Coverage Report

Created: 2025-11-11 06:29

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libavif/ext/aom/av1/common/restoration.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 *
11
 */
12
13
#include <math.h>
14
#include <stddef.h>
15
16
#include "config/aom_config.h"
17
#include "config/aom_scale_rtcd.h"
18
19
#include "aom/internal/aom_codec_internal.h"
20
#include "aom_mem/aom_mem.h"
21
#include "aom_dsp/aom_dsp_common.h"
22
#include "aom_mem/aom_mem.h"
23
#include "aom_ports/mem.h"
24
#include "aom_util/aom_pthread.h"
25
26
#include "av1/common/av1_common_int.h"
27
#include "av1/common/convolve.h"
28
#include "av1/common/enums.h"
29
#include "av1/common/resize.h"
30
#include "av1/common/restoration.h"
31
#include "av1/common/thread_common.h"
32
33
// The 's' values are calculated based on original 'r' and 'e' values in the
34
// spec using GenSgrprojVtable().
35
// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid).
36
const sgr_params_type av1_sgr_params[SGRPROJ_PARAMS] = {
37
  { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } },
38
  { { 2, 1 }, { 93, 1618 } },  { { 2, 1 }, { 80, 1438 } },
39
  { { 2, 1 }, { 70, 1295 } },  { { 2, 1 }, { 58, 1177 } },
40
  { { 2, 1 }, { 47, 1079 } },  { { 2, 1 }, { 37, 996 } },
41
  { { 2, 1 }, { 30, 925 } },   { { 2, 1 }, { 25, 863 } },
42
  { { 0, 1 }, { -1, 2589 } },  { { 0, 1 }, { -1, 1618 } },
43
  { { 0, 1 }, { -1, 1177 } },  { { 0, 1 }, { -1, 925 } },
44
  { { 2, 0 }, { 56, -1 } },    { { 2, 0 }, { 22, -1 } },
45
};
46
47
void av1_get_upsampled_plane_size(const AV1_COMMON *cm, int is_uv, int *plane_w,
48
207k
                                  int *plane_h) {
49
207k
  int ss_x = is_uv && cm->seq_params->subsampling_x;
50
207k
  int ss_y = is_uv && cm->seq_params->subsampling_y;
51
207k
  *plane_w = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
52
207k
  *plane_h = ROUND_POWER_OF_TWO(cm->height, ss_y);
53
207k
}
54
55
// Count horizontal or vertical units in a plane (use a width or height for
56
// plane_size, respectively). We basically want to divide the plane size by the
57
// size of a restoration unit. Rather than rounding up unconditionally as you
58
// might expect, we round to nearest, which models the way a right or bottom
59
// restoration unit can extend to up to 150% its normal width or height.
60
//
61
// The max with 1 is to deal with small frames, which may be smaller than
62
// half of an LR unit in size.
63
174k
int av1_lr_count_units(int unit_size, int plane_size) {
64
174k
  return AOMMAX((plane_size + (unit_size >> 1)) / unit_size, 1);
65
174k
}
66
67
void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
68
8.50k
                                  int is_uv) {
69
8.50k
  int plane_w, plane_h;
70
8.50k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
71
72
8.50k
  const int unit_size = rsi->restoration_unit_size;
73
8.50k
  const int horz_units = av1_lr_count_units(unit_size, plane_w);
74
8.50k
  const int vert_units = av1_lr_count_units(unit_size, plane_h);
75
76
8.50k
  rsi->num_rest_units = horz_units * vert_units;
77
8.50k
  rsi->horz_units = horz_units;
78
8.50k
  rsi->vert_units = vert_units;
79
80
8.50k
  aom_free(rsi->unit_info);
81
8.50k
  CHECK_MEM_ERROR(cm, rsi->unit_info,
82
8.50k
                  (RestorationUnitInfo *)aom_memalign(
83
8.50k
                      16, sizeof(*rsi->unit_info) * rsi->num_rest_units));
84
8.50k
}
85
86
351k
void av1_free_restoration_struct(RestorationInfo *rst_info) {
87
351k
  aom_free(rst_info->unit_info);
88
351k
  rst_info->unit_info = NULL;
89
351k
}
90
91
#if 0
92
// Pair of values for each sgrproj parameter:
93
// Index 0 corresponds to r[0], e[0]
94
// Index 1 corresponds to r[1], e[1]
95
int sgrproj_mtable[SGRPROJ_PARAMS][2];
96
97
static void GenSgrprojVtable(void) {
98
  for (int i = 0; i < SGRPROJ_PARAMS; ++i) {
99
    const sgr_params_type *const params = &av1_sgr_params[i];
100
    for (int j = 0; j < 2; ++j) {
101
      const int e = params->e[j];
102
      const int r = params->r[j];
103
      if (r == 0) {                 // filter is disabled
104
        sgrproj_mtable[i][j] = -1;  // mark invalid
105
      } else {                      // filter is enabled
106
        const int n = (2 * r + 1) * (2 * r + 1);
107
        const int n2e = n * n * e;
108
        assert(n2e != 0);
109
        sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
110
      }
111
    }
112
  }
113
}
114
#endif
115
116
117k
void av1_loop_restoration_precal(void) {
117
#if 0
118
  GenSgrprojVtable();
119
#endif
120
117k
}
121
122
static void extend_frame_lowbd(uint8_t *data, int width, int height,
123
                               ptrdiff_t stride, int border_horz,
124
18.1k
                               int border_vert) {
125
18.1k
  uint8_t *data_p;
126
18.1k
  int i;
127
656k
  for (i = 0; i < height; ++i) {
128
638k
    data_p = data + i * stride;
129
638k
    memset(data_p - border_horz, data_p[0], border_horz);
130
638k
    memset(data_p + width, data_p[width - 1], border_horz);
131
638k
  }
132
18.1k
  data_p = data - border_horz;
133
72.7k
  for (i = -border_vert; i < 0; ++i) {
134
54.5k
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
135
54.5k
  }
136
72.7k
  for (i = height; i < height + border_vert; ++i) {
137
54.5k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
138
54.5k
           width + 2 * border_horz);
139
54.5k
  }
140
18.1k
}
141
142
#if CONFIG_AV1_HIGHBITDEPTH
143
static void extend_frame_highbd(uint16_t *data, int width, int height,
144
                                ptrdiff_t stride, int border_horz,
145
6.77k
                                int border_vert) {
146
6.77k
  uint16_t *data_p;
147
6.77k
  int i, j;
148
436k
  for (i = 0; i < height; ++i) {
149
430k
    data_p = data + i * stride;
150
1.72M
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
151
1.72M
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
152
430k
  }
153
6.77k
  data_p = data - border_horz;
154
27.1k
  for (i = -border_vert; i < 0; ++i) {
155
20.3k
    memcpy(data_p + i * stride, data_p,
156
20.3k
           (width + 2 * border_horz) * sizeof(uint16_t));
157
20.3k
  }
158
27.1k
  for (i = height; i < height + border_vert; ++i) {
159
20.3k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
160
20.3k
           (width + 2 * border_horz) * sizeof(uint16_t));
161
20.3k
  }
162
6.77k
}
163
164
static void copy_rest_unit_highbd(int width, int height, const uint16_t *src,
165
                                  int src_stride, uint16_t *dst,
166
1.45k
                                  int dst_stride) {
167
176k
  for (int i = 0; i < height; ++i)
168
174k
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
169
1.45k
}
170
#endif
171
172
void av1_extend_frame(uint8_t *data, int width, int height, int stride,
173
24.9k
                      int border_horz, int border_vert, int highbd) {
174
24.9k
#if CONFIG_AV1_HIGHBITDEPTH
175
24.9k
  if (highbd) {
176
6.77k
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
177
6.77k
                        border_horz, border_vert);
178
6.77k
    return;
179
6.77k
  }
180
18.1k
#endif
181
18.1k
  (void)highbd;
182
18.1k
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
183
18.1k
}
184
185
static void copy_rest_unit_lowbd(int width, int height, const uint8_t *src,
186
649
                                 int src_stride, uint8_t *dst, int dst_stride) {
187
75.4k
  for (int i = 0; i < height; ++i)
188
74.8k
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
189
649
}
190
191
static void copy_rest_unit(int width, int height, const uint8_t *src,
192
                           int src_stride, uint8_t *dst, int dst_stride,
193
2.10k
                           int highbd) {
194
2.10k
#if CONFIG_AV1_HIGHBITDEPTH
195
2.10k
  if (highbd) {
196
1.45k
    copy_rest_unit_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
197
1.45k
                          CONVERT_TO_SHORTPTR(dst), dst_stride);
198
1.45k
    return;
199
1.45k
  }
200
649
#endif
201
649
  (void)highbd;
202
649
  copy_rest_unit_lowbd(width, height, src, src_stride, dst, dst_stride);
203
649
}
204
205
277k
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))
206
207
// With striped loop restoration, the filtering for each 64-pixel stripe gets
208
// most of its input from the output of CDEF (stored in data8), but we need to
209
// fill out a border of 3 pixels above/below the stripe according to the
210
// following rules:
211
//
212
// * At the top and bottom of the frame, we copy the outermost row of CDEF
213
//   pixels three times. This extension is done by a call to av1_extend_frame()
214
//   at the start of the loop restoration process, so the value of
215
//   copy_above/copy_below doesn't strictly matter.
