Coverage Report

Created: 2025-07-11 06:13

/src/libbpf/src/btf.c
Line
Count
Source (jump to first uncovered line)
1
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
/* Copyright (c) 2018 Facebook */
3
4
#include <byteswap.h>
5
#include <endian.h>
6
#include <stdio.h>
7
#include <stdlib.h>
8
#include <string.h>
9
#include <fcntl.h>
10
#include <unistd.h>
11
#include <errno.h>
12
#include <sys/utsname.h>
13
#include <sys/param.h>
14
#include <sys/stat.h>
15
#include <sys/mman.h>
16
#include <linux/kernel.h>
17
#include <linux/err.h>
18
#include <linux/btf.h>
19
#include <gelf.h>
20
#include "btf.h"
21
#include "bpf.h"
22
#include "libbpf.h"
23
#include "libbpf_internal.h"
24
#include "hashmap.h"
25
#include "strset.h"
26
#include "str_error.h"
27
28
42.6k
#define BTF_MAX_NR_TYPES 0x7fffffffU
29
7.20k
#define BTF_MAX_STR_OFFSET 0x7fffffffU
30
31
static struct btf_type btf_void;
32
33
struct btf {
34
  /* raw BTF data in native endianness */
35
  void *raw_data;
36
  /* raw BTF data in non-native endianness */
37
  void *raw_data_swapped;
38
  __u32 raw_size;
39
  /* whether target endianness differs from the native one */
40
  bool swapped_endian;
41
42
  /*
43
   * When BTF is loaded from an ELF or raw memory it is stored
44
   * in a contiguous memory block. The hdr, type_data, and, strs_data
45
   * point inside that memory region to their respective parts of BTF
46
   * representation:
47
   *
48
   * +--------------------------------+
49
   * |  Header  |  Types  |  Strings  |
50
   * +--------------------------------+
51
   * ^          ^         ^
52
   * |          |         |
53
   * hdr        |         |
54
   * types_data-+         |
55
   * strs_data------------+
56
   *
57
   * If BTF data is later modified, e.g., due to types added or
58
   * removed, BTF deduplication performed, etc, this contiguous
59
   * representation is broken up into three independently allocated
60
   * memory regions to be able to modify them independently.
61
   * raw_data is nulled out at that point, but can be later allocated
62
   * and cached again if user calls btf__raw_data(), at which point
63
   * raw_data will contain a contiguous copy of header, types, and
64
   * strings:
65
   *
66
   * +----------+  +---------+  +-----------+
67
   * |  Header  |  |  Types  |  |  Strings  |
68
   * +----------+  +---------+  +-----------+
69
   * ^             ^            ^
70
   * |             |            |
71
   * hdr           |            |
72
   * types_data----+            |
73
   * strset__data(strs_set)-----+
74
   *
75
   *               +----------+---------+-----------+
76
   *               |  Header  |  Types  |  Strings  |
77
   * raw_data----->+----------+---------+-----------+
78
   */
79
  struct btf_header *hdr;
80
81
  void *types_data;
82
  size_t types_data_cap; /* used size stored in hdr->type_len */
83
84
  /* type ID to `struct btf_type *` lookup index
85
   * type_offs[0] corresponds to the first non-VOID type:
86
   *   - for base BTF it's type [1];
87
   *   - for split BTF it's the first non-base BTF type.
88
   */
89
  __u32 *type_offs;
90
  size_t type_offs_cap;
91
  /* number of types in this BTF instance:
92
   *   - doesn't include special [0] void type;
93
   *   - for split BTF counts number of types added on top of base BTF.
94
   */
95
  __u32 nr_types;
96
  /* if not NULL, points to the base BTF on top of which the current
97
   * split BTF is based
98
   */
99
  struct btf *base_btf;
100
  /* BTF type ID of the first type in this BTF instance:
101
   *   - for base BTF it's equal to 1;
102
   *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
103
   */
104
  int start_id;
105
  /* logical string offset of this BTF instance:
106
   *   - for base BTF it's equal to 0;
107
   *   - for split BTF it's equal to total size of base BTF's string section size.
108
   */
109
  int start_str_off;
110
111
  /* only one of strs_data or strs_set can be non-NULL, depending on
112
   * whether BTF is in a modifiable state (strs_set is used) or not
113
   * (strs_data points inside raw_data)
114
   */
115
  void *strs_data;
116
  /* a set of unique strings */
117
  struct strset *strs_set;
118
  /* whether strings are already deduplicated */
119
  bool strs_deduped;
120
121
  /* whether base_btf should be freed in btf_free for this instance */
122
  bool owns_base;
123
124
  /* whether raw_data is a (read-only) mmap */
125
  bool raw_data_is_mmap;
126
127
  /* BTF object FD, if loaded into kernel */
128
  int fd;
129
130
  /* Pointer size (in bytes) for a target architecture of this BTF */
131
  int ptr_sz;
132
};
133
134
static inline __u64 ptr_to_u64(const void *ptr)
135
0
{
136
0
  return (__u64) (unsigned long) ptr;
137
0
}
138
139
/* Ensure given dynamically allocated memory region pointed to by *data* with
140
 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
141
 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
142
 * are already used. At most *max_cnt* elements can be ever allocated.
143
 * If necessary, memory is reallocated and all existing data is copied over,
144
 * new pointer to the memory region is stored at *data, new memory region
145
 * capacity (in number of elements) is stored in *cap.
146
 * On success, memory pointer to the beginning of unused memory is returned.
147
 * On error, NULL is returned.
148
 */
149
void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
150
         size_t cur_cnt, size_t max_cnt, size_t add_cnt)
151
44.2k
{
152
44.2k
  size_t new_cnt;
153
44.2k
  void *new_data;
154
155
44.2k
  if (cur_cnt + add_cnt <= *cap_cnt)
156
38.2k
    return *data + cur_cnt * elem_sz;
157
158
  /* requested more than the set limit */
159
5.97k
  if (cur_cnt + add_cnt > max_cnt)
160
0
    return NULL;
161
162
5.97k
  new_cnt = *cap_cnt;
163
5.97k
  new_cnt += new_cnt / 4;     /* expand by 25% */
164
5.97k
  if (new_cnt < 16)      /* but at least 16 elements */
165
4.34k
    new_cnt = 16;
166
5.97k
  if (new_cnt > max_cnt)      /* but not exceeding a set limit */
167
0
    new_cnt = max_cnt;
168
5.97k
  if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
169
14
    new_cnt = cur_cnt + add_cnt;
170
171
5.97k
  new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
172
5.97k
  if (!new_data)
173
0
    return NULL;
174
175
  /* zero out newly allocated portion of memory */
176
5.97k
  memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
177
178
5.97k
  *data = new_data;
179
5.97k
  *cap_cnt = new_cnt;
180
5.97k
  return new_data + cur_cnt * elem_sz;
181
5.97k
}
182
183
/* Ensure given dynamically allocated memory region has enough allocated space
184
 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
185
 */
186
int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
187
2.33k
{
188
2.33k
  void *p;
189
190
2.33k
  if (need_cnt <= *cap_cnt)
191
1.20k
    return 0;
192
193
1.12k
  p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
194
1.12k
  if (!p)
195
0
    return -ENOMEM;
196
197
1.12k
  return 0;
198
1.12k
}
199
200
static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
201
42.3k
{
202
42.3k
  return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
203
42.3k
            btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
204
42.3k
}
205
206
static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
207
42.3k
{
208
42.3k
  __u32 *p;
209
210
42.3k
  p = btf_add_type_offs_mem(btf, 1);
211
42.3k
  if (!p)
212
0
    return -ENOMEM;
213
214
42.3k
  *p = type_off;
215
42.3k
  return 0;
216
42.3k
}
217
218
static void btf_bswap_hdr(struct btf_header *h)
219
362
{
220
362
  h->magic = bswap_16(h->magic);
221
362
  h->hdr_len = bswap_32(h->hdr_len);
222
362
  h->type_off = bswap_32(h->type_off);
223
362
  h->type_len = bswap_32(h->type_len);
224
362
  h->str_off = bswap_32(h->str_off);
225
362
  h->str_len = bswap_32(h->str_len);
226
362
}
227
228
static int btf_parse_hdr(struct btf *btf)
229
3.60k
{
230
3.60k
  struct btf_header *hdr = btf->hdr;
231
3.60k
  __u32 meta_left;
232
233
3.60k
  if (btf->raw_size < sizeof(struct btf_header)) {
234
14
    pr_debug("BTF header not found\n");
235
14
    return -EINVAL;
236
14
  }
237
238
3.58k
  if (hdr->magic == bswap_16(BTF_MAGIC)) {
239
391
    btf->swapped_endian = true;
240
391
    if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
241
29
      pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
242
29
        bswap_32(hdr->hdr_len));
243
29
      return -ENOTSUP;
244
29
    }
245
362
    btf_bswap_hdr(hdr);
246
3.19k
  } else if (hdr->magic != BTF_MAGIC) {
247
37
    pr_debug("Invalid BTF magic: %x\n", hdr->magic);
248
37
    return -EINVAL;
249
37
  }
250
251
3.52k
  if (btf->raw_size < hdr->hdr_len) {
252
49
    pr_debug("BTF header len %u larger than data size %u\n",
253
49
       hdr->hdr_len, btf->raw_size);
254
49
    return -EINVAL;
255
49
  }
256
257
3.47k
  meta_left = btf->raw_size - hdr->hdr_len;
258
3.47k
  if (meta_left < (long long)hdr->str_off + hdr->str_len) {
259
57
    pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
260
57
    return -EINVAL;
261
57
  }
262
263
3.41k
  if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
264
12
    pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
265
12
       hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
266
12
    return -EINVAL;
267
12
  }
268
269
3.40k
  if (hdr->type_off % 4) {
270
2
    pr_debug("BTF type section is not aligned to 4 bytes\n");
271
2
    return -EINVAL;
272
2
  }
273
274
3.40k
  return 0;
275
3.40k
}
276
277
static int btf_parse_str_sec(struct btf *btf)
278
3.40k
{
279
3.40k
  const struct btf_header *hdr = btf->hdr;
280
3.40k
  const char *start = btf->strs_data;
281
3.40k
  const char *end = start + btf->hdr->str_len;
282
283
3.40k
  if (btf->base_btf && hdr->str_len == 0)
284
0
    return 0;
285
3.40k
  if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
286
11
    pr_debug("Invalid BTF string section\n");
287
11
    return -EINVAL;
288
11
  }
289
3.39k
  if (!btf->base_btf && start[0]) {
290
4
    pr_debug("Malformed BTF string section, did you forget to provide base BTF?\n");
291
4
    return -EINVAL;
292
4
  }
293
3.38k
  return 0;
294
3.39k
}
295
296
static int btf_type_size(const struct btf_type *t)
297
42.0k
{
298
42.0k
  const int base_size = sizeof(struct btf_type);
299
42.0k
  __u16 vlen = btf_vlen(t);
300
301
42.0k
  switch (btf_kind(t)) {
302
938
  case BTF_KIND_FWD:
303
2.35k
  case BTF_KIND_CONST:
304
3.17k
  case BTF_KIND_VOLATILE:
305
4.55k
  case BTF_KIND_RESTRICT:
306
6.23k
  case BTF_KIND_PTR:
307
7.05k
  case BTF_KIND_TYPEDEF:
308
8.94k
  case BTF_KIND_FUNC:
309
10.6k
  case BTF_KIND_FLOAT:
310
11.3k
  case BTF_KIND_TYPE_TAG:
311
11.3k
    return base_size;
312
6.90k
  case BTF_KIND_INT:
313
6.90k
    return base_size + sizeof(__u32);
314
1.09k
  case BTF_KIND_ENUM:
315
1.09k
    return base_size + vlen * sizeof(struct btf_enum);
316
1.73k
  case BTF_KIND_ENUM64:
317
1.73k
    return base_size + vlen * sizeof(struct btf_enum64);
318
3.63k
  case BTF_KIND_ARRAY:
319
3.63k
    return base_size + sizeof(struct btf_array);
320
1.48k
  case BTF_KIND_STRUCT:
321
2.11k
  case BTF_KIND_UNION:
322
2.11k
    return base_size + vlen * sizeof(struct btf_member);
323
2.57k
  case BTF_KIND_FUNC_PROTO:
324
2.57k
    return base_size + vlen * sizeof(struct btf_param);
325
5.23k
  case BTF_KIND_VAR:
326
5.23k
    return base_size + sizeof(struct btf_var);
327
6.36k
  case BTF_KIND_DATASEC:
328
6.36k
    return base_size + vlen * sizeof(struct btf_var_secinfo);
329
956
  case BTF_KIND_DECL_TAG:
330
956
    return base_size + sizeof(struct btf_decl_tag);
331
76
  default:
332
76
    pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
333
76
    return -EINVAL;
334
42.0k
  }
335
42.0k
}
336
337
static void btf_bswap_type_base(struct btf_type *t)
338
10.1k
{
339
10.1k
  t->name_off = bswap_32(t->name_off);
340
10.1k
  t->info = bswap_32(t->info);
341
10.1k
  t->type = bswap_32(t->type);
342
10.1k
}
343
344
static int btf_bswap_type_rest(struct btf_type *t)
345
10.0k
{
346
10.0k
  struct btf_var_secinfo *v;
347
10.0k
  struct btf_enum64 *e64;
348
10.0k
  struct btf_member *m;
349
10.0k
  struct btf_array *a;
350
10.0k
  struct btf_param *p;
351
10.0k
  struct btf_enum *e;
352
10.0k
  __u16 vlen = btf_vlen(t);
353
10.0k
  int i;
354
355
10.0k
  switch (btf_kind(t)) {
356
381
  case BTF_KIND_FWD:
357
874
  case BTF_KIND_CONST:
358
1.45k
  case BTF_KIND_VOLATILE:
359
2.27k
  case BTF_KIND_RESTRICT:
360
2.70k
  case BTF_KIND_PTR:
361
3.10k
  case BTF_KIND_TYPEDEF:
362
3.66k
  case BTF_KIND_FUNC:
363
4.56k
  case BTF_KIND_FLOAT:
364
5.02k
  case BTF_KIND_TYPE_TAG:
365
5.02k
    return 0;
366
494
  case BTF_KIND_INT:
367
494
    *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
368
494
    return 0;
369
501
  case BTF_KIND_ENUM:
370
2.56k
    for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
371
2.06k
      e->name_off = bswap_32(e->name_off);
372
2.06k
      e->val = bswap_32(e->val);
373
2.06k
    }
374
501
    return 0;
375
567
  case BTF_KIND_ENUM64:
376
1.96k
    for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
377
1.39k
      e64->name_off = bswap_32(e64->name_off);
378
1.39k
      e64->val_lo32 = bswap_32(e64->val_lo32);
379
1.39k
      e64->val_hi32 = bswap_32(e64->val_hi32);
380
1.39k
    }
381
567
    return 0;
382
509
  case BTF_KIND_ARRAY:
383
509
    a = btf_array(t);
384
509
    a->type = bswap_32(a->type);
385
509
    a->index_type = bswap_32(a->index_type);
386
509
    a->nelems = bswap_32(a->nelems);
387
509
    return 0;
388
413
  case BTF_KIND_STRUCT:
389
754
  case BTF_KIND_UNION:
390
2.01k
    for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
391
1.25k
      m->name_off = bswap_32(m->name_off);
392
1.25k
      m->type = bswap_32(m->type);
393
1.25k
      m->offset = bswap_32(m->offset);
394
1.25k
    }
395
754
    return 0;
396
497
  case BTF_KIND_FUNC_PROTO:
397
2.48k
    for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
398
1.98k
      p->name_off = bswap_32(p->name_off);
399
1.98k
      p->type = bswap_32(p->type);
400
1.98k
    }
401
497
    return 0;
402
776
  case BTF_KIND_VAR:
403
776
    btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
404
776
    return 0;
405
449
  case BTF_KIND_DATASEC:
406
2.02k
    for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
407
1.57k
      v->type = bswap_32(v->type);
408
1.57k
      v->offset = bswap_32(v->offset);
409
1.57k
      v->size = bswap_32(v->size);
410
1.57k
    }
411
449
    return 0;
412
521
  case BTF_KIND_DECL_TAG:
413
521
    btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
414
521
    return 0;
415
0
  default:
416
0
    pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
417
0
    return -EINVAL;
418
10.0k
  }
419
10.0k
}
420
421
static int btf_parse_type_sec(struct btf *btf)
422
3.38k
{
423
3.38k
  struct btf_header *hdr = btf->hdr;
424
3.38k
  void *next_type = btf->types_data;
425
3.38k
  void *end_type = next_type + hdr->type_len;
426
3.38k
  int err, type_size;
427
428
45.2k
  while (next_type + sizeof(struct btf_type) <= end_type) {
429
42.0k
    if (btf->swapped_endian)
430
10.1k
      btf_bswap_type_base(next_type);
431
432
42.0k
    type_size = btf_type_size(next_type);
433
42.0k
    if (type_size < 0)
434
76
      return type_size;
435
41.9k
    if (next_type + type_size > end_type) {
436
26
      pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
437
26
      return -EINVAL;
438
26
    }
439
440
41.9k
    if (btf->swapped_endian && btf_bswap_type_rest(next_type))
441
0
      return -EINVAL;
442
443
41.9k
    err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
444
41.9k
    if (err)
445
0
      return err;
446
447
41.9k
    next_type += type_size;
448
41.9k
    btf->nr_types++;
449
41.9k
  }
450
451
3.28k
  if (next_type != end_type) {
452
50
    pr_warn("BTF types data is malformed\n");
453
50
    return -EINVAL;
454
50
  }
455
456
3.23k
  return 0;
457
3.28k
}
458
459
static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id)
460
39.9k
{
461
39.9k
  const char *s;
462
463
39.9k
  s = btf__str_by_offset(btf, str_off);
464
39.9k
  if (!s) {
465
135
    pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off);
466
135
    return -EINVAL;
467
135
  }
468
469
39.8k
  return 0;
470
39.9k
}
471
472
static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id)
473
29.6k
{
474
29.6k
  const struct btf_type *t;
475
476
29.6k
  t = btf__type_by_id(btf, id);
477
29.6k
  if (!t) {
478
285
    pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id);
479
285
    return -EINVAL;
480
285
  }
481
482
29.3k
  return 0;
483
29.6k
}
484
485
static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id)
486
31.8k
{
487
31.8k
  __u32 kind = btf_kind(t);
488
31.8k
  int err, i, n;
489
490
31.8k
  err = btf_validate_str(btf, t->name_off, "type name", id);
491
31.8k
  if (err)
492
96
    return err;
493
494
31.7k
  switch (kind) {
495
0
  case BTF_KIND_UNKN:
496
6.27k
  case BTF_KIND_INT:
497
6.87k
  case BTF_KIND_FWD:
498
7.73k
  case BTF_KIND_FLOAT:
499
7.73k
    break;
500
1.27k
  case BTF_KIND_PTR:
501
1.68k
  case BTF_KIND_TYPEDEF:
502
1.96k
  case BTF_KIND_VOLATILE:
503
2.95k
  case BTF_KIND_CONST:
504
3.53k
  case BTF_KIND_RESTRICT:
505
7.88k
  case BTF_KIND_VAR:
506
8.31k
  case BTF_KIND_DECL_TAG:
507
8.50k
  case BTF_KIND_TYPE_TAG:
508
8.50k
    err = btf_validate_id(btf, t->type, id);
509
8.50k
    if (err)
510
56
      return err;
511
8.45k
    break;
512
8.45k
  case BTF_KIND_ARRAY: {
513
3.00k
    const struct btf_array *a = btf_array(t);
514
515
3.00k
    err = btf_validate_id(btf, a->type, id);
516
3.00k
    err = err ?: btf_validate_id(btf, a->index_type, id);
517
3.00k
    if (err)
518
68
      return err;
519
2.90k
    break;
520
2.97k
  }
521
2.90k
  case BTF_KIND_STRUCT:
522
1.43k
  case BTF_KIND_UNION: {
523
1.43k
    const struct btf_member *m = btf_members(t);
524
525
1.43k
    n = btf_vlen(t);
526
3.96k
    for (i = 0; i < n; i++, m++) {
527
2.59k
      err = btf_validate_str(btf, m->name_off, "field name", id);
528
2.59k
      err = err ?: btf_validate_id(btf, m->type, id);
529
2.59k
      if (err)
530
56
        return err;
531
2.58k
    }
532
1.36k
    break;
533
1.43k
  }
534
1.36k
  case BTF_KIND_ENUM: {
535
719
    const struct btf_enum *m = btf_enum(t);
536
537
719
    n = btf_vlen(t);
538
1.44k
    for (i = 0; i < n; i++, m++) {
539
742
      err = btf_validate_str(btf, m->name_off, "enum name", id);
540
742
      if (err)
541
15
        return err;
542
742
    }
543
704
    break;
544
719
  }
545
1.15k
  case BTF_KIND_ENUM64: {
546
1.15k
    const struct btf_enum64 *m = btf_enum64(t);
547
548
1.15k
    n = btf_vlen(t);
549
4.04k
    for (i = 0; i < n; i++, m++) {
550
2.89k
      err = btf_validate_str(btf, m->name_off, "enum name", id);
551
2.89k
      if (err)
552
8
        return err;
553
2.89k
    }
554
1.14k
    break;
555
1.15k
  }
556
1.26k
  case BTF_KIND_FUNC: {
557
1.26k
    const struct btf_type *ft;
558
559
1.26k
    err = btf_validate_id(btf, t->type, id);
560
1.26k
    if (err)
561
41
      return err;
562
1.22k
    ft = btf__type_by_id(btf, t->type);
563
1.22k
    if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) {
564
9
      pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type);
565
9
      return -EINVAL;
566
9
    }
567
1.21k
    break;
568
1.22k
  }
569
2.10k
  case BTF_KIND_FUNC_PROTO: {
570
2.10k
    const struct btf_param *m = btf_params(t);
571
572
2.10k
    n = btf_vlen(t);
573
3.92k
    for (i = 0; i < n; i++, m++) {
574
1.86k
      err = btf_validate_str(btf, m->name_off, "param name", id);
575
1.86k
      err = err ?: btf_validate_id(btf, m->type, id);
576
1.86k
      if (err)
577
38
        return err;
578
1.86k
    }
579
2.05k
    break;
580
2.10k
  }
581
5.88k
  case BTF_KIND_DATASEC: {
582
5.88k
    const struct btf_var_secinfo *m = btf_var_secinfos(t);
583
584
5.88k
    n = btf_vlen(t);
585
15.2k
    for (i = 0; i < n; i++, m++) {
586
9.45k
      err = btf_validate_id(btf, m->type, id);
587
9.45k
      if (err)
588
42
        return err;
589
9.45k
    }
590
5.83k
    break;
591
5.88k
  }
592
5.83k
  default:
593
0
    pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind);
594
0
    return -EINVAL;
595
31.7k
  }
596
31.4k
  return 0;
597
31.7k
}
598
599
/* Validate basic sanity of BTF. It's intentionally less thorough than
600
 * kernel's validation and validates only properties of BTF that libbpf relies
601
 * on to be correct (e.g., valid type IDs, valid string offsets, etc)
602
 */
603
static int btf_sanity_check(const struct btf *btf)
604
3.23k
{
605
3.23k
  const struct btf_type *t;
606
3.23k
  __u32 i, n = btf__type_cnt(btf);
607
3.23k
  int err;
608
609
34.6k
  for (i = btf->start_id; i < n; i++) {
610
31.8k
    t = btf_type_by_id(btf, i);
611
31.8k
    err = btf_validate_type(btf, t, i);
612
31.8k
    if (err)
613
429
      return err;
614
31.8k
  }
615
2.80k
  return 0;
616
3.23k
}
617
618
__u32 btf__type_cnt(const struct btf *btf)
619
15.7k
{
620
15.7k
  return btf->start_id + btf->nr_types;
621
15.7k
}
622
623
const struct btf *btf__base_btf(const struct btf *btf)
624
0
{
625
0
  return btf->base_btf;
626
0
}
627
628
/* internal helper returning non-const pointer to a type */
629
struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
630
211k
{
631
211k
  if (type_id == 0)
632
7.19k
    return &btf_void;
633
203k
  if (type_id < btf->start_id)
634
0
    return btf_type_by_id(btf->base_btf, type_id);
635
203k
  return btf->types_data + btf->type_offs[type_id - btf->start_id];
636
203k
}
637
638
const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
639
159k
{
640
159k
  if (type_id >= btf->start_id + btf->nr_types)
641
285
    return errno = EINVAL, NULL;
642
159k
  return btf_type_by_id((struct btf *)btf, type_id);
643
159k
}
644
645
static int determine_ptr_size(const struct btf *btf)
646
0
{
647
0
  static const char * const long_aliases[] = {
648
0
    "long",
649
0
    "long int",
650
0
    "int long",
651
0
    "unsigned long",
652
0
    "long unsigned",
653
0
    "unsigned long int",
654
0
    "unsigned int long",
655
0
    "long unsigned int",
656
0
    "long int unsigned",
657
0
    "int unsigned long",
658
0
    "int long unsigned",
659
0
  };
660
0
  const struct btf_type *t;
661
0
  const char *name;
662
0
  int i, j, n;
663
664
0
  if (btf->base_btf && btf->base_btf->ptr_sz > 0)
665
0
    return btf->base_btf->ptr_sz;
666
667
0
  n = btf__type_cnt(btf);
668
0
  for (i = 1; i < n; i++) {
669
0
    t = btf__type_by_id(btf, i);
670
0
    if (!btf_is_int(t))
671
0
      continue;
672
673
0
    if (t->size != 4 && t->size != 8)
674
0
      continue;
675
676
0
    name = btf__name_by_offset(btf, t->name_off);
677
0
    if (!name)
678
0
      continue;
679
680
0
    for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
681
0
      if (strcmp(name, long_aliases[j]) == 0)
682
0
        return t->size;
683
0
    }
684
0
  }
685
686
0
  return -1;
687
0
}
688
689
static size_t btf_ptr_sz(const struct btf *btf)
690
898
{
691
898
  if (!btf->ptr_sz)
692
0
    ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
693
898
  return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
694
898
}
695
696
/* Return pointer size this BTF instance assumes. The size is heuristically
697
 * determined by looking for 'long' or 'unsigned long' integer type and
698
 * recording its size in bytes. If BTF type information doesn't have any such
699
 * type, this function returns 0. In the latter case, native architecture's
700
 * pointer size is assumed, so will be either 4 or 8, depending on
701
 * architecture that libbpf was compiled for. It's possible to override
702
 * guessed value by using btf__set_pointer_size() API.
703
 */
704
size_t btf__pointer_size(const struct btf *btf)
705
0
{
706
0
  if (!btf->ptr_sz)
707
0
    ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
708
709
0
  if (btf->ptr_sz < 0)
710
    /* not enough BTF type info to guess */
711
0
    return 0;
712
713
0
  return btf->ptr_sz;
714
0
}
715
716
/* Override or set pointer size in bytes. Only values of 4 and 8 are
717
 * supported.
