Coverage Report

Created: 2025-10-10 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libavif/ext/aom/av1/encoder/partition_strategy.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2019, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <float.h>
13
14
#include "config/aom_config.h"
15
16
#include "av1/encoder/encodeframe_utils.h"
17
#if CONFIG_THREE_PASS
18
#include "av1/encoder/thirdpass.h"
19
#endif
20
#include "config/aom_dsp_rtcd.h"
21
22
#include "av1/common/enums.h"
23
#include "av1/common/reconinter.h"
24
25
#if !CONFIG_REALTIME_ONLY
26
#include "av1/encoder/cnn.h"
27
#include "av1/encoder/partition_model_weights.h"
28
#include "av1/encoder/partition_cnn_weights.h"
29
#endif
30
#include "av1/encoder/encoder.h"
31
32
#include "av1/encoder/motion_search_facade.h"
33
#include "av1/encoder/partition_strategy.h"
34
#include "av1/encoder/partition_search.h"
35
#include "av1/encoder/rdopt.h"
36
37
#if !CONFIG_REALTIME_ONLY
38
static inline void simple_motion_search_prune_part_features(
39
    AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
40
    int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
41
    int features_to_get);
42
43
static bool ext_ml_model_decision_before_none(
44
    AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
45
    int *partition_none_allowed, int *partition_horz_allowed,
46
    int *partition_vert_allowed, int *do_rectangular_split,
47
    int *do_square_split);
48
49
static bool ext_ml_model_decision_before_none_part2(
50
    AV1_COMP *cpi,
51
    const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
52
    int *prune_horz, int *prune_vert);
53
54
static bool ext_ml_model_decision_after_none(
55
    ExtPartController *const ext_part_controller, const int is_intra_frame,
56
    const float *const features_after_none, int *do_square_split,
57
    int *do_rectangular_split);
58
59
static bool ext_ml_model_decision_after_none_part2(
60
    AV1_COMP *const cpi, const float *const features_terminate,
61
    int *terminate_partition_search);
62
63
static bool ext_ml_model_decision_after_split(
64
    AV1_COMP *const cpi, const float *const features_terminate,
65
    int *terminate_partition_search);
66
67
static bool ext_ml_model_decision_after_split_part2(
68
    ExtPartController *const ext_part_controller, const int is_intra_frame,
69
    const float *const features_prune, int *prune_rect_part_horz,
70
    int *prune_rect_part_vert);
71
72
static bool ext_ml_model_decision_after_rect(
73
    ExtPartController *const ext_part_controller, const int is_intra_frame,
74
    const float *const features_after_rect, int *horza_partition_allowed,
75
    int *horzb_partition_allowed, int *verta_partition_allowed,
76
    int *vertb_partition_allowed);
77
78
static bool ext_ml_model_decision_after_part_ab(
79
    AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
80
    int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
81
    int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
82
    int *const partition_vert4_allowed, unsigned int pb_source_variance,
83
    int mi_row, int mi_col);
84
85
3.40M
static inline int convert_bsize_to_idx(BLOCK_SIZE bsize) {
86
3.40M
  switch (bsize) {
87
0
    case BLOCK_128X128: return 0;
88
65.5k
    case BLOCK_64X64: return 1;
89
260k
    case BLOCK_32X32: return 2;
90
697k
    case BLOCK_16X16: return 3;
91
2.38M
    case BLOCK_8X8: return 4;
92
0
    default: assert(0 && "Invalid bsize"); return -1;
93
3.40M
  }
94
3.40M
}
95
96
0
static char *get_feature_file_name(int id) {
97
0
  static char *feature_file_names[] = {
98
0
    "feature_before_partition_none",
99
0
    "feature_before_partition_none_prune_rect",
100
0
    "feature_after_partition_none_prune",
101
0
    "feature_after_partition_none_terminate",
102
0
    "feature_after_partition_split_terminate",
103
0
    "feature_after_partition_split_prune_rect",
104
0
    "feature_after_partition_rect",
105
0
    "feature_after_partition_ab",
106
0
  };
107
108
0
  return feature_file_names[id];
109
0
}
110
111
static void write_features_to_file(const char *const path,
112
                                   const bool is_test_mode,
113
                                   const float *features,
114
                                   const int feature_size, const int id,
115
                                   const BLOCK_SIZE bsize, const int mi_row,
116
379k
                                   const int mi_col) {
117
379k
  if (!WRITE_FEATURE_TO_FILE && !is_test_mode) return;
118
119
11
  char filename[256];
120
11
  snprintf(filename, sizeof(filename), "%s/%s", path,
121
11
           get_feature_file_name(id));
122
11
  FILE *pfile = fopen(filename, "a");
123
11
  if (pfile == NULL) return;
124
11
  if (!is_test_mode) {
125
0
    fprintf(pfile, "%d,%d,%d,%d,%d\n", id, (int)bsize, mi_row, mi_col,
126
0
            feature_size);
127
0
  }
128
11
  for (int i = 0; i < feature_size; ++i) {
129
0
    fprintf(pfile, "%.6f", features[i]);
130
0
    if (i < feature_size - 1) fprintf(pfile, ",");
131
0
  }
132
11
  fprintf(pfile, "\n");
133
11
  fclose(pfile);
134
11
}
135
136
// TODO(chiyotsai@google.com): This is very much a work in progress. We still
137
// need to the following:
138
//   -- add support for hdres
139
//   -- add support for pruning rectangular partitions
140
//   -- use reconstructed pixels instead of source pixels for padding
141
//   -- use chroma pixels in addition to luma pixels
142
static void intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x,
143
                                     int quad_tree_idx,
144
                                     int intra_cnn_based_part_prune_level,
145
3.04M
                                     PartitionSearchState *part_state) {
146
3.04M
  assert(cm->seq_params->sb_size >= BLOCK_64X64 &&
147
3.04M
         "Invalid sb_size for intra_cnn!");
148
3.04M
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
149
3.04M
  const BLOCK_SIZE bsize = blk_params->bsize;
150
151
3.04M
  const int bsize_idx = convert_bsize_to_idx(bsize);
152
153
3.04M
  if (bsize == BLOCK_128X128) {
154
0
    return;
155
0
  }
156
157
3.04M
  PartitionSearchInfo *part_info = &x->part_search_info;
158
159
  // Precompute the CNN part and cache the result in MACROBLOCK
160
3.04M
  if (bsize == BLOCK_64X64 && !part_info->cnn_output_valid) {
161
37.5k
    const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config;
162
163
    // Prepare the output
164
37.5k
    const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL };
165
37.5k
    const int num_outputs = 4;
166
37.5k
    const int output_dims[4] = { 1, 2, 4, 8 };
167
37.5k
    const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH,
168
37.5k
                             CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH };
169
37.5k
    float *output_buffer[CNN_TOT_OUT_CH];
170
171
37.5k
    float **cur_output_buf = output_buffer;
172
37.5k
    float *curr_buf_ptr = part_info->cnn_buffer;
173
187k
    for (int output_idx = 0; output_idx < num_outputs; output_idx++) {
174
149k
      const int num_chs = out_chs[output_idx];
175
149k
      const int ch_size = output_dims[output_idx] * output_dims[output_idx];
176
2.55M
      for (int ch = 0; ch < num_chs; ch++) {
177
2.40M
        cur_output_buf[ch] = curr_buf_ptr;
178
2.40M
        curr_buf_ptr += ch_size;
179
2.40M
      }
180
149k
      cur_output_buf += num_chs;
181
149k
    }
182
183
37.5k
    CNN_MULTI_OUT output = {
184
37.5k
      .num_outputs = 4,
185
37.5k
      .output_channels = out_chs,
186
37.5k
      .output_strides = output_dims,
187
37.5k
      .output_buffer = output_buffer,
188
37.5k
    };
189
190
    // Prepare the input
191
37.5k
    const MACROBLOCKD *xd = &x->e_mbd;
192
37.5k
    const int bit_depth = xd->bd;
193
37.5k
    const int dc_q =
194
37.5k
        av1_dc_quant_QTX(x->qindex, 0, bit_depth) >> (bit_depth - 8);
195
37.5k
    part_info->log_q = log1pf((float)(dc_q * dc_q) / 256.0f);
196
37.5k
    part_info->log_q =
197
37.5k
        (part_info->log_q - av1_intra_mode_cnn_partition_mean[0]) /
198
37.5k
        av1_intra_mode_cnn_partition_std[0];
199
200
37.5k
    const int width = 65, height = 65,
201
37.5k
              stride = x->plane[AOM_PLANE_Y].src.stride;
202
203
37.5k
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
204
2.83k
      uint16_t *image[1] = {
205
2.83k
        CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1
206
2.83k
      };
207
208
2.83k
      if (!av1_cnn_predict_img_multi_out_highbd(image, width, height, stride,
209
2.83k
                                                cnn_config, &thread_data,
210
2.83k
                                                bit_depth, &output)) {
211
0
        aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
212
0
                           "Error allocating CNN data");
213
0
        return;
214
0
      }
215
34.7k
    } else {
216
34.7k
      uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 };
217
218
34.7k
      if (!av1_cnn_predict_img_multi_out(image, width, height, stride,
219
34.7k
                                         cnn_config, &thread_data, &output)) {
220
0
        aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
221
0
                           "Error allocating CNN data");
222
0
        return;
223
0
      }
224
34.7k
    }
225
226
37.5k
    part_info->cnn_output_valid = 1;
227
37.5k
  }
228
229
3.04M
  if (!part_info->cnn_output_valid) {
230
1.84M
    return;
231
1.84M
  }
232
233
1.19M
  const NN_CONFIG *dnn_configs[5] = {
234
1.19M
    NULL,
235
1.19M
    &av1_intra_mode_cnn_partition_branch_0_dnn_config,
236
1.19M
    &av1_intra_mode_cnn_partition_branch_1_dnn_config,
237
1.19M
    &av1_intra_mode_cnn_partition_branch_2_dnn_config,
238
1.19M
    &av1_intra_mode_cnn_partition_branch_3_dnn_config,
239
1.19M
  };
240
241
1.19M
  const NN_CONFIG *dnn_config = dnn_configs[bsize_idx];
242
243
1.19M
  float dnn_features[100];
244
1.19M
  float logits[4] = { 0.0f };
245
246
1.19M
  const float *branch_0 = part_info->cnn_buffer;
247
1.19M
  const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE;
248
1.19M
  const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE;
249
1.19M
  const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE;
250
251
1.19M
  if (bsize == BLOCK_64X64) {
252
37.5k
    int f_idx = 0;
253
788k
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) {
254
751k
      dnn_features[f_idx++] = branch_0[ch_idx];
255
751k
    }
256
257
37.5k
    const int spa_stride = 2 * 2;
258
187k
    for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) {
259
751k
      for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
260
601k
        dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride];
261
601k
      }
262
150k
    }
263
37.5k
    dnn_features[f_idx++] = part_info->log_q;
264
1.15M
  } else if (bsize == BLOCK_32X32) {
265
150k
    int f_idx = 0;
266
3.15M
    for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) {
267
3.00M
      dnn_features[f_idx++] = branch_0[idx];
268
3.00M
    }
269
270
150k
    const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1];
271
150k
    const int spa_stride = 2 * 2;
272
752k
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
273
601k
      dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride];
274
601k
    }
275
150k
    dnn_features[f_idx++] = part_info->log_q;
276
1.00M
  } else if (bsize == BLOCK_16X16) {
277
202k
    int f_idx = 0;
278
202k
    const int prev_quad_idx = (quad_tree_idx - 1) / 4;
279
202k
    const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1];
280
202k
    const int prev_spa_stride = 2 * 2;
281
1.01M
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
282
810k
      dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride];
283
810k
    }
284
285
202k
    const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5];
286
202k
    const int spa_stride = 4 * 4;
287
4.25M
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
288
4.05M
      dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride];
289
4.05M
    }
290
202k
    dnn_features[f_idx++] = part_info->log_q;
291
801k
  } else if (bsize == BLOCK_8X8) {
292
801k
    int f_idx = 0;
293
801k
    const int prev_quad_idx = (quad_tree_idx - 1) / 4;
294
801k
    const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5];
295
801k
    const int prev_spa_stride = 4 * 4;
296
16.8M
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
297
16.0M
      dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride];
298
16.0M
    }
299
300
801k
    const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21];
301
801k
    const int spa_stride = 8 * 8;
302
16.8M
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) {
303
16.0M
      dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride];
304
16.0M
    }
305
801k
    dnn_features[f_idx++] = part_info->log_q;
306
801k
  } else {
307
156
    assert(0 && "Invalid bsize in intra_cnn partition");
308
156
  }
309
310
  // Make decision
311
1.19M
  av1_nn_predict(dnn_features, dnn_config, 1, logits);
312
313
1.19M
  const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
314
1.19M
  const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
315
1.19M
  float split_only_thresh = 100.0f, no_split_thresh = -100.0f;
316
1.19M
  if (is_720p_or_larger) {
317
0
    split_only_thresh =
318
0
        av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx];
319
0
    no_split_thresh =
320
0
        av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx];
321
1.19M
  } else if (is_480p_or_larger) {
322
167k
    split_only_thresh =
323
167k
        av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx];
324
167k
    no_split_thresh =
325
167k
        av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx];
326
1.02M
  } else {
327
1.02M
    split_only_thresh =
328
1.02M
        av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx];
329
1.02M
    no_split_thresh =
330
1.02M
        av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx];
331
1.02M
  }
332
333
1.19M
  if (logits[0] > split_only_thresh) {
334
    // As screen contents tend to choose larger partitions, do not prune
335
    // PARTITION_NONE when intra_cnn_based_part_prune_level=1.
336
111k
    if (intra_cnn_based_part_prune_level != 1) {
337
111k
      part_state->partition_none_allowed = 0;
338
111k
    }
339
111k
    part_state->do_square_split = 1;
340
111k
    av1_disable_rect_partitions(part_state);
341
111k
  }
342
343
1.19M
  if (logits[0] < no_split_thresh) {
344
484k
    av1_disable_square_split_partition(part_state);
345
484k
  }
346
1.19M
}
347
348
static inline int get_simple_motion_search_prune_agg(int qindex,
349
                                                     int prune_level,
350
366k
                                                     int is_rect_part) {
351
366k
  assert(prune_level < TOTAL_AGG_LVLS);
352
366k
  if (prune_level == NO_PRUNING) {
353
0
    return -1;
354
0
  }
355
356
  // Aggressiveness value for SIMPLE_MOTION_SEARCH_PRUNE_LEVEL except
357
  // QIDX_BASED_AGG_LVL
358
366k
  const int sms_prune_agg_levels[TOTAL_SIMPLE_AGG_LVLS] = { 0, 1, 2, 3, 4, 5 };
359
366k
  if (prune_level < TOTAL_SIMPLE_AGG_LVLS) {
360
366k
    return sms_prune_agg_levels[prune_level];
361
366k
  }
362
363
  // Map the QIDX_BASED_AGG_LVL to corresponding aggressiveness value.