216
//
217
// * All other boundaries are stripe boundaries within the frame. In that case,
218
//   we take 2 rows of deblocked pixels and extend them to 3 rows of context.
219
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
220
                                     int plane_w, int plane_h, int ss_y,
221
20.1k
                                     int *copy_above, int *copy_below) {
222
20.1k
  (void)plane_w;
223
224
20.1k
  *copy_above = 1;
225
20.1k
  *copy_below = 1;
226
227
20.1k
  const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
228
20.1k
  const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
229
230
20.1k
  const int first_stripe_in_plane = (limits->v_start == 0);
231
20.1k
  const int this_stripe_height =
232
20.1k
      full_stripe_height - (first_stripe_in_plane ? runit_offset : 0);
233
20.1k
  const int last_stripe_in_plane =
234
20.1k
      (limits->v_start + this_stripe_height >= plane_h);
235
236
20.1k
  if (first_stripe_in_plane) *copy_above = 0;
237
20.1k
  if (last_stripe_in_plane) *copy_below = 0;
238
20.1k
}
239
240
// Overwrite the border pixels around a processing stripe so that the conditions
241
// listed above get_stripe_boundary_info() are preserved.
242
// We save the pixels which get overwritten into a temporary buffer, so that
243
// they can be restored by restore_processing_stripe_boundary() after we've
244
// processed the stripe.
245
//
246
// limits gives the rectangular limits of the remaining stripes for the current
247
// restoration unit. rsb is the stored stripe boundaries (taken from either
248
// deblock or CDEF output as necessary).
249
static void setup_processing_stripe_boundary(
250
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
251
    int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride,
252
20.1k
    RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) {
253
  // Offsets within the line buffers. The buffer logically starts at column
254
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
255
  // has column x0 in the buffer.
256
20.1k
  const int buf_stride = rsb->stripe_boundary_stride;
257
20.1k
  const int buf_x0_off = limits->h_start;
258
20.1k
  const int line_width =
259
20.1k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
260
20.1k
  const int line_size = line_width << use_highbd;
261
262
20.1k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
263
264
  // Replace RESTORATION_BORDER pixels above the top of the stripe
265
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
266
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
267
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
268
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
269
20.1k
  if (!opt) {
270
19.6k
    if (copy_above) {
271
10.2k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
272
273
41.0k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
274
30.7k
        const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
275
30.7k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
276
30.7k
        const uint8_t *buf =
277
30.7k
            rsb->stripe_boundary_above + (buf_off << use_highbd);
278
30.7k
        uint8_t *dst8 = data8_tl + i * data_stride;
279
        // Save old pixels, then replace with data from stripe_boundary_above
280
30.7k
        memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
281
30.7k
               REAL_PTR(use_highbd, dst8), line_size);
282
30.7k
        memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
283
30.7k
      }
284
10.2k
    }
285
286
    // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
287
    // The second buffer row is repeated, so src_row gets the values 0, 1, 1
288
    // for i = 0, 1, 2.
289
19.6k
    if (copy_below) {
290
10.1k
      const int stripe_end = limits->v_start + h;
291
10.1k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
292
293
40.7k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
294
30.5k
        const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
295
30.5k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
296
30.5k
        const uint8_t *src =
297
30.5k
            rsb->stripe_boundary_below + (buf_off << use_highbd);
298
299
30.5k
        uint8_t *dst8 = data8_bl + i * data_stride;
300
        // Save old pixels, then replace with data from stripe_boundary_below
301
30.5k
        memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
302
30.5k
        memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
303
30.5k
      }
304
10.1k
    }
305
19.6k
  } else {
306
468
    if (copy_above) {
307
353
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
308
309
      // Only save and overwrite i=-RESTORATION_BORDER line.
310
353
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
311
      // Save old pixels, then replace with data from stripe_boundary_above
312
353
      memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size);
313
353
      memcpy(REAL_PTR(use_highbd, dst8),
314
353
             REAL_PTR(use_highbd,
315
353
                      data8_tl + (-RESTORATION_BORDER + 1) * data_stride),
316
353
             line_size);
317
353
    }
318
319
468
    if (copy_below) {
320
355
      const int stripe_end = limits->v_start + h;
321
355
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
322
323
      // Only save and overwrite i=2 line.
324
355
      uint8_t *dst8 = data8_bl + 2 * data_stride;
325
      // Save old pixels, then replace with data from stripe_boundary_below
326
355
      memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size);
327
355
      memcpy(REAL_PTR(use_highbd, dst8),
328
355
             REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size);
329
355
    }
330
468
  }
331
20.1k
}
332
333
// Once a processing stripe is finished, this function sets the boundary
334
// pixels which were overwritten by setup_processing_stripe_boundary()
335
// back to their original values
336
static void restore_processing_stripe_boundary(
337
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
338
    int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above,
339
20.1k
    int copy_below, int opt) {
340
20.1k
  const int line_width =
341
20.1k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
342
20.1k
  const int line_size = line_width << use_highbd;
343
344
20.1k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
345
346
20.1k
  if (!opt) {
347
19.6k
    if (copy_above) {
348
10.2k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
349
41.0k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
350
30.8k
        uint8_t *dst8 = data8_tl + i * data_stride;
351
30.8k
        memcpy(REAL_PTR(use_highbd, dst8),
352
30.8k
               rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
353
30.8k
      }
354
10.2k
    }
355
356
19.6k
    if (copy_below) {
357
10.2k
      const int stripe_bottom = limits->v_start + h;
358
10.2k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
359
360
40.8k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
361
30.6k
        if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
362
363
30.6k
        uint8_t *dst8 = data8_bl + i * data_stride;
364
30.6k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
365
30.6k
      }
366
10.2k
    }
367
19.6k
  } else {
368
473
    if (copy_above) {
369
353
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
370
371
      // Only restore i=-RESTORATION_BORDER line.
372
353
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
373
353
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size);
374
353
    }
375
376
473
    if (copy_below) {
377
356
      const int stripe_bottom = limits->v_start + h;
378
356
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
379
380
      // Only restore i=2 line.
