      if (params->r[0] > 0) v += xq[0] * (flt0[k] - u);
890
0
      if (params->r[1] > 0) v += xq[1] * (flt1[k] - u);
891
0
      const int16_t w =
892
0
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
893
894
0
      const uint16_t out = clip_pixel_highbd(w, bit_depth);
895
0
      if (highbd)
896
0
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
897
0
      else
898
0
        *dst8ij = (uint8_t)out;
899
0
    }
900
0
  }
901
0
  return 0;
902
0
}
903
904
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
905
                                  int stripe_width, int stripe_height,
906
                                  int procunit_width, const uint8_t *src,
907
                                  int src_stride, uint8_t *dst, int dst_stride,
908
                                  int32_t *tmpbuf, int bit_depth,
909
6.85k
                                  struct aom_internal_error_info *error_info) {
910
6.85k
  (void)bit_depth;
911
6.85k
  assert(bit_depth == 8);
912
913
16.4k
  for (int j = 0; j < stripe_width; j += procunit_width) {
914
9.58k
    int w = AOMMIN(procunit_width, stripe_width - j);
915
9.58k
    if (av1_apply_selfguided_restoration(
916
9.58k
            src + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
917
9.58k
            rui->sgrproj_info.xqd, dst + j, dst_stride, tmpbuf, bit_depth,
918
9.58k
            0) != 0) {
919
0
      aom_internal_error(
920
0
          error_info, AOM_CODEC_MEM_ERROR,
921
0
          "Error allocating buffer in av1_apply_selfguided_restoration");
922
0
    }
923
9.58k
  }
924
6.85k
}
925
926
#if CONFIG_AV1_HIGHBITDEPTH
927
static void wiener_filter_stripe_highbd(
928
    const RestorationUnitInfo *rui, int stripe_width, int stripe_height,
929
    int procunit_width, const uint8_t *src8, int src_stride, uint8_t *dst8,
930
    int dst_stride, int32_t *tmpbuf, int bit_depth,
931
9.09k
    struct aom_internal_error_info *error_info) {
932
9.09k
  (void)tmpbuf;
933
9.09k
  (void)error_info;
934
9.09k
  const WienerConvolveParams conv_params = get_conv_params_wiener(bit_depth);
935
936
20.9k
  for (int j = 0; j < stripe_width; j += procunit_width) {
937
11.8k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
938
11.8k
    const uint8_t *src8_p = src8 + j;
939
11.8k
    uint8_t *dst8_p = dst8 + j;
940
11.8k
    av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride,
941
11.8k
                                       rui->wiener_info.hfilter, 16,
942
11.8k
                                       rui->wiener_info.vfilter, 16, w,
943
11.8k
                                       stripe_height, &conv_params, bit_depth);
944
11.8k
  }
945
9.09k
}
946
947
static void sgrproj_filter_stripe_highbd(
948
    const RestorationUnitInfo *rui, int stripe_width, int stripe_height,
949
    int procunit_width, const uint8_t *src8, int src_stride, uint8_t *dst8,
950
    int dst_stride, int32_t *tmpbuf, int bit_depth,
951
7.52k
    struct aom_internal_error_info *error_info) {
952
19.7k
  for (int j = 0; j < stripe_width; j += procunit_width) {
953
12.1k
    int w = AOMMIN(procunit_width, stripe_width - j);
954
12.1k
    if (av1_apply_selfguided_restoration(
955
12.1k
            src8 + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
956
12.1k
            rui->sgrproj_info.xqd, dst8 + j, dst_stride, tmpbuf, bit_depth,
957
12.1k
            1) != 0) {
958
0
      aom_internal_error(
959
0
          error_info, AOM_CODEC_MEM_ERROR,
960
0
          "Error allocating buffer in av1_apply_selfguided_restoration");
961
0
    }
962
12.1k
  }
963
7.52k
}
964
#endif  // CONFIG_AV1_HIGHBITDEPTH
965
966
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
967
                                  int stripe_width, int stripe_height,
968
                                  int procunit_width, const uint8_t *src,
969
                                  int src_stride, uint8_t *dst, int dst_stride,
970
                                  int32_t *tmpbuf, int bit_depth,
971
                                  struct aom_internal_error_info *error_info);
972
973
#if CONFIG_AV1_HIGHBITDEPTH
974
#define NUM_STRIPE_FILTERS 4
975
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
976
  wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd,
977