718
 */
719
int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
720
2.80k
{
721
2.80k
  if (ptr_sz != 4 && ptr_sz != 8)
722
0
    return libbpf_err(-EINVAL);
723
2.80k
  btf->ptr_sz = ptr_sz;
724
2.80k
  return 0;
725
2.80k
}
726
727
static bool is_host_big_endian(void)
728
0
{
729
0
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
730
0
  return false;
731
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
732
  return true;
733
#else
734
# error "Unrecognized __BYTE_ORDER__"
735
#endif
736
0
}
737
738
enum btf_endianness btf__endianness(const struct btf *btf)
739
0
{
740
0
  if (is_host_big_endian())
741
0
    return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
742
0
  else
743
0
    return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
744
0
}
745
746
int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
747
0
{
748
0
  if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
749
0
    return libbpf_err(-EINVAL);
750
751
0
  btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
752
0
  if (!btf->swapped_endian) {
753
0
    free(btf->raw_data_swapped);
754
0
    btf->raw_data_swapped = NULL;
755
0
  }
756
0
  return 0;
757
0
}
758
759
static bool btf_type_is_void(const struct btf_type *t)
760
3.87k
{
761
3.87k
  return t == &btf_void || btf_is_fwd(t);
762
3.87k
}
763
764
static bool btf_type_is_void_or_null(const struct btf_type *t)
765
3.87k
{
766
3.87k
  return !t || btf_type_is_void(t);
767
3.87k
}
768
769
7.83k
#define MAX_RESOLVE_DEPTH 32
770
771
__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
772
1.38k
{
773
1.38k
  const struct btf_array *array;
774
1.38k
  const struct btf_type *t;
775
1.38k
  __u32 nelems = 1;
776
1.38k
  __s64 size = -1;
777
1.38k
  int i;
778
779
1.38k
  t = btf__type_by_id(btf, type_id);
780
3.40k
  for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
781
3.37k
    switch (btf_kind(t)) {
782
757
    case BTF_KIND_INT:
783
833
    case BTF_KIND_STRUCT:
784
857
    case BTF_KIND_UNION:
785
1.07k
    case BTF_KIND_ENUM:
786
1.17k
    case BTF_KIND_ENUM64:
787
1.23k
    case BTF_KIND_DATASEC:
788
1.28k
    case BTF_KIND_FLOAT:
789
1.28k
      size = t->size;
790
1.28k
      goto done;
791
43
    case BTF_KIND_PTR:
792
43
      size = btf_ptr_sz(btf);
793
43
      goto done;
794
202
    case BTF_KIND_TYPEDEF:
795
320
    case BTF_KIND_VOLATILE:
796
527
    case BTF_KIND_CONST:
797
765
    case BTF_KIND_RESTRICT:
798
990
    case BTF_KIND_VAR:
799
1.08k
    case BTF_KIND_DECL_TAG:
800
1.24k
    case BTF_KIND_TYPE_TAG:
801
1.24k
      type_id = t->type;
802
1.24k
      break;
803
800
    case BTF_KIND_ARRAY:
804
800
      array = btf_array(t);
805
800
      if (nelems && array->nelems > UINT32_MAX / nelems)
806
24
        return libbpf_err(-E2BIG);
807
776
      nelems *= array->nelems;
808
776
      type_id = array->type;
809
776
      break;
810
3
    default:
811
3
      return libbpf_err(-EINVAL);
812
3.37k
    }
813
814
2.01k
    t = btf__type_by_id(btf, type_id);
815
2.01k
  }
816
817
1.35k
done:
818
1.35k
  if (size < 0)
819
29
    return libbpf_err(-EINVAL);
820
1.33k
  if (nelems && size > UINT32_MAX / nelems)
821
12
    return libbpf_err(-E2BIG);
822
823
1.31k
  return nelems * size;
824
1.33k
}
825
826
int btf__align_of(const struct btf *btf, __u32 id)
827
1.60k
{
828
1.60k
  const struct btf_type *t = btf__type_by_id(btf, id);
829
1.60k
  __u16 kind = btf_kind(t);
830
831
1.60k
  switch (kind) {
832
649
  case BTF_KIND_INT:
833
720
  case BTF_KIND_ENUM:
834
825
  case BTF_KIND_ENUM64:
835
842
  case BTF_KIND_FLOAT:
836
842
    return min(btf_ptr_sz(btf), (size_t)t->size);
837
13
  case BTF_KIND_PTR:
838
13
    return btf_ptr_sz(btf);
839
94
  case BTF_KIND_TYPEDEF:
840
154
  case BTF_KIND_VOLATILE:
841
292
  case BTF_KIND_CONST:
842
446
  case BTF_KIND_RESTRICT:
843
527
  case BTF_KIND_TYPE_TAG:
844
527
    return btf__align_of(btf, t->type);
845
161
  case BTF_KIND_ARRAY:
846
161
    return btf__align_of(btf, btf_array(t)->type);
847
28
  case BTF_KIND_STRUCT:
848
52
  case BTF_KIND_UNION: {
849
52
    const struct btf_member *m = btf_members(t);
850
52
    __u16 vlen = btf_vlen(t);
851
52
    int i, max_align = 1, align;
852
853
115
    for (i = 0; i < vlen; i++, m++) {
854
79
      align = btf__align_of(btf, m->type);
855
79
      if (align <= 0)
856
5
        return libbpf_err(align);
857
74
      max_align = max(max_align, align);
858
859
      /* if field offset isn't aligned according to field
860
       * type's alignment, then struct must be packed
861
       */
862
74
      if (btf_member_bitfield_size(t, i) == 0 &&
863
74
          (m->offset % (8 * align)) != 0)
864
11
        return 1;
865
74
    }
866
867
    /* if struct/union size isn't a multiple of its alignment,
868
     * then struct must be packed
869
     */
870
36
    if ((t->size % max_align) != 0)
871
10
      return 1;
872
873
26
    return max_align;
874
36
  }
875
8
  default:
876
8
    pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
877
8
    return errno = EINVAL, 0;
878
1.60k
  }
879
1.60k
}
880
881
int btf__resolve_type(const struct btf *btf, __u32 type_id)
882
69
{
883
69
  const struct btf_type *t;
884
69
  int depth = 0;
885
886
69
  t = btf__type_by_id(btf, type_id);
887
446
  while (depth < MAX_RESOLVE_DEPTH &&
888
446
         !btf_type_is_void_or_null(t) &&
889
446
         (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
890
377
    type_id = t->type;
891
377
    t = btf__type_by_id(btf, type_id);
892
377
    depth++;
893
377
  }
894
895
69
  if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
896
10
    return libbpf_err(-EINVAL);
897
898
59
  return type_id;
899
69
}
900
901
__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
902
482
{
903
482
  __u32 i, nr_types = btf__type_cnt(btf);
904
905
482
  if (!strcmp(type_name, "void"))
906
0
    return 0;
907
908
6.69k
  for (i = 1; i < nr_types; i++) {
909
6.38k
    const struct btf_type *t = btf__type_by_id(btf, i);
910
6.38k
    const char *name = btf__name_by_offset(btf, t->name_off);
911
912
6.38k
    if (name && !strcmp(type_name, name))
913
178
      return i;
914
6.38k
  }
915
916
304
  return libbpf_err(-ENOENT);
917
482
}
918
919
static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
920
           const char *type_name, __u32 kind)
921
2.84k
{
922
2.84k
  __u32 i, nr_types = btf__type_cnt(btf);
923
924
2.84k
  if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
925
0
    return 0;
926
927
33.6k
  for (i = start_id; i < nr_types; i++) {
928
31.4k
    const struct btf_type *t = btf__type_by_id(btf, i);
929
31.4k
    const char *name;
930
931
31.4k
    if (btf_kind(t) != kind)
932
25.6k
      continue;
933
5.83k
    name = btf__name_by_offset(btf, t->name_off);
934
5.83k
    if (name && !strcmp(type_name, name))
935
611
      return i;
936
5.83k
  }
937
938
2.23k
  return libbpf_err(-ENOENT);
939
2.84k
}
940
941
__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
942
         __u32 kind)
943
0
{
944
0
  return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
945
0
}
946
947
__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
948
           __u32 kind)
949
2.84k
{
950
2.84k
  return btf_find_by_name_kind(btf, 1, type_name, kind);
951
2.84k
}
952
953
static bool btf_is_modifiable(const struct btf *btf)
954
4.39k
{
955
4.39k
  return (void *)btf->hdr != btf->raw_data;
956
4.39k
}
957
958
static void btf_free_raw_data(struct btf *btf)
959
3.99k
{
960
3.99k
  if (btf->raw_data_is_mmap) {
961
0
    munmap(btf->raw_data, btf->raw_size);
962
0
    btf->raw_data_is_mmap = false;
963
3.99k
  } else {
964
3.99k
    free(btf->raw_data);
965
3.99k
  }
966
3.99k
  btf->raw_data = NULL;
967
3.99k
}
968
969
void btf__free(struct btf *btf)
970
31.7k
{
971
31.7k
  if (IS_ERR_OR_NULL(btf))
972
28.1k
    return;
973
974
3.60k
  if (btf->fd >= 0)
975
0
    close(btf->fd);
976
977
3.60k
  if (btf_is_modifiable(btf)) {
978
    /* if BTF was modified after loading, it will have a split
979
     * in-memory representation for header, types, and strings
980
     * sections, so we need to free all of them individually. It
981
     * might still have a cached contiguous raw data present,
982
     * which will be unconditionally freed below.
983
     */
984
396
    free(btf->hdr);
985
396
    free(btf->types_data);
986
396
    strset__free(btf->strs_set);
987
396
  }
988
3.60k
  btf_free_raw_data(btf);
989
3.60k
  free(btf->raw_data_swapped);
990
3.60k
  free(btf->type_offs);
991
3.60k
  if (btf->owns_base)
992
0
    btf__free(btf->base_btf);
993
3.60k
  free(btf);
994
3.60k
}
995
996
static struct btf *btf_new_empty(struct btf *base_btf)
997
0
{
998
0
  struct btf *btf;
999
1000
0
  btf = calloc(1, sizeof(*btf));
1001
0
  if (!btf)
1002
0
    return ERR_PTR(-ENOMEM);
1003
1004
0
  btf->nr_types = 0;
1005
0
  btf->start_id = 1;
1006
0
  btf->start_str_off = 0;
1007
0
  btf->fd = -1;
1008
0
  btf->ptr_sz = sizeof(void *);
1009
0
  btf->swapped_endian = false;
1010
1011
0
  if (base_btf) {
1012
0
    btf->base_btf = base_btf;
1013
0
    btf->start_id = btf__type_cnt(base_btf);
1014
0
    btf->start_str_off = base_btf->hdr->str_len + base_btf->start_str_off;
1015
0
    btf->swapped_endian = base_btf->swapped_endian;
1016
0
  }
1017
1018
  /* +1 for empty string at offset 0 */
1019
0
  btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
1020
0
  btf->raw_data = calloc(1, btf->raw_size);
1021
0
  if (!btf->raw_data) {
1022
0
    free(btf);
1023
0
    return ERR_PTR(-ENOMEM);
1024
0
  }
1025
1026
0
  btf->hdr = btf->raw_data;
1027
0
  btf->hdr->hdr_len = sizeof(struct btf_header);
1028
0
  btf->hdr->magic = BTF_MAGIC;
1029
0
  btf->hdr->version = BTF_VERSION;
1030
1031
0
  btf->types_data = btf->raw_data + btf->hdr->hdr_len;
1032
0
  btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
1033
0
  btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
1034
1035
0
  return btf;
1036
0
}
1037
1038
struct btf *btf__new_empty(void)
1039
0
{
1040
0
  return libbpf_ptr(btf_new_empty(NULL));
1041
0
}
1042
1043
struct btf *btf__new_empty_split(struct btf *base_btf)
1044
0
{
1045
0
  return libbpf_ptr(btf_new_empty(base_btf));
1046
0
}
1047
1048
static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf, bool is_mmap)
1049
3.60k
{
1050
3.60k
  struct btf *btf;
1051
3.60k
  int err;
1052
1053
3.60k
  btf = calloc(1, sizeof(struct btf));
1054
3.60k
  if (!btf)
1055
0
    return ERR_PTR(-ENOMEM);
1056
1057
3.60k
  btf->nr_types = 0;
1058
3.60k
  btf->start_id = 1;
1059
3.60k
  btf->start_str_off = 0;
1060
3.60k
  btf->fd = -1;
1061
1062
3.60k
  if (base_btf) {
1063
0
    btf->base_btf = base_btf;
1064
0
    btf->start_id = btf__type_cnt(base_btf);
1065
0
    btf->start_str_off = base_btf->hdr->str_len;
1066
0
  }
1067
1068
3.60k
  if (is_mmap) {
1069
0
    btf->raw_data = (void *)data;
1070
0
    btf->raw_data_is_mmap = true;
1071
3.60k
  } else {
1072
3.60k
    btf->raw_data = malloc(size);
1073
3.60k
    if (!btf->raw_data) {
1074
0
      err = -ENOMEM;
1075
0
      goto done;
1076
0
    }
1077
3.60k
    memcpy(btf->raw_data, data, size);
1078
3.60k
  }
1079
1080
3.60k
  btf->raw_size = size;
1081
1082
3.60k
  btf->hdr = btf->raw_data;
1083
3.60k
  err = btf_parse_hdr(btf);
1084
3.60k
  if (err)
1085
200
    goto done;
1086
1087
3.40k
  btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
1088
3.40k
  btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
1089
1090
3.40k
  err = btf_parse_str_sec(btf);
1091
3.40k
  err = err ?: btf_parse_type_sec(btf);
1092
3.40k
  err = err ?: btf_sanity_check(btf);
1093
3.38k
  if (err)
1094
596
    goto done;
1095
1096
3.60k
done:
1097
3.60k
  if (err) {
1098
796
    btf__free(btf);
1099
796
    return ERR_PTR(err);
1100
796
  }
1101
1102
2.80k
  return btf;
1103
3.60k
}
1104
1105
struct btf *btf__new(const void *data, __u32 size)
1106
3.60k
{
1107
3.60k
  return libbpf_ptr(btf_new(data, size, NULL, false));
1108
3.60k
}
1109
1110
struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf)
1111
0
{
1112
0
  return libbpf_ptr(btf_new(data, size, base_btf, false));
1113
0
}
1114
1115
struct btf_elf_secs {
1116
  Elf_Data *btf_data;
1117
  Elf_Data *btf_ext_data;
1118
  Elf_Data *btf_base_data;
1119
};
1120
1121
static int btf_find_elf_sections(Elf *elf, const char *path, struct btf_elf_secs *secs)
1122
0
{
1123
0
  Elf_Scn *scn = NULL;
1124
0
  Elf_Data *data;
1125
0
  GElf_Ehdr ehdr;
1126
0
  size_t shstrndx;
1127
0
  int idx = 0;
1128
1129
0
  if (!gelf_getehdr(elf, &ehdr)) {
1130
0
    pr_warn("failed to get EHDR from %s\n", path);
1131
0
    goto err;
1132
0
  }
1133
1134
0
  if (elf_getshdrstrndx(elf, &shstrndx)) {
1135
0
    pr_warn("failed to get section names section index for %s\n",
1136
0
      path);
1137
0
    goto err;
1138
0
  }
1139
1140
0
  if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
1141
0
    pr_warn("failed to get e_shstrndx from %s\n", path);
1142
0
    goto err;
1143
0
  }
1144
1145
0
  while ((scn = elf_nextscn(elf, scn)) != NULL) {
1146
0
    Elf_Data **field;
1147
0
    GElf_Shdr sh;
1148
0
    char *name;
1149
1150
0
    idx++;
1151
0
    if (gelf_getshdr(scn, &sh) != &sh) {
1152
0
      pr_warn("failed to get section(%d) header from %s\n",
1153
0
        idx, path);
1154
0
      goto err;
1155
0
    }
1156
0
    name = elf_strptr(elf, shstrndx, sh.sh_name);
1157
0
    if (!name) {
1158
0
      pr_warn("failed to get section(%d) name from %s\n",
1159
0
        idx, path);
1160
0
      goto err;
1161
0
    }
1162
1163
0
    if (strcmp(name, BTF_ELF_SEC) == 0)
1164
0
      field = &secs->btf_data;
1165
0
    else if (strcmp(name, BTF_EXT_ELF_SEC) == 0)
1166
0
      field = &secs->btf_ext_data;
1167
0
    else if (strcmp(name, BTF_BASE_ELF_SEC) == 0)
1168
0
      field = &secs->btf_base_data;
1169
0
    else
1170
0
      continue;
1171
1172
0
    if (sh.sh_type != SHT_PROGBITS) {
1173
0
      pr_warn("unexpected section type (%d) of section(%d, %s) from %s\n",
1174
0
        sh.sh_type, idx, name, path);
1175
0
      goto err;
1176
0
    }
1177
1178
0
    data = elf_getdata(scn, 0);
1179
0
    if (!data) {
1180
0
      pr_warn("failed to get section(%d, %s) data from %s\n",
1181
0
        idx, name, path);
1182
0
      goto err;
1183
0
    }
1184
0
    *field = data;
1185
0
  }
1186
1187
0
  return 0;
1188
1189
0
err:
1190
0
  return -LIBBPF_ERRNO__FORMAT;
1191
0
}
1192
1193
static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
1194
         struct btf_ext **btf_ext)
1195
0
{
1196
0
  struct btf_elf_secs secs = {};
1197
0
  struct btf *dist_base_btf = NULL;
1198
0
  struct btf *btf = NULL;
1199
0
  int err = 0, fd = -1;
1200
0
  Elf *elf = NULL;
1201
1202
0
  if (elf_version(EV_CURRENT) == EV_NONE) {
1203
0
    pr_warn("failed to init libelf for %s\n", path);
1204
0
    return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1205
0
  }
1206
1207
0
  fd = open(path, O_RDONLY | O_CLOEXEC);
1208
0
  if (fd < 0) {
1209
0
    err = -errno;
1210
0
    pr_warn("failed to open %s: %s\n", path, errstr(err));
1211
0
    return ERR_PTR(err);
1212
0
  }
1213
1214
0
  elf = elf_begin(fd, ELF_C_READ, NULL);
1215
0
  if (!elf) {
1216
0
    err = -LIBBPF_ERRNO__FORMAT;
1217
0
    pr_warn("failed to open %s as ELF file\n", path);
1218
0
    goto done;
1219
0
  }
1220
1221
0
  err = btf_find_elf_sections(elf, path, &secs);
1222
0
  if (err)
1223
0
    goto done;
1224
1225
0
  if (!secs.btf_data) {
1226
0
    pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1227
0
    err = -ENODATA;
1228
0
    goto done;
1229
0
  }
1230
1231
0
  if (secs.btf_base_data) {
1232
0
    dist_base_btf = btf_new(secs.btf_base_data->d_buf, secs.btf_base_data->d_size,
1233
0
          NULL, false);
1234
0
    if (IS_ERR(dist_base_btf)) {
1235
0
      err = PTR_ERR(dist_base_btf);
1236
0
      dist_base_btf = NULL;
1237
0
      goto done;
1238
0
    }
1239
0
  }
1240
1241
0
  btf = btf_new(secs.btf_data->d_buf, secs.btf_data->d_size,
1242
0
          dist_base_btf ?: base_btf, false);
1243
0
  if (IS_ERR(btf)) {
1244
0
    err = PTR_ERR(btf);
1245
0
    goto done;
1246
0
  }
1247
0
  if (dist_base_btf && base_btf) {
1248
0
    err = btf__relocate(btf, base_btf);
1249
0
    if (err)
1250
0
      goto done;
1251
0
    btf__free(dist_base_btf);
1252
0
    dist_base_btf = NULL;
1253
0
  }
1254
1255
0
  if (dist_base_btf)
1256
0
    btf->owns_base = true;
1257
1258
0
  switch (gelf_getclass(elf)) {
1259
0
  case ELFCLASS32:
1260
0
    btf__set_pointer_size(btf, 4);
1261
0
    break;
1262
0
  case ELFCLASS64:
1263
0
    btf__set_pointer_size(btf, 8);
1264
0
    break;
1265
0
  default:
1266
0
    pr_warn("failed to get ELF class (bitness) for %s\n", path);
1267
0
    break;
1268
0
  }
1269
1270
0
  if (btf_ext && secs.btf_ext_data) {
1271
0
    *btf_ext = btf_ext__new(secs.btf_ext_data->d_buf, secs.btf_ext_data->d_size);
1272
0
    if (IS_ERR(*btf_ext)) {
1273
0
      err = PTR_ERR(*btf_ext);
1274
0
      goto done;
1275
0
    }
1276
0
  } else if (btf_ext) {
1277
0
    *btf_ext = NULL;
1278
0
  }
1279
0
done:
1280
0
  if (elf)
1281
0
    elf_end(elf);
1282
0
  close(fd);
1283
1284
0
  if (!err)
1285
0
    return btf;
1286
1287
0
  if (btf_ext)
1288
0
    btf_ext__free(*btf_ext);
1289
0
  btf__free(dist_base_btf);
1290
0
  btf__free(btf);
1291
1292
0
  return ERR_PTR(err);
1293
0
}
1294
1295
struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1296
0
{
1297
0
  return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1298
0
}
1299
1300
struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1301
0
{
1302
0
  return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1303
0
}
1304
1305
static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1306
0
{
1307
0
  struct btf *btf = NULL;
1308
0
  void *data = NULL;
1309
0
  FILE *f = NULL;
1310
0
  __u16 magic;
1311
0
  int err = 0;
1312
0
  long sz;
1313
1314
0
  f = fopen(path, "rbe");
1315
0
  if (!f) {
1316
0
    err = -errno;
1317
0
    goto err_out;
1318
0
  }
1319
1320
  /* check BTF magic */
1321
0
  if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1322
0
    err = -EIO;
1323
0
    goto err_out;
1324
0
  }
1325
0
  if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1326
    /* definitely not a raw BTF */
1327
0
    err = -EPROTO;
1328
0
    goto err_out;
1329
0
  }
1330
1331
  /* get file size */
1332
0
  if (fseek(f, 0, SEEK_END)) {
1333
0
    err = -errno;
1334
0
    goto err_out;
1335
0
  }
1336
0
  sz = ftell(f);
1337
0
  if (sz < 0) {
1338
0
    err = -errno;
1339
0
    goto err_out;
1340
0
  }
1341
  /* rewind to the start */
1342
0
  if (fseek(f, 0, SEEK_SET)) {
1343
0
    err = -errno;
1344
0
    goto err_out;
1345
0
  }
1346
1347
  /* pre-alloc memory and read all of BTF data */
1348
0
  data = malloc(sz);
1349
0
  if (!data) {
1350
0
    err = -ENOMEM;
1351
0
    goto err_out;
1352
0
  }
1353
0
  if (fread(data, 1, sz, f) < sz) {
1354
0
    err = -EIO;
1355
0
    goto err_out;
1356
0
  }
1357
1358
  /* finally parse BTF data */
1359
0
  btf = btf_new(data, sz, base_btf, false);
1360
1361
0
err_out:
1362
0
  free(data);
1363
0
  if (f)
1364
0
    fclose(f);
1365
0
  return err ? ERR_PTR(err) : btf;
1366
0
}
1367
1368
struct btf *btf__parse_raw(const char *path)
1369
0
{
1370
0
  return libbpf_ptr(btf_parse_raw(path, NULL));
1371
0
}
1372
1373
struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1374
0
{
1375
0
  return libbpf_ptr(btf_parse_raw(path, base_btf));
1376
0
}
1377
1378
static struct btf *btf_parse_raw_mmap(const char *path, struct btf *base_btf)
1379
0
{
1380
0
  struct stat st;
1381
0
  void *data;
1382
0
  struct btf *btf;
1383
0
  int fd, err;
1384
1385
0
  fd = open(path, O_RDONLY);
1386
0
  if (fd < 0)
1387
0
    return ERR_PTR(-errno);
1388
1389
0
  if (fstat(fd, &st) < 0) {
1390
0
    err = -errno;
1391
0
    close(fd);
1392
0
    return ERR_PTR(err);
1393
0
  }
1394
1395
0
  data = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
1396
0
  err = -errno;
1397
0
  close(fd);
1398
1399
0
  if (data == MAP_FAILED)
1400
0
    return ERR_PTR(err);
1401
1402
0
  btf = btf_new(data, st.st_size, base_btf, true);
1403
0
  if (IS_ERR(btf))
1404
0
    munmap(data, st.st_size);
1405
1406
0
  return btf;
1407
0
}
1408
1409
static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1410
0
{
1411
0
  struct btf *btf;
1412
0
  int err;
1413
1414
0
  if (btf_ext)
1415
0
    *btf_ext = NULL;
1416
1417
0
  btf = btf_parse_raw(path, base_btf);
1418
0
  err = libbpf_get_error(btf);
1419
0
  if (!err)
1420
0
    return btf;
1421
0
  if (err != -EPROTO)
1422
0
    return ERR_PTR(err);
1423
0
  return btf_parse_elf(path, base_btf, btf_ext);
1424
0
}
1425
1426
struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1427
0
{
1428
0
  return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1429
0
}
1430
1431
struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1432
0
{
1433
0
  return libbpf_ptr(btf_parse(path, base_btf, NULL));
1434
0
}
1435
1436
static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1437
1438
int btf_load_into_kernel(struct btf *btf,
1439
       char *log_buf, size_t log_sz, __u32 log_level,
1440
       int token_fd)
1441
0
{
1442
0
  LIBBPF_OPTS(bpf_btf_load_opts, opts);
1443
0
  __u32 buf_sz = 0, raw_size;
1444
0
  char *buf = NULL, *tmp;
1445
0
  void *raw_data;
1446
0
  int err = 0;
1447
1448
0
  if (btf->fd >= 0)
1449
0
    return libbpf_err(-EEXIST);
1450
0
  if (log_sz && !log_buf)
1451
0
    return libbpf_err(-EINVAL);
1452
1453
  /* cache native raw data representation */
1454
0
  raw_data = btf_get_raw_data(btf, &raw_size, false);
1455
0
  if (!raw_data) {
1456
0
    err = -ENOMEM;
1457
0
    goto done;
1458
0
  }
1459
0
  btf->raw_size = raw_size;
1460
0
  btf->raw_data = raw_data;
1461
1462
0
retry_load:
1463
  /* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1464
   * initially. Only if BTF loading fails, we bump log_level to 1 and
1465
   * retry, using either auto-allocated or custom log_buf. This way
1466
   * non-NULL custom log_buf provides a buffer just in case, but hopes
1467
   * for successful load and no need for log_buf.