364
  // Aggressive pruning for lower quantizers in non-boosted frames to prune
365
  // rectangular partitions.
366
11
  const int qband = is_rect_part ? (qindex <= 90 ? 1 : 0) : 0;
367
11
  const int sms_prune_agg_qindex_based[2] = { 3, 4 };
368
11
  return sms_prune_agg_qindex_based[qband];
369
366k
}
370
371
// Performs a simple_motion_search with a single reference frame and extract
372
// the variance of residues. Then use the features to determine whether we want
373
// to go straight to splitting without trying PARTITION_NONE
374
static void simple_motion_search_based_split(AV1_COMP *const cpi, MACROBLOCK *x,
375
                                             SIMPLE_MOTION_DATA_TREE *sms_tree,
376
233k
                                             PartitionSearchState *part_state) {
377
233k
  const AV1_COMMON *const cm = &cpi->common;
378
233k
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
379
233k
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
380
233k
  const BLOCK_SIZE bsize = blk_params->bsize;
381
382
233k
  const int bsize_idx = convert_bsize_to_idx(bsize);
383
233k
  const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
384
233k
  const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
385
  // res_idx is 0 for res < 480p, 1 for 480p, 2 for 720p+
386
233k
  const int res_idx = is_480p_or_larger + is_720p_or_larger;
387
388
233k
  assert(bsize_idx >= 0 && bsize_idx <= 4 &&
389
233k
         "Invalid bsize in simple_motion_search_based_split");
390
391
233k
  const int agg = get_simple_motion_search_prune_agg(
392
233k
      x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 0);
393
233k
  if (agg < 0) {
394
0
    return;
395
0
  }
396
397
233k
  int ml_model_index = (agg == SIMPLE_AGG_LVL1 || agg == SIMPLE_AGG_LVL2);
398
399
233k
  const float *ml_mean =
400
233k
      av1_simple_motion_search_split_mean[ml_model_index][bsize_idx];
401
233k
  const float *ml_std =
402
233k
      av1_simple_motion_search_split_std[ml_model_index][bsize_idx];
403
233k
  const NN_CONFIG *nn_config =
404
233k
      av1_simple_motion_search_split_nn_config[ml_model_index][bsize_idx];
405
406
233k
  const float split_only_thresh =
407
233k
      av1_simple_motion_search_split_thresh[agg][res_idx][bsize_idx];
408
233k
  const float no_split_thresh =
409
233k
      av1_simple_motion_search_no_split_thresh[agg][res_idx][bsize_idx];
410
411
233k
  float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f };
412
233k
  simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
413
233k
                                           bsize, features,
414
233k
                                           FEATURE_SMS_SPLIT_MODEL_FLAG);
415
416
  // Write features to file
417
233k
  write_features_to_file(cpi->oxcf.partition_info_path,
418
233k
                         cpi->ext_part_controller.test_mode, features,
419
233k
                         FEATURE_SIZE_SMS_SPLIT, 0, bsize, mi_row, mi_col);
420
421
  // Note: it is intended to not normalize the features here, to keep it
422
  // consistent for all features collected and passed to the external model.
423
233k
  if (ext_ml_model_decision_before_none(
424
233k
          cpi, features, &part_state->partition_none_allowed,
425
233k
          &part_state->partition_rect_allowed[HORZ],
426
233k
          &part_state->partition_rect_allowed[VERT],
427
233k
          &part_state->do_rectangular_split, &part_state->do_square_split)) {
428
0
    return;
429
0
  }
430
431
4.20M
  for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) {
432
3.96M
    features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx];
433
3.96M
  }
434
435
233k
  float score = 0.0f;
436
437
233k
  av1_nn_predict(features, nn_config, 1, &score);
438
439
233k
  if (score > split_only_thresh) {
440
232k
    av1_set_square_split_only(part_state);
441
232k
  }
442
443
233k
  if (cpi->sf.part_sf.simple_motion_search_split >= 2 &&
444
233k
      score < no_split_thresh) {
445
36
    av1_disable_square_split_partition(part_state);
446
36
  }
447
448
  // If the score is very low, prune rectangular split since it is unlikely to
449
  // occur.
450
233k
  if (cpi->sf.part_sf.simple_motion_search_rect_split) {
451
233k
    const float scale = res_idx >= 2 ? 3.0f : 2.0f;
452
233k
    const float rect_split_thresh =
453
233k
        scale * av1_simple_motion_search_no_split_thresh[SIMPLE_AGG_LVL3]
454
233k
                                                        [res_idx][bsize_idx];
455
233k
    if (score < rect_split_thresh) {
456
0
      part_state->do_rectangular_split = 0;
457
0
    }
458
233k
  }
459
233k
}
460
461
// Given a list of ref frames in refs, performs simple_motion_search on each of
462
// the refs and returns the ref with the smallest sse. Returns -1 if none of the
463
// ref in the list is available. Also stores the best sse and var in best_sse,
464
// best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in
465
// sms_tree. If save_mv is 1, update mv_ref_fulls under sms_tree and the
466
// subtrees.
467
static int simple_motion_search_get_best_ref(
468
    AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
469
    int mi_row, int mi_col, BLOCK_SIZE bsize, const int *const refs,
470
    int num_refs, int use_subpixel, int save_mv, unsigned int *best_sse,
471
2.13M
    unsigned int *best_var) {
472
2.13M
  const AV1_COMMON *const cm = &cpi->common;
473
2.13M
  int best_ref = -1;
474
475
2.13M
  if (mi_col >= cm->mi_params.mi_cols || mi_row >= cm->mi_params.mi_rows) {
476
    // If the whole block is outside of the image, set the var and sse to 0.
477
395k
    *best_var = 0;
478
395k
    *best_sse = 0;
479
480
395k
    return best_ref;
481
395k
  }
482
483
  // Otherwise do loop through the reference frames and find the one with the
484
  // minimum SSE
485
1.73M
  const int num_planes = 1;
486
487
1.73M
  *best_sse = INT_MAX;
488
489
3.47M
  for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) {
490
1.73M
    const int ref = refs[ref_idx];
491
492
1.73M
    if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) {
493
1.73M
      const FULLPEL_MV *start_mvs = sms_tree->start_mvs;
494
1.73M
      unsigned int curr_sse = 0, curr_var = 0;
495
1.73M
      const int_mv best_mv = av1_simple_motion_search_sse_var(
496
1.73M
          cpi, x, mi_row, mi_col, bsize, ref, start_mvs[ref], num_planes,
497
1.73M
          use_subpixel, &curr_sse, &curr_var);
498
1.73M
      if (curr_sse < *best_sse) {
499
1.73M
        *best_sse = curr_sse;
500
1.73M
        *best_var = curr_var;
501
1.73M
        best_ref = ref;
502
1.73M
      }
503
504
1.73M
      if (save_mv) {
505
1.28M
        sms_tree->start_mvs[ref].row = best_mv.as_mv.row / 8;
506
1.28M
        sms_tree->start_mvs[ref].col = best_mv.as_mv.col / 8;
507
508
1.28M
        if (bsize >= BLOCK_8X8) {
509
6.43M
          for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
510
            // Propagate the new motion vectors to a lower level
511
5.15M
            SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
512
5.15M
            sub_tree->start_mvs[ref] = sms_tree->start_mvs[ref];
513
5.15M
          }
514
1.28M
        }
515
1.28M
      }
516
1.73M
    }
517
1.73M
  }
518
519
1.73M
  return best_ref;
520
2.13M
}
521
522
// Collects features using simple_motion_search and store them in features. The
523
// features are also cached in SIMPLE_MOTION_DATA_TREE. By default, the features
524
// collected are the sse and var from the subblocks flagged by features_to_get.
525
// Furthermore, if features is not NULL, then 7 more features are appended to
526
// the end of features:
527
//  - log(1.0 + dc_q ** 2)
528
//  - whether an above macroblock exists
529
//  - width of above macroblock
530
//  - height of above macroblock
531
//  - whether a left marcoblock exists
532
//  - width of left macroblock
533
//  - height of left macroblock
534
static inline void simple_motion_search_prune_part_features(
535
    AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
536
    int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
537
379k
    int features_to_get) {
538
379k
  const int w_mi = mi_size_wide[bsize];
539
379k
  const int h_mi = mi_size_high[bsize];
540
379k
  assert(mi_size_wide[bsize] == mi_size_high[bsize]);
541
379k
  assert(bsize >= BLOCK_8X8);
542
379k
  assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] ||
543
379k
         cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]);
544
545
  // Setting up motion search
546
379k
  const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
547
379k
                                                        : LAST_FRAME };
548
379k
  const int num_refs = 1;
549
379k
  const int use_subpixel = 1;
550
551
  // Doing whole block first to update the mv
552
379k
  if (!sms_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) {
553
41.5k
    simple_motion_search_get_best_ref(cpi, x, sms_tree, mi_row, mi_col, bsize,
554
41.5k
                                      ref_list, num_refs, use_subpixel, 1,
555
41.5k
                                      &sms_tree->sms_none_feat[0],
556
41.5k
                                      &sms_tree->sms_none_feat[1]);
557
41.5k
    sms_tree->sms_none_valid = 1;
558
41.5k
  }
559
560
  // Split subblocks
561
379k
  if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
562
379k
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
563
1.89M
    for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
564
1.51M
      const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2;
565
1.51M
      const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2;
566
1.51M
      SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
567
568
1.51M
      if (!sub_tree->sms_none_valid) {
569
1.51M
        simple_motion_search_get_best_ref(
570
1.51M
            cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list,
571
1.51M
            num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0],
572
1.51M
            &sub_tree->sms_none_feat[1]);
573
1.51M
        sub_tree->sms_none_valid = 1;
574
1.51M
      }
575
1.51M
    }
576
379k
  }
577
578
  // Rectangular subblocks
579
379k
  if (!sms_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) {
580
    // Horz subblock
581
145k
    BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
582
436k
    for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
583
290k
      const int sub_mi_col = mi_col + 0;
584
290k
      const int sub_mi_row = mi_row + r_idx * h_mi / 2;
585
586
290k
      simple_motion_search_get_best_ref(
587
290k
          cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
588
290k
          use_subpixel, 0, &sms_tree->sms_rect_feat[2 * r_idx],
589
290k
          &sms_tree->sms_rect_feat[2 * r_idx + 1]);
590
290k
    }
591
592
    // Vert subblock
593
145k
    subsize = get_partition_subsize(bsize, PARTITION_VERT);
594
436k
    for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
595
290k
      const int sub_mi_col = mi_col + r_idx * w_mi / 2;
596
290k
      const int sub_mi_row = mi_row + 0;
597
598
290k
      simple_motion_search_get_best_ref(
599
290k
          cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
600
290k
          use_subpixel, 0, &sms_tree->sms_rect_feat[4 + 2 * r_idx],
601
290k
          &sms_tree->sms_rect_feat[4 + 2 * r_idx + 1]);
602
290k
    }
603
145k
    sms_tree->sms_rect_valid = 1;
604
145k
  }
605
606
379k
  if (!features) return;
607
608
379k
  int f_idx = 0;
609
380k
  if (features_to_get & FEATURE_SMS_NONE_FLAG) {
610
1.13M
    for (int sub_idx = 0; sub_idx < 2; sub_idx++) {
611
759k
      features[f_idx++] = log1pf((float)sms_tree->sms_none_feat[sub_idx]);
612
759k
    }
613
380k
  }
614
615
379k
  if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
616
1.89M
    for (int sub_idx = 0; sub_idx < SUB_PARTITIONS_SPLIT; sub_idx++) {
617
1.51M
      SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[sub_idx];
618
1.51M
      features[f_idx++] = log1pf((float)sub_tree->sms_none_feat[0]);
619
1.51M
      features[f_idx++] = log1pf((float)sub_tree->sms_none_feat[1]);
620
1.51M
    }
621
379k
  }
622
623
379k
  if (features_to_get & FEATURE_SMS_RECT_FLAG) {
624
1.31M
    for (int sub_idx = 0; sub_idx < 8; sub_idx++) {
625
1.16M
      features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[sub_idx]);
626
1.16M
    }
627
146k
  }
628
629
379k
  const MACROBLOCKD *xd = &x->e_mbd;
630
379k
  set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize);
631
632
  // Q_INDEX
633
379k
  const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
634
379k
  features[f_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f);
635
636
  // Neighbor stuff
637
379k
  const int has_above = !!xd->above_mbmi;
638
379k
  const int has_left = !!xd->left_mbmi;
639
379k
  const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->bsize : bsize;
640
379k
  const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->bsize : bsize;
641
379k
  features[f_idx++] = (float)has_above;
642
379k
  features[f_idx++] = (float)mi_size_wide_log2[above_bsize];
643
379k
  features[f_idx++] = (float)mi_size_high_log2[above_bsize];
644
379k
  features[f_idx++] = (float)has_left;
645
379k
  features[f_idx++] = (float)mi_size_wide_log2[left_bsize];
646
379k
  features[f_idx++] = (float)mi_size_high_log2[left_bsize];
647
379k
}
648
649
// Performs a simple_motion_search with two reference frames and extract
650
// the variance of residues. Then use the features to determine whether we want
651
// to prune some partitions.
652
static void simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x,
653
                                            SIMPLE_MOTION_DATA_TREE *sms_tree,
654
133k
                                            PartitionSearchState *part_state) {
655
133k
  const AV1_COMMON *const cm = &cpi->common;
656
133k
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
657
133k
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
658
133k
  const BLOCK_SIZE bsize = blk_params->bsize;
659
660
133k
  const int bsize_idx = convert_bsize_to_idx(bsize);
661
133k
  const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
662
133k
  const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
663
  // res_idx is 0 for lowres, 1 for 48p, 2 for 720p+
664
133k
  const int res_idx = is_480p_or_larger + is_720p_or_larger;
665
666
  // Get model parameters
667
133k
  const NN_CONFIG *nn_config =
668
133k
      av1_simple_motion_search_prune_rect_nn_config[bsize_idx];
669
133k
  const float *ml_mean = av1_simple_motion_search_prune_rect_mean[bsize_idx],
670
133k
              *ml_std = av1_simple_motion_search_prune_rect_std[bsize_idx];
671
672
133k
  const int agg = get_simple_motion_search_prune_agg(
673
133k
      x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 1);
674
133k
  if (agg < 0) {
675
0
    return;
676
0
  }
677
678
133k
  const float prune_thresh =
679
133k
      av1_simple_motion_search_prune_rect_thresh[agg][res_idx][bsize_idx];
680
681
  // If there is no valid threshold, return immediately.
682
133k
  if (!nn_config || prune_thresh == 0.0f) {
683
0
    return;
684
0
  }
685
686
  // Get features
687
133k
  float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f };
688
133k
  simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
689
133k
                                           bsize, features,
690
133k
                                           FEATURE_SMS_PRUNE_PART_FLAG);
691
692
  // Note: it is intended to not normalize the features here, to keep it
693
  // consistent for all features collected and passed to the external model.