  sgrproj_filter_stripe_highbd
978
};
979
#else
980
#define NUM_STRIPE_FILTERS 2
981
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
982
  wiener_filter_stripe, sgrproj_filter_stripe
983
};
984
#endif  // CONFIG_AV1_HIGHBITDEPTH
985
986
// Filter one restoration unit
987
void av1_loop_restoration_filter_unit(
988
    const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
989
    const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
990
    int plane_w, int plane_h, int ss_x, int ss_y, int highbd, int bit_depth,
991
    uint8_t *data8, int stride, uint8_t *dst8, int dst_stride, int32_t *tmpbuf,
992
27.4k
    int optimized_lr, struct aom_internal_error_info *error_info) {
993
27.4k
  RestorationType unit_rtype = rui->restoration_type;
994
995
27.4k
  int unit_h = limits->v_end - limits->v_start;
996
27.4k
  int unit_w = limits->h_end - limits->h_start;
997
27.4k
  uint8_t *data8_tl =
998
27.4k
      data8 + limits->v_start * (ptrdiff_t)stride + limits->h_start;
999
27.4k
  uint8_t *dst8_tl =
1000
27.4k
      dst8 + limits->v_start * (ptrdiff_t)dst_stride + limits->h_start;
1001
1002
27.4k
  if (unit_rtype == RESTORE_NONE) {
1003
8.07k
    copy_rest_unit(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride,
1004
8.07k
                   highbd);
1005
8.07k
    return;
1006
8.07k
  }
1007
1008
19.4k
  const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ);
1009
19.4k
  assert(filter_idx < NUM_STRIPE_FILTERS);
1010
19.4k
  const stripe_filter_fun stripe_filter = stripe_filters[filter_idx];
1011
1012
19.4k
  const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
1013
1014
  // Filter the whole image one stripe at a time
1015
19.4k
  RestorationTileLimits remaining_stripes = *limits;
1016
19.4k
  int i = 0;
1017
56.2k
  while (i < unit_h) {
1018
36.8k
    int copy_above, copy_below;
1019
36.8k
    remaining_stripes.v_start = limits->v_start + i;
1020
1021
36.8k
    get_stripe_boundary_info(&remaining_stripes, plane_w, plane_h, ss_y,
1022
36.8k
                             &copy_above, &copy_below);
1023
1024
36.8k
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1025
36.8k
    const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
1026
1027
    // Work out where this stripe's boundaries are within
1028
    // rsb->stripe_boundary_{above,below}
1029
36.8k
    const int frame_stripe =
1030
36.8k
        (remaining_stripes.v_start + runit_offset) / full_stripe_height;
1031
36.8k
    const int rsb_row = RESTORATION_CTX_VERT * frame_stripe;
1032
1033
    // Calculate this stripe's height, based on two rules:
1034
    // * The topmost stripe in the frame is 8 luma pixels shorter than usual.
1035
    // * We can't extend past the end of the current restoration unit
1036
36.8k
    const int nominal_stripe_height =
1037
36.8k
        full_stripe_height - ((frame_stripe == 0) ? runit_offset : 0);
1038
36.8k
    const int h = AOMMIN(nominal_stripe_height,
1039
36.8k
                         remaining_stripes.v_end - remaining_stripes.v_start);
1040
1041
36.8k
    setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd,
1042
36.8k
                                     h, data8, stride, rlbs, copy_above,
1043
36.8k
                                     copy_below, optimized_lr);
1044
1045
36.8k
    stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride,
1046
36.8k
                  dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth,
1047
36.8k
                  error_info);
1048
1049
36.8k
    restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h,
1050
36.8k
                                       data8, stride, copy_above, copy_below,
1051
36.8k
                                       optimized_lr);
1052
1053
36.8k
    i += h;
1054
36.8k
  }
1055
19.4k
}
1056
1057
static void filter_frame_on_unit(const RestorationTileLimits *limits,
1058
                                 int rest_unit_idx, void *priv, int32_t *tmpbuf,
1059
                                 RestorationLineBuffers *rlbs,
1060
20.5k
                                 struct aom_internal_error_info *error_info) {
1061
20.5k
  FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
1062
20.5k
  const RestorationInfo *rsi = ctxt->rsi;
1063
1064
20.5k
  av1_loop_restoration_filter_unit(