381
356
      if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) {
382
356
        uint8_t *dst8 = data8_bl + 2 * data_stride;
383
356
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size);
384
356
      }
385
356
    }
386
473
  }
387
20.1k
}
388
389
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
390
                                 int stripe_width, int stripe_height,
391
                                 int procunit_width, const uint8_t *src,
392
                                 int src_stride, uint8_t *dst, int dst_stride,
393
                                 int32_t *tmpbuf, int bit_depth,
394
10.1k
                                 struct aom_internal_error_info *error_info) {
395
10.1k
  (void)tmpbuf;
396
10.1k
  (void)bit_depth;
397
10.1k
  (void)error_info;
398
10.1k
  assert(bit_depth == 8);
399
10.1k
  const WienerConvolveParams conv_params = get_conv_params_wiener(8);
400
401
28.9k
  for (int j = 0; j < stripe_width; j += procunit_width) {
402
18.8k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
403
18.8k
    const uint8_t *src_p = src + j;
404
18.8k
    uint8_t *dst_p = dst + j;
405
18.8k
    av1_wiener_convolve_add_src(
406
18.8k
        src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16,
407
18.8k
        rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params);
408
18.8k
  }
409
10.1k
}
410
411
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
412
   over the input. The window is of size (2r + 1)x(2r + 1), and we
413
   specialize to r = 1, 2, 3. A default function is used for r > 3.
414
415
   Each loop follows the same format: We keep a window's worth of input
416
   in individual variables and select data out of that as appropriate.
417
*/
418
static void boxsum1(int32_t *src, int width, int height, int src_stride,
419
0
                    int sqr, int32_t *dst, int dst_stride) {
420
0
  int i, j, a, b, c;
421
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
422
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
423
424
  // Vertical sum over 3-pixel regions, from src into dst.
425
0
  if (!sqr) {
426
0
    for (j = 0; j < width; ++j) {
427
0
      a = src[j];
428
0
      b = src[src_stride + j];
429
0
      c = src[2 * src_stride + j];
430
431
0
      dst[j] = a + b;
432
0
      for (i = 1; i < height - 2; ++i) {
433
        // Loop invariant: At the start of each iteration,
434
        // a = src[(i - 1) * src_stride + j]
435
        // b = src[(i    ) * src_stride + j]
436
        // c = src[(i + 1) * src_stride + j]
437
0
        dst[i * dst_stride + j] = a + b + c;
438
0
        a = b;
439
0
        b = c;
440
0
        c = src[(i + 2) * src_stride + j];
441
0
      }
442
0
      dst[i * dst_stride + j] = a + b + c;
443
0
      dst[(i + 1) * dst_stride + j] = b + c;
444
0
    }
445
0
  } else {
446
0
    for (j = 0; j < width; ++j) {
447
0
      a = src[j] * src[j];
448
0
      b = src[src_stride + j] * src[src_stride + j];
449
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
450
451
0
      dst[j] = a + b;
452
0
      for (i = 1; i < height - 2; ++i) {
453
0
        dst[i * dst_stride + j] = a + b + c;
454
0
        a = b;
455
0
        b = c;
456
0
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
457
0
      }
458
0
      dst[i * dst_stride + j] = a + b + c;
459
0
      dst[(i + 1) * dst_stride + j] = b + c;
460
0
    }
461
0
  }
462
463
  // Horizontal sum over 3-pixel regions of dst
464
0
  for (i = 0; i < height; ++i) {
465
0
    a = dst[i * dst_stride];
466
0
    b = dst[i * dst_stride + 1];
467
0
    c = dst[i * dst_stride + 2];
468
469
0
    dst[i * dst_stride] = a + b;
470
0
    for (j = 1; j < width - 2; ++j) {
471
      // Loop invariant: At the start of each iteration,
472
      // a = src[i * src_stride + (j - 1)]
473
      // b = src[i * src_stride + (j    )]
474
      // c = src[i * src_stride + (j + 1)]
475
0
      dst[i * dst_stride + j] = a + b + c;
476
0
      a = b;
477
0
      b = c;
478
0
      c = dst[i * dst_stride + (j + 2)];
479
0
    }
480
0
    dst[i * dst_stride + j] = a + b + c;
481
0
    dst[i * dst_stride + (j + 1)] = b + c;
482
0
  }
483
0
}
484
485
static void boxsum2(int32_t *src, int width, int height, int src_stride,
486
0
                    int sqr, int32_t *dst, int dst_stride) {
487
0
  int i, j, a, b, c, d, e;
488
0
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
489
0
  assert(height > 2 * SGRPROJ_BORDER_VERT);
490
491
  // Vertical sum over 5-pixel regions, from src into dst.
492
0
  if (!sqr) {
493
0
    for (j = 0; j < width; ++j) {
494
0
      a = src[j];
495
0
      b = src[src_stride + j];
496
0
      c = src[2 * src_stride + j];
497
0
      d = src[3 * src_stride + j];
498
0
      e = src[4 * src_stride + j];
499
500
0
      dst[j] = a + b + c;
501
0
      dst[dst_stride + j] = a + b + c + d;
502
0
      for (i = 2; i < height - 3; ++i) {
503
        // Loop invariant: At the start of each iteration,
504
        // a = src[(i - 2) * src_stride + j]
505
        // b = src[(i - 1) * src_stride + j]
506
        // c = src[(i    ) * src_stride + j]
507
        // d = src[(i + 1) * src_stride + j]
508
        // e = src[(i + 2) * src_stride + j]
509
0
        dst[i * dst_stride + j] = a + b + c + d + e;
510
0
        a = b;
511
0
        b = c;
512
0
        c = d;
513
0
        d = e;
514
0
        e = src[(i + 3) * src_stride + j];
515
0
      }
516
0
      dst[i * dst_stride + j] = a + b + c + d + e;
517
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
518
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
519
0
    }
520
0
  } else {
521
0
    for (j = 0; j < width; ++j) {
522
0
      a = src[j] * src[j];
523
0
      b = src[src_stride + j] * src[src_stride + j];
524
0
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
525
0
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
526
0
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
527
528
0
      dst[j] = a + b + c;
529
0
      dst[dst_stride + j] = a + b + c + d;
530
0
      for (i = 2; i < height - 3; ++i) {
531
0
        dst[i * dst_stride + j] = a + b + c + d + e;
532
0
        a = b;
533
0
        b = c;
534
0
        c = d;
535
0
        d = e;
536
0
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
537
0
      }
538
0
      dst[i * dst_stride + j] = a + b + c + d + e;
539
0
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
540
0
      dst[(i + 2) * dst_stride + j] = c + d + e;
541
0
    }
542
0
  }
543
544
  // Horizontal sum over 5-pixel regions of dst
545
0
  for (i = 0; i < height; ++i) {
546
0
    a = dst[i * dst_stride];
547
0
    b = dst[i * dst_stride + 1];
548
0
    c = dst[i * dst_stride + 2];
549
0
    d = dst[i * dst_stride + 3];
550
0
    e = dst[i * dst_stride + 4];
551
552
0
    dst[i * dst_stride] = a + b + c;
553
0
    dst[i * dst_stride + 1] = a + b + c + d;
554
0
    for (j = 2; j < width - 3; ++j) {
555
      // Loop invariant: At the start of each iteration,
556
      // a = src[i * src_stride + (j - 2)]
557
      // b = src[i * src_stride + (j - 1)]
558
      // c = src[i * src_stride + (j    )]
559
      // d = src[i * src_stride + (j + 1)]
560
      // e = src[i * src_stride + (j + 2)]
561
0
      dst[i * dst_stride + j] = a + b + c + d + e;
562
0
      a = b;
563
0
      b = c;
564
0
      c = d;
565
0
      d = e;
566
0
      e = dst[i * dst_stride + (j + 3)];
567
0
    }
568
0
    dst[i * dst_stride + j] = a + b + c + d + e;
569
0
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
570
0
    dst[i * dst_stride + (j + 2)] = c + d + e;
571
0
  }
572
0
}
573
574
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
575
0
                   int sqr, int32_t *dst, int dst_stride) {
576
0
  if (r == 1)
577
0
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
578
0
  else if (r == 2)
579
0
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
580
0
  else
581
0
    assert(0 && "Invalid value of r in self-guided filter");
582
0
}
583
584
9.30k
void av1_decode_xq(const int *xqd, int *xq, const sgr_params_type *params) {
585
9.30k
  if (params->r[0] == 0) {
586
2.40k
    xq[0] = 0;
587
2.40k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1];
588
6.89k
  } else if (params->r[1] == 0) {
589
3.52k
    xq[0] = xqd[0];
590
3.52k
    xq[1] = 0;
591
3.52k
  } else {
592
3.36k
    xq[0] = xqd[0];
593
3.36k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
594
3.36k
  }
595
9.30k
}
596
597
const int32_t av1_x_by_xplus1[256] = {
598
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
599
  // instead of 0. See comments in selfguided_restoration_internal() for why
600
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
601
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
602
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
603
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
604
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
605
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
606
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
607
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
608
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
609
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
610
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
611
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
612
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
613
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
614
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
615
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
616
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
617
  256,
618
};
619
620
const int32_t av1_one_by_x[MAX_NELEM] = {
621
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
622
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
623
};
624
625
static void calculate_intermediate_result(int32_t *dgd, int width, int height,
626
                                          int dgd_stride, int bit_depth,
627
                                          int sgr_params_idx, int radius_idx,
628
0
                                          int pass, int32_t *A, int32_t *B) {
629
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
630
0
  const int r = params->r[radius_idx];
631
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
632
0
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
633
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
634
  // leading to a significant speed improvement.