1468
   */
1469
0
  if (log_level) {
1470
    /* if caller didn't provide custom log_buf, we'll keep
1471
     * allocating our own progressively bigger buffers for BTF
1472
     * verification log
1473
     */
1474
0
    if (!log_buf) {
1475
0
      buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1476
0
      tmp = realloc(buf, buf_sz);
1477
0
      if (!tmp) {
1478
0
        err = -ENOMEM;
1479
0
        goto done;
1480
0
      }
1481
0
      buf = tmp;
1482
0
      buf[0] = '\0';
1483
0
    }
1484
1485
0
    opts.log_buf = log_buf ? log_buf : buf;
1486
0
    opts.log_size = log_buf ? log_sz : buf_sz;
1487
0
    opts.log_level = log_level;
1488
0
  }
1489
1490
0
  opts.token_fd = token_fd;
1491
0
  if (token_fd)
1492
0
    opts.btf_flags |= BPF_F_TOKEN_FD;
1493
1494
0
  btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1495
0
  if (btf->fd < 0) {
1496
    /* time to turn on verbose mode and try again */
1497
0
    if (log_level == 0) {
1498
0
      log_level = 1;
1499
0
      goto retry_load;
1500
0
    }
1501
    /* only retry if caller didn't provide custom log_buf, but
1502
     * make sure we can never overflow buf_sz
1503
     */
1504
0
    if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1505
0
      goto retry_load;
1506
1507
0
    err = -errno;
1508
0
    pr_warn("BTF loading error: %s\n", errstr(err));
1509
    /* don't print out contents of custom log_buf */
1510
0
    if (!log_buf && buf[0])
1511
0
      pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1512
0
  }
1513
1514
0
done:
1515
0
  free(buf);
1516
0
  return libbpf_err(err);
1517
0
}
1518
1519
int btf__load_into_kernel(struct btf *btf)
1520
0
{
1521
0
  return btf_load_into_kernel(btf, NULL, 0, 0, 0);
1522
0
}
1523
1524
int btf__fd(const struct btf *btf)
1525
0
{
1526
0
  return btf->fd;
1527
0
}
1528
1529
void btf__set_fd(struct btf *btf, int fd)
1530
0
{
1531
0
  btf->fd = fd;
1532
0
}
1533
1534
static const void *btf_strs_data(const struct btf *btf)
1535
74.7k
{
1536
74.7k
  return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1537
74.7k
}
1538
1539
static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1540
0
{
1541
0
  struct btf_header *hdr = btf->hdr;
1542
0
  struct btf_type *t;
1543
0
  void *data, *p;
1544
0
  __u32 data_sz;
1545
0
  int i;
1546
1547
0
  data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1548
0
  if (data) {
1549
0
    *size = btf->raw_size;
1550
0
    return data;
1551
0
  }
1552
1553
0
  data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1554
0
  data = calloc(1, data_sz);
1555
0
  if (!data)
1556
0
    return NULL;
1557
0
  p = data;
1558
1559
0
  memcpy(p, hdr, hdr->hdr_len);
1560
0
  if (swap_endian)
1561
0
    btf_bswap_hdr(p);
1562
0
  p += hdr->hdr_len;
1563
1564
0
  memcpy(p, btf->types_data, hdr->type_len);
1565
0
  if (swap_endian) {
1566
0
    for (i = 0; i < btf->nr_types; i++) {
1567
0
      t = p + btf->type_offs[i];
1568
      /* btf_bswap_type_rest() relies on native t->info, so
1569
       * we swap base type info after we swapped all the
1570
       * additional information
1571
       */
1572
0
      if (btf_bswap_type_rest(t))
1573
0
        goto err_out;
1574
0
      btf_bswap_type_base(t);
1575
0
    }
1576
0
  }
1577
0
  p += hdr->type_len;
1578
1579
0
  memcpy(p, btf_strs_data(btf), hdr->str_len);
1580
0
  p += hdr->str_len;
1581
1582
0
  *size = data_sz;
1583
0
  return data;
1584
0
err_out:
1585
0
  free(data);
1586
0
  return NULL;
1587
0
}
1588
1589
const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1590
0
{
1591
0
  struct btf *btf = (struct btf *)btf_ro;
1592
0
  __u32 data_sz;
1593
0
  void *data;
1594
1595
0
  data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1596
0
  if (!data)
1597
0
    return errno = ENOMEM, NULL;
1598
1599
0
  btf->raw_size = data_sz;
1600
0
  if (btf->swapped_endian)
1601
0
    btf->raw_data_swapped = data;
1602
0
  else
1603
0
    btf->raw_data = data;
1604
0
  *size = data_sz;
1605
0
  return data;
1606
0
}
1607
1608
__attribute__((alias("btf__raw_data")))
1609
const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1610
1611
const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1612
74.9k
{
1613
74.9k
  if (offset < btf->start_str_off)
1614
0
    return btf__str_by_offset(btf->base_btf, offset);
1615
74.9k
  else if (offset - btf->start_str_off < btf->hdr->str_len)
1616
74.7k
    return btf_strs_data(btf) + (offset - btf->start_str_off);
1617
217
  else
1618
217
    return errno = EINVAL, NULL;
1619
74.9k
}
1620
1621
const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1622
34.9k
{
1623
34.9k
  return btf__str_by_offset(btf, offset);
1624
34.9k
}
1625
1626
struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1627
0
{
1628
0
  struct bpf_btf_info btf_info;
1629
0
  __u32 len = sizeof(btf_info);
1630
0
  __u32 last_size;
1631
0
  struct btf *btf;
1632
0
  void *ptr;
1633
0
  int err;
1634
1635
  /* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
1636
   * let's start with a sane default - 4KiB here - and resize it only if
1637
   * bpf_btf_get_info_by_fd() needs a bigger buffer.
1638
   */
1639
0
  last_size = 4096;
1640
0
  ptr = malloc(last_size);
1641
0
  if (!ptr)
1642
0
    return ERR_PTR(-ENOMEM);
1643
1644
0
  memset(&btf_info, 0, sizeof(btf_info));
1645
0
  btf_info.btf = ptr_to_u64(ptr);
1646
0
  btf_info.btf_size = last_size;
1647
0
  err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1648
1649
0
  if (!err && btf_info.btf_size > last_size) {
1650
0
    void *temp_ptr;
1651
1652
0
    last_size = btf_info.btf_size;
1653
0
    temp_ptr = realloc(ptr, last_size);
1654
0
    if (!temp_ptr) {
1655
0
      btf = ERR_PTR(-ENOMEM);
1656
0
      goto exit_free;
1657
0
    }
1658
0
    ptr = temp_ptr;
1659
1660
0
    len = sizeof(btf_info);
1661
0
    memset(&btf_info, 0, sizeof(btf_info));
1662
0
    btf_info.btf = ptr_to_u64(ptr);
1663
0
    btf_info.btf_size = last_size;
1664
1665
0
    err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1666
0
  }
1667
1668
0
  if (err || btf_info.btf_size > last_size) {
1669
0
    btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1670
0
    goto exit_free;
1671
0
  }
1672
1673
0
  btf = btf_new(ptr, btf_info.btf_size, base_btf, false);
1674
1675
0
exit_free:
1676
0
  free(ptr);
1677
0
  return btf;
1678
0
}
1679
1680
struct btf *btf_load_from_kernel(__u32 id, struct btf *base_btf, int token_fd)
1681
0
{
1682
0
  struct btf *btf;
1683
0
  int btf_fd;
1684
0
  LIBBPF_OPTS(bpf_get_fd_by_id_opts, opts);
1685
1686
0
  if (token_fd) {
1687
0
    opts.open_flags |= BPF_F_TOKEN_FD;
1688
0
    opts.token_fd = token_fd;
1689
0
  }
1690
1691
0
  btf_fd = bpf_btf_get_fd_by_id_opts(id, &opts);
1692
0
  if (btf_fd < 0)
1693
0
    return libbpf_err_ptr(-errno);
1694
1695
0
  btf = btf_get_from_fd(btf_fd, base_btf);
1696
0
  close(btf_fd);
1697
1698
0
  return libbpf_ptr(btf);
1699
0
}
1700
1701
struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1702
0
{
1703
0
  return btf_load_from_kernel(id, base_btf, 0);
1704
0
}
1705
1706
struct btf *btf__load_from_kernel_by_id(__u32 id)
1707
0
{
1708
0
  return btf__load_from_kernel_by_id_split(id, NULL);
1709
0
}
1710
1711
static void btf_invalidate_raw_data(struct btf *btf)
1712
792
{
1713
792
  if (btf->raw_data)
1714
396
    btf_free_raw_data(btf);
1715
792
  if (btf->raw_data_swapped) {
1716
0
    free(btf->raw_data_swapped);
1717
0
    btf->raw_data_swapped = NULL;
1718
0
  }
1719
792
}
1720
1721
/* Ensure BTF is ready to be modified (by splitting into a three memory
1722
 * regions for header, types, and strings). Also invalidate cached
1723
 * raw_data, if any.
1724
 */
1725
static int btf_ensure_modifiable(struct btf *btf)
1726
792
{
1727
792
  void *hdr, *types;
1728
792
  struct strset *set = NULL;
1729
792
  int err = -ENOMEM;
1730
1731
792
  if (btf_is_modifiable(btf)) {
1732
    /* any BTF modification invalidates raw_data */
1733
396
    btf_invalidate_raw_data(btf);
1734
396
    return 0;
1735
396
  }
1736
1737
  /* split raw data into three memory regions */
1738
396
  hdr = malloc(btf->hdr->hdr_len);
1739
396
  types = malloc(btf->hdr->type_len);
1740
396
  if (!hdr || !types)
1741
0
    goto err_out;
1742
1743
396
  memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1744
396
  memcpy(types, btf->types_data, btf->hdr->type_len);
1745
1746
  /* build lookup index for all strings */
1747
396
  set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1748
396
  if (IS_ERR(set)) {
1749
0
    err = PTR_ERR(set);
1750
0
    goto err_out;
1751
0
  }
1752
1753
  /* only when everything was successful, update internal state */
1754
396
  btf->hdr = hdr;
1755
396
  btf->types_data = types;
1756
396
  btf->types_data_cap = btf->hdr->type_len;
1757
396
  btf->strs_data = NULL;
1758
396
  btf->strs_set = set;
1759
  /* if BTF was created from scratch, all strings are guaranteed to be
1760
   * unique and deduplicated
1761
   */
1762
396
  if (btf->hdr->str_len == 0)
1763
0
    btf->strs_deduped = true;
1764
396
  if (!btf->base_btf && btf->hdr->str_len == 1)
1765
0
    btf->strs_deduped = true;
1766
1767
  /* invalidate raw_data representation */
1768
396
  btf_invalidate_raw_data(btf);
1769
1770
396
  return 0;
1771
1772
0
err_out:
1773
0
  strset__free(set);
1774
0
  free(hdr);
1775
0
  free(types);
1776
0
  return err;
1777
396
}
1778
1779
/* Find an offset in BTF string section that corresponds to a given string *s*.
1780
 * Returns:
1781
 *   - >0 offset into string section, if string is found;
1782
 *   - -ENOENT, if string is not in the string section;
1783
 *   - <0, on any other error.
1784
 */
1785
int btf__find_str(struct btf *btf, const char *s)
1786
0
{
1787
0
  int off;
1788
1789
0
  if (btf->base_btf) {
1790
0
    off = btf__find_str(btf->base_btf, s);
1791
0
    if (off != -ENOENT)
1792
0
      return off;
1793
0
  }
1794
1795
  /* BTF needs to be in a modifiable state to build string lookup index */
1796
0
  if (btf_ensure_modifiable(btf))
1797
0
    return libbpf_err(-ENOMEM);
1798
1799
0
  off = strset__find_str(btf->strs_set, s);
1800
0
  if (off < 0)
1801
0
    return libbpf_err(off);
1802
1803
0
  return btf->start_str_off + off;
1804
0
}
1805
1806
/* Add a string s to the BTF string section.
1807
 * Returns:
1808
 *   - > 0 offset into string section, on success;
1809
 *   - < 0, on error.
1810
 */
1811
int btf__add_str(struct btf *btf, const char *s)
1812
396
{
1813
396
  int off;
1814
1815
396
  if (btf->base_btf) {
1816
0
    off = btf__find_str(btf->base_btf, s);
1817
0
    if (off != -ENOENT)
1818
0
      return off;
1819
0
  }
1820
1821
396
  if (btf_ensure_modifiable(btf))
1822
0
    return libbpf_err(-ENOMEM);
1823
1824
396
  off = strset__add_str(btf->strs_set, s);
1825
396
  if (off < 0)
1826
0
    return libbpf_err(off);
1827
1828
396
  btf->hdr->str_len = strset__data_size(btf->strs_set);
1829
1830
396
  return btf->start_str_off + off;
1831
396
}
1832
1833
static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1834
396
{
1835
396
  return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1836
396
            btf->hdr->type_len, UINT_MAX, add_sz);
1837
396
}
1838
1839
static void btf_type_inc_vlen(struct btf_type *t)
1840
0
{
1841
0
  t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1842
0
}
1843
1844
static int btf_commit_type(struct btf *btf, int data_sz)
1845
396
{
1846
396
  int err;
1847
1848
396
  err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1849
396
  if (err)
1850
0
    return libbpf_err(err);
1851
1852
396
  btf->hdr->type_len += data_sz;
1853
396
  btf->hdr->str_off += data_sz;
1854
396
  btf->nr_types++;
1855
396
  return btf->start_id + btf->nr_types - 1;
1856
396
}
1857
1858
struct btf_pipe {
1859
  const struct btf *src;
1860
  struct btf *dst;
1861
  struct hashmap *str_off_map; /* map string offsets from src to dst */
1862
};
1863
1864
static int btf_rewrite_str(struct btf_pipe *p, __u32 *str_off)
1865
0
{
1866
0
  long mapped_off;
1867
0
  int off, err;
1868
1869
0
  if (!*str_off) /* nothing to do for empty strings */
1870
0
    return 0;
1871
1872
0
  if (p->str_off_map &&
1873
0
      hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1874
0
    *str_off = mapped_off;
1875
0
    return 0;
1876
0
  }
1877
1878
0
  off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1879
0
  if (off < 0)
1880
0
    return off;
1881
1882
  /* Remember string mapping from src to dst.  It avoids
1883
   * performing expensive string comparisons.
1884
   */
1885
0
  if (p->str_off_map) {
1886
0
    err = hashmap__append(p->str_off_map, *str_off, off);
1887
0
    if (err)
1888
0
      return err;
1889
0
  }
1890
1891
0
  *str_off = off;
1892
0
  return 0;
1893
0
}
1894
1895
static int btf_add_type(struct btf_pipe *p, const struct btf_type *src_type)
1896
0
{
1897
0
  struct btf_field_iter it;
1898
0
  struct btf_type *t;
1899
0
  __u32 *str_off;
1900
0
  int sz, err;
1901
1902
0
  sz = btf_type_size(src_type);
1903
0
  if (sz < 0)
1904
0
    return libbpf_err(sz);
1905
1906
  /* deconstruct BTF, if necessary, and invalidate raw_data */
1907
0
  if (btf_ensure_modifiable(p->dst))
1908
0
    return libbpf_err(-ENOMEM);
1909
1910
0
  t = btf_add_type_mem(p->dst, sz);
1911
0
  if (!t)
1912
0
    return libbpf_err(-ENOMEM);
1913
1914
0
  memcpy(t, src_type, sz);
1915
1916
0
  err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1917
0
  if (err)
1918
0
    return libbpf_err(err);
1919
1920
0
  while ((str_off = btf_field_iter_next(&it))) {
1921
0
    err = btf_rewrite_str(p, str_off);
1922
0
    if (err)
1923
0
      return libbpf_err(err);
1924
0
  }
1925
1926
0
  return btf_commit_type(p->dst, sz);
1927
0
}
1928
1929
int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1930
0
{
1931
0
  struct btf_pipe p = { .src = src_btf, .dst = btf };
1932
1933
0
  return btf_add_type(&p, src_type);
1934
0
}
1935
1936
static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1937
static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1938
1939
int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1940
0
{
1941
0
  struct btf_pipe p = { .src = src_btf, .dst = btf };
1942
0
  int data_sz, sz, cnt, i, err, old_strs_len;
1943
0
  __u32 *off;
1944
0
  void *t;
1945
1946
  /* appending split BTF isn't supported yet */
1947
0
  if (src_btf->base_btf)
1948
0
    return libbpf_err(-ENOTSUP);
1949
1950
  /* deconstruct BTF, if necessary, and invalidate raw_data */
1951
0
  if (btf_ensure_modifiable(btf))
1952
0
    return libbpf_err(-ENOMEM);
1953
1954
  /* remember original strings section size if we have to roll back
1955
   * partial strings section changes
1956
   */
1957
0
  old_strs_len = btf->hdr->str_len;
1958
1959
0
  data_sz = src_btf->hdr->type_len;
1960
0
  cnt = btf__type_cnt(src_btf) - 1;
1961
1962
  /* pre-allocate enough memory for new types */
1963
0
  t = btf_add_type_mem(btf, data_sz);
1964
0
  if (!t)
1965
0
    return libbpf_err(-ENOMEM);
1966
1967
  /* pre-allocate enough memory for type offset index for new types */
1968
0
  off = btf_add_type_offs_mem(btf, cnt);
1969
0
  if (!off)
1970
0
    return libbpf_err(-ENOMEM);
1971
1972
  /* Map the string offsets from src_btf to the offsets from btf to improve performance */
1973
0
  p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1974
0
  if (IS_ERR(p.str_off_map))
1975
0
    return libbpf_err(-ENOMEM);
1976
1977
  /* bulk copy types data for all types from src_btf */
1978
0
  memcpy(t, src_btf->types_data, data_sz);
1979
1980
0
  for (i = 0; i < cnt; i++) {
1981
0
    struct btf_field_iter it;
1982
0
    __u32 *type_id, *str_off;
1983
1984
0
    sz = btf_type_size(t);
1985
0
    if (sz < 0) {
1986
      /* unlikely, has to be corrupted src_btf */
1987
0
      err = sz;
1988
0
      goto err_out;
1989
0
    }
1990
1991
    /* fill out type ID to type offset mapping for lookups by type ID */
1992
0
    *off = t - btf->types_data;
1993
1994
    /* add, dedup, and remap strings referenced by this BTF type */
1995
0
    err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1996
0
    if (err)
1997
0
      goto err_out;
1998
0
    while ((str_off = btf_field_iter_next(&it))) {
1999
0
      err = btf_rewrite_str(&p, str_off);
2000
0
      if (err)
2001
0
        goto err_out;
2002
0
    }
2003
2004
    /* remap all type IDs referenced from this BTF type */
2005
0
    err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
2006
0
    if (err)
2007
0
      goto err_out;
2008
2009
0
    while ((type_id = btf_field_iter_next(&it))) {
2010
0
      if (!*type_id) /* nothing to do for VOID references */
2011
0
        continue;
2012
2013
      /* we haven't updated btf's type count yet, so
2014
       * btf->start_id + btf->nr_types - 1 is the type ID offset we should
2015
       * add to all newly added BTF types
2016
       */
2017
0
      *type_id += btf->start_id + btf->nr_types - 1;
2018
0
    }
2019
2020
    /* go to next type data and type offset index entry */
2021
0
    t += sz;
2022
0
    off++;
2023
0
  }
2024
2025
  /* Up until now any of the copied type data was effectively invisible,
2026
   * so if we exited early before this point due to error, BTF would be
2027
   * effectively unmodified. There would be extra internal memory
2028
   * pre-allocated, but it would not be available for querying.  But now
2029
   * that we've copied and rewritten all the data successfully, we can
2030
   * update type count and various internal offsets and sizes to
2031
   * "commit" the changes and made them visible to the outside world.
2032
   */
2033
0
  btf->hdr->type_len += data_sz;
2034
0
  btf->hdr->str_off += data_sz;
2035
0
  btf->nr_types += cnt;
2036
2037
0
  hashmap__free(p.str_off_map);
2038
2039
  /* return type ID of the first added BTF type */
2040
0
  return btf->start_id + btf->nr_types - cnt;
2041
0
err_out:
2042
  /* zero out preallocated memory as if it was just allocated with
2043
   * libbpf_add_mem()
2044
   */
2045
0
  memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
2046
0
  memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
2047
2048
  /* and now restore original strings section size; types data size
2049
   * wasn't modified, so doesn't need restoring, see big comment above
2050
   */
2051
0
  btf->hdr->str_len = old_strs_len;
2052
2053
0
  hashmap__free(p.str_off_map);
2054
2055
0
  return libbpf_err(err);
2056
0
}
2057
2058
/*
2059
 * Append new BTF_KIND_INT type with:
2060
 *   - *name* - non-empty, non-NULL type name;
2061
 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
2062
 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
2063
 * Returns:
2064
 *   - >0, type ID of newly added BTF type;
2065
 *   - <0, on error.
2066
 */
2067
int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
2068
0
{
2069
0
  struct btf_type *t;
2070
0
  int sz, name_off;
2071
2072
  /* non-empty name */
2073
0
  if (!name || !name[0])
2074
0
    return libbpf_err(-EINVAL);
2075
  /* byte_sz must be power of 2 */
2076
0
  if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
2077
0
    return libbpf_err(-EINVAL);
2078
0
  if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
2079
0
    return libbpf_err(-EINVAL);
2080
2081
  /* deconstruct BTF, if necessary, and invalidate raw_data */
2082
0
  if (btf_ensure_modifiable(btf))
2083
0
    return libbpf_err(-ENOMEM);
2084
2085
0
  sz = sizeof(struct btf_type) + sizeof(int);
2086
0
  t = btf_add_type_mem(btf, sz);
2087
0
  if (!t)
2088
0
    return libbpf_err(-ENOMEM);
2089
2090
  /* if something goes wrong later, we might end up with an extra string,
2091
   * but that shouldn't be a problem, because BTF can't be constructed
2092
   * completely anyway and will most probably be just discarded
2093
   */
2094
0
  name_off = btf__add_str(btf, name);
2095
0
  if (name_off < 0)
2096
0
    return name_off;
2097
2098
0
  t->name_off = name_off;
2099
0
  t->info = btf_type_info(BTF_KIND_INT, 0, 0);
2100
0
  t->size = byte_sz;
2101
  /* set INT info, we don't allow setting legacy bit offset/size */
2102
0
  *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
2103
2104
0
  return btf_commit_type(btf, sz);
2105
0
}
2106
2107
/*
2108
 * Append new BTF_KIND_FLOAT type with:
2109
 *   - *name* - non-empty, non-NULL type name;
2110
 *   - *sz* - size of the type, in bytes;
2111
 * Returns:
2112
 *   - >0, type ID of newly added BTF type;
2113
 *   - <0, on error.
2114
 */
2115
int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
2116
0
{
2117
0
  struct btf_type *t;
2118
0
  int sz, name_off;
2119
2120
  /* non-empty name */
2121
0
  if (!name || !name[0])
2122
0
    return libbpf_err(-EINVAL);
2123
2124
  /* byte_sz must be one of the explicitly allowed values */
2125
0
  if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
2126
0
      byte_sz != 16)
2127
0
    return libbpf_err(-EINVAL);
2128
2129
0
  if (btf_ensure_modifiable(btf))
2130
0
    return libbpf_err(-ENOMEM);
2131
2132
0
  sz = sizeof(struct btf_type);
2133
0
  t = btf_add_type_mem(btf, sz);
2134
0
  if (!t)
2135
0
    return libbpf_err(-ENOMEM);
2136
2137
0
  name_off = btf__add_str(btf, name);
2138
0
  if (name_off < 0)
2139
0
    return name_off;
2140
2141
0
  t->name_off = name_off;
2142
0
  t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
2143
0
  t->size = byte_sz;
2144
2145
0
  return btf_commit_type(btf, sz);
2146
0
}
2147
2148
/* it's completely legal to append BTF types with type IDs pointing forward to
2149
 * types that haven't been appended yet, so we only make sure that id looks
2150
 * sane, we can't guarantee that ID will always be valid
2151
 */
2152
static int validate_type_id(int id)
2153
396
{
2154
396
  if (id < 0 || id > BTF_MAX_NR_TYPES)
2155
0
    return -EINVAL;
2156
396
  return 0;
2157
396
}
2158
2159
/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
2160
static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id, int kflag)
2161
0
{
2162
0
  struct btf_type *t;
2163
0
  int sz, name_off = 0;
2164
2165
0
  if (validate_type_id(ref_type_id))
2166
0
    return libbpf_err(-EINVAL);
2167
2168
0
  if (btf_ensure_modifiable(btf))
2169
0
    return libbpf_err(-ENOMEM);
2170
2171
0
  sz = sizeof(struct btf_type);
2172
0
  t = btf_add_type_mem(btf, sz);
2173
0
  if (!t)
2174
0
    return libbpf_err(-ENOMEM);
2175
2176
0
  if (name && name[0]) {
2177
0
    name_off = btf__add_str(btf, name);
2178
0
    if (name_off < 0)
2179
0
      return name_off;
2180
0
  }
2181
2182
0
  t->name_off = name_off;
2183
0
  t->info = btf_type_info(kind, 0, kflag);
2184
0
  t->type = ref_type_id;
2185
2186
0
  return btf_commit_type(btf, sz);
2187
0
}
2188
2189
/*
2190
 * Append new BTF_KIND_PTR type with:
2191
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2192
 * Returns:
2193
 *   - >0, type ID of newly added BTF type;
2194
 *   - <0, on error.
2195
 */
2196
int btf__add_ptr(struct btf *btf, int ref_type_id)
2197
0
{
2198
0
  return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id, 0);
2199
0
}
2200
2201
/*
2202
 * Append new BTF_KIND_ARRAY type with:
2203
 *   - *index_type_id* - type ID of the type describing array index;
2204
 *   - *elem_type_id* - type ID of the type describing array element;
2205
 *   - *nr_elems* - the size of the array;
2206
 * Returns:
2207
 *   - >0, type ID of newly added BTF type;
2208
 *   - <0, on error.