1065
20.5k
      limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs,
1066
20.5k
      ctxt->plane_w, ctxt->plane_h, ctxt->ss_x, ctxt->ss_y, ctxt->highbd,
1067
20.5k
      ctxt->bit_depth, ctxt->data8, ctxt->data_stride, ctxt->dst8,
1068
20.5k
      ctxt->dst_stride, tmpbuf, rsi->optimized_lr, error_info);
1069
20.5k
}
1070
1071
void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
1072
                                            YV12_BUFFER_CONFIG *frame,
1073
                                            AV1_COMMON *cm, int optimized_lr,
1074
1.57k
                                            int num_planes) {
1075
1.57k
  const SequenceHeader *const seq_params = cm->seq_params;
1076
1.57k
  const int bit_depth = seq_params->bit_depth;
1077
1.57k
  const int highbd = seq_params->use_highbitdepth;
1078
1.57k
  lr_ctxt->dst = &cm->rst_frame;
1079
1080
1.57k
  const int frame_width = frame->crop_widths[0];
1081
1.57k
  const int frame_height = frame->crop_heights[0];
1082
1.57k
  if (aom_realloc_frame_buffer(
1083
1.57k
          lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
1084
1.57k
          seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
1085
1.57k
          cm->features.byte_alignment, NULL, NULL, NULL, false,
1086
1.57k
          0) != AOM_CODEC_OK)
1087
0
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1088
0
                       "Failed to allocate restoration dst buffer");
1089
1090
1.57k
  lr_ctxt->on_rest_unit = filter_frame_on_unit;
1091
1.57k
  lr_ctxt->frame = frame;
1092
5.71k
  for (int plane = 0; plane < num_planes; ++plane) {
1093
4.14k
    RestorationInfo *rsi = &cm->rst_info[plane];
1094
4.14k
    RestorationType rtype = rsi->frame_restoration_type;
1095
4.14k
    rsi->optimized_lr = optimized_lr;
1096
4.14k
    lr_ctxt->ctxt[plane].rsi = rsi;
1097
1098
4.14k
    if (rtype == RESTORE_NONE) {
1099
1.11k
      continue;
1100
1.11k
    }
1101
1102
3.02k
    const int is_uv = plane > 0;
1103
3.02k
    int plane_w, plane_h;
1104
3.02k
    av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1105
3.02k
    assert(plane_w == frame->crop_widths[is_uv]);
1106
3.02k
    assert(plane_h == frame->crop_heights[is_uv]);
1107
1108
3.02k
    av1_extend_frame(frame->buffers[plane], plane_w, plane_h,
1109
3.02k
                     frame->strides[is_uv], RESTORATION_BORDER,
1110
3.02k
                     RESTORATION_BORDER, highbd);
1111
1112
3.02k
    FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane];
1113
3.02k
    lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x;
1114
3.02k
    lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y;
1115
3.02k
    lr_plane_ctxt->plane_w = plane_w;
1116
3.02k
    lr_plane_ctxt->plane_h = plane_h;
1117
3.02k
    lr_plane_ctxt->highbd = highbd;
1118
3.02k
    lr_plane_ctxt->bit_depth = bit_depth;
1119
3.02k
    lr_plane_ctxt->data8 = frame->buffers[plane];
1120
3.02k
    lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane];
1121
3.02k
    lr_plane_ctxt->data_stride = frame->strides[is_uv];
1122
3.02k
    lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv];
1123
3.02k
  }
1124
1.57k
}
1125
1126
static void loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt,
1127
605
                                         AV1_COMMON *cm, int num_planes) {
1128
605
  typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
1129
605
                           YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
1130
605
                           int vstart, int vend);
1131
605
  static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
1132
605
                                         aom_yv12_partial_coloc_copy_u,
1133
605
                                         aom_yv12_partial_coloc_copy_v };
1134
605
  assert(num_planes <= 3);
1135
2.08k
  for (int plane = 0; plane < num_planes; ++plane) {
1136
1.47k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1137
985
    FilterFrameCtxt *lr_plane_ctxt = &loop_rest_ctxt->ctxt[plane];
1138
985
    copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, 0,
1139
985
                     lr_plane_ctxt->plane_w, 0, lr_plane_ctxt->plane_h);
1140
985
  }
1141
605
}
1142
1143
// Call on_rest_unit for each loop restoration unit in the plane.