635
  // We also align the stride to a multiple of 16 bytes, for consistency
636
  // with the SIMD version of this function.
637
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
638
0
  const int step = pass == 0 ? 1 : 2;
639
0
  int i, j;
640
641
0
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
642
0
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
643
0
         "Need SGRPROJ_BORDER_* >= r+1");
644
645
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
646
0
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
647
0
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
648
0
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
649
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
650
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
651
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
652
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
653
0
  for (i = -1; i < height + 1; i += step) {
654
0
    for (j = -1; j < width + 1; ++j) {
655
0
      const int k = i * buf_stride + j;
656
0
      const int n = (2 * r + 1) * (2 * r + 1);
657
658
      // a < 2^16 * n < 2^22 regardless of bit depth
659
0
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
660
      // b < 2^8 * n < 2^14 regardless of bit depth
661
0
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
662
663
      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
664
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
665
      // This bound on p is due to:
666
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
667
      //
668
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
669
      // This is an artefact of rounding, and can only happen if all pixels
670
      // are (almost) identical, so in this case we saturate to p=0.
671
0
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
672
673
0
      const uint32_t s = params->s[radius_idx];
674
675
      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
676
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
677
      // (this holds even after accounting for the rounding in s)
678
0
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
679
680
      // Note: We have to be quite careful about the value of A[k].
681
      // This is used as a blend factor between individual pixel values and the
682
      // local mean. So it logically has a range of [0, 256], including both
683
      // endpoints.
684
      //
685
      // This is a pain for hardware, as we'd like something which can be stored
686
      // in exactly 8 bits.
687
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
688
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
689
      // slightly above 2^(8 + bit depth), due to rounding in the value of
690
      // av1_one_by_x[25-1].
691
      //
692
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
693
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
694
      // overflow), without significantly affecting the final result: z == 0
695
      // implies that the image is essentially "flat", so the local mean and
696
      // individual pixel values are very similar.
697
      //
698
      // Note that saturating on the other side, ie. requring A[k] <= 255,
699
      // would be a bad idea, as that corresponds to the case where the image
700
      // is very variable, when we want to preserve the local pixel value as
701
      // much as possible.
702
0
      A[k] = av1_x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]
703
704
      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
705
      // av1_one_by_x[n - 1] = round(2^12 / n)
706
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
707
      // and B[k] is set to a value < 2^(8 + bit depth)
708
      // This holds even with the rounding in av1_one_by_x and in the overall
709
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
710
0
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
711
0
                                             (uint32_t)B[k] *
712
0
                                             (uint32_t)av1_one_by_x[n - 1],
713
0
                                         SGRPROJ_RECIP_BITS);
714
0
    }
715
0
  }
716
0
}
717
718
static void selfguided_restoration_fast_internal(
719
    int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst,
720
0
    int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) {
721
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
722
0
  const int r = params->r[radius_idx];
723
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
724
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
725
  // leading to a significant speed improvement.
726
  // We also align the stride to a multiple of 16 bytes, for consistency
727
  // with the SIMD version of this function.
728
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
729
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
730
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
731
0
  int32_t *A = A_;
732
0
  int32_t *B = B_;
733
0
  int i, j;
734
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
735
0
                                sgr_params_idx, radius_idx, 1, A, B);
736
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
737
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
738
739
  // Use the A[] and B[] arrays to calculate the filtered image
740
0
  (void)r;
741
0
  assert(r == 2);
742
0
  for (i = 0; i < height; ++i) {
743
0
    if (!(i & 1)) {  // even row
744
0
      for (j = 0; j < width; ++j) {
745
0
        const int k = i * buf_stride + j;
746
0
        const int l = i * dgd_stride + j;
747
0
        const int m = i * dst_stride + j;
748
0
        const int nb = 5;
749
0
        const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 +
750
0
                          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
751
0
                           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
752
0
                              5;
753
0
        const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 +
754
0
                          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
755
0
                           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
756
0
                              5;
757
0
        const int32_t v = a * dgd[l] + b;
758
0
        dst[m] =
759
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
760
0
      }
761
0
    } else {  // odd row
762
0
      for (j = 0; j < width; ++j) {
763
0
        const int k = i * buf_stride + j;
764
0
        const int l = i * dgd_stride + j;
765
0
        const int m = i * dst_stride + j;
766
0
        const int nb = 4;
767
0
        const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5;
768
0
        const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5;
769
0
        const int32_t v = a * dgd[l] + b;
770
0
        dst[m] =
771
0
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
772
0
      }
773
0
    }
774
0
  }
775
0
}
776
777
static void selfguided_restoration_internal(int32_t *dgd, int width, int height,
778
                                            int dgd_stride, int32_t *dst,
779
                                            int dst_stride, int bit_depth,
780
                                            int sgr_params_idx,
781
0
                                            int radius_idx) {
782
0
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
783
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
784
  // leading to a significant speed improvement.
785
  // We also align the stride to a multiple of 16 bytes, for consistency
786
  // with the SIMD version of this function.
787
0
  int buf_stride = ((width_ext + 3) & ~3) + 16;
788
0
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
789
0
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
790
0
  int32_t *A = A_;
791
0
  int32_t *B = B_;
792
0
  int i, j;
793
0
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
794
0
                                sgr_params_idx, radius_idx, 0, A, B);
795
0
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
796
0
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
797
798
  // Use the A[] and B[] arrays to calculate the filtered image
799
0
  for (i = 0; i < height; ++i) {
800
0
    for (j = 0; j < width; ++j) {
801
0
      const int k = i * buf_stride + j;
802
0
      const int l = i * dgd_stride + j;
803
0
      const int m = i * dst_stride + j;
804
0
      const int nb = 5;
805
0
      const int32_t a =
806
0
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
807
0
              4 +
808
0
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
809
0
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
810
0
              3;
811
0
      const int32_t b =
812
0
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
813
0
              4 +
814
0
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
815
0
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
816
0
              3;
817
0
      const int32_t v = a * dgd[l] + b;
818
0
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
819
0
    }
820
0
  }
821
0
}
822
823
int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
824
                                 int dgd_stride, int32_t *flt0, int32_t *flt1,
825
                                 int flt_stride, int sgr_params_idx,
826
0
                                 int bit_depth, int highbd) {
827
0
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
828
0
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
829
0
  int32_t *dgd32 =
830
0
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
831
832
0
  if (highbd) {
833
0
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
834
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
835
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
836
0
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
837
0
      }
838
0
    }
839
0
  } else {
840
0
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
841
0
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
842
0
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
843
0
      }
844
0
    }
845
0
  }
846
847
0
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
848
  // If params->r == 0 we skip the corresponding filter. We only allow one of
849
  // the radii to be 0, as having both equal to 0 would be equivalent to
850
  // skipping SGR entirely.
