Line | Count | Source (jump to first uncovered line) |
1 | | // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) |
2 | | /* Copyright (c) 2018 Facebook */ |
3 | | |
4 | | #include <byteswap.h> |
5 | | #include <endian.h> |
6 | | #include <stdio.h> |
7 | | #include <stdlib.h> |
8 | | #include <string.h> |
9 | | #include <fcntl.h> |
10 | | #include <unistd.h> |
11 | | #include <errno.h> |
12 | | #include <sys/utsname.h> |
13 | | #include <sys/param.h> |
14 | | #include <sys/stat.h> |
15 | | #include <linux/kernel.h> |
16 | | #include <linux/err.h> |
17 | | #include <linux/btf.h> |
18 | | #include <gelf.h> |
19 | | #include "btf.h" |
20 | | #include "bpf.h" |
21 | | #include "libbpf.h" |
22 | | #include "libbpf_internal.h" |
23 | | #include "hashmap.h" |
24 | | #include "strset.h" |
25 | | |
26 | 36.5k | #define BTF_MAX_NR_TYPES 0x7fffffffU |
27 | 7.04k | #define BTF_MAX_STR_OFFSET 0x7fffffffU |
28 | | |
29 | | static struct btf_type btf_void; |
30 | | |
31 | | struct btf { |
32 | | /* raw BTF data in native endianness */ |
33 | | void *raw_data; |
34 | | /* raw BTF data in non-native endianness */ |
35 | | void *raw_data_swapped; |
36 | | __u32 raw_size; |
37 | | /* whether target endianness differs from the native one */ |
38 | | bool swapped_endian; |
39 | | |
40 | | /* |
41 | | * When BTF is loaded from an ELF or raw memory it is stored |
42 | | * in a contiguous memory block. The hdr, type_data, and, strs_data |
43 | | * point inside that memory region to their respective parts of BTF |
44 | | * representation: |
45 | | * |
46 | | * +--------------------------------+ |
47 | | * | Header | Types | Strings | |
48 | | * +--------------------------------+ |
49 | | * ^ ^ ^ |
50 | | * | | | |
51 | | * hdr | | |
52 | | * types_data-+ | |
53 | | * strs_data------------+ |
54 | | * |
55 | | * If BTF data is later modified, e.g., due to types added or |
56 | | * removed, BTF deduplication performed, etc, this contiguous |
57 | | * representation is broken up into three independently allocated |
58 | | * memory regions to be able to modify them independently. |
59 | | * raw_data is nulled out at that point, but can be later allocated |
60 | | * and cached again if user calls btf__raw_data(), at which point |
61 | | * raw_data will contain a contiguous copy of header, types, and |
62 | | * strings: |
63 | | * |
64 | | * +----------+ +---------+ +-----------+ |
65 | | * | Header | | Types | | Strings | |
66 | | * +----------+ +---------+ +-----------+ |
67 | | * ^ ^ ^ |
68 | | * | | | |
69 | | * hdr | | |
70 | | * types_data----+ | |
71 | | * strset__data(strs_set)-----+ |
72 | | * |
73 | | * +----------+---------+-----------+ |
74 | | * | Header | Types | Strings | |
75 | | * raw_data----->+----------+---------+-----------+ |
76 | | */ |
77 | | struct btf_header *hdr; |
78 | | |
79 | | void *types_data; |
80 | | size_t types_data_cap; /* used size stored in hdr->type_len */ |
81 | | |
82 | | /* type ID to `struct btf_type *` lookup index |
83 | | * type_offs[0] corresponds to the first non-VOID type: |
84 | | * - for base BTF it's type [1]; |
85 | | * - for split BTF it's the first non-base BTF type. |
86 | | */ |
87 | | __u32 *type_offs; |
88 | | size_t type_offs_cap; |
89 | | /* number of types in this BTF instance: |
90 | | * - doesn't include special [0] void type; |
91 | | * - for split BTF counts number of types added on top of base BTF. |
92 | | */ |
93 | | __u32 nr_types; |
94 | | /* if not NULL, points to the base BTF on top of which the current |
95 | | * split BTF is based |
96 | | */ |
97 | | struct btf *base_btf; |
98 | | /* BTF type ID of the first type in this BTF instance: |
99 | | * - for base BTF it's equal to 1; |
100 | | * - for split BTF it's equal to biggest type ID of base BTF plus 1. |
101 | | */ |
102 | | int start_id; |
103 | | /* logical string offset of this BTF instance: |
104 | | * - for base BTF it's equal to 0; |
105 | | * - for split BTF it's equal to total size of base BTF's string section size. |
106 | | */ |
107 | | int start_str_off; |
108 | | |
109 | | /* only one of strs_data or strs_set can be non-NULL, depending on |
110 | | * whether BTF is in a modifiable state (strs_set is used) or not |
111 | | * (strs_data points inside raw_data) |
112 | | */ |
113 | | void *strs_data; |
114 | | /* a set of unique strings */ |
115 | | struct strset *strs_set; |
116 | | /* whether strings are already deduplicated */ |
117 | | bool strs_deduped; |
118 | | |
119 | | /* BTF object FD, if loaded into kernel */ |
120 | | int fd; |
121 | | |
122 | | /* Pointer size (in bytes) for a target architecture of this BTF */ |
123 | | int ptr_sz; |
124 | | }; |
125 | | |
126 | | static inline __u64 ptr_to_u64(const void *ptr) |
127 | 0 | { |
128 | 0 | return (__u64) (unsigned long) ptr; |
129 | 0 | } |
130 | | |
131 | | /* Ensure given dynamically allocated memory region pointed to by *data* with |
132 | | * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough |
133 | | * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements |
134 | | * are already used. At most *max_cnt* elements can be ever allocated. |
135 | | * If necessary, memory is reallocated and all existing data is copied over, |
136 | | * new pointer to the memory region is stored at *data, new memory region |
137 | | * capacity (in number of elements) is stored in *cap. |
138 | | * On success, memory pointer to the beginning of unused memory is returned. |
139 | | * On error, NULL is returned. |
140 | | */ |
141 | | void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, |
142 | | size_t cur_cnt, size_t max_cnt, size_t add_cnt) |
143 | 37.4k | { |
144 | 37.4k | size_t new_cnt; |
145 | 37.4k | void *new_data; |
146 | | |
147 | 37.4k | if (cur_cnt + add_cnt <= *cap_cnt) |
148 | 32.3k | return *data + cur_cnt * elem_sz; |
149 | | |
150 | | /* requested more than the set limit */ |
151 | 5.19k | if (cur_cnt + add_cnt > max_cnt) |
152 | 0 | return NULL; |
153 | | |
154 | 5.19k | new_cnt = *cap_cnt; |
155 | 5.19k | new_cnt += new_cnt / 4; /* expand by 25% */ |
156 | 5.19k | if (new_cnt < 16) /* but at least 16 elements */ |
157 | 3.33k | new_cnt = 16; |
158 | 5.19k | if (new_cnt > max_cnt) /* but not exceeding a set limit */ |
159 | 0 | new_cnt = max_cnt; |
160 | 5.19k | if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ |
161 | 0 | new_cnt = cur_cnt + add_cnt; |
162 | | |
163 | 5.19k | new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); |
164 | 5.19k | if (!new_data) |
165 | 0 | return NULL; |
166 | | |
167 | | /* zero out newly allocated portion of memory */ |
168 | 5.19k | memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); |
169 | | |
170 | 5.19k | *data = new_data; |
171 | 5.19k | *cap_cnt = new_cnt; |
172 | 5.19k | return new_data + cur_cnt * elem_sz; |
173 | 5.19k | } |
174 | | |
175 | | /* Ensure given dynamically allocated memory region has enough allocated space |
176 | | * to accommodate *need_cnt* elements of size *elem_sz* bytes each |
177 | | */ |
178 | | int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) |
179 | 1.27k | { |
180 | 1.27k | void *p; |
181 | | |
182 | 1.27k | if (need_cnt <= *cap_cnt) |
183 | 788 | return 0; |
184 | | |
185 | 486 | p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); |
186 | 486 | if (!p) |
187 | 0 | return -ENOMEM; |
188 | | |
189 | 486 | return 0; |
190 | 486 | } |
191 | | |
192 | | static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) |
193 | 35.9k | { |
194 | 35.9k | return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), |
195 | 35.9k | btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); |
196 | 35.9k | } |
197 | | |
198 | | static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) |
199 | 35.9k | { |
200 | 35.9k | __u32 *p; |
201 | | |
202 | 35.9k | p = btf_add_type_offs_mem(btf, 1); |
203 | 35.9k | if (!p) |
204 | 0 | return -ENOMEM; |
205 | | |
206 | 35.9k | *p = type_off; |
207 | 35.9k | return 0; |
208 | 35.9k | } |
209 | | |
210 | | static void btf_bswap_hdr(struct btf_header *h) |
211 | 486 | { |
212 | 486 | h->magic = bswap_16(h->magic); |
213 | 486 | h->hdr_len = bswap_32(h->hdr_len); |
214 | 486 | h->type_off = bswap_32(h->type_off); |
215 | 486 | h->type_len = bswap_32(h->type_len); |
216 | 486 | h->str_off = bswap_32(h->str_off); |
217 | 486 | h->str_len = bswap_32(h->str_len); |
218 | 486 | } |
219 | | |
220 | | static int btf_parse_hdr(struct btf *btf) |
221 | 3.50k | { |
222 | 3.50k | struct btf_header *hdr = btf->hdr; |
223 | 3.50k | __u32 meta_left; |
224 | | |
225 | 3.50k | if (btf->raw_size < sizeof(struct btf_header)) { |
226 | 6 | pr_debug("BTF header not found\n"); |
227 | 6 | return -EINVAL; |
228 | 6 | } |
229 | | |
230 | 3.50k | if (hdr->magic == bswap_16(BTF_MAGIC)) { |
231 | 527 | btf->swapped_endian = true; |
232 | 527 | if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { |
233 | 41 | pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", |
234 | 41 | bswap_32(hdr->hdr_len)); |
235 | 41 | return -ENOTSUP; |
236 | 41 | } |
237 | 486 | btf_bswap_hdr(hdr); |
238 | 2.97k | } else if (hdr->magic != BTF_MAGIC) { |
239 | 33 | pr_debug("Invalid BTF magic: %x\n", hdr->magic); |
240 | 33 | return -EINVAL; |
241 | 33 | } |
242 | | |
243 | 3.42k | if (btf->raw_size < hdr->hdr_len) { |
244 | 50 | pr_debug("BTF header len %u larger than data size %u\n", |
245 | 50 | hdr->hdr_len, btf->raw_size); |
246 | 50 | return -EINVAL; |
247 | 50 | } |
248 | | |
249 | 3.37k | meta_left = btf->raw_size - hdr->hdr_len; |
250 | 3.37k | if (meta_left < (long long)hdr->str_off + hdr->str_len) { |
251 | 52 | pr_debug("Invalid BTF total size: %u\n", btf->raw_size); |
252 | 52 | return -EINVAL; |
253 | 52 | } |
254 | | |
255 | 3.32k | if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { |
256 | 52 | pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", |
257 | 52 | hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); |
258 | 52 | return -EINVAL; |
259 | 52 | } |
260 | | |
261 | 3.27k | if (hdr->type_off % 4) { |
262 | 2 | pr_debug("BTF type section is not aligned to 4 bytes\n"); |
263 | 2 | return -EINVAL; |
264 | 2 | } |
265 | | |
266 | 3.27k | return 0; |
267 | 3.27k | } |
268 | | |
269 | | static int btf_parse_str_sec(struct btf *btf) |
270 | 3.27k | { |
271 | 3.27k | const struct btf_header *hdr = btf->hdr; |
272 | 3.27k | const char *start = btf->strs_data; |
273 | 3.27k | const char *end = start + btf->hdr->str_len; |
274 | | |
275 | 3.27k | if (btf->base_btf && hdr->str_len == 0) |
276 | 0 | return 0; |
277 | 3.27k | if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { |
278 | 12 | pr_debug("Invalid BTF string section\n"); |
279 | 12 | return -EINVAL; |
280 | 12 | } |
281 | 3.25k | if (!btf->base_btf && start[0]) { |
282 | 11 | pr_debug("Invalid BTF string section\n"); |
283 | 11 | return -EINVAL; |
284 | 11 | } |
285 | 3.24k | return 0; |
286 | 3.25k | } |
287 | | |
288 | | static int btf_type_size(const struct btf_type *t) |
289 | 35.5k | { |
290 | 35.5k | const int base_size = sizeof(struct btf_type); |
291 | 35.5k | __u16 vlen = btf_vlen(t); |
292 | | |
293 | 35.5k | switch (btf_kind(t)) { |
294 | 1.96k | case BTF_KIND_FWD: |
295 | 2.73k | case BTF_KIND_CONST: |
296 | 3.32k | case BTF_KIND_VOLATILE: |
297 | 4.09k | case BTF_KIND_RESTRICT: |
298 | 5.29k | case BTF_KIND_PTR: |
299 | 5.92k | case BTF_KIND_TYPEDEF: |
300 | 8.06k | case BTF_KIND_FUNC: |
301 | 9.91k | case BTF_KIND_FLOAT: |
302 | 10.6k | case BTF_KIND_TYPE_TAG: |
303 | 10.6k | return base_size; |
304 | 3.58k | case BTF_KIND_INT: |
305 | 3.58k | return base_size + sizeof(__u32); |
306 | 1.64k | case BTF_KIND_ENUM: |
307 | 1.64k | return base_size + vlen * sizeof(struct btf_enum); |
308 | 1.28k | case BTF_KIND_ENUM64: |
309 | 1.28k | return base_size + vlen * sizeof(struct btf_enum64); |
310 | 2.03k | case BTF_KIND_ARRAY: |
311 | 2.03k | return base_size + sizeof(struct btf_array); |
312 | 1.02k | case BTF_KIND_STRUCT: |
313 | 2.01k | case BTF_KIND_UNION: |
314 | 2.01k | return base_size + vlen * sizeof(struct btf_member); |
315 | 2.86k | case BTF_KIND_FUNC_PROTO: |
316 | 2.86k | return base_size + vlen * sizeof(struct btf_param); |
317 | 3.72k | case BTF_KIND_VAR: |
318 | 3.72k | return base_size + sizeof(struct btf_var); |
319 | 5.77k | case BTF_KIND_DATASEC: |
320 | 5.77k | return base_size + vlen * sizeof(struct btf_var_secinfo); |
321 | 1.91k | case BTF_KIND_DECL_TAG: |
322 | 1.91k | return base_size + sizeof(struct btf_decl_tag); |
323 | 76 | default: |
324 | 76 | pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); |
325 | 76 | return -EINVAL; |
326 | 35.5k | } |
327 | 35.5k | } |
328 | | |
329 | | static void btf_bswap_type_base(struct btf_type *t) |
330 | 10.7k | { |
331 | 10.7k | t->name_off = bswap_32(t->name_off); |
332 | 10.7k | t->info = bswap_32(t->info); |
333 | 10.7k | t->type = bswap_32(t->type); |
334 | 10.7k | } |
335 | | |
336 | | static int btf_bswap_type_rest(struct btf_type *t) |
337 | 10.6k | { |
338 | 10.6k | struct btf_var_secinfo *v; |
339 | 10.6k | struct btf_enum64 *e64; |
340 | 10.6k | struct btf_member *m; |
341 | 10.6k | struct btf_array *a; |
342 | 10.6k | struct btf_param *p; |
343 | 10.6k | struct btf_enum *e; |
344 | 10.6k | __u16 vlen = btf_vlen(t); |
345 | 10.6k | int i; |
346 | | |
347 | 10.6k | switch (btf_kind(t)) { |
348 | 578 | case BTF_KIND_FWD: |
349 | 1.07k | case BTF_KIND_CONST: |
350 | 1.49k | case BTF_KIND_VOLATILE: |
351 | 2.10k | case BTF_KIND_RESTRICT: |
352 | 2.77k | case BTF_KIND_PTR: |
353 | 3.23k | case BTF_KIND_TYPEDEF: |
354 | 3.99k | case BTF_KIND_FUNC: |
355 | 4.37k | case BTF_KIND_FLOAT: |
356 | 4.74k | case BTF_KIND_TYPE_TAG: |
357 | 4.74k | return 0; |
358 | 930 | case BTF_KIND_INT: |
359 | 930 | *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); |
360 | 930 | return 0; |
361 | 687 | case BTF_KIND_ENUM: |
362 | 2.70k | for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { |
363 | 2.01k | e->name_off = bswap_32(e->name_off); |
364 | 2.01k | e->val = bswap_32(e->val); |
365 | 2.01k | } |
366 | 687 | return 0; |
367 | 539 | case BTF_KIND_ENUM64: |
368 | 2.13k | for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { |
369 | 1.59k | e64->name_off = bswap_32(e64->name_off); |
370 | 1.59k | e64->val_lo32 = bswap_32(e64->val_lo32); |
371 | 1.59k | e64->val_hi32 = bswap_32(e64->val_hi32); |
372 | 1.59k | } |
373 | 539 | return 0; |
374 | 266 | case BTF_KIND_ARRAY: |
375 | 266 | a = btf_array(t); |
376 | 266 | a->type = bswap_32(a->type); |
377 | 266 | a->index_type = bswap_32(a->index_type); |
378 | 266 | a->nelems = bswap_32(a->nelems); |
379 | 266 | return 0; |
380 | 295 | case BTF_KIND_STRUCT: |
381 | 542 | case BTF_KIND_UNION: |
382 | 2.47k | for (i = 0, m = btf_members(t); i < vlen; i++, m++) { |
383 | 1.93k | m->name_off = bswap_32(m->name_off); |
384 | 1.93k | m->type = bswap_32(m->type); |
385 | 1.93k | m->offset = bswap_32(m->offset); |
386 | 1.93k | } |
387 | 542 | return 0; |
388 | 587 | case BTF_KIND_FUNC_PROTO: |
389 | 2.10k | for (i = 0, p = btf_params(t); i < vlen; i++, p++) { |
390 | 1.51k | p->name_off = bswap_32(p->name_off); |
391 | 1.51k | p->type = bswap_32(p->type); |
392 | 1.51k | } |
393 | 587 | return 0; |
394 | 801 | case BTF_KIND_VAR: |
395 | 801 | btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); |
396 | 801 | return 0; |
397 | 798 | case BTF_KIND_DATASEC: |
398 | 2.99k | for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { |
399 | 2.19k | v->type = bswap_32(v->type); |
400 | 2.19k | v->offset = bswap_32(v->offset); |
401 | 2.19k | v->size = bswap_32(v->size); |
402 | 2.19k | } |
403 | 798 | return 0; |
404 | 776 | case BTF_KIND_DECL_TAG: |
405 | 776 | btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); |
406 | 776 | return 0; |
407 | 0 | default: |
408 | 0 | pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); |
409 | 0 | return -EINVAL; |
410 | 10.6k | } |
411 | 10.6k | } |
412 | | |
413 | | static int btf_parse_type_sec(struct btf *btf) |
414 | 3.24k | { |
415 | 3.24k | struct btf_header *hdr = btf->hdr; |
416 | 3.24k | void *next_type = btf->types_data; |
417 | 3.24k | void *end_type = next_type + hdr->type_len; |
418 | 3.24k | int err, type_size; |
419 | | |
420 | 38.7k | while (next_type + sizeof(struct btf_type) <= end_type) { |
421 | 35.5k | if (btf->swapped_endian) |
422 | 10.7k | btf_bswap_type_base(next_type); |
423 | | |
424 | 35.5k | type_size = btf_type_size(next_type); |
425 | 35.5k | if (type_size < 0) |
426 | 76 | return type_size; |
427 | 35.5k | if (next_type + type_size > end_type) { |
428 | 33 | pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); |
429 | 33 | return -EINVAL; |
430 | 33 | } |
431 | | |
432 | 35.4k | if (btf->swapped_endian && btf_bswap_type_rest(next_type)) |
433 | 0 | return -EINVAL; |
434 | | |
435 | 35.4k | err = btf_add_type_idx_entry(btf, next_type - btf->types_data); |
436 | 35.4k | if (err) |
437 | 0 | return err; |
438 | | |
439 | 35.4k | next_type += type_size; |
440 | 35.4k | btf->nr_types++; |
441 | 35.4k | } |
442 | | |
443 | 3.13k | if (next_type != end_type) { |
444 | 56 | pr_warn("BTF types data is malformed\n"); |
445 | 56 | return -EINVAL; |
446 | 56 | } |
447 | | |
448 | 3.08k | return 0; |
449 | 3.13k | } |
450 | | |
451 | | static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id) |
452 | 28.2k | { |
453 | 28.2k | const char *s; |
454 | | |
455 | 28.2k | s = btf__str_by_offset(btf, str_off); |
456 | 28.2k | if (!s) { |
457 | 212 | pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off); |
458 | 212 | return -EINVAL; |
459 | 212 | } |
460 | | |
461 | 28.0k | return 0; |
462 | 28.2k | } |
463 | | |
464 | | static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id) |
465 | 19.6k | { |
466 | 19.6k | const struct btf_type *t; |
467 | | |
468 | 19.6k | t = btf__type_by_id(btf, id); |
469 | 19.6k | if (!t) { |
470 | 347 | pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id); |
471 | 347 | return -EINVAL; |
472 | 347 | } |
473 | | |
474 | 19.3k | return 0; |
475 | 19.6k | } |
476 | | |
477 | | static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id) |
478 | 24.2k | { |
479 | 24.2k | __u32 kind = btf_kind(t); |
480 | 24.2k | int err, i, n; |
481 | | |
482 | 24.2k | err = btf_validate_str(btf, t->name_off, "type name", id); |
483 | 24.2k | if (err) |
484 | 154 | return err; |
485 | | |
486 | 24.1k | switch (kind) { |
487 | 0 | case BTF_KIND_UNKN: |
488 | 2.58k | case BTF_KIND_INT: |
489 | 3.95k | case BTF_KIND_FWD: |
490 | 5.33k | case BTF_KIND_FLOAT: |
491 | 5.33k | break; |
492 | 517 | case BTF_KIND_PTR: |
493 | 668 | case BTF_KIND_TYPEDEF: |
494 | 816 | case BTF_KIND_VOLATILE: |
495 | 1.03k | case BTF_KIND_CONST: |
496 | 1.18k | case BTF_KIND_RESTRICT: |
497 | 4.10k | case BTF_KIND_VAR: |
498 | 5.06k | case BTF_KIND_DECL_TAG: |
499 | 5.39k | case BTF_KIND_TYPE_TAG: |
500 | 5.39k | err = btf_validate_id(btf, t->type, id); |
501 | 5.39k | if (err) |
502 | 64 | return err; |
503 | 5.33k | break; |
504 | 5.33k | case BTF_KIND_ARRAY: { |
505 | 1.61k | const struct btf_array *a = btf_array(t); |
506 | | |
507 | 1.61k | err = btf_validate_id(btf, a->type, id); |
508 | 1.61k | err = err ?: btf_validate_id(btf, a->index_type, id); |
509 | 1.61k | if (err) |
510 | 93 | return err; |
511 | 1.51k | break; |
512 | 1.61k | } |
513 | 1.51k | case BTF_KIND_STRUCT: |
514 | 1.45k | case BTF_KIND_UNION: { |
515 | 1.45k | const struct btf_member *m = btf_members(t); |
516 | | |
517 | 1.45k | n = btf_vlen(t); |
518 | 1.87k | for (i = 0; i < n; i++, m++) { |
519 | 490 | err = btf_validate_str(btf, m->name_off, "field name", id); |
520 | 490 | err = err ?: btf_validate_id(btf, m->type, id); |
521 | 490 | if (err) |
522 | 67 | return err; |
523 | 490 | } |
524 | 1.38k | break; |
525 | 1.45k | } |
526 | 1.38k | case BTF_KIND_ENUM: { |
527 | 955 | const struct btf_enum *m = btf_enum(t); |
528 | | |
529 | 955 | n = btf_vlen(t); |
530 | 1.87k | for (i = 0; i < n; i++, m++) { |
531 | 930 | err = btf_validate_str(btf, m->name_off, "enum name", id); |
532 | 930 | if (err) |
533 | 11 | return err; |
534 | 930 | } |
535 | 944 | break; |
536 | 955 | } |
537 | 944 | case BTF_KIND_ENUM64: { |
538 | 714 | const struct btf_enum64 *m = btf_enum64(t); |
539 | | |
540 | 714 | n = btf_vlen(t); |
541 | 2.32k | for (i = 0; i < n; i++, m++) { |
542 | 1.63k | err = btf_validate_str(btf, m->name_off, "enum name", id); |
543 | 1.63k | if (err) |
544 | 16 | return err; |
545 | 1.63k | } |
546 | 698 | break; |
547 | 714 | } |
548 | 1.34k | case BTF_KIND_FUNC: { |
549 | 1.34k | const struct btf_type *ft; |
550 | | |
551 | 1.34k | err = btf_validate_id(btf, t->type, id); |
552 | 1.34k | if (err) |
553 | 41 | return err; |
554 | 1.30k | ft = btf__type_by_id(btf, t->type); |
555 | 1.30k | if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) { |
556 | 16 | pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type); |
557 | 16 | return -EINVAL; |
558 | 16 | } |
559 | 1.28k | break; |
560 | 1.30k | } |
561 | 2.17k | case BTF_KIND_FUNC_PROTO: { |
562 | 2.17k | const struct btf_param *m = btf_params(t); |
563 | | |
564 | 2.17k | n = btf_vlen(t); |
565 | 3.02k | for (i = 0; i < n; i++, m++) { |
566 | 908 | err = btf_validate_str(btf, m->name_off, "param name", id); |
567 | 908 | err = err ?: btf_validate_id(btf, m->type, id); |
568 | 908 | if (err) |
569 | 59 | return err; |
570 | 908 | } |
571 | 2.11k | break; |
572 | 2.17k | } |
573 | 5.15k | case BTF_KIND_DATASEC: { |
574 | 5.15k | const struct btf_var_secinfo *m = btf_var_secinfos(t); |
575 | | |
576 | 5.15k | n = btf_vlen(t); |
577 | 13.5k | for (i = 0; i < n; i++, m++) { |
578 | 8.41k | err = btf_validate_id(btf, m->type, id); |
579 | 8.41k | if (err) |
580 | 54 | return err; |
581 | 8.41k | } |
582 | 5.10k | break; |
583 | 5.15k | } |
584 | 5.10k | default: |
585 | 0 | pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind); |
586 | 0 | return -EINVAL; |
587 | 24.1k | } |
588 | 23.7k | return 0; |
589 | 24.1k | } |
590 | | |
591 | | /* Validate basic sanity of BTF. It's intentionally less thorough than |