2209
 */
2210
int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
2211
0
{
2212
0
  struct btf_type *t;
2213
0
  struct btf_array *a;
2214
0
  int sz;
2215
2216
0
  if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
2217
0
    return libbpf_err(-EINVAL);
2218
2219
0
  if (btf_ensure_modifiable(btf))
2220
0
    return libbpf_err(-ENOMEM);
2221
2222
0
  sz = sizeof(struct btf_type) + sizeof(struct btf_array);
2223
0
  t = btf_add_type_mem(btf, sz);
2224
0
  if (!t)
2225
0
    return libbpf_err(-ENOMEM);
2226
2227
0
  t->name_off = 0;
2228
0
  t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
2229
0
  t->size = 0;
2230
2231
0
  a = btf_array(t);
2232
0
  a->type = elem_type_id;
2233
0
  a->index_type = index_type_id;
2234
0
  a->nelems = nr_elems;
2235
2236
0
  return btf_commit_type(btf, sz);
2237
0
}
2238
2239
/* generic STRUCT/UNION append function */
2240
static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
2241
0
{
2242
0
  struct btf_type *t;
2243
0
  int sz, name_off = 0;
2244
2245
0
  if (btf_ensure_modifiable(btf))
2246
0
    return libbpf_err(-ENOMEM);
2247
2248
0
  sz = sizeof(struct btf_type);
2249
0
  t = btf_add_type_mem(btf, sz);
2250
0
  if (!t)
2251
0
    return libbpf_err(-ENOMEM);
2252
2253
0
  if (name && name[0]) {
2254
0
    name_off = btf__add_str(btf, name);
2255
0
    if (name_off < 0)
2256
0
      return name_off;
2257
0
  }
2258
2259
  /* start out with vlen=0 and no kflag; this will be adjusted when
2260
   * adding each member
2261
   */
2262
0
  t->name_off = name_off;
2263
0
  t->info = btf_type_info(kind, 0, 0);
2264
0
  t->size = bytes_sz;
2265
2266
0
  return btf_commit_type(btf, sz);
2267
0
}
2268
2269
/*
2270
 * Append new BTF_KIND_STRUCT type with:
2271
 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2272
 *   - *byte_sz* - size of the struct, in bytes;
2273
 *
2274
 * Struct initially has no fields in it. Fields can be added by
2275
 * btf__add_field() right after btf__add_struct() succeeds.
2276
 *
2277
 * Returns:
2278
 *   - >0, type ID of newly added BTF type;
2279
 *   - <0, on error.
2280
 */
2281
int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2282
0
{
2283
0
  return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2284
0
}
2285
2286
/*
2287
 * Append new BTF_KIND_UNION type with:
2288
 *   - *name* - name of the union, can be NULL or empty for anonymous union;
2289
 *   - *byte_sz* - size of the union, in bytes;
2290
 *
2291
 * Union initially has no fields in it. Fields can be added by
2292
 * btf__add_field() right after btf__add_union() succeeds. All fields
2293
 * should have *bit_offset* of 0.
2294
 *
2295
 * Returns:
2296
 *   - >0, type ID of newly added BTF type;
2297
 *   - <0, on error.
2298
 */
2299
int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2300
0
{
2301
0
  return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2302
0
}
2303
2304
static struct btf_type *btf_last_type(struct btf *btf)
2305
0
{
2306
0
  return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2307
0
}
2308
2309
/*
2310
 * Append new field for the current STRUCT/UNION type with:
2311
 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2312
 *   - *type_id* - type ID for the type describing field type;
2313
 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2314
 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2315
 * Returns:
2316
 *   -  0, on success;
2317
 *   - <0, on error.
2318
 */
2319
int btf__add_field(struct btf *btf, const char *name, int type_id,
2320
       __u32 bit_offset, __u32 bit_size)
2321
0
{
2322
0
  struct btf_type *t;
2323
0
  struct btf_member *m;
2324
0
  bool is_bitfield;
2325
0
  int sz, name_off = 0;
2326
2327
  /* last type should be union/struct */
2328
0
  if (btf->nr_types == 0)
2329
0
    return libbpf_err(-EINVAL);
2330
0
  t = btf_last_type(btf);
2331
0
  if (!btf_is_composite(t))
2332
0
    return libbpf_err(-EINVAL);
2333
2334
0
  if (validate_type_id(type_id))
2335
0
    return libbpf_err(-EINVAL);
2336
  /* best-effort bit field offset/size enforcement */
2337
0
  is_bitfield = bit_size || (bit_offset % 8 != 0);
2338
0
  if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2339
0
    return libbpf_err(-EINVAL);
2340
2341
  /* only offset 0 is allowed for unions */
2342
0
  if (btf_is_union(t) && bit_offset)
2343
0
    return libbpf_err(-EINVAL);
2344
2345
  /* decompose and invalidate raw data */
2346
0
  if (btf_ensure_modifiable(btf))
2347
0
    return libbpf_err(-ENOMEM);
2348
2349
0
  sz = sizeof(struct btf_member);
2350
0
  m = btf_add_type_mem(btf, sz);
2351
0
  if (!m)
2352
0
    return libbpf_err(-ENOMEM);
2353
2354
0
  if (name && name[0]) {
2355
0
    name_off = btf__add_str(btf, name);
2356
0
    if (name_off < 0)
2357
0
      return name_off;
2358
0
  }
2359
2360
0
  m->name_off = name_off;
2361
0
  m->type = type_id;
2362
0
  m->offset = bit_offset | (bit_size << 24);
2363
2364
  /* btf_add_type_mem can invalidate t pointer */
2365
0
  t = btf_last_type(btf);
2366
  /* update parent type's vlen and kflag */
2367
0
  t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2368
2369
0
  btf->hdr->type_len += sz;
2370
0
  btf->hdr->str_off += sz;
2371
0
  return 0;
2372
0
}
2373
2374
static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2375
             bool is_signed, __u8 kind)
2376
0
{
2377
0
  struct btf_type *t;
2378
0
  int sz, name_off = 0;
2379
2380
  /* byte_sz must be power of 2 */
2381
0
  if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2382
0
    return libbpf_err(-EINVAL);
2383
2384
0
  if (btf_ensure_modifiable(btf))
2385
0
    return libbpf_err(-ENOMEM);
2386
2387
0
  sz = sizeof(struct btf_type);
2388
0
  t = btf_add_type_mem(btf, sz);
2389
0
  if (!t)
2390
0
    return libbpf_err(-ENOMEM);
2391
2392
0
  if (name && name[0]) {
2393
0
    name_off = btf__add_str(btf, name);
2394
0
    if (name_off < 0)
2395
0
      return name_off;
2396
0
  }
2397
2398
  /* start out with vlen=0; it will be adjusted when adding enum values */
2399
0
  t->name_off = name_off;
2400
0
  t->info = btf_type_info(kind, 0, is_signed);
2401
0
  t->size = byte_sz;
2402
2403
0
  return btf_commit_type(btf, sz);
2404
0
}
2405
2406
/*
2407
 * Append new BTF_KIND_ENUM type with:
2408
 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2409
 *   - *byte_sz* - size of the enum, in bytes.
2410
 *
2411
 * Enum initially has no enum values in it (and corresponds to enum forward
2412
 * declaration). Enumerator values can be added by btf__add_enum_value()
2413
 * immediately after btf__add_enum() succeeds.
2414
 *
2415
 * Returns:
2416
 *   - >0, type ID of newly added BTF type;
2417
 *   - <0, on error.
2418
 */
2419
int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2420
0
{
2421
  /*
2422
   * set the signedness to be unsigned, it will change to signed
2423
   * if any later enumerator is negative.
2424
   */
2425
0
  return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2426
0
}
2427
2428
/*
2429
 * Append new enum value for the current ENUM type with:
2430
 *   - *name* - name of the enumerator value, can't be NULL or empty;
2431
 *   - *value* - integer value corresponding to enum value *name*;
2432
 * Returns:
2433
 *   -  0, on success;
2434
 *   - <0, on error.
2435
 */
2436
int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2437
0
{
2438
0
  struct btf_type *t;
2439
0
  struct btf_enum *v;
2440
0
  int sz, name_off;
2441
2442
  /* last type should be BTF_KIND_ENUM */
2443
0
  if (btf->nr_types == 0)
2444
0
    return libbpf_err(-EINVAL);
2445
0
  t = btf_last_type(btf);
2446
0
  if (!btf_is_enum(t))
2447
0
    return libbpf_err(-EINVAL);
2448
2449
  /* non-empty name */
2450
0
  if (!name || !name[0])
2451
0
    return libbpf_err(-EINVAL);
2452
0
  if (value < INT_MIN || value > UINT_MAX)
2453
0
    return libbpf_err(-E2BIG);
2454
2455
  /* decompose and invalidate raw data */
2456
0
  if (btf_ensure_modifiable(btf))
2457
0
    return libbpf_err(-ENOMEM);
2458
2459
0
  sz = sizeof(struct btf_enum);
2460
0
  v = btf_add_type_mem(btf, sz);
2461
0
  if (!v)
2462
0
    return libbpf_err(-ENOMEM);
2463
2464
0
  name_off = btf__add_str(btf, name);
2465
0
  if (name_off < 0)
2466
0
    return name_off;
2467
2468
0
  v->name_off = name_off;
2469
0
  v->val = value;
2470
2471
  /* update parent type's vlen */
2472
0
  t = btf_last_type(btf);
2473
0
  btf_type_inc_vlen(t);
2474
2475
  /* if negative value, set signedness to signed */
2476
0
  if (value < 0)
2477
0
    t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2478
2479
0
  btf->hdr->type_len += sz;
2480
0
  btf->hdr->str_off += sz;
2481
0
  return 0;
2482
0
}
2483
2484
/*
2485
 * Append new BTF_KIND_ENUM64 type with:
2486
 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2487
 *   - *byte_sz* - size of the enum, in bytes.
2488
 *   - *is_signed* - whether the enum values are signed or not;
2489
 *
2490
 * Enum initially has no enum values in it (and corresponds to enum forward
2491
 * declaration). Enumerator values can be added by btf__add_enum64_value()
2492
 * immediately after btf__add_enum64() succeeds.
2493
 *
2494
 * Returns:
2495
 *   - >0, type ID of newly added BTF type;
2496
 *   - <0, on error.
2497
 */
2498
int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2499
        bool is_signed)
2500
0
{
2501
0
  return btf_add_enum_common(btf, name, byte_sz, is_signed,
2502
0
           BTF_KIND_ENUM64);
2503
0
}
2504
2505
/*
2506
 * Append new enum value for the current ENUM64 type with:
2507
 *   - *name* - name of the enumerator value, can't be NULL or empty;
2508
 *   - *value* - integer value corresponding to enum value *name*;
2509
 * Returns:
2510
 *   -  0, on success;
2511
 *   - <0, on error.
2512
 */
2513
int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2514
0
{
2515
0
  struct btf_enum64 *v;
2516
0
  struct btf_type *t;
2517
0
  int sz, name_off;
2518
2519
  /* last type should be BTF_KIND_ENUM64 */
2520
0
  if (btf->nr_types == 0)
2521
0
    return libbpf_err(-EINVAL);
2522
0
  t = btf_last_type(btf);
2523
0
  if (!btf_is_enum64(t))
2524
0
    return libbpf_err(-EINVAL);
2525
2526
  /* non-empty name */
2527
0
  if (!name || !name[0])
2528
0
    return libbpf_err(-EINVAL);
2529
2530
  /* decompose and invalidate raw data */
2531
0
  if (btf_ensure_modifiable(btf))
2532
0
    return libbpf_err(-ENOMEM);
2533
2534
0
  sz = sizeof(struct btf_enum64);
2535
0
  v = btf_add_type_mem(btf, sz);
2536
0
  if (!v)
2537
0
    return libbpf_err(-ENOMEM);
2538
2539
0
  name_off = btf__add_str(btf, name);
2540
0
  if (name_off < 0)
2541
0
    return name_off;
2542
2543
0
  v->name_off = name_off;
2544
0
  v->val_lo32 = (__u32)value;
2545
0
  v->val_hi32 = value >> 32;
2546
2547
  /* update parent type's vlen */
2548
0
  t = btf_last_type(btf);
2549
0
  btf_type_inc_vlen(t);
2550
2551
0
  btf->hdr->type_len += sz;
2552
0
  btf->hdr->str_off += sz;
2553
0
  return 0;
2554
0
}
2555
2556
/*
2557
 * Append new BTF_KIND_FWD type with:
2558
 *   - *name*, non-empty/non-NULL name;
2559
 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2560
 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2561
 * Returns:
2562
 *   - >0, type ID of newly added BTF type;
2563
 *   - <0, on error.
2564
 */
2565
int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2566
0
{
2567
0
  if (!name || !name[0])
2568
0
    return libbpf_err(-EINVAL);
2569
2570
0
  switch (fwd_kind) {
2571
0
  case BTF_FWD_STRUCT:
2572
0
  case BTF_FWD_UNION: {
2573
0
    struct btf_type *t;
2574
0
    int id;
2575
2576
0
    id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0, 0);
2577
0
    if (id <= 0)
2578
0
      return id;
2579
0
    t = btf_type_by_id(btf, id);
2580
0
    t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2581
0
    return id;
2582
0
  }
2583
0
  case BTF_FWD_ENUM:
2584
    /* enum forward in BTF currently is just an enum with no enum
2585
     * values; we also assume a standard 4-byte size for it
2586
     */
2587
0
    return btf__add_enum(btf, name, sizeof(int));
2588
0
  default:
2589
0
    return libbpf_err(-EINVAL);
2590
0
  }
2591
0
}
2592
2593
/*
2594
 * Append new BTF_KING_TYPEDEF type with:
2595
 *   - *name*, non-empty/non-NULL name;
2596
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2597
 * Returns:
2598
 *   - >0, type ID of newly added BTF type;
2599
 *   - <0, on error.
2600
 */
2601
int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2602
0
{
2603
0
  if (!name || !name[0])
2604
0
    return libbpf_err(-EINVAL);
2605
2606
0
  return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id, 0);
2607
0
}
2608
2609
/*
2610
 * Append new BTF_KIND_VOLATILE type with:
2611
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2612
 * Returns:
2613
 *   - >0, type ID of newly added BTF type;
2614
 *   - <0, on error.
2615
 */
2616
int btf__add_volatile(struct btf *btf, int ref_type_id)
2617
0
{
2618
0
  return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id, 0);
2619
0
}
2620
2621
/*
2622
 * Append new BTF_KIND_CONST type with:
2623
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2624
 * Returns:
2625
 *   - >0, type ID of newly added BTF type;
2626
 *   - <0, on error.
2627
 */
2628
int btf__add_const(struct btf *btf, int ref_type_id)
2629
0
{
2630
0
  return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id, 0);
2631
0
}
2632
2633
/*
2634
 * Append new BTF_KIND_RESTRICT type with:
2635
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2636
 * Returns:
2637
 *   - >0, type ID of newly added BTF type;
2638
 *   - <0, on error.
2639
 */
2640
int btf__add_restrict(struct btf *btf, int ref_type_id)
2641
0
{
2642
0
  return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id, 0);
2643
0
}
2644
2645
/*
2646
 * Append new BTF_KIND_TYPE_TAG type with:
2647
 *   - *value*, non-empty/non-NULL tag value;
2648
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2649
 * Returns:
2650
 *   - >0, type ID of newly added BTF type;
2651
 *   - <0, on error.
2652
 */
2653
int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2654
0
{
2655
0
  if (!value || !value[0])
2656
0
    return libbpf_err(-EINVAL);
2657
2658
0
  return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id, 0);
2659
0
}
2660
2661
/*
2662
 * Append new BTF_KIND_TYPE_TAG type with:
2663
 *   - *value*, non-empty/non-NULL tag value;
2664
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2665
 * Set info->kflag to 1, indicating this tag is an __attribute__
2666
 * Returns:
2667
 *   - >0, type ID of newly added BTF type;
2668
 *   - <0, on error.
2669
 */
2670
int btf__add_type_attr(struct btf *btf, const char *value, int ref_type_id)
2671
0
{
2672
0
  if (!value || !value[0])
2673
0
    return libbpf_err(-EINVAL);
2674
2675
0
  return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id, 1);
2676
0
}
2677
2678
/*
2679
 * Append new BTF_KIND_FUNC type with:
2680
 *   - *name*, non-empty/non-NULL name;
2681
 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2682
 * Returns:
2683
 *   - >0, type ID of newly added BTF type;
2684
 *   - <0, on error.
2685
 */
2686
int btf__add_func(struct btf *btf, const char *name,
2687
      enum btf_func_linkage linkage, int proto_type_id)
2688
0
{
2689
0
  int id;
2690
2691
0
  if (!name || !name[0])
2692
0
    return libbpf_err(-EINVAL);
2693
0
  if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2694
0
      linkage != BTF_FUNC_EXTERN)
2695
0
    return libbpf_err(-EINVAL);
2696
2697
0
  id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id, 0);
2698
0
  if (id > 0) {
2699
0
    struct btf_type *t = btf_type_by_id(btf, id);
2700
2701
0
    t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2702
0
  }
2703
0
  return libbpf_err(id);
2704
0
}
2705
2706
/*
2707
 * Append new BTF_KIND_FUNC_PROTO with:
2708
 *   - *ret_type_id* - type ID for return result of a function.
2709
 *
2710
 * Function prototype initially has no arguments, but they can be added by
2711
 * btf__add_func_param() one by one, immediately after
2712
 * btf__add_func_proto() succeeded.
2713
 *
2714
 * Returns:
2715
 *   - >0, type ID of newly added BTF type;
2716
 *   - <0, on error.
2717
 */
2718
int btf__add_func_proto(struct btf *btf, int ret_type_id)
2719
0
{
2720
0
  struct btf_type *t;
2721
0
  int sz;
2722
2723
0
  if (validate_type_id(ret_type_id))
2724
0
    return libbpf_err(-EINVAL);
2725
2726
0
  if (btf_ensure_modifiable(btf))
2727
0
    return libbpf_err(-ENOMEM);
2728
2729
0
  sz = sizeof(struct btf_type);
2730
0
  t = btf_add_type_mem(btf, sz);
2731
0
  if (!t)
2732
0
    return libbpf_err(-ENOMEM);
2733
2734
  /* start out with vlen=0; this will be adjusted when adding enum
2735
   * values, if necessary
2736
   */
2737
0
  t->name_off = 0;
2738
0
  t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2739
0
  t->type = ret_type_id;
2740
2741
0
  return btf_commit_type(btf, sz);
2742
0
}
2743
2744
/*
2745
 * Append new function parameter for current FUNC_PROTO type with:
2746
 *   - *name* - parameter name, can be NULL or empty;
2747
 *   - *type_id* - type ID describing the type of the parameter.
2748
 * Returns:
2749
 *   -  0, on success;
2750
 *   - <0, on error.
2751
 */
2752
int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2753
0
{
2754
0
  struct btf_type *t;
2755
0
  struct btf_param *p;
2756
0
  int sz, name_off = 0;
2757
2758
0
  if (validate_type_id(type_id))
2759
0
    return libbpf_err(-EINVAL);
2760
2761
  /* last type should be BTF_KIND_FUNC_PROTO */
2762
0
  if (btf->nr_types == 0)
2763
0
    return libbpf_err(-EINVAL);
2764
0
  t = btf_last_type(btf);
2765
0
  if (!btf_is_func_proto(t))
2766
0
    return libbpf_err(-EINVAL);
2767
2768
  /* decompose and invalidate raw data */
2769
0
  if (btf_ensure_modifiable(btf))
2770
0
    return libbpf_err(-ENOMEM);
2771
2772
0
  sz = sizeof(struct btf_param);
2773
0
  p = btf_add_type_mem(btf, sz);
2774
0
  if (!p)
2775
0
    return libbpf_err(-ENOMEM);
2776
2777
0
  if (name && name[0]) {
2778
0
    name_off = btf__add_str(btf, name);
2779
0
    if (name_off < 0)
2780
0
      return name_off;
2781
0
  }
2782
2783
0
  p->name_off = name_off;
2784
0
  p->type = type_id;
2785
2786
  /* update parent type's vlen */
2787
0
  t = btf_last_type(btf);
2788
0
  btf_type_inc_vlen(t);
2789
2790
0
  btf->hdr->type_len += sz;
2791
0
  btf->hdr->str_off += sz;
2792
0
  return 0;
2793
0
}
2794
2795
/*
2796
 * Append new BTF_KIND_VAR type with:
2797
 *   - *name* - non-empty/non-NULL name;
2798
 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2799
 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2800
 *   - *type_id* - type ID of the type describing the type of the variable.
2801
 * Returns:
2802
 *   - >0, type ID of newly added BTF type;
2803
 *   - <0, on error.
2804
 */
2805
int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2806
396
{
2807
396
  struct btf_type *t;
2808
396
  struct btf_var *v;
2809
396
  int sz, name_off;
2810
2811
  /* non-empty name */
2812
396
  if (!name || !name[0])
2813
0
    return libbpf_err(-EINVAL);
2814
396
  if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2815
396
      linkage != BTF_VAR_GLOBAL_EXTERN)
2816
0
    return libbpf_err(-EINVAL);
2817
396
  if (validate_type_id(type_id))
2818
0
    return libbpf_err(-EINVAL);
2819
2820
  /* deconstruct BTF, if necessary, and invalidate raw_data */
2821
396
  if (btf_ensure_modifiable(btf))
2822
0
    return libbpf_err(-ENOMEM);
2823
2824
396
  sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2825
396
  t = btf_add_type_mem(btf, sz);
2826
396
  if (!t)
2827
0
    return libbpf_err(-ENOMEM);
2828
2829
396
  name_off = btf__add_str(btf, name);
2830
396
  if (name_off < 0)
2831
0
    return name_off;
2832
2833
396
  t->name_off = name_off;
2834
396
  t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2835
396
  t->type = type_id;
2836
2837
396
  v = btf_var(t);
2838
396
  v->linkage = linkage;
2839
2840
396
  return btf_commit_type(btf, sz);
2841
396
}
2842
2843
/*
2844
 * Append new BTF_KIND_DATASEC type with:
2845
 *   - *name* - non-empty/non-NULL name;
2846
 *   - *byte_sz* - data section size, in bytes.
2847
 *
2848
 * Data section is initially empty. Variables info can be added with
2849
 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2850
 *
2851
 * Returns:
2852
 *   - >0, type ID of newly added BTF type;
2853
 *   - <0, on error.
2854
 */
2855
int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2856
0
{
2857
0
  struct btf_type *t;
2858
0
  int sz, name_off;
2859
2860
  /* non-empty name */
2861
0
  if (!name || !name[0])
2862
0
    return libbpf_err(-EINVAL);
2863
2864
0
  if (btf_ensure_modifiable(btf))
2865
0
    return libbpf_err(-ENOMEM);
2866
2867
0
  sz = sizeof(struct btf_type);
2868
0
  t = btf_add_type_mem(btf, sz);
2869
0
  if (!t)
2870
0
    return libbpf_err(-ENOMEM);
2871
2872
0
  name_off = btf__add_str(btf, name);
2873
0
  if (name_off < 0)
2874
0
    return name_off;
2875
2876
  /* start with vlen=0, which will be update as var_secinfos are added */
2877
0
  t->name_off = name_off;
2878
0
  t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2879
0
  t->size = byte_sz;
2880
2881
0
  return btf_commit_type(btf, sz);
2882
0
}
2883
2884
/*
2885
 * Append new data section variable information entry for current DATASEC type:
2886
 *   - *var_type_id* - type ID, describing type of the variable;
2887
 *   - *offset* - variable offset within data section, in bytes;
2888
 *   - *byte_sz* - variable size, in bytes.
2889
 *
2890
 * Returns:
2891
 *   -  0, on success;
2892
 *   - <0, on error.
2893
 */
2894
int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2895
0
{
2896
0
  struct btf_type *t;
2897
0
  struct btf_var_secinfo *v;
2898
0
  int sz;
2899
2900
  /* last type should be BTF_KIND_DATASEC */
2901
0
  if (btf->nr_types == 0)
2902
0
    return libbpf_err(-EINVAL);
2903
0
  t = btf_last_type(btf);
2904
0
  if (!btf_is_datasec(t))
2905
0
    return libbpf_err(-EINVAL);
2906
2907
0
  if (validate_type_id(var_type_id))
2908
0
    return libbpf_err(-EINVAL);
2909
2910
  /* decompose and invalidate raw data */
2911
0
  if (btf_ensure_modifiable(btf))
2912
0
    return libbpf_err(-ENOMEM);
2913
2914
0
  sz = sizeof(struct btf_var_secinfo);
2915
0
  v = btf_add_type_mem(btf, sz);
2916
0
  if (!v)
2917
0
    return libbpf_err(-ENOMEM);
2918
2919
0
  v->type = var_type_id;
2920
0
  v->offset = offset;
2921
0
  v->size = byte_sz;
2922
2923
  /* update parent type's vlen */
2924
0
  t = btf_last_type(btf);
2925
0
  btf_type_inc_vlen(t);
2926
2927
0
  btf->hdr->type_len += sz;
2928
0
  btf->hdr->str_off += sz;
2929
0
  return 0;
2930
0
}
2931
2932
static int btf_add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2933
          int component_idx, int kflag)
2934
0
{
2935
0
  struct btf_type *t;
2936
0
  int sz, value_off;
2937
2938
0
  if (!value || !value[0] || component_idx < -1)
2939
0
    return libbpf_err(-EINVAL);
2940
2941
0
  if (validate_type_id(ref_type_id))
2942
0
    return libbpf_err(-EINVAL);
2943
2944
0
  if (btf_ensure_modifiable(btf))
2945
0
    return libbpf_err(-ENOMEM);
2946
2947
0
  sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2948
0
  t = btf_add_type_mem(btf, sz);
2949
0
  if (!t)
2950
0
    return libbpf_err(-ENOMEM);
2951
2952
0
  value_off = btf__add_str(btf, value);
2953
0
  if (value_off < 0)
2954
0
    return value_off;
2955
2956
0
  t->name_off = value_off;
2957
0
  t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, kflag);
2958
0
  t->type = ref_type_id;
2959
0
  btf_decl_tag(t)->component_idx = component_idx;
2960
2961
0
  return btf_commit_type(btf, sz);
2962
0
}
2963
2964
/*
2965
 * Append new BTF_KIND_DECL_TAG type with:
2966
 *   - *value* - non-empty/non-NULL string;
2967
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2968
 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2969
 *     member or function argument index;
2970
 * Returns:
2971
 *   - >0, type ID of newly added BTF type;
2972
 *   - <0, on error.
2973
 */
2974
int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2975
          int component_idx)
2976
0
{
2977
0
  return btf_add_decl_tag(btf, value, ref_type_id, component_idx, 0);
2978
0
}
2979
2980
/*
2981
 * Append new BTF_KIND_DECL_TAG type with:
2982
 *   - *value* - non-empty/non-NULL string;
2983
 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2984
 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2985
 *     member or function argument index;
2986
 * Set info->kflag to 1, indicating this tag is an __attribute__
2987
 * Returns:
2988
 *   - >0, type ID of newly added BTF type;
2989
 *   - <0, on error.