851
0
  assert(!(params->r[0] == 0 && params->r[1] == 0));
852
853
0
  if (params->r[0] > 0)
854
0
    selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride,
855
0
                                         flt0, flt_stride, bit_depth,
856
0
                                         sgr_params_idx, 0);
857
0
  if (params->r[1] > 0)
858
0
    selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
859
0
                                    flt_stride, bit_depth, sgr_params_idx, 1);
860
0
  return 0;
861
0
}
862
863
int av1_apply_selfguided_restoration_c(const uint8_t *dat8, int width,
864
                                       int height, int stride, int eps,
865
                                       const int *xqd, uint8_t *dst8,
866
                                       int dst_stride, int32_t *tmpbuf,
867
0
                                       int bit_depth, int highbd) {
868
0
  int32_t *flt0 = tmpbuf;
869
0
  int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
870
0
  assert(width * height <= RESTORATION_UNITPELS_MAX);
871
872
0
  const int ret = av1_selfguided_restoration_c(
873
0
      dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd);
874
0
  if (ret != 0) return ret;
875
0
  const sgr_params_type *const params = &av1_sgr_params[eps];
876
0
  int xq[2];
877
0
  av1_decode_xq(xqd, xq, params);
878
0
  for (int i = 0; i < height; ++i) {
879
0
    for (int j = 0; j < width; ++j) {
880
0
      const int k = i * width + j;
881
0
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
882
0
      const uint8_t *dat8ij = dat8 + i * stride + j;
883
884
0
      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
885
0
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
886
0
      int32_t v = u << SGRPROJ_PRJ_BITS;
887
      // If params->r == 0 then we skipped the filtering in
888
      // av1_selfguided_restoration_c, i.e. flt[k] == u
889
0
      if (params->r[0] > 0) v += xq[0] * (flt0[k] - u);
890
0
      if (params->r[1] > 0) v += xq[1] * (flt1[k] - u);
891
0
      const int16_t w =
892
0
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
893
894
0
      const uint16_t out = clip_pixel_highbd(w, bit_depth);
895
0
      if (highbd)
896
0
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
897
0
      else
898
0
        *dst8ij = (uint8_t)out;
899
0
    }
900
0
  }
901
0
  return 0;
902
0
}
903
904
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
905
                                  int stripe_width, int stripe_height,
906
                                  int procunit_width, const uint8_t *src,
907
                                  int src_stride, uint8_t *dst, int dst_stride,
908
                                  int32_t *tmpbuf, int bit_depth,
909
1.75k
                                  struct aom_internal_error_info *error_info) {
910
1.75k
  (void)bit_depth;
911
1.75k
  assert(bit_depth == 8);
912
913
4.71k
  for (int j = 0; j < stripe_width; j += procunit_width) {
914
2.96k
    int w = AOMMIN(procunit_width, stripe_width - j);
915
2.96k
    if (av1_apply_selfguided_restoration(
916
2.96k
            src + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
917
2.96k
            rui->sgrproj_info.xqd, dst + j, dst_stride, tmpbuf, bit_depth,
918
2.96k
            0) != 0) {
919
0
      aom_internal_error(
920
0
          error_info, AOM_CODEC_MEM_ERROR,
921
0
          "Error allocating buffer in av1_apply_selfguided_restoration");
922
0
    }
923
2.96k
  }
924
1.75k
}
925
926
#if CONFIG_AV1_HIGHBITDEPTH
927
static void wiener_filter_stripe_highbd(
928
    const RestorationUnitInfo *rui, int stripe_width, int stripe_height,
929
    int procunit_width, const uint8_t *src8, int src_stride, uint8_t *dst8,
930
    int dst_stride, int32_t *tmpbuf, int bit_depth,
931
4.75k
    struct aom_internal_error_info *error_info) {
932
4.75k
  (void)tmpbuf;
933
4.75k
  (void)error_info;
934
4.75k
  const WienerConvolveParams conv_params = get_conv_params_wiener(bit_depth);
935
936
11.9k
  for (int j = 0; j < stripe_width; j += procunit_width) {
937
7.17k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
938
7.17k
    const uint8_t *src8_p = src8 + j;
939
7.17k
    uint8_t *dst8_p = dst8 + j;
940
7.17k
    av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride,
941
7.17k
                                       rui->wiener_info.hfilter, 16,
942
7.17k
                                       rui->wiener_info.vfilter, 16, w,
943
7.17k
                                       stripe_height, &conv_params, bit_depth);
944
7.17k
  }
945
4.75k
}
946
947
static void sgrproj_filter_stripe_highbd(
948
    const RestorationUnitInfo *rui, int stripe_width, int stripe_height,
949
    int procunit_width, const uint8_t *src8, int src_stride, uint8_t *dst8,
950
    int dst_stride, int32_t *tmpbuf, int bit_depth,
951
3.53k
    struct aom_internal_error_info *error_info) {
952
9.86k
  for (int j = 0; j < stripe_width; j += procunit_width) {
953
6.32k
    int w = AOMMIN(procunit_width, stripe_width - j);
954
6.32k
    if (av1_apply_selfguided_restoration(
955
6.32k
            src8 + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
956
6.32k
            rui->sgrproj_info.xqd, dst8 + j, dst_stride, tmpbuf, bit_depth,
957
6.32k
            1) != 0) {
958
0
      aom_internal_error(
959
0
          error_info, AOM_CODEC_MEM_ERROR,
960
0
          "Error allocating buffer in av1_apply_selfguided_restoration");
961
0
    }
962
6.32k
  }
963
3.53k
}
964
#endif  // CONFIG_AV1_HIGHBITDEPTH
965
966
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
967
                                  int stripe_width, int stripe_height,
968
                                  int procunit_width, const uint8_t *src,
969
                                  int src_stride, uint8_t *dst, int dst_stride,
970
                                  int32_t *tmpbuf, int bit_depth,
971
                                  struct aom_internal_error_info *error_info);
972
973
#if CONFIG_AV1_HIGHBITDEPTH
974
#define NUM_STRIPE_FILTERS 4
975
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
976
  wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd,
977
  sgrproj_filter_stripe_highbd
978
};
979
#else
980
#define NUM_STRIPE_FILTERS 2
981
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
982
  wiener_filter_stripe, sgrproj_filter_stripe
983
};
984
#endif  // CONFIG_AV1_HIGHBITDEPTH
985
986
// Filter one restoration unit
987
void av1_loop_restoration_filter_unit(
988
    const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
989
    const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
990
    int plane_w, int plane_h, int ss_x, int ss_y, int highbd, int bit_depth,
991
    uint8_t *data8, int stride, uint8_t *dst8, int dst_stride, int32_t *tmpbuf,
992
13.7k
    int optimized_lr, struct aom_internal_error_info *error_info) {
993
13.7k
  RestorationType unit_rtype = rui->restoration_type;
994
995
13.7k
  int unit_h = limits->v_end - limits->v_start;
996
13.7k
  int unit_w = limits->h_end - limits->h_start;
997
13.7k
  uint8_t *data8_tl =
998
13.7k
      data8 + limits->v_start * (ptrdiff_t)stride + limits->h_start;
999
13.7k
  uint8_t *dst8_tl =
1000
13.7k
      dst8 + limits->v_start * (ptrdiff_t)dst_stride + limits->h_start;
1001
1002
13.7k
  if (unit_rtype == RESTORE_NONE) {
1003
2.10k
    copy_rest_unit(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride,
1004
2.10k
                   highbd);
1005
2.10k
    return;
1006
2.10k
  }
1007
1008
11.6k
  const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ);
1009
11.6k
  assert(filter_idx < NUM_STRIPE_FILTERS);
1010
11.6k
  const stripe_filter_fun stripe_filter = stripe_filters[filter_idx];
1011
1012
11.6k
  const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
1013
1014
  // Filter the whole image one stripe at a time
1015
11.6k
  RestorationTileLimits remaining_stripes = *limits;
1016
11.6k
  int i = 0;
1017
31.7k
  while (i < unit_h) {
1018
20.1k
    int copy_above, copy_below;
1019
20.1k
    remaining_stripes.v_start = limits->v_start + i;
1020
1021
20.1k
    get_stripe_boundary_info(&remaining_stripes, plane_w, plane_h, ss_y,
1022
20.1k
                             &copy_above, &copy_below);
1023
1024
20.1k
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1025
20.1k
    const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
1026
1027
    // Work out where this stripe's boundaries are within
1028
    // rsb->stripe_boundary_{above,below}
1029
20.1k
    const int frame_stripe =
1030
20.1k
        (remaining_stripes.v_start + runit_offset) / full_stripe_height;
1031
20.1k
    const int rsb_row = RESTORATION_CTX_VERT * frame_stripe;
1032
1033
    // Calculate this stripe's height, based on two rules:
1034
    // * The topmost stripe in the frame is 8 luma pixels shorter than usual.