1144
static void foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane,
1145
                                       rest_unit_visitor_t on_rest_unit,
1146
                                       void *priv, int32_t *tmpbuf,
1147
985
                                       RestorationLineBuffers *rlbs) {
1148
985
  const RestorationInfo *rsi = &cm->rst_info[plane];
1149
985
  const int hnum_rest_units = rsi->horz_units;
1150
985
  const int vnum_rest_units = rsi->vert_units;
1151
985
  const int unit_size = rsi->restoration_unit_size;
1152
1153
985
  const int is_uv = plane > 0;
1154
985
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1155
985
  const int ext_size = unit_size * 3 / 2;
1156
985
  int plane_w, plane_h;
1157
985
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1158
1159
985
  int y0 = 0, i = 0;
1160
3.26k
  while (y0 < plane_h) {
1161
2.28k
    int remaining_h = plane_h - y0;
1162
2.28k
    int h = (remaining_h < ext_size) ? remaining_h : unit_size;
1163
1164
2.28k
    RestorationTileLimits limits;
1165
2.28k
    limits.v_start = y0;
1166
2.28k
    limits.v_end = y0 + h;
1167
2.28k
    assert(limits.v_end <= plane_h);
1168
    // Offset upwards to align with the restoration processing stripe
1169
2.28k
    const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
1170
2.28k
    limits.v_start = AOMMAX(0, limits.v_start - voffset);
1171
2.28k
    if (limits.v_end < plane_h) limits.v_end -= voffset;
1172
1173
2.28k
    av1_foreach_rest_unit_in_row(&limits, plane_w, on_rest_unit, i, unit_size,
1174
2.28k
                                 hnum_rest_units, vnum_rest_units, plane, priv,
1175
2.28k
                                 tmpbuf, rlbs, av1_lr_sync_read_dummy,
1176
2.28k
                                 av1_lr_sync_write_dummy, NULL, cm->error);
1177
1178
2.28k
    y0 += h;
1179
2.28k
    ++i;
1180
2.28k
  }
1181
985
}
1182
1183
static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm,
1184
605
                                        int num_planes) {
1185
605
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
1186
1187
2.08k
  for (int plane = 0; plane < num_planes; ++plane) {
1188
1.47k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) {
1189
490
      continue;
1190
490
    }
1191
1192
985
    foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit, &ctxt[plane],
1193
985
                               cm->rst_tmpbuf, cm->rlbs);
1194
985
  }
1195
605
}
1196
1197
void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame,
1198
                                       AV1_COMMON *cm, int optimized_lr,
1199
605
                                       void *lr_ctxt) {
1200
605
  assert(!cm->features.all_lossless);
1201
605
  const int num_planes = av1_num_planes(cm);
1202
1203
605
  AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
1204
1205
605
  av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
1206
605
                                         optimized_lr, num_planes);
1207
1208
605
  foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes);
1209
1210
605
  loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes);
1211
605
}
1212
1213
void av1_foreach_rest_unit_in_row(
1214
    RestorationTileLimits *limits, int plane_w,
1215
    rest_unit_visitor_t on_rest_unit, int row_number, int unit_size,
1216
    int hnum_rest_units, int vnum_rest_units, int plane, void *priv,
1217
    int32_t *tmpbuf, RestorationLineBuffers *rlbs, sync_read_fn_t on_sync_read,
1218
    sync_write_fn_t on_sync_write, struct AV1LrSyncData *const lr_sync,
1219
15.2k
    struct aom_internal_error_info *error_info) {
1220
15.2k
  const int ext_size = unit_size * 3 / 2;
1221
15.2k
  int x0 = 0, j = 0;
1222
35.7k
  while (x0 < plane_w) {
1223
20.5k
    int remaining_w = plane_w - x0;
1224
20.5k
    int w = (remaining_w < ext_size) ? remaining_w : unit_size;
1225
1226
20.5k
    limits->h_start = x0;
1227
20.5k
    limits->h_end = x0 + w;
1228
20.5k
    assert(limits->h_end <= plane_w);
1229
1230
20.5k
    const int unit_idx = row_number * hnum_rest_units + j;
1231
1232
    // No sync for even numbered rows
1233
    // For odd numbered rows, Loop Restoration of current block requires the LR
1234
    // of top-right and bottom-right blocks to be completed
1235
1236
    // top-right sync
1237
20.5k
    on_sync_read(lr_sync, row_number, j, plane);
1238
20.5k
    if ((row_number + 1) < vnum_rest_units)
1239
      // bottom-right sync
1240
15.9k
      on_sync_read(lr_sync, row_number + 2, j, plane);
1241
1242
20.5k
#if CONFIG_MULTITHREAD
1243
20.5k
    if (lr_sync && lr_sync->num_workers > 1) {
1244
17.6k
      pthread_mutex_lock(lr_sync->job_mutex);
1245
17.6k
      const bool lr_mt_exit = lr_sync->lr_mt_exit;
1246
17.6k
      pthread_mutex_unlock(lr_sync->job_mutex);
1247
      // Exit in case any worker has encountered an error.