2990
 */
2991
int btf__add_decl_attr(struct btf *btf, const char *value, int ref_type_id,
2992
           int component_idx)
2993
0
{
2994
0
  return btf_add_decl_tag(btf, value, ref_type_id, component_idx, 1);
2995
0
}
2996
2997
struct btf_ext_sec_info_param {
2998
  __u32 off;
2999
  __u32 len;
3000
  __u32 min_rec_size;
3001
  struct btf_ext_info *ext_info;
3002
  const char *desc;
3003
};
3004
3005
/*
3006
 * Parse a single info subsection of the BTF.ext info data:
3007
 *  - validate subsection structure and elements
3008
 *  - save info subsection start and sizing details in struct btf_ext
3009
 *  - endian-independent operation, for calling before byte-swapping
3010
 */
3011
static int btf_ext_parse_sec_info(struct btf_ext *btf_ext,
3012
          struct btf_ext_sec_info_param *ext_sec,
3013
          bool is_native)
3014
716
{
3015
716
  const struct btf_ext_info_sec *sinfo;
3016
716
  struct btf_ext_info *ext_info;
3017
716
  __u32 info_left, record_size;
3018
716
  size_t sec_cnt = 0;
3019
716
  void *info;
3020
3021
716
  if (ext_sec->len == 0)
3022
291
    return 0;
3023
3024
425
  if (ext_sec->off & 0x03) {
3025
22
    pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
3026
22
         ext_sec->desc);
3027
22
    return -EINVAL;
3028
22
  }
3029
3030
  /* The start of the info sec (including the __u32 record_size). */
3031
403
  info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
3032
403
  info_left = ext_sec->len;
3033
3034
403
  if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
3035
47
    pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
3036
47
       ext_sec->desc, ext_sec->off, ext_sec->len);
3037
47
    return -EINVAL;
3038
47
  }
3039
3040
  /* At least a record size */
3041
356
  if (info_left < sizeof(__u32)) {
3042
1
    pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
3043
1
    return -EINVAL;
3044
1
  }
3045
3046
  /* The record size needs to meet either the minimum standard or, when
3047
   * handling non-native endianness data, the exact standard so as
3048
   * to allow safe byte-swapping.
3049
   */
3050
355
  record_size = is_native ? *(__u32 *)info : bswap_32(*(__u32 *)info);
3051
355
  if (record_size < ext_sec->min_rec_size ||
3052
355
      (!is_native && record_size != ext_sec->min_rec_size) ||
3053
355
      record_size & 0x03) {
3054
44
    pr_debug("%s section in .BTF.ext has invalid record size %u\n",
3055
44
       ext_sec->desc, record_size);
3056
44
    return -EINVAL;
3057
44
  }
3058
3059
311
  sinfo = info + sizeof(__u32);
3060
311
  info_left -= sizeof(__u32);
3061
3062
  /* If no records, return failure now so .BTF.ext won't be used. */
3063
311
  if (!info_left) {
3064
1
    pr_debug("%s section in .BTF.ext has no records\n", ext_sec->desc);
3065
1
    return -EINVAL;
3066
1
  }
3067
3068
617
  while (info_left) {
3069
425
    unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
3070
425
    __u64 total_record_size;
3071
425
    __u32 num_records;
3072
3073
425
    if (info_left < sec_hdrlen) {
3074
3
      pr_debug("%s section header is not found in .BTF.ext\n",
3075
3
           ext_sec->desc);
3076
3
      return -EINVAL;
3077
3
    }
3078
3079
422
    num_records = is_native ? sinfo->num_info : bswap_32(sinfo->num_info);
3080
422
    if (num_records == 0) {
3081
6
      pr_debug("%s section has incorrect num_records in .BTF.ext\n",
3082
6
           ext_sec->desc);
3083
6
      return -EINVAL;
3084
6
    }
3085
3086
416
    total_record_size = sec_hdrlen + (__u64)num_records * record_size;
3087
416
    if (info_left < total_record_size) {
3088
109
      pr_debug("%s section has incorrect num_records in .BTF.ext\n",
3089
109
           ext_sec->desc);
3090
109
      return -EINVAL;
3091
109
    }
3092
3093
307
    info_left -= total_record_size;
3094
307
    sinfo = (void *)sinfo + total_record_size;
3095
307
    sec_cnt++;
3096
307
  }
3097
3098
192
  ext_info = ext_sec->ext_info;
3099
192
  ext_info->len = ext_sec->len - sizeof(__u32);
3100
192
  ext_info->rec_size = record_size;
3101
192
  ext_info->info = info + sizeof(__u32);
3102
192
  ext_info->sec_cnt = sec_cnt;
3103
3104
192
  return 0;
3105
310
}
3106
3107
/* Parse all info secs in the BTF.ext info data */
3108
static int btf_ext_parse_info(struct btf_ext *btf_ext, bool is_native)
3109
357
{
3110
357
  struct btf_ext_sec_info_param func_info = {
3111
357
    .off = btf_ext->hdr->func_info_off,
3112
357
    .len = btf_ext->hdr->func_info_len,
3113
357
    .min_rec_size = sizeof(struct bpf_func_info_min),
3114
357
    .ext_info = &btf_ext->func_info,
3115
357
    .desc = "func_info"
3116
357
  };
3117
357
  struct btf_ext_sec_info_param line_info = {
3118
357
    .off = btf_ext->hdr->line_info_off,
3119
357
    .len = btf_ext->hdr->line_info_len,
3120
357
    .min_rec_size = sizeof(struct bpf_line_info_min),
3121
357
    .ext_info = &btf_ext->line_info,
3122
357
    .desc = "line_info",
3123
357
  };
3124
357
  struct btf_ext_sec_info_param core_relo = {
3125
357
    .min_rec_size = sizeof(struct bpf_core_relo),
3126
357
    .ext_info = &btf_ext->core_relo_info,
3127
357
    .desc = "core_relo",
3128
357
  };
3129
357
  int err;
3130
3131
357
  err = btf_ext_parse_sec_info(btf_ext, &func_info, is_native);
3132
357
  if (err)
3133
136
    return err;
3134
3135
221
  err = btf_ext_parse_sec_info(btf_ext, &line_info, is_native);
3136
221
  if (err)
3137
76
    return err;
3138
3139
145
  if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3140
7
    return 0; /* skip core relos parsing */
3141
3142
138
  core_relo.off = btf_ext->hdr->core_relo_off;
3143
138
  core_relo.len = btf_ext->hdr->core_relo_len;
3144
138
  err = btf_ext_parse_sec_info(btf_ext, &core_relo, is_native);
3145
138
  if (err)
3146
21
    return err;
3147
3148
117
  return 0;
3149
138
}
3150
3151
/* Swap byte-order of BTF.ext header with any endianness */
3152
static void btf_ext_bswap_hdr(struct btf_ext_header *h)
3153
50
{
3154
50
  bool is_native = h->magic == BTF_MAGIC;
3155
50
  __u32 hdr_len;
3156
3157
50
  hdr_len = is_native ? h->hdr_len : bswap_32(h->hdr_len);
3158
3159
50
  h->magic = bswap_16(h->magic);
3160
50
  h->hdr_len = bswap_32(h->hdr_len);
3161
50
  h->func_info_off = bswap_32(h->func_info_off);
3162
50
  h->func_info_len = bswap_32(h->func_info_len);
3163
50
  h->line_info_off = bswap_32(h->line_info_off);
3164
50
  h->line_info_len = bswap_32(h->line_info_len);
3165
3166
50
  if (hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3167
16
    return;
3168
3169
34
  h->core_relo_off = bswap_32(h->core_relo_off);
3170
34
  h->core_relo_len = bswap_32(h->core_relo_len);
3171
34
}
3172
3173
/* Swap byte-order of generic info subsection */
3174
static void btf_ext_bswap_info_sec(void *info, __u32 len, bool is_native,
3175
           info_rec_bswap_fn bswap_fn)
3176
18
{
3177
18
  struct btf_ext_info_sec *sec;
3178
18
  __u32 info_left, rec_size, *rs;
3179
3180
18
  if (len == 0)
3181
14
    return;
3182
3183
4
  rs = info;        /* info record size */
3184
4
  rec_size = is_native ? *rs : bswap_32(*rs);
3185
4
  *rs = bswap_32(*rs);
3186
3187
4
  sec = info + sizeof(__u32);   /* info sec #1 */
3188
4
  info_left = len - sizeof(__u32);
3189
14
  while (info_left) {
3190
10
    unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
3191
10
    __u32 i, num_recs;
3192
10
    void *p;
3193
3194
10
    num_recs = is_native ? sec->num_info : bswap_32(sec->num_info);
3195
10
    sec->sec_name_off = bswap_32(sec->sec_name_off);
3196
10
    sec->num_info = bswap_32(sec->num_info);
3197
10
    p = sec->data;      /* info rec #1 */
3198
44
    for (i = 0; i < num_recs; i++, p += rec_size)
3199
34
      bswap_fn(p);
3200
10
    sec = p;
3201
10
    info_left -= sec_hdrlen + (__u64)rec_size * num_recs;
3202
10
  }
3203
4
}
3204
3205
/*
3206
 * Swap byte-order of all info data in a BTF.ext section
3207
 *  - requires BTF.ext hdr in native endianness
3208
 */
3209
static void btf_ext_bswap_info(struct btf_ext *btf_ext, void *data)
3210
8
{
3211
8
  const bool is_native = btf_ext->swapped_endian;
3212
8
  const struct btf_ext_header *h = data;
3213
8
  void *info;
3214
3215
  /* Swap func_info subsection byte-order */
3216
8
  info = data + h->hdr_len + h->func_info_off;
3217
8
  btf_ext_bswap_info_sec(info, h->func_info_len, is_native,
3218
8
             (info_rec_bswap_fn)bpf_func_info_bswap);
3219
3220
  /* Swap line_info subsection byte-order */
3221
8
  info = data + h->hdr_len + h->line_info_off;
3222
8
  btf_ext_bswap_info_sec(info, h->line_info_len, is_native,
3223
8
             (info_rec_bswap_fn)bpf_line_info_bswap);
3224
3225
  /* Swap core_relo subsection byte-order (if present) */
3226
8
  if (h->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3227
6
    return;
3228
3229
2
  info = data + h->hdr_len + h->core_relo_off;
3230
2
  btf_ext_bswap_info_sec(info, h->core_relo_len, is_native,
3231
2
             (info_rec_bswap_fn)bpf_core_relo_bswap);
3232
2
}
3233
3234
/* Parse hdr data and info sections: check and convert to native endianness */
3235
static int btf_ext_parse(struct btf_ext *btf_ext)
3236
502
{
3237
502
  __u32 hdr_len, data_size = btf_ext->data_size;
3238
502
  struct btf_ext_header *hdr = btf_ext->hdr;
3239
502
  bool swapped_endian = false;
3240
502
  int err;
3241
3242
502
  if (data_size < offsetofend(struct btf_ext_header, hdr_len)) {
3243
11
    pr_debug("BTF.ext header too short\n");
3244
11
    return -EINVAL;
3245
11
  }
3246
3247
491
  hdr_len = hdr->hdr_len;
3248
491
  if (hdr->magic == bswap_16(BTF_MAGIC)) {
3249
53
    swapped_endian = true;
3250
53
    hdr_len = bswap_32(hdr_len);
3251
438
  } else if (hdr->magic != BTF_MAGIC) {
3252
56
    pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
3253
56
    return -EINVAL;
3254
56
  }
3255
3256
  /* Ensure known version of structs, current BTF_VERSION == 1 */
3257
435
  if (hdr->version != 1) {
3258
13
    pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
3259
13
    return -ENOTSUP;
3260
13
  }
3261
3262
422
  if (hdr->flags) {
3263
7
    pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
3264
7
    return -ENOTSUP;
3265
7
  }
3266
3267
415
  if (data_size < hdr_len) {
3268
47
    pr_debug("BTF.ext header not found\n");
3269
47
    return -EINVAL;
3270
368
  } else if (data_size == hdr_len) {
3271
6
    pr_debug("BTF.ext has no data\n");
3272
6
    return -EINVAL;
3273
6
  }
3274
3275
  /* Verify mandatory hdr info details present */
3276
362
  if (hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
3277
5
    pr_warn("BTF.ext header missing func_info, line_info\n");
3278
5
    return -EINVAL;
3279
5
  }
3280
3281
  /* Keep hdr native byte-order in memory for introspection */
3282
357
  if (swapped_endian)
3283
50
    btf_ext_bswap_hdr(btf_ext->hdr);
3284
3285
  /* Validate info subsections and cache key metadata */
3286
357
  err = btf_ext_parse_info(btf_ext, !swapped_endian);
3287
357
  if (err)
3288
233
    return err;
3289
3290
  /* Keep infos native byte-order in memory for introspection */
3291
124
  if (swapped_endian)
3292
8
    btf_ext_bswap_info(btf_ext, btf_ext->data);
3293
3294
  /*
3295
   * Set btf_ext->swapped_endian only after all header and info data has
3296
   * been swapped, helping bswap functions determine if their data are
3297
   * in native byte-order when called.
3298
   */
3299
124
  btf_ext->swapped_endian = swapped_endian;
3300
124
  return 0;
3301
357
}
3302
3303
void btf_ext__free(struct btf_ext *btf_ext)
3304
10.6k
{
3305
10.6k
  if (IS_ERR_OR_NULL(btf_ext))
3306
10.1k
    return;
3307
502
  free(btf_ext->func_info.sec_idxs);
3308
502
  free(btf_ext->line_info.sec_idxs);
3309
502
  free(btf_ext->core_relo_info.sec_idxs);
3310
502
  free(btf_ext->data);
3311
502
  free(btf_ext->data_swapped);
3312
502
  free(btf_ext);
3313
502
}
3314
3315
struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
3316
502
{
3317
502
  struct btf_ext *btf_ext;
3318
502
  int err;
3319
3320
502
  btf_ext = calloc(1, sizeof(struct btf_ext));
3321
502
  if (!btf_ext)
3322
0
    return libbpf_err_ptr(-ENOMEM);
3323
3324
502
  btf_ext->data_size = size;
3325
502
  btf_ext->data = malloc(size);
3326
502
  if (!btf_ext->data) {
3327
0
    err = -ENOMEM;
3328
0
    goto done;
3329
0
  }
3330
502
  memcpy(btf_ext->data, data, size);
3331
3332
502
  err = btf_ext_parse(btf_ext);
3333
3334
502
done:
3335
502
  if (err) {
3336
378
    btf_ext__free(btf_ext);
3337
378
    return libbpf_err_ptr(err);
3338
378
  }
3339
3340
124
  return btf_ext;
3341
502
}
3342
3343
static void *btf_ext_raw_data(const struct btf_ext *btf_ext_ro, bool swap_endian)
3344
0
{
3345
0
  struct btf_ext *btf_ext = (struct btf_ext *)btf_ext_ro;
3346
0
  const __u32 data_sz = btf_ext->data_size;
3347
0
  void *data;
3348
3349
  /* Return native data (always present) or swapped data if present */
3350
0
  if (!swap_endian)
3351
0
    return btf_ext->data;
3352
0
  else if (btf_ext->data_swapped)
3353
0
    return btf_ext->data_swapped;
3354
3355
  /* Recreate missing swapped data, then cache and return */
3356
0
  data = calloc(1, data_sz);
3357
0
  if (!data)
3358
0
    return NULL;
3359
0
  memcpy(data, btf_ext->data, data_sz);
3360
3361
0
  btf_ext_bswap_info(btf_ext, data);
3362
0
  btf_ext_bswap_hdr(data);
3363
0
  btf_ext->data_swapped = data;
3364
0
  return data;
3365
0
}
3366
3367
const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size)
3368
0
{
3369
0
  void *data;
3370
3371
0
  data = btf_ext_raw_data(btf_ext, btf_ext->swapped_endian);
3372
0
  if (!data)
3373
0
    return errno = ENOMEM, NULL;
3374
3375
0
  *size = btf_ext->data_size;
3376
0
  return data;
3377
0
}
3378
3379
__attribute__((alias("btf_ext__raw_data")))
3380
const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size);
3381
3382
enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext)
3383
0
{
3384
0
  if (is_host_big_endian())
3385
0
    return btf_ext->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
3386
0
  else
3387
0
    return btf_ext->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
3388
0
}
3389
3390
int btf_ext__set_endianness(struct btf_ext *btf_ext, enum btf_endianness endian)
3391
0
{
3392
0
  if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
3393
0
    return libbpf_err(-EINVAL);
3394
3395
0
  btf_ext->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
3396
3397
0
  if (!btf_ext->swapped_endian) {
3398
0
    free(btf_ext->data_swapped);
3399
0
    btf_ext->data_swapped = NULL;
3400
0
  }
3401
0
  return 0;
3402
0
}
3403
3404
struct btf_dedup;
3405
3406
static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
3407
static void btf_dedup_free(struct btf_dedup *d);
3408
static int btf_dedup_prep(struct btf_dedup *d);
3409
static int btf_dedup_strings(struct btf_dedup *d);
3410
static int btf_dedup_prim_types(struct btf_dedup *d);
3411
static int btf_dedup_struct_types(struct btf_dedup *d);
3412
static int btf_dedup_ref_types(struct btf_dedup *d);
3413
static int btf_dedup_resolve_fwds(struct btf_dedup *d);
3414
static int btf_dedup_compact_types(struct btf_dedup *d);
3415
static int btf_dedup_remap_types(struct btf_dedup *d);
3416
3417
/*
3418
 * Deduplicate BTF types and strings.
3419
 *
3420
 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
3421
 * section with all BTF type descriptors and string data. It overwrites that
3422
 * memory in-place with deduplicated types and strings without any loss of
3423
 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
3424
 * is provided, all the strings referenced from .BTF.ext section are honored
3425
 * and updated to point to the right offsets after deduplication.
3426
 *
3427
 * If function returns with error, type/string data might be garbled and should
3428
 * be discarded.
3429
 *
3430
 * More verbose and detailed description of both problem btf_dedup is solving,
3431
 * as well as solution could be found at:
3432
 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
3433
 *
3434
 * Problem description and justification
3435
 * =====================================
3436
 *
3437
 * BTF type information is typically emitted either as a result of conversion
3438
 * from DWARF to BTF or directly by compiler. In both cases, each compilation
3439
 * unit contains information about a subset of all the types that are used
3440
 * in an application. These subsets are frequently overlapping and contain a lot
3441
 * of duplicated information when later concatenated together into a single
3442
 * binary. This algorithm ensures that each unique type is represented by single
3443
 * BTF type descriptor, greatly reducing resulting size of BTF data.
3444
 *
3445
 * Compilation unit isolation and subsequent duplication of data is not the only
3446
 * problem. The same type hierarchy (e.g., struct and all the type that struct
3447
 * references) in different compilation units can be represented in BTF to
3448
 * various degrees of completeness (or, rather, incompleteness) due to
3449
 * struct/union forward declarations.
3450
 *
3451
 * Let's take a look at an example, that we'll use to better understand the
3452
 * problem (and solution). Suppose we have two compilation units, each using
3453
 * same `struct S`, but each of them having incomplete type information about
3454
 * struct's fields:
3455
 *
3456
 * // CU #1:
3457
 * struct S;
3458
 * struct A {
3459
 *  int a;
3460
 *  struct A* self;
3461
 *  struct S* parent;
3462
 * };
3463
 * struct B;
3464
 * struct S {
3465
 *  struct A* a_ptr;
3466
 *  struct B* b_ptr;
3467
 * };
3468
 *
3469
 * // CU #2:
3470
 * struct S;
3471
 * struct A;
3472
 * struct B {
3473
 *  int b;
3474
 *  struct B* self;
3475
 *  struct S* parent;
3476
 * };
3477
 * struct S {
3478
 *  struct A* a_ptr;
3479
 *  struct B* b_ptr;
3480
 * };
3481
 *
3482
 * In case of CU #1, BTF data will know only that `struct B` exist (but no
3483
 * more), but will know the complete type information about `struct A`. While
3484
 * for CU #2, it will know full type information about `struct B`, but will
3485
 * only know about forward declaration of `struct A` (in BTF terms, it will
3486
 * have `BTF_KIND_FWD` type descriptor with name `B`).
3487
 *
3488
 * This compilation unit isolation means that it's possible that there is no
3489
 * single CU with complete type information describing structs `S`, `A`, and
3490
 * `B`. Also, we might get tons of duplicated and redundant type information.
3491
 *
3492
 * Additional complication we need to keep in mind comes from the fact that
3493
 * types, in general, can form graphs containing cycles, not just DAGs.
3494
 *
3495
 * While algorithm does deduplication, it also merges and resolves type
3496
 * information (unless disabled throught `struct btf_opts`), whenever possible.
3497
 * E.g., in the example above with two compilation units having partial type
3498
 * information for structs `A` and `B`, the output of algorithm will emit
3499
 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3500
 * (as well as type information for `int` and pointers), as if they were defined
3501
 * in a single compilation unit as:
3502
 *
3503
 * struct A {
3504
 *  int a;
3505
 *  struct A* self;
3506
 *  struct S* parent;
3507
 * };
3508
 * struct B {
3509
 *  int b;
3510
 *  struct B* self;
3511
 *  struct S* parent;
3512
 * };
3513
 * struct S {
3514
 *  struct A* a_ptr;
3515
 *  struct B* b_ptr;
3516
 * };
3517
 *
3518
 * Algorithm summary
3519
 * =================
3520
 *
3521
 * Algorithm completes its work in 7 separate passes:
3522
 *
3523
 * 1. Strings deduplication.
3524
 * 2. Primitive types deduplication (int, enum, fwd).
3525
 * 3. Struct/union types deduplication.
3526
 * 4. Resolve unambiguous forward declarations.
3527
 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3528
 *    protos, and const/volatile/restrict modifiers).
3529
 * 6. Types compaction.
3530
 * 7. Types remapping.
3531
 *
3532
 * Algorithm determines canonical type descriptor, which is a single
3533
 * representative type for each truly unique type. This canonical type is the
3534
 * one that will go into final deduplicated BTF type information. For
3535
 * struct/unions, it is also the type that algorithm will merge additional type
3536
 * information into (while resolving FWDs), as it discovers it from data in
3537
 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3538
 * that type is canonical, or to some other type, if that type is equivalent
3539
 * and was chosen as canonical representative. This mapping is stored in
3540
 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3541
 * FWD type got resolved to.
3542
 *
3543
 * To facilitate fast discovery of canonical types, we also maintain canonical
3544
 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3545
 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3546
 * that match that signature. With sufficiently good choice of type signature
3547
 * hashing function, we can limit number of canonical types for each unique type
3548
 * signature to a very small number, allowing to find canonical type for any
3549
 * duplicated type very quickly.
3550
 *
3551
 * Struct/union deduplication is the most critical part and algorithm for
3552
 * deduplicating structs/unions is described in greater details in comments for
3553
 * `btf_dedup_is_equiv` function.
3554
 */
3555
int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3556
0
{
3557
0
  struct btf_dedup *d;
3558
0
  int err;
3559
3560
0
  if (!OPTS_VALID(opts, btf_dedup_opts))
3561
0
    return libbpf_err(-EINVAL);
3562
3563
0
  d = btf_dedup_new(btf, opts);
3564
0
  if (IS_ERR(d)) {
3565
0
    pr_debug("btf_dedup_new failed: %ld\n", PTR_ERR(d));
3566
0
    return libbpf_err(-EINVAL);
3567
0
  }
3568
3569
0
  if (btf_ensure_modifiable(btf)) {
3570
0
    err = -ENOMEM;
3571
0
    goto done;
3572
0
  }
3573
3574
0
  err = btf_dedup_prep(d);
3575
0
  if (err) {
3576
0
    pr_debug("btf_dedup_prep failed: %s\n", errstr(err));
3577
0
    goto done;
3578
0
  }
3579
0
  err = btf_dedup_strings(d);
3580
0
  if (err < 0) {
3581
0
    pr_debug("btf_dedup_strings failed: %s\n", errstr(err));
3582
0
    goto done;
3583
0
  }
3584
0
  err = btf_dedup_prim_types(d);
3585
0
  if (err < 0) {
3586
0
    pr_debug("btf_dedup_prim_types failed: %s\n", errstr(err));
3587
0
    goto done;
3588
0
  }
3589
0
  err = btf_dedup_struct_types(d);
3590
0
  if (err < 0) {
3591
0
    pr_debug("btf_dedup_struct_types failed: %s\n", errstr(err));
3592
0
    goto done;
3593
0
  }
3594
0
  err = btf_dedup_resolve_fwds(d);
3595
0
  if (err < 0) {
3596
0
    pr_debug("btf_dedup_resolve_fwds failed: %s\n", errstr(err));
3597
0
    goto done;
3598
0
  }
3599
0
  err = btf_dedup_ref_types(d);
3600
0
  if (err < 0) {
3601
0
    pr_debug("btf_dedup_ref_types failed: %s\n", errstr(err));
3602
0
    goto done;
3603
0
  }
3604
0
  err = btf_dedup_compact_types(d);
3605
0
  if (err < 0) {
3606
0
    pr_debug("btf_dedup_compact_types failed: %s\n", errstr(err));
3607
0
    goto done;
3608
0
  }
3609
0
  err = btf_dedup_remap_types(d);
3610
0
  if (err < 0) {
3611
0
    pr_debug("btf_dedup_remap_types failed: %s\n", errstr(err));
3612
0
    goto done;
3613
0
  }
3614
3615
0
done:
3616
0
  btf_dedup_free(d);
3617
0
  return libbpf_err(err);
3618
0
}
3619
3620
0
#define BTF_UNPROCESSED_ID ((__u32)-1)
3621
0
#define BTF_IN_PROGRESS_ID ((__u32)-2)
3622
3623
struct btf_dedup {
3624
  /* .BTF section to be deduped in-place */
3625
  struct btf *btf;
3626
  /*
3627
   * Optional .BTF.ext section. When provided, any strings referenced
3628
   * from it will be taken into account when deduping strings
3629
   */
3630
  struct btf_ext *btf_ext;
3631
  /*
3632
   * This is a map from any type's signature hash to a list of possible
3633
   * canonical representative type candidates. Hash collisions are
3634
   * ignored, so even types of various kinds can share same list of
3635
   * candidates, which is fine because we rely on subsequent
3636
   * btf_xxx_equal() checks to authoritatively verify type equality.
3637
   */
3638
  struct hashmap *dedup_table;
3639
  /* Canonical types map */
3640
  __u32 *map;
3641
  /* Hypothetical mapping, used during type graph equivalence checks */
3642
  __u32 *hypot_map;
3643
  __u32 *hypot_list;
3644
  size_t hypot_cnt;
3645
  size_t hypot_cap;
3646
  /* Whether hypothetical mapping, if successful, would need to adjust
3647
   * already canonicalized types (due to a new forward declaration to
3648
   * concrete type resolution). In such case, during split BTF dedup
3649
   * candidate type would still be considered as different, because base
3650
   * BTF is considered to be immutable.