592 | | * kernel's validation and validates only properties of BTF that libbpf relies |
593 | | * on to be correct (e.g., valid type IDs, valid string offsets, etc) |
594 | | */ |
595 | | static int btf_sanity_check(const struct btf *btf) |
596 | 3.08k | { |
597 | 3.08k | const struct btf_type *t; |
598 | 3.08k | __u32 i, n = btf__type_cnt(btf); |
599 | 3.08k | int err; |
600 | | |
601 | 26.8k | for (i = 1; i < n; i++) { |
602 | 24.2k | t = btf_type_by_id(btf, i); |
603 | 24.2k | err = btf_validate_type(btf, t, i); |
604 | 24.2k | if (err) |
605 | 575 | return err; |
606 | 24.2k | } |
607 | 2.50k | return 0; |
608 | 3.08k | } |
609 | | |
610 | | __u32 btf__type_cnt(const struct btf *btf) |
611 | 10.4k | { |
612 | 10.4k | return btf->start_id + btf->nr_types; |
613 | 10.4k | } |
614 | | |
615 | | const struct btf *btf__base_btf(const struct btf *btf) |
616 | 0 | { |
617 | 0 | return btf->base_btf; |
618 | 0 | } |
619 | | |
620 | | /* internal helper returning non-const pointer to a type */ |
621 | | struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) |
622 | 121k | { |
623 | 121k | if (type_id == 0) |
624 | 7.94k | return &btf_void; |
625 | 113k | if (type_id < btf->start_id) |
626 | 0 | return btf_type_by_id(btf->base_btf, type_id); |
627 | 113k | return btf->types_data + btf->type_offs[type_id - btf->start_id]; |
628 | 113k | } |
629 | | |
630 | | const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) |
631 | 88.6k | { |
632 | 88.6k | if (type_id >= btf->start_id + btf->nr_types) |
633 | 347 | return errno = EINVAL, NULL; |
634 | 88.2k | return btf_type_by_id((struct btf *)btf, type_id); |
635 | 88.6k | } |
636 | | |
637 | | static int determine_ptr_size(const struct btf *btf) |
638 | 0 | { |
639 | 0 | static const char * const long_aliases[] = { |
640 | 0 | "long", |
641 | 0 | "long int", |
642 | 0 | "int long", |
643 | 0 | "unsigned long", |
644 | 0 | "long unsigned", |
645 | 0 | "unsigned long int", |
646 | 0 | "unsigned int long", |
647 | 0 | "long unsigned int", |
648 | 0 | "long int unsigned", |
649 | 0 | "int unsigned long", |
650 | 0 | "int long unsigned", |
651 | 0 | }; |
652 | 0 | const struct btf_type *t; |
653 | 0 | const char *name; |
654 | 0 | int i, j, n; |
655 | |
|
656 | 0 | if (btf->base_btf && btf->base_btf->ptr_sz > 0) |
657 | 0 | return btf->base_btf->ptr_sz; |
658 | | |
659 | 0 | n = btf__type_cnt(btf); |
660 | 0 | for (i = 1; i < n; i++) { |
661 | 0 | t = btf__type_by_id(btf, i); |
662 | 0 | if (!btf_is_int(t)) |
663 | 0 | continue; |
664 | | |
665 | 0 | if (t->size != 4 && t->size != 8) |
666 | 0 | continue; |
667 | | |
668 | 0 | name = btf__name_by_offset(btf, t->name_off); |
669 | 0 | if (!name) |
670 | 0 | continue; |
671 | | |
672 | 0 | for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { |
673 | 0 | if (strcmp(name, long_aliases[j]) == 0) |
674 | 0 | return t->size; |
675 | 0 | } |
676 | 0 | } |
677 | | |
678 | 0 | return -1; |
679 | 0 | } |
680 | | |
681 | | static size_t btf_ptr_sz(const struct btf *btf) |
682 | 492 | { |
683 | 492 | if (!btf->ptr_sz) |
684 | 0 | ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); |
685 | 492 | return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; |
686 | 492 | } |
687 | | |
688 | | /* Return pointer size this BTF instance assumes. The size is heuristically |
689 | | * determined by looking for 'long' or 'unsigned long' integer type and |
690 | | * recording its size in bytes. If BTF type information doesn't have any such |
691 | | * type, this function returns 0. In the latter case, native architecture's |
692 | | * pointer size is assumed, so will be either 4 or 8, depending on |
693 | | * architecture that libbpf was compiled for. It's possible to override |
694 | | * guessed value by using btf__set_pointer_size() API. |
695 | | */ |
696 | | size_t btf__pointer_size(const struct btf *btf) |
697 | 0 | { |
698 | 0 | if (!btf->ptr_sz) |
699 | 0 | ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); |
700 | |
|
701 | 0 | if (btf->ptr_sz < 0) |
702 | | /* not enough BTF type info to guess */ |
703 | 0 | return 0; |
704 | | |
705 | 0 | return btf->ptr_sz; |
706 | 0 | } |
707 | | |
708 | | /* Override or set pointer size in bytes. Only values of 4 and 8 are |
709 | | * supported. |
710 | | */ |
711 | | int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) |
712 | 2.50k | { |
713 | 2.50k | if (ptr_sz != 4 && ptr_sz != 8) |
714 | 0 | return libbpf_err(-EINVAL); |
715 | 2.50k | btf->ptr_sz = ptr_sz; |
716 | 2.50k | return 0; |
717 | 2.50k | } |
718 | | |
719 | | static bool is_host_big_endian(void) |
720 | 0 | { |
721 | 0 | #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
722 | 0 | return false; |
723 | | #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
724 | | return true; |
725 | | #else |
726 | | # error "Unrecognized __BYTE_ORDER__" |
727 | | #endif |
728 | 0 | } |
729 | | |
730 | | enum btf_endianness btf__endianness(const struct btf *btf) |
731 | 0 | { |
732 | 0 | if (is_host_big_endian()) |
733 | 0 | return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; |
734 | 0 | else |
735 | 0 | return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; |
736 | 0 | } |
737 | | |
738 | | int btf__set_endianness(struct btf *btf, enum btf_endianness endian) |
739 | 0 | { |
740 | 0 | if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) |
741 | 0 | return libbpf_err(-EINVAL); |
742 | | |
743 | 0 | btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); |
744 | 0 | if (!btf->swapped_endian) { |
745 | 0 | free(btf->raw_data_swapped); |
746 | 0 | btf->raw_data_swapped = NULL; |
747 | 0 | } |
748 | 0 | return 0; |
749 | 0 | } |
750 | | |
751 | | static bool btf_type_is_void(const struct btf_type *t) |
752 | 1.84k | { |
753 | 1.84k | return t == &btf_void || btf_is_fwd(t); |
754 | 1.84k | } |
755 | | |
756 | | static bool btf_type_is_void_or_null(const struct btf_type *t) |
757 | 1.84k | { |
758 | 1.84k | return !t || btf_type_is_void(t); |
759 | 1.84k | } |
760 | | |
761 | 3.71k | #define MAX_RESOLVE_DEPTH 32 |
762 | | |
763 | | __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) |
764 | 640 | { |
765 | 640 | const struct btf_array *array; |
766 | 640 | const struct btf_type *t; |
767 | 640 | __u32 nelems = 1; |
768 | 640 | __s64 size = -1; |
769 | 640 | int i; |
770 | | |
771 | 640 | t = btf__type_by_id(btf, type_id); |
772 | 1.85k | for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { |
773 | 1.84k | switch (btf_kind(t)) { |
774 | 343 | case BTF_KIND_INT: |
775 | 351 | case BTF_KIND_STRUCT: |
776 | 362 | case BTF_KIND_UNION: |
777 | 457 | case BTF_KIND_ENUM: |
778 | 526 | case BTF_KIND_ENUM64: |
779 | 578 | case BTF_KIND_DATASEC: |
780 | 586 | case BTF_KIND_FLOAT: |
781 | 586 | size = t->size; |
782 | 586 | goto done; |
783 | 4 | case BTF_KIND_PTR: |
784 | 4 | size = btf_ptr_sz(btf); |
785 | 4 | goto done; |
786 | 52 | case BTF_KIND_TYPEDEF: |
787 | 178 | case BTF_KIND_VOLATILE: |
788 | 268 | case BTF_KIND_CONST: |
789 | 371 | case BTF_KIND_RESTRICT: |
790 | 480 | case BTF_KIND_VAR: |
791 | 550 | case BTF_KIND_DECL_TAG: |
792 | 847 | case BTF_KIND_TYPE_TAG: |
793 | 847 | type_id = t->type; |
794 | 847 | break; |
795 | 402 | case BTF_KIND_ARRAY: |
796 | 402 | array = btf_array(t); |
797 | 402 | if (nelems && array->nelems > UINT32_MAX / nelems) |
798 | 30 | return libbpf_err(-E2BIG); |
799 | 372 | nelems *= array->nelems; |
800 | 372 | type_id = array->type; |
801 | 372 | break; |
802 | 2 | default: |
803 | 2 | return libbpf_err(-EINVAL); |
804 | 1.84k | } |
805 | | |
806 | 1.21k | t = btf__type_by_id(btf, type_id); |
807 | 1.21k | } |
808 | | |
809 | 608 | done: |
810 | 608 | if (size < 0) |
811 | 18 | return libbpf_err(-EINVAL); |
812 | 590 | if (nelems && size > UINT32_MAX / nelems) |
813 | 35 | return libbpf_err(-E2BIG); |
814 | | |
815 | 555 | return nelems * size; |
816 | 590 | } |
817 | | |
818 | | int btf__align_of(const struct btf *btf, __u32 id) |
819 | 990 | { |
820 | 990 | const struct btf_type *t = btf__type_by_id(btf, id); |
821 | 990 | __u16 kind = btf_kind(t); |
822 | | |
823 | 990 | switch (kind) { |
824 | 340 | case BTF_KIND_INT: |
825 | 421 | case BTF_KIND_ENUM: |
826 | 482 | case BTF_KIND_ENUM64: |
827 | 484 | case BTF_KIND_FLOAT: |
828 | 484 | return min(btf_ptr_sz(btf), (size_t)t->size); |
829 | 4 | case BTF_KIND_PTR: |
830 | 4 | return btf_ptr_sz(btf); |
831 | 21 | case BTF_KIND_TYPEDEF: |
832 | 67 | case BTF_KIND_VOLATILE: |
833 | 103 | case BTF_KIND_CONST: |
834 | 132 | case BTF_KIND_RESTRICT: |
835 | 340 | case BTF_KIND_TYPE_TAG: |
836 | 340 | return btf__align_of(btf, t->type); |
837 | 132 | case BTF_KIND_ARRAY: |
838 | 132 | return btf__align_of(btf, btf_array(t)->type); |
839 | 15 | case BTF_KIND_STRUCT: |
840 | 26 | case BTF_KIND_UNION: { |
841 | 26 | const struct btf_member *m = btf_members(t); |
842 | 26 | __u16 vlen = btf_vlen(t); |
843 | 26 | int i, max_align = 1, align; |
844 | | |
845 | 40 | for (i = 0; i < vlen; i++, m++) { |
846 | 22 | align = btf__align_of(btf, m->type); |
847 | 22 | if (align <= 0) |
848 | 3 | return libbpf_err(align); |
849 | 19 | max_align = max(max_align, align); |
850 | | |
851 | | /* if field offset isn't aligned according to field |
852 | | * type's alignment, then struct must be packed |
853 | | */ |
854 | 19 | if (btf_member_bitfield_size(t, i) == 0 && |
855 | 19 | (m->offset % (8 * align)) != 0) |
856 | 5 | return 1; |
857 | 19 | } |
858 | | |
859 | | /* if struct/union size isn't a multiple of its alignment, |
860 | | * then struct must be packed |
861 | | */ |
862 | 18 | if ((t->size % max_align) != 0) |
863 | 6 | return 1; |
864 | | |
865 | 12 | return max_align; |
866 | 18 | } |
867 | 4 | default: |
868 | 4 | pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); |
869 | 4 | return errno = EINVAL, 0; |
870 | 990 | } |
871 | 990 | } |
872 | | |
873 | | int btf__resolve_type(const struct btf *btf, __u32 type_id) |
874 | 0 | { |
875 | 0 | const struct btf_type *t; |
876 | 0 | int depth = 0; |
877 | |
|
878 | 0 | t = btf__type_by_id(btf, type_id); |
879 | 0 | while (depth < MAX_RESOLVE_DEPTH && |
880 | 0 | !btf_type_is_void_or_null(t) && |
881 | 0 | (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { |
882 | 0 | type_id = t->type; |
883 | 0 | t = btf__type_by_id(btf, type_id); |
884 | 0 | depth++; |
885 | 0 | } |
886 | |
|
887 | 0 | if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) |
888 | 0 | return libbpf_err(-EINVAL); |
889 | | |
890 | 0 | return type_id; |
891 | 0 | } |
892 | | |
893 | | __s32 btf__find_by_name(const struct btf *btf, const char *type_name) |
894 | 355 | { |
895 | 355 | __u32 i, nr_types = btf__type_cnt(btf); |
896 | | |
897 | 355 | if (!strcmp(type_name, "void")) |
898 | 0 | return 0; |
899 | | |
900 | 2.07k | for (i = 1; i < nr_types; i++) { |
901 | 1.88k | const struct btf_type *t = btf__type_by_id(btf, i); |
902 | 1.88k | const char *name = btf__name_by_offset(btf, t->name_off); |
903 | | |
904 | 1.88k | if (name && !strcmp(type_name, name)) |
905 | 167 | return i; |
906 | 1.88k | } |
907 | | |
908 | 188 | return libbpf_err(-ENOENT); |
909 | 355 | } |
910 | | |
911 | | static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, |
912 | | const char *type_name, __u32 kind) |
913 | 2.23k | { |
914 | 2.23k | __u32 i, nr_types = btf__type_cnt(btf); |
915 | | |
916 | 2.23k | if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) |
917 | 0 | return 0; |
918 | | |
919 | 21.5k | for (i = start_id; i < nr_types; i++) { |
920 | 19.9k | const struct btf_type *t = btf__type_by_id(btf, i); |
921 | 19.9k | const char *name; |
922 | | |
923 | 19.9k | if (btf_kind(t) != kind) |
924 | 15.6k | continue; |
925 | 4.21k | name = btf__name_by_offset(btf, t->name_off); |
926 | 4.21k | if (name && !strcmp(type_name, name)) |
927 | 621 | return i; |
928 | 4.21k | } |
929 | | |
930 | 1.61k | return libbpf_err(-ENOENT); |
931 | 2.23k | } |
932 | | |
933 | | __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, |
934 | | __u32 kind) |
935 | 0 | { |
936 | 0 | return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); |
937 | 0 | } |
938 | | |
939 | | __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, |
940 | | __u32 kind) |
941 | 2.23k | { |
942 | 2.23k | return btf_find_by_name_kind(btf, 1, type_name, kind); |
943 | 2.23k | } |
944 | | |
945 | | static bool btf_is_modifiable(const struct btf *btf) |
946 | 4.52k | { |
947 | 4.52k | return (void *)btf->hdr != btf->raw_data; |
948 | 4.52k | } |
949 | | |
950 | | void btf__free(struct btf *btf) |
951 | 20.0k | { |
952 | 20.0k | if (IS_ERR_OR_NULL(btf)) |
953 | 16.5k | return; |
954 | | |
955 | 3.50k | if (btf->fd >= 0) |
956 | 0 | close(btf->fd); |
957 | | |
958 | 3.50k | if (btf_is_modifiable(btf)) { |
959 | | /* if BTF was modified after loading, it will have a split |
960 | | * in-memory representation for header, types, and strings |
961 | | * sections, so we need to free all of them individually. It |
962 | | * might still have a cached contiguous raw data present, |
963 | | * which will be unconditionally freed below. |
964 | | */ |
965 | 509 | free(btf->hdr); |
966 | 509 | free(btf->types_data); |
967 | 509 | strset__free(btf->strs_set); |
968 | 509 | } |
969 | 3.50k | free(btf->raw_data); |
970 | 3.50k | free(btf->raw_data_swapped); |
971 | 3.50k | free(btf->type_offs); |
972 | 3.50k | free(btf); |
973 | 3.50k | } |
974 | | |
975 | | static struct btf *btf_new_empty(struct btf *base_btf) |
976 | 0 | { |
977 | 0 | struct btf *btf; |
978 | |
|
979 | 0 | btf = calloc(1, sizeof(*btf)); |
980 | 0 | if (!btf) |
981 | 0 | return ERR_PTR(-ENOMEM); |
982 | | |
983 | 0 | btf->nr_types = 0; |
984 | 0 | btf->start_id = 1; |
985 | 0 | btf->start_str_off = 0; |
986 | 0 | btf->fd = -1; |
987 | 0 | btf->ptr_sz = sizeof(void *); |
988 | 0 | btf->swapped_endian = false; |
989 | |
|
990 | 0 | if (base_btf) { |
991 | 0 | btf->base_btf = base_btf; |
992 | 0 | btf->start_id = btf__type_cnt(base_btf); |
993 | 0 | btf->start_str_off = base_btf->hdr->str_len; |
994 | 0 | } |
995 | | |
996 | | /* +1 for empty string at offset 0 */ |
997 | 0 | btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); |
998 | 0 | btf->raw_data = calloc(1, btf->raw_size); |
999 | 0 | if (!btf->raw_data) { |
1000 | 0 | free(btf); |
1001 | 0 | return ERR_PTR(-ENOMEM); |
1002 | 0 | } |
1003 | | |
1004 | 0 | btf->hdr = btf->raw_data; |
1005 | 0 | btf->hdr->hdr_len = sizeof(struct btf_header); |
1006 | 0 | btf->hdr->magic = BTF_MAGIC; |
1007 | 0 | btf->hdr->version = BTF_VERSION; |
1008 | |
|
1009 | 0 | btf->types_data = btf->raw_data + btf->hdr->hdr_len; |
1010 | 0 | btf->strs_data = btf->raw_data + btf->hdr->hdr_len; |
1011 | 0 | btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ |
1012 | |
|
1013 | 0 | return btf; |
1014 | 0 | } |
1015 | | |
1016 | | struct btf *btf__new_empty(void) |
1017 | 0 | { |
1018 | 0 | return libbpf_ptr(btf_new_empty(NULL)); |
1019 | 0 | } |
1020 | | |
1021 | | struct btf *btf__new_empty_split(struct btf *base_btf) |
1022 | 0 | { |
1023 | 0 | return libbpf_ptr(btf_new_empty(base_btf)); |
1024 | 0 | } |
1025 | | |
1026 | | static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) |
1027 | 3.50k | { |
1028 | 3.50k | struct btf *btf; |
1029 | 3.50k | int err; |
1030 | | |
1031 | 3.50k | btf = calloc(1, sizeof(struct btf)); |
1032 | 3.50k | if (!btf) |
1033 | 0 | return ERR_PTR(-ENOMEM); |
1034 | | |
1035 | 3.50k | btf->nr_types = 0; |
1036 | 3.50k | btf->start_id = 1; |
1037 | 3.50k | btf->start_str_off = 0; |
1038 | 3.50k | btf->fd = -1; |
1039 | | |
1040 | 3.50k | if (base_btf) { |
1041 | 0 | btf->base_btf = base_btf; |
1042 | 0 | btf->start_id = btf__type_cnt(base_btf); |
1043 | 0 | btf->start_str_off = base_btf->hdr->str_len; |
1044 | 0 | } |
1045 | | |
1046 | 3.50k | btf->raw_data = malloc(size); |
1047 | 3.50k | if (!btf->raw_data) { |
1048 | 0 | err = -ENOMEM; |
1049 | 0 | goto done; |
1050 | 0 | } |
1051 | 3.50k | memcpy(btf->raw_data, data, size); |
1052 | 3.50k | btf->raw_size = size; |
1053 | | |
1054 | 3.50k | btf->hdr = btf->raw_data; |
1055 | 3.50k | err = btf_parse_hdr(btf); |
1056 | 3.50k | if (err) |
1057 | 236 | goto done; |
1058 | | |
1059 | 3.27k | btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; |
1060 | 3.27k | btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; |
1061 | | |
1062 | 3.27k | err = btf_parse_str_sec(btf); |
1063 | 3.27k | err = err ?: btf_parse_type_sec(btf); |
1064 | 3.27k | err = err ?: btf_sanity_check(btf); |
1065 | 3.27k | if (err) |
1066 | 763 | goto done; |
1067 | | |
1068 | 3.50k | done: |
1069 | 3.50k | if (err) { |
1070 | 999 | btf__free(btf); |
1071 | 999 | return ERR_PTR(err); |
1072 | 999 | } |
1073 | | |
1074 | 2.50k | return btf; |
1075 | 3.50k | } |
1076 | | |
1077 | | struct btf *btf__new(const void *data, __u32 size) |
1078 | 3.50k | { |
1079 | 3.50k | return libbpf_ptr(btf_new(data, size, NULL)); |
1080 | 3.50k | } |
1081 | | |
1082 | | static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, |
1083 | | struct btf_ext **btf_ext) |
1084 | 0 | { |
1085 | 0 | Elf_Data *btf_data = NULL, *btf_ext_data = NULL; |
1086 | 0 | int err = 0, fd = -1, idx = 0; |
1087 | 0 | struct btf *btf = NULL; |
1088 | 0 | Elf_Scn *scn = NULL; |
1089 | 0 | Elf *elf = NULL; |
1090 | 0 | GElf_Ehdr ehdr; |
1091 | 0 | size_t shstrndx; |
1092 | |
|
1093 | 0 | if (elf_version(EV_CURRENT) == EV_NONE) { |
1094 | 0 | pr_warn("failed to init libelf for %s\n", path); |
1095 | 0 | return ERR_PTR(-LIBBPF_ERRNO__LIBELF); |
1096 | 0 | } |
1097 | | |
1098 | 0 | fd = open(path, O_RDONLY | O_CLOEXEC); |
1099 | 0 | if (fd < 0) { |
1100 | 0 | err = -errno; |
1101 | 0 | pr_warn("failed to open %s: %s\n", path, strerror(errno)); |
1102 | 0 | return ERR_PTR(err); |
1103 | 0 | } |
1104 | | |
1105 | 0 | err = -LIBBPF_ERRNO__FORMAT; |
1106 | |
|
1107 | 0 | elf = elf_begin(fd, ELF_C_READ, NULL); |
1108 | 0 | if (!elf) { |
1109 | 0 | pr_warn("failed to open %s as ELF file\n", path); |
1110 | 0 | goto done; |
1111 | 0 | } |
1112 | 0 | if (!gelf_getehdr(elf, &ehdr)) { |
1113 | 0 | pr_warn("failed to get EHDR from %s\n", path); |
1114 | 0 | goto done; |
1115 | 0 | } |
1116 | | |
1117 | 0 | if (elf_getshdrstrndx(elf, &shstrndx)) { |
1118 | 0 | pr_warn("failed to get section names section index for %s\n", |
1119 | 0 | path); |
1120 | 0 | goto done; |
1121 | 0 | } |
1122 | | |
1123 | 0 | if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { |
1124 | 0 | pr_warn("failed to get e_shstrndx from %s\n", path); |
1125 | 0 | goto done; |
1126 | 0 | } |
1127 | | |
1128 | 0 | while ((scn = elf_nextscn(elf, scn)) != NULL) { |
1129 | 0 | GElf_Shdr sh; |
1130 | 0 | char *name; |
1131 | |
|
1132 | 0 | idx++; |
1133 | 0 | if (gelf_getshdr(scn, &sh) != &sh) { |
1134 | 0 | pr_warn("failed to get section(%d) header from %s\n", |
1135 | 0 | idx, path); |
1136 | 0 | goto done; |
1137 | 0 | } |
1138 | 0 | name = elf_strptr(elf, shstrndx, sh.sh_name); |
1139 | 0 | if (!name) { |
1140 | 0 | pr_warn("failed to get section(%d) name from %s\n", |
1141 | 0 | idx, path); |
1142 | 0 | goto done; |
1143 | 0 | } |
1144 | 0 | if (strcmp(name, BTF_ELF_SEC) == 0) { |
1145 | 0 | btf_data = elf_getdata(scn, 0); |
1146 | 0 | if (!btf_data) { |
1147 | 0 | pr_warn("failed to get section(%d, %s) data from %s\n", |
1148 | 0 | idx, name, path); |
1149 | 0 | goto done; |
1150 | 0 | } |
1151 | 0 | continue; |
1152 | 0 | } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { |
1153 | 0 | btf_ext_data = elf_getdata(scn, 0); |
1154 | 0 | if (!btf_ext_data) { |
1155 | 0 | pr_warn("failed to get section(%d, %s) data from %s\n", |
1156 | 0 | idx, name, path); |
1157 | 0 | goto done; |
1158 | 0 | } |
1159 | 0 | continue; |
1160 | 0 | } |
1161 | 0 | } |
1162 | | |
1163 | 0 | if (!btf_data) { |
1164 | 0 | pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path); |
1165 | 0 | err = -ENODATA; |
1166 | 0 | goto done; |
1167 | 0 | } |
1168 | 0 | btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); |
1169 | 0 | err = libbpf_get_error(btf); |
1170 | 0 | if (err) |
1171 | 0 | goto done; |
1172 | | |
1173 | 0 | switch (gelf_getclass(elf)) { |
1174 | 0 | case ELFCLASS32: |
1175 | 0 | btf__set_pointer_size(btf, 4); |
1176 | 0 | break; |
1177 | 0 | case ELFCLASS64: |
1178 | 0 | btf__set_pointer_size(btf, 8); |
1179 | 0 | break; |
1180 | 0 | default: |
1181 | 0 | pr_warn("failed to get ELF class (bitness) for %s\n", path); |
1182 | 0 | break; |
1183 | 0 | } |
1184 | | |
1185 | 0 | if (btf_ext && btf_ext_data) { |
1186 | 0 | *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); |
1187 | 0 | err = libbpf_get_error(*btf_ext); |
1188 | 0 | if (err) |
1189 | 0 | goto done; |
1190 | 0 | } else if (btf_ext) { |
1191 | 0 | *btf_ext = NULL; |
1192 | 0 | } |
1193 | 0 | done: |
1194 | 0 | if (elf) |
1195 | 0 | elf_end(elf); |
1196 | 0 | close(fd); |
1197 | |
|
1198 | 0 | if (!err) |
1199 | 0 | return btf; |
1200 | | |
1201 | 0 | if (btf_ext) |
1202 | 0 | btf_ext__free(*btf_ext); |
1203 | 0 | btf__free(btf); |
1204 | |
|
1205 | 0 | return ERR_PTR(err); |
1206 | 0 | } |
1207 | | |
1208 | | struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) |
1209 | 0 | { |
1210 | 0 | return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); |
1211 | 0 | } |
1212 | | |
1213 | | struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) |
1214 | 0 | { |
1215 | 0 | return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); |
1216 | 0 | } |
1217 | | |
1218 | | static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) |
1219 | 0 | { |
1220 | 0 | struct btf *btf = NULL; |
1221 | 0 | void *data = NULL; |
1222 | 0 | FILE *f = NULL; |
1223 | 0 | __u16 magic; |
1224 | 0 | int err = 0; |
1225 | 0 | long sz; |
1226 | |
|
1227 | 0 | f = fopen(path, "rbe"); |
1228 | 0 | if (!f) { |
1229 | 0 | err = -errno; |
1230 | 0 | goto err_out; |
1231 | 0 | } |
1232 | | |
1233 | | /* check BTF magic */ |
1234 | 0 | if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { |
1235 | 0 | err = -EIO; |
1236 | 0 | goto err_out; |
1237 | 0 | } |
1238 | 0 | if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { |
1239 | | /* definitely not a raw BTF */ |
1240 | 0 | err = -EPROTO; |
1241 | 0 | goto err_out; |
1242 | 0 | } |
1243 | | |
1244 | | /* get file size */ |
1245 | 0 | if (fseek(f, 0, SEEK_END)) { |
1246 | 0 | err = -errno; |
1247 | 0 | goto err_out; |
1248 | 0 | } |
1249 | 0 | sz = ftell(f); |
1250 | 0 | if (sz < 0) { |
1251 | 0 | err = -errno; |
1252 | 0 | goto err_out; |
1253 | 0 | } |
1254 | | /* rewind to the start */ |
1255 | 0 | if (fseek(f, 0, SEEK_SET)) { |
1256 | 0 | err = -errno; |
1257 | 0 | goto err_out; |
1258 | 0 | } |
1259 | | |
1260 | | /* pre-alloc memory and read all of BTF data */ |
1261 | 0 | data = malloc(sz); |
1262 | 0 | if (!data) { |
1263 | 0 | err = -ENOMEM; |
1264 | 0 | goto err_out; |
1265 | 0 | } |
1266 | 0 | if (fread(data, 1, sz, f) < sz) { |
1267 | 0 | err = -EIO; |
1268 | 0 | goto err_out; |
1269 | 0 | } |
1270 | | |
1271 | | /* finally parse BTF data */ |
1272 | 0 | btf = btf_new(data, sz, base_btf); |
1273 | |
|
1274 | 0 | err_out: |
1275 | 0 | free(data); |
1276 | 0 | if (f) |
1277 | 0 | fclose(f); |
1278 | 0 | return err ? ERR_PTR(err) : btf; |
1279 | 0 | } |
1280 | | |
1281 | | struct btf *btf__parse_raw(const char *path) |
1282 | 0 | { |
1283 | 0 | return libbpf_ptr(btf_parse_raw(path, NULL)); |
1284 | 0 | } |
1285 | | |
1286 | | struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) |
1287 | 0 | { |
1288 | 0 | return libbpf_ptr(btf_parse_raw(path, base_btf)); |
1289 | 0 | } |
1290 | | |
1291 | | static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) |
1292 | 0 | { |
1293 | 0 | struct btf *btf; |
1294 | 0 | int err; |
1295 | |
|
1296 | 0 | if (btf_ext) |
1297 | 0 | *btf_ext = NULL; |
1298 | |
|
1299 | 0 | btf = btf_parse_raw(path, base_btf); |
1300 | 0 | err = libbpf_get_error(btf); |
1301 | 0 | if (!err) |
1302 | 0 | return btf; |
1303 | 0 | if (err != -EPROTO) |
1304 | 0 | return ERR_PTR(err); |
1305 | 0 | return btf_parse_elf(path, base_btf, btf_ext); |
1306 | 0 | } |
1307 | | |
1308 | | struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) |
1309 | 0 | { |
1310 | 0 | return libbpf_ptr(btf_parse(path, NULL, btf_ext)); |
1311 | 0 | } |
1312 | | |
1313 | | struct btf *btf__parse_split(const char *path, struct btf *base_btf) |
1314 | 0 | { |
1315 | 0 | return libbpf_ptr(btf_parse(path, base_btf, NULL)); |
1316 | 0 | } |
1317 | | |
1318 | | static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); |
1319 | | |
1320 | | int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level) |
1321 | 0 | { |
1322 | 0 | LIBBPF_OPTS(bpf_btf_load_opts, opts); |
1323 | 0 | __u32 buf_sz = 0, raw_size; |
1324 | 0 | char *buf = NULL, *tmp; |
1325 | 0 | void *raw_data; |
1326 | 0 | int err = 0; |
1327 | |
|
1328 | 0 | if (btf->fd >= 0) |
1329 | 0 | return libbpf_err(-EEXIST); |
1330 | 0 | if (log_sz && !log_buf) |
1331 | 0 | return libbpf_err(-EINVAL); |
1332 | | |
1333 | | /* cache native raw data representation */ |
1334 | 0 | raw_data = btf_get_raw_data(btf, &raw_size, false); |
1335 | 0 | if (!raw_data) { |
1336 | 0 | err = -ENOMEM; |
1337 | 0 | goto done; |
1338 | 0 | } |
1339 | 0 | btf->raw_size = raw_size; |
1340 | 0 | btf->raw_data = raw_data; |
1341 | |
|
1342 | 0 | retry_load: |
1343 | | /* if log_level is 0, we won't provide log_buf/log_size to the kernel, |
1344 | | * initially. Only if BTF loading fails, we bump log_level to 1 and |
1345 | | * retry, using either auto-allocated or custom log_buf. This way |
1346 | | * non-NULL custom log_buf provides a buffer just in case, but hopes |
1347 | | * for successful load and no need for log_buf. |
1348 | | */ |
1349 | 0 | if (log_level) { |
1350 | | /* if caller didn't provide custom log_buf, we'll keep |
1351 | | * allocating our own progressively bigger buffers for BTF |
1352 | | * verification log |
1353 | | */ |
1354 | 0 | if (!log_buf) { |
1355 | 0 | buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); |
1356 | 0 | tmp = realloc(buf, buf_sz); |
1357 | 0 | if (!tmp) { |
1358 | 0 | err = -ENOMEM; |
1359 | 0 | goto done; |
1360 | 0 | } |
1361 | 0 | buf = tmp; |
1362 | 0 | buf[0] = '\0'; |
1363 | 0 | } |
1364 | | |
1365 | 0 | opts.log_buf = log_buf ? log_buf : buf; |
1366 | 0 | opts.log_size = log_buf ? log_sz : buf_sz; |
1367 | 0 | opts.log_level = log_level; |
1368 | 0 | } |
1369 | | |
1370 | 0 | btf->fd = bpf_btf_load(raw_data, raw_size, &opts); |
1371 | 0 | if (btf->fd < 0) { |
1372 | | /* time to turn on verbose mode and try again */ |
1373 | 0 | if (log_level == 0) { |
1374 | 0 | log_level = 1; |
1375 | 0 | goto retry_load; |
1376 | 0 | } |
1377 | | /* only retry if caller didn't provide custom log_buf, but |
1378 | | * make sure we can never overflow buf_sz |
1379 | | */ |
1380 | 0 | if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) |
1381 | 0 | goto retry_load; |
1382 | | |
1383 | 0 | err = -errno; |
1384 | 0 | pr_warn("BTF loading error: %d\n", err); |
1385 | | /* don't print out contents of custom log_buf */ |
1386 | 0 | if (!log_buf && buf[0]) |
1387 | 0 | pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); |
1388 | 0 | } |
1389 | | |
1390 | 0 | done: |
1391 | 0 | free(buf); |
1392 | 0 | return libbpf_err(err); |
1393 | 0 | } |
1394 | | |
1395 | | int btf__load_into_kernel(struct btf *btf) |
1396 | 0 | { |
1397 | 0 | return btf_load_into_kernel(btf, NULL, 0, 0); |
1398 | 0 | } |
1399 | | |
1400 | | int btf__fd(const struct btf *btf) |
1401 | 0 | { |
1402 | 0 | return btf->fd; |
1403 | 0 | } |
1404 | | |
1405 | | void btf__set_fd(struct btf *btf, int fd) |
1406 | 0 | { |
1407 | 0 | btf->fd = fd; |
1408 | 0 | } |
1409 | | |
1410 | | static const void *btf_strs_data(const struct btf *btf) |
1411 | 44.1k | { |
1412 | 44.1k | return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); |
1413 | 44.1k | } |
1414 | | |
1415 | | static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) |
1416 | 0 | { |
1417 | 0 | struct btf_header *hdr = btf->hdr; |
1418 | 0 | struct btf_type *t; |
1419 | 0 | void *data, *p; |
1420 | 0 | __u32 data_sz; |
1421 | 0 | int i; |
1422 | |
|
1423 | 0 | data = swap_endian ? btf->raw_data_swapped : btf->raw_data; |
1424 | 0 | if (data) { |
1425 | 0 | *size = btf->raw_size; |
1426 | 0 | return data; |
1427 | 0 | } |
1428 | | |
1429 | 0 | data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; |
1430 | 0 | data = calloc(1, data_sz); |
1431 | 0 | if (!data) |
1432 | 0 | return NULL; |
1433 | 0 | p = data; |
1434 | |
|
1435 | 0 | memcpy(p, hdr, hdr->hdr_len); |
1436 | 0 | if (swap_endian) |
1437 | 0 | btf_bswap_hdr(p); |
1438 | 0 | p += hdr->hdr_len; |
1439 | |
|
1440 | 0 | memcpy(p, btf->types_data, hdr->type_len); |
1441 | 0 | if (swap_endian) { |
1442 | 0 | for (i = 0; i < btf->nr_types; i++) { |
1443 | 0 | t = p + btf->type_offs[i]; |
1444 | | /* btf_bswap_type_rest() relies on native t->info, so |
1445 | | * we swap base type info after we swapped all the |
1446 | | * additional information |
1447 | | */ |
1448 | 0 | if (btf_bswap_type_rest(t)) |
1449 | 0 | goto err_out; |
1450 | 0 | btf_bswap_type_base(t); |
1451 | 0 | } |
1452 | 0 | } |
1453 | 0 | p += hdr->type_len; |
1454 | |
|
1455 | 0 | memcpy(p, btf_strs_data(btf), hdr->str_len); |
1456 | 0 | p += hdr->str_len; |
1457 | |
|
1458 | 0 | *size = data_sz; |
1459 | 0 | return data; |
1460 | 0 | err_out: |
1461 | 0 | free(data); |
1462 | 0 | return NULL; |
1463 | 0 | } |
1464 | | |
1465 | | const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) |
1466 | 0 | { |
1467 | 0 | struct btf *btf = (struct btf *)btf_ro; |
1468 | 0 | __u32 data_sz; |
1469 | 0 | void *data; |
1470 | |
|
1471 | 0 | data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); |
1472 | 0 | if (!data) |
1473 | 0 | return errno = ENOMEM, NULL; |
1474 | | |
1475 | 0 | btf->raw_size = data_sz; |
1476 | 0 | if (btf->swapped_endian) |
1477 | 0 | btf->raw_data_swapped = data; |
1478 | 0 | else |
1479 | 0 | btf->raw_data = data; |
1480 | 0 | *size = data_sz; |
1481 | 0 | return data; |
1482 | 0 | } |
1483 | | |
1484 | | __attribute__((alias("btf__raw_data"))) |
1485 | | const void *btf__get_raw_data(const struct btf *btf, __u32 *size); |
1486 | | |
1487 | | const char *btf__str_by_offset(const struct btf *btf, __u32 offset) |
1488 | 44.4k | { |
1489 | 44.4k | if (offset < btf->start_str_off) |
1490 | 0 | return btf__str_by_offset(btf->base_btf, offset); |
1491 | 44.4k | else if (offset - btf->start_str_off < btf->hdr->str_len) |
1492 | 44.1k | return btf_strs_data(btf) + (offset - btf->start_str_off); |
1493 | 355 | else |
1494 | 355 | return errno = EINVAL, NULL; |
1495 | 44.4k | } |
1496 | | |
1497 | | const char *btf__name_by_offset(const struct btf *btf, __u32 offset) |
1498 | 16.2k | { |
1499 | 16.2k | return btf__str_by_offset(btf, offset); |
1500 | 16.2k | } |
1501 | | |
1502 | | struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) |
1503 | 0 | { |
1504 | 0 | struct bpf_btf_info btf_info; |
1505 | 0 | __u32 len = sizeof(btf_info); |
1506 | 0 | __u32 last_size; |
1507 | 0 | struct btf *btf; |
1508 | 0 | void *ptr; |
1509 | 0 | int err; |
1510 | | |
1511 | | /* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so |
1512 | | * let's start with a sane default - 4KiB here - and resize it only if |
1513 | | * bpf_btf_get_info_by_fd() needs a bigger buffer. |
1514 | | */ |
1515 | 0 | last_size = 4096; |
1516 | 0 | ptr = malloc(last_size); |
1517 | 0 | if (!ptr) |
1518 | 0 | return ERR_PTR(-ENOMEM); |
1519 | | |
1520 | 0 | memset(&btf_info, 0, sizeof(btf_info)); |
1521 | 0 | btf_info.btf = ptr_to_u64(ptr); |
1522 | 0 | btf_info.btf_size = last_size; |
1523 | 0 | err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); |
1524 | |
|
1525 | 0 | if (!err && btf_info.btf_size > last_size) { |
1526 | 0 | void *temp_ptr; |
1527 | |
|
1528 | 0 | last_size = btf_info.btf_size; |
1529 | 0 | temp_ptr = realloc(ptr, last_size); |
1530 | 0 | if (!temp_ptr) { |
1531 | 0 | btf = ERR_PTR(-ENOMEM); |
1532 | 0 | goto exit_free; |
1533 | 0 | } |
1534 | 0 | ptr = temp_ptr; |
1535 | |
|
1536 | 0 | len = sizeof(btf_info); |
1537 | 0 | memset(&btf_info, 0, sizeof(btf_info)); |
1538 | 0 | btf_info.btf = ptr_to_u64(ptr); |
1539 | 0 | btf_info.btf_size = last_size; |
1540 | |
|
1541 | 0 | err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); |
1542 | 0 | } |
1543 | | |
1544 | 0 | if (err || btf_info.btf_size > last_size) { |
1545 | 0 | btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); |
1546 | 0 | goto exit_free; |
1547 | 0 | } |
1548 | | |
1549 | 0 | btf = btf_new(ptr, btf_info.btf_size, base_btf); |
1550 | |
|
1551 | 0 | exit_free: |
1552 | 0 | free(ptr); |
1553 | 0 | return btf; |
1554 | 0 | } |
1555 | | |
1556 | | struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) |
1557 | 0 | { |
1558 | 0 | struct btf *btf; |
1559 | 0 | int btf_fd; |
1560 | |
|
1561 | 0 | btf_fd = bpf_btf_get_fd_by_id(id); |
1562 | 0 | if (btf_fd < 0) |
1563 | 0 | return libbpf_err_ptr(-errno); |
1564 | | |
1565 | 0 | btf = btf_get_from_fd(btf_fd, base_btf); |
1566 | 0 | close(btf_fd); |
1567 | |
|
1568 | 0 | return libbpf_ptr(btf); |
1569 | 0 | } |
1570 | | |
1571 | | struct btf *btf__load_from_kernel_by_id(__u32 id) |
1572 | 0 | { |
1573 | 0 | return btf__load_from_kernel_by_id_split(id, NULL); |
1574 | 0 | } |
1575 | | |
1576 | | static void btf_invalidate_raw_data(struct btf *btf) |
1577 | 1.01k | { |
1578 | 1.01k | if (btf->raw_data) { |
1579 | 509 | free(btf->raw_data); |
1580 | 509 | btf->raw_data = NULL; |
1581 | 509 | } |
1582 | 1.01k | if (btf->raw_data_swapped) { |
1583 | 0 | free(btf->raw_data_swapped); |
1584 | 0 | btf->raw_data_swapped = NULL; |
1585 | 0 | } |
1586 | 1.01k | } |
1587 | | |
1588 | | /* Ensure BTF is ready to be modified (by splitting into a three memory |
1589 | | * regions for header, types, and strings). Also invalidate cached |
1590 | | * raw_data, if any. |
1591 | | */ |
1592 | | static int btf_ensure_modifiable(struct btf *btf) |
1593 | 1.01k | { |
1594 | 1.01k | void *hdr, *types; |
1595 | 1.01k | struct strset *set = NULL; |
1596 | 1.01k | int err = -ENOMEM; |
1597 | | |
1598 | 1.01k | if (btf_is_modifiable(btf)) { |
1599 | | /* any BTF modification invalidates raw_data */ |
1600 | 509 | btf_invalidate_raw_data(btf); |
1601 | 509 | return 0; |
1602 | 509 | } |
1603 | | |
1604 | | /* split raw data into three memory regions */ |
1605 | 509 | hdr = malloc(btf->hdr->hdr_len); |
1606 | 509 | types = malloc(btf->hdr->type_len); |
1607 | 509 | if (!hdr || !types) |
1608 | 0 | goto err_out; |
1609 | | |
1610 | 509 | memcpy(hdr, btf->hdr, btf->hdr->hdr_len); |
1611 | 509 | memcpy(types, btf->types_data, btf->hdr->type_len); |
1612 | | |
1613 | | /* build lookup index for all strings */ |
1614 | 509 | set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); |
1615 | 509 | if (IS_ERR(set)) { |
1616 | 0 | err = PTR_ERR(set); |
1617 | 0 | goto err_out; |
1618 | 0 | } |
1619 | | |
1620 | | /* only when everything was successful, update internal state */ |
1621 | 509 | btf->hdr = hdr; |
1622 | 509 | btf->types_data = types; |
1623 | 509 | btf->types_data_cap = btf->hdr->type_len; |
1624 | 509 | btf->strs_data = NULL; |
1625 | 509 | btf->strs_set = set; |
1626 | | /* if BTF was created from scratch, all strings are guaranteed to be |
1627 | | * unique and deduplicated |
1628 | | */ |
1629 | 509 | if (btf->hdr->str_len == 0) |
1630 | 0 | btf->strs_deduped = true; |
1631 | 509 | if (!btf->base_btf && btf->hdr->str_len == 1) |
1632 | 0 | btf->strs_deduped = true; |
1633 | | |
1634 | | /* invalidate raw_data representation */ |
1635 | 509 | btf_invalidate_raw_data(btf); |
1636 | | |
1637 | 509 | return 0; |
1638 | | |
1639 | 0 | err_out: |
1640 | 0 | strset__free(set); |
1641 | 0 | free(hdr); |
1642 | 0 | free(types); |
1643 | 0 | return err; |
1644 | 509 | } |
1645 | | |
1646 | | /* Find an offset in BTF string section that corresponds to a given string *s*. |
1647 | | * Returns: |
1648 | | * - >0 offset into string section, if string is found; |
1649 | | * - -ENOENT, if string is not in the string section; |
1650 | | * - <0, on any other error. |
1651 | | */ |
1652 | | int btf__find_str(struct btf *btf, const char *s) |
1653 | 0 | { |
1654 | 0 | int off; |
1655 | |
|
1656 | 0 | if (btf->base_btf) { |
1657 | 0 | off = btf__find_str(btf->base_btf, s); |
1658 | 0 | if (off != -ENOENT) |
1659 | 0 | return off; |
1660 | 0 | } |
1661 | | |
1662 | | /* BTF needs to be in a modifiable state to build string lookup index */ |
1663 | 0 | if (btf_ensure_modifiable(btf)) |
1664 | 0 | return libbpf_err(-ENOMEM); |
1665 | | |
1666 | 0 | off = strset__find_str(btf->strs_set, s); |
1667 | 0 | if (off < 0) |
1668 | 0 | return libbpf_err(off); |
1669 | | |
1670 | 0 | return btf->start_str_off + off; |
1671 | 0 | } |
1672 | | |
1673 | | /* Add a string s to the BTF string section. |
1674 | | * Returns: |
1675 | | * - > 0 offset into string section, on success; |
1676 | | * - < 0, on error. |
1677 | | */ |
1678 | | int btf__add_str(struct btf *btf, const char *s) |
1679 | 509 | { |
1680 | 509 | int off; |
1681 | | |
1682 | 509 | if (btf->base_btf) { |
1683 | 0 | off = btf__find_str(btf->base_btf, s); |
1684 | 0 | if (off != -ENOENT) |
1685 | 0 | return off; |
1686 | 0 | } |
1687 | | |
1688 | 509 | if (btf_ensure_modifiable(btf)) |
1689 | 0 | return libbpf_err(-ENOMEM); |
1690 | | |
1691 | 509 | off = strset__add_str(btf->strs_set, s); |
1692 | 509 | if (off < 0) |
1693 | 0 | return libbpf_err(off); |
1694 | | |
1695 | 509 | btf->hdr->str_len = strset__data_size(btf->strs_set); |
1696 | | |
1697 | 509 | return btf->start_str_off + off; |
1698 | 509 | } |
1699 | | |
1700 | | static void *btf_add_type_mem(struct btf *btf, size_t add_sz) |
1701 | 509 | { |
1702 | 509 | return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, |
1703 | 509 | btf->hdr->type_len, UINT_MAX, add_sz); |
1704 | 509 | } |
1705 | | |
1706 | | static void btf_type_inc_vlen(struct btf_type *t) |
1707 | 0 | { |
1708 | 0 | t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); |
1709 | 0 | } |
1710 | | |
1711 | | static int btf_commit_type(struct btf *btf, int data_sz) |
1712 | 509 | { |
1713 | 509 | int err; |
1714 | | |
1715 | 509 | err = btf_add_type_idx_entry(btf, btf->hdr->type_len); |
1716 | 509 | if (err) |
1717 | 0 | return libbpf_err(err); |
1718 | | |
1719 | 509 | btf->hdr->type_len += data_sz; |
1720 | 509 | btf->hdr->str_off += data_sz; |
1721 | 509 | btf->nr_types++; |
1722 | 509 | return btf->start_id + btf->nr_types - 1; |
1723 | 509 | } |
1724 | | |
1725 | | struct btf_pipe { |
1726 | | const struct btf *src; |
1727 | | struct btf *dst; |
1728 | | struct hashmap *str_off_map; /* map string offsets from src to dst */ |
1729 | | }; |
1730 | | |
1731 | | static int btf_rewrite_str(__u32 *str_off, void *ctx) |
1732 | 0 | { |
1733 | 0 | struct btf_pipe *p = ctx; |
1734 | 0 | long mapped_off; |
1735 | 0 | int off, err; |
1736 | |
|
1737 | 0 | if (!*str_off) /* nothing to do for empty strings */ |
1738 | 0 | return 0; |
1739 | | |
1740 | 0 | if (p->str_off_map && |
1741 | 0 | hashmap__find(p->str_off_map, *str_off, &mapped_off)) { |
1742 | 0 | *str_off = mapped_off; |
1743 | 0 | return 0; |
1744 | 0 | } |
1745 | | |
1746 | 0 | off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); |
1747 | 0 | if (off < 0) |
1748 | 0 | return off; |
1749 | | |
1750 | | /* Remember string mapping from src to dst. It avoids |
1751 | | * performing expensive string comparisons. |
1752 | | */ |
1753 | 0 | if (p->str_off_map) { |
1754 | 0 | err = hashmap__append(p->str_off_map, *str_off, off); |
1755 | 0 | if (err) |
1756 | 0 | return err; |
1757 | 0 | } |
1758 | | |
1759 | 0 | *str_off = off; |
1760 | 0 | return 0; |
1761 | 0 | } |
1762 | | |
1763 | | int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) |
1764 | 0 | { |
1765 | 0 | struct btf_pipe p = { .src = src_btf, .dst = btf }; |
1766 | 0 | struct btf_type *t; |
1767 | 0 | int sz, err; |
1768 | |
|
1769 | 0 | sz = btf_type_size(src_type); |
1770 | 0 | if (sz < 0) |
1771 | 0 | return libbpf_err(sz); |
1772 | | |
1773 | | /* deconstruct BTF, if necessary, and invalidate raw_data */ |
1774 | 0 | if (btf_ensure_modifiable(btf)) |
1775 | 0 | return libbpf_err(-ENOMEM); |
1776 | | |
1777 | 0 | t = btf_add_type_mem(btf, sz); |
1778 | 0 | if (!t) |
1779 | 0 | return libbpf_err(-ENOMEM); |
1780 | | |
1781 | 0 | memcpy(t, src_type, sz); |
1782 | |
|
1783 | 0 | err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); |
1784 | 0 | if (err) |
1785 | 0 | return libbpf_err(err); |
1786 | | |
1787 | 0 | return btf_commit_type(btf, sz); |
1788 | 0 | } |
1789 | | |
1790 | | static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) |
1791 | 0 | { |
1792 | 0 | struct btf *btf = ctx; |
1793 | |
|
1794 | 0 | if (!*type_id) /* nothing to do for VOID references */ |
1795 | 0 | return 0; |
1796 | | |
1797 | | /* we haven't updated btf's type count yet, so |
1798 | | * btf->start_id + btf->nr_types - 1 is the type ID offset we should |
1799 | | * add to all newly added BTF types |
1800 | | */ |
1801 | 0 | *type_id += btf->start_id + btf->nr_types - 1; |
1802 | 0 | return 0; |
1803 | 0 | } |
1804 | | |
1805 | | static size_t btf_dedup_identity_hash_fn(long key, void *ctx); |
1806 | | static bool btf_dedup_equal_fn(long k1, long k2, void *ctx); |
1807 | | |
1808 | | int btf__add_btf(struct btf *btf, const struct btf *src_btf) |
1809 | 0 | { |
1810 | 0 | struct btf_pipe p = { .src = src_btf, .dst = btf }; |
1811 | 0 | int data_sz, sz, cnt, i, err, old_strs_len; |
1812 | 0 | __u32 *off; |
1813 | 0 | void *t; |
1814 | | |
1815 | | /* appending split BTF isn't supported yet */ |
1816 | 0 | if (src_btf->base_btf) |
1817 | 0 | return libbpf_err(-ENOTSUP); |
1818 | | |
1819 | | /* deconstruct BTF, if necessary, and invalidate raw_data */ |
1820 | 0 | if (btf_ensure_modifiable(btf)) |
1821 | 0 | return libbpf_err(-ENOMEM); |
1822 | | |
1823 | | /* remember original strings section size if we have to roll back |
1824 | | * partial strings section changes |
1825 | | */ |
1826 | 0 | old_strs_len = btf->hdr->str_len; |
1827 | |
|
1828 | 0 | data_sz = src_btf->hdr->type_len; |
1829 | 0 | cnt = btf__type_cnt(src_btf) - 1; |
1830 | | |
1831 | | /* pre-allocate enough memory for new types */ |
1832 | 0 | t = btf_add_type_mem(btf, data_sz); |
1833 | 0 | if (!t) |
1834 | 0 | return libbpf_err(-ENOMEM); |
1835 | | |
1836 | | /* pre-allocate enough memory for type offset index for new types */ |
1837 | 0 | off = btf_add_type_offs_mem(btf, cnt); |
1838 | 0 | if (!off) |
1839 | 0 | return libbpf_err(-ENOMEM); |
1840 | | |
1841 | | /* Map the string offsets from src_btf to the offsets from btf to improve performance */ |
1842 | 0 | p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); |
1843 | 0 | if (IS_ERR(p.str_off_map)) |
1844 | 0 | return libbpf_err(-ENOMEM); |
1845 | | |
1846 | | /* bulk copy types data for all types from src_btf */ |
1847 | 0 | memcpy(t, src_btf->types_data, data_sz); |
1848 | |
|
1849 | 0 | for (i = 0; i < cnt; i++) { |
1850 | 0 | sz = btf_type_size(t); |
1851 | 0 | if (sz < 0) { |
1852 | | /* unlikely, has to be corrupted src_btf */ |
1853 | 0 | err = sz; |
1854 | 0 | goto err_out; |
1855 | 0 | } |
1856 | | |
1857 | | /* fill out type ID to type offset mapping for lookups by type ID */ |
1858 | 0 | *off = t - btf->types_data; |
1859 | | |
1860 | | /* add, dedup, and remap strings referenced by this BTF type */ |
1861 | 0 | err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); |
1862 | 0 | if (err) |
1863 | 0 | goto err_out; |
1864 | | |
1865 | | /* remap all type IDs referenced from this BTF type */ |
1866 | 0 | err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); |
1867 | 0 | if (err) |
1868 | 0 | goto err_out; |
1869 | | |
1870 | | /* go to next type data and type offset index entry */ |
1871 | 0 | t += sz; |
1872 | 0 | off++; |
1873 | 0 | } |
1874 | | |
1875 | | /* Up until now any of the copied type data was effectively invisible, |
1876 | | * so if we exited early before this point due to error, BTF would be |
1877 | | * effectively unmodified. There would be extra internal memory |
1878 | | * pre-allocated, but it would not be available for querying. But now |