1248
17.6k
      if (lr_mt_exit) return;
1249
17.6k
    }
1250
20.5k
#endif
1251
1252
20.5k
    on_rest_unit(limits, unit_idx, priv, tmpbuf, rlbs, error_info);
1253
1254
20.5k
    on_sync_write(lr_sync, row_number, j, hnum_rest_units, plane);
1255
1256
20.5k
    x0 += w;
1257
20.5k
    ++j;
1258
20.5k
  }
1259
15.2k
}
1260
1261
22.2k
void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) {
1262
22.2k
  (void)lr_sync;
1263
22.2k
  (void)r;
1264
22.2k
  (void)c;
1265
22.2k
  (void)plane;
1266
22.2k
}
1267
1268
void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c,
1269
10.3k
                             const int sb_cols, int plane) {
1270
10.3k
  (void)lr_sync;
1271
10.3k
  (void)r;
1272
10.3k
  (void)c;
1273
10.3k
  (void)sb_cols;
1274
10.3k
  (void)plane;
1275
10.3k
}
1276
1277
int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane,
1278
                                       int mi_row, int mi_col, BLOCK_SIZE bsize,
1279
                                       int *rcol0, int *rcol1, int *rrow0,
1280
1.39M
                                       int *rrow1) {
1281
1.39M
  assert(rcol0 && rcol1 && rrow0 && rrow1);
1282
1283
1.39M
  if (bsize != cm->seq_params->sb_size) return 0;
1284
1285
1.39M
  assert(!cm->features.all_lossless);
1286
1287
272k
  const int is_uv = plane > 0;
1288
1289
  // Compute the mi-unit corners of the superblock
1290
272k
  const int mi_row0 = mi_row;
1291
272k
  const int mi_col0 = mi_col;
1292
272k
  const int mi_row1 = mi_row0 + mi_size_high[bsize];
1293
272k
  const int mi_col1 = mi_col0 + mi_size_wide[bsize];
1294
1295
272k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1296
272k
  const int size = rsi->restoration_unit_size;
1297
272k
  const int horz_units = rsi->horz_units;
1298
272k
  const int vert_units = rsi->vert_units;
1299
1300
  // The size of an MI-unit on this plane of the image
1301
272k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1302
272k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1303
272k
  const int mi_size_x = MI_SIZE >> ss_x;
1304
272k
  const int mi_size_y = MI_SIZE >> ss_y;
1305
1306
  // Write m for the relative mi column or row, D for the superres denominator
1307
  // and N for the superres numerator. If u is the upscaled pixel offset then
1308
  // we can write the downscaled pixel offset in two ways as:
1309
  //
1310
  //   MI_SIZE * m = N / D u
1311
  //
1312
  // from which we get u = D * MI_SIZE * m / N
1313
272k
  const int mi_to_num_x = av1_superres_scaled(cm)
1314
272k
                              ? mi_size_x * cm->superres_scale_denominator
1315
272k
                              : mi_size_x;
1316
272k
  const int mi_to_num_y = mi_size_y;
1317
272k
  const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size;
1318
272k
  const int denom_y = size;
1319
1320
272k
  const int rnd_x = denom_x - 1;
1321
272k
  const int rnd_y = denom_y - 1;
1322
1323
  // rcol0/rrow0 should be the first column/row of restoration units that
1324
  // doesn't start left/below of mi_col/mi_row. For this calculation, we need
1325
  // to round up the division (if the sb starts at runit column 10.1, the first
1326
  // matching runit has column index 11)
1327
272k
  *rcol0 = (mi_col0 * mi_to_num_x + rnd_x) / denom_x;
1328
272k
  *rrow0 = (mi_row0 * mi_to_num_y + rnd_y) / denom_y;
1329
1330
  // rel_col1/rel_row1 is the equivalent calculation, but for the superblock
1331
  // below-right. If we're at the bottom or right of the frame, this restoration
1332
  // unit might not exist, in which case we'll clamp accordingly.