3651
   */
3652
  bool hypot_adjust_canon;
3653
  /* Various option modifying behavior of algorithm */
3654
  struct btf_dedup_opts opts;
3655
  /* temporary strings deduplication state */
3656
  struct strset *strs_set;
3657
};
3658
3659
static unsigned long hash_combine(unsigned long h, unsigned long value)
3660
0
{
3661
0
  return h * 31 + value;
3662
0
}
3663
3664
#define for_each_dedup_cand(d, node, hash) \
3665
0
  hashmap__for_each_key_entry(d->dedup_table, node, hash)
3666
3667
static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3668
0
{
3669
0
  return hashmap__append(d->dedup_table, hash, type_id);
3670
0
}
3671
3672
static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3673
           __u32 from_id, __u32 to_id)
3674
0
{
3675
0
  if (d->hypot_cnt == d->hypot_cap) {
3676
0
    __u32 *new_list;
3677
3678
0
    d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3679
0
    new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3680
0
    if (!new_list)
3681
0
      return -ENOMEM;
3682
0
    d->hypot_list = new_list;
3683
0
  }
3684
0
  d->hypot_list[d->hypot_cnt++] = from_id;
3685
0
  d->hypot_map[from_id] = to_id;
3686
0
  return 0;
3687
0
}
3688
3689
static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3690
0
{
3691
0
  int i;
3692
3693
0
  for (i = 0; i < d->hypot_cnt; i++)
3694
0
    d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3695
0
  d->hypot_cnt = 0;
3696
0
  d->hypot_adjust_canon = false;
3697
0
}
3698
3699
static void btf_dedup_free(struct btf_dedup *d)
3700
0
{
3701
0
  hashmap__free(d->dedup_table);
3702
0
  d->dedup_table = NULL;
3703
3704
0
  free(d->map);
3705
0
  d->map = NULL;
3706
3707
0
  free(d->hypot_map);
3708
0
  d->hypot_map = NULL;
3709
3710
0
  free(d->hypot_list);
3711
0
  d->hypot_list = NULL;
3712
3713
0
  free(d);
3714
0
}
3715
3716
static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3717
0
{
3718
0
  return key;
3719
0
}
3720
3721
static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3722
0
{
3723
0
  return 0;
3724
0
}
3725
3726
static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3727
0
{
3728
0
  return k1 == k2;
3729
0
}
3730
3731
static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3732
0
{
3733
0
  struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3734
0
  hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3735
0
  int i, err = 0, type_cnt;
3736
3737
0
  if (!d)
3738
0
    return ERR_PTR(-ENOMEM);
3739
3740
0
  if (OPTS_GET(opts, force_collisions, false))
3741
0
    hash_fn = btf_dedup_collision_hash_fn;
3742
3743
0
  d->btf = btf;
3744
0
  d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3745
3746
0
  d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3747
0
  if (IS_ERR(d->dedup_table)) {
3748
0
    err = PTR_ERR(d->dedup_table);
3749
0
    d->dedup_table = NULL;
3750
0
    goto done;
3751
0
  }
3752
3753
0
  type_cnt = btf__type_cnt(btf);
3754
0
  d->map = malloc(sizeof(__u32) * type_cnt);
3755
0
  if (!d->map) {
3756
0
    err = -ENOMEM;
3757
0
    goto done;
3758
0
  }
3759
  /* special BTF "void" type is made canonical immediately */
3760
0
  d->map[0] = 0;
3761
0
  for (i = 1; i < type_cnt; i++) {
3762
0
    struct btf_type *t = btf_type_by_id(d->btf, i);
3763
3764
    /* VAR and DATASEC are never deduped and are self-canonical */
3765
0
    if (btf_is_var(t) || btf_is_datasec(t))
3766
0
      d->map[i] = i;
3767
0
    else
3768
0
      d->map[i] = BTF_UNPROCESSED_ID;
3769
0
  }
3770
3771
0
  d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3772
0
  if (!d->hypot_map) {
3773
0
    err = -ENOMEM;
3774
0
    goto done;
3775
0
  }
3776
0
  for (i = 0; i < type_cnt; i++)
3777
0
    d->hypot_map[i] = BTF_UNPROCESSED_ID;
3778
3779
0
done:
3780
0
  if (err) {
3781
0
    btf_dedup_free(d);
3782
0
    return ERR_PTR(err);
3783
0
  }
3784
3785
0
  return d;
3786
0
}
3787
3788
/*
3789
 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3790
 * string and pass pointer to it to a provided callback `fn`.
3791
 */
3792
static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3793
0
{
3794
0
  int i, r;
3795
3796
0
  for (i = 0; i < d->btf->nr_types; i++) {
3797
0
    struct btf_field_iter it;
3798
0
    struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3799
0
    __u32 *str_off;
3800
3801
0
    r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
3802
0
    if (r)
3803
0
      return r;
3804
3805
0
    while ((str_off = btf_field_iter_next(&it))) {
3806
0
      r = fn(str_off, ctx);
3807
0
      if (r)
3808
0
        return r;
3809
0
    }
3810
0
  }
3811
3812
0
  if (!d->btf_ext)
3813
0
    return 0;
3814
3815
0
  r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3816
0
  if (r)
3817
0
    return r;
3818
3819
0
  return 0;
3820
0
}
3821
3822
static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3823
0
{
3824
0
  struct btf_dedup *d = ctx;
3825
0
  __u32 str_off = *str_off_ptr;
3826
0
  const char *s;
3827
0
  int off, err;
3828
3829
  /* don't touch empty string or string in main BTF */
3830
0
  if (str_off == 0 || str_off < d->btf->start_str_off)
3831
0
    return 0;
3832
3833
0
  s = btf__str_by_offset(d->btf, str_off);
3834
0
  if (d->btf->base_btf) {
3835
0
    err = btf__find_str(d->btf->base_btf, s);
3836
0
    if (err >= 0) {
3837
0
      *str_off_ptr = err;
3838
0
      return 0;
3839
0
    }
3840
0
    if (err != -ENOENT)
3841
0
      return err;
3842
0
  }
3843
3844
0
  off = strset__add_str(d->strs_set, s);
3845
0
  if (off < 0)
3846
0
    return off;
3847
3848
0
  *str_off_ptr = d->btf->start_str_off + off;
3849
0
  return 0;
3850
0
}
3851
3852
/*
3853
 * Dedup string and filter out those that are not referenced from either .BTF
3854
 * or .BTF.ext (if provided) sections.
3855
 *
3856
 * This is done by building index of all strings in BTF's string section,
3857
 * then iterating over all entities that can reference strings (e.g., type
3858
 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3859
 * strings as used. After that all used strings are deduped and compacted into
3860
 * sequential blob of memory and new offsets are calculated. Then all the string
3861
 * references are iterated again and rewritten using new offsets.
3862
 */
3863
static int btf_dedup_strings(struct btf_dedup *d)
3864
0
{
3865
0
  int err;
3866
3867
0
  if (d->btf->strs_deduped)
3868
0
    return 0;
3869
3870
0
  d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3871
0
  if (IS_ERR(d->strs_set)) {
3872
0
    err = PTR_ERR(d->strs_set);
3873
0
    goto err_out;
3874
0
  }
3875
3876
0
  if (!d->btf->base_btf) {
3877
    /* insert empty string; we won't be looking it up during strings
3878
     * dedup, but it's good to have it for generic BTF string lookups
3879
     */
3880
0
    err = strset__add_str(d->strs_set, "");
3881
0
    if (err < 0)
3882
0
      goto err_out;
3883
0
  }
3884
3885
  /* remap string offsets */
3886
0
  err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3887
0
  if (err)
3888
0
    goto err_out;
3889
3890
  /* replace BTF string data and hash with deduped ones */
3891
0
  strset__free(d->btf->strs_set);
3892
0
  d->btf->hdr->str_len = strset__data_size(d->strs_set);
3893
0
  d->btf->strs_set = d->strs_set;
3894
0
  d->strs_set = NULL;
3895
0
  d->btf->strs_deduped = true;
3896
0
  return 0;
3897
3898
0
err_out:
3899
0
  strset__free(d->strs_set);
3900
0
  d->strs_set = NULL;
3901
3902
0
  return err;
3903
0
}
3904
3905
static long btf_hash_common(struct btf_type *t)
3906
0
{
3907
0
  long h;
3908
3909
0
  h = hash_combine(0, t->name_off);
3910
0
  h = hash_combine(h, t->info);
3911
0
  h = hash_combine(h, t->size);
3912
0
  return h;
3913
0
}
3914
3915
static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3916
0
{
3917
0
  return t1->name_off == t2->name_off &&
3918
0
         t1->info == t2->info &&
3919
0
         t1->size == t2->size;
3920
0
}
3921
3922
/* Calculate type signature hash of INT or TAG. */
3923
static long btf_hash_int_decl_tag(struct btf_type *t)
3924
0
{
3925
0
  __u32 info = *(__u32 *)(t + 1);
3926
0
  long h;
3927
3928
0
  h = btf_hash_common(t);
3929
0
  h = hash_combine(h, info);
3930
0
  return h;
3931
0
}
3932
3933
/* Check structural equality of two INTs or TAGs. */
3934
static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3935
0
{
3936
0
  __u32 info1, info2;
3937
3938
0
  if (!btf_equal_common(t1, t2))
3939
0
    return false;
3940
0
  info1 = *(__u32 *)(t1 + 1);
3941
0
  info2 = *(__u32 *)(t2 + 1);
3942
0
  return info1 == info2;
3943
0
}
3944
3945
/* Calculate type signature hash of ENUM/ENUM64. */
3946
static long btf_hash_enum(struct btf_type *t)
3947
0
{
3948
0
  long h;
3949
3950
  /* don't hash vlen, enum members and size to support enum fwd resolving */
3951
0
  h = hash_combine(0, t->name_off);
3952
0
  return h;
3953
0
}
3954
3955
static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3956
0
{
3957
0
  const struct btf_enum *m1, *m2;
3958
0
  __u16 vlen;
3959
0
  int i;
3960
3961
0
  vlen = btf_vlen(t1);
3962
0
  m1 = btf_enum(t1);
3963
0
  m2 = btf_enum(t2);
3964
0
  for (i = 0; i < vlen; i++) {
3965
0
    if (m1->name_off != m2->name_off || m1->val != m2->val)
3966
0
      return false;
3967
0
    m1++;
3968
0
    m2++;
3969
0
  }
3970
0
  return true;
3971
0
}
3972
3973
static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3974
0
{
3975
0
  const struct btf_enum64 *m1, *m2;
3976
0
  __u16 vlen;
3977
0
  int i;
3978
3979
0
  vlen = btf_vlen(t1);
3980
0
  m1 = btf_enum64(t1);
3981
0
  m2 = btf_enum64(t2);
3982
0
  for (i = 0; i < vlen; i++) {
3983
0
    if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3984
0
        m1->val_hi32 != m2->val_hi32)
3985
0
      return false;
3986
0
    m1++;
3987
0
    m2++;
3988
0
  }
3989
0
  return true;
3990
0
}
3991
3992
/* Check structural equality of two ENUMs or ENUM64s. */
3993
static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3994
0
{
3995
0
  if (!btf_equal_common(t1, t2))
3996
0
    return false;
3997
3998
  /* t1 & t2 kinds are identical because of btf_equal_common */
3999
0
  if (btf_kind(t1) == BTF_KIND_ENUM)
4000
0
    return btf_equal_enum_members(t1, t2);
4001
0
  else
4002
0
    return btf_equal_enum64_members(t1, t2);
4003
0
}
4004
4005
static inline bool btf_is_enum_fwd(struct btf_type *t)
4006
0
{
4007
0
  return btf_is_any_enum(t) && btf_vlen(t) == 0;
4008
0
}
4009
4010
static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
4011
0
{
4012
0
  if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
4013
0
    return btf_equal_enum(t1, t2);
4014
  /* At this point either t1 or t2 or both are forward declarations, thus:
4015
   * - skip comparing vlen because it is zero for forward declarations;
4016
   * - skip comparing size to allow enum forward declarations
4017
   *   to be compatible with enum64 full declarations;
4018
   * - skip comparing kind for the same reason.
4019
   */
4020
0
  return t1->name_off == t2->name_off &&
4021
0
         btf_is_any_enum(t1) && btf_is_any_enum(t2);
4022
0
}
4023
4024
/*
4025
 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
4026
 * as referenced type IDs equivalence is established separately during type
4027
 * graph equivalence check algorithm.
4028
 */
4029
static long btf_hash_struct(struct btf_type *t)
4030
0
{
4031
0
  const struct btf_member *member = btf_members(t);
4032
0
  __u32 vlen = btf_vlen(t);
4033
0
  long h = btf_hash_common(t);
4034
0
  int i;
4035
4036
0
  for (i = 0; i < vlen; i++) {
4037
0
    h = hash_combine(h, member->name_off);
4038
0
    h = hash_combine(h, member->offset);
4039
    /* no hashing of referenced type ID, it can be unresolved yet */
4040
0
    member++;
4041
0
  }
4042
0
  return h;
4043
0
}
4044
4045
/*
4046
 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
4047
 * type IDs. This check is performed during type graph equivalence check and
4048
 * referenced types equivalence is checked separately.
4049
 */
4050
static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
4051
0
{
4052
0
  const struct btf_member *m1, *m2;
4053
0
  __u16 vlen;
4054
0
  int i;
4055
4056
0
  if (!btf_equal_common(t1, t2))
4057
0
    return false;
4058
4059
0
  vlen = btf_vlen(t1);
4060
0
  m1 = btf_members(t1);
4061
0
  m2 = btf_members(t2);
4062
0
  for (i = 0; i < vlen; i++) {
4063
0
    if (m1->name_off != m2->name_off || m1->offset != m2->offset)
4064
0
      return false;
4065
0
    m1++;
4066
0
    m2++;
4067
0
  }
4068
0
  return true;
4069
0
}
4070
4071
/*
4072
 * Calculate type signature hash of ARRAY, including referenced type IDs,
4073
 * under assumption that they were already resolved to canonical type IDs and
4074
 * are not going to change.
4075
 */
4076
static long btf_hash_array(struct btf_type *t)
4077
0
{
4078
0
  const struct btf_array *info = btf_array(t);
4079
0
  long h = btf_hash_common(t);
4080
4081
0
  h = hash_combine(h, info->type);
4082
0
  h = hash_combine(h, info->index_type);
4083
0
  h = hash_combine(h, info->nelems);
4084
0
  return h;
4085
0
}
4086
4087
/*
4088
 * Check exact equality of two ARRAYs, taking into account referenced
4089
 * type IDs, under assumption that they were already resolved to canonical
4090
 * type IDs and are not going to change.
4091
 * This function is called during reference types deduplication to compare
4092
 * ARRAY to potential canonical representative.
4093
 */
4094
static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
4095
0
{
4096
0
  const struct btf_array *info1, *info2;
4097
4098
0
  if (!btf_equal_common(t1, t2))
4099
0
    return false;
4100
4101
0
  info1 = btf_array(t1);
4102
0
  info2 = btf_array(t2);
4103
0
  return info1->type == info2->type &&
4104
0
         info1->index_type == info2->index_type &&
4105
0
         info1->nelems == info2->nelems;
4106
0
}
4107
4108
/*
4109
 * Check structural compatibility of two ARRAYs, ignoring referenced type
4110
 * IDs. This check is performed during type graph equivalence check and
4111
 * referenced types equivalence is checked separately.
4112
 */
4113
static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
4114
0
{
4115
0
  if (!btf_equal_common(t1, t2))
4116
0
    return false;
4117
4118
0
  return btf_array(t1)->nelems == btf_array(t2)->nelems;
4119
0
}
4120
4121
/*
4122
 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
4123
 * under assumption that they were already resolved to canonical type IDs and
4124
 * are not going to change.
4125
 */
4126
static long btf_hash_fnproto(struct btf_type *t)
4127
0
{
4128
0
  const struct btf_param *member = btf_params(t);
4129
0
  __u16 vlen = btf_vlen(t);
4130
0
  long h = btf_hash_common(t);
4131
0
  int i;
4132
4133
0
  for (i = 0; i < vlen; i++) {
4134
0
    h = hash_combine(h, member->name_off);
4135
0
    h = hash_combine(h, member->type);
4136
0
    member++;
4137
0
  }
4138
0
  return h;
4139
0
}
4140
4141
/*
4142
 * Check exact equality of two FUNC_PROTOs, taking into account referenced
4143
 * type IDs, under assumption that they were already resolved to canonical
4144
 * type IDs and are not going to change.
4145
 * This function is called during reference types deduplication to compare
4146
 * FUNC_PROTO to potential canonical representative.
4147
 */
4148
static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
4149
0
{
4150
0
  const struct btf_param *m1, *m2;
4151
0
  __u16 vlen;
4152
0
  int i;
4153
4154
0
  if (!btf_equal_common(t1, t2))
4155
0
    return false;
4156
4157
0
  vlen = btf_vlen(t1);
4158
0
  m1 = btf_params(t1);
4159
0
  m2 = btf_params(t2);
4160
0
  for (i = 0; i < vlen; i++) {
4161
0
    if (m1->name_off != m2->name_off || m1->type != m2->type)
4162
0
      return false;
4163
0
    m1++;
4164
0
    m2++;
4165
0
  }
4166
0
  return true;
4167
0
}
4168
4169
/*
4170
 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
4171
 * IDs. This check is performed during type graph equivalence check and
4172
 * referenced types equivalence is checked separately.
4173
 */
4174
static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
4175
0
{
4176
0
  const struct btf_param *m1, *m2;
4177
0
  __u16 vlen;
4178
0
  int i;
4179
4180
  /* skip return type ID */
4181
0
  if (t1->name_off != t2->name_off || t1->info != t2->info)
4182
0
    return false;
4183
4184
0
  vlen = btf_vlen(t1);
4185
0
  m1 = btf_params(t1);
4186
0
  m2 = btf_params(t2);
4187
0
  for (i = 0; i < vlen; i++) {
4188
0
    if (m1->name_off != m2->name_off)
4189
0
      return false;
4190
0
    m1++;
4191
0
    m2++;
4192
0
  }
4193
0
  return true;
4194
0
}
4195
4196
/* Prepare split BTF for deduplication by calculating hashes of base BTF's
4197
 * types and initializing the rest of the state (canonical type mapping) for
4198
 * the fixed base BTF part.
4199
 */
4200
static int btf_dedup_prep(struct btf_dedup *d)
4201
0
{
4202
0
  struct btf_type *t;
4203
0
  int type_id;
4204
0
  long h;
4205
4206
0
  if (!d->btf->base_btf)
4207
0
    return 0;
4208
4209
0
  for (type_id = 1; type_id < d->btf->start_id; type_id++) {
4210
0
    t = btf_type_by_id(d->btf, type_id);
4211
4212
    /* all base BTF types are self-canonical by definition */
4213
0
    d->map[type_id] = type_id;
4214
4215
0
    switch (btf_kind(t)) {
4216
0
    case BTF_KIND_VAR:
4217
0
    case BTF_KIND_DATASEC:
4218
      /* VAR and DATASEC are never hash/deduplicated */
4219
0
      continue;
4220
0
    case BTF_KIND_CONST:
4221
0
    case BTF_KIND_VOLATILE:
4222
0
    case BTF_KIND_RESTRICT:
4223
0
    case BTF_KIND_PTR:
4224
0
    case BTF_KIND_FWD:
4225
0
    case BTF_KIND_TYPEDEF:
4226
0
    case BTF_KIND_FUNC:
4227
0
    case BTF_KIND_FLOAT:
4228
0
    case BTF_KIND_TYPE_TAG:
4229
0
      h = btf_hash_common(t);
4230
0
      break;
4231
0
    case BTF_KIND_INT:
4232
0
    case BTF_KIND_DECL_TAG:
4233
0
      h = btf_hash_int_decl_tag(t);
4234
0
      break;
4235
0
    case BTF_KIND_ENUM:
4236
0
    case BTF_KIND_ENUM64:
4237
0
      h = btf_hash_enum(t);
4238
0
      break;
4239
0
    case BTF_KIND_STRUCT:
4240
0
    case BTF_KIND_UNION:
4241
0
      h = btf_hash_struct(t);
4242
0
      break;
4243
0
    case BTF_KIND_ARRAY:
4244
0
      h = btf_hash_array(t);
4245
0
      break;
4246
0
    case BTF_KIND_FUNC_PROTO:
4247
0
      h = btf_hash_fnproto(t);
4248
0
      break;
4249
0
    default:
4250
0
      pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
4251
0
      return -EINVAL;
4252
0
    }
4253
0
    if (btf_dedup_table_add(d, h, type_id))
4254
0
      return -ENOMEM;
4255
0
  }
4256
4257
0
  return 0;
4258
0
}
4259
4260
/*
4261
 * Deduplicate primitive types, that can't reference other types, by calculating
4262
 * their type signature hash and comparing them with any possible canonical
4263
 * candidate. If no canonical candidate matches, type itself is marked as
4264
 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
4265
 */
4266
static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
4267
0
{
4268
0
  struct btf_type *t = btf_type_by_id(d->btf, type_id);
4269
0
  struct hashmap_entry *hash_entry;
4270
0
  struct btf_type *cand;
4271
  /* if we don't find equivalent type, then we are canonical */
4272
0
  __u32 new_id = type_id;
4273
0
  __u32 cand_id;
4274
0
  long h;
4275
4276
0
  switch (btf_kind(t)) {
4277
0
  case BTF_KIND_CONST:
4278
0
  case BTF_KIND_VOLATILE:
4279
0
  case BTF_KIND_RESTRICT:
4280
0
  case BTF_KIND_PTR:
4281
0
  case BTF_KIND_TYPEDEF:
4282
0
  case BTF_KIND_ARRAY:
4283
0
  case BTF_KIND_STRUCT:
4284
0
  case BTF_KIND_UNION:
4285
0
  case BTF_KIND_FUNC:
4286
0
  case BTF_KIND_FUNC_PROTO:
4287
0
  case BTF_KIND_VAR:
4288
0
  case BTF_KIND_DATASEC:
4289
0
  case BTF_KIND_DECL_TAG:
4290
0
  case BTF_KIND_TYPE_TAG:
4291
0
    return 0;
4292
4293
0
  case BTF_KIND_INT:
4294
0
    h = btf_hash_int_decl_tag(t);
4295
0
    for_each_dedup_cand(d, hash_entry, h) {
4296
0
      cand_id = hash_entry->value;
4297
0
      cand = btf_type_by_id(d->btf, cand_id);
4298
0
      if (btf_equal_int_tag(t, cand)) {
4299
0
        new_id = cand_id;
4300
0
        break;
4301
0
      }
4302
0
    }
4303
0
    break;
4304
4305
0
  case BTF_KIND_ENUM:
4306
0
  case BTF_KIND_ENUM64:
4307
0
    h = btf_hash_enum(t);
4308
0
    for_each_dedup_cand(d, hash_entry, h) {
4309
0
      cand_id = hash_entry->value;
4310
0
      cand = btf_type_by_id(d->btf, cand_id);
4311
0
      if (btf_equal_enum(t, cand)) {
4312
0
        new_id = cand_id;
4313
0
        break;
4314
0
      }
4315
0
      if (btf_compat_enum(t, cand)) {
4316
0
        if (btf_is_enum_fwd(t)) {
4317
          /* resolve fwd to full enum */
4318
0
          new_id = cand_id;
4319
0
          break;
4320
0
        }
4321
        /* resolve canonical enum fwd to full enum */
4322
0
        d->map[cand_id] = type_id;
4323
0
      }
4324
0
    }
4325
0
    break;
4326
4327
0
  case BTF_KIND_FWD:
4328
0
  case BTF_KIND_FLOAT:
4329
0
    h = btf_hash_common(t);
4330
0
    for_each_dedup_cand(d, hash_entry, h) {
4331
0
      cand_id = hash_entry->value;
4332
0
      cand = btf_type_by_id(d->btf, cand_id);
4333
0
      if (btf_equal_common(t, cand)) {
4334
0
        new_id = cand_id;
4335
0
        break;
4336
0
      }
4337
0
    }
4338
0
    break;
4339
4340
0
  default:
4341
0
    return -EINVAL;
4342
0
  }
4343
4344
0
  d->map[type_id] = new_id;
4345
0
  if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4346
0
    return -ENOMEM;
4347
4348
0
  return 0;
4349
0
}
4350
4351
static int btf_dedup_prim_types(struct btf_dedup *d)
4352
0
{
4353
0
  int i, err;
4354
4355
0
  for (i = 0; i < d->btf->nr_types; i++) {
4356
0
    err = btf_dedup_prim_type(d, d->btf->start_id + i);
4357
0
    if (err)
4358
0
      return err;
4359
0
  }
4360
0
  return 0;
4361
0
}
4362
4363
/*
4364
 * Check whether type is already mapped into canonical one (could be to itself).
4365
 */
4366
static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
4367
0
{
4368
0
  return d->map[type_id] <= BTF_MAX_NR_TYPES;
4369
0
}
4370
4371
/*
4372
 * Resolve type ID into its canonical type ID, if any; otherwise return original
4373
 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
4374
 * STRUCT/UNION link and resolve it into canonical type ID as well.
4375
 */
4376
static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
4377
0
{
4378
0
  while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4379
0
    type_id = d->map[type_id];
4380
0
  return type_id;
4381
0
}
4382
4383
/*
4384
 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
4385
 * type ID.