694
133k
  if (cpi->sf.part_sf.simple_motion_search_prune_rect &&
695
133k
      !frame_is_intra_only(cm) &&
696
133k
      (part_state->partition_rect_allowed[HORZ] ||
697
67.7k
       part_state->partition_rect_allowed[VERT]) &&
698
133k
      bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) {
699
    // Write features to file
700
133k
    write_features_to_file(
701
133k
        cpi->oxcf.partition_info_path, cpi->ext_part_controller.test_mode,
702
133k
        features, FEATURE_SIZE_SMS_PRUNE_PART, 1, bsize, mi_row, mi_col);
703
704
133k
    if (ext_ml_model_decision_before_none_part2(
705
133k
            cpi, features, &part_state->prune_rect_part[HORZ],
706
133k
            &part_state->prune_rect_part[VERT])) {
707
0
      return;
708
0
    }
709
133k
  }
710
711
3.45M
  for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) {
712
3.31M
    features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
713
3.31M
  }
714
715
  // Get probabilities
716
133k
  float scores[EXT_PARTITION_TYPES] = { 0.0f },
717
133k
        probs[EXT_PARTITION_TYPES] = { 0.0f };
718
133k
  const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8)
719
133k
                              ? PARTITION_TYPES
720
133k
                              : EXT_PARTITION_TYPES;
721
722
133k
  av1_nn_predict(features, nn_config, 1, scores);
723
724
133k
  av1_nn_softmax(scores, probs, num_classes);
725
726
  // Determine if we should prune rectangular partitions.
727
133k
  if (probs[PARTITION_HORZ] <= prune_thresh) {
728
133k
    part_state->prune_rect_part[HORZ] = 1;
729
133k
  }
730
133k
  if (probs[PARTITION_VERT] <= prune_thresh) {
731
126k
    part_state->prune_rect_part[VERT] = 1;
732
126k
  }
733
133k
}
734
735
// Early terminates PARTITION_NONE using simple_motion_search features and the
736
// rate, distortion, and rdcost of PARTITION_NONE. This is only called when:
737
//  - The frame is a show frame
738
//  - The frame is not intra only
739
//  - The current bsize is > BLOCK_8X8
740
//  - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols
741
void av1_simple_motion_search_early_term_none(
742
    AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
743
13.3k
    const RD_STATS *none_rdc, PartitionSearchState *part_state) {
744
13.3k
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
745
13.3k
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
746
13.3k
  const BLOCK_SIZE bsize = blk_params->bsize;
747
748
13.3k
  float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f };
749
13.3k
  simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
750
13.3k
                                           bsize, features,
751
13.3k
                                           FEATURE_SMS_PRUNE_PART_FLAG);
752
13.3k
  int f_idx = FEATURE_SIZE_SMS_PRUNE_PART;
753
754
13.3k
  features[f_idx++] = log1pf((float)none_rdc->rate);
755
13.3k
  features[f_idx++] = log1pf((float)none_rdc->dist);
756
13.3k
  features[f_idx++] = log1pf((float)none_rdc->rdcost);
757
758
13.3k
  assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE);
759
760
13.3k
  const float *ml_mean = NULL;
761
13.3k
  const float *ml_std = NULL;
762
13.3k
  const float *ml_model = NULL;
763
764
13.3k
  if (bsize == BLOCK_128X128) {
765
0
    ml_mean = av1_simple_motion_search_term_none_mean_128;
766
0
    ml_std = av1_simple_motion_search_term_none_std_128;
767
0
    ml_model = av1_simple_motion_search_term_none_model_128;
768
13.3k
  } else if (bsize == BLOCK_64X64) {
769
3.83k
    ml_mean = av1_simple_motion_search_term_none_mean_64;
770
3.83k
    ml_std = av1_simple_motion_search_term_none_std_64;
771
3.83k
    ml_model = av1_simple_motion_search_term_none_model_64;
772
9.48k
  } else if (bsize == BLOCK_32X32) {
773
8.34k
    ml_mean = av1_simple_motion_search_term_none_mean_32;
774
8.34k
    ml_std = av1_simple_motion_search_term_none_std_32;
775
8.34k
    ml_model = av1_simple_motion_search_term_none_model_32;
776
8.34k
  } else if (bsize == BLOCK_16X16) {
777
1.14k
    ml_mean = av1_simple_motion_search_term_none_mean_16;
778
1.14k
    ml_std = av1_simple_motion_search_term_none_std_16;
779
1.14k
    ml_model = av1_simple_motion_search_term_none_model_16;
780
18.4E
  } else {
781
18.4E
    assert(0 && "Unexpected block size in simple_motion_term_none");
782
18.4E
  }
783
784
  // Write features to file
785
13.3k
  write_features_to_file(cpi->oxcf.partition_info_path,
786
13.3k
                         cpi->ext_part_controller.test_mode, features,
787
13.3k
                         FEATURE_SIZE_SMS_TERM_NONE, 3, bsize, mi_row, mi_col);
788
789
13.3k
  if (ext_ml_model_decision_after_none_part2(
790
13.3k
          cpi, features, &part_state->terminate_partition_search)) {
791
0
    return;
792
0
  }
793
794
13.3k
  if (ml_model) {
795
13.3k
    float score = 0.0f;
796
385k
    for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) {
797
372k
      score +=
798
372k
          ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
799
372k
    }
800
13.3k
    score += ml_model[FEATURE_SIZE_SMS_TERM_NONE];
801
802
13.3k
    if (score >= 0.0f) {
803
700
      part_state->terminate_partition_search = 1;
804
700
    }
805
13.3k
  }
806
13.3k
}
807
808
void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x,
809
                                        int mi_row, int mi_col,
810
0
                                        float *features) {
811
0
  AV1_COMMON *const cm = &cpi->common;
812
0
  MACROBLOCKD *xd = &x->e_mbd;
813
0
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
814
815
  // Currently this only allows 128X128 SB size. May extend it to 64X64 SB size.
816
0
  assert(sb_size == BLOCK_128X128);
817
818
0
  int f_idx = 0;
819
820
0
  const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
821
0
  const float log_q_sq = log1pf((float)(dc_q * dc_q) / 256.0f);
822
823
  // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb
824
0
  float sum_mv_row_sq = 0;
825
0
  float sum_mv_row = 0;
826
0
  float min_abs_mv_row = FLT_MAX;
827
0
  float max_abs_mv_row = 0;
828
829
0
  float sum_mv_col_sq = 0;
830
0
  float sum_mv_col = 0;
831
0
  float min_abs_mv_col = FLT_MAX;
832
0
  float max_abs_mv_col = 0;
833
834
0
  float sum_log_sse_sq = 0;
835
0
  float sum_log_sse = 0;
836
0
  float min_log_sse = FLT_MAX;
837
0
  float max_log_sse = 0;
838
839
0
  const BLOCK_SIZE mb_size = BLOCK_16X16;
840
0
  const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size];
841
0
  const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size];
842
0
  const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size];
843
0
  const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size];
844
845
0
  for (int mb_row = 0; mb_row < mb_rows; mb_row++)
846
0
    for (int mb_col = 0; mb_col < mb_cols; mb_col++) {
847
0
      const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2);
848
0
      const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2);
849
0
      unsigned int sse = 0;
850
0
      unsigned int var = 0;
851
0
      const FULLPEL_MV start_mv = kZeroFullMv;
852
0
      const MV_REFERENCE_FRAME ref =
853
0
          cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
854
0
      const int_mv best_mv = av1_simple_motion_search_sse_var(
855
0
          cpi, x, this_mi_row, this_mi_col, mb_size, ref, start_mv, 1, 0, &sse,
856
0
          &var);
857
858
0
      const float mv_row = (float)(best_mv.as_mv.row / 8);
859
0
      const float mv_col = (float)(best_mv.as_mv.col / 8);
860
0
      const float log_sse = log1pf((float)sse);
861
0
      const float abs_mv_row = fabsf(mv_row);
862
0
      const float abs_mv_col = fabsf(mv_col);
863
864
0
      sum_mv_row_sq += mv_row * mv_row;
865
0
      sum_mv_row += mv_row;
866
0
      sum_mv_col_sq += mv_col * mv_col;
867
0
      sum_mv_col += mv_col;
868
869
0
      if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row;
870
0
      if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row;
871
0
      if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col;
872
0
      if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col;
873
874
0
      sum_log_sse_sq += log_sse * log_sse;
875
0
      sum_log_sse += log_sse;
876
0
      if (log_sse < min_log_sse) min_log_sse = log_sse;
877
0
      if (log_sse > max_log_sse) max_log_sse = log_sse;
878
0
    }
879
0
  const int blks = mb_rows * mb_cols;
880
0
  const float avg_mv_row = sum_mv_row / (float)blks;
881
0
  const float var_mv_row =
882
0
      sum_mv_row_sq / (float)blks - avg_mv_row * avg_mv_row;
883
884
0
  const float avg_mv_col = sum_mv_col / (float)blks;
885
0
  const float var_mv_col =
886
0
      sum_mv_col_sq / (float)blks - avg_mv_col * avg_mv_col;
887
888
0
  const float avg_log_sse = sum_log_sse / (float)blks;
889
0
  const float var_log_sse =
890
0
      sum_log_sse_sq / (float)blks - avg_log_sse * avg_log_sse;
891
892
0
  features[f_idx++] = avg_log_sse;
893
0
  features[f_idx++] = avg_mv_col;
894
0
  features[f_idx++] = avg_mv_row;
895
0
  features[f_idx++] = log_q_sq;
896
0
  features[f_idx++] = max_abs_mv_col;
897
0
  features[f_idx++] = max_abs_mv_row;
898
0
  features[f_idx++] = max_log_sse;
899
0
  features[f_idx++] = min_abs_mv_col;
900
0
  features[f_idx++] = min_abs_mv_row;
901
0
  features[f_idx++] = min_log_sse;
902
0
  features[f_idx++] = var_log_sse;
903
0
  features[f_idx++] = var_mv_col;
904
0
  features[f_idx++] = var_mv_row;
905
906
0
  assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED);
907
0
}
908
909
// Convert result index to block size.
910
// result idx     block size
911
//     0          BLOCK_16X16
912
//     1          BLOCK_32X32
913
//     2          BLOCK_64X64
914
//     3          BLOCK_128X128
915
0
static BLOCK_SIZE get_block_size(int idx) {
916
0
  return (BLOCK_SIZE)((idx + 2) * 3);
917
0
}
918
919
BLOCK_SIZE av1_predict_max_partition(const AV1_COMP *const cpi,
920
                                     const MACROBLOCK *const x,
921
0
                                     const float *features) {
922
0
  float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
923
0
  const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config;
924
925
0
  assert(cpi->sf.part_sf.auto_max_partition_based_on_simple_motion !=
926
0
         NOT_IN_USE);
927
928
0
  av1_nn_predict(features, nn_config, 1, scores);
929
930
0
  int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1;
931
0
  if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
932
0
      DIRECT_PRED) {
933
0
    result = 0;
934
0
    float max_score = scores[0];
935
0
    for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) {
936
0
      if (scores[i] > max_score) {
937
0
        max_score = scores[i];
938
0
        result = i;
939
0
      }
940
0
    }
941
0
    return get_block_size(result);
942
0
  }
943
944
0
  float probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
945
0
  av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED);
946
947
0
  if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
948
0
      RELAXED_PRED) {
949
0
    for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
950
0
         --result) {
951
0
      if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
952
0
        probs[result] += probs[result + 1];
953
0
      }
954
0
      if (probs[result] > 0.2) break;
955
0
    }
956
0
  } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
957
0
             ADAPT_PRED) {
958
0
    const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size;
959
    // TODO(debargha): x->source_variance is unavailable at this point,
960
    // so compute. The redundant recomputation later can be removed.
961
0
    const unsigned int source_variance = av1_get_perpixel_variance_facade(
962
0
        cpi, &x->e_mbd, &x->plane[0].src, sb_size, AOM_PLANE_Y);
963
0
    if (source_variance > 16) {
964
0
      const double thresh = source_variance < 128 ? 0.05 : 0.1;
965
0
      for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
966
0
           --result) {
967
0
        if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
968
0
          probs[result] += probs[result + 1];
969
0
        }
970
0
        if (probs[result] > thresh) break;
971
0
      }
972
0
    }
973
0
  }
974
975
0
  return get_block_size(result);
976
0
}
977
978
// Get the minimum partition block width and height(in log scale) under a
979
// SIMPLE_MOTION_DATA_TREE.
980
static inline void get_min_bsize(const SIMPLE_MOTION_DATA_TREE *sms_tree,
981
0
                                 int *min_bw, int *min_bh) {
982
0
  if (!sms_tree) return;
983
984
0
  const BLOCK_SIZE bsize = sms_tree->block_size;
985
0
  if (bsize == BLOCK_4X4) {
986
0
    *min_bw = 0;
987
0
    *min_bh = 0;
988
0
    return;
989
0
  }
990
991
0
  PARTITION_TYPE part_type = sms_tree->partitioning;
992
0
  if (part_type == PARTITION_INVALID) return;
993
994
0
  if (part_type == PARTITION_SPLIT) {
995
0
    for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
996
0
      get_min_bsize(sms_tree->split[i], min_bw, min_bh);
997
0
    }
998
0
  } else {
999
0
    if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B ||
1000
0
        part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B)
1001
0
      part_type = PARTITION_SPLIT;
1002
0
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type);
1003
0
    if (subsize != BLOCK_INVALID) {
1004
0
      *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]);
1005
0
      *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]);
1006
0
    }
1007
0
  }
1008
0
}
1009
1010
static inline void add_rd_feature(int64_t rd, int64_t best_rd, float *features,
1011
0
                                  int *feature_idx) {
1012
0
  const int rd_valid = rd > 0 && rd < INT64_MAX;
1013
0
  const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f;
1014
0
  features[(*feature_idx)++] = (float)rd_valid;
1015
0
  features[(*feature_idx)++] = rd_ratio;
1016
0
}
1017
1018
0
#define FEATURES 31
1019
void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x,
1020
                                   SIMPLE_MOTION_DATA_TREE *const sms_tree,
1021
                                   int64_t best_rd, int64_t part_none_rd,
1022
                                   int64_t part_split_rd,
1023
                                   int64_t *split_block_rd,
1024
0
                                   PartitionSearchState *part_state) {
1025
0
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1026
0
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1027
0
  const BLOCK_SIZE bsize = blk_params->bsize;
1028
1029
0
  if (best_rd <= 0 || best_rd == INT64_MAX ||
1030
0
      part_state->terminate_partition_search)
1031
0
    return;
1032
1033
0
  const AV1_COMMON *const cm = &cpi->common;
1034
0
  const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
1035
0
  const NN_CONFIG *nn_config = NULL;
1036
0
  float thresh = -1e6;
1037
0
  switch (bsize) {
1038
0
    case BLOCK_128X128:
1039
0
      nn_config = &av1_early_term_after_split_nnconfig_64;
1040
0
      thresh = is_480p_or_larger ? -2.0f : -1.2f;
1041
0
      break;
1042
0
    case BLOCK_64X64:
1043
0
      nn_config = &av1_early_term_after_split_nnconfig_64;
1044
0
      thresh = is_480p_or_larger ? -2.0f : -1.2f;
1045
0
      break;
1046
0
    case BLOCK_32X32:
1047
0
      nn_config = &av1_early_term_after_split_nnconfig_32;
1048
0
      thresh = is_480p_or_larger ? -2.6f : -2.3f;
1049
0
      break;
1050
0
    case BLOCK_16X16:
1051
0
      nn_config = &av1_early_term_after_split_nnconfig_16;
1052
0
      thresh = is_480p_or_larger ? -2.0f : -2.4f;
1053
0
      break;
1054
0
    case BLOCK_8X8:
1055
0
      nn_config = &av1_early_term_after_split_nnconfig_8;
1056
0
      thresh = is_480p_or_larger ? -1.0f : -1.4f;
1057
0
      break;
1058
0
    case BLOCK_4X4: break;
1059
0
    default:
1060
0
      assert(0 && "Invalid block size in av1_ml_early_term_after_split().");
1061
0
      break;
1062
0
  }
1063
0
  if (!nn_config) return;
1064
1065
  // Use more conservative threshold for level 1.