1879 | | * that we've copied and rewritten all the data successfully, we can |
1880 | | * update type count and various internal offsets and sizes to |
1881 | | * "commit" the changes and made them visible to the outside world. |
1882 | | */ |
1883 | 0 | btf->hdr->type_len += data_sz; |
1884 | 0 | btf->hdr->str_off += data_sz; |
1885 | 0 | btf->nr_types += cnt; |
1886 | |
|
1887 | 0 | hashmap__free(p.str_off_map); |
1888 | | |
1889 | | /* return type ID of the first added BTF type */ |
1890 | 0 | return btf->start_id + btf->nr_types - cnt; |
1891 | 0 | err_out: |
1892 | | /* zero out preallocated memory as if it was just allocated with |
1893 | | * libbpf_add_mem() |
1894 | | */ |
1895 | 0 | memset(btf->types_data + btf->hdr->type_len, 0, data_sz); |
1896 | 0 | memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); |
1897 | | |
1898 | | /* and now restore original strings section size; types data size |
1899 | | * wasn't modified, so doesn't need restoring, see big comment above |
1900 | | */ |
1901 | 0 | btf->hdr->str_len = old_strs_len; |
1902 | |
|
1903 | 0 | hashmap__free(p.str_off_map); |
1904 | |
|
1905 | 0 | return libbpf_err(err); |
1906 | 0 | } |
1907 | | |
1908 | | /* |
1909 | | * Append new BTF_KIND_INT type with: |
1910 | | * - *name* - non-empty, non-NULL type name; |
1911 | | * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; |
1912 | | * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. |
1913 | | * Returns: |
1914 | | * - >0, type ID of newly added BTF type; |
1915 | | * - <0, on error. |
1916 | | */ |
1917 | | int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) |
1918 | 0 | { |
1919 | 0 | struct btf_type *t; |
1920 | 0 | int sz, name_off; |
1921 | | |
1922 | | /* non-empty name */ |
1923 | 0 | if (!name || !name[0]) |
1924 | 0 | return libbpf_err(-EINVAL); |
1925 | | /* byte_sz must be power of 2 */ |
1926 | 0 | if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) |
1927 | 0 | return libbpf_err(-EINVAL); |
1928 | 0 | if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) |
1929 | 0 | return libbpf_err(-EINVAL); |
1930 | | |
1931 | | /* deconstruct BTF, if necessary, and invalidate raw_data */ |
1932 | 0 | if (btf_ensure_modifiable(btf)) |
1933 | 0 | return libbpf_err(-ENOMEM); |
1934 | | |
1935 | 0 | sz = sizeof(struct btf_type) + sizeof(int); |
1936 | 0 | t = btf_add_type_mem(btf, sz); |
1937 | 0 | if (!t) |
1938 | 0 | return libbpf_err(-ENOMEM); |
1939 | | |
1940 | | /* if something goes wrong later, we might end up with an extra string, |
1941 | | * but that shouldn't be a problem, because BTF can't be constructed |
1942 | | * completely anyway and will most probably be just discarded |
1943 | | */ |
1944 | 0 | name_off = btf__add_str(btf, name); |
1945 | 0 | if (name_off < 0) |
1946 | 0 | return name_off; |
1947 | | |
1948 | 0 | t->name_off = name_off; |
1949 | 0 | t->info = btf_type_info(BTF_KIND_INT, 0, 0); |
1950 | 0 | t->size = byte_sz; |
1951 | | /* set INT info, we don't allow setting legacy bit offset/size */ |
1952 | 0 | *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); |
1953 | |
|
1954 | 0 | return btf_commit_type(btf, sz); |
1955 | 0 | } |
1956 | | |
1957 | | /* |
1958 | | * Append new BTF_KIND_FLOAT type with: |
1959 | | * - *name* - non-empty, non-NULL type name; |
1960 | | * - *sz* - size of the type, in bytes; |
1961 | | * Returns: |
1962 | | * - >0, type ID of newly added BTF type; |
1963 | | * - <0, on error. |
1964 | | */ |
1965 | | int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) |
1966 | 0 | { |
1967 | 0 | struct btf_type *t; |
1968 | 0 | int sz, name_off; |
1969 | | |
1970 | | /* non-empty name */ |
1971 | 0 | if (!name || !name[0]) |
1972 | 0 | return libbpf_err(-EINVAL); |
1973 | | |
1974 | | /* byte_sz must be one of the explicitly allowed values */ |
1975 | 0 | if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && |
1976 | 0 | byte_sz != 16) |
1977 | 0 | return libbpf_err(-EINVAL); |
1978 | | |
1979 | 0 | if (btf_ensure_modifiable(btf)) |
1980 | 0 | return libbpf_err(-ENOMEM); |
1981 | | |
1982 | 0 | sz = sizeof(struct btf_type); |
1983 | 0 | t = btf_add_type_mem(btf, sz); |
1984 | 0 | if (!t) |
1985 | 0 | return libbpf_err(-ENOMEM); |
1986 | | |
1987 | 0 | name_off = btf__add_str(btf, name); |
1988 | 0 | if (name_off < 0) |
1989 | 0 | return name_off; |
1990 | | |
1991 | 0 | t->name_off = name_off; |
1992 | 0 | t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); |
1993 | 0 | t->size = byte_sz; |
1994 | |
|
1995 | 0 | return btf_commit_type(btf, sz); |
1996 | 0 | } |
1997 | | |
1998 | | /* it's completely legal to append BTF types with type IDs pointing forward to |
1999 | | * types that haven't been appended yet, so we only make sure that id looks |
2000 | | * sane, we can't guarantee that ID will always be valid |
2001 | | */ |
2002 | | static int validate_type_id(int id) |
2003 | 509 | { |
2004 | 509 | if (id < 0 || id > BTF_MAX_NR_TYPES) |
2005 | 0 | return -EINVAL; |
2006 | 509 | return 0; |
2007 | 509 | } |
2008 | | |
2009 | | /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ |
2010 | | static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) |
2011 | 0 | { |
2012 | 0 | struct btf_type *t; |
2013 | 0 | int sz, name_off = 0; |
2014 | |
|
2015 | 0 | if (validate_type_id(ref_type_id)) |
2016 | 0 | return libbpf_err(-EINVAL); |
2017 | | |
2018 | 0 | if (btf_ensure_modifiable(btf)) |
2019 | 0 | return libbpf_err(-ENOMEM); |
2020 | | |
2021 | 0 | sz = sizeof(struct btf_type); |
2022 | 0 | t = btf_add_type_mem(btf, sz); |
2023 | 0 | if (!t) |
2024 | 0 | return libbpf_err(-ENOMEM); |
2025 | | |
2026 | 0 | if (name && name[0]) { |
2027 | 0 | name_off = btf__add_str(btf, name); |
2028 | 0 | if (name_off < 0) |
2029 | 0 | return name_off; |
2030 | 0 | } |
2031 | | |
2032 | 0 | t->name_off = name_off; |
2033 | 0 | t->info = btf_type_info(kind, 0, 0); |
2034 | 0 | t->type = ref_type_id; |
2035 | |
|
2036 | 0 | return btf_commit_type(btf, sz); |
2037 | 0 | } |
2038 | | |
2039 | | /* |
2040 | | * Append new BTF_KIND_PTR type with: |
2041 | | * - *ref_type_id* - referenced type ID, it might not exist yet; |
2042 | | * Returns: |
2043 | | * - >0, type ID of newly added BTF type; |
2044 | | * - <0, on error. |
2045 | | */ |
2046 | | int btf__add_ptr(struct btf *btf, int ref_type_id) |
2047 | 0 | { |
2048 | 0 | return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); |
2049 | 0 | } |
2050 | | |
2051 | | /* |
2052 | | * Append new BTF_KIND_ARRAY type with: |
2053 | | * - *index_type_id* - type ID of the type describing array index; |
2054 | | * - *elem_type_id* - type ID of the type describing array element; |
2055 | | * - *nr_elems* - the size of the array; |
2056 | | * Returns: |
2057 | | * - >0, type ID of newly added BTF type; |
2058 | | * - <0, on error. |
2059 | | */ |
2060 | | int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) |
2061 | 0 | { |
2062 | 0 | struct btf_type *t; |
2063 | 0 | struct btf_array *a; |
2064 | 0 | int sz; |
2065 | |
|
2066 | 0 | if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) |
2067 | 0 | return libbpf_err(-EINVAL); |
2068 | | |
2069 | 0 | if (btf_ensure_modifiable(btf)) |
2070 | 0 | return libbpf_err(-ENOMEM); |
2071 | | |
2072 | 0 | sz = sizeof(struct btf_type) + sizeof(struct btf_array); |
2073 | 0 | t = btf_add_type_mem(btf, sz); |
2074 | 0 | if (!t) |
2075 | 0 | return libbpf_err(-ENOMEM); |
2076 | | |
2077 | 0 | t->name_off = 0; |
2078 | 0 | t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); |
2079 | 0 | t->size = 0; |
2080 | |
|
2081 | 0 | a = btf_array(t); |
2082 | 0 | a->type = elem_type_id; |
2083 | 0 | a->index_type = index_type_id; |
2084 | 0 | a->nelems = nr_elems; |
2085 | |
|
2086 | 0 | return btf_commit_type(btf, sz); |
2087 | 0 | } |
2088 | | |
2089 | | /* generic STRUCT/UNION append function */ |
2090 | | static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) |
2091 | 0 | { |
2092 | 0 | struct btf_type *t; |
2093 | 0 | int sz, name_off = 0; |
2094 | |
|
2095 | 0 | if (btf_ensure_modifiable(btf)) |
2096 | 0 | return libbpf_err(-ENOMEM); |
2097 | | |
2098 | 0 | sz = sizeof(struct btf_type); |
2099 | 0 | t = btf_add_type_mem(btf, sz); |
2100 | 0 | if (!t) |
2101 | 0 | return libbpf_err(-ENOMEM); |
2102 | | |
2103 | 0 | if (name && name[0]) { |
2104 | 0 | name_off = btf__add_str(btf, name); |
2105 | 0 | if (name_off < 0) |
2106 | 0 | return name_off; |
2107 | 0 | } |
2108 | | |
2109 | | /* start out with vlen=0 and no kflag; this will be adjusted when |
2110 | | * adding each member |
2111 | | */ |
2112 | 0 | t->name_off = name_off; |
2113 | 0 | t->info = btf_type_info(kind, 0, 0); |
2114 | 0 | t->size = bytes_sz; |
2115 | |
|
2116 | 0 | return btf_commit_type(btf, sz); |
2117 | 0 | } |
2118 | | |
2119 | | /* |
2120 | | * Append new BTF_KIND_STRUCT type with: |
2121 | | * - *name* - name of the struct, can be NULL or empty for anonymous structs; |
2122 | | * - *byte_sz* - size of the struct, in bytes; |
2123 | | * |
2124 | | * Struct initially has no fields in it. Fields can be added by |
2125 | | * btf__add_field() right after btf__add_struct() succeeds. |
2126 | | * |
2127 | | * Returns: |
2128 | | * - >0, type ID of newly added BTF type; |
2129 | | * - <0, on error. |
2130 | | */ |
2131 | | int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) |
2132 | 0 | { |
2133 | 0 | return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); |
2134 | 0 | } |
2135 | | |
2136 | | /* |
2137 | | * Append new BTF_KIND_UNION type with: |
2138 | | * - *name* - name of the union, can be NULL or empty for anonymous union; |
2139 | | * - *byte_sz* - size of the union, in bytes; |
2140 | | * |
2141 | | * Union initially has no fields in it. Fields can be added by |
2142 | | * btf__add_field() right after btf__add_union() succeeds. All fields |
2143 | | * should have *bit_offset* of 0. |
2144 | | * |
2145 | | * Returns: |
2146 | | * - >0, type ID of newly added BTF type; |
2147 | | * - <0, on error. |
2148 | | */ |
2149 | | int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) |
2150 | 0 | { |
2151 | 0 | return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); |
2152 | 0 | } |
2153 | | |
2154 | | static struct btf_type *btf_last_type(struct btf *btf) |
2155 | 0 | { |
2156 | 0 | return btf_type_by_id(btf, btf__type_cnt(btf) - 1); |
2157 | 0 | } |
2158 | | |
2159 | | /* |
2160 | | * Append new field for the current STRUCT/UNION type with: |
2161 | | * - *name* - name of the field, can be NULL or empty for anonymous field; |
2162 | | * - *type_id* - type ID for the type describing field type; |
2163 | | * - *bit_offset* - bit offset of the start of the field within struct/union; |
2164 | | * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; |
2165 | | * Returns: |
2166 | | * - 0, on success; |
2167 | | * - <0, on error. |
2168 | | */ |
2169 | | int btf__add_field(struct btf *btf, const char *name, int type_id, |
2170 | | __u32 bit_offset, __u32 bit_size) |
2171 | 0 | { |
2172 | 0 | struct btf_type *t; |
2173 | 0 | struct btf_member *m; |
2174 | 0 | bool is_bitfield; |
2175 | 0 | int sz, name_off = 0; |
2176 | | |
2177 | | /* last type should be union/struct */ |
2178 | 0 | if (btf->nr_types == 0) |
2179 | 0 | return libbpf_err(-EINVAL); |
2180 | 0 | t = btf_last_type(btf); |
2181 | 0 | if (!btf_is_composite(t)) |
2182 | 0 | return libbpf_err(-EINVAL); |
2183 | | |
2184 | 0 | if (validate_type_id(type_id)) |
2185 | 0 | return libbpf_err(-EINVAL); |
2186 | | /* best-effort bit field offset/size enforcement */ |
2187 | 0 | is_bitfield = bit_size || (bit_offset % 8 != 0); |
2188 | 0 | if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) |
2189 | 0 | return libbpf_err(-EINVAL); |
2190 | | |
2191 | | /* only offset 0 is allowed for unions */ |
2192 | 0 | if (btf_is_union(t) && bit_offset) |
2193 | 0 | return libbpf_err(-EINVAL); |
2194 | | |
2195 | | /* decompose and invalidate raw data */ |
2196 | 0 | if (btf_ensure_modifiable(btf)) |
2197 | 0 | return libbpf_err(-ENOMEM); |
2198 | | |
2199 | 0 | sz = sizeof(struct btf_member); |
2200 | 0 | m = btf_add_type_mem(btf, sz); |
2201 | 0 | if (!m) |
2202 | 0 | return libbpf_err(-ENOMEM); |
2203 | | |
2204 | 0 | if (name && name[0]) { |
2205 | 0 | name_off = btf__add_str(btf, name); |
2206 | 0 | if (name_off < 0) |
2207 | 0 | return name_off; |
2208 | 0 | } |
2209 | | |
2210 | 0 | m->name_off = name_off; |
2211 | 0 | m->type = type_id; |
2212 | 0 | m->offset = bit_offset | (bit_size << 24); |
2213 | | |
2214 | | /* btf_add_type_mem can invalidate t pointer */ |
2215 | 0 | t = btf_last_type(btf); |
2216 | | /* update parent type's vlen and kflag */ |
2217 | 0 | t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); |
2218 | |
|
2219 | 0 | btf->hdr->type_len += sz; |
2220 | 0 | btf->hdr->str_off += sz; |
2221 | 0 | return 0; |
2222 | 0 | } |
2223 | | |
2224 | | static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, |
2225 | | bool is_signed, __u8 kind) |
2226 | 0 | { |
2227 | 0 | struct btf_type *t; |
2228 | 0 | int sz, name_off = 0; |
2229 | | |
2230 | | /* byte_sz must be power of 2 */ |
2231 | 0 | if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) |
2232 | 0 | return libbpf_err(-EINVAL); |
2233 | | |
2234 | 0 | if (btf_ensure_modifiable(btf)) |
2235 | 0 | return libbpf_err(-ENOMEM); |
2236 | | |
2237 | 0 | sz = sizeof(struct btf_type); |
2238 | 0 | t = btf_add_type_mem(btf, sz); |
2239 | 0 | if (!t) |
2240 | 0 | return libbpf_err(-ENOMEM); |
2241 | | |
2242 | 0 | if (name && name[0]) { |
2243 | 0 | name_off = btf__add_str(btf, name); |
2244 | 0 | if (name_off < 0) |
2245 | 0 | return name_off; |
2246 | 0 | } |
2247 | | |
2248 | | /* start out with vlen=0; it will be adjusted when adding enum values */ |
2249 | 0 | t->name_off = name_off; |
2250 | 0 | t->info = btf_type_info(kind, 0, is_signed); |
2251 | 0 | t->size = byte_sz; |
2252 | |
|
2253 | 0 | return btf_commit_type(btf, sz); |
2254 | 0 | } |
2255 | | |
2256 | | /* |
2257 | | * Append new BTF_KIND_ENUM type with: |
2258 | | * - *name* - name of the enum, can be NULL or empty for anonymous enums; |
2259 | | * - *byte_sz* - size of the enum, in bytes. |
2260 | | * |
2261 | | * Enum initially has no enum values in it (and corresponds to enum forward |
2262 | | * declaration). Enumerator values can be added by btf__add_enum_value() |
2263 | | * immediately after btf__add_enum() succeeds. |
2264 | | * |
2265 | | * Returns: |
2266 | | * - >0, type ID of newly added BTF type; |
2267 | | * - <0, on error. |
2268 | | */ |
2269 | | int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) |
2270 | 0 | { |
2271 | | /* |
2272 | | * set the signedness to be unsigned, it will change to signed |
2273 | | * if any later enumerator is negative. |
2274 | | */ |
2275 | 0 | return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); |
2276 | 0 | } |
2277 | | |
2278 | | /* |
2279 | | * Append new enum value for the current ENUM type with: |
2280 | | * - *name* - name of the enumerator value, can't be NULL or empty; |
2281 | | * - *value* - integer value corresponding to enum value *name*; |
2282 | | * Returns: |
2283 | | * - 0, on success; |
2284 | | * - <0, on error. |
2285 | | */ |
2286 | | int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) |
2287 | 0 | { |
2288 | 0 | struct btf_type *t; |
2289 | 0 | struct btf_enum *v; |
2290 | 0 | int sz, name_off; |
2291 | | |
2292 | | /* last type should be BTF_KIND_ENUM */ |
2293 | 0 | if (btf->nr_types == 0) |
2294 | 0 | return libbpf_err(-EINVAL); |
2295 | 0 | t = btf_last_type(btf); |
2296 | 0 | if (!btf_is_enum(t)) |
2297 | 0 | return libbpf_err(-EINVAL); |
2298 | | |
2299 | | /* non-empty name */ |
2300 | 0 | if (!name || !name[0]) |
2301 | 0 | return libbpf_err(-EINVAL); |
2302 | 0 | if (value < INT_MIN || value > UINT_MAX) |
2303 | 0 | return libbpf_err(-E2BIG); |
2304 | | |
2305 | | /* decompose and invalidate raw data */ |
2306 | 0 | if (btf_ensure_modifiable(btf)) |
2307 | 0 | return libbpf_err(-ENOMEM); |
2308 | | |
2309 | 0 | sz = sizeof(struct btf_enum); |
2310 | 0 | v = btf_add_type_mem(btf, sz); |
2311 | 0 | if (!v) |
2312 | 0 | return libbpf_err(-ENOMEM); |
2313 | | |
2314 | 0 | name_off = btf__add_str(btf, name); |
2315 | 0 | if (name_off < 0) |
2316 | 0 | return name_off; |
2317 | | |
2318 | 0 | v->name_off = name_off; |
2319 | 0 | v->val = value; |
2320 | | |
2321 | | /* update parent type's vlen */ |
2322 | 0 | t = btf_last_type(btf); |
2323 | 0 | btf_type_inc_vlen(t); |
2324 | | |
2325 | | /* if negative value, set signedness to signed */ |
2326 | 0 | if (value < 0) |
2327 | 0 | t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); |
2328 | |
|
2329 | 0 | btf->hdr->type_len += sz; |
2330 | 0 | btf->hdr->str_off += sz; |
2331 | 0 | return 0; |
2332 | 0 | } |
2333 | | |
2334 | | /* |
2335 | | * Append new BTF_KIND_ENUM64 type with: |
2336 | | * - *name* - name of the enum, can be NULL or empty for anonymous enums; |
2337 | | * - *byte_sz* - size of the enum, in bytes. |
2338 | | * - *is_signed* - whether the enum values are signed or not; |
2339 | | * |
2340 | | * Enum initially has no enum values in it (and corresponds to enum forward |
2341 | | * declaration). Enumerator values can be added by btf__add_enum64_value() |
2342 | | * immediately after btf__add_enum64() succeeds. |
2343 | | * |
2344 | | * Returns: |
2345 | | * - >0, type ID of newly added BTF type; |
2346 | | * - <0, on error. |
2347 | | */ |
2348 | | int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, |
2349 | | bool is_signed) |
2350 | 0 | { |
2351 | 0 | return btf_add_enum_common(btf, name, byte_sz, is_signed, |
2352 | 0 | BTF_KIND_ENUM64); |
2353 | 0 | } |
2354 | | |
2355 | | /* |
2356 | | * Append new enum value for the current ENUM64 type with: |
2357 | | * - *name* - name of the enumerator value, can't be NULL or empty; |
2358 | | * - *value* - integer value corresponding to enum value *name*; |
2359 | | * Returns: |
2360 | | * - 0, on success; |
2361 | | * - <0, on error. |
2362 | | */ |
2363 | | int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) |
2364 | 0 | { |
2365 | 0 | struct btf_enum64 *v; |
2366 | 0 | struct btf_type *t; |
2367 | 0 | int sz, name_off; |
2368 | | |
2369 | | /* last type should be BTF_KIND_ENUM64 */ |
2370 | 0 | if (btf->nr_types == 0) |
2371 | 0 | return libbpf_err(-EINVAL); |
2372 | 0 | t = btf_last_type(btf); |
2373 | 0 | if (!btf_is_enum64(t)) |
2374 | 0 | return libbpf_err(-EINVAL); |
2375 | | |
2376 | | /* non-empty name */ |
2377 | 0 | if (!name || !name[0]) |
2378 | 0 | return libbpf_err(-EINVAL); |
2379 | | |
2380 | | /* decompose and invalidate raw data */ |
2381 | 0 | if (btf_ensure_modifiable(btf)) |
2382 | 0 | return libbpf_err(-ENOMEM); |
2383 | | |
2384 | 0 | sz = sizeof(struct btf_enum64); |
2385 | 0 | v = btf_add_type_mem(btf, sz); |
2386 | 0 | if (!v) |
2387 | 0 | return libbpf_err(-ENOMEM); |
2388 | | |
2389 | 0 | name_off = btf__add_str(btf, name); |
2390 | 0 | if (name_off < 0) |
2391 | 0 | return name_off; |
2392 | | |
2393 | 0 | v->name_off = name_off; |
2394 | 0 | v->val_lo32 = (__u32)value; |
2395 | 0 | v->val_hi32 = value >> 32; |
2396 | | |
2397 | | /* update parent type's vlen */ |
2398 | 0 | t = btf_last_type(btf); |
2399 | 0 | btf_type_inc_vlen(t); |
2400 | |
|
2401 | 0 | btf->hdr->type_len += sz; |
2402 | 0 | btf->hdr->str_off += sz; |
2403 | 0 | return 0; |
2404 | 0 | } |
2405 | | |
2406 | | /* |
2407 | | * Append new BTF_KIND_FWD type with: |
2408 | | * - *name*, non-empty/non-NULL name; |
2409 | | * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, |
2410 | | * BTF_FWD_UNION, or BTF_FWD_ENUM; |
2411 | | * Returns: |
2412 | | * - >0, type ID of newly added BTF type; |
2413 | | * - <0, on error. |
2414 | | */ |
2415 | | int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) |
2416 | 0 | { |
2417 | 0 | if (!name || !name[0]) |
2418 | 0 | return libbpf_err(-EINVAL); |
2419 | | |
2420 | 0 | switch (fwd_kind) { |
2421 | 0 | case BTF_FWD_STRUCT: |
2422 | 0 | case BTF_FWD_UNION: { |
2423 | 0 | struct btf_type *t; |
2424 | 0 | int id; |
2425 | |
|
2426 | 0 | id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); |
2427 | 0 | if (id <= 0) |
2428 | 0 | return id; |
2429 | 0 | t = btf_type_by_id(btf, id); |
2430 | 0 | t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); |
2431 | 0 | return id; |
2432 | 0 | } |
2433 | 0 | case BTF_FWD_ENUM: |
2434 | | /* enum forward in BTF currently is just an enum with no enum |
2435 | | * values; we also assume a standard 4-byte size for it |
2436 | | */ |
2437 | 0 | return btf__add_enum(btf, name, sizeof(int)); |
2438 | 0 | default: |
2439 | 0 | return libbpf_err(-EINVAL); |
2440 | 0 | } |
2441 | 0 | } |
2442 | | |
2443 | | /* |
2444 | | * Append new BTF_KING_TYPEDEF type with: |
2445 | | * - *name*, non-empty/non-NULL name; |
2446 | | * - *ref_type_id* - referenced type ID, it might not exist yet; |
2447 | | * Returns: |
2448 | | * - >0, type ID of newly added BTF type; |
2449 | | * - <0, on error. |
2450 | | */ |
2451 | | int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) |
2452 | 0 | { |
2453 | 0 | if (!name || !name[0]) |
2454 | 0 | return libbpf_err(-EINVAL); |
2455 | | |
2456 | 0 | return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); |
2457 | 0 | } |
2458 | | |
2459 | | /* |
2460 | | * Append new BTF_KIND_VOLATILE type with: |
2461 | | * - *ref_type_id* - referenced type ID, it might not exist yet; |
2462 | | * Returns: |
2463 | | * - >0, type ID of newly added BTF type; |
2464 | | * - <0, on error. |
2465 | | */ |
2466 | | int btf__add_volatile(struct btf *btf, int ref_type_id) |
2467 | 0 | { |
2468 | 0 | return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); |
2469 | 0 | } |
2470 | | |
2471 | | /* |
2472 | | * Append new BTF_KIND_CONST type with: |
2473 | | * - *ref_type_id* - referenced type ID, it might not exist yet; |
2474 | | * Returns: |
2475 | | * - >0, type ID of newly added BTF type; |
2476 | | * - <0, on error. |
2477 | | */ |
2478 | | int btf__add_const(struct btf *btf, int ref_type_id) |
2479 | 0 | { |