1035
    // * We can't extend past the end of the current restoration unit
1036
20.1k
    const int nominal_stripe_height =
1037
20.1k
        full_stripe_height - ((frame_stripe == 0) ? runit_offset : 0);
1038
20.1k
    const int h = AOMMIN(nominal_stripe_height,
1039
20.1k
                         remaining_stripes.v_end - remaining_stripes.v_start);
1040
1041
20.1k
    setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd,
1042
20.1k
                                     h, data8, stride, rlbs, copy_above,
1043
20.1k
                                     copy_below, optimized_lr);
1044
1045
20.1k
    stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride,
1046
20.1k
                  dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth,
1047
20.1k
                  error_info);
1048
1049
20.1k
    restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h,
1050
20.1k
                                       data8, stride, copy_above, copy_below,
1051
20.1k
                                       optimized_lr);
1052
1053
20.1k
    i += h;
1054
20.1k
  }
1055
11.6k
}
1056
1057
static void filter_frame_on_unit(const RestorationTileLimits *limits,
1058
                                 int rest_unit_idx, void *priv, int32_t *tmpbuf,
1059
                                 RestorationLineBuffers *rlbs,
1060
6.80k
                                 struct aom_internal_error_info *error_info) {
1061
6.80k
  FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
1062
6.80k
  const RestorationInfo *rsi = ctxt->rsi;
1063
1064
6.80k
  av1_loop_restoration_filter_unit(
1065
6.80k
      limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs,
1066
6.80k
      ctxt->plane_w, ctxt->plane_h, ctxt->ss_x, ctxt->ss_y, ctxt->highbd,
1067
6.80k
      ctxt->bit_depth, ctxt->data8, ctxt->data_stride, ctxt->dst8,
1068
6.80k
      ctxt->dst_stride, tmpbuf, rsi->optimized_lr, error_info);
1069
6.80k
}
1070
1071
void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
1072
                                            YV12_BUFFER_CONFIG *frame,
1073
                                            AV1_COMMON *cm, int optimized_lr,
1074
1.54k
                                            int num_planes) {
1075
1.54k
  const SequenceHeader *const seq_params = cm->seq_params;
1076
1.54k
  const int bit_depth = seq_params->bit_depth;
1077
1.54k
  const int highbd = seq_params->use_highbitdepth;
1078
1.54k
  lr_ctxt->dst = &cm->rst_frame;
1079
1080
1.54k
  const int frame_width = frame->crop_widths[0];
1081
1.54k
  const int frame_height = frame->crop_heights[0];
1082
1.54k
  if (aom_realloc_frame_buffer(
1083
1.54k
          lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
1084
1.54k
          seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
1085
1.54k
          cm->features.byte_alignment, NULL, NULL, NULL, false,
1086
1.54k
          0) != AOM_CODEC_OK)
1087
0
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1088
0
                       "Failed to allocate restoration dst buffer");
1089
1090
1.54k
  lr_ctxt->on_rest_unit = filter_frame_on_unit;
1091
1.54k
  lr_ctxt->frame = frame;
1092
5.59k
  for (int plane = 0; plane < num_planes; ++plane) {
1093
4.05k
    RestorationInfo *rsi = &cm->rst_info[plane];
1094
4.05k
    RestorationType rtype = rsi->frame_restoration_type;
1095
4.05k
    rsi->optimized_lr = optimized_lr;
1096
4.05k
    lr_ctxt->ctxt[plane].rsi = rsi;
1097
1098
4.05k
    if (rtype == RESTORE_NONE) {
1099
1.11k
      continue;
1100
1.11k
    }
1101
1102
2.94k
    const int is_uv = plane > 0;
1103
2.94k
    int plane_w, plane_h;
1104
2.94k
    av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1105
2.94k
    assert(plane_w == frame->crop_widths[is_uv]);
1106
2.94k
    assert(plane_h == frame->crop_heights[is_uv]);
1107
1108
2.94k
    av1_extend_frame(frame->buffers[plane], plane_w, plane_h,
1109
2.94k
                     frame->strides[is_uv], RESTORATION_BORDER,
1110
2.94k
                     RESTORATION_BORDER, highbd);
1111
1112
2.94k
    FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane];
1113
2.94k
    lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x;
1114
2.94k
    lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y;
1115
2.94k
    lr_plane_ctxt->plane_w = plane_w;
1116
2.94k
    lr_plane_ctxt->plane_h = plane_h;
1117
2.94k
    lr_plane_ctxt->highbd = highbd;
1118
2.94k
    lr_plane_ctxt->bit_depth = bit_depth;
1119
2.94k
    lr_plane_ctxt->data8 = frame->buffers[plane];
1120
2.94k
    lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane];
1121
2.94k
    lr_plane_ctxt->data_stride = frame->strides[is_uv];
1122
2.94k
    lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv];
1123
2.94k
  }
1124
1.54k
}
1125
1126
static void loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt,
1127
601
                                         AV1_COMMON *cm, int num_planes) {
1128
601
  typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
1129
601
                           YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
1130
601
                           int vstart, int vend);
1131
601
  static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
1132
601
                                         aom_yv12_partial_coloc_copy_u,
1133
601
                                         aom_yv12_partial_coloc_copy_v };
1134
601
  assert(num_planes <= 3);
1135
2.05k
  for (int plane = 0; plane < num_planes; ++plane) {
1136
1.45k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1137
974
    FilterFrameCtxt *lr_plane_ctxt = &loop_rest_ctxt->ctxt[plane];
1138
974
    copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, 0,
1139
974
                     lr_plane_ctxt->plane_w, 0, lr_plane_ctxt->plane_h);
1140
974
  }
1141
601
}
1142
1143
// Call on_rest_unit for each loop restoration unit in the plane.