4386
 */
4387
static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
4388
0
{
4389
0
  __u32 orig_type_id = type_id;
4390
4391
0
  if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4392
0
    return type_id;
4393
4394
0
  while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4395
0
    type_id = d->map[type_id];
4396
4397
0
  if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4398
0
    return type_id;
4399
4400
0
  return orig_type_id;
4401
0
}
4402
4403
4404
static inline __u16 btf_fwd_kind(struct btf_type *t)
4405
0
{
4406
0
  return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
4407
0
}
4408
4409
static bool btf_dedup_identical_types(struct btf_dedup *d, __u32 id1, __u32 id2, int depth)
4410
0
{
4411
0
  struct btf_type *t1, *t2;
4412
0
  int k1, k2;
4413
0
recur:
4414
0
  if (depth <= 0)
4415
0
    return false;
4416
4417
0
  t1 = btf_type_by_id(d->btf, id1);
4418
0
  t2 = btf_type_by_id(d->btf, id2);
4419
4420
0
  k1 = btf_kind(t1);
4421
0
  k2 = btf_kind(t2);
4422
0
  if (k1 != k2)
4423
0
    return false;
4424
4425
0
  switch (k1) {
4426
0
  case BTF_KIND_UNKN: /* VOID */
4427
0
    return true;
4428
0
  case BTF_KIND_INT:
4429
0
    return btf_equal_int_tag(t1, t2);
4430
0
  case BTF_KIND_ENUM:
4431
0
  case BTF_KIND_ENUM64:
4432
0
    return btf_compat_enum(t1, t2);
4433
0
  case BTF_KIND_FWD:
4434
0
  case BTF_KIND_FLOAT:
4435
0
    return btf_equal_common(t1, t2);
4436
0
  case BTF_KIND_CONST:
4437
0
  case BTF_KIND_VOLATILE:
4438
0
  case BTF_KIND_RESTRICT:
4439
0
  case BTF_KIND_PTR:
4440
0
  case BTF_KIND_TYPEDEF:
4441
0
  case BTF_KIND_FUNC:
4442
0
  case BTF_KIND_TYPE_TAG:
4443
0
    if (t1->info != t2->info || t1->name_off != t2->name_off)
4444
0
      return false;
4445
0
    id1 = t1->type;
4446
0
    id2 = t2->type;
4447
0
    goto recur;
4448
0
  case BTF_KIND_ARRAY: {
4449
0
    struct btf_array *a1, *a2;
4450
4451
0
    if (!btf_compat_array(t1, t2))
4452
0
      return false;
4453
4454
0
    a1 = btf_array(t1);
4455
0
    a2 = btf_array(t1);
4456
4457
0
    if (a1->index_type != a2->index_type &&
4458
0
        !btf_dedup_identical_types(d, a1->index_type, a2->index_type, depth - 1))
4459
0
      return false;
4460
4461
0
    if (a1->type != a2->type &&
4462
0
        !btf_dedup_identical_types(d, a1->type, a2->type, depth - 1))
4463
0
      return false;
4464
4465
0
    return true;
4466
0
  }
4467
0
  case BTF_KIND_STRUCT:
4468
0
  case BTF_KIND_UNION: {
4469
0
    const struct btf_member *m1, *m2;
4470
0
    int i, n;
4471
4472
0
    if (!btf_shallow_equal_struct(t1, t2))
4473
0
      return false;
4474
4475
0
    m1 = btf_members(t1);
4476
0
    m2 = btf_members(t2);
4477
0
    for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
4478
0
      if (m1->type == m2->type)
4479
0
        continue;
4480
0
      if (!btf_dedup_identical_types(d, m1->type, m2->type, depth - 1))
4481
0
        return false;
4482
0
    }
4483
0
    return true;
4484
0
  }
4485
0
  case BTF_KIND_FUNC_PROTO: {
4486
0
    const struct btf_param *p1, *p2;
4487
0
    int i, n;
4488
4489
0
    if (!btf_compat_fnproto(t1, t2))
4490
0
      return false;
4491
4492
0
    if (t1->type != t2->type &&
4493
0
        !btf_dedup_identical_types(d, t1->type, t2->type, depth - 1))
4494
0
      return false;
4495
4496
0
    p1 = btf_params(t1);
4497
0
    p2 = btf_params(t2);
4498
0
    for (i = 0, n = btf_vlen(t1); i < n; i++, p1++, p2++) {
4499
0
      if (p1->type == p2->type)
4500
0
        continue;
4501
0
      if (!btf_dedup_identical_types(d, p1->type, p2->type, depth - 1))
4502
0
        return false;
4503
0
    }
4504
0
    return true;
4505
0
  }
4506
0
  default:
4507
0
    return false;
4508
0
  }
4509
0
}
4510
4511
4512
/*
4513
 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
4514
 * call it "candidate graph" in this description for brevity) to a type graph
4515
 * formed by (potential) canonical struct/union ("canonical graph" for brevity
4516
 * here, though keep in mind that not all types in canonical graph are
4517
 * necessarily canonical representatives themselves, some of them might be
4518
 * duplicates or its uniqueness might not have been established yet).
4519
 * Returns:
4520
 *  - >0, if type graphs are equivalent;
4521
 *  -  0, if not equivalent;
4522
 *  - <0, on error.
4523
 *
4524
 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
4525
 * equivalence of BTF types at each step. If at any point BTF types in candidate
4526
 * and canonical graphs are not compatible structurally, whole graphs are
4527
 * incompatible. If types are structurally equivalent (i.e., all information
4528
 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
4529
 * a `cand_id` is recoded in hypothetical mapping (`btf_dedup->hypot_map`).
4530
 * If a type references other types, then those referenced types are checked
4531
 * for equivalence recursively.
4532
 *
4533
 * During DFS traversal, if we find that for current `canon_id` type we
4534
 * already have some mapping in hypothetical map, we check for two possible
4535
 * situations:
4536
 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
4537
 *     happen when type graphs have cycles. In this case we assume those two
4538
 *     types are equivalent.
4539
 *   - `canon_id` is mapped to different type. This is contradiction in our
4540
 *     hypothetical mapping, because same graph in canonical graph corresponds
4541
 *     to two different types in candidate graph, which for equivalent type
4542
 *     graphs shouldn't happen. This condition terminates equivalence check
4543
 *     with negative result.
4544
 *
4545
 * If type graphs traversal exhausts types to check and find no contradiction,
4546
 * then type graphs are equivalent.
4547
 *
4548
 * When checking types for equivalence, there is one special case: FWD types.
4549
 * If FWD type resolution is allowed and one of the types (either from canonical
4550
 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
4551
 * flag) and their names match, hypothetical mapping is updated to point from
4552
 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
4553
 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
4554
 *
4555
 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
4556
 * if there are two exactly named (or anonymous) structs/unions that are
4557
 * compatible structurally, one of which has FWD field, while other is concrete
4558
 * STRUCT/UNION, but according to C sources they are different structs/unions
4559
 * that are referencing different types with the same name. This is extremely
4560
 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
4561
 * this logic is causing problems.
4562
 *
4563
 * Doing FWD resolution means that both candidate and/or canonical graphs can
4564
 * consists of portions of the graph that come from multiple compilation units.
4565
 * This is due to the fact that types within single compilation unit are always
4566
 * deduplicated and FWDs are already resolved, if referenced struct/union
4567
 * definition is available. So, if we had unresolved FWD and found corresponding
4568
 * STRUCT/UNION, they will be from different compilation units. This
4569
 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4570
 * type graph will likely have at least two different BTF types that describe
4571
 * same type (e.g., most probably there will be two different BTF types for the
4572
 * same 'int' primitive type) and could even have "overlapping" parts of type
4573
 * graph that describe same subset of types.
4574
 *
4575
 * This in turn means that our assumption that each type in canonical graph
4576
 * must correspond to exactly one type in candidate graph might not hold
4577
 * anymore and will make it harder to detect contradictions using hypothetical
4578
 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4579
 * resolution only in canonical graph. FWDs in candidate graphs are never
4580
 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4581
 * that can occur:
4582
 *   - Both types in canonical and candidate graphs are FWDs. If they are
4583
 *     structurally equivalent, then they can either be both resolved to the
4584
 *     same STRUCT/UNION or not resolved at all. In both cases they are
4585
 *     equivalent and there is no need to resolve FWD on candidate side.
4586
 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4587
 *     so nothing to resolve as well, algorithm will check equivalence anyway.
4588
 *   - Type in canonical graph is FWD, while type in candidate is concrete
4589
 *     STRUCT/UNION. In this case candidate graph comes from single compilation
4590
 *     unit, so there is exactly one BTF type for each unique C type. After
4591
 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4592
 *     in canonical graph mapping to single BTF type in candidate graph, but
4593
 *     because hypothetical mapping maps from canonical to candidate types, it's
4594
 *     alright, and we still maintain the property of having single `canon_id`
4595
 *     mapping to single `cand_id` (there could be two different `canon_id`
4596
 *     mapped to the same `cand_id`, but it's not contradictory).
4597
 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4598
 *     graph is FWD. In this case we are just going to check compatibility of
4599
 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4600
 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4601
 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4602
 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4603
 *     canonical graph.
4604
 */
4605
static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4606
            __u32 canon_id)
4607
0
{
4608
0
  struct btf_type *cand_type;
4609
0
  struct btf_type *canon_type;
4610
0
  __u32 hypot_type_id;
4611
0
  __u16 cand_kind;
4612
0
  __u16 canon_kind;
4613
0
  int i, eq;
4614
4615
  /* if both resolve to the same canonical, they must be equivalent */
4616
0
  if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4617
0
    return 1;
4618
4619
0
  canon_id = resolve_fwd_id(d, canon_id);
4620
4621
0
  hypot_type_id = d->hypot_map[canon_id];
4622
0
  if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4623
0
    if (hypot_type_id == cand_id)
4624
0
      return 1;
4625
    /* In some cases compiler will generate different DWARF types
4626
     * for *identical* array type definitions and use them for
4627
     * different fields within the *same* struct. This breaks type
4628
     * equivalence check, which makes an assumption that candidate
4629
     * types sub-graph has a consistent and deduped-by-compiler
4630
     * types within a single CU. And similar situation can happen
4631
     * with struct/union sometimes, and event with pointers.
4632
     * So accommodate cases like this doing a structural
4633
     * comparison recursively, but avoiding being stuck in endless
4634
     * loops by limiting the depth up to which we check.
4635
     */
4636
0
    if (btf_dedup_identical_types(d, hypot_type_id, cand_id, 16))
4637
0
      return 1;
4638
0
    return 0;
4639
0
  }
4640
4641
0
  if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4642
0
    return -ENOMEM;
4643
4644
0
  cand_type = btf_type_by_id(d->btf, cand_id);
4645
0
  canon_type = btf_type_by_id(d->btf, canon_id);
4646
0
  cand_kind = btf_kind(cand_type);
4647
0
  canon_kind = btf_kind(canon_type);
4648
4649
0
  if (cand_type->name_off != canon_type->name_off)
4650
0
    return 0;
4651
4652
  /* FWD <--> STRUCT/UNION equivalence check, if enabled */
4653
0
  if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4654
0
      && cand_kind != canon_kind) {
4655
0
    __u16 real_kind;
4656
0
    __u16 fwd_kind;
4657
4658
0
    if (cand_kind == BTF_KIND_FWD) {
4659
0
      real_kind = canon_kind;
4660
0
      fwd_kind = btf_fwd_kind(cand_type);
4661
0
    } else {
4662
0
      real_kind = cand_kind;
4663
0
      fwd_kind = btf_fwd_kind(canon_type);
4664
      /* we'd need to resolve base FWD to STRUCT/UNION */
4665
0
      if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4666
0
        d->hypot_adjust_canon = true;
4667
0
    }
4668
0
    return fwd_kind == real_kind;
4669
0
  }
4670
4671
0
  if (cand_kind != canon_kind)
4672
0
    return 0;
4673
4674
0
  switch (cand_kind) {
4675
0
  case BTF_KIND_INT:
4676
0
    return btf_equal_int_tag(cand_type, canon_type);
4677
4678
0
  case BTF_KIND_ENUM:
4679
0
  case BTF_KIND_ENUM64:
4680
0
    return btf_compat_enum(cand_type, canon_type);
4681
4682
0
  case BTF_KIND_FWD:
4683
0
  case BTF_KIND_FLOAT:
4684
0
    return btf_equal_common(cand_type, canon_type);
4685
4686
0
  case BTF_KIND_CONST:
4687
0
  case BTF_KIND_VOLATILE:
4688
0
  case BTF_KIND_RESTRICT:
4689
0
  case BTF_KIND_PTR:
4690
0
  case BTF_KIND_TYPEDEF:
4691
0
  case BTF_KIND_FUNC:
4692
0
  case BTF_KIND_TYPE_TAG:
4693
0
    if (cand_type->info != canon_type->info)
4694
0
      return 0;
4695
0
    return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4696
4697
0
  case BTF_KIND_ARRAY: {
4698
0
    const struct btf_array *cand_arr, *canon_arr;
4699
4700
0
    if (!btf_compat_array(cand_type, canon_type))
4701
0
      return 0;
4702
0
    cand_arr = btf_array(cand_type);
4703
0
    canon_arr = btf_array(canon_type);
4704
0
    eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4705
0
    if (eq <= 0)
4706
0
      return eq;
4707
0
    return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4708
0
  }
4709
4710
0
  case BTF_KIND_STRUCT:
4711
0
  case BTF_KIND_UNION: {
4712
0
    const struct btf_member *cand_m, *canon_m;
4713
0
    __u16 vlen;
4714
4715
0
    if (!btf_shallow_equal_struct(cand_type, canon_type))
4716
0
      return 0;
4717
0
    vlen = btf_vlen(cand_type);
4718
0
    cand_m = btf_members(cand_type);
4719
0
    canon_m = btf_members(canon_type);
4720
0
    for (i = 0; i < vlen; i++) {
4721
0
      eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4722
0
      if (eq <= 0)
4723
0
        return eq;
4724
0
      cand_m++;
4725
0
      canon_m++;
4726
0
    }
4727
4728
0
    return 1;
4729
0
  }
4730
4731
0
  case BTF_KIND_FUNC_PROTO: {
4732
0
    const struct btf_param *cand_p, *canon_p;
4733
0
    __u16 vlen;
4734
4735
0
    if (!btf_compat_fnproto(cand_type, canon_type))
4736
0
      return 0;
4737
0
    eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4738
0
    if (eq <= 0)
4739
0
      return eq;
4740
0
    vlen = btf_vlen(cand_type);
4741
0
    cand_p = btf_params(cand_type);
4742
0
    canon_p = btf_params(canon_type);
4743
0
    for (i = 0; i < vlen; i++) {
4744
0
      eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4745
0
      if (eq <= 0)
4746
0
        return eq;
4747
0
      cand_p++;
4748
0
      canon_p++;
4749
0
    }
4750
0
    return 1;
4751
0
  }
4752
4753
0
  default:
4754
0
    return -EINVAL;
4755
0
  }
4756
0
  return 0;
4757
0
}
4758
4759
/*
4760
 * Use hypothetical mapping, produced by successful type graph equivalence
4761
 * check, to augment existing struct/union canonical mapping, where possible.
4762
 *
4763
 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4764
 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4765
 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4766
 * we are recording the mapping anyway. As opposed to carefulness required
4767
 * for struct/union correspondence mapping (described below), for FWD resolution
4768
 * it's not important, as by the time that FWD type (reference type) will be
4769
 * deduplicated all structs/unions will be deduped already anyway.
4770
 *
4771
 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4772
 * not required for correctness. It needs to be done carefully to ensure that
4773
 * struct/union from candidate's type graph is not mapped into corresponding
4774
 * struct/union from canonical type graph that itself hasn't been resolved into
4775
 * canonical representative. The only guarantee we have is that canonical
4776
 * struct/union was determined as canonical and that won't change. But any
4777
 * types referenced through that struct/union fields could have been not yet
4778
 * resolved, so in case like that it's too early to establish any kind of
4779
 * correspondence between structs/unions.
4780
 *
4781
 * No canonical correspondence is derived for primitive types (they are already
4782
 * deduplicated completely already anyway) or reference types (they rely on
4783
 * stability of struct/union canonical relationship for equivalence checks).
4784
 */
4785
static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4786
0
{
4787
0
  __u32 canon_type_id, targ_type_id;
4788
0
  __u16 t_kind, c_kind;
4789
0
  __u32 t_id, c_id;
4790
0
  int i;
4791
4792
0
  for (i = 0; i < d->hypot_cnt; i++) {
4793
0
    canon_type_id = d->hypot_list[i];
4794
0
    targ_type_id = d->hypot_map[canon_type_id];
4795
0
    t_id = resolve_type_id(d, targ_type_id);
4796
0
    c_id = resolve_type_id(d, canon_type_id);
4797
0
    t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4798
0
    c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4799
    /*
4800
     * Resolve FWD into STRUCT/UNION.
4801
     * It's ok to resolve FWD into STRUCT/UNION that's not yet
4802
     * mapped to canonical representative (as opposed to
4803
     * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4804
     * eventually that struct is going to be mapped and all resolved
4805
     * FWDs will automatically resolve to correct canonical
4806
     * representative. This will happen before ref type deduping,
4807
     * which critically depends on stability of these mapping. This
4808
     * stability is not a requirement for STRUCT/UNION equivalence
4809
     * checks, though.
4810
     */
4811
4812
    /* if it's the split BTF case, we still need to point base FWD
4813
     * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4814
     * will be resolved against base FWD. If we don't point base
4815
     * canonical FWD to the resolved STRUCT/UNION, then all the
4816
     * FWDs in split BTF won't be correctly resolved to a proper
4817
     * STRUCT/UNION.
4818
     */
4819
0
    if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4820
0
      d->map[c_id] = t_id;
4821
4822
    /* if graph equivalence determined that we'd need to adjust
4823
     * base canonical types, then we need to only point base FWDs
4824
     * to STRUCTs/UNIONs and do no more modifications. For all
4825
     * other purposes the type graphs were not equivalent.
4826
     */
4827
0
    if (d->hypot_adjust_canon)
4828
0
      continue;
4829
4830
0
    if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4831
0
      d->map[t_id] = c_id;
4832
4833
0
    if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4834
0
        c_kind != BTF_KIND_FWD &&
4835
0
        is_type_mapped(d, c_id) &&
4836
0
        !is_type_mapped(d, t_id)) {
4837
      /*
4838
       * as a perf optimization, we can map struct/union
4839
       * that's part of type graph we just verified for
4840
       * equivalence. We can do that for struct/union that has
4841
       * canonical representative only, though.
4842
       */
4843
0
      d->map[t_id] = c_id;
4844
0
    }
4845
0
  }
4846
0
}
4847
4848
/*
4849
 * Deduplicate struct/union types.
4850
 *
4851
 * For each struct/union type its type signature hash is calculated, taking
4852
 * into account type's name, size, number, order and names of fields, but
4853
 * ignoring type ID's referenced from fields, because they might not be deduped
4854
 * completely until after reference types deduplication phase. This type hash
4855
 * is used to iterate over all potential canonical types, sharing same hash.
4856
 * For each canonical candidate we check whether type graphs that they form
4857
 * (through referenced types in fields and so on) are equivalent using algorithm
4858
 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4859
 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4860
 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4861
 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4862
 * potentially map other structs/unions to their canonical representatives,
4863
 * if such relationship hasn't yet been established. This speeds up algorithm
4864
 * by eliminating some of the duplicate work.
4865
 *
4866
 * If no matching canonical representative was found, struct/union is marked
4867
 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4868
 * for further look ups.
4869
 */
4870
static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4871
0
{
4872
0
  struct btf_type *cand_type, *t;
4873
0
  struct hashmap_entry *hash_entry;
4874
  /* if we don't find equivalent type, then we are canonical */
4875
0
  __u32 new_id = type_id;
4876
0
  __u16 kind;
4877
0
  long h;
4878
4879
  /* already deduped or is in process of deduping (loop detected) */
4880
0
  if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4881
0
    return 0;
4882
4883
0
  t = btf_type_by_id(d->btf, type_id);
4884
0
  kind = btf_kind(t);
4885
4886
0
  if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4887
0
    return 0;
4888
4889
0
  h = btf_hash_struct(t);
4890
0
  for_each_dedup_cand(d, hash_entry, h) {
4891
0
    __u32 cand_id = hash_entry->value;
4892
0
    int eq;
4893
4894
    /*
4895
     * Even though btf_dedup_is_equiv() checks for
4896
     * btf_shallow_equal_struct() internally when checking two
4897
     * structs (unions) for equivalence, we need to guard here
4898
     * from picking matching FWD type as a dedup candidate.
4899
     * This can happen due to hash collision. In such case just
4900
     * relying on btf_dedup_is_equiv() would lead to potentially
4901
     * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4902
     * FWD and compatible STRUCT/UNION are considered equivalent.
4903
     */
4904
0
    cand_type = btf_type_by_id(d->btf, cand_id);
4905
0
    if (!btf_shallow_equal_struct(t, cand_type))
4906
0
      continue;
4907
4908
0
    btf_dedup_clear_hypot_map(d);
4909
0
    eq = btf_dedup_is_equiv(d, type_id, cand_id);
4910
0
    if (eq < 0)
4911
0
      return eq;
4912
0
    if (!eq)
4913
0
      continue;
4914
0
    btf_dedup_merge_hypot_map(d);
4915
0
    if (d->hypot_adjust_canon) /* not really equivalent */
4916
0
      continue;
4917
0
    new_id = cand_id;
4918
0
    break;
4919
0
  }
4920
4921
0
  d->map[type_id] = new_id;
4922
0
  if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4923
0
    return -ENOMEM;
4924
4925
0
  return 0;
4926
0
}
4927
4928
static int btf_dedup_struct_types(struct btf_dedup *d)
4929
0
{
4930
0
  int i, err;
4931
4932
0
  for (i = 0; i < d->btf->nr_types; i++) {
4933
0
    err = btf_dedup_struct_type(d, d->btf->start_id + i);
4934
0
    if (err)
4935
0
      return err;
4936
0
  }
4937
0
  return 0;
4938
0
}
4939
4940
/*
4941
 * Deduplicate reference type.
4942
 *
4943
 * Once all primitive and struct/union types got deduplicated, we can easily
4944
 * deduplicate all other (reference) BTF types. This is done in two steps:
4945
 *
4946
 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4947
 * resolution can be done either immediately for primitive or struct/union types
4948
 * (because they were deduped in previous two phases) or recursively for
4949
 * reference types. Recursion will always terminate at either primitive or
4950
 * struct/union type, at which point we can "unwind" chain of reference types
4951
 * one by one. There is no danger of encountering cycles because in C type
4952
 * system the only way to form type cycle is through struct/union, so any chain
4953
 * of reference types, even those taking part in a type cycle, will inevitably
4954
 * reach struct/union at some point.
4955
 *
4956
 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4957
 * becomes "stable", in the sense that no further deduplication will cause
4958
 * any changes to it. With that, it's now possible to calculate type's signature
4959
 * hash (this time taking into account referenced type IDs) and loop over all
4960
 * potential canonical representatives. If no match was found, current type
4961
 * will become canonical representative of itself and will be added into
4962
 * btf_dedup->dedup_table as another possible canonical representative.
4963
 */
4964
static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4965
0
{
4966
0
  struct hashmap_entry *hash_entry;
4967
0
  __u32 new_id = type_id, cand_id;
4968
0
  struct btf_type *t, *cand;
4969
  /* if we don't find equivalent type, then we are representative type */
4970
0
  int ref_type_id;
4971
0
  long h;
4972
4973
0
  if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4974
0
    return -ELOOP;
4975
0
  if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4976
0
    return resolve_type_id(d, type_id);
4977
4978
0
  t = btf_type_by_id(d->btf, type_id);
4979
0
  d->map[type_id] = BTF_IN_PROGRESS_ID;
4980
4981
0
  switch (btf_kind(t)) {
4982
0
  case BTF_KIND_CONST:
4983
0
  case BTF_KIND_VOLATILE:
4984
0
  case BTF_KIND_RESTRICT:
4985
0
  case BTF_KIND_PTR:
4986
0
  case BTF_KIND_TYPEDEF:
4987
0
  case BTF_KIND_FUNC:
4988
0
  case BTF_KIND_TYPE_TAG:
4989
0
    ref_type_id = btf_dedup_ref_type(d, t->type);
4990
0
    if (ref_type_id < 0)
4991
0
      return ref_type_id;
4992
0
    t->type = ref_type_id;
4993
4994
0
    h = btf_hash_common(t);
4995
0
    for_each_dedup_cand(d, hash_entry, h) {
4996
0
      cand_id = hash_entry->value;
4997
0
      cand = btf_type_by_id(d->btf, cand_id);
4998
0
      if (btf_equal_common(t, cand)) {
4999
0
        new_id = cand_id;
5000
0
        break;
5001
0
      }
5002
0
    }
5003
0
    break;
5004
5005
0
  case BTF_KIND_DECL_TAG:
5006
0
    ref_type_id = btf_dedup_ref_type(d, t->type);
5007
0
    if (ref_type_id < 0)
5008
0
      return ref_type_id;
5009
0
    t->type = ref_type_id;
5010
5011
0
    h = btf_hash_int_decl_tag(t);
5012
0
    for_each_dedup_cand(d, hash_entry, h) {
5013
0
      cand_id = hash_entry->value;
5014
0
      cand = btf_type_by_id(d->btf, cand_id);
5015
0
      if (btf_equal_int_tag(t, cand)) {
5016
0
        new_id = cand_id;
5017
0
        break;
5018
0
      }
5019
0
    }
5020
0
    break;
5021
5022
0
  case BTF_KIND_ARRAY: {
5023
0
    struct btf_array *info = btf_array(t);
5024
5025
0
    ref_type_id = btf_dedup_ref_type(d, info->type);
5026
0
    if (ref_type_id < 0)
5027
0
      return ref_type_id;
5028
0
    info->type = ref_type_id;
5029
5030
0
    ref_type_id = btf_dedup_ref_type(d, info->index_type);
5031
0
    if (ref_type_id < 0)
5032
0
      return ref_type_id;
5033
0
    info->index_type = ref_type_id;
5034
5035
0
    h = btf_hash_array(t);
5036
0
    for_each_dedup_cand(d, hash_entry, h) {
5037
0
      cand_id = hash_entry->value;
5038
0
      cand = btf_type_by_id(d->btf, cand_id);
5039
0
      if (btf_equal_array(t, cand)) {
5040
0
        new_id = cand_id;
5041
0
        break;
5042
0
      }
5043
0
    }
5044
0
    break;
5045
0
  }
5046
5047
0
  case BTF_KIND_FUNC_PROTO: {
5048
0
    struct btf_param *param;
5049
0
    __u16 vlen;
5050
0
    int i;
5051
5052
0
    ref_type_id = btf_dedup_ref_type(d, t->type);
5053
0
    if (ref_type_id < 0)
5054
0
      return ref_type_id;
5055
0
    t->type = ref_type_id;
5056
5057
0
    vlen = btf_vlen(t);
5058
0
    param = btf_params(t);
5059
0
    for (i = 0; i < vlen; i++) {
5060
0
      ref_type_id = btf_dedup_ref_type(d, param->type);
5061
0
      if (ref_type_id < 0)
5062
0
        return ref_type_id;
5063
0
      param->type = ref_type_id;
5064
0
      param++;
5065
0
    }
5066
5067
0
    h = btf_hash_fnproto(t);
5068
0
    for_each_dedup_cand(d, hash_entry, h) {
5069
0
      cand_id = hash_entry->value;
5070
0
      cand = btf_type_by_id(d->btf, cand_id);
5071
0
      if (btf_equal_fnproto(t, cand)) {
5072
0
        new_id = cand_id;
5073
0
        break;
5074
0
      }
5075
0
    }
5076
0
    break;
5077
0
  }
5078
5079
0
  default:
5080
0
    return -EINVAL;
5081
0
  }
5082
5083
0
  d->map[type_id] = new_id;
5084
0
  if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
5085
0
    return -ENOMEM;
5086
5087
0
  return new_id;
5088
0
}
5089
5090
static int btf_dedup_ref_types(struct btf_dedup *d)
5091
0
{
5092
0
  int i, err;
5093
5094
0
  for (i = 0; i < d->btf->nr_types; i++) {
5095
0
    err = btf_dedup_ref_type(d, d->btf->start_id + i);
5096
0
    if (err < 0)
5097
0
      return err;
5098
0
  }
5099
  /* we won't need d->dedup_table anymore */
5100
0
  hashmap__free(d->dedup_table);
5101
0
  d->dedup_table = NULL;
5102
0
  return 0;
5103
0
}
5104
5105
/*
5106
 * Collect a map from type names to type ids for all canonical structs
5107
 * and unions. If the same name is shared by several canonical types
5108
 * use a special value 0 to indicate this fact.
5109
 */
5110
static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
5111
0
{
5112
0
  __u32 nr_types = btf__type_cnt(d->btf);
5113
0
  struct btf_type *t;
5114
0
  __u32 type_id;
5115
0
  __u16 kind;
5116
0
  int err;
5117
5118
  /*
5119
   * Iterate over base and split module ids in order to get all
5120
   * available structs in the map.