1066
0
  if (cpi->sf.part_sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f;
1067
1068
0
  const MACROBLOCKD *const xd = &x->e_mbd;
1069
0
  const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
1070
0
  const int bs = block_size_wide[bsize];
1071
0
  int f_idx = 0;
1072
0
  float features[FEATURES] = { 0.0f };
1073
1074
0
  features[f_idx++] = log1pf((float)dc_q / 4.0f);
1075
0
  features[f_idx++] = log1pf((float)best_rd / bs / bs / 1024.0f);
1076
1077
0
  add_rd_feature(part_none_rd, best_rd, features, &f_idx);
1078
0
  add_rd_feature(part_split_rd, best_rd, features, &f_idx);
1079
1080
0
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1081
0
    add_rd_feature(split_block_rd[i], best_rd, features, &f_idx);
1082
0
    int min_bw = MAX_SB_SIZE_LOG2;
1083
0
    int min_bh = MAX_SB_SIZE_LOG2;
1084
0
    get_min_bsize(sms_tree->split[i], &min_bw, &min_bh);
1085
0
    features[f_idx++] = (float)min_bw;
1086
0
    features[f_idx++] = (float)min_bh;
1087
0
  }
1088
1089
0
  simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
1090
0
                                           bsize, NULL,
1091
0
                                           FEATURE_SMS_PRUNE_PART_FLAG);
1092
1093
0
  features[f_idx++] = log1pf((float)sms_tree->sms_none_feat[1]);
1094
1095
0
  features[f_idx++] = log1pf((float)sms_tree->split[0]->sms_none_feat[1]);
1096
0
  features[f_idx++] = log1pf((float)sms_tree->split[1]->sms_none_feat[1]);
1097
0
  features[f_idx++] = log1pf((float)sms_tree->split[2]->sms_none_feat[1]);
1098
0
  features[f_idx++] = log1pf((float)sms_tree->split[3]->sms_none_feat[1]);
1099
1100
0
  features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[1]);
1101
0
  features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[3]);
1102
0
  features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[5]);
1103
0
  features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[7]);
1104
1105
0
  assert(f_idx == FEATURES);
1106
1107
  // Write features to file
1108
0
  write_features_to_file(cpi->oxcf.partition_info_path,
1109
0
                         cpi->ext_part_controller.test_mode, features, FEATURES,
1110
0
                         4, bsize, mi_row, mi_col);
1111
1112
0
  if (ext_ml_model_decision_after_split(
1113
0
          cpi, features, &part_state->terminate_partition_search)) {
1114
0
    return;
1115
0
  }
1116
1117
0
  float score = 0.0f;
1118
0
  av1_nn_predict(features, nn_config, 1, &score);
1119
  // Score is indicator of confidence that we should NOT terminate.
1120
0
  if (score < thresh) {
1121
0
    part_state->terminate_partition_search = 1;
1122
0
  }
1123
0
}
1124
#undef FEATURES
1125
1126
void av1_ml_prune_rect_partition(AV1_COMP *const cpi, const MACROBLOCK *const x,
1127
                                 int64_t best_rd, int64_t none_rd,
1128
                                 const int64_t *split_rd,
1129
0
                                 PartitionSearchState *part_state) {
1130
0
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1131
0
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1132
0
  const BLOCK_SIZE bsize = blk_params->bsize;
1133
1134
0
  if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
1135
0
  best_rd = AOMMAX(best_rd, 1);
1136
0
  const NN_CONFIG *nn_config = NULL;
1137
0
  const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f };
1138
0
  float cur_thresh = 0.0f;
1139
0
  switch (bsize) {
1140
0
    case BLOCK_8X8:
1141
0
      nn_config = &av1_rect_partition_nnconfig_8;
1142
0
      cur_thresh = prob_thresholds[0];
1143
0
      break;
1144
0
    case BLOCK_16X16:
1145
0
      nn_config = &av1_rect_partition_nnconfig_16;
1146
0
      cur_thresh = prob_thresholds[1];
1147
0
      break;
1148
0
    case BLOCK_32X32:
1149
0
      nn_config = &av1_rect_partition_nnconfig_32;
1150
0
      cur_thresh = prob_thresholds[2];
1151
0
      break;
1152
0
    case BLOCK_64X64:
1153
0
      nn_config = &av1_rect_partition_nnconfig_64;
1154
0
      cur_thresh = prob_thresholds[3];
1155
0
      break;
1156
0
    case BLOCK_128X128:
1157
0
      nn_config = &av1_rect_partition_nnconfig_128;
1158
0
      cur_thresh = prob_thresholds[4];
1159
0
      break;
1160
0
    default: assert(0 && "Unexpected bsize.");
1161
0
  }
1162
0
  if (!nn_config) return;
1163
1164
  // 1. Compute input features
1165
0
  float features[9];
1166
1167
  // RD cost ratios
1168
0
  for (int i = 0; i < 5; i++) features[i] = 1.0f;
1169
0
  if (none_rd > 0 && none_rd < 1000000000)
1170
0
    features[0] = (float)none_rd / (float)best_rd;
1171
0
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
1172
0
    if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1173
0
      features[1 + i] = (float)split_rd[i] / (float)best_rd;
1174
0
  }
1175
1176
  // Variance ratios
1177
0
  const MACROBLOCKD *const xd = &x->e_mbd;
1178
0
  int whole_block_variance;
1179
0
  whole_block_variance = av1_get_perpixel_variance_facade(
1180
0
      cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
1181
0
  whole_block_variance = AOMMAX(whole_block_variance, 1);
1182
1183
0
  int split_variance[SUB_PARTITIONS_SPLIT];
1184
0
  const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
1185
0
  struct buf_2d buf;
1186
0
  buf.stride = x->plane[0].src.stride;
1187
0
  const int bw = block_size_wide[bsize];
1188
0
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1189
0
    const int x_idx = (i & 1) * bw / 2;
1190
0
    const int y_idx = (i >> 1) * bw / 2;
1191
0
    buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride;
1192
0
    split_variance[i] =
1193
0
        av1_get_perpixel_variance_facade(cpi, xd, &buf, subsize, AOM_PLANE_Y);
1194
0
  }
1195
1196
0
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++)
1197
0
    features[5 + i] = (float)split_variance[i] / (float)whole_block_variance;
1198
1199
  // Write features to file
1200
0
  write_features_to_file(cpi->oxcf.partition_info_path,
1201
0
                         cpi->ext_part_controller.test_mode, features,
1202
0
                         /*feature_size=*/9, 5, bsize, mi_row, mi_col);
1203
1204
0
  if (ext_ml_model_decision_after_split_part2(
1205
0
          &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
1206
0
          features, &part_state->prune_rect_part[HORZ],
1207
0
          &part_state->prune_rect_part[VERT])) {
1208
0
    return;
1209
0
  }
1210
1211
  // 2. Do the prediction and prune 0-2 partitions based on their probabilities
1212
0
  float raw_scores[3] = { 0.0f };
1213
0
  av1_nn_predict(features, nn_config, 1, raw_scores);
1214
0
  float probs[3] = { 0.0f };
1215
0
  av1_nn_softmax(raw_scores, probs, 3);
1216
1217
  // probs[0] is the probability of the fact that both rectangular partitions
1218
  // are worse than current best_rd
1219
0
  if (probs[1] <= cur_thresh) part_state->prune_rect_part[HORZ] = 1;
1220
0
  if (probs[2] <= cur_thresh) part_state->prune_rect_part[VERT] = 1;
1221
0
}
1222
1223
// Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be
1224
// considered.
1225
static void ml_prune_ab_partition(AV1_COMP *const cpi, int part_ctx,
1226
                                  int var_ctx, int64_t best_rd,
1227
                                  PartitionSearchState *part_state,
1228
0
                                  int *ab_partitions_allowed) {
1229
0
  const PartitionBlkParams blk_params = part_state->part_blk_params;
1230
0
  const int mi_row = blk_params.mi_row;
1231
0
  const int mi_col = blk_params.mi_col;
1232
0
  const BLOCK_SIZE bsize = blk_params.bsize;
1233
1234
0
  if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
1235
0
  const NN_CONFIG *nn_config = NULL;
1236
0
  switch (bsize) {
1237
0
    case BLOCK_8X8: nn_config = NULL; break;
1238
0
    case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break;
1239
0
    case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break;
1240
0
    case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break;
1241
0
    case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break;
1242
0
    default: assert(0 && "Unexpected bsize.");
1243
0
  }
1244
0
  if (!nn_config) return;
1245
1246
  // Generate features.
1247
0
  float features[10];
1248
0
  int feature_index = 0;
1249
0
  features[feature_index++] = (float)part_ctx;
1250
0
  features[feature_index++] = (float)var_ctx;
1251
0
  const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1252
0
  int sub_block_rdcost[8] = { 0 };
1253
0
  int rd_index = 0;
1254
0
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1255
0
    const int64_t *horz_rd = part_state->rect_part_rd[HORZ];
1256
0
    if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1257
0
      sub_block_rdcost[rd_index] = (int)horz_rd[i];
1258
0
    ++rd_index;
1259
0
  }
1260
0
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1261
0
    const int64_t *vert_rd = part_state->rect_part_rd[VERT];
1262
0
    if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1263
0
      sub_block_rdcost[rd_index] = (int)vert_rd[i];
1264
0
    ++rd_index;
1265
0
  }
1266
0
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1267
0
    const int64_t *split_rd = part_state->split_rd;
1268
0
    if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1269
0
      sub_block_rdcost[rd_index] = (int)split_rd[i];
1270
0
    ++rd_index;
1271
0
  }
1272
0
  for (int i = 0; i < 8; ++i) {
1273
    // Ratio between the sub-block RD and the whole-block RD.
1274
0
    float rd_ratio = 1.0f;
1275
0
    if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1276
0
      rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1277
0
    features[feature_index++] = rd_ratio;
1278
0
  }
1279
0
  assert(feature_index == 10);
1280
1281
  // Write features to file
1282
0
  if (!frame_is_intra_only(&cpi->common)) {
1283
0
    write_features_to_file(cpi->oxcf.partition_info_path,
1284
0
                           cpi->ext_part_controller.test_mode, features,
1285
0
                           /*feature_size=*/10, 6, bsize, mi_row, mi_col);
1286
0
  }
1287
1288
0
  if (ext_ml_model_decision_after_rect(
1289
0
          &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
1290
0
          features, &ab_partitions_allowed[HORZ_A],
1291
0
          &ab_partitions_allowed[HORZ_B], &ab_partitions_allowed[VERT_A],
1292
0
          &ab_partitions_allowed[VERT_B])) {
1293
0
    return;
1294
0
  }
1295
1296
  // Calculate scores using the NN model.
1297
0
  float score[16] = { 0.0f };
1298
0
  av1_nn_predict(features, nn_config, 1, score);
1299
0
  int int_score[16];
1300
0
  int max_score = -1000;
1301
0
  for (int i = 0; i < 16; ++i) {
1302
0
    int_score[i] = (int)(100 * score[i]);
1303
0
    max_score = AOMMAX(int_score[i], max_score);
1304
0
  }
1305
1306
  // Make decisions based on the model scores.
1307
0
  int thresh = max_score;
1308
0
  switch (bsize) {
1309
0
    case BLOCK_16X16: thresh -= 150; break;
1310
0
    case BLOCK_32X32: thresh -= 100; break;
1311
0
    default: break;
1312
0
  }
1313
0
  av1_zero_array(ab_partitions_allowed, NUM_AB_PARTS);
1314
0
  for (int i = 0; i < 16; ++i) {
1315
0
    if (int_score[i] >= thresh) {
1316
0
      if ((i >> 0) & 1) ab_partitions_allowed[HORZ_A] = 1;
1317
0
      if ((i >> 1) & 1) ab_partitions_allowed[HORZ_B] = 1;
1318
0
      if ((i >> 2) & 1) ab_partitions_allowed[VERT_A] = 1;
1319
0
      if ((i >> 3) & 1) ab_partitions_allowed[VERT_B] = 1;
1320
0
    }
1321
0
  }
1322
0
}
1323
1324
0
#define FEATURES 18
1325
0
#define LABELS 4
1326
// Use a ML model to predict if horz4 and vert4 should be considered.
1327
void av1_ml_prune_4_partition(AV1_COMP *const cpi, MACROBLOCK *const x,
1328
                              int part_ctx, int64_t best_rd,
1329
                              PartitionSearchState *part_state,
1330
                              int *part4_allowed,
1331
0
                              unsigned int pb_source_variance) {
1332
0
  const PartitionBlkParams blk_params = part_state->part_blk_params;
1333
0
  const int mi_row = blk_params.mi_row;
1334
0
  const int mi_col = blk_params.mi_col;
1335
0
  const BLOCK_SIZE bsize = blk_params.bsize;
1336
1337
0
  int64_t(*rect_part_rd)[SUB_PARTITIONS_RECT] = part_state->rect_part_rd;
1338
0
  int64_t *split_rd = part_state->split_rd;
1339
0
  if (ext_ml_model_decision_after_part_ab(
1340
0
          cpi, x, bsize, part_ctx, best_rd, rect_part_rd, split_rd,
1341
0
          &part4_allowed[HORZ4], &part4_allowed[VERT4], pb_source_variance,
1342
0
          mi_row, mi_col))
1343
0
    return;
1344
1345
0
  if (best_rd >= 1000000000) return;
1346
0
  int64_t *horz_rd = rect_part_rd[HORZ4];
1347
0
  int64_t *vert_rd = rect_part_rd[VERT4];
1348
0
  const NN_CONFIG *nn_config = NULL;
1349
  // 4-way partitions are only allowed for these three square block sizes.
1350
0
  switch (bsize) {
1351
0
    case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break;
1352
0
    case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break;
1353
0
    case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break;
1354
0
    default: assert(0 && "Unexpected bsize.");
1355
0
  }
1356
0
  if (!nn_config) return;
1357
1358
  // Generate features.