1144
static void foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane,
1145
                                       rest_unit_visitor_t on_rest_unit,
1146
                                       void *priv, int32_t *tmpbuf,
1147
974
                                       RestorationLineBuffers *rlbs) {
1148
974
  const RestorationInfo *rsi = &cm->rst_info[plane];
1149
974
  const int hnum_rest_units = rsi->horz_units;
1150
974
  const int vnum_rest_units = rsi->vert_units;
1151
974
  const int unit_size = rsi->restoration_unit_size;
1152
1153
974
  const int is_uv = plane > 0;
1154
974
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1155
974
  const int ext_size = unit_size * 3 / 2;
1156
974
  int plane_w, plane_h;
1157
974
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1158
1159
974
  int y0 = 0, i = 0;
1160
2.07k
  while (y0 < plane_h) {
1161
1.10k
    int remaining_h = plane_h - y0;
1162
1.10k
    int h = (remaining_h < ext_size) ? remaining_h : unit_size;
1163
1164
1.10k
    RestorationTileLimits limits;
1165
1.10k
    limits.v_start = y0;
1166
1.10k
    limits.v_end = y0 + h;
1167
1.10k
    assert(limits.v_end <= plane_h);
1168
    // Offset upwards to align with the restoration processing stripe
1169
1.10k
    const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
1170
1.10k
    limits.v_start = AOMMAX(0, limits.v_start - voffset);
1171
1.10k
    if (limits.v_end < plane_h) limits.v_end -= voffset;
1172
1173
1.10k
    av1_foreach_rest_unit_in_row(&limits, plane_w, on_rest_unit, i, unit_size,
1174
1.10k
                                 hnum_rest_units, vnum_rest_units, plane, priv,
1175
1.10k
                                 tmpbuf, rlbs, av1_lr_sync_read_dummy,
1176
1.10k
                                 av1_lr_sync_write_dummy, NULL, cm->error);
1177
1178
1.10k
    y0 += h;
1179
1.10k
    ++i;
1180
1.10k
  }
1181
974
}
1182
1183
static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm,
1184
601
                                        int num_planes) {
1185
601
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
1186
1187
2.05k
  for (int plane = 0; plane < num_planes; ++plane) {
1188
1.45k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) {
1189
477
      continue;
1190
477
    }
1191
1192
974
    foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit, &ctxt[plane],
1193
974
                               cm->rst_tmpbuf, cm->rlbs);
1194
974
  }
1195
601
}
1196
1197
void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame,
1198
                                       AV1_COMMON *cm, int optimized_lr,
1199
601
                                       void *lr_ctxt) {
1200
601
  assert(!cm->features.all_lossless);
1201
601
  const int num_planes = av1_num_planes(cm);
1202
1203
601
  AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
1204
1205
601
  av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
1206
601
                                         optimized_lr, num_planes);
1207
1208
601
  foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes);
1209
1210
601
  loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes);
1211
601
}
1212
1213
void av1_foreach_rest_unit_in_row(
1214
    RestorationTileLimits *limits, int plane_w,
1215
    rest_unit_visitor_t on_rest_unit, int row_number, int unit_size,
1216
    int hnum_rest_units, int vnum_rest_units, int plane, void *priv,
1217
    int32_t *tmpbuf, RestorationLineBuffers *rlbs, sync_read_fn_t on_sync_read,
1218
    sync_write_fn_t on_sync_write, struct AV1LrSyncData *const lr_sync,
1219
4.71k
    struct aom_internal_error_info *error_info) {
1220
4.71k
  const int ext_size = unit_size * 3 / 2;
1221
4.71k
  int x0 = 0, j = 0;
1222
11.5k
  while (x0 < plane_w) {
1223
6.80k
    int remaining_w = plane_w - x0;
1224
6.80k
    int w = (remaining_w < ext_size) ? remaining_w : unit_size;
1225
1226
6.80k
    limits->h_start = x0;
1227
6.80k
    limits->h_end = x0 + w;
1228
6.80k
    assert(limits->h_end <= plane_w);
1229
1230
6.80k
    const int unit_idx = row_number * hnum_rest_units + j;
1231
1232
    // No sync for even numbered rows
1233
    // For odd numbered rows, Loop Restoration of current block requires the LR
1234
    // of top-right and bottom-right blocks to be completed
1235
1236
    // top-right sync
1237
6.80k
    on_sync_read(lr_sync, row_number, j, plane);
1238
6.80k
    if ((row_number + 1) < vnum_rest_units)
1239
      // bottom-right sync
1240
3.27k
      on_sync_read(lr_sync, row_number + 2, j, plane);
1241
1242
6.80k
#if CONFIG_MULTITHREAD
1243
6.80k
    if (lr_sync && lr_sync->num_workers > 1) {
1244
5.54k
      pthread_mutex_lock(lr_sync->job_mutex);
1245
5.54k
      const bool lr_mt_exit = lr_sync->lr_mt_exit;
1246
5.54k
      pthread_mutex_unlock(lr_sync->job_mutex);
1247
      // Exit in case any worker has encountered an error.
1248
5.54k
      if (lr_mt_exit) return;
1249
5.54k
    }
1250
6.80k
#endif
1251
1252
6.80k
    on_rest_unit(limits, unit_idx, priv, tmpbuf, rlbs, error_info);
1253
1254
6.80k
    on_sync_write(lr_sync, row_number, j, hnum_rest_units, plane);
1255
1256
6.80k
    x0 += w;
1257
6.80k
    ++j;
1258
6.80k
  }
1259
4.71k
}
1260
1261
7.03k
void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) {
1262
7.03k
  (void)lr_sync;
1263
7.03k
  (void)r;
1264
7.03k
  (void)c;
1265
7.03k
  (void)plane;
1266
7.03k
}
1267
1268
void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c,
1269
3.27k
                             const int sb_cols, int plane) {
1270
3.27k
  (void)lr_sync;
1271
3.27k
  (void)r;
1272
3.27k
  (void)c;
1273
3.27k
  (void)sb_cols;
1274
3.27k
  (void)plane;
1275
3.27k
}
1276
1277
int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane,
1278
                                       int mi_row, int mi_col, BLOCK_SIZE bsize,
1279
                                       int *rcol0, int *rcol1, int *rrow0,
1280
423k
                                       int *rrow1) {
1281
423k
  assert(rcol0 && rcol1 && rrow0 && rrow1);
1282
1283
423k
  if (bsize != cm->seq_params->sb_size) return 0;
1284
1285
423k
  assert(!cm->features.all_lossless);
1286
1287
81.9k
  const int is_uv = plane > 0;
1288
1289
  // Compute the mi-unit corners of the superblock
1290
81.9k
  const int mi_row0 = mi_row;
1291
81.9k
  const int mi_col0 = mi_col;
1292
81.9k
  const int mi_row1 = mi_row0 + mi_size_high[bsize];
1293
81.9k
  const int mi_col1 = mi_col0 + mi_size_wide[bsize];
1294
1295
81.9k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1296
81.9k
  const int size = rsi->restoration_unit_size;
1297
81.9k
  const int horz_units = rsi->horz_units;
1298
81.9k
  const int vert_units = rsi->vert_units;
1299
1300
  // The size of an MI-unit on this plane of the image
1301
81.9k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1302
81.9k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1303
81.9k
  const int mi_size_x = MI_SIZE >> ss_x;
1304
81.9k
  const int mi_size_y = MI_SIZE >> ss_y;
1305
1306
  // Write m for the relative mi column or row, D for the superres denominator
1307
  // and N for the superres numerator. If u is the upscaled pixel offset then
1308
  // we can write the downscaled pixel offset in two ways as:
1309
  //
1310
  //   MI_SIZE * m = N / D u
1311
  //
1312
  // from which we get u = D * MI_SIZE * m / N
1313
81.9k
  const int mi_to_num_x = av1_superres_scaled(cm)
1314
81.9k
                              ? mi_size_x * cm->superres_scale_denominator
1315
81.9k
                              : mi_size_x;
1316
81.9k
  const int mi_to_num_y = mi_size_y;
1317
81.9k
  const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size;
1318
81.9k
  const int denom_y = size;
1319
1320
81.9k
  const int rnd_x = denom_x - 1;
1321
81.9k
  const int rnd_y = denom_y - 1;
1322
1323
  // rcol0/rrow0 should be the first column/row of restoration units that
1324
  // doesn't start left/below of mi_col/mi_row. For this calculation, we need
1325
  // to round up the division (if the sb starts at runit column 10.1, the first
1326
  // matching runit has column index 11)
1327
81.9k
  *rcol0 = (mi_col0 * mi_to_num_x + rnd_x) / denom_x;
1328
81.9k
  *rrow0 = (mi_row0 * mi_to_num_y + rnd_y) / denom_y;
1329
1330
  // rel_col1/rel_row1 is the equivalent calculation, but for the superblock
1331
  // below-right. If we're at the bottom or right of the frame, this restoration
1332
  // unit might not exist, in which case we'll clamp accordingly.