2480 | 0 | return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); |
2481 | 0 | } |
2482 | | |
2483 | | /* |
2484 | | * Append new BTF_KIND_RESTRICT type with: |
2485 | | * - *ref_type_id* - referenced type ID, it might not exist yet; |
2486 | | * Returns: |
2487 | | * - >0, type ID of newly added BTF type; |
2488 | | * - <0, on error. |
2489 | | */ |
2490 | | int btf__add_restrict(struct btf *btf, int ref_type_id) |
2491 | 0 | { |
2492 | 0 | return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); |
2493 | 0 | } |
2494 | | |
2495 | | /* |
2496 | | * Append new BTF_KIND_TYPE_TAG type with: |
2497 | | * - *value*, non-empty/non-NULL tag value; |
2498 | | * - *ref_type_id* - referenced type ID, it might not exist yet; |
2499 | | * Returns: |
2500 | | * - >0, type ID of newly added BTF type; |
2501 | | * - <0, on error. |
2502 | | */ |
2503 | | int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) |
2504 | 0 | { |
2505 | 0 | if (!value || !value[0]) |
2506 | 0 | return libbpf_err(-EINVAL); |
2507 | | |
2508 | 0 | return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); |
2509 | 0 | } |
2510 | | |
2511 | | /* |
2512 | | * Append new BTF_KIND_FUNC type with: |
2513 | | * - *name*, non-empty/non-NULL name; |
2514 | | * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; |
2515 | | * Returns: |
2516 | | * - >0, type ID of newly added BTF type; |
2517 | | * - <0, on error. |
2518 | | */ |
2519 | | int btf__add_func(struct btf *btf, const char *name, |
2520 | | enum btf_func_linkage linkage, int proto_type_id) |
2521 | 0 | { |
2522 | 0 | int id; |
2523 | |
|
2524 | 0 | if (!name || !name[0]) |
2525 | 0 | return libbpf_err(-EINVAL); |
2526 | 0 | if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && |
2527 | 0 | linkage != BTF_FUNC_EXTERN) |
2528 | 0 | return libbpf_err(-EINVAL); |
2529 | | |
2530 | 0 | id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); |
2531 | 0 | if (id > 0) { |
2532 | 0 | struct btf_type *t = btf_type_by_id(btf, id); |
2533 | |
|
2534 | 0 | t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); |
2535 | 0 | } |
2536 | 0 | return libbpf_err(id); |
2537 | 0 | } |
2538 | | |
2539 | | /* |
2540 | | * Append new BTF_KIND_FUNC_PROTO with: |
2541 | | * - *ret_type_id* - type ID for return result of a function. |
2542 | | * |
2543 | | * Function prototype initially has no arguments, but they can be added by |
2544 | | * btf__add_func_param() one by one, immediately after |
2545 | | * btf__add_func_proto() succeeded. |
2546 | | * |
2547 | | * Returns: |
2548 | | * - >0, type ID of newly added BTF type; |
2549 | | * - <0, on error. |
2550 | | */ |
2551 | | int btf__add_func_proto(struct btf *btf, int ret_type_id) |
2552 | 0 | { |
2553 | 0 | struct btf_type *t; |
2554 | 0 | int sz; |
2555 | |
|
2556 | 0 | if (validate_type_id(ret_type_id)) |
2557 | 0 | return libbpf_err(-EINVAL); |
2558 | | |
2559 | 0 | if (btf_ensure_modifiable(btf)) |
2560 | 0 | return libbpf_err(-ENOMEM); |
2561 | | |
2562 | 0 | sz = sizeof(struct btf_type); |
2563 | 0 | t = btf_add_type_mem(btf, sz); |
2564 | 0 | if (!t) |
2565 | 0 | return libbpf_err(-ENOMEM); |
2566 | | |
2567 | | /* start out with vlen=0; this will be adjusted when adding enum |
2568 | | * values, if necessary |
2569 | | */ |
2570 | 0 | t->name_off = 0; |
2571 | 0 | t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); |
2572 | 0 | t->type = ret_type_id; |
2573 | |
|
2574 | 0 | return btf_commit_type(btf, sz); |
2575 | 0 | } |
2576 | | |
2577 | | /* |
2578 | | * Append new function parameter for current FUNC_PROTO type with: |
2579 | | * - *name* - parameter name, can be NULL or empty; |
2580 | | * - *type_id* - type ID describing the type of the parameter. |
2581 | | * Returns: |
2582 | | * - 0, on success; |
2583 | | * - <0, on error. |
2584 | | */ |
2585 | | int btf__add_func_param(struct btf *btf, const char *name, int type_id) |
2586 | 0 | { |
2587 | 0 | struct btf_type *t; |
2588 | 0 | struct btf_param *p; |
2589 | 0 | int sz, name_off = 0; |
2590 | |
|
2591 | 0 | if (validate_type_id(type_id)) |
2592 | 0 | return libbpf_err(-EINVAL); |
2593 | | |
2594 | | /* last type should be BTF_KIND_FUNC_PROTO */ |
2595 | 0 | if (btf->nr_types == 0) |
2596 | 0 | return libbpf_err(-EINVAL); |
2597 | 0 | t = btf_last_type(btf); |
2598 | 0 | if (!btf_is_func_proto(t)) |
2599 | 0 | return libbpf_err(-EINVAL); |
2600 | | |
2601 | | /* decompose and invalidate raw data */ |
2602 | 0 | if (btf_ensure_modifiable(btf)) |
2603 | 0 | return libbpf_err(-ENOMEM); |
2604 | | |
2605 | 0 | sz = sizeof(struct btf_param); |
2606 | 0 | p = btf_add_type_mem(btf, sz); |
2607 | 0 | if (!p) |
2608 | 0 | return libbpf_err(-ENOMEM); |
2609 | | |
2610 | 0 | if (name && name[0]) { |
2611 | 0 | name_off = btf__add_str(btf, name); |
2612 | 0 | if (name_off < 0) |
2613 | 0 | return name_off; |
2614 | 0 | } |
2615 | | |
2616 | 0 | p->name_off = name_off; |
2617 | 0 | p->type = type_id; |
2618 | | |
2619 | | /* update parent type's vlen */ |
2620 | 0 | t = btf_last_type(btf); |
2621 | 0 | btf_type_inc_vlen(t); |
2622 | |
|
2623 | 0 | btf->hdr->type_len += sz; |
2624 | 0 | btf->hdr->str_off += sz; |
2625 | 0 | return 0; |
2626 | 0 | } |
2627 | | |
2628 | | /* |
2629 | | * Append new BTF_KIND_VAR type with: |
2630 | | * - *name* - non-empty/non-NULL name; |
2631 | | * - *linkage* - variable linkage, one of BTF_VAR_STATIC, |
2632 | | * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; |
2633 | | * - *type_id* - type ID of the type describing the type of the variable. |
2634 | | * Returns: |
2635 | | * - >0, type ID of newly added BTF type; |
2636 | | * - <0, on error. |
2637 | | */ |
2638 | | int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) |
2639 | 509 | { |
2640 | 509 | struct btf_type *t; |
2641 | 509 | struct btf_var *v; |
2642 | 509 | int sz, name_off; |
2643 | | |
2644 | | /* non-empty name */ |
2645 | 509 | if (!name || !name[0]) |
2646 | 0 | return libbpf_err(-EINVAL); |
2647 | 509 | if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && |
2648 | 509 | linkage != BTF_VAR_GLOBAL_EXTERN) |
2649 | 0 | return libbpf_err(-EINVAL); |
2650 | 509 | if (validate_type_id(type_id)) |
2651 | 0 | return libbpf_err(-EINVAL); |
2652 | | |
2653 | | /* deconstruct BTF, if necessary, and invalidate raw_data */ |
2654 | 509 | if (btf_ensure_modifiable(btf)) |
2655 | 0 | return libbpf_err(-ENOMEM); |
2656 | | |
2657 | 509 | sz = sizeof(struct btf_type) + sizeof(struct btf_var); |
2658 | 509 | t = btf_add_type_mem(btf, sz); |
2659 | 509 | if (!t) |
2660 | 0 | return libbpf_err(-ENOMEM); |
2661 | | |
2662 | 509 | name_off = btf__add_str(btf, name); |
2663 | 509 | if (name_off < 0) |
2664 | 0 | return name_off; |
2665 | | |
2666 | 509 | t->name_off = name_off; |
2667 | 509 | t->info = btf_type_info(BTF_KIND_VAR, 0, 0); |
2668 | 509 | t->type = type_id; |
2669 | | |
2670 | 509 | v = btf_var(t); |
2671 | 509 | v->linkage = linkage; |
2672 | | |
2673 | 509 | return btf_commit_type(btf, sz); |
2674 | 509 | } |
2675 | | |
2676 | | /* |
2677 | | * Append new BTF_KIND_DATASEC type with: |
2678 | | * - *name* - non-empty/non-NULL name; |
2679 | | * - *byte_sz* - data section size, in bytes. |
2680 | | * |
2681 | | * Data section is initially empty. Variables info can be added with |
2682 | | * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. |
2683 | | * |
2684 | | * Returns: |
2685 | | * - >0, type ID of newly added BTF type; |
2686 | | * - <0, on error. |
2687 | | */ |
2688 | | int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) |
2689 | 0 | { |
2690 | 0 | struct btf_type *t; |
2691 | 0 | int sz, name_off; |
2692 | | |
2693 | | /* non-empty name */ |
2694 | 0 | if (!name || !name[0]) |
2695 | 0 | return libbpf_err(-EINVAL); |
2696 | | |
2697 | 0 | if (btf_ensure_modifiable(btf)) |
2698 | 0 | return libbpf_err(-ENOMEM); |
2699 | | |
2700 | 0 | sz = sizeof(struct btf_type); |
2701 | 0 | t = btf_add_type_mem(btf, sz); |
2702 | 0 | if (!t) |
2703 | 0 | return libbpf_err(-ENOMEM); |
2704 | | |
2705 | 0 | name_off = btf__add_str(btf, name); |
2706 | 0 | if (name_off < 0) |
2707 | 0 | return name_off; |
2708 | | |
2709 | | /* start with vlen=0, which will be update as var_secinfos are added */ |
2710 | 0 | t->name_off = name_off; |
2711 | 0 | t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); |
2712 | 0 | t->size = byte_sz; |
2713 | |
|
2714 | 0 | return btf_commit_type(btf, sz); |
2715 | 0 | } |
2716 | | |
2717 | | /* |
2718 | | * Append new data section variable information entry for current DATASEC type: |
2719 | | * - *var_type_id* - type ID, describing type of the variable; |
2720 | | * - *offset* - variable offset within data section, in bytes; |
2721 | | * - *byte_sz* - variable size, in bytes. |
2722 | | * |
2723 | | * Returns: |
2724 | | * - 0, on success; |
2725 | | * - <0, on error. |
2726 | | */ |
2727 | | int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) |
2728 | 0 | { |
2729 | 0 | struct btf_type *t; |
2730 | 0 | struct btf_var_secinfo *v; |
2731 | 0 | int sz; |
2732 | | |
2733 | | /* last type should be BTF_KIND_DATASEC */ |
2734 | 0 | if (btf->nr_types == 0) |
2735 | 0 | return libbpf_err(-EINVAL); |
2736 | 0 | t = btf_last_type(btf); |
2737 | 0 | if (!btf_is_datasec(t)) |
2738 | 0 | return libbpf_err(-EINVAL); |
2739 | | |
2740 | 0 | if (validate_type_id(var_type_id)) |
2741 | 0 | return libbpf_err(-EINVAL); |
2742 | | |
2743 | | /* decompose and invalidate raw data */ |
2744 | 0 | if (btf_ensure_modifiable(btf)) |
2745 | 0 | return libbpf_err(-ENOMEM); |
2746 | | |
2747 | 0 | sz = sizeof(struct btf_var_secinfo); |
2748 | 0 | v = btf_add_type_mem(btf, sz); |
2749 | 0 | if (!v) |
2750 | 0 | return libbpf_err(-ENOMEM); |
2751 | | |
2752 | 0 | v->type = var_type_id; |
2753 | 0 | v->offset = offset; |
2754 | 0 | v->size = byte_sz; |
2755 | | |
2756 | | /* update parent type's vlen */ |
2757 | 0 | t = btf_last_type(btf); |
2758 | 0 | btf_type_inc_vlen(t); |
2759 | |
|
2760 | 0 | btf->hdr->type_len += sz; |
2761 | 0 | btf->hdr->str_off += sz; |
2762 | 0 | return 0; |
2763 | 0 | } |
2764 | | |
2765 | | /* |
2766 | | * Append new BTF_KIND_DECL_TAG type with: |
2767 | | * - *value* - non-empty/non-NULL string; |
2768 | | * - *ref_type_id* - referenced type ID, it might not exist yet; |
2769 | | * - *component_idx* - -1 for tagging reference type, otherwise struct/union |
2770 | | * member or function argument index; |
2771 | | * Returns: |
2772 | | * - >0, type ID of newly added BTF type; |
2773 | | * - <0, on error. |
2774 | | */ |
2775 | | int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, |
2776 | | int component_idx) |
2777 | 0 | { |
2778 | 0 | struct btf_type *t; |
2779 | 0 | int sz, value_off; |
2780 | |
|
2781 | 0 | if (!value || !value[0] || component_idx < -1) |
2782 | 0 | return libbpf_err(-EINVAL); |
2783 | | |
2784 | 0 | if (validate_type_id(ref_type_id)) |
2785 | 0 | return libbpf_err(-EINVAL); |
2786 | | |
2787 | 0 | if (btf_ensure_modifiable(btf)) |
2788 | 0 | return libbpf_err(-ENOMEM); |
2789 | | |
2790 | 0 | sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); |
2791 | 0 | t = btf_add_type_mem(btf, sz); |
2792 | 0 | if (!t) |
2793 | 0 | return libbpf_err(-ENOMEM); |
2794 | | |
2795 | 0 | value_off = btf__add_str(btf, value); |
2796 | 0 | if (value_off < 0) |
2797 | 0 | return value_off; |
2798 | | |
2799 | 0 | t->name_off = value_off; |
2800 | 0 | t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); |
2801 | 0 | t->type = ref_type_id; |
2802 | 0 | btf_decl_tag(t)->component_idx = component_idx; |
2803 | |
|
2804 | 0 | return btf_commit_type(btf, sz); |
2805 | 0 | } |
2806 | | |
2807 | | struct btf_ext_sec_setup_param { |
2808 | | __u32 off; |
2809 | | __u32 len; |
2810 | | __u32 min_rec_size; |
2811 | | struct btf_ext_info *ext_info; |
2812 | | const char *desc; |
2813 | | }; |
2814 | | |
2815 | | static int btf_ext_setup_info(struct btf_ext *btf_ext, |
2816 | | struct btf_ext_sec_setup_param *ext_sec) |
2817 | 521 | { |
2818 | 521 | const struct btf_ext_info_sec *sinfo; |
2819 | 521 | struct btf_ext_info *ext_info; |
2820 | 521 | __u32 info_left, record_size; |
2821 | 521 | size_t sec_cnt = 0; |
2822 | | /* The start of the info sec (including the __u32 record_size). */ |
2823 | 521 | void *info; |
2824 | | |
2825 | 521 | if (ext_sec->len == 0) |
2826 | 245 | return 0; |
2827 | | |
2828 | 276 | if (ext_sec->off & 0x03) { |
2829 | 8 | pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", |
2830 | 8 | ext_sec->desc); |
2831 | 8 | return -EINVAL; |
2832 | 8 | } |
2833 | | |
2834 | 268 | info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; |
2835 | 268 | info_left = ext_sec->len; |
2836 | | |
2837 | 268 | if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { |
2838 | 30 | pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", |
2839 | 30 | ext_sec->desc, ext_sec->off, ext_sec->len); |
2840 | 30 | return -EINVAL; |
2841 | 30 | } |
2842 | | |
2843 | | /* At least a record size */ |
2844 | 238 | if (info_left < sizeof(__u32)) { |
2845 | 1 | pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); |
2846 | 1 | return -EINVAL; |
2847 | 1 | } |
2848 | | |
2849 | | /* The record size needs to meet the minimum standard */ |
2850 | 237 | record_size = *(__u32 *)info; |
2851 | 237 | if (record_size < ext_sec->min_rec_size || |
2852 | 237 | record_size & 0x03) { |
2853 | 19 | pr_debug("%s section in .BTF.ext has invalid record size %u\n", |
2854 | 19 | ext_sec->desc, record_size); |
2855 | 19 | return -EINVAL; |
2856 | 19 | } |
2857 | | |
2858 | 218 | sinfo = info + sizeof(__u32); |
2859 | 218 | info_left -= sizeof(__u32); |
2860 | | |
2861 | | /* If no records, return failure now so .BTF.ext won't be used. */ |
2862 | 218 | if (!info_left) { |
2863 | 1 | pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); |
2864 | 1 | return -EINVAL; |
2865 | 1 | } |
2866 | | |
2867 | 761 | while (info_left) { |
2868 | 624 | unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); |
2869 | 624 | __u64 total_record_size; |
2870 | 624 | __u32 num_records; |
2871 | | |
2872 | 624 | if (info_left < sec_hdrlen) { |
2873 | 2 | pr_debug("%s section header is not found in .BTF.ext\n", |
2874 | 2 | ext_sec->desc); |
2875 | 2 | return -EINVAL; |
2876 | 2 | } |
2877 | | |
2878 | 622 | num_records = sinfo->num_info; |
2879 | 622 | if (num_records == 0) { |
2880 | 3 | pr_debug("%s section has incorrect num_records in .BTF.ext\n", |
2881 | 3 | ext_sec->desc); |
2882 | 3 | return -EINVAL; |
2883 | 3 | } |
2884 | | |
2885 | 619 | total_record_size = sec_hdrlen + (__u64)num_records * record_size; |
2886 | 619 | if (info_left < total_record_size) { |
2887 | 75 | pr_debug("%s section has incorrect num_records in .BTF.ext\n", |
2888 | 75 | ext_sec->desc); |
2889 | 75 | return -EINVAL; |
2890 | 75 | } |
2891 | | |
2892 | 544 | info_left -= total_record_size; |
2893 | 544 | sinfo = (void *)sinfo + total_record_size; |
2894 | 544 | sec_cnt++; |
2895 | 544 | } |
2896 | | |
2897 | 137 | ext_info = ext_sec->ext_info; |
2898 | 137 | ext_info->len = ext_sec->len - sizeof(__u32); |
2899 | 137 | ext_info->rec_size = record_size; |
2900 | 137 | ext_info->info = info + sizeof(__u32); |
2901 | 137 | ext_info->sec_cnt = sec_cnt; |
2902 | | |
2903 | 137 | return 0; |
2904 | 217 | } |
2905 | | |
2906 | | static int btf_ext_setup_func_info(struct btf_ext *btf_ext) |
2907 | 259 | { |
2908 | 259 | struct btf_ext_sec_setup_param param = { |
2909 | 259 | .off = btf_ext->hdr->func_info_off, |
2910 | 259 | .len = btf_ext->hdr->func_info_len, |
2911 | 259 | .min_rec_size = sizeof(struct bpf_func_info_min), |
2912 | 259 | .ext_info = &btf_ext->func_info, |
2913 | 259 | .desc = "func_info" |
2914 | 259 | }; |
2915 | | |
2916 | 259 | return btf_ext_setup_info(btf_ext, ¶m); |
2917 | 259 | } |
2918 | | |
2919 | | static int btf_ext_setup_line_info(struct btf_ext *btf_ext) |
2920 | 139 | { |
2921 | 139 | struct btf_ext_sec_setup_param param = { |
2922 | 139 | .off = btf_ext->hdr->line_info_off, |
2923 | 139 | .len = btf_ext->hdr->line_info_len, |
2924 | 139 | .min_rec_size = sizeof(struct bpf_line_info_min), |
2925 | 139 | .ext_info = &btf_ext->line_info, |
2926 | 139 | .desc = "line_info", |
2927 | 139 | }; |
2928 | | |
2929 | 139 | return btf_ext_setup_info(btf_ext, ¶m); |
2930 | 139 | } |
2931 | | |
2932 | | static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) |
2933 | 123 | { |
2934 | 123 | struct btf_ext_sec_setup_param param = { |
2935 | 123 | .off = btf_ext->hdr->core_relo_off, |
2936 | 123 | .len = btf_ext->hdr->core_relo_len, |
2937 | 123 | .min_rec_size = sizeof(struct bpf_core_relo), |
2938 | 123 | .ext_info = &btf_ext->core_relo_info, |
2939 | 123 | .desc = "core_relo", |
2940 | 123 | }; |
2941 | | |
2942 | 123 | return btf_ext_setup_info(btf_ext, ¶m); |
2943 | 123 | } |
2944 | | |
2945 | | static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) |
2946 | 377 | { |
2947 | 377 | const struct btf_ext_header *hdr = (struct btf_ext_header *)data; |
2948 | | |
2949 | 377 | if (data_size < offsetofend(struct btf_ext_header, hdr_len) || |
2950 | 377 | data_size < hdr->hdr_len) { |
2951 | 64 | pr_debug("BTF.ext header not found"); |
2952 | 64 | return -EINVAL; |
2953 | 64 | } |
2954 | | |
2955 | 313 | if (hdr->magic == bswap_16(BTF_MAGIC)) { |
2956 | 1 | pr_warn("BTF.ext in non-native endianness is not supported\n"); |
2957 | 1 | return -ENOTSUP; |
2958 | 312 | } else if (hdr->magic != BTF_MAGIC) { |
2959 | 41 | pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); |
2960 | 41 | return -EINVAL; |
2961 | 41 | } |
2962 | | |
2963 | 271 | if (hdr->version != BTF_VERSION) { |
2964 | 4 | pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); |
2965 | 4 | return -ENOTSUP; |
2966 | 4 | } |
2967 | | |
2968 | 267 | if (hdr->flags) { |
2969 | 1 | pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); |
2970 | 1 | return -ENOTSUP; |
2971 | 1 | } |
2972 | | |
2973 | 266 | if (data_size == hdr->hdr_len) { |
2974 | 1 | pr_debug("BTF.ext has no data\n"); |
2975 | 1 | return -EINVAL; |
2976 | 1 | } |
2977 | | |
2978 | 265 | return 0; |
2979 | 266 | } |
2980 | | |
2981 | | void btf_ext__free(struct btf_ext *btf_ext) |
2982 | 9.77k | { |
2983 | 9.77k | if (IS_ERR_OR_NULL(btf_ext)) |
2984 | 9.40k | return; |
2985 | 377 | free(btf_ext->func_info.sec_idxs); |
2986 | 377 | free(btf_ext->line_info.sec_idxs); |
2987 | 377 | free(btf_ext->core_relo_info.sec_idxs); |
2988 | 377 | free(btf_ext->data); |
2989 | 377 | free(btf_ext); |
2990 | 377 | } |
2991 | | |
2992 | | struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) |
2993 | 377 | { |
2994 | 377 | struct btf_ext *btf_ext; |
2995 | 377 | int err; |
2996 | | |
2997 | 377 | btf_ext = calloc(1, sizeof(struct btf_ext)); |
2998 | 377 | if (!btf_ext) |
2999 | 0 | return libbpf_err_ptr(-ENOMEM); |
3000 | | |
3001 | 377 | btf_ext->data_size = size; |
3002 | 377 | btf_ext->data = malloc(size); |
3003 | 377 | if (!btf_ext->data) { |
3004 | 0 | err = -ENOMEM; |
3005 | 0 | goto done; |
3006 | 0 | } |
3007 | 377 | memcpy(btf_ext->data, data, size); |
3008 | | |
3009 | 377 | err = btf_ext_parse_hdr(btf_ext->data, size); |
3010 | 377 | if (err) |
3011 | 112 | goto done; |
3012 | | |
3013 | 265 | if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { |
3014 | 6 | err = -EINVAL; |
3015 | 6 | goto done; |
3016 | 6 | } |
3017 | | |
3018 | 259 | err = btf_ext_setup_func_info(btf_ext); |
3019 | 259 | if (err) |
3020 | 120 | goto done; |
3021 | | |
3022 | 139 | err = btf_ext_setup_line_info(btf_ext); |
3023 | 139 | if (err) |
3024 | 13 | goto done; |
3025 | | |
3026 | 126 | if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) |
3027 | 3 | goto done; /* skip core relos parsing */ |
3028 | | |
3029 | 123 | err = btf_ext_setup_core_relos(btf_ext); |
3030 | 123 | if (err) |
3031 | 6 | goto done; |
3032 | | |
3033 | 377 | done: |
3034 | 377 | if (err) { |
3035 | 257 | btf_ext__free(btf_ext); |
3036 | 257 | return libbpf_err_ptr(err); |
3037 | 257 | } |
3038 | | |
3039 | 120 | return btf_ext; |
3040 | 377 | } |
3041 | | |
3042 | | const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) |
3043 | 0 | { |
3044 | 0 | *size = btf_ext->data_size; |
3045 | 0 | return btf_ext->data; |
3046 | 0 | } |
3047 | | |
3048 | | struct btf_dedup; |
3049 | | |
3050 | | static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); |
3051 | | static void btf_dedup_free(struct btf_dedup *d); |
3052 | | static int btf_dedup_prep(struct btf_dedup *d); |
3053 | | static int btf_dedup_strings(struct btf_dedup *d); |
3054 | | static int btf_dedup_prim_types(struct btf_dedup *d); |
3055 | | static int btf_dedup_struct_types(struct btf_dedup *d); |
3056 | | static int btf_dedup_ref_types(struct btf_dedup *d); |
3057 | | static int btf_dedup_resolve_fwds(struct btf_dedup *d); |
3058 | | static int btf_dedup_compact_types(struct btf_dedup *d); |
3059 | | static int btf_dedup_remap_types(struct btf_dedup *d); |
3060 | | |
3061 | | /* |
3062 | | * Deduplicate BTF types and strings. |
3063 | | * |
3064 | | * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF |
3065 | | * section with all BTF type descriptors and string data. It overwrites that |
3066 | | * memory in-place with deduplicated types and strings without any loss of |
3067 | | * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section |
3068 | | * is provided, all the strings referenced from .BTF.ext section are honored |
3069 | | * and updated to point to the right offsets after deduplication. |
3070 | | * |
3071 | | * If function returns with error, type/string data might be garbled and should |
3072 | | * be discarded. |
3073 | | * |
3074 | | * More verbose and detailed description of both problem btf_dedup is solving, |
3075 | | * as well as solution could be found at: |
3076 | | * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html |
3077 | | * |
3078 | | * Problem description and justification |
3079 | | * ===================================== |
3080 | | * |
3081 | | * BTF type information is typically emitted either as a result of conversion |