1359
0
  float features[FEATURES];
1360
0
  int feature_index = 0;
1361
0
  features[feature_index++] = (float)part_ctx;
1362
0
  features[feature_index++] = (float)get_unsigned_bits(pb_source_variance);
1363
1364
0
  const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1365
0
  int sub_block_rdcost[8] = { 0 };
1366
0
  int rd_index = 0;
1367
0
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1368
0
    if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1369
0
      sub_block_rdcost[rd_index] = (int)horz_rd[i];
1370
0
    ++rd_index;
1371
0
  }
1372
0
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1373
0
    if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1374
0
      sub_block_rdcost[rd_index] = (int)vert_rd[i];
1375
0
    ++rd_index;
1376
0
  }
1377
0
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1378
0
    if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1379
0
      sub_block_rdcost[rd_index] = (int)split_rd[i];
1380
0
    ++rd_index;
1381
0
  }
1382
0
  for (int i = 0; i < 8; ++i) {
1383
    // Ratio between the sub-block RD and the whole-block RD.
1384
0
    float rd_ratio = 1.0f;
1385
0
    if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1386
0
      rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1387
0
    features[feature_index++] = rd_ratio;
1388
0
  }
1389
1390
  // Get variance of the 1:4 and 4:1 sub-blocks.
1391
0
  unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1392
0
  unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1393
0
  {
1394
0
    BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
1395
0
    BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
1396
1397
0
    assert(horz_4_bs != BLOCK_INVALID);
1398
0
    assert(vert_4_bs != BLOCK_INVALID);
1399
1400
0
    av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
1401
0
                         av1_num_planes(&cpi->common), bsize);
1402
0
    const int src_stride = x->plane[0].src.stride;
1403
0
    uint8_t *src = x->plane[0].src.buf;
1404
0
    const MACROBLOCKD *const xd = &x->e_mbd;
1405
1406
0
    struct buf_2d horz_4_src, vert_4_src;
1407
0
    horz_4_src.stride = src_stride;
1408
0
    vert_4_src.stride = src_stride;
1409
1410
0
    for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1411
0
      horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
1412
0
      vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
1413
1414
0
      horz_4_source_var[i] = av1_get_perpixel_variance_facade(
1415
0
          cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y);
1416
0
      vert_4_source_var[i] = av1_get_perpixel_variance_facade(
1417
0
          cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y);
1418
0
    }
1419
0
  }
1420
1421
0
  const float denom = (float)(pb_source_variance + 1);
1422
0
  const float low_b = 0.1f;
1423
0
  const float high_b = 10.0f;
1424
0
  for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1425
    // Ratio between the 4:1 sub-block variance and the whole-block variance.
1426
0
    float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
1427
0
    if (var_ratio < low_b) var_ratio = low_b;
1428
0
    if (var_ratio > high_b) var_ratio = high_b;
1429
0
    features[feature_index++] = var_ratio;
1430
0
  }
1431
0
  for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1432
    // Ratio between the 1:4 sub-block RD and the whole-block RD.
1433
0
    float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
1434
0
    if (var_ratio < low_b) var_ratio = low_b;
1435
0
    if (var_ratio > high_b) var_ratio = high_b;
1436
0
    features[feature_index++] = var_ratio;
1437
0
  }
1438
0
  assert(feature_index == FEATURES);
1439
1440
  // Write features to file
1441
0
  if (!frame_is_intra_only(&cpi->common)) {
1442
0
    write_features_to_file(cpi->oxcf.partition_info_path,
1443
0
                           cpi->ext_part_controller.test_mode, features,
1444
0
                           FEATURES, 7, bsize, mi_row, mi_col);
1445
0
  }
1446
1447
  // Calculate scores using the NN model.
1448
0
  float score[LABELS] = { 0.0f };
1449
0
  av1_nn_predict(features, nn_config, 1, score);
1450
0
  int int_score[LABELS];
1451
0
  int max_score = -1000;
1452
0
  for (int i = 0; i < LABELS; ++i) {
1453
0
    int_score[i] = (int)(100 * score[i]);
1454
0
    max_score = AOMMAX(int_score[i], max_score);
1455
0
  }
1456
1457
  // Make decisions based on the model scores.
1458
0
  int thresh = max_score;
1459
0
  switch (bsize) {
1460
0
    case BLOCK_16X16: thresh -= 500; break;
1461
0
    case BLOCK_32X32: thresh -= 500; break;
1462
0
    case BLOCK_64X64: thresh -= 200; break;
1463
0
    default: break;
1464
0
  }
1465
0
  av1_zero_array(part4_allowed, NUM_PART4_TYPES);
1466
0
  for (int i = 0; i < LABELS; ++i) {
1467
0
    if (int_score[i] >= thresh) {
1468
0
      if ((i >> 0) & 1) part4_allowed[HORZ4] = 1;
1469
0
      if ((i >> 1) & 1) part4_allowed[VERT4] = 1;
1470
0
    }
1471
0
  }
1472
0
}
1473
#undef FEATURES
1474
#undef LABELS
1475
1476
9
#define FEATURES 4
1477
void av1_ml_predict_breakout(AV1_COMP *const cpi, const MACROBLOCK *const x,
1478
                             const RD_STATS *const rd_stats,
1479
                             unsigned int pb_source_variance, int bit_depth,
1480
9
                             PartitionSearchState *part_state) {
1481
9
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1482
9
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1483
9
  const BLOCK_SIZE bsize = blk_params->bsize;
1484
1485
9
  const int bsize_idx = convert_bsize_to_idx(bsize);
1486
9
  if (bsize_idx < 0) return;
1487
9
  const float *ml_mean = av1_hd_partition_breakout_nn_mean[bsize_idx];
1488
9
  const float *ml_std = av1_hd_partition_breakout_nn_std[bsize_idx];
1489
1490
9
  const NN_CONFIG *nn_config = NULL;
1491
9
  float thresh = 0;
1492
9
  switch (bsize) {
1493
0
    case BLOCK_8X8:
1494
0
      nn_config =
1495
0
          &av1_partition_breakout_nnconfig_8
1496
0
              [cpi->sf.part_sf.ml_partition_search_breakout_model_index];
1497
0
      thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[bsize_idx];
1498
0
      break;
1499
9
    case BLOCK_16X16:
1500
9
      nn_config =
1501
9
          &av1_partition_breakout_nnconfig_16
1502
9
              [cpi->sf.part_sf.ml_partition_search_breakout_model_index];
1503
9
      thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[bsize_idx];
1504
9
      break;
1505
0
    case BLOCK_32X32:
1506
0
      nn_config =
1507
0
          &av1_partition_breakout_nnconfig_32
1508
0
              [cpi->sf.part_sf.ml_partition_search_breakout_model_index];
1509
0
      thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[bsize_idx];
1510
0
      break;
1511
0
    case BLOCK_64X64:
1512
0
      nn_config =
1513
0
          &av1_partition_breakout_nnconfig_64
1514
0
              [cpi->sf.part_sf.ml_partition_search_breakout_model_index];
1515
0
      thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[bsize_idx];
1516
0
      break;
1517
0
    case BLOCK_128X128:
1518
0
      nn_config =
1519
0
          &av1_partition_breakout_nnconfig_128
1520
0
              [cpi->sf.part_sf.ml_partition_search_breakout_model_index];
1521
0
      thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[bsize_idx];
1522
0
      break;
1523
0
    default: assert(0 && "Unexpected bsize.");
1524
9
  }
1525
9
  if (!nn_config || thresh < 0) return;
1526
1527
9
  const float ml_predict_breakout_thresh_scale[3] = { 1.15f, 1.05f, 1.0f };
1528
9
  thresh = thresh * ml_predict_breakout_thresh_scale
1529
9
                        [cpi->sf.part_sf.ml_predict_breakout_level - 1];
1530
1531
  // Generate feature values.
1532
9
  float features[FEATURES];
1533
9
  int feature_index = 0;
1534
1535
9
  const int num_pels_log2 = num_pels_log2_lookup[bsize];
1536
9
  float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX);
1537
9
  rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
1538
9
           rate_f;
1539
9
  features[feature_index++] = rate_f;
1540
1541
9
  const float dist_f =
1542
9
      (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2);
1543
9
  features[feature_index++] = dist_f;
1544
1545
9
  features[feature_index++] = (float)pb_source_variance;
1546
1547
9
  const int dc_q = (int)x->plane[0].dequant_QTX[0] >> (bit_depth - 8);
1548
9
  features[feature_index++] = (float)(dc_q * dc_q) / 256.0f;
1549
9
  assert(feature_index == FEATURES);
1550
1551
9
  if (cpi->sf.part_sf.ml_partition_search_breakout_model_index) {
1552
0
    for (int idx = 0; idx < FEATURES; idx++) {
1553
0
      features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx];
1554
0
    }
1555
0
  }
1556
1557
  // Write features to file
1558
9
  write_features_to_file(cpi->oxcf.partition_info_path,
1559
9
                         cpi->ext_part_controller.test_mode, features, FEATURES,
1560
9
                         2, bsize, mi_row, mi_col);
1561
1562
9
  if (ext_ml_model_decision_after_none(&cpi->ext_part_controller,
1563
9
                                       frame_is_intra_only(&cpi->common),
1564
9
                                       features, &part_state->do_square_split,
1565
9
                                       &part_state->do_rectangular_split)) {
1566
0
    return;
1567
0
  }
1568
1569
  // Calculate score using the NN model.
1570
9
  float score = 0.0f;
1571
9
  av1_nn_predict(features, nn_config, 1, &score);
1572
1573
9
  float thresh_score = (float)log(thresh / (1 - thresh));
1574
1575
  // Make decision.
1576
9
  if (score >= thresh_score) {
1577
0
    part_state->do_square_split = 0;
1578
0
    part_state->do_rectangular_split = 0;
1579
0
  }
1580
9
}
1581
#undef FEATURES
1582
1583
void av1_prune_partitions_before_search(AV1_COMP *const cpi,
1584
                                        MACROBLOCK *const x,
1585
                                        SIMPLE_MOTION_DATA_TREE *const sms_tree,
1586
8.65M
                                        PartitionSearchState *part_state) {
1587
8.65M
  const AV1_COMMON *const cm = &cpi->common;
1588
8.65M
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1589
1590
8.65M
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1591
8.65M
  const BLOCK_SIZE bsize = blk_params->bsize;
1592
1593
#if CONFIG_THREE_PASS
1594
  if (cpi->third_pass_ctx) {
1595
    int mi_row = blk_params->mi_row;
1596
    int mi_col = blk_params->mi_col;
1597
    double ratio_h, ratio_w;
1598
    av1_get_third_pass_ratio(cpi->third_pass_ctx, 0, cm->height, cm->width,
1599
                             &ratio_h, &ratio_w);
1600
    THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
1601
        cpi->third_pass_ctx, 0, mi_row, mi_col, ratio_h, ratio_w);
1602
    BLOCK_SIZE third_pass_bsize =
1603
        av1_get_third_pass_adjusted_blk_size(this_mi, ratio_h, ratio_w);
1604
    // check the actual partition of this block in the second pass
1605
    PARTITION_TYPE third_pass_part =
1606
        av1_third_pass_get_sb_part_type(cpi->third_pass_ctx, this_mi);
1607
1608
    int is_edge = (mi_row + mi_size_high[bsize] >= cm->mi_params.mi_rows) ||
1609
                  (mi_col + mi_size_wide[bsize] >= cm->mi_params.mi_cols);
1610
1611
    if (!is_edge && block_size_wide[bsize] >= 16) {
1612
      // If in second pass we used rectangular partition, then do not search for
1613
      // rectangular partition in the different direction.
1614
      if (third_pass_part != PARTITION_NONE) {
1615
        if (third_pass_part == PARTITION_HORZ ||
1616
            third_pass_part == PARTITION_HORZ_4 ||
1617
            third_pass_part == PARTITION_HORZ_A ||
1618
            third_pass_part == PARTITION_HORZ_B) {
1619
          part_state->partition_rect_allowed[VERT] = 0;
1620
        } else if (third_pass_part == PARTITION_VERT ||
1621
                   third_pass_part == PARTITION_VERT_4 ||
1622
                   third_pass_part == PARTITION_VERT_A ||
1623
                   third_pass_part == PARTITION_VERT_B) {
1624
          part_state->partition_rect_allowed[HORZ] = 0;
1625
        }
1626
      }
1627
1628
      int minSize = AOMMIN(block_size_wide[third_pass_bsize],
1629
                           block_size_high[third_pass_bsize]);
1630
      int maxSize = AOMMAX(block_size_wide[third_pass_bsize],
1631
                           block_size_high[third_pass_bsize]);
1632
      if (block_size_wide[bsize] < minSize / 4) {
1633
        // Current partition is too small, just terminate
1634
        part_state->terminate_partition_search = 1;
1635
        return;
1636
      } else if (block_size_wide[bsize] < minSize / 2) {
1637
        if (third_pass_part != PARTITION_NONE) {
1638
          // Current partition is very small, and in second pass we used
1639
          // rectangular partition. Terminate the search here then.
1640
          part_state->terminate_partition_search = 1;
1641
          return;
1642
        } else {
1643
          // Partition is small, but we still check this partition, only disable
1644
          // further splits.
1645
          // TODO(any): check why this is not covered by the termination for <
1646
          // minSize/4.
1647
          av1_disable_square_split_partition(part_state);
1648
          av1_disable_rect_partitions(part_state);
1649
          return;
1650
        }
1651
      } else if (block_size_wide[bsize] > maxSize) {
1652
        // Partition is larger than in the second pass. Only allow split.
1653
        av1_set_square_split_only(part_state);
1654
        return;
1655
      } else if (block_size_wide[bsize] >= minSize &&
1656
                 block_size_wide[bsize] <= maxSize) {
1657
        // Partition is within a range where it is very likely to find a good
1658
        // choice, so do not prune anything.
1659
        return;
1660
      }
1661
    }
1662
  }
1663
#endif  // CONFIG_THREE_PASS
1664
1665
  // Prune rectangular partitions for larger blocks.