1333
272k
  *rcol1 = AOMMIN((mi_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units);
1334
272k
  *rrow1 = AOMMIN((mi_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units);
1335
1336
272k
  return *rcol0 < *rcol1 && *rrow0 < *rrow1;
1337
1.39M
}
1338
1339
// Extend to left and right
1340
static void extend_lines(uint8_t *buf, int width, int height, int stride,
1341
125k
                         int extend, int use_highbitdepth) {
1342
376k
  for (int i = 0; i < height; ++i) {
1343
250k
    if (use_highbitdepth) {
1344
75.3k
      uint16_t *buf16 = (uint16_t *)buf;
1345
75.3k
      aom_memset16(buf16 - extend, buf16[0], extend);
1346
75.3k
      aom_memset16(buf16 + width, buf16[width - 1], extend);
1347
175k
    } else {
1348
175k
      memset(buf - extend, buf[0], extend);
1349
175k
      memset(buf + width, buf[width - 1], extend);
1350
175k
    }
1351
250k
    buf += stride;
1352
250k
  }
1353
125k
}
1354
1355
static void save_deblock_boundary_lines(
1356
    const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row,
1357
    int stripe, int use_highbd, int is_above,
1358
68.8k
    RestorationStripeBoundaries *boundaries) {
1359
68.8k
  const int is_uv = plane > 0;
1360
68.8k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1361
68.8k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1362
68.8k
  const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
1363
1364
68.8k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1365
68.8k
                               : boundaries->stripe_boundary_below;
1366
68.8k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1367
68.8k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1368
68.8k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1369
1370
  // There is a rare case in which a processing stripe can end 1px above the
1371
  // crop border. In this case, we do want to use deblocked pixels from below
1372
  // the stripe (hence why we ended up in this function), but instead of
1373
  // fetching 2 "below" rows we need to fetch one and duplicate it.
1374
  // This is equivalent to clamping the sample locations against the crop border
1375
68.8k
  const int lines_to_save =
1376
68.8k
      AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row);
1377
68.8k
  assert(lines_to_save == 1 || lines_to_save == 2);
1378
1379
68.8k
  int upscaled_width;
1380
68.8k
  int line_bytes;
1381
68.8k
  if (av1_superres_scaled(cm)) {
1382
13.7k
    const int ss_x = is_uv && cm->seq_params->subsampling_x;
1383
13.7k
    upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
1384
13.7k
    line_bytes = upscaled_width << use_highbd;
1385
13.7k
    if (use_highbd)
1386
10.2k
      av1_upscale_normative_rows(
1387
10.2k
          cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv],
1388
10.2k
          CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride,
1389
10.2k
          plane, lines_to_save);
1390
3.48k
    else
1391
3.48k
      av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows,
1392
3.48k
                                 boundaries->stripe_boundary_stride, plane,
1393
3.48k
                                 lines_to_save);
1394
55.0k
  } else {
1395
55.0k
    upscaled_width = frame->crop_widths[is_uv];
1396
55.0k
    line_bytes = upscaled_width << use_highbd;
1397
165k
    for (int i = 0; i < lines_to_save; i++) {
1398
109k
      memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride,
1399
109k
             line_bytes);
1400
109k
    }
1401
55.0k
  }
1402
  // If we only saved one line, then copy it into the second line buffer
1403
68.8k
  if (lines_to_save == 1)
1404
285
    memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes);
1405
1406
68.8k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1407
68.8k
               RESTORATION_EXTRA_HORZ, use_highbd);
1408
68.8k
}
1409
1410
static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1411
                                     const AV1_COMMON *cm, int plane, int row,
1412
                                     int stripe, int use_highbd, int is_above,
1413
56.6k
                                     RestorationStripeBoundaries *boundaries) {
1414
56.6k
  const int is_uv = plane > 0;
1415
56.6k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1416
56.6k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1417
56.6k
  const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
1418
1419
56.6k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1420
56.6k
                               : boundaries->stripe_boundary_below;
1421
56.6k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1422
56.6k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1423
56.6k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1424
56.6k
  const int src_width = frame->crop_widths[is_uv];
1425
1426
  // At the point where this function is called, we've already applied
1427
  // superres. So we don't need to extend the lines here, we can just
1428
  // pull directly from the topmost row of the upscaled frame.