3082 | | * from DWARF to BTF or directly by compiler. In both cases, each compilation |
3083 | | * unit contains information about a subset of all the types that are used |
3084 | | * in an application. These subsets are frequently overlapping and contain a lot |
3085 | | * of duplicated information when later concatenated together into a single |
3086 | | * binary. This algorithm ensures that each unique type is represented by single |
3087 | | * BTF type descriptor, greatly reducing resulting size of BTF data. |
3088 | | * |
3089 | | * Compilation unit isolation and subsequent duplication of data is not the only |
3090 | | * problem. The same type hierarchy (e.g., struct and all the type that struct |
3091 | | * references) in different compilation units can be represented in BTF to |
3092 | | * various degrees of completeness (or, rather, incompleteness) due to |
3093 | | * struct/union forward declarations. |
3094 | | * |
3095 | | * Let's take a look at an example, that we'll use to better understand the |
3096 | | * problem (and solution). Suppose we have two compilation units, each using |
3097 | | * same `struct S`, but each of them having incomplete type information about |
3098 | | * struct's fields: |
3099 | | * |
3100 | | * // CU #1: |
3101 | | * struct S; |
3102 | | * struct A { |
3103 | | * int a; |
3104 | | * struct A* self; |
3105 | | * struct S* parent; |
3106 | | * }; |
3107 | | * struct B; |
3108 | | * struct S { |
3109 | | * struct A* a_ptr; |
3110 | | * struct B* b_ptr; |
3111 | | * }; |
3112 | | * |
3113 | | * // CU #2: |
3114 | | * struct S; |
3115 | | * struct A; |
3116 | | * struct B { |
3117 | | * int b; |
3118 | | * struct B* self; |
3119 | | * struct S* parent; |
3120 | | * }; |
3121 | | * struct S { |
3122 | | * struct A* a_ptr; |
3123 | | * struct B* b_ptr; |
3124 | | * }; |
3125 | | * |
3126 | | * In case of CU #1, BTF data will know only that `struct B` exist (but no |
3127 | | * more), but will know the complete type information about `struct A`. While |
3128 | | * for CU #2, it will know full type information about `struct B`, but will |
3129 | | * only know about forward declaration of `struct A` (in BTF terms, it will |
3130 | | * have `BTF_KIND_FWD` type descriptor with name `B`). |
3131 | | * |
3132 | | * This compilation unit isolation means that it's possible that there is no |
3133 | | * single CU with complete type information describing structs `S`, `A`, and |
3134 | | * `B`. Also, we might get tons of duplicated and redundant type information. |
3135 | | * |
3136 | | * Additional complication we need to keep in mind comes from the fact that |
3137 | | * types, in general, can form graphs containing cycles, not just DAGs. |
3138 | | * |
3139 | | * While algorithm does deduplication, it also merges and resolves type |
3140 | | * information (unless disabled throught `struct btf_opts`), whenever possible. |
3141 | | * E.g., in the example above with two compilation units having partial type |
3142 | | * information for structs `A` and `B`, the output of algorithm will emit |
3143 | | * a single copy of each BTF type that describes structs `A`, `B`, and `S` |
3144 | | * (as well as type information for `int` and pointers), as if they were defined |
3145 | | * in a single compilation unit as: |
3146 | | * |
3147 | | * struct A { |
3148 | | * int a; |
3149 | | * struct A* self; |
3150 | | * struct S* parent; |
3151 | | * }; |
3152 | | * struct B { |
3153 | | * int b; |
3154 | | * struct B* self; |
3155 | | * struct S* parent; |
3156 | | * }; |
3157 | | * struct S { |
3158 | | * struct A* a_ptr; |
3159 | | * struct B* b_ptr; |
3160 | | * }; |
3161 | | * |
3162 | | * Algorithm summary |
3163 | | * ================= |
3164 | | * |
3165 | | * Algorithm completes its work in 7 separate passes: |
3166 | | * |
3167 | | * 1. Strings deduplication. |
3168 | | * 2. Primitive types deduplication (int, enum, fwd). |
3169 | | * 3. Struct/union types deduplication. |
3170 | | * 4. Resolve unambiguous forward declarations. |
3171 | | * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func |
3172 | | * protos, and const/volatile/restrict modifiers). |
3173 | | * 6. Types compaction. |
3174 | | * 7. Types remapping. |
3175 | | * |
3176 | | * Algorithm determines canonical type descriptor, which is a single |
3177 | | * representative type for each truly unique type. This canonical type is the |
3178 | | * one that will go into final deduplicated BTF type information. For |
3179 | | * struct/unions, it is also the type that algorithm will merge additional type |
3180 | | * information into (while resolving FWDs), as it discovers it from data in |
3181 | | * other CUs. Each input BTF type eventually gets either mapped to itself, if |
3182 | | * that type is canonical, or to some other type, if that type is equivalent |
3183 | | * and was chosen as canonical representative. This mapping is stored in |
3184 | | * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that |
3185 | | * FWD type got resolved to. |
3186 | | * |
3187 | | * To facilitate fast discovery of canonical types, we also maintain canonical |
3188 | | * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash |
3189 | | * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types |
3190 | | * that match that signature. With sufficiently good choice of type signature |
3191 | | * hashing function, we can limit number of canonical types for each unique type |
3192 | | * signature to a very small number, allowing to find canonical type for any |
3193 | | * duplicated type very quickly. |
3194 | | * |
3195 | | * Struct/union deduplication is the most critical part and algorithm for |
3196 | | * deduplicating structs/unions is described in greater details in comments for |
3197 | | * `btf_dedup_is_equiv` function. |
3198 | | */ |
3199 | | int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) |
3200 | 0 | { |
3201 | 0 | struct btf_dedup *d; |
3202 | 0 | int err; |
3203 | |
|
3204 | 0 | if (!OPTS_VALID(opts, btf_dedup_opts)) |
3205 | 0 | return libbpf_err(-EINVAL); |
3206 | | |
3207 | 0 | d = btf_dedup_new(btf, opts); |
3208 | 0 | if (IS_ERR(d)) { |
3209 | 0 | pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); |
3210 | 0 | return libbpf_err(-EINVAL); |
3211 | 0 | } |
3212 | | |
3213 | 0 | if (btf_ensure_modifiable(btf)) { |
3214 | 0 | err = -ENOMEM; |
3215 | 0 | goto done; |
3216 | 0 | } |
3217 | | |
3218 | 0 | err = btf_dedup_prep(d); |
3219 | 0 | if (err) { |
3220 | 0 | pr_debug("btf_dedup_prep failed:%d\n", err); |
3221 | 0 | goto done; |
3222 | 0 | } |
3223 | 0 | err = btf_dedup_strings(d); |
3224 | 0 | if (err < 0) { |
3225 | 0 | pr_debug("btf_dedup_strings failed:%d\n", err); |
3226 | 0 | goto done; |
3227 | 0 | } |
3228 | 0 | err = btf_dedup_prim_types(d); |
3229 | 0 | if (err < 0) { |
3230 | 0 | pr_debug("btf_dedup_prim_types failed:%d\n", err); |
3231 | 0 | goto done; |
3232 | 0 | } |
3233 | 0 | err = btf_dedup_struct_types(d); |
3234 | 0 | if (err < 0) { |
3235 | 0 | pr_debug("btf_dedup_struct_types failed:%d\n", err); |
3236 | 0 | goto done; |
3237 | 0 | } |
3238 | 0 | err = btf_dedup_resolve_fwds(d); |
3239 | 0 | if (err < 0) { |
3240 | 0 | pr_debug("btf_dedup_resolve_fwds failed:%d\n", err); |
3241 | 0 | goto done; |
3242 | 0 | } |
3243 | 0 | err = btf_dedup_ref_types(d); |
3244 | 0 | if (err < 0) { |
3245 | 0 | pr_debug("btf_dedup_ref_types failed:%d\n", err); |
3246 | 0 | goto done; |
3247 | 0 | } |
3248 | 0 | err = btf_dedup_compact_types(d); |
3249 | 0 | if (err < 0) { |
3250 | 0 | pr_debug("btf_dedup_compact_types failed:%d\n", err); |
3251 | 0 | goto done; |
3252 | 0 | } |
3253 | 0 | err = btf_dedup_remap_types(d); |
3254 | 0 | if (err < 0) { |
3255 | 0 | pr_debug("btf_dedup_remap_types failed:%d\n", err); |
3256 | 0 | goto done; |
3257 | 0 | } |
3258 | | |
3259 | 0 | done: |
3260 | 0 | btf_dedup_free(d); |
3261 | 0 | return libbpf_err(err); |
3262 | 0 | } |
3263 | | |
3264 | 0 | #define BTF_UNPROCESSED_ID ((__u32)-1) |
3265 | 0 | #define BTF_IN_PROGRESS_ID ((__u32)-2) |
3266 | | |
3267 | | struct btf_dedup { |
3268 | | /* .BTF section to be deduped in-place */ |
3269 | | struct btf *btf; |
3270 | | /* |
3271 | | * Optional .BTF.ext section. When provided, any strings referenced |
3272 | | * from it will be taken into account when deduping strings |
3273 | | */ |
3274 | | struct btf_ext *btf_ext; |
3275 | | /* |
3276 | | * This is a map from any type's signature hash to a list of possible |
3277 | | * canonical representative type candidates. Hash collisions are |
3278 | | * ignored, so even types of various kinds can share same list of |
3279 | | * candidates, which is fine because we rely on subsequent |
3280 | | * btf_xxx_equal() checks to authoritatively verify type equality. |
3281 | | */ |
3282 | | struct hashmap *dedup_table; |
3283 | | /* Canonical types map */ |
3284 | | __u32 *map; |
3285 | | /* Hypothetical mapping, used during type graph equivalence checks */ |
3286 | | __u32 *hypot_map; |
3287 | | __u32 *hypot_list; |
3288 | | size_t hypot_cnt; |
3289 | | size_t hypot_cap; |
3290 | | /* Whether hypothetical mapping, if successful, would need to adjust |
3291 | | * already canonicalized types (due to a new forward declaration to |
3292 | | * concrete type resolution). In such case, during split BTF dedup |
3293 | | * candidate type would still be considered as different, because base |
3294 | | * BTF is considered to be immutable. |
3295 | | */ |
3296 | | bool hypot_adjust_canon; |
3297 | | /* Various option modifying behavior of algorithm */ |
3298 | | struct btf_dedup_opts opts; |
3299 | | /* temporary strings deduplication state */ |
3300 | | struct strset *strs_set; |
3301 | | }; |
3302 | | |
3303 | | static long hash_combine(long h, long value) |
3304 | 0 | { |
3305 | 0 | return h * 31 + value; |
3306 | 0 | } |
3307 | | |
3308 | | #define for_each_dedup_cand(d, node, hash) \ |
3309 | 0 | hashmap__for_each_key_entry(d->dedup_table, node, hash) |
3310 | | |
3311 | | static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) |
3312 | 0 | { |
3313 | 0 | return hashmap__append(d->dedup_table, hash, type_id); |
3314 | 0 | } |
3315 | | |
3316 | | static int btf_dedup_hypot_map_add(struct btf_dedup *d, |
3317 | | __u32 from_id, __u32 to_id) |
3318 | 0 | { |
3319 | 0 | if (d->hypot_cnt == d->hypot_cap) { |
3320 | 0 | __u32 *new_list; |
3321 | |
|
3322 | 0 | d->hypot_cap += max((size_t)16, d->hypot_cap / 2); |
3323 | 0 | new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); |
3324 | 0 | if (!new_list) |
3325 | 0 | return -ENOMEM; |
3326 | 0 | d->hypot_list = new_list; |
3327 | 0 | } |
3328 | 0 | d->hypot_list[d->hypot_cnt++] = from_id; |
3329 | 0 | d->hypot_map[from_id] = to_id; |
3330 | 0 | return 0; |
3331 | 0 | } |
3332 | | |
3333 | | static void btf_dedup_clear_hypot_map(struct btf_dedup *d) |
3334 | 0 | { |
3335 | 0 | int i; |
3336 | |
|
3337 | 0 | for (i = 0; i < d->hypot_cnt; i++) |
3338 | 0 | d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; |
3339 | 0 | d->hypot_cnt = 0; |
3340 | 0 | d->hypot_adjust_canon = false; |
3341 | 0 | } |
3342 | | |
3343 | | static void btf_dedup_free(struct btf_dedup *d) |
3344 | 0 | { |
3345 | 0 | hashmap__free(d->dedup_table); |
3346 | 0 | d->dedup_table = NULL; |
3347 | |
|
3348 | 0 | free(d->map); |
3349 | 0 | d->map = NULL; |
3350 | |
|
3351 | 0 | free(d->hypot_map); |
3352 | 0 | d->hypot_map = NULL; |
3353 | |
|
3354 | 0 | free(d->hypot_list); |
3355 | 0 | d->hypot_list = NULL; |
3356 | |
|
3357 | 0 | free(d); |
3358 | 0 | } |
3359 | | |
3360 | | static size_t btf_dedup_identity_hash_fn(long key, void *ctx) |
3361 | 0 | { |
3362 | 0 | return key; |
3363 | 0 | } |
3364 | | |
3365 | | static size_t btf_dedup_collision_hash_fn(long key, void *ctx) |
3366 | 0 | { |
3367 | 0 | return 0; |
3368 | 0 | } |
3369 | | |
3370 | | static bool btf_dedup_equal_fn(long k1, long k2, void *ctx) |
3371 | 0 | { |
3372 | 0 | return k1 == k2; |
3373 | 0 | } |
3374 | | |
3375 | | static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) |
3376 | 0 | { |
3377 | 0 | struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); |
3378 | 0 | hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; |
3379 | 0 | int i, err = 0, type_cnt; |
3380 | |
|
3381 | 0 | if (!d) |
3382 | 0 | return ERR_PTR(-ENOMEM); |
3383 | | |
3384 | 0 | if (OPTS_GET(opts, force_collisions, false)) |
3385 | 0 | hash_fn = btf_dedup_collision_hash_fn; |
3386 | |
|
3387 | 0 | d->btf = btf; |
3388 | 0 | d->btf_ext = OPTS_GET(opts, btf_ext, NULL); |
3389 | |
|
3390 | 0 | d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); |
3391 | 0 | if (IS_ERR(d->dedup_table)) { |
3392 | 0 | err = PTR_ERR(d->dedup_table); |
3393 | 0 | d->dedup_table = NULL; |
3394 | 0 | goto done; |
3395 | 0 | } |
3396 | | |
3397 | 0 | type_cnt = btf__type_cnt(btf); |
3398 | 0 | d->map = malloc(sizeof(__u32) * type_cnt); |
3399 | 0 | if (!d->map) { |
3400 | 0 | err = -ENOMEM; |
3401 | 0 | goto done; |
3402 | 0 | } |
3403 | | /* special BTF "void" type is made canonical immediately */ |
3404 | 0 | d->map[0] = 0; |
3405 | 0 | for (i = 1; i < type_cnt; i++) { |
3406 | 0 | struct btf_type *t = btf_type_by_id(d->btf, i); |
3407 | | |
3408 | | /* VAR and DATASEC are never deduped and are self-canonical */ |
3409 | 0 | if (btf_is_var(t) || btf_is_datasec(t)) |
3410 | 0 | d->map[i] = i; |
3411 | 0 | else |
3412 | 0 | d->map[i] = BTF_UNPROCESSED_ID; |
3413 | 0 | } |
3414 | |
|
3415 | 0 | d->hypot_map = malloc(sizeof(__u32) * type_cnt); |
3416 | 0 | if (!d->hypot_map) { |
3417 | 0 | err = -ENOMEM; |
3418 | 0 | goto done; |
3419 | 0 | } |
3420 | 0 | for (i = 0; i < type_cnt; i++) |
3421 | 0 | d->hypot_map[i] = BTF_UNPROCESSED_ID; |
3422 | |
|
3423 | 0 | done: |
3424 | 0 | if (err) { |
3425 | 0 | btf_dedup_free(d); |
3426 | 0 | return ERR_PTR(err); |
3427 | 0 | } |
3428 | | |
3429 | 0 | return d; |
3430 | 0 | } |
3431 | | |
3432 | | /* |
3433 | | * Iterate over all possible places in .BTF and .BTF.ext that can reference |
3434 | | * string and pass pointer to it to a provided callback `fn`. |
3435 | | */ |
3436 | | static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) |
3437 | 0 | { |
3438 | 0 | int i, r; |
3439 | |
|
3440 | 0 | for (i = 0; i < d->btf->nr_types; i++) { |
3441 | 0 | struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); |
3442 | |
|
3443 | 0 | r = btf_type_visit_str_offs(t, fn, ctx); |
3444 | 0 | if (r) |
3445 | 0 | return r; |
3446 | 0 | } |
3447 | | |
3448 | 0 | if (!d->btf_ext) |
3449 | 0 | return 0; |
3450 | | |
3451 | 0 | r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); |
3452 | 0 | if (r) |
3453 | 0 | return r; |
3454 | | |
3455 | 0 | return 0; |
3456 | 0 | } |
3457 | | |
3458 | | static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) |
3459 | 0 | { |
3460 | 0 | struct btf_dedup *d = ctx; |
3461 | 0 | __u32 str_off = *str_off_ptr; |
3462 | 0 | const char *s; |
3463 | 0 | int off, err; |
3464 | | |
3465 | | /* don't touch empty string or string in main BTF */ |
3466 | 0 | if (str_off == 0 || str_off < d->btf->start_str_off) |
3467 | 0 | return 0; |
3468 | | |
3469 | 0 | s = btf__str_by_offset(d->btf, str_off); |
3470 | 0 | if (d->btf->base_btf) { |
3471 | 0 | err = btf__find_str(d->btf->base_btf, s); |
3472 | 0 | if (err >= 0) { |
3473 | 0 | *str_off_ptr = err; |
3474 | 0 | return 0; |
3475 | 0 | } |
3476 | 0 | if (err != -ENOENT) |
3477 | 0 | return err; |
3478 | 0 | } |
3479 | | |
3480 | 0 | off = strset__add_str(d->strs_set, s); |
3481 | 0 | if (off < 0) |
3482 | 0 | return off; |
3483 | | |
3484 | 0 | *str_off_ptr = d->btf->start_str_off + off; |
3485 | 0 | return 0; |
3486 | 0 | } |
3487 | | |
3488 | | /* |
3489 | | * Dedup string and filter out those that are not referenced from either .BTF |
3490 | | * or .BTF.ext (if provided) sections. |
3491 | | * |
3492 | | * This is done by building index of all strings in BTF's string section, |
3493 | | * then iterating over all entities that can reference strings (e.g., type |
3494 | | * names, struct field names, .BTF.ext line info, etc) and marking corresponding |
3495 | | * strings as used. After that all used strings are deduped and compacted into |
3496 | | * sequential blob of memory and new offsets are calculated. Then all the string |
3497 | | * references are iterated again and rewritten using new offsets. |
3498 | | */ |
3499 | | static int btf_dedup_strings(struct btf_dedup *d) |
3500 | 0 | { |
3501 | 0 | int err; |
3502 | |
|
3503 | 0 | if (d->btf->strs_deduped) |
3504 | 0 | return 0; |
3505 | | |
3506 | 0 | d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); |
3507 | 0 | if (IS_ERR(d->strs_set)) { |
3508 | 0 | err = PTR_ERR(d->strs_set); |
3509 | 0 | goto err_out; |
3510 | 0 | } |
3511 | | |
3512 | 0 | if (!d->btf->base_btf) { |
3513 | | /* insert empty string; we won't be looking it up during strings |
3514 | | * dedup, but it's good to have it for generic BTF string lookups |
3515 | | */ |
3516 | 0 | err = strset__add_str(d->strs_set, ""); |
3517 | 0 | if (err < 0) |
3518 | 0 | goto err_out; |
3519 | 0 | } |
3520 | | |
3521 | | /* remap string offsets */ |
3522 | 0 | err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); |
3523 | 0 | if (err) |
3524 | 0 | goto err_out; |
3525 | | |
3526 | | /* replace BTF string data and hash with deduped ones */ |
3527 | 0 | strset__free(d->btf->strs_set); |
3528 | 0 | d->btf->hdr->str_len = strset__data_size(d->strs_set); |
3529 | 0 | d->btf->strs_set = d->strs_set; |
3530 | 0 | d->strs_set = NULL; |
3531 | 0 | d->btf->strs_deduped = true; |
3532 | 0 | return 0; |
3533 | | |
3534 | 0 | err_out: |
3535 | 0 | strset__free(d->strs_set); |
3536 | 0 | d->strs_set = NULL; |
3537 | |
|
3538 | 0 | return err; |
3539 | 0 | } |
3540 | | |
3541 | | static long btf_hash_common(struct btf_type *t) |
3542 | 0 | { |
3543 | 0 | long h; |
3544 | |
|
3545 | 0 | h = hash_combine(0, t->name_off); |
3546 | 0 | h = hash_combine(h, t->info); |
3547 | 0 | h = hash_combine(h, t->size); |
3548 | 0 | return h; |
3549 | 0 | } |
3550 | | |
3551 | | static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) |
3552 | 0 | { |
3553 | 0 | return t1->name_off == t2->name_off && |
3554 | 0 | t1->info == t2->info && |
3555 | 0 | t1->size == t2->size; |
3556 | 0 | } |
3557 | | |
3558 | | /* Calculate type signature hash of INT or TAG. */ |
3559 | | static long btf_hash_int_decl_tag(struct btf_type *t) |
3560 | 0 | { |
3561 | 0 | __u32 info = *(__u32 *)(t + 1); |
3562 | 0 | long h; |
3563 | |
|
3564 | 0 | h = btf_hash_common(t); |
3565 | 0 | h = hash_combine(h, info); |
3566 | 0 | return h; |
3567 | 0 | } |
3568 | | |
3569 | | /* Check structural equality of two INTs or TAGs. */ |
3570 | | static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) |
3571 | 0 | { |
3572 | 0 | __u32 info1, info2; |
3573 | |
|
3574 | 0 | if (!btf_equal_common(t1, t2)) |
3575 | 0 | return false; |
3576 | 0 | info1 = *(__u32 *)(t1 + 1); |
3577 | 0 | info2 = *(__u32 *)(t2 + 1); |
3578 | 0 | return info1 == info2; |
3579 | 0 | } |
3580 | | |
3581 | | /* Calculate type signature hash of ENUM/ENUM64. */ |
3582 | | static long btf_hash_enum(struct btf_type *t) |
3583 | 0 | { |
3584 | 0 | long h; |
3585 | | |
3586 | | /* don't hash vlen, enum members and size to support enum fwd resolving */ |
3587 | 0 | h = hash_combine(0, t->name_off); |
3588 | 0 | return h; |
3589 | 0 | } |
3590 | | |
3591 | | static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2) |
3592 | 0 | { |
3593 | 0 | const struct btf_enum *m1, *m2; |
3594 | 0 | __u16 vlen; |
3595 | 0 | int i; |
3596 | |
|
3597 | 0 | vlen = btf_vlen(t1); |
3598 | 0 | m1 = btf_enum(t1); |
3599 | 0 | m2 = btf_enum(t2); |
3600 | 0 | for (i = 0; i < vlen; i++) { |
3601 | 0 | if (m1->name_off != m2->name_off || m1->val != m2->val) |
3602 | 0 | return false; |
3603 | 0 | m1++; |
3604 | 0 | m2++; |
3605 | 0 | } |
3606 | 0 | return true; |
3607 | 0 | } |
3608 | | |
3609 | | static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2) |
3610 | 0 | { |
3611 | 0 | const struct btf_enum64 *m1, *m2; |
3612 | 0 | __u16 vlen; |
3613 | 0 | int i; |
3614 | |
|
3615 | 0 | vlen = btf_vlen(t1); |
3616 | 0 | m1 = btf_enum64(t1); |
3617 | 0 | m2 = btf_enum64(t2); |
3618 | 0 | for (i = 0; i < vlen; i++) { |
3619 | 0 | if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || |
3620 | 0 | m1->val_hi32 != m2->val_hi32) |
3621 | 0 | return false; |
3622 | 0 | m1++; |
3623 | 0 | m2++; |
3624 | 0 | } |
3625 | 0 | return true; |
3626 | 0 | } |
3627 | | |
3628 | | /* Check structural equality of two ENUMs or ENUM64s. */ |
3629 | | static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) |
3630 | 0 | { |
3631 | 0 | if (!btf_equal_common(t1, t2)) |
3632 | 0 | return false; |
3633 | | |
3634 | | /* t1 & t2 kinds are identical because of btf_equal_common */ |
3635 | 0 | if (btf_kind(t1) == BTF_KIND_ENUM) |
3636 | 0 | return btf_equal_enum_members(t1, t2); |
3637 | 0 | else |
3638 | 0 | return btf_equal_enum64_members(t1, t2); |
3639 | 0 | } |
3640 | | |
3641 | | static inline bool btf_is_enum_fwd(struct btf_type *t) |
3642 | 0 | { |
3643 | 0 | return btf_is_any_enum(t) && btf_vlen(t) == 0; |
3644 | 0 | } |
3645 | | |
3646 | | static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) |
3647 | 0 | { |
3648 | 0 | if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) |
3649 | 0 | return btf_equal_enum(t1, t2); |
3650 | | /* At this point either t1 or t2 or both are forward declarations, thus: |
3651 | | * - skip comparing vlen because it is zero for forward declarations; |
3652 | | * - skip comparing size to allow enum forward declarations |
3653 | | * to be compatible with enum64 full declarations; |
3654 | | * - skip comparing kind for the same reason. |
3655 | | */ |
3656 | 0 | return t1->name_off == t2->name_off && |
3657 | 0 | btf_is_any_enum(t1) && btf_is_any_enum(t2); |
3658 | 0 | } |
3659 | | |
3660 | | /* |
3661 | | * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, |
3662 | | * as referenced type IDs equivalence is established separately during type |
3663 | | * graph equivalence check algorithm. |