1666
8.65M
  if (bsize > cpi->sf.part_sf.rect_partition_eval_thresh) {
1667
0
    part_state->do_rectangular_split = 0;
1668
0
    part_state->partition_rect_allowed[HORZ] = 0;
1669
0
    part_state->partition_rect_allowed[VERT] = 0;
1670
0
  }
1671
1672
  // Prune rectangular, AB and 4-way partition based on q index and block size
1673
8.65M
  if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 1) {
1674
0
    if (bsize == BLOCK_8X8 && x->qindex < 35)
1675
0
      av1_disable_rect_partitions(part_state);
1676
1677
8.65M
  } else if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 2) {
1678
    // Enumeration difference between two square partitions
1679
6.55M
    const int sqr_bsize_step = BLOCK_32X32 - BLOCK_16X16;
1680
6.55M
    int max_bsize =
1681
6.55M
        BLOCK_32X32 - (x->qindex * 3 / QINDEX_RANGE) * sqr_bsize_step;
1682
6.55M
    max_bsize = AOMMAX(max_bsize, BLOCK_4X4);
1683
6.55M
    const BLOCK_SIZE max_prune_bsize =
1684
6.55M
        (BLOCK_SIZE)AOMMIN(max_bsize, BLOCK_32X32);
1685
1686
    // Prune partition
1687
    // qidx 0 to 85: prune bsize below BLOCK_32X32
1688
    // qidx 86 to 170: prune bsize below BLOCK_16X16
1689
    // qidx 171 to 255: prune bsize below BLOCK_8X8
1690
6.55M
    if (bsize < max_prune_bsize) {
1691
5.22M
      av1_disable_rect_partitions(part_state);
1692
5.22M
    }
1693
6.55M
  }
1694
1695
8.65M
  if (cpi->sf.part_sf.prune_sub_8x8_partition_level && (bsize == BLOCK_8X8)) {
1696
3.30M
    const MACROBLOCKD *const xd = &x->e_mbd;
1697
3.30M
    int prune_sub_8x8;
1698
3.30M
    if (cpi->sf.part_sf.prune_sub_8x8_partition_level == 2) {
1699
1.74M
      prune_sub_8x8 = 1;
1700
1.74M
    } else {
1701
1.56M
      assert(cpi->sf.part_sf.prune_sub_8x8_partition_level == 1);
1702
      // Prune if both neighbors are available and either is > BLOCK_8X8
1703
1.56M
      prune_sub_8x8 = xd->left_available && xd->up_available &&
1704
957k
                      (xd->left_mbmi->bsize > BLOCK_8X8 ||
1705
683k
                       xd->above_mbmi->bsize > BLOCK_8X8);
1706
1.56M
    }
1707
3.30M
    if (prune_sub_8x8) {
1708
2.20M
      av1_disable_all_splits(part_state);
1709
2.20M
    }
1710
3.30M
  }
1711
1712
  // A CNN-based speed feature pruning out either split or all non-split
1713
  // partition in INTRA frame coding.
1714
8.65M
  const int try_intra_cnn_based_part_prune =
1715
8.65M
      frame_is_intra_only(cm) &&
1716
7.31M
      cpi->sf.part_sf.intra_cnn_based_part_prune_level &&
1717
7.31M
      cm->seq_params->sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 &&
1718
7.31M
      blk_params->bsize_at_least_8x8 &&
1719
3.71M
      av1_is_whole_blk_in_frame(blk_params, mi_params);
1720
1721
8.65M
  if (try_intra_cnn_based_part_prune) {
1722
3.04M
    intra_mode_cnn_partition(&cpi->common, x, x->part_search_info.quad_tree_idx,
1723
3.04M
                             cpi->sf.part_sf.intra_cnn_based_part_prune_level,
1724
3.04M
                             part_state);
1725
3.04M
  }
1726
1727
  // Use simple motion search to prune out split or non-split partitions. This
1728
  // must be done prior to PARTITION_SPLIT to propagate the initial mvs to a
1729
  // smaller blocksize.
1730
8.65M
  const int try_split_only =
1731
8.65M
      cpi->sf.part_sf.simple_motion_search_split &&
1732
8.65M
      part_state->do_square_split && blk_params->bsize_at_least_8x8 &&
1733
2.61M
      av1_is_whole_blk_in_frame(blk_params, mi_params) &&
1734
1.76M
      !frame_is_intra_only(cm) && !av1_superres_scaled(cm);
1735
1736
8.65M
  if (try_split_only) {
1737
233k
    simple_motion_search_based_split(cpi, x, sms_tree, part_state);
1738
233k
  }
1739
1740
  // Use simple motion search to prune out rectangular partition in some
1741
  // direction. The results are stored in prune_horz and prune_vert in order to
1742
  // bypass future related pruning checks if a pruning decision has been made.
1743
1744
  // We want to search at least one partition mode, so don't prune if NONE and
1745
  // SPLIT are disabled.
1746
8.65M
  const int non_rect_part_allowed =
1747
8.65M
      part_state->do_square_split || part_state->partition_none_allowed;
1748
  // Only run the model if the partitions are not already pruned.
1749
8.65M
  const int rect_part_allowed = part_state->do_rectangular_split &&
1750
1.51M
                                ((part_state->partition_rect_allowed[HORZ] &&
1751
876k
                                  !part_state->prune_rect_part[HORZ]) ||
1752
641k
                                 (part_state->partition_rect_allowed[VERT] &&
1753
290k
                                  !part_state->prune_rect_part[VERT]));
1754
1755
8.65M
  const int try_prune_rect = cpi->sf.part_sf.simple_motion_search_prune_rect &&
1756
8.65M
                             !frame_is_intra_only(cm) &&
1757
1.33M
                             non_rect_part_allowed && rect_part_allowed &&
1758
133k
                             !av1_superres_scaled(cm);
1759
1760
8.65M
  if (try_prune_rect) {
1761
133k
    simple_motion_search_prune_rect(cpi, x, sms_tree, part_state);
1762
133k
  }
1763
8.65M
}
1764
1765
#ifndef NDEBUG
1766
static inline int is_bsize_square(BLOCK_SIZE bsize) {
1767
  return block_size_wide[bsize] == block_size_high[bsize];
1768
}
1769
#endif  // NDEBUG
1770
1771
void av1_prune_partitions_by_max_min_bsize(SuperBlockEnc *sb_enc,
1772
8.65M
                                           PartitionSearchState *part_state) {
1773
8.65M
  assert(is_bsize_square(sb_enc->max_partition_size));
1774
8.65M
  assert(is_bsize_square(sb_enc->min_partition_size));
1775
8.65M
  assert(sb_enc->min_partition_size <= sb_enc->max_partition_size);
1776
8.65M
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1777
8.65M
  const BLOCK_SIZE bsize = blk_params->bsize;
1778
8.65M
  assert(is_bsize_square(bsize));
1779
8.65M
  const int max_partition_size_1d = block_size_wide[sb_enc->max_partition_size];
1780
8.65M
  const int min_partition_size_1d = block_size_wide[sb_enc->min_partition_size];
1781
8.65M
  const int bsize_1d = block_size_wide[bsize];
1782
8.65M
  assert(min_partition_size_1d <= max_partition_size_1d);
1783
8.65M
  const int is_le_min_sq_part = bsize_1d <= min_partition_size_1d;
1784
8.65M
  const int is_gt_max_sq_part = bsize_1d > max_partition_size_1d;
1785
8.65M
  if (is_gt_max_sq_part) {
1786
    // If current block size is larger than max, only allow split.
1787
103k
    av1_set_square_split_only(part_state);
1788
8.55M
  } else if (is_le_min_sq_part) {
1789
    // If current block size is less or equal to min, only allow none if valid
1790
    // block large enough; only allow split otherwise.
1791
3.60M
    av1_disable_rect_partitions(part_state);
1792
1793
    // only disable square split when current block is not at the picture
1794
    // boundary. otherwise, inherit the square split flag from previous logic
1795
3.60M
    if (av1_blk_has_rows_and_cols(blk_params)) {
1796
3.60M
      part_state->do_square_split = 0;
1797
3.60M
    }
1798
3.60M
    part_state->partition_none_allowed = !(part_state->do_square_split);
1799
3.60M
  }
1800
8.65M
}
1801
1802
// Decide whether to evaluate the AB partition specified by part_type based on
1803
// split and HORZ/VERT info
1804
static int evaluate_ab_partition_based_on_split(
1805
    const PC_TREE *pc_tree, PARTITION_TYPE rect_part,
1806
    const RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1,
1807
0
    int split_idx2) {
1808
0
  int num_win = 0;
1809
  // Threshold for number of winners
1810
  // Conservative pruning for high quantizers
1811
0
  const int num_win_thresh = AOMMIN(3 * (2 * (MAXQ - qindex) / MAXQ), 3);
1812
0
  int sub_part_win =
1813
0
      (rect_part_win_info == NULL)    ? (pc_tree->partitioning == rect_part)
1814
0
      : (rect_part == PARTITION_HORZ) ? rect_part_win_info->rect_part_win[HORZ]
1815
0
                                      : rect_part_win_info->rect_part_win[VERT];
1816
0
  num_win += (sub_part_win) ? 1 : 0;
1817
0
  if (pc_tree->split[split_idx1]) {
1818
0
    num_win +=
1819
0
        (pc_tree->split[split_idx1]->partitioning == PARTITION_NONE) ? 1 : 0;
1820
0
  } else {
1821
0
    num_win += 1;
1822
0
  }
1823
0
  if (pc_tree->split[split_idx2]) {
1824
0
    num_win +=
1825
0
        (pc_tree->split[split_idx2]->partitioning == PARTITION_NONE) ? 1 : 0;
1826
0
  } else {
1827
0
    num_win += 1;
1828
0
  }
1829
0
  if (num_win < num_win_thresh) {
1830
0
    return 0;
1831
0
  }
1832
0
  return 1;
1833
0
}
1834
1835
void av1_prune_ab_partitions(AV1_COMP *cpi, const MACROBLOCK *x,
1836
                             const PC_TREE *pc_tree, int pb_source_variance,
1837
                             int64_t best_rdcost,
1838
                             const RD_RECT_PART_WIN_INFO *rect_part_win_info,
1839
                             bool ext_partition_allowed,
1840
                             PartitionSearchState *part_state,
1841
7.96M
                             int *ab_partitions_allowed) {
1842
7.96M
  int64_t *horz_rd = part_state->rect_part_rd[HORZ];
1843
7.96M
  int64_t *vert_rd = part_state->rect_part_rd[VERT];
1844
7.96M
  int64_t *split_rd = part_state->split_rd;
1845
7.96M
  const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
1846
  // The standard AB partitions are allowed initially if ext-partition-types are
1847
  // allowed.
1848
7.96M
  int horzab_partition_allowed = ext_partition_allowed &&
1849
0
                                 part_cfg->enable_ab_partitions &&
1850
0
                                 part_state->partition_rect_allowed[HORZ];
1851
7.96M
  int vertab_partition_allowed = ext_partition_allowed &&
1852
0
                                 part_cfg->enable_ab_partitions &&
1853
0
                                 part_state->partition_rect_allowed[VERT];
1854
1855
  // Pruning: pruning out AB partitions on one main direction based on the
1856
  // current best partition and source variance.
1857
7.96M
  if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1858
7.96M
    if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 1) {
1859
      // TODO(debargha,huisu@google.com): may need to tune the threshold for
1860
      // pb_source_variance.
1861
7.96M
      horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
1862
7.87M
                                   (pc_tree->partitioning == PARTITION_NONE &&
1863
6.36M
                                    pb_source_variance < 32) ||
1864
7.82M
                                   pc_tree->partitioning == PARTITION_SPLIT);
1865
7.96M
      vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
1866
7.89M
                                   (pc_tree->partitioning == PARTITION_NONE &&
1867
6.36M
                                    pb_source_variance < 32) ||
1868
7.84M
                                   pc_tree->partitioning == PARTITION_SPLIT);
1869
18.4E
    } else {
1870
18.4E
      horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
1871
0
                                   pc_tree->partitioning == PARTITION_SPLIT);
1872
18.4E
      vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
1873
0
                                   pc_tree->partitioning == PARTITION_SPLIT);
1874
18.4E
    }
1875
7.96M
    horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0);
1876
7.96M
    horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0);
1877
7.96M
    vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0);
1878
7.96M
    vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0);
1879
7.96M
    split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0);
1880
7.96M
    split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0);
1881
7.96M
    split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0);
1882
7.96M
    split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0);
1883
7.96M
  }
1884
1885
  // Pruning: pruning out horz_a or horz_b if the combined rdcost of its
1886
  // subblocks estimated from previous partitions is much higher than the best
1887
  // rd so far.
1888
7.96M
  ab_partitions_allowed[HORZ_A] = horzab_partition_allowed;
1889
7.96M
  ab_partitions_allowed[HORZ_B] = horzab_partition_allowed;
1890
7.96M
  if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1891
7.96M
    const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1];
1892
7.96M
    const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3];
1893
7.96M
    switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1894
7.96M
      case 1:
1895
7.96M
        ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 14 < best_rdcost);
1896
7.96M
        ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 14 < best_rdcost);
1897
7.96M
        break;
1898
0
      case 2:
1899
0
      default:
1900
0
        ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 15 < best_rdcost);
1901
0
        ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 15 < best_rdcost);
1902
0
        break;
1903
7.96M
    }
1904
7.96M
  }
1905
1906
  // Pruning: pruning out vert_a or vert_b if the combined rdcost of its
1907
  // subblocks estimated from previous partitions is much higher than the best
1908
  // rd so far.
1909
7.96M
  ab_partitions_allowed[VERT_A] = vertab_partition_allowed;
1910
7.96M
  ab_partitions_allowed[VERT_B] = vertab_partition_allowed;
1911
7.96M
  if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1912
7.96M
    const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2];
1913
7.96M
    const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3];
1914
7.96M
    switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1915
7.96M
      case 1:
1916
7.96M
        ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 14 < best_rdcost);
1917
7.96M
        ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 14 < best_rdcost);
1918
7.96M
        break;
1919
0
      case 2:
1920
0
      default:
1921
0
        ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 15 < best_rdcost);
1922
0
        ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 15 < best_rdcost);
1923
0
        break;
1924
7.96M
    }
1925
7.96M
  }
1926
1927
  // Pruning: pruning out some ab partitions using a DNN taking rd costs of
1928
  // sub-blocks from previous basic partition types.
1929
7.96M
  if (cpi->sf.part_sf.ml_prune_partition && ext_partition_allowed &&
1930
0
      part_state->partition_rect_allowed[HORZ] &&
1931
0
      part_state->partition_rect_allowed[VERT]) {
1932
    // TODO(huisu@google.com): x->source_variance may not be the current
1933
    // block's variance. The correct one to use is pb_source_variance. Need to
1934
    // re-train the model to fix it.
1935
0
    ml_prune_ab_partition(cpi, pc_tree->partitioning,
1936
0
                          get_unsigned_bits(x->source_variance), best_rdcost,
1937
0
                          part_state, ab_partitions_allowed);
1938
0
  }
1939
1940
  // Pruning: pruning AB partitions based on the number of horz/vert wins
1941
  // in the current block and sub-blocks in PARTITION_SPLIT.
1942
7.96M
  if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1943
7.96M
      ab_partitions_allowed[HORZ_A]) {
1944
0
    ab_partitions_allowed[HORZ_A] &= evaluate_ab_partition_based_on_split(
1945
0
        pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 0, 1);
1946
0
  }
1947
7.96M
  if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1948
7.96M
      ab_partitions_allowed[HORZ_B]) {
1949
0
    ab_partitions_allowed[HORZ_B] &= evaluate_ab_partition_based_on_split(
1950
0
        pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 2, 3);
1951
0
  }
1952
7.96M
  if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1953
7.96M
      ab_partitions_allowed[VERT_A]) {
1954
0
    ab_partitions_allowed[VERT_A] &= evaluate_ab_partition_based_on_split(
1955
0
        pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 0, 2);
1956
0
  }
1957
7.96M
  if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1958
7.96M
      ab_partitions_allowed[VERT_B]) {
1959
0
    ab_partitions_allowed[VERT_B] &= evaluate_ab_partition_based_on_split(
1960
0
        pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 1, 3);
1961
0
  }
1962
7.96M
}
1963
1964
// Prepare features for the external model. Specifically, features after
1965
// ab partition is searched.