1429
56.6k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1430
56.6k
  const int upscaled_width = av1_superres_scaled(cm)
1431
56.6k
                                 ? (cm->superres_upscaled_width + ss_x) >> ss_x
1432
56.6k
                                 : src_width;
1433
56.6k
  const int line_bytes = upscaled_width << use_highbd;
1434
169k
  for (int i = 0; i < RESTORATION_CTX_VERT; i++) {
1435
    // Copy the line at 'src_rows' into both context lines
1436
113k
    memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes);
1437
113k
  }
1438
56.6k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1439
56.6k
               RESTORATION_EXTRA_HORZ, use_highbd);
1440
56.6k
}
1441
1442
static void save_boundary_lines(const YV12_BUFFER_CONFIG *frame, int use_highbd,
1443
56.6k
                                int plane, AV1_COMMON *cm, int after_cdef) {
1444
56.6k
  const int is_uv = plane > 0;
1445
56.6k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1446
56.6k
  const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1447
56.6k
  const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y;
1448
1449
56.6k
  int plane_w, plane_h;
1450
56.6k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1451
1452
56.6k
  RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries;
1453
1454
56.6k
  const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y);
1455
1456
56.6k
  int stripe_idx;
1457
182k
  for (stripe_idx = 0;; ++stripe_idx) {
1458
182k
    const int rel_y0 = AOMMAX(0, stripe_idx * stripe_height - stripe_off);
1459
182k
    const int y0 = rel_y0;
1460
182k
    if (y0 >= plane_h) break;
1461
1462
125k
    const int rel_y1 = (stripe_idx + 1) * stripe_height - stripe_off;
1463
125k
    const int y1 = AOMMIN(rel_y1, plane_h);
1464
1465
    // Extend using CDEF pixels at the top and bottom of the frame,
1466
    // and deblocked pixels at internal stripe boundaries
1467
125k
    const int use_deblock_above = (stripe_idx > 0);
1468
125k
    const int use_deblock_below = (y1 < plane_height);
1469
1470
125k
    if (!after_cdef) {
1471
      // Save deblocked context at internal stripe boundaries
1472
62.7k
      if (use_deblock_above) {
1473
34.4k
        save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT,
1474
34.4k
                                    stripe_idx, use_highbd, 1, boundaries);
1475
34.4k
      }
1476
62.7k
      if (use_deblock_below) {
1477
34.4k
        save_deblock_boundary_lines(frame, cm, plane, y1, stripe_idx,
1478
34.4k
                                    use_highbd, 0, boundaries);
1479
34.4k
      }
1480
62.7k
    } else {
1481
      // Save CDEF context at frame boundaries
1482
62.7k
      if (!use_deblock_above) {
1483
28.3k
        save_cdef_boundary_lines(frame, cm, plane, y0, stripe_idx, use_highbd,
1484
28.3k
                                 1, boundaries);
1485
28.3k
      }
1486
62.7k
      if (!use_deblock_below) {
1487
28.3k
        save_cdef_boundary_lines(frame, cm, plane, y1 - 1, stripe_idx,
1488
28.3k
                                 use_highbd, 0, boundaries);
1489
28.3k
      }
1490
62.7k
    }
1491
125k
  }
1492
56.6k
}
1493
1494
// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan
1495
// lines to be used as boundary in the loop restoration process. The
1496
// lines are saved in rst_internal.stripe_boundary_lines
1497
void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1498
28.9k
                                              AV1_COMMON *cm, int after_cdef) {
1499
28.9k
  const int num_planes = av1_num_planes(cm);
1500
28.9k
  const int use_highbd = cm->seq_params->use_highbitdepth;
1501
85.5k
  for (int p = 0; p < num_planes; ++p) {
1502
56.6k
    save_boundary_lines(frame, use_highbd, p, cm, after_cdef);
1503
56.6k
  }
1504
28.9k
}