5121
   */
5122
0
  for (type_id = 1; type_id < nr_types; ++type_id) {
5123
0
    t = btf_type_by_id(d->btf, type_id);
5124
0
    kind = btf_kind(t);
5125
5126
0
    if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
5127
0
      continue;
5128
5129
    /* Skip non-canonical types */
5130
0
    if (type_id != d->map[type_id])
5131
0
      continue;
5132
5133
0
    err = hashmap__add(names_map, t->name_off, type_id);
5134
0
    if (err == -EEXIST)
5135
0
      err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
5136
5137
0
    if (err)
5138
0
      return err;
5139
0
  }
5140
5141
0
  return 0;
5142
0
}
5143
5144
static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
5145
0
{
5146
0
  struct btf_type *t = btf_type_by_id(d->btf, type_id);
5147
0
  enum btf_fwd_kind fwd_kind = btf_kflag(t);
5148
0
  __u16 cand_kind, kind = btf_kind(t);
5149
0
  struct btf_type *cand_t;
5150
0
  uintptr_t cand_id;
5151
5152
0
  if (kind != BTF_KIND_FWD)
5153
0
    return 0;
5154
5155
  /* Skip if this FWD already has a mapping */
5156
0
  if (type_id != d->map[type_id])
5157
0
    return 0;
5158
5159
0
  if (!hashmap__find(names_map, t->name_off, &cand_id))
5160
0
    return 0;
5161
5162
  /* Zero is a special value indicating that name is not unique */
5163
0
  if (!cand_id)
5164
0
    return 0;
5165
5166
0
  cand_t = btf_type_by_id(d->btf, cand_id);
5167
0
  cand_kind = btf_kind(cand_t);
5168
0
  if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
5169
0
      (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
5170
0
    return 0;
5171
5172
0
  d->map[type_id] = cand_id;
5173
5174
0
  return 0;
5175
0
}
5176
5177
/*
5178
 * Resolve unambiguous forward declarations.
5179
 *
5180
 * The lion's share of all FWD declarations is resolved during
5181
 * `btf_dedup_struct_types` phase when different type graphs are
5182
 * compared against each other. However, if in some compilation unit a
5183
 * FWD declaration is not a part of a type graph compared against
5184
 * another type graph that declaration's canonical type would not be
5185
 * changed. Example:
5186
 *
5187
 * CU #1:
5188
 *
5189
 * struct foo;
5190
 * struct foo *some_global;
5191
 *
5192
 * CU #2:
5193
 *
5194
 * struct foo { int u; };
5195
 * struct foo *another_global;
5196
 *
5197
 * After `btf_dedup_struct_types` the BTF looks as follows:
5198
 *
5199
 * [1] STRUCT 'foo' size=4 vlen=1 ...
5200
 * [2] INT 'int' size=4 ...
5201
 * [3] PTR '(anon)' type_id=1
5202
 * [4] FWD 'foo' fwd_kind=struct
5203
 * [5] PTR '(anon)' type_id=4
5204
 *
5205
 * This pass assumes that such FWD declarations should be mapped to
5206
 * structs or unions with identical name in case if the name is not
5207
 * ambiguous.
5208
 */
5209
static int btf_dedup_resolve_fwds(struct btf_dedup *d)
5210
0
{
5211
0
  int i, err;
5212
0
  struct hashmap *names_map;
5213
5214
0
  names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5215
0
  if (IS_ERR(names_map))
5216
0
    return PTR_ERR(names_map);
5217
5218
0
  err = btf_dedup_fill_unique_names_map(d, names_map);
5219
0
  if (err < 0)
5220
0
    goto exit;
5221
5222
0
  for (i = 0; i < d->btf->nr_types; i++) {
5223
0
    err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
5224
0
    if (err < 0)
5225
0
      break;
5226
0
  }
5227
5228
0
exit:
5229
0
  hashmap__free(names_map);
5230
0
  return err;
5231
0
}
5232
5233
/*
5234
 * Compact types.
5235
 *
5236
 * After we established for each type its corresponding canonical representative
5237
 * type, we now can eliminate types that are not canonical and leave only
5238
 * canonical ones layed out sequentially in memory by copying them over
5239
 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
5240
 * a map from original type ID to a new compacted type ID, which will be used
5241
 * during next phase to "fix up" type IDs, referenced from struct/union and
5242
 * reference types.
5243
 */
5244
static int btf_dedup_compact_types(struct btf_dedup *d)
5245
0
{
5246
0
  __u32 *new_offs;
5247
0
  __u32 next_type_id = d->btf->start_id;
5248
0
  const struct btf_type *t;
5249
0
  void *p;
5250
0
  int i, id, len;
5251
5252
  /* we are going to reuse hypot_map to store compaction remapping */
5253
0
  d->hypot_map[0] = 0;
5254
  /* base BTF types are not renumbered */
5255
0
  for (id = 1; id < d->btf->start_id; id++)
5256
0
    d->hypot_map[id] = id;
5257
0
  for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
5258
0
    d->hypot_map[id] = BTF_UNPROCESSED_ID;
5259
5260
0
  p = d->btf->types_data;
5261
5262
0
  for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
5263
0
    if (d->map[id] != id)
5264
0
      continue;
5265
5266
0
    t = btf__type_by_id(d->btf, id);
5267
0
    len = btf_type_size(t);
5268
0
    if (len < 0)
5269
0
      return len;
5270
5271
0
    memmove(p, t, len);
5272
0
    d->hypot_map[id] = next_type_id;
5273
0
    d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
5274
0
    p += len;
5275
0
    next_type_id++;
5276
0
  }
5277
5278
  /* shrink struct btf's internal types index and update btf_header */
5279
0
  d->btf->nr_types = next_type_id - d->btf->start_id;
5280
0
  d->btf->type_offs_cap = d->btf->nr_types;
5281
0
  d->btf->hdr->type_len = p - d->btf->types_data;
5282
0
  new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
5283
0
               sizeof(*new_offs));
5284
0
  if (d->btf->type_offs_cap && !new_offs)
5285
0
    return -ENOMEM;
5286
0
  d->btf->type_offs = new_offs;
5287
0
  d->btf->hdr->str_off = d->btf->hdr->type_len;
5288
0
  d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
5289
0
  return 0;
5290
0
}
5291
5292
/*
5293
 * Figure out final (deduplicated and compacted) type ID for provided original
5294
 * `type_id` by first resolving it into corresponding canonical type ID and
5295
 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
5296
 * which is populated during compaction phase.
5297
 */
5298
static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
5299
0
{
5300
0
  struct btf_dedup *d = ctx;
5301
0
  __u32 resolved_type_id, new_type_id;
5302
5303
0
  resolved_type_id = resolve_type_id(d, *type_id);
5304
0
  new_type_id = d->hypot_map[resolved_type_id];
5305
0
  if (new_type_id > BTF_MAX_NR_TYPES)
5306
0
    return -EINVAL;
5307
5308
0
  *type_id = new_type_id;
5309
0
  return 0;
5310
0
}
5311
5312
/*
5313
 * Remap referenced type IDs into deduped type IDs.
5314
 *
5315
 * After BTF types are deduplicated and compacted, their final type IDs may
5316
 * differ from original ones. The map from original to a corresponding
5317
 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
5318
 * compaction phase. During remapping phase we are rewriting all type IDs
5319
 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
5320
 * their final deduped type IDs.
5321
 */
5322
static int btf_dedup_remap_types(struct btf_dedup *d)
5323
0
{
5324
0
  int i, r;
5325
5326
0
  for (i = 0; i < d->btf->nr_types; i++) {
5327
0
    struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
5328
0
    struct btf_field_iter it;
5329
0
    __u32 *type_id;
5330
5331
0
    r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5332
0
    if (r)
5333
0
      return r;
5334
5335
0
    while ((type_id = btf_field_iter_next(&it))) {
5336
0
      __u32 resolved_id, new_id;
5337
5338
0
      resolved_id = resolve_type_id(d, *type_id);
5339
0
      new_id = d->hypot_map[resolved_id];
5340
0
      if (new_id > BTF_MAX_NR_TYPES)
5341
0
        return -EINVAL;
5342
5343
0
      *type_id = new_id;
5344
0
    }
5345
0
  }
5346
5347
0
  if (!d->btf_ext)
5348
0
    return 0;
5349
5350
0
  r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
5351
0
  if (r)
5352
0
    return r;
5353
5354
0
  return 0;
5355
0
}
5356
5357
/*
5358
 * Probe few well-known locations for vmlinux kernel image and try to load BTF
5359
 * data out of it to use for target BTF.
5360
 */
5361
struct btf *btf__load_vmlinux_btf(void)
5362
0
{
5363
0
  const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux";
5364
  /* fall back locations, trying to find vmlinux on disk */
5365
0
  const char *locations[] = {
5366
0
    "/boot/vmlinux-%1$s",
5367
0
    "/lib/modules/%1$s/vmlinux-%1$s",
5368
0
    "/lib/modules/%1$s/build/vmlinux",
5369
0
    "/usr/lib/modules/%1$s/kernel/vmlinux",
5370
0
    "/usr/lib/debug/boot/vmlinux-%1$s",
5371
0
    "/usr/lib/debug/boot/vmlinux-%1$s.debug",
5372
0
    "/usr/lib/debug/lib/modules/%1$s/vmlinux",
5373
0
  };
5374
0
  char path[PATH_MAX + 1];
5375
0
  struct utsname buf;
5376
0
  struct btf *btf;
5377
0
  int i, err;
5378
5379
  /* is canonical sysfs location accessible? */
5380
0
  if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) {
5381
0
    pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n",
5382
0
      sysfs_btf_path);
5383
0
  } else {
5384
0
    btf = btf_parse_raw_mmap(sysfs_btf_path, NULL);
5385
0
    if (IS_ERR(btf))
5386
0
      btf = btf__parse(sysfs_btf_path, NULL);
5387
5388
0
    if (!btf) {
5389
0
      err = -errno;
5390
0
      pr_warn("failed to read kernel BTF from '%s': %s\n",
5391
0
        sysfs_btf_path, errstr(err));
5392
0
      return libbpf_err_ptr(err);
5393
0
    }
5394
0
    pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path);
5395
0
    return btf;
5396
0
  }
5397
5398
  /* try fallback locations */
5399
0
  uname(&buf);
5400
0
  for (i = 0; i < ARRAY_SIZE(locations); i++) {
5401
0
    snprintf(path, PATH_MAX, locations[i], buf.release);
5402
5403
0
    if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
5404
0
      continue;
5405
5406
0
    btf = btf__parse(path, NULL);
5407
0
    err = libbpf_get_error(btf);
5408
0
    pr_debug("loading kernel BTF '%s': %s\n", path, errstr(err));
5409
0
    if (err)
5410
0
      continue;
5411
5412
0
    return btf;
5413
0
  }
5414
5415
0
  pr_warn("failed to find valid kernel BTF\n");
5416
0
  return libbpf_err_ptr(-ESRCH);
5417
0
}
5418
5419
struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
5420
5421
struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
5422
0
{
5423
0
  char path[80];
5424
5425
0
  snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
5426
0
  return btf__parse_split(path, vmlinux_btf);
5427
0
}
5428
5429
int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
5430
0
{
5431
0
  const struct btf_ext_info *seg;
5432
0
  struct btf_ext_info_sec *sec;
5433
0
  int i, err;
5434
5435
0
  seg = &btf_ext->func_info;
5436
0
  for_each_btf_ext_sec(seg, sec) {
5437
0
    struct bpf_func_info_min *rec;
5438
5439
0
    for_each_btf_ext_rec(seg, sec, i, rec) {
5440
0
      err = visit(&rec->type_id, ctx);
5441
0
      if (err < 0)
5442
0
        return err;
5443
0
    }
5444
0
  }
5445
5446
0
  seg = &btf_ext->core_relo_info;
5447
0
  for_each_btf_ext_sec(seg, sec) {
5448
0
    struct bpf_core_relo *rec;
5449
5450
0
    for_each_btf_ext_rec(seg, sec, i, rec) {
5451
0
      err = visit(&rec->type_id, ctx);
5452
0
      if (err < 0)
5453
0
        return err;
5454
0
    }
5455
0
  }
5456
5457
0
  return 0;
5458
0
}
5459
5460
int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
5461
0
{
5462
0
  const struct btf_ext_info *seg;
5463
0
  struct btf_ext_info_sec *sec;
5464
0
  int i, err;
5465
5466
0
  seg = &btf_ext->func_info;
5467
0
  for_each_btf_ext_sec(seg, sec) {
5468
0
    err = visit(&sec->sec_name_off, ctx);
5469
0
    if (err)
5470
0
      return err;
5471
0
  }
5472
5473
0
  seg = &btf_ext->line_info;
5474
0
  for_each_btf_ext_sec(seg, sec) {
5475
0
    struct bpf_line_info_min *rec;
5476
5477
0
    err = visit(&sec->sec_name_off, ctx);
5478
0
    if (err)
5479
0
      return err;
5480
5481
0
    for_each_btf_ext_rec(seg, sec, i, rec) {
5482
0
      err = visit(&rec->file_name_off, ctx);
5483
0
      if (err)
5484
0
        return err;
5485
0
      err = visit(&rec->line_off, ctx);
5486
0
      if (err)
5487
0
        return err;
5488
0
    }
5489
0
  }
5490
5491
0
  seg = &btf_ext->core_relo_info;
5492
0
  for_each_btf_ext_sec(seg, sec) {
5493
0
    struct bpf_core_relo *rec;
5494
5495
0
    err = visit(&sec->sec_name_off, ctx);
5496
0
    if (err)
5497
0
      return err;
5498
5499
0
    for_each_btf_ext_rec(seg, sec, i, rec) {
5500
0
      err = visit(&rec->access_str_off, ctx);
5501
0
      if (err)
5502
0
        return err;
5503
0
    }
5504
0
  }
5505
5506
0
  return 0;
5507
0
}
5508
5509
struct btf_distill {
5510
  struct btf_pipe pipe;
5511
  int *id_map;
5512
  unsigned int split_start_id;
5513
  unsigned int split_start_str;
5514
  int diff_id;
5515
};
5516
5517
static int btf_add_distilled_type_ids(struct btf_distill *dist, __u32 i)
5518
0
{
5519
0
  struct btf_type *split_t = btf_type_by_id(dist->pipe.src, i);
5520
0
  struct btf_field_iter it;
5521
0
  __u32 *id;
5522
0
  int err;
5523
5524
0
  err = btf_field_iter_init(&it, split_t, BTF_FIELD_ITER_IDS);
5525
0
  if (err)
5526
0
    return err;
5527
0
  while ((id = btf_field_iter_next(&it))) {
5528
0
    struct btf_type *base_t;
5529
5530
0
    if (!*id)
5531
0
      continue;
5532
    /* split BTF id, not needed */
5533
0
    if (*id >= dist->split_start_id)
5534
0
      continue;
5535
    /* already added ? */
5536
0
    if (dist->id_map[*id] > 0)
5537
0
      continue;
5538
5539
    /* only a subset of base BTF types should be referenced from
5540
     * split BTF; ensure nothing unexpected is referenced.
5541
     */
5542
0
    base_t = btf_type_by_id(dist->pipe.src, *id);
5543
0
    switch (btf_kind(base_t)) {
5544
0
    case BTF_KIND_INT:
5545
0
    case BTF_KIND_FLOAT:
5546
0
    case BTF_KIND_FWD:
5547
0
    case BTF_KIND_ARRAY:
5548
0
    case BTF_KIND_STRUCT:
5549
0
    case BTF_KIND_UNION:
5550
0
    case BTF_KIND_TYPEDEF:
5551
0
    case BTF_KIND_ENUM:
5552
0
    case BTF_KIND_ENUM64:
5553
0
    case BTF_KIND_PTR:
5554
0
    case BTF_KIND_CONST:
5555
0
    case BTF_KIND_RESTRICT:
5556
0
    case BTF_KIND_VOLATILE:
5557
0
    case BTF_KIND_FUNC_PROTO:
5558
0
    case BTF_KIND_TYPE_TAG:
5559
0
      dist->id_map[*id] = *id;
5560
0
      break;
5561
0
    default:
5562
0
      pr_warn("unexpected reference to base type[%u] of kind [%u] when creating distilled base BTF.\n",
5563
0
        *id, btf_kind(base_t));
5564
0
      return -EINVAL;
5565
0
    }
5566
    /* If a base type is used, ensure types it refers to are
5567
     * marked as used also; so for example if we find a PTR to INT
5568
     * we need both the PTR and INT.
5569
     *
5570
     * The only exception is named struct/unions, since distilled
5571
     * base BTF composite types have no members.
5572
     */
5573
0
    if (btf_is_composite(base_t) && base_t->name_off)
5574
0
      continue;
5575
0
    err = btf_add_distilled_type_ids(dist, *id);
5576
0
    if (err)
5577
0
      return err;
5578
0
  }
5579
0
  return 0;
5580
0
}
5581
5582
static int btf_add_distilled_types(struct btf_distill *dist)
5583
0
{
5584
0
  bool adding_to_base = dist->pipe.dst->start_id == 1;
5585
0
  int id = btf__type_cnt(dist->pipe.dst);
5586
0
  struct btf_type *t;
5587
0
  int i, err = 0;
5588
5589
5590
  /* Add types for each of the required references to either distilled
5591
   * base or split BTF, depending on type characteristics.
5592
   */
5593
0
  for (i = 1; i < dist->split_start_id; i++) {
5594
0
    const char *name;
5595
0
    int kind;
5596
5597
0
    if (!dist->id_map[i])
5598
0
      continue;
5599
0
    t = btf_type_by_id(dist->pipe.src, i);
5600
0
    kind = btf_kind(t);
5601
0
    name = btf__name_by_offset(dist->pipe.src, t->name_off);
5602
5603
0
    switch (kind) {
5604
0
    case BTF_KIND_INT:
5605
0
    case BTF_KIND_FLOAT:
5606
0
    case BTF_KIND_FWD:
5607
      /* Named int, float, fwd are added to base. */
5608
0
      if (!adding_to_base)
5609
0
        continue;
5610
0
      err = btf_add_type(&dist->pipe, t);
5611
0
      break;
5612
0
    case BTF_KIND_STRUCT:
5613
0
    case BTF_KIND_UNION:
5614
      /* Named struct/union are added to base as 0-vlen
5615
       * struct/union of same size.  Anonymous struct/unions
5616
       * are added to split BTF as-is.
5617
       */
5618
0
      if (adding_to_base) {
5619
0
        if (!t->name_off)
5620
0
          continue;
5621
0
        err = btf_add_composite(dist->pipe.dst, kind, name, t->size);
5622
0
      } else {
5623
0
        if (t->name_off)
5624
0
          continue;
5625
0
        err = btf_add_type(&dist->pipe, t);
5626
0
      }
5627
0
      break;
5628
0
    case BTF_KIND_ENUM:
5629
0
    case BTF_KIND_ENUM64:
5630
      /* Named enum[64]s are added to base as a sized
5631
       * enum; relocation will match with appropriately-named
5632
       * and sized enum or enum64.
5633
       *
5634
       * Anonymous enums are added to split BTF as-is.
5635
       */
5636
0
      if (adding_to_base) {
5637
0
        if (!t->name_off)
5638
0
          continue;
5639
0
        err = btf__add_enum(dist->pipe.dst, name, t->size);
5640
0
      } else {
5641
0
        if (t->name_off)
5642
0
          continue;
5643
0
        err = btf_add_type(&dist->pipe, t);
5644
0
      }
5645
0
      break;
5646
0
    case BTF_KIND_ARRAY:
5647
0
    case BTF_KIND_TYPEDEF:
5648
0
    case BTF_KIND_PTR:
5649
0
    case BTF_KIND_CONST:
5650
0
    case BTF_KIND_RESTRICT:
5651
0
    case BTF_KIND_VOLATILE:
5652
0
    case BTF_KIND_FUNC_PROTO:
5653
0
    case BTF_KIND_TYPE_TAG:
5654
      /* All other types are added to split BTF. */
5655
0
      if (adding_to_base)
5656
0
        continue;
5657
0
      err = btf_add_type(&dist->pipe, t);
5658
0
      break;
5659
0
    default:
5660
0
      pr_warn("unexpected kind when adding base type '%s'[%u] of kind [%u] to distilled base BTF.\n",
5661
0
        name, i, kind);
5662
0
      return -EINVAL;
5663
5664
0
    }
5665
0
    if (err < 0)
5666
0
      break;
5667
0
    dist->id_map[i] = id++;
5668
0
  }
5669
0
  return err;
5670
0
}
5671
5672
/* Split BTF ids without a mapping will be shifted downwards since distilled
5673
 * base BTF is smaller than the original base BTF.  For those that have a
5674
 * mapping (either to base or updated split BTF), update the id based on
5675
 * that mapping.
5676
 */
5677
static int btf_update_distilled_type_ids(struct btf_distill *dist, __u32 i)
5678
0
{
5679
0
  struct btf_type *t = btf_type_by_id(dist->pipe.dst, i);
5680
0
  struct btf_field_iter it;
5681
0
  __u32 *id;
5682
0
  int err;
5683
5684
0
  err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5685
0
  if (err)
5686
0
    return err;
5687
0
  while ((id = btf_field_iter_next(&it))) {
5688
0
    if (dist->id_map[*id])
5689
0
      *id = dist->id_map[*id];
5690
0
    else if (*id >= dist->split_start_id)
5691
0
      *id -= dist->diff_id;
5692
0
  }
5693
0
  return 0;
5694
0
}
5695
5696
/* Create updated split BTF with distilled base BTF; distilled base BTF
5697
 * consists of BTF information required to clarify the types that split
5698
 * BTF refers to, omitting unneeded details.  Specifically it will contain
5699
 * base types and memberless definitions of named structs, unions and enumerated
5700
 * types. Associated reference types like pointers, arrays and anonymous
5701
 * structs, unions and enumerated types will be added to split BTF.
5702
 * Size is recorded for named struct/unions to help guide matching to the
5703
 * target base BTF during later relocation.
5704
 *
5705
 * The only case where structs, unions or enumerated types are fully represented
5706
 * is when they are anonymous; in such cases, the anonymous type is added to
5707
 * split BTF in full.
5708
 *
5709
 * We return newly-created split BTF where the split BTF refers to a newly-created
5710
 * distilled base BTF. Both must be freed separately by the caller.
5711
 */
5712
int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf,
5713
          struct btf **new_split_btf)
5714
0
{
5715
0
  struct btf *new_base = NULL, *new_split = NULL;
5716
0
  const struct btf *old_base;
5717
0
  unsigned int n = btf__type_cnt(src_btf);
5718
0
  struct btf_distill dist = {};
5719
0
  struct btf_type *t;
5720
0
  int i, err = 0;
5721
5722
  /* src BTF must be split BTF. */
5723
0
  old_base = btf__base_btf(src_btf);
5724
0
  if (!new_base_btf || !new_split_btf || !old_base)
5725
0
    return libbpf_err(-EINVAL);
5726
5727
0
  new_base = btf__new_empty();
5728
0
  if (!new_base)
5729
0
    return libbpf_err(-ENOMEM);
5730
5731
0
  btf__set_endianness(new_base, btf__endianness(src_btf));
5732
5733
0
  dist.id_map = calloc(n, sizeof(*dist.id_map));
5734
0
  if (!dist.id_map) {
5735
0
    err = -ENOMEM;
5736
0
    goto done;
5737
0
  }
5738
0
  dist.pipe.src = src_btf;
5739
0
  dist.pipe.dst = new_base;
5740
0
  dist.pipe.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5741
0
  if (IS_ERR(dist.pipe.str_off_map)) {
5742
0
    err = -ENOMEM;
5743
0
    goto done;
5744
0
  }
5745
0
  dist.split_start_id = btf__type_cnt(old_base);
5746
0
  dist.split_start_str = old_base->hdr->str_len;
5747
5748
  /* Pass over src split BTF; generate the list of base BTF type ids it
5749
   * references; these will constitute our distilled BTF set to be
5750
   * distributed over base and split BTF as appropriate.
5751
   */
5752
0
  for (i = src_btf->start_id; i < n; i++) {
5753
0
    err = btf_add_distilled_type_ids(&dist, i);
5754
0
    if (err < 0)
5755
0
      goto done;
5756
0
  }
5757
  /* Next add types for each of the required references to base BTF and split BTF
5758
   * in turn.
5759
   */
5760
0
  err = btf_add_distilled_types(&dist);
5761
0
  if (err < 0)
5762
0
    goto done;
5763
5764
  /* Create new split BTF with distilled base BTF as its base; the final
5765
   * state is split BTF with distilled base BTF that represents enough
5766
   * about its base references to allow it to be relocated with the base
5767
   * BTF available.
5768
   */
5769
0
  new_split = btf__new_empty_split(new_base);
5770
0
  if (!new_split) {
5771
0
    err = -errno;
5772
0
    goto done;
5773
0
  }
5774
0
  dist.pipe.dst = new_split;
5775
  /* First add all split types */
5776
0
  for (i = src_btf->start_id; i < n; i++) {
5777
0
    t = btf_type_by_id(src_btf, i);
5778
0
    err = btf_add_type(&dist.pipe, t);
5779
0
    if (err < 0)
5780
0
      goto done;
5781
0
  }
5782
  /* Now add distilled types to split BTF that are not added to base. */
5783
0
  err = btf_add_distilled_types(&dist);
5784
0
  if (err < 0)
5785
0
    goto done;
5786
5787
  /* All split BTF ids will be shifted downwards since there are less base
5788
   * BTF ids in distilled base BTF.
5789
   */
5790
0
  dist.diff_id = dist.split_start_id - btf__type_cnt(new_base);
5791
5792
0
  n = btf__type_cnt(new_split);
5793
  /* Now update base/split BTF ids. */
5794
0
  for (i = 1; i < n; i++) {
5795
0
    err = btf_update_distilled_type_ids(&dist, i);
5796
0
    if (err < 0)
5797
0
      break;
5798
0
  }
5799
0
done:
5800
0
  free(dist.id_map);
5801
0
  hashmap__free(dist.pipe.str_off_map);
5802
0
  if (err) {
5803
0
    btf__free(new_split);
5804
0
    btf__free(new_base);
5805
0
    return libbpf_err(err);
5806
0
  }
5807
0
  *new_base_btf = new_base;
5808
0
  *new_split_btf = new_split;
5809
5810
0
  return 0;
5811
0
}
5812
5813
const struct btf_header *btf_header(const struct btf *btf)
5814
0
{
5815
0
  return btf->hdr;
5816
0
}
5817
5818
void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
5819
0
{
5820
0
  btf->base_btf = (struct btf *)base_btf;
5821
0
  btf->start_id = btf__type_cnt(base_btf);
5822
0
  btf->start_str_off = base_btf->hdr->str_len;
5823
0
}
5824
5825
int btf__relocate(struct btf *btf, const struct btf *base_btf)
5826
0
{
5827
0
  int err = btf_relocate(btf, base_btf, NULL);
5828
5829
0
  if (!err)
5830
0
    btf->owns_base = false;
5831
0
  return libbpf_err(err);
5832
0
}