1966
static void prepare_features_after_part_ab(
1967
    const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
1968
    int part_ctx, int64_t best_rd,
1969
    int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
1970
    int64_t split_rd[SUB_PARTITIONS_SPLIT], unsigned int pb_source_variance,
1971
0
    int mi_row, int mi_col, aom_partition_features_t *const features) {
1972
0
  int64_t *horz_rd = rect_part_rd[HORZ];
1973
0
  int64_t *vert_rd = rect_part_rd[VERT];
1974
1975
  // Generate features.
1976
0
  int feature_index = 0;
1977
0
  features->after_part_ab.f[feature_index++] = (float)part_ctx;
1978
0
  features->after_part_ab.f[feature_index++] =
1979
0
      (float)get_unsigned_bits(pb_source_variance);
1980
1981
0
  const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1982
0
  int sub_block_rdcost[8] = { 0 };
1983
0
  int rd_index = 0;
1984
0
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1985
0
    if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1986
0
      sub_block_rdcost[rd_index] = (int)horz_rd[i];
1987
0
    ++rd_index;
1988
0
  }
1989
0
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1990
0
    if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1991
0
      sub_block_rdcost[rd_index] = (int)vert_rd[i];
1992
0
    ++rd_index;
1993
0
  }
1994
0
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1995
0
    if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1996
0
      sub_block_rdcost[rd_index] = (int)split_rd[i];
1997
0
    ++rd_index;
1998
0
  }
1999
0
  for (int i = 0; i < 8; ++i) {
2000
    // Ratio between the sub-block RD and the whole-block RD.
2001
0
    float rd_ratio = 1.0f;
2002
0
    if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
2003
0
      rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
2004
0
    features->after_part_ab.f[feature_index++] = rd_ratio;
2005
0
  }
2006
2007
  // 4-way partitions are only allowed for these three square block sizes.
2008
0
  assert(bsize == BLOCK_16X16 || bsize == BLOCK_32X32 || bsize == BLOCK_64X64);
2009
2010
  // Get variance of the 1:4 and 4:1 sub-blocks.
2011
0
  unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
2012
0
  unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
2013
0
  {
2014
0
    BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
2015
0
    BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
2016
2017
0
    assert(horz_4_bs != BLOCK_INVALID);
2018
0
    assert(vert_4_bs != BLOCK_INVALID);
2019
2020
0
    av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
2021
0
                         av1_num_planes(&cpi->common), bsize);
2022
0
    const int src_stride = x->plane[0].src.stride;
2023
0
    uint8_t *src = x->plane[0].src.buf;
2024
0
    const MACROBLOCKD *const xd = &x->e_mbd;
2025
2026
0
    struct buf_2d horz_4_src, vert_4_src;
2027
0
    horz_4_src.stride = src_stride;
2028
0
    vert_4_src.stride = src_stride;
2029
2030
0
    for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
2031
0
      horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
2032
0
      vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
2033
2034
0
      horz_4_source_var[i] = av1_get_perpixel_variance_facade(
2035
0
          cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y);
2036
0
      vert_4_source_var[i] = av1_get_perpixel_variance_facade(
2037
0
          cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y);
2038
0
    }
2039
0
  }
2040
2041
0
  const float denom = (float)(pb_source_variance + 1);
2042
0
  const float low_b = 0.1f;
2043
0
  const float high_b = 10.0f;
2044
0
  for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
2045
    // Ratio between the 4:1 sub-block variance and the whole-block variance.
2046
0
    float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
2047
0
    if (var_ratio < low_b) var_ratio = low_b;
2048
0
    if (var_ratio > high_b) var_ratio = high_b;
2049
0
    features->after_part_ab.f[feature_index++] = var_ratio;
2050
0
  }
2051
0
  for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
2052
    // Ratio between the 1:4 sub-block RD and the whole-block RD.
2053
0
    float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
2054
0
    if (var_ratio < low_b) var_ratio = low_b;
2055
0
    if (var_ratio > high_b) var_ratio = high_b;
2056
0
    features->after_part_ab.f[feature_index++] = var_ratio;
2057
0
  }
2058
0
  assert(feature_index == 18);
2059
0
}
2060
2061
// If the external partition model is used, we let it determine partition
2062
// decisions before partition none. Specifically, these parameters:
2063
// partition_none_allowed
2064
// partition_horz_allowed
2065
// partition_vert_allowed
2066
// do_rectangular_split
2067
// do_square_split
2068
static bool ext_ml_model_decision_before_none(
2069
    AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
2070
    int *partition_none_allowed, int *partition_horz_allowed,
2071
    int *partition_vert_allowed, int *do_rectangular_split,
2072
233k
    int *do_square_split) {
2073
233k
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2074
233k
  if (!ext_part_controller->ready) return false;
2075
2076
  // Setup features.
2077
6
  aom_partition_features_t features;
2078
6
  features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE;
2079
6
  for (int i = 0; i < FEATURE_SIZE_SMS_SPLIT; ++i) {
2080
0
    features.before_part_none.f[i] = features_from_motion[i];
2081
0
  }
2082
2083
  // Send necessary features to the external model.
2084
6
  av1_ext_part_send_features(ext_part_controller, &features);
2085
2086
  // Get partition decisions from the external model.
2087
6
  aom_partition_decision_t decision;
2088
6
  const bool valid_decision =
2089
6
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2090
6
  if (!valid_decision) return false;
2091
2092
  // Populate decisions
2093
6
  *partition_none_allowed = decision.partition_none_allowed;
2094
6
  *partition_horz_allowed = decision.partition_rect_allowed[HORZ];
2095
6
  *partition_vert_allowed = decision.partition_rect_allowed[VERT];
2096
6
  *do_rectangular_split = decision.do_rectangular_split;
2097
6
  *do_square_split = decision.do_square_split;
2098
2099
6
  return true;
2100
6
}
2101
2102
// If the external partition model is used, we let it determine partition
2103
// decisions before partition none. Specifically, these parameters:
2104
// prune_horz
2105
// prune_vert
2106
static bool ext_ml_model_decision_before_none_part2(
2107
    AV1_COMP *cpi,
2108
    const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
2109
133k
    int *prune_horz, int *prune_vert) {
2110
133k
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2111
133k
  if (!ext_part_controller->ready) return false;
2112
2113
  // Setup features.
2114
25
  aom_partition_features_t features;
2115
25
  features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE_PART2;
2116
25
  for (int i = 0; i < FEATURE_SIZE_SMS_PRUNE_PART; ++i) {
2117
0
    features.before_part_none.f_part2[i] = features_from_motion[i];
2118
0
  }
2119
2120
  // Send necessary features to the external model.
2121
25
  av1_ext_part_send_features(ext_part_controller, &features);
2122
2123
  // Get partition decisions from the external model.
2124
25
  aom_partition_decision_t decision;
2125
25
  const bool valid_decision =
2126
25
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2127
25
  if (!valid_decision) return false;
2128
2129
  // Populate decisions
2130
25
  *prune_horz = decision.prune_rect_part[HORZ];
2131
25
  *prune_vert = decision.prune_rect_part[VERT];
2132
2133
25
  return true;
2134
25
}
2135
2136
// If the external partition model is used, we let it determine partition
2137
// decisions after none partition. Specifically, these parameters:
2138
// do_square_split
2139
// do_rectangular_split
2140
bool ext_ml_model_decision_after_none(
2141
    ExtPartController *const ext_part_controller, const int is_intra_frame,
2142
    const float *const features_after_none, int *do_square_split,
2143
9
    int *do_rectangular_split) {
2144
9
  if (!ext_part_controller->ready || is_intra_frame) return false;
2145
2146
  // Setup features.
2147
0
  aom_partition_features_t features;
2148
0
  features.id = AOM_EXT_PART_FEATURE_AFTER_NONE;
2149
0
  for (int i = 0; i < 4; ++i) {
2150
0
    features.after_part_none.f[i] = features_after_none[i];
2151
0
  }
2152
2153
  // Send necessary features to the external model.
2154
0
  av1_ext_part_send_features(ext_part_controller, &features);
2155
2156
  // Get partition decisions from the external model.
2157
0
  aom_partition_decision_t decision;
2158
0
  const bool valid_decision =
2159
0
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2160
0
  if (!valid_decision) return false;
2161
2162
  // Populate decisions
2163
0
  *do_square_split = decision.do_square_split;
2164
0
  *do_rectangular_split = decision.do_rectangular_split;
2165
2166
0
  return true;
2167
0
}
2168
2169
// If the external partition model is used, we let it determine partition
2170
// decisions after none partition. Specifically, these parameters:
2171
// terminate_partition_search
2172
bool ext_ml_model_decision_after_none_part2(
2173
    AV1_COMP *const cpi, const float *const features_terminate,
2174
13.3k
    int *terminate_partition_search) {
2175
13.3k
  AV1_COMMON *const cm = &cpi->common;
2176
13.3k
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2177
13.3k
  if (!ext_part_controller->ready || frame_is_intra_only(cm)) return false;
2178
2179
  // Setup features.
2180
3
  aom_partition_features_t features;
2181
3
  features.id = AOM_EXT_PART_FEATURE_AFTER_NONE_PART2;
2182
3
  for (int i = 0; i < FEATURE_SIZE_SMS_TERM_NONE; ++i) {
2183
0
    features.after_part_none.f_terminate[i] = features_terminate[i];
2184
0
  }
2185
2186
  // Send necessary features to the external model.
2187
3
  av1_ext_part_send_features(ext_part_controller, &features);
2188
2189
  // Get partition decisions from the external model.
2190
3
  aom_partition_decision_t decision;
2191
3
  const bool valid_decision =
2192
3
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2193
3
  if (!valid_decision) return false;
2194
2195
  // Populate decisions
2196
3
  *terminate_partition_search = decision.terminate_partition_search;
2197
2198
3
  return true;
2199
3
}
2200
2201
// If the external partition model is used, we let it determine partition
2202
// decisions after none partition. Specifically, these parameters:
2203
// terminate_partition_search
2204
bool ext_ml_model_decision_after_split(AV1_COMP *const cpi,
2205
                                       const float *const features_terminate,
2206
0
                                       int *terminate_partition_search) {
2207
0
  const AV1_COMMON *const cm = &cpi->common;
2208
0
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2209
0
  if (frame_is_intra_only(cm) || !cpi->ext_part_controller.ready) {
2210
0
    return false;
2211
0
  }
2212
2213
  // Setup features.
2214
0
  aom_partition_features_t features;
2215
0
  features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT;
2216
0
  for (int i = 0; i < 31; ++i) {
2217
0
    features.after_part_split.f_terminate[i] = features_terminate[i];
2218
0
  }
2219
2220
  // Send necessary features to the external model.
2221
0
  av1_ext_part_send_features(ext_part_controller, &features);
2222
2223
  // Get partition decisions from the external model.
2224
0
  aom_partition_decision_t decision;
2225
0
  const bool valid_decision =
2226
0
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2227
0
  if (!valid_decision) return false;
2228
2229
  // Populate decisions
2230
0
  *terminate_partition_search = decision.terminate_partition_search;
2231
2232
0
  return true;
2233
0
}
2234
2235
// If the external partition model is used, we let it determine partition
2236
// decisions after none partition. Specifically, these parameters:
2237
// prune_rect_part[HORZ]
2238
// prune_rect_part[VERT]
2239
bool ext_ml_model_decision_after_split_part2(
2240
    ExtPartController *const ext_part_controller, const int is_intra_frame,
2241
    const float *const features_prune, int *prune_rect_part_horz,
2242
0
    int *prune_rect_part_vert) {
2243
0
  if (is_intra_frame || !ext_part_controller->ready) {
2244
0
    return false;
2245
0
  }
2246
2247
  // Setup features.
2248
0
  aom_partition_features_t features;
2249
0
  features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT_PART2;
2250
0
  for (int i = 0; i < 9; ++i) {
2251
0
    features.after_part_split.f_prune_rect[i] = features_prune[i];
2252
0
  }
2253
2254
  // Send necessary features to the external model.
2255
0
  av1_ext_part_send_features(ext_part_controller, &features);
2256
2257
  // Get partition decisions from the external model.
2258
0
  aom_partition_decision_t decision;
2259
0
  const bool valid_decision =
2260
0
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2261
0
  if (!valid_decision) return false;
2262
2263
  // Populate decisions
2264
0
  *prune_rect_part_horz = decision.prune_rect_part[0];
2265
0
  *prune_rect_part_vert = decision.prune_rect_part[1];
2266
2267
0
  return true;
2268
0
}
2269
2270
// If the external partition model is used, we let it determine partition
2271
// decisions after rectangular partition. Specifically, these parameters:
2272
// horza_partition_allowed
2273
// horzb_partition_allowed
2274
// verta_partition_allowed
2275
// vertb_partition_allowed
2276
static bool ext_ml_model_decision_after_rect(
2277
    ExtPartController *const ext_part_controller, const int is_intra_frame,
2278
    const float *const features_after_rect, int *horza_partition_allowed,
2279
    int *horzb_partition_allowed, int *verta_partition_allowed,
2280
0
    int *vertb_partition_allowed) {
2281
0
  if (is_intra_frame || !ext_part_controller->ready) return false;
2282
2283
  // Setup features.
2284
0
  aom_partition_features_t features;
2285
0
  features.id = AOM_EXT_PART_FEATURE_AFTER_RECT;
2286
0
  for (int i = 0; i < 10; ++i) {
2287
0
    features.after_part_rect.f[i] = features_after_rect[i];
2288
0
  }
2289
2290
  // Send necessary features to the external model.
2291
0
  av1_ext_part_send_features(ext_part_controller, &features);
2292
2293
  // Get partition decisions from the external model.
2294
0
  aom_partition_decision_t decision;
2295
0
  const bool valid_decision =
2296
0
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2297
0
  if (!valid_decision) return false;
2298
2299
  // Populate decisions
2300
0
  *horza_partition_allowed = decision.horza_partition_allowed;
2301
0
  *horzb_partition_allowed = decision.horzb_partition_allowed;
2302
0
  *verta_partition_allowed = decision.verta_partition_allowed;
2303
0
  *vertb_partition_allowed = decision.vertb_partition_allowed;
2304
2305
0
  return true;
2306
0
}
2307
2308
// If the external partition model is used, we let it determine partition
2309
// decisions after AB partition. Specifically, these parameters:
2310
// partition_vert4_allowed
2311
// partition_horz4_allowed
2312
static bool ext_ml_model_decision_after_part_ab(
2313
    AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
2314
    int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
2315
    int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
2316
    int *const partition_vert4_allowed, unsigned int pb_source_variance,
2317
0
    int mi_row, int mi_col) {
2318
0
  const AV1_COMMON *const cm = &cpi->common;
2319
0
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2320
2321
0
  if (!frame_is_intra_only(cm) && ext_part_controller->ready) {
2322
    // Setup features.