3664 | | */ |
3665 | | static long btf_hash_struct(struct btf_type *t) |
3666 | 0 | { |
3667 | 0 | const struct btf_member *member = btf_members(t); |
3668 | 0 | __u32 vlen = btf_vlen(t); |
3669 | 0 | long h = btf_hash_common(t); |
3670 | 0 | int i; |
3671 | |
|
3672 | 0 | for (i = 0; i < vlen; i++) { |
3673 | 0 | h = hash_combine(h, member->name_off); |
3674 | 0 | h = hash_combine(h, member->offset); |
3675 | | /* no hashing of referenced type ID, it can be unresolved yet */ |
3676 | 0 | member++; |
3677 | 0 | } |
3678 | 0 | return h; |
3679 | 0 | } |
3680 | | |
3681 | | /* |
3682 | | * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced |
3683 | | * type IDs. This check is performed during type graph equivalence check and |
3684 | | * referenced types equivalence is checked separately. |
3685 | | */ |
3686 | | static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) |
3687 | 0 | { |
3688 | 0 | const struct btf_member *m1, *m2; |
3689 | 0 | __u16 vlen; |
3690 | 0 | int i; |
3691 | |
|
3692 | 0 | if (!btf_equal_common(t1, t2)) |
3693 | 0 | return false; |
3694 | | |
3695 | 0 | vlen = btf_vlen(t1); |
3696 | 0 | m1 = btf_members(t1); |
3697 | 0 | m2 = btf_members(t2); |
3698 | 0 | for (i = 0; i < vlen; i++) { |
3699 | 0 | if (m1->name_off != m2->name_off || m1->offset != m2->offset) |
3700 | 0 | return false; |
3701 | 0 | m1++; |
3702 | 0 | m2++; |
3703 | 0 | } |
3704 | 0 | return true; |
3705 | 0 | } |
3706 | | |
3707 | | /* |
3708 | | * Calculate type signature hash of ARRAY, including referenced type IDs, |
3709 | | * under assumption that they were already resolved to canonical type IDs and |
3710 | | * are not going to change. |
3711 | | */ |
3712 | | static long btf_hash_array(struct btf_type *t) |
3713 | 0 | { |
3714 | 0 | const struct btf_array *info = btf_array(t); |
3715 | 0 | long h = btf_hash_common(t); |
3716 | |
|
3717 | 0 | h = hash_combine(h, info->type); |
3718 | 0 | h = hash_combine(h, info->index_type); |
3719 | 0 | h = hash_combine(h, info->nelems); |
3720 | 0 | return h; |
3721 | 0 | } |
3722 | | |
3723 | | /* |
3724 | | * Check exact equality of two ARRAYs, taking into account referenced |
3725 | | * type IDs, under assumption that they were already resolved to canonical |
3726 | | * type IDs and are not going to change. |
3727 | | * This function is called during reference types deduplication to compare |
3728 | | * ARRAY to potential canonical representative. |
3729 | | */ |
3730 | | static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) |
3731 | 0 | { |
3732 | 0 | const struct btf_array *info1, *info2; |
3733 | |
|
3734 | 0 | if (!btf_equal_common(t1, t2)) |
3735 | 0 | return false; |
3736 | | |
3737 | 0 | info1 = btf_array(t1); |
3738 | 0 | info2 = btf_array(t2); |
3739 | 0 | return info1->type == info2->type && |
3740 | 0 | info1->index_type == info2->index_type && |
3741 | 0 | info1->nelems == info2->nelems; |
3742 | 0 | } |
3743 | | |
3744 | | /* |
3745 | | * Check structural compatibility of two ARRAYs, ignoring referenced type |
3746 | | * IDs. This check is performed during type graph equivalence check and |
3747 | | * referenced types equivalence is checked separately. |
3748 | | */ |
3749 | | static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) |
3750 | 0 | { |
3751 | 0 | if (!btf_equal_common(t1, t2)) |
3752 | 0 | return false; |
3753 | | |
3754 | 0 | return btf_array(t1)->nelems == btf_array(t2)->nelems; |
3755 | 0 | } |
3756 | | |
3757 | | /* |
3758 | | * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, |
3759 | | * under assumption that they were already resolved to canonical type IDs and |
3760 | | * are not going to change. |
3761 | | */ |
3762 | | static long btf_hash_fnproto(struct btf_type *t) |
3763 | 0 | { |
3764 | 0 | const struct btf_param *member = btf_params(t); |
3765 | 0 | __u16 vlen = btf_vlen(t); |
3766 | 0 | long h = btf_hash_common(t); |
3767 | 0 | int i; |
3768 | |
|
3769 | 0 | for (i = 0; i < vlen; i++) { |
3770 | 0 | h = hash_combine(h, member->name_off); |
3771 | 0 | h = hash_combine(h, member->type); |
3772 | 0 | member++; |
3773 | 0 | } |
3774 | 0 | return h; |
3775 | 0 | } |
3776 | | |
3777 | | /* |
3778 | | * Check exact equality of two FUNC_PROTOs, taking into account referenced |
3779 | | * type IDs, under assumption that they were already resolved to canonical |
3780 | | * type IDs and are not going to change. |
3781 | | * This function is called during reference types deduplication to compare |
3782 | | * FUNC_PROTO to potential canonical representative. |
3783 | | */ |
3784 | | static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) |
3785 | 0 | { |
3786 | 0 | const struct btf_param *m1, *m2; |
3787 | 0 | __u16 vlen; |
3788 | 0 | int i; |
3789 | |
|
3790 | 0 | if (!btf_equal_common(t1, t2)) |
3791 | 0 | return false; |
3792 | | |
3793 | 0 | vlen = btf_vlen(t1); |
3794 | 0 | m1 = btf_params(t1); |
3795 | 0 | m2 = btf_params(t2); |
3796 | 0 | for (i = 0; i < vlen; i++) { |
3797 | 0 | if (m1->name_off != m2->name_off || m1->type != m2->type) |
3798 | 0 | return false; |
3799 | 0 | m1++; |
3800 | 0 | m2++; |
3801 | 0 | } |
3802 | 0 | return true; |
3803 | 0 | } |
3804 | | |
3805 | | /* |
3806 | | * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type |
3807 | | * IDs. This check is performed during type graph equivalence check and |
3808 | | * referenced types equivalence is checked separately. |
3809 | | */ |
3810 | | static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) |
3811 | 0 | { |
3812 | 0 | const struct btf_param *m1, *m2; |
3813 | 0 | __u16 vlen; |
3814 | 0 | int i; |
3815 | | |
3816 | | /* skip return type ID */ |
3817 | 0 | if (t1->name_off != t2->name_off || t1->info != t2->info) |
3818 | 0 | return false; |
3819 | | |
3820 | 0 | vlen = btf_vlen(t1); |
3821 | 0 | m1 = btf_params(t1); |
3822 | 0 | m2 = btf_params(t2); |
3823 | 0 | for (i = 0; i < vlen; i++) { |
3824 | 0 | if (m1->name_off != m2->name_off) |
3825 | 0 | return false; |
3826 | 0 | m1++; |
3827 | 0 | m2++; |
3828 | 0 | } |
3829 | 0 | return true; |
3830 | 0 | } |
3831 | | |
3832 | | /* Prepare split BTF for deduplication by calculating hashes of base BTF's |
3833 | | * types and initializing the rest of the state (canonical type mapping) for |
3834 | | * the fixed base BTF part. |
3835 | | */ |
3836 | | static int btf_dedup_prep(struct btf_dedup *d) |
3837 | 0 | { |
3838 | 0 | struct btf_type *t; |
3839 | 0 | int type_id; |
3840 | 0 | long h; |
3841 | |
|
3842 | 0 | if (!d->btf->base_btf) |
3843 | 0 | return 0; |
3844 | | |
3845 | 0 | for (type_id = 1; type_id < d->btf->start_id; type_id++) { |
3846 | 0 | t = btf_type_by_id(d->btf, type_id); |
3847 | | |
3848 | | /* all base BTF types are self-canonical by definition */ |
3849 | 0 | d->map[type_id] = type_id; |
3850 | |
|
3851 | 0 | switch (btf_kind(t)) { |
3852 | 0 | case BTF_KIND_VAR: |
3853 | 0 | case BTF_KIND_DATASEC: |
3854 | | /* VAR and DATASEC are never hash/deduplicated */ |
3855 | 0 | continue; |
3856 | 0 | case BTF_KIND_CONST: |
3857 | 0 | case BTF_KIND_VOLATILE: |
3858 | 0 | case BTF_KIND_RESTRICT: |
3859 | 0 | case BTF_KIND_PTR: |
3860 | 0 | case BTF_KIND_FWD: |
3861 | 0 | case BTF_KIND_TYPEDEF: |
3862 | 0 | case BTF_KIND_FUNC: |
3863 | 0 | case BTF_KIND_FLOAT: |
3864 | 0 | case BTF_KIND_TYPE_TAG: |
3865 | 0 | h = btf_hash_common(t); |
3866 | 0 | break; |
3867 | 0 | case BTF_KIND_INT: |
3868 | 0 | case BTF_KIND_DECL_TAG: |
3869 | 0 | h = btf_hash_int_decl_tag(t); |
3870 | 0 | break; |
3871 | 0 | case BTF_KIND_ENUM: |
3872 | 0 | case BTF_KIND_ENUM64: |
3873 | 0 | h = btf_hash_enum(t); |
3874 | 0 | break; |
3875 | 0 | case BTF_KIND_STRUCT: |
3876 | 0 | case BTF_KIND_UNION: |
3877 | 0 | h = btf_hash_struct(t); |
3878 | 0 | break; |
3879 | 0 | case BTF_KIND_ARRAY: |
3880 | 0 | h = btf_hash_array(t); |
3881 | 0 | break; |
3882 | 0 | case BTF_KIND_FUNC_PROTO: |
3883 | 0 | h = btf_hash_fnproto(t); |
3884 | 0 | break; |
3885 | 0 | default: |
3886 | 0 | pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); |
3887 | 0 | return -EINVAL; |
3888 | 0 | } |
3889 | 0 | if (btf_dedup_table_add(d, h, type_id)) |
3890 | 0 | return -ENOMEM; |
3891 | 0 | } |
3892 | | |
3893 | 0 | return 0; |
3894 | 0 | } |
3895 | | |
3896 | | /* |
3897 | | * Deduplicate primitive types, that can't reference other types, by calculating |
3898 | | * their type signature hash and comparing them with any possible canonical |
3899 | | * candidate. If no canonical candidate matches, type itself is marked as |
3900 | | * canonical and is added into `btf_dedup->dedup_table` as another candidate. |
3901 | | */ |
3902 | | static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) |
3903 | 0 | { |
3904 | 0 | struct btf_type *t = btf_type_by_id(d->btf, type_id); |
3905 | 0 | struct hashmap_entry *hash_entry; |
3906 | 0 | struct btf_type *cand; |
3907 | | /* if we don't find equivalent type, then we are canonical */ |
3908 | 0 | __u32 new_id = type_id; |
3909 | 0 | __u32 cand_id; |
3910 | 0 | long h; |
3911 | |
|
3912 | 0 | switch (btf_kind(t)) { |
3913 | 0 | case BTF_KIND_CONST: |
3914 | 0 | case BTF_KIND_VOLATILE: |
3915 | 0 | case BTF_KIND_RESTRICT: |
3916 | 0 | case BTF_KIND_PTR: |
3917 | 0 | case BTF_KIND_TYPEDEF: |
3918 | 0 | case BTF_KIND_ARRAY: |
3919 | 0 | case BTF_KIND_STRUCT: |
3920 | 0 | case BTF_KIND_UNION: |
3921 | 0 | case BTF_KIND_FUNC: |
3922 | 0 | case BTF_KIND_FUNC_PROTO: |
3923 | 0 | case BTF_KIND_VAR: |
3924 | 0 | case BTF_KIND_DATASEC: |
3925 | 0 | case BTF_KIND_DECL_TAG: |
3926 | 0 | case BTF_KIND_TYPE_TAG: |
3927 | 0 | return 0; |
3928 | | |
3929 | 0 | case BTF_KIND_INT: |
3930 | 0 | h = btf_hash_int_decl_tag(t); |
3931 | 0 | for_each_dedup_cand(d, hash_entry, h) { |
3932 | 0 | cand_id = hash_entry->value; |
3933 | 0 | cand = btf_type_by_id(d->btf, cand_id); |
3934 | 0 | if (btf_equal_int_tag(t, cand)) { |
3935 | 0 | new_id = cand_id; |
3936 | 0 | break; |
3937 | 0 | } |
3938 | 0 | } |
3939 | 0 | break; |
3940 | | |
3941 | 0 | case BTF_KIND_ENUM: |
3942 | 0 | case BTF_KIND_ENUM64: |
3943 | 0 | h = btf_hash_enum(t); |
3944 | 0 | for_each_dedup_cand(d, hash_entry, h) { |
3945 | 0 | cand_id = hash_entry->value; |
3946 | 0 | cand = btf_type_by_id(d->btf, cand_id); |
3947 | 0 | if (btf_equal_enum(t, cand)) { |
3948 | 0 | new_id = cand_id; |
3949 | 0 | break; |
3950 | 0 | } |
3951 | 0 | if (btf_compat_enum(t, cand)) { |
3952 | 0 | if (btf_is_enum_fwd(t)) { |
3953 | | /* resolve fwd to full enum */ |
3954 | 0 | new_id = cand_id; |
3955 | 0 | break; |
3956 | 0 | } |
3957 | | /* resolve canonical enum fwd to full enum */ |
3958 | 0 | d->map[cand_id] = type_id; |
3959 | 0 | } |
3960 | 0 | } |
3961 | 0 | break; |
3962 | | |
3963 | 0 | case BTF_KIND_FWD: |
3964 | 0 | case BTF_KIND_FLOAT: |
3965 | 0 | h = btf_hash_common(t); |
3966 | 0 | for_each_dedup_cand(d, hash_entry, h) { |
3967 | 0 | cand_id = hash_entry->value; |
3968 | 0 | cand = btf_type_by_id(d->btf, cand_id); |
3969 | 0 | if (btf_equal_common(t, cand)) { |
3970 | 0 | new_id = cand_id; |
3971 | 0 | break; |
3972 | 0 | } |
3973 | 0 | } |
3974 | 0 | break; |
3975 | | |
3976 | 0 | default: |
3977 | 0 | return -EINVAL; |
3978 | 0 | } |
3979 | | |
3980 | 0 | d->map[type_id] = new_id; |
3981 | 0 | if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) |
3982 | 0 | return -ENOMEM; |
3983 | | |
3984 | 0 | return 0; |
3985 | 0 | } |
3986 | | |
3987 | | static int btf_dedup_prim_types(struct btf_dedup *d) |
3988 | 0 | { |
3989 | 0 | int i, err; |
3990 | |
|
3991 | 0 | for (i = 0; i < d->btf->nr_types; i++) { |
3992 | 0 | err = btf_dedup_prim_type(d, d->btf->start_id + i); |
3993 | 0 | if (err) |
3994 | 0 | return err; |
3995 | 0 | } |
3996 | 0 | return 0; |
3997 | 0 | } |
3998 | | |
3999 | | /* |
4000 | | * Check whether type is already mapped into canonical one (could be to itself). |
4001 | | */ |
4002 | | static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) |
4003 | 0 | { |
4004 | 0 | return d->map[type_id] <= BTF_MAX_NR_TYPES; |
4005 | 0 | } |
4006 | | |
4007 | | /* |
4008 | | * Resolve type ID into its canonical type ID, if any; otherwise return original |
4009 | | * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow |
4010 | | * STRUCT/UNION link and resolve it into canonical type ID as well. |
4011 | | */ |
4012 | | static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) |
4013 | 0 | { |
4014 | 0 | while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) |
4015 | 0 | type_id = d->map[type_id]; |
4016 | 0 | return type_id; |
4017 | 0 | } |
4018 | | |
4019 | | /* |
4020 | | * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original |
4021 | | * type ID. |
4022 | | */ |
4023 | | static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) |
4024 | 0 | { |
4025 | 0 | __u32 orig_type_id = type_id; |
4026 | |
|
4027 | 0 | if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) |
4028 | 0 | return type_id; |
4029 | | |
4030 | 0 | while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) |
4031 | 0 | type_id = d->map[type_id]; |
4032 | |
|
4033 | 0 | if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) |
4034 | 0 | return type_id; |
4035 | | |
4036 | 0 | return orig_type_id; |
4037 | 0 | } |
4038 | | |
4039 | | |
4040 | | static inline __u16 btf_fwd_kind(struct btf_type *t) |
4041 | 0 | { |
4042 | 0 | return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; |
4043 | 0 | } |
4044 | | |
4045 | | /* Check if given two types are identical ARRAY definitions */ |
4046 | | static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) |
4047 | 0 | { |
4048 | 0 | struct btf_type *t1, *t2; |
4049 | |
|
4050 | 0 | t1 = btf_type_by_id(d->btf, id1); |
4051 | 0 | t2 = btf_type_by_id(d->btf, id2); |
4052 | 0 | if (!btf_is_array(t1) || !btf_is_array(t2)) |
4053 | 0 | return false; |
4054 | | |
4055 | 0 | return btf_equal_array(t1, t2); |
4056 | 0 | } |
4057 | | |
4058 | | /* Check if given two types are identical STRUCT/UNION definitions */ |
4059 | | static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) |
4060 | 0 | { |
4061 | 0 | const struct btf_member *m1, *m2; |
4062 | 0 | struct btf_type *t1, *t2; |
4063 | 0 | int n, i; |
4064 | |
|
4065 | 0 | t1 = btf_type_by_id(d->btf, id1); |
4066 | 0 | t2 = btf_type_by_id(d->btf, id2); |
4067 | |
|
4068 | 0 | if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) |
4069 | 0 | return false; |
4070 | | |
4071 | 0 | if (!btf_shallow_equal_struct(t1, t2)) |
4072 | 0 | return false; |
4073 | | |
4074 | 0 | m1 = btf_members(t1); |
4075 | 0 | m2 = btf_members(t2); |
4076 | 0 | for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { |
4077 | 0 | if (m1->type != m2->type && |
4078 | 0 | !btf_dedup_identical_arrays(d, m1->type, m2->type) && |
4079 | 0 | !btf_dedup_identical_structs(d, m1->type, m2->type)) |
4080 | 0 | return false; |
4081 | 0 | } |
4082 | 0 | return true; |
4083 | 0 | } |
4084 | | |
4085 | | /* |
4086 | | * Check equivalence of BTF type graph formed by candidate struct/union (we'll |
4087 | | * call it "candidate graph" in this description for brevity) to a type graph |
4088 | | * formed by (potential) canonical struct/union ("canonical graph" for brevity |
4089 | | * here, though keep in mind that not all types in canonical graph are |
4090 | | * necessarily canonical representatives themselves, some of them might be |
4091 | | * duplicates or its uniqueness might not have been established yet). |
4092 | | * Returns: |
4093 | | * - >0, if type graphs are equivalent; |
4094 | | * - 0, if not equivalent; |
4095 | | * - <0, on error. |
4096 | | * |
4097 | | * Algorithm performs side-by-side DFS traversal of both type graphs and checks |
4098 | | * equivalence of BTF types at each step. If at any point BTF types in candidate |
4099 | | * and canonical graphs are not compatible structurally, whole graphs are |
4100 | | * incompatible. If types are structurally equivalent (i.e., all information |
4101 | | * except referenced type IDs is exactly the same), a mapping from `canon_id` to |
4102 | | * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). |
4103 | | * If a type references other types, then those referenced types are checked |
4104 | | * for equivalence recursively. |
4105 | | * |
4106 | | * During DFS traversal, if we find that for current `canon_id` type we |
4107 | | * already have some mapping in hypothetical map, we check for two possible |
4108 | | * situations: |
4109 | | * - `canon_id` is mapped to exactly the same type as `cand_id`. This will |
4110 | | * happen when type graphs have cycles. In this case we assume those two |
4111 | | * types are equivalent. |
4112 | | * - `canon_id` is mapped to different type. This is contradiction in our |
4113 | | * hypothetical mapping, because same graph in canonical graph corresponds |
4114 | | * to two different types in candidate graph, which for equivalent type |
4115 | | * graphs shouldn't happen. This condition terminates equivalence check |
4116 | | * with negative result. |
4117 | | * |
4118 | | * If type graphs traversal exhausts types to check and find no contradiction, |
4119 | | * then type graphs are equivalent. |
4120 | | * |
4121 | | * When checking types for equivalence, there is one special case: FWD types. |
4122 | | * If FWD type resolution is allowed and one of the types (either from canonical |
4123 | | * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind |
4124 | | * flag) and their names match, hypothetical mapping is updated to point from |
4125 | | * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, |
4126 | | * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. |
4127 | | * |
4128 | | * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, |
4129 | | * if there are two exactly named (or anonymous) structs/unions that are |
4130 | | * compatible structurally, one of which has FWD field, while other is concrete |
4131 | | * STRUCT/UNION, but according to C sources they are different structs/unions |
4132 | | * that are referencing different types with the same name. This is extremely |
4133 | | * unlikely to happen, but btf_dedup API allows to disable FWD resolution if |
4134 | | * this logic is causing problems. |
4135 | | * |
4136 | | * Doing FWD resolution means that both candidate and/or canonical graphs can |
4137 | | * consists of portions of the graph that come from multiple compilation units. |
4138 | | * This is due to the fact that types within single compilation unit are always |
4139 | | * deduplicated and FWDs are already resolved, if referenced struct/union |
4140 | | * definiton is available. So, if we had unresolved FWD and found corresponding |
4141 | | * STRUCT/UNION, they will be from different compilation units. This |
4142 | | * consequently means that when we "link" FWD to corresponding STRUCT/UNION, |
4143 | | * type graph will likely have at least two different BTF types that describe |
4144 | | * same type (e.g., most probably there will be two different BTF types for the |
4145 | | * same 'int' primitive type) and could even have "overlapping" parts of type |
4146 | | * graph that describe same subset of types. |
4147 | | * |
4148 | | * This in turn means that our assumption that each type in canonical graph |
4149 | | * must correspond to exactly one type in candidate graph might not hold |
4150 | | * anymore and will make it harder to detect contradictions using hypothetical |
4151 | | * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION |
4152 | | * resolution only in canonical graph. FWDs in candidate graphs are never |
4153 | | * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs |
4154 | | * that can occur: |
4155 | | * - Both types in canonical and candidate graphs are FWDs. If they are |
4156 | | * structurally equivalent, then they can either be both resolved to the |
4157 | | * same STRUCT/UNION or not resolved at all. In both cases they are |
4158 | | * equivalent and there is no need to resolve FWD on candidate side. |
4159 | | * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, |
4160 | | * so nothing to resolve as well, algorithm will check equivalence anyway. |
4161 | | * - Type in canonical graph is FWD, while type in candidate is concrete |
4162 | | * STRUCT/UNION. In this case candidate graph comes from single compilation |
4163 | | * unit, so there is exactly one BTF type for each unique C type. After |
4164 | | * resolving FWD into STRUCT/UNION, there might be more than one BTF type |
4165 | | * in canonical graph mapping to single BTF type in candidate graph, but |
4166 | | * because hypothetical mapping maps from canonical to candidate types, it's |
4167 | | * alright, and we still maintain the property of having single `canon_id` |
4168 | | * mapping to single `cand_id` (there could be two different `canon_id` |
4169 | | * mapped to the same `cand_id`, but it's not contradictory). |
4170 | | * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate |
4171 | | * graph is FWD. In this case we are just going to check compatibility of |
4172 | | * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll |
4173 | | * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to |
4174 | | * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs |
4175 | | * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from |
4176 | | * canonical graph. |
4177 | | */ |
4178 | | static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, |
4179 | | __u32 canon_id) |
4180 | 0 | { |
4181 | 0 | struct btf_type *cand_type; |
4182 | 0 | struct btf_type *canon_type; |
4183 | 0 | __u32 hypot_type_id; |
4184 | 0 | __u16 cand_kind; |
4185 | 0 | __u16 canon_kind; |
4186 | 0 | int i, eq; |
4187 | | |
4188 | | /* if both resolve to the same canonical, they must be equivalent */ |
4189 | 0 | if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) |
4190 | 0 | return 1; |
4191 | | |
4192 | 0 | canon_id = resolve_fwd_id(d, canon_id); |
4193 | |
|
4194 | 0 | hypot_type_id = d->hypot_map[canon_id]; |
4195 | 0 | if (hypot_type_id <= BTF_MAX_NR_TYPES) { |
4196 | 0 | if (hypot_type_id == cand_id) |
4197 | 0 | return 1; |