1333
81.9k
  *rcol1 = AOMMIN((mi_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units);
1334
81.9k
  *rrow1 = AOMMIN((mi_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units);
1335
1336
81.9k
  return *rcol0 < *rcol1 && *rrow0 < *rrow1;
1337
423k
}
1338
1339
// Extend to left and right
1340
static void extend_lines(uint8_t *buf, int width, int height, int stride,
1341
90.5k
                         int extend, int use_highbitdepth) {
1342
271k
  for (int i = 0; i < height; ++i) {
1343
181k
    if (use_highbitdepth) {
1344
58.3k
      uint16_t *buf16 = (uint16_t *)buf;
1345
58.3k
      aom_memset16(buf16 - extend, buf16[0], extend);
1346
58.3k
      aom_memset16(buf16 + width, buf16[width - 1], extend);
1347
122k
    } else {
1348
122k
      memset(buf - extend, buf[0], extend);
1349
122k
      memset(buf + width, buf[width - 1], extend);
1350
122k
    }
1351
181k
    buf += stride;
1352
181k
  }
1353
90.5k
}
1354
1355
static void save_deblock_boundary_lines(
1356
    const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row,
1357
    int stripe, int use_highbd, int is_above,
1358
34.3k
    RestorationStripeBoundaries *boundaries) {
1359
34.3k
  const int is_uv = plane > 0;
1360
34.3k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1361
34.3k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1362
34.3k
  const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
1363
1364
34.3k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1365
34.3k
                               : boundaries->stripe_boundary_below;
1366
34.3k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1367
34.3k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1368
34.3k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1369
1370
  // There is a rare case in which a processing stripe can end 1px above the
1371
  // crop border. In this case, we do want to use deblocked pixels from below
1372
  // the stripe (hence why we ended up in this function), but instead of
1373
  // fetching 2 "below" rows we need to fetch one and duplicate it.
1374
  // This is equivalent to clamping the sample locations against the crop border
1375
34.3k
  const int lines_to_save =
1376
34.3k
      AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row);
1377
34.3k
  assert(lines_to_save == 1 || lines_to_save == 2);
1378
1379
34.3k
  int upscaled_width;
1380
34.3k
  int line_bytes;
1381
34.3k
  if (av1_superres_scaled(cm)) {
1382
14.8k
    const int ss_x = is_uv && cm->seq_params->subsampling_x;
1383
14.8k
    upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
1384
14.8k
    line_bytes = upscaled_width << use_highbd;
1385
14.8k
    if (use_highbd)
1386
9.24k
      av1_upscale_normative_rows(
1387
9.24k
          cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv],
1388
9.24k
          CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride,
1389
9.24k
          plane, lines_to_save);
1390
5.55k
    else
1391
5.55k
      av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows,
1392
5.55k
                                 boundaries->stripe_boundary_stride, plane,
1393
5.55k
                                 lines_to_save);
1394
19.5k
  } else {
1395
19.5k
    upscaled_width = frame->crop_widths[is_uv];
1396
19.5k
    line_bytes = upscaled_width << use_highbd;
1397
58.4k
    for (int i = 0; i < lines_to_save; i++) {
1398
38.9k
      memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride,
1399
38.9k
             line_bytes);
1400
38.9k
    }
1401
19.5k
  }
1402
  // If we only saved one line, then copy it into the second line buffer
1403
34.3k
  if (lines_to_save == 1)
1404
343
    memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes);
1405
1406
34.3k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1407
34.3k
               RESTORATION_EXTRA_HORZ, use_highbd);
1408
34.3k
}
1409
1410
static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1411
                                     const AV1_COMMON *cm, int plane, int row,
1412
                                     int stripe, int use_highbd, int is_above,
1413
56.2k
                                     RestorationStripeBoundaries *boundaries) {
1414
56.2k
  const int is_uv = plane > 0;
1415
56.2k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1416
56.2k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1417
56.2k
  const uint8_t *src_rows = src_buf + row * (ptrdiff_t)src_stride;
1418
1419
56.2k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1420
56.2k
                               : boundaries->stripe_boundary_below;
1421
56.2k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1422
56.2k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1423
56.2k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1424
56.2k
  const int src_width = frame->crop_widths[is_uv];
1425
1426
  // At the point where this function is called, we've already applied
1427
  // superres. So we don't need to extend the lines here, we can just
1428
  // pull directly from the topmost row of the upscaled frame.
1429
56.2k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1430
56.2k
  const int upscaled_width = av1_superres_scaled(cm)
1431
56.2k
                                 ? (cm->superres_upscaled_width + ss_x) >> ss_x
1432
56.2k
                                 : src_width;
1433
56.2k
  const int line_bytes = upscaled_width << use_highbd;
1434
168k
  for (int i = 0; i < RESTORATION_CTX_VERT; i++) {
1435
    // Copy the line at 'src_rows' into both context lines
1436
112k
    memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes);
1437
112k
  }
1438
56.2k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1439
56.2k
               RESTORATION_EXTRA_HORZ, use_highbd);
1440
56.2k
}
1441
1442
static void save_boundary_lines(const YV12_BUFFER_CONFIG *frame, int use_highbd,
1443
56.2k
                                int plane, AV1_COMMON *cm, int after_cdef) {
1444
56.2k
  const int is_uv = plane > 0;
1445
56.2k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1446
56.2k
  const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1447
56.2k
  const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y;
1448
1449
56.2k
  int plane_w, plane_h;
1450
56.2k
  av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1451
1452
56.2k
  RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries;
1453
1454
56.2k
  const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y);
1455
1456
56.2k
  int stripe_idx;
1457
146k
  for (stripe_idx = 0;; ++stripe_idx) {
1458
146k
    const int rel_y0 = AOMMAX(0, stripe_idx * stripe_height - stripe_off);
1459
146k
    const int y0 = rel_y0;
1460
146k
    if (y0 >= plane_h) break;
1461
1462
90.5k
    const int rel_y1 = (stripe_idx + 1) * stripe_height - stripe_off;
1463
90.5k
    const int y1 = AOMMIN(rel_y1, plane_h);
1464
1465
    // Extend using CDEF pixels at the top and bottom of the frame,
1466
    // and deblocked pixels at internal stripe boundaries
1467
90.5k
    const int use_deblock_above = (stripe_idx > 0);
1468
90.5k
    const int use_deblock_below = (y1 < plane_height);
1469
1470
90.5k
    if (!after_cdef) {
1471
      // Save deblocked context at internal stripe boundaries
1472
45.2k
      if (use_deblock_above) {
1473
17.1k
        save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT,
1474
17.1k
                                    stripe_idx, use_highbd, 1, boundaries);
1475
17.1k
      }
1476
45.2k
      if (use_deblock_below) {
1477
17.1k
        save_deblock_boundary_lines(frame, cm, plane, y1, stripe_idx,
1478
17.1k
                                    use_highbd, 0, boundaries);
1479
17.1k
      }
1480
45.2k
    } else {
1481
      // Save CDEF context at frame boundaries
1482
45.2k
      if (!use_deblock_above) {
1483
28.1k
        save_cdef_boundary_lines(frame, cm, plane, y0, stripe_idx, use_highbd,
1484
28.1k
                                 1, boundaries);
1485
28.1k
      }
1486
45.2k
      if (!use_deblock_below) {
1487
28.1k
        save_cdef_boundary_lines(frame, cm, plane, y1 - 1, stripe_idx,
1488
28.1k
                                 use_highbd, 0, boundaries);
1489
28.1k
      }
1490
45.2k
    }
1491
90.5k
  }
1492
56.2k
}
1493
1494
// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan
1495
// lines to be used as boundary in the loop restoration process. The
1496
// lines are saved in rst_internal.stripe_boundary_lines
1497
void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1498
28.7k
                                              AV1_COMMON *cm, int after_cdef) {
1499
28.7k
  const int num_planes = av1_num_planes(cm);
1500
28.7k
  const int use_highbd = cm->seq_params->use_highbitdepth;
1501
84.9k
  for (int p = 0; p < num_planes; ++p) {
1502
56.2k
    save_boundary_lines(frame, use_highbd, p, cm, after_cdef);
1503
56.2k
  }
1504
28.7k
}