2323
0
    aom_partition_features_t features;
2324
0
    features.id = AOM_EXT_PART_FEATURE_AFTER_AB;
2325
0
    prepare_features_after_part_ab(cpi, x, bsize, part_ctx, best_rd,
2326
0
                                   rect_part_rd, split_rd, pb_source_variance,
2327
0
                                   mi_row, mi_col, &features);
2328
2329
    // Send necessary features to the external model.
2330
0
    av1_ext_part_send_features(ext_part_controller, &features);
2331
2332
    // Get partition decisions from the external model.
2333
0
    aom_partition_decision_t decision;
2334
0
    const bool valid_decision =
2335
0
        av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2336
0
    if (!valid_decision) return false;
2337
2338
    // Populate decisions
2339
0
    *partition_horz4_allowed = decision.partition_horz4_allowed;
2340
0
    *partition_vert4_allowed = decision.partition_vert4_allowed;
2341
2342
0
    return true;
2343
0
  }
2344
2345
0
  return false;
2346
0
}
2347
2348
// This function resembles "av1_setup_sms_tree()" in context_tree.c
2349
// with function signature change.
2350
static SIMPLE_MOTION_DATA_TREE *setup_sms_tree(
2351
0
    AV1_COMP *const cpi, SIMPLE_MOTION_DATA_TREE *sms_tree) {
2352
0
  AV1_COMMON *const cm = &cpi->common;
2353
0
  const int stat_generation_stage = is_stat_generation_stage(cpi);
2354
0
  const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2355
0
  const int tree_nodes =
2356
0
      av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2357
0
  int sms_tree_index = 0;
2358
0
  SIMPLE_MOTION_DATA_TREE *this_sms;
2359
0
  int square_index = 1;
2360
0
  int nodes;
2361
0
  this_sms = &sms_tree[0];
2362
2363
0
  if (!stat_generation_stage) {
2364
0
    const int leaf_factor = is_sb_size_128 ? 4 : 1;
2365
0
    const int leaf_nodes = 256 * leaf_factor;
2366
2367
    // Sets up all the leaf nodes in the tree.
2368
0
    for (sms_tree_index = 0; sms_tree_index < leaf_nodes; ++sms_tree_index) {
2369
0
      SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2370
0
      tree->block_size = square[0];
2371
0
    }
2372
2373
    // Each node has 4 leaf nodes, fill each block_size level of the tree
2374
    // from leafs to the root.
2375
0
    for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
2376
0
      for (int i = 0; i < nodes; ++i) {
2377
0
        SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2378
0
        tree->block_size = square[square_index];
2379
0
        for (int j = 0; j < 4; j++) tree->split[j] = this_sms++;
2380
0
        ++sms_tree_index;
2381
0
      }
2382
0
      ++square_index;
2383
0
    }
2384
0
  } else {
2385
    // Allocation for firstpass/LAP stage
2386
    // TODO(Mufaddal): refactor square_index to use a common block_size macro
2387
    // from firstpass.c
2388
0
    SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2389
0
    square_index = 2;
2390
0
    tree->block_size = square[square_index];
2391
0
  }
2392
2393
  // Set up the root node for the largest superblock size
2394
0
  return &sms_tree[tree_nodes - 1];
2395
0
}
2396
2397
static void write_motion_feature_to_file(
2398
    const char *const path, const int sb_counter, const unsigned int *block_sse,
2399
    const unsigned int *block_var, const int num_blocks, const BLOCK_SIZE bsize,
2400
0
    const BLOCK_SIZE fixed_block_size, const int mi_row, const int mi_col) {
2401
0
  char filename[256];
2402
0
  snprintf(filename, sizeof(filename), "%s/motion_search_feature_sb%d", path,
2403
0
           sb_counter);
2404
0
  FILE *pfile = fopen(filename, "w");
2405
0
  fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize,
2406
0
          block_size_wide[fixed_block_size], num_blocks);
2407
0
  for (int i = 0; i < num_blocks; ++i) {
2408
0
    fprintf(pfile, "%d", block_sse[i]);
2409
0
    if (i < num_blocks - 1) fprintf(pfile, ",");
2410
0
  }
2411
0
  fprintf(pfile, "\n");
2412
0
  for (int i = 0; i < num_blocks; ++i) {
2413
0
    fprintf(pfile, "%d", block_var[i]);
2414
0
    if (i < num_blocks - 1) fprintf(pfile, ",");
2415
0
  }
2416
0
  fprintf(pfile, "\n");
2417
0
  fclose(pfile);
2418
0
}
2419
2420
void av1_collect_motion_search_features_sb(AV1_COMP *const cpi, ThreadData *td,
2421
                                           TileDataEnc *tile_data,
2422
                                           const int mi_row, const int mi_col,
2423
                                           const BLOCK_SIZE bsize,
2424
0
                                           aom_partition_features_t *features) {
2425
0
  const AV1_COMMON *const cm = &cpi->common;
2426
0
  if (frame_is_intra_only(cm)) return;
2427
2428
0
  MACROBLOCK *const x = &td->mb;
2429
0
  const BLOCK_SIZE fixed_block_size = BLOCK_16X16;
2430
0
  const int col_step = mi_size_wide[fixed_block_size];
2431
0
  const int row_step = mi_size_high[fixed_block_size];
2432
0
  SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
2433
0
  const int stat_generation_stage = is_stat_generation_stage(cpi);
2434
0
  const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2435
0
  const int tree_nodes =
2436
0
      av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2437
0
  CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
2438
0
  SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
2439
0
  TileInfo *const tile_info = &tile_data->tile_info;
2440
0
  av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize);
2441
0
  av1_init_simple_motion_search_mvs_for_sb(cpi, NULL, x, sms_root, mi_row,
2442
0
                                           mi_col);
2443
0
  av1_reset_simple_motion_tree_partition(sms_root, bsize);
2444
0
  const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
2445
0
                                                        : LAST_FRAME };
2446
0
  const int mi_width =
2447
0
      AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
2448
0
  const int mi_height =
2449
0
      AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
2450
0
  const int col_steps = (mi_width / col_step) + ((mi_width % col_step) > 0);
2451
0
  const int row_steps = (mi_height / row_step) + ((mi_height % row_step) > 0);
2452
0
  const int num_blocks = col_steps * row_steps;
2453
0
  unsigned int *block_sse = aom_calloc(num_blocks, sizeof(*block_sse));
2454
0
  unsigned int *block_var = aom_calloc(num_blocks, sizeof(*block_var));
2455
0
  if (!(block_sse && block_var)) {
2456
0
    aom_free(sms_tree);
2457
0
    aom_free(block_sse);
2458
0
    aom_free(block_var);
2459
0
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
2460
0
                       "Error allocating block_sse & block_var");
2461
0
  }
2462
0
  int idx = 0;
2463
2464
0
  for (int row = mi_row;
2465
0
       row < AOMMIN(mi_row + mi_size_high[bsize], cm->mi_params.mi_rows);
2466
0
       row += row_step) {
2467
0
    for (int col = mi_col;
2468
0
         col < AOMMIN(mi_col + mi_size_wide[bsize], cm->mi_params.mi_cols);
2469
0
         col += col_step) {
2470
0
      simple_motion_search_get_best_ref(
2471
0
          cpi, x, sms_root, row, col, fixed_block_size, ref_list,
2472
0
          /*num_refs=*/1, /*use_subpixel=*/1,
2473
0
          /*save_mv=*/1, &block_sse[idx], &block_var[idx]);
2474
0
      ++idx;
2475
0
    }
2476
0
  }
2477
0
  if (features == NULL) {
2478
0
    write_motion_feature_to_file(cpi->oxcf.partition_info_path, cpi->sb_counter,
2479
0
                                 block_sse, block_var, idx, bsize,
2480
0
                                 fixed_block_size, mi_row, mi_col);
2481
0
  } else {
2482
0
    features->sb_features.motion_features.unit_length =
2483
0
        block_size_wide[fixed_block_size];
2484
0
    features->sb_features.motion_features.num_units = idx;
2485
0
    for (int i = 0; i < idx; ++i) {
2486
0
      features->sb_features.motion_features.block_sse[i] = block_sse[i];
2487
0
      features->sb_features.motion_features.block_var[i] = block_var[i];
2488
0
    }
2489
0
  }
2490
2491
0
  aom_free(block_sse);
2492
0
  aom_free(block_var);
2493
0
  aom_free(sms_tree);
2494
0
}
2495
2496
#if CONFIG_PARTITION_SEARCH_ORDER
2497
void av1_prepare_motion_search_features_block(
2498
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
2499
    const int mi_row, const int mi_col, const BLOCK_SIZE bsize,
2500
    const int valid_partition_types, unsigned int *block_sse,
2501
    unsigned int *block_var, unsigned int sub_block_sse[4],
2502
    unsigned int sub_block_var[4], unsigned int horz_block_sse[2],
2503
    unsigned int horz_block_var[2], unsigned int vert_block_sse[2],
2504
    unsigned int vert_block_var[2]) {
2505
  const AV1_COMMON *const cm = &cpi->common;
2506
  if (frame_is_intra_only(cm)) return;
2507
  MACROBLOCK *const x = &td->mb;
2508
  SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
2509
  const int stat_generation_stage = is_stat_generation_stage(cpi);
2510
  const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2511
  const int tree_nodes =
2512
      av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2513
  CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
2514
  SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
2515
  TileInfo *const tile_info = &tile_data->tile_info;
2516
  av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize);
2517
  av1_reset_simple_motion_tree_partition(sms_root, bsize);
2518
  const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
2519
                                                        : LAST_FRAME };
2520
  const int sub_mi_width = mi_size_wide[bsize] / 2;
2521
  const int sub_mi_height = sub_mi_width;
2522
  simple_motion_search_get_best_ref(
2523
      cpi, x, sms_root, mi_row, mi_col, bsize, ref_list, /*num_refs=*/1,
2524
      /*use_subpixel=*/1, /*save_mv=*/1, block_sse, block_var);
2525
  // Split to 4 sub blocks.
2526
  if (valid_partition_types & (1 << PARTITION_SPLIT)) {
2527
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
2528
    for (int i = 0; i < 4; ++i) {
2529
      const int row = mi_row + (i >> 1) * sub_mi_height;
2530
      const int col = mi_col + (i & 1) * sub_mi_width;
2531
      simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2532
                                        ref_list, /*num_refs=*/1,
2533
                                        /*use_subpixel=*/1, /*save_mv=*/1,
2534
                                        &sub_block_sse[i], &sub_block_var[i]);
2535
    }
2536
  }
2537
  // Horizontal split
2538
  if (valid_partition_types & (1 << PARTITION_HORZ)) {
2539
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
2540
    for (int i = 0; i < 2; ++i) {
2541
      const int row = mi_row + (i & 1) * sub_mi_height;
2542
      const int col = mi_col;
2543
      simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2544
                                        ref_list, /*num_refs=*/1,
2545
                                        /*use_subpixel=*/1, /*save_mv=*/1,
2546
                                        &horz_block_sse[i], &horz_block_var[i]);
2547
    }
2548
  }
2549
  // Vertical split
2550
  if (valid_partition_types & (1 << PARTITION_VERT)) {
2551
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT);
2552
    for (int i = 0; i < 2; ++i) {
2553
      const int row = mi_row;
2554
      const int col = mi_col + (i & 1) * sub_mi_width;
2555
      simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2556
                                        ref_list, /*num_refs=*/1,
2557
                                        /*use_subpixel=*/1, /*save_mv=*/1,
2558
                                        &vert_block_sse[i], &vert_block_var[i]);
2559
    }
2560
  }
2561
2562
  aom_free(sms_tree);
2563
}
2564
#endif  // CONFIG_PARTITION_SEARCH_ORDER
2565
#endif  // !CONFIG_REALTIME_ONLY
2566
2567
static inline void init_simple_motion_search_mvs(
2568
14.2M
    SIMPLE_MOTION_DATA_TREE *sms_tree, const FULLPEL_MV *start_mvs) {
2569
14.2M
  memcpy(sms_tree->start_mvs, start_mvs, sizeof(sms_tree->start_mvs));
2570
14.2M
  av1_zero(sms_tree->sms_none_feat);
2571
14.2M
  av1_zero(sms_tree->sms_rect_feat);
2572
14.2M
  av1_zero(sms_tree->sms_none_valid);
2573
14.2M
  av1_zero(sms_tree->sms_rect_valid);
2574
2575
14.2M
  if (sms_tree->block_size >= BLOCK_8X8) {
2576
3.57M
    init_simple_motion_search_mvs(sms_tree->split[0], start_mvs);
2577
3.57M
    init_simple_motion_search_mvs(sms_tree->split[1], start_mvs);
2578
3.57M
    init_simple_motion_search_mvs(sms_tree->split[2], start_mvs);
2579
3.57M
    init_simple_motion_search_mvs(sms_tree->split[3], start_mvs);
2580
3.57M
  }
2581
14.2M
}
2582
2583
void av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP *cpi,
2584
                                              const TileInfo *tile_info,
2585
                                              MACROBLOCK *x,
2586
                                              SIMPLE_MOTION_DATA_TREE *sms_root,
2587
42.4k
                                              int mi_row, int mi_col) {
2588
  // Use the NEARESTMV of the sb as the start mv
2589
42.4k
  const AV1_COMMON *cm = &cpi->common;
2590
42.4k
  MACROBLOCKD *const xd = &x->e_mbd;
2591
42.4k
  FULLPEL_MV ref_mvs[REF_FRAMES];
2592
42.4k
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
2593
42.4k
  av1_zero(ref_mvs);
2594
  // If tile_info is NULL, assume that the offsets have already been set.
2595
42.4k
  if (tile_info) {
2596
42.4k
    av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col,
2597
42.4k
                                       sb_size);
2598
42.4k
  }
2599
2600
42.4k
  MB_MODE_INFO_EXT mbmi_ext;
2601
42.4k
  const int ref_frame =
2602
42.4k
      cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
2603
42.4k
  av1_find_mv_refs(cm, xd, xd->mi[0], ref_frame, mbmi_ext.ref_mv_count,
2604
42.4k
                   xd->ref_mv_stack, xd->weight, NULL, mbmi_ext.global_mvs,
2605
42.4k
                   mbmi_ext.mode_context);
2606
42.4k
  if (mbmi_ext.ref_mv_count[ref_frame] > 0) {
2607
11.8k
    ref_mvs[ref_frame] =
2608
11.8k
        get_fullmv_from_mv(&xd->ref_mv_stack[ref_frame][0].this_mv.as_mv);
2609
30.6k
  } else {
2610
30.6k
    ref_mvs[ref_frame] =
2611
30.6k
        get_fullmv_from_mv(&mbmi_ext.global_mvs[ref_frame].as_mv);
2612
30.6k
  }
2613
2614
42.4k
  init_simple_motion_search_mvs(sms_root, ref_mvs);
2615
42.4k
}