4198 | | /* In some cases compiler will generate different DWARF types |
4199 | | * for *identical* array type definitions and use them for |
4200 | | * different fields within the *same* struct. This breaks type |
4201 | | * equivalence check, which makes an assumption that candidate |
4202 | | * types sub-graph has a consistent and deduped-by-compiler |
4203 | | * types within a single CU. So work around that by explicitly |
4204 | | * allowing identical array types here. |
4205 | | */ |
4206 | 0 | if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) |
4207 | 0 | return 1; |
4208 | | /* It turns out that similar situation can happen with |
4209 | | * struct/union sometimes, sigh... Handle the case where |
4210 | | * structs/unions are exactly the same, down to the referenced |
4211 | | * type IDs. Anything more complicated (e.g., if referenced |
4212 | | * types are different, but equivalent) is *way more* |
4213 | | * complicated and requires a many-to-many equivalence mapping. |
4214 | | */ |
4215 | 0 | if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) |
4216 | 0 | return 1; |
4217 | 0 | return 0; |
4218 | 0 | } |
4219 | | |
4220 | 0 | if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) |
4221 | 0 | return -ENOMEM; |
4222 | | |
4223 | 0 | cand_type = btf_type_by_id(d->btf, cand_id); |
4224 | 0 | canon_type = btf_type_by_id(d->btf, canon_id); |
4225 | 0 | cand_kind = btf_kind(cand_type); |
4226 | 0 | canon_kind = btf_kind(canon_type); |
4227 | |
|
4228 | 0 | if (cand_type->name_off != canon_type->name_off) |
4229 | 0 | return 0; |
4230 | | |
4231 | | /* FWD <--> STRUCT/UNION equivalence check, if enabled */ |
4232 | 0 | if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) |
4233 | 0 | && cand_kind != canon_kind) { |
4234 | 0 | __u16 real_kind; |
4235 | 0 | __u16 fwd_kind; |
4236 | |
|
4237 | 0 | if (cand_kind == BTF_KIND_FWD) { |
4238 | 0 | real_kind = canon_kind; |
4239 | 0 | fwd_kind = btf_fwd_kind(cand_type); |
4240 | 0 | } else { |
4241 | 0 | real_kind = cand_kind; |
4242 | 0 | fwd_kind = btf_fwd_kind(canon_type); |
4243 | | /* we'd need to resolve base FWD to STRUCT/UNION */ |
4244 | 0 | if (fwd_kind == real_kind && canon_id < d->btf->start_id) |
4245 | 0 | d->hypot_adjust_canon = true; |
4246 | 0 | } |
4247 | 0 | return fwd_kind == real_kind; |
4248 | 0 | } |
4249 | | |
4250 | 0 | if (cand_kind != canon_kind) |
4251 | 0 | return 0; |
4252 | | |
4253 | 0 | switch (cand_kind) { |
4254 | 0 | case BTF_KIND_INT: |
4255 | 0 | return btf_equal_int_tag(cand_type, canon_type); |
4256 | | |
4257 | 0 | case BTF_KIND_ENUM: |
4258 | 0 | case BTF_KIND_ENUM64: |
4259 | 0 | return btf_compat_enum(cand_type, canon_type); |
4260 | | |
4261 | 0 | case BTF_KIND_FWD: |
4262 | 0 | case BTF_KIND_FLOAT: |
4263 | 0 | return btf_equal_common(cand_type, canon_type); |
4264 | | |
4265 | 0 | case BTF_KIND_CONST: |
4266 | 0 | case BTF_KIND_VOLATILE: |
4267 | 0 | case BTF_KIND_RESTRICT: |
4268 | 0 | case BTF_KIND_PTR: |
4269 | 0 | case BTF_KIND_TYPEDEF: |
4270 | 0 | case BTF_KIND_FUNC: |
4271 | 0 | case BTF_KIND_TYPE_TAG: |
4272 | 0 | if (cand_type->info != canon_type->info) |
4273 | 0 | return 0; |
4274 | 0 | return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); |
4275 | | |
4276 | 0 | case BTF_KIND_ARRAY: { |
4277 | 0 | const struct btf_array *cand_arr, *canon_arr; |
4278 | |
|
4279 | 0 | if (!btf_compat_array(cand_type, canon_type)) |
4280 | 0 | return 0; |
4281 | 0 | cand_arr = btf_array(cand_type); |
4282 | 0 | canon_arr = btf_array(canon_type); |
4283 | 0 | eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); |
4284 | 0 | if (eq <= 0) |
4285 | 0 | return eq; |
4286 | 0 | return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); |
4287 | 0 | } |
4288 | | |
4289 | 0 | case BTF_KIND_STRUCT: |
4290 | 0 | case BTF_KIND_UNION: { |
4291 | 0 | const struct btf_member *cand_m, *canon_m; |
4292 | 0 | __u16 vlen; |
4293 | |
|
4294 | 0 | if (!btf_shallow_equal_struct(cand_type, canon_type)) |
4295 | 0 | return 0; |
4296 | 0 | vlen = btf_vlen(cand_type); |
4297 | 0 | cand_m = btf_members(cand_type); |
4298 | 0 | canon_m = btf_members(canon_type); |
4299 | 0 | for (i = 0; i < vlen; i++) { |
4300 | 0 | eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); |
4301 | 0 | if (eq <= 0) |
4302 | 0 | return eq; |
4303 | 0 | cand_m++; |
4304 | 0 | canon_m++; |
4305 | 0 | } |
4306 | | |
4307 | 0 | return 1; |
4308 | 0 | } |
4309 | | |
4310 | 0 | case BTF_KIND_FUNC_PROTO: { |
4311 | 0 | const struct btf_param *cand_p, *canon_p; |
4312 | 0 | __u16 vlen; |
4313 | |
|
4314 | 0 | if (!btf_compat_fnproto(cand_type, canon_type)) |
4315 | 0 | return 0; |
4316 | 0 | eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); |
4317 | 0 | if (eq <= 0) |
4318 | 0 | return eq; |
4319 | 0 | vlen = btf_vlen(cand_type); |
4320 | 0 | cand_p = btf_params(cand_type); |
4321 | 0 | canon_p = btf_params(canon_type); |
4322 | 0 | for (i = 0; i < vlen; i++) { |
4323 | 0 | eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); |
4324 | 0 | if (eq <= 0) |
4325 | 0 | return eq; |
4326 | 0 | cand_p++; |
4327 | 0 | canon_p++; |
4328 | 0 | } |
4329 | 0 | return 1; |
4330 | 0 | } |
4331 | | |
4332 | 0 | default: |
4333 | 0 | return -EINVAL; |
4334 | 0 | } |
4335 | 0 | return 0; |
4336 | 0 | } |
4337 | | |
4338 | | /* |
4339 | | * Use hypothetical mapping, produced by successful type graph equivalence |
4340 | | * check, to augment existing struct/union canonical mapping, where possible. |
4341 | | * |
4342 | | * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record |
4343 | | * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: |
4344 | | * it doesn't matter if FWD type was part of canonical graph or candidate one, |
4345 | | * we are recording the mapping anyway. As opposed to carefulness required |
4346 | | * for struct/union correspondence mapping (described below), for FWD resolution |
4347 | | * it's not important, as by the time that FWD type (reference type) will be |
4348 | | * deduplicated all structs/unions will be deduped already anyway. |
4349 | | * |
4350 | | * Recording STRUCT/UNION mapping is purely a performance optimization and is |
4351 | | * not required for correctness. It needs to be done carefully to ensure that |
4352 | | * struct/union from candidate's type graph is not mapped into corresponding |
4353 | | * struct/union from canonical type graph that itself hasn't been resolved into |
4354 | | * canonical representative. The only guarantee we have is that canonical |
4355 | | * struct/union was determined as canonical and that won't change. But any |
4356 | | * types referenced through that struct/union fields could have been not yet |
4357 | | * resolved, so in case like that it's too early to establish any kind of |
4358 | | * correspondence between structs/unions. |
4359 | | * |
4360 | | * No canonical correspondence is derived for primitive types (they are already |
4361 | | * deduplicated completely already anyway) or reference types (they rely on |
4362 | | * stability of struct/union canonical relationship for equivalence checks). |
4363 | | */ |
4364 | | static void btf_dedup_merge_hypot_map(struct btf_dedup *d) |
4365 | 0 | { |
4366 | 0 | __u32 canon_type_id, targ_type_id; |
4367 | 0 | __u16 t_kind, c_kind; |
4368 | 0 | __u32 t_id, c_id; |
4369 | 0 | int i; |
4370 | |
|
4371 | 0 | for (i = 0; i < d->hypot_cnt; i++) { |
4372 | 0 | canon_type_id = d->hypot_list[i]; |
4373 | 0 | targ_type_id = d->hypot_map[canon_type_id]; |
4374 | 0 | t_id = resolve_type_id(d, targ_type_id); |
4375 | 0 | c_id = resolve_type_id(d, canon_type_id); |
4376 | 0 | t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); |
4377 | 0 | c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); |
4378 | | /* |
4379 | | * Resolve FWD into STRUCT/UNION. |
4380 | | * It's ok to resolve FWD into STRUCT/UNION that's not yet |
4381 | | * mapped to canonical representative (as opposed to |
4382 | | * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because |
4383 | | * eventually that struct is going to be mapped and all resolved |
4384 | | * FWDs will automatically resolve to correct canonical |
4385 | | * representative. This will happen before ref type deduping, |
4386 | | * which critically depends on stability of these mapping. This |
4387 | | * stability is not a requirement for STRUCT/UNION equivalence |
4388 | | * checks, though. |
4389 | | */ |
4390 | | |
4391 | | /* if it's the split BTF case, we still need to point base FWD |
4392 | | * to STRUCT/UNION in a split BTF, because FWDs from split BTF |
4393 | | * will be resolved against base FWD. If we don't point base |
4394 | | * canonical FWD to the resolved STRUCT/UNION, then all the |
4395 | | * FWDs in split BTF won't be correctly resolved to a proper |
4396 | | * STRUCT/UNION. |
4397 | | */ |
4398 | 0 | if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) |
4399 | 0 | d->map[c_id] = t_id; |
4400 | | |
4401 | | /* if graph equivalence determined that we'd need to adjust |
4402 | | * base canonical types, then we need to only point base FWDs |
4403 | | * to STRUCTs/UNIONs and do no more modifications. For all |
4404 | | * other purposes the type graphs were not equivalent. |
4405 | | */ |
4406 | 0 | if (d->hypot_adjust_canon) |
4407 | 0 | continue; |
4408 | | |
4409 | 0 | if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) |
4410 | 0 | d->map[t_id] = c_id; |
4411 | |
|
4412 | 0 | if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && |
4413 | 0 | c_kind != BTF_KIND_FWD && |
4414 | 0 | is_type_mapped(d, c_id) && |
4415 | 0 | !is_type_mapped(d, t_id)) { |
4416 | | /* |
4417 | | * as a perf optimization, we can map struct/union |
4418 | | * that's part of type graph we just verified for |
4419 | | * equivalence. We can do that for struct/union that has |
4420 | | * canonical representative only, though. |
4421 | | */ |
4422 | 0 | d->map[t_id] = c_id; |
4423 | 0 | } |
4424 | 0 | } |
4425 | 0 | } |
4426 | | |
4427 | | /* |
4428 | | * Deduplicate struct/union types. |
4429 | | * |
4430 | | * For each struct/union type its type signature hash is calculated, taking |
4431 | | * into account type's name, size, number, order and names of fields, but |
4432 | | * ignoring type ID's referenced from fields, because they might not be deduped |
4433 | | * completely until after reference types deduplication phase. This type hash |
4434 | | * is used to iterate over all potential canonical types, sharing same hash. |
4435 | | * For each canonical candidate we check whether type graphs that they form |
4436 | | * (through referenced types in fields and so on) are equivalent using algorithm |
4437 | | * implemented in `btf_dedup_is_equiv`. If such equivalence is found and |
4438 | | * BTF_KIND_FWD resolution is allowed, then hypothetical mapping |
4439 | | * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence |
4440 | | * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to |
4441 | | * potentially map other structs/unions to their canonical representatives, |
4442 | | * if such relationship hasn't yet been established. This speeds up algorithm |
4443 | | * by eliminating some of the duplicate work. |
4444 | | * |
4445 | | * If no matching canonical representative was found, struct/union is marked |
4446 | | * as canonical for itself and is added into btf_dedup->dedup_table hash map |
4447 | | * for further look ups. |
4448 | | */ |
4449 | | static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) |
4450 | 0 | { |
4451 | 0 | struct btf_type *cand_type, *t; |
4452 | 0 | struct hashmap_entry *hash_entry; |
4453 | | /* if we don't find equivalent type, then we are canonical */ |
4454 | 0 | __u32 new_id = type_id; |
4455 | 0 | __u16 kind; |
4456 | 0 | long h; |
4457 | | |
4458 | | /* already deduped or is in process of deduping (loop detected) */ |
4459 | 0 | if (d->map[type_id] <= BTF_MAX_NR_TYPES) |
4460 | 0 | return 0; |
4461 | | |
4462 | 0 | t = btf_type_by_id(d->btf, type_id); |
4463 | 0 | kind = btf_kind(t); |
4464 | |
|
4465 | 0 | if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) |
4466 | 0 | return 0; |
4467 | | |
4468 | 0 | h = btf_hash_struct(t); |
4469 | 0 | for_each_dedup_cand(d, hash_entry, h) { |
4470 | 0 | __u32 cand_id = hash_entry->value; |
4471 | 0 | int eq; |
4472 | | |
4473 | | /* |
4474 | | * Even though btf_dedup_is_equiv() checks for |
4475 | | * btf_shallow_equal_struct() internally when checking two |
4476 | | * structs (unions) for equivalence, we need to guard here |
4477 | | * from picking matching FWD type as a dedup candidate. |
4478 | | * This can happen due to hash collision. In such case just |
4479 | | * relying on btf_dedup_is_equiv() would lead to potentially |
4480 | | * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because |
4481 | | * FWD and compatible STRUCT/UNION are considered equivalent. |
4482 | | */ |
4483 | 0 | cand_type = btf_type_by_id(d->btf, cand_id); |
4484 | 0 | if (!btf_shallow_equal_struct(t, cand_type)) |
4485 | 0 | continue; |
4486 | | |
4487 | 0 | btf_dedup_clear_hypot_map(d); |
4488 | 0 | eq = btf_dedup_is_equiv(d, type_id, cand_id); |
4489 | 0 | if (eq < 0) |
4490 | 0 | return eq; |
4491 | 0 | if (!eq) |
4492 | 0 | continue; |
4493 | 0 | btf_dedup_merge_hypot_map(d); |
4494 | 0 | if (d->hypot_adjust_canon) /* not really equivalent */ |
4495 | 0 | continue; |
4496 | 0 | new_id = cand_id; |
4497 | 0 | break; |
4498 | 0 | } |
4499 | | |
4500 | 0 | d->map[type_id] = new_id; |
4501 | 0 | if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) |
4502 | 0 | return -ENOMEM; |
4503 | | |
4504 | 0 | return 0; |
4505 | 0 | } |
4506 | | |
4507 | | static int btf_dedup_struct_types(struct btf_dedup *d) |
4508 | 0 | { |
4509 | 0 | int i, err; |
4510 | |
|
4511 | 0 | for (i = 0; i < d->btf->nr_types; i++) { |
4512 | 0 | err = btf_dedup_struct_type(d, d->btf->start_id + i); |
4513 | 0 | if (err) |
4514 | 0 | return err; |
4515 | 0 | } |
4516 | 0 | return 0; |
4517 | 0 | } |
4518 | | |
4519 | | /* |
4520 | | * Deduplicate reference type. |
4521 | | * |
4522 | | * Once all primitive and struct/union types got deduplicated, we can easily |
4523 | | * deduplicate all other (reference) BTF types. This is done in two steps: |
4524 | | * |
4525 | | * 1. Resolve all referenced type IDs into their canonical type IDs. This |
4526 | | * resolution can be done either immediately for primitive or struct/union types |
4527 | | * (because they were deduped in previous two phases) or recursively for |
4528 | | * reference types. Recursion will always terminate at either primitive or |
4529 | | * struct/union type, at which point we can "unwind" chain of reference types |
4530 | | * one by one. There is no danger of encountering cycles because in C type |
4531 | | * system the only way to form type cycle is through struct/union, so any chain |
4532 | | * of reference types, even those taking part in a type cycle, will inevitably |
4533 | | * reach struct/union at some point. |
4534 | | * |
4535 | | * 2. Once all referenced type IDs are resolved into canonical ones, BTF type |
4536 | | * becomes "stable", in the sense that no further deduplication will cause |
4537 | | * any changes to it. With that, it's now possible to calculate type's signature |
4538 | | * hash (this time taking into account referenced type IDs) and loop over all |
4539 | | * potential canonical representatives. If no match was found, current type |
4540 | | * will become canonical representative of itself and will be added into |
4541 | | * btf_dedup->dedup_table as another possible canonical representative. |
4542 | | */ |
4543 | | static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) |
4544 | 0 | { |
4545 | 0 | struct hashmap_entry *hash_entry; |
4546 | 0 | __u32 new_id = type_id, cand_id; |
4547 | 0 | struct btf_type *t, *cand; |
4548 | | /* if we don't find equivalent type, then we are representative type */ |
4549 | 0 | int ref_type_id; |
4550 | 0 | long h; |
4551 | |
|
4552 | 0 | if (d->map[type_id] == BTF_IN_PROGRESS_ID) |
4553 | 0 | return -ELOOP; |
4554 | 0 | if (d->map[type_id] <= BTF_MAX_NR_TYPES) |
4555 | 0 | return resolve_type_id(d, type_id); |
4556 | | |
4557 | 0 | t = btf_type_by_id(d->btf, type_id); |
4558 | 0 | d->map[type_id] = BTF_IN_PROGRESS_ID; |
4559 | |
|
4560 | 0 | switch (btf_kind(t)) { |
4561 | 0 | case BTF_KIND_CONST: |
4562 | 0 | case BTF_KIND_VOLATILE: |
4563 | 0 | case BTF_KIND_RESTRICT: |
4564 | 0 | case BTF_KIND_PTR: |
4565 | 0 | case BTF_KIND_TYPEDEF: |
4566 | 0 | case BTF_KIND_FUNC: |
4567 | 0 | case BTF_KIND_TYPE_TAG: |
4568 | 0 | ref_type_id = btf_dedup_ref_type(d, t->type); |
4569 | 0 | if (ref_type_id < 0) |
4570 | 0 | return ref_type_id; |
4571 | 0 | t->type = ref_type_id; |
4572 | |
|
4573 | 0 | h = btf_hash_common(t); |
4574 | 0 | for_each_dedup_cand(d, hash_entry, h) { |
4575 | 0 | cand_id = hash_entry->value; |
4576 | 0 | cand = btf_type_by_id(d->btf, cand_id); |
4577 | 0 | if (btf_equal_common(t, cand)) { |
4578 | 0 | new_id = cand_id; |
4579 | 0 | break; |
4580 | 0 | } |
4581 | 0 | } |
4582 | 0 | break; |
4583 | | |
4584 | 0 | case BTF_KIND_DECL_TAG: |
4585 | 0 | ref_type_id = btf_dedup_ref_type(d, t->type); |
4586 | 0 | if (ref_type_id < 0) |
4587 | 0 | return ref_type_id; |
4588 | 0 | t->type = ref_type_id; |
4589 | |
|
4590 | 0 | h = btf_hash_int_decl_tag(t); |
4591 | 0 | for_each_dedup_cand(d, hash_entry, h) { |
4592 | 0 | cand_id = hash_entry->value; |
4593 | 0 | cand = btf_type_by_id(d->btf, cand_id); |
4594 | 0 | if (btf_equal_int_tag(t, cand)) { |
4595 | 0 | new_id = cand_id; |
4596 | 0 | break; |
4597 | 0 | } |
4598 | 0 | } |
4599 | 0 | break; |
4600 | | |
4601 | 0 | case BTF_KIND_ARRAY: { |
4602 | 0 | struct btf_array *info = btf_array(t); |
4603 | |
|
4604 | 0 | ref_type_id = btf_dedup_ref_type(d, info->type); |
4605 | 0 | if (ref_type_id < 0) |
4606 | 0 | return ref_type_id; |
4607 | 0 | info->type = ref_type_id; |
4608 | |
|
4609 | 0 | ref_type_id = btf_dedup_ref_type(d, info->index_type); |
4610 | 0 | if (ref_type_id < 0) |
4611 | 0 | return ref_type_id; |
4612 | 0 | info->index_type = ref_type_id; |
4613 | |
|
4614 | 0 | h = btf_hash_array(t); |
4615 | 0 | for_each_dedup_cand(d, hash_entry, h) { |
4616 | 0 | cand_id = hash_entry->value; |
4617 | 0 | cand = btf_type_by_id(d->btf, cand_id); |
4618 | 0 | if (btf_equal_array(t, cand)) { |
4619 | 0 | new_id = cand_id; |
4620 | 0 | break; |
4621 | 0 | } |
4622 | 0 | } |
4623 | 0 | break; |
4624 | 0 | } |
4625 | | |
4626 | 0 | case BTF_KIND_FUNC_PROTO: { |
4627 | 0 | struct btf_param *param; |
4628 | 0 | __u16 vlen; |
4629 | 0 | int i; |
4630 | |
|
4631 | 0 | ref_type_id = btf_dedup_ref_type(d, t->type); |
4632 | 0 | if (ref_type_id < 0) |
4633 | 0 | return ref_type_id; |
4634 | 0 | t->type = ref_type_id; |
4635 | |
|
4636 | 0 | vlen = btf_vlen(t); |
4637 | 0 | param = btf_params(t); |
4638 | 0 | for (i = 0; i < vlen; i++) { |
4639 | 0 | ref_type_id = btf_dedup_ref_type(d, param->type); |
4640 | 0 | if (ref_type_id < 0) |
4641 | 0 | return ref_type_id; |
4642 | 0 | param->type = ref_type_id; |
4643 | 0 | param++; |
4644 | 0 | } |
4645 | | |
4646 | 0 | h = btf_hash_fnproto(t); |
4647 | 0 | for_each_dedup_cand(d, hash_entry, h) { |
4648 | 0 | cand_id = hash_entry->value; |
4649 | 0 | cand = btf_type_by_id(d->btf, cand_id); |
4650 | 0 | if (btf_equal_fnproto(t, cand)) { |
4651 | 0 | new_id = cand_id; |
4652 | 0 | break; |
4653 | 0 | } |
4654 | 0 | } |
4655 | 0 | break; |
4656 | 0 | } |
4657 | | |
4658 | 0 | default: |
4659 | 0 | return -EINVAL; |
4660 | 0 | } |
4661 | | |
4662 | 0 | d->map[type_id] = new_id; |
4663 | 0 | if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) |
4664 | 0 | return -ENOMEM; |
4665 | | |
4666 | 0 | return new_id; |
4667 | 0 | } |
4668 | | |
4669 | | static int btf_dedup_ref_types(struct btf_dedup *d) |
4670 | 0 | { |
4671 | 0 | int i, err; |
4672 | |
|
4673 | 0 | for (i = 0; i < d->btf->nr_types; i++) { |
4674 | 0 | err = btf_dedup_ref_type(d, d->btf->start_id + i); |
4675 | 0 | if (err < 0) |
4676 | 0 | return err; |
4677 | 0 | } |
4678 | | /* we won't need d->dedup_table anymore */ |
4679 | 0 | hashmap__free(d->dedup_table); |
4680 | 0 | d->dedup_table = NULL; |
4681 | 0 | return 0; |
4682 | 0 | } |
4683 | | |
4684 | | /* |
4685 | | * Collect a map from type names to type ids for all canonical structs |
4686 | | * and unions. If the same name is shared by several canonical types |
4687 | | * use a special value 0 to indicate this fact. |
4688 | | */ |
4689 | | static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map) |
4690 | 0 | { |
4691 | 0 | __u32 nr_types = btf__type_cnt(d->btf); |
4692 | 0 | struct btf_type *t; |
4693 | 0 | __u32 type_id; |
4694 | 0 | __u16 kind; |
4695 | 0 | int err; |
4696 | | |
4697 | | /* |
4698 | | * Iterate over base and split module ids in order to get all |
4699 | | * available structs in the map. |
4700 | | */ |
4701 | 0 | for (type_id = 1; type_id < nr_types; ++type_id) { |
4702 | 0 | t = btf_type_by_id(d->btf, type_id); |
4703 | 0 | kind = btf_kind(t); |
4704 | |
|
4705 | 0 | if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) |
4706 | 0 | continue; |
4707 | | |
4708 | | /* Skip non-canonical types */ |
4709 | 0 | if (type_id != d->map[type_id]) |
4710 | 0 | continue; |
4711 | | |
4712 | 0 | err = hashmap__add(names_map, t->name_off, type_id); |
4713 | 0 | if (err == -EEXIST) |
4714 | 0 | err = hashmap__set(names_map, t->name_off, 0, NULL, NULL); |
4715 | |
|
4716 | 0 | if (err) |
4717 | 0 | return err; |
4718 | 0 | } |
4719 | | |
4720 | 0 | return 0; |
4721 | 0 | } |
4722 | | |
4723 | | static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id) |
4724 | 0 | { |
4725 | 0 | struct btf_type *t = btf_type_by_id(d->btf, type_id); |
4726 | 0 | enum btf_fwd_kind fwd_kind = btf_kflag(t); |
4727 | 0 | __u16 cand_kind, kind = btf_kind(t); |
4728 | 0 | struct btf_type *cand_t; |
4729 | 0 | uintptr_t cand_id; |
4730 | |
|
4731 | 0 | if (kind != BTF_KIND_FWD) |
4732 | 0 | return 0; |
4733 | | |
4734 | | /* Skip if this FWD already has a mapping */ |
4735 | 0 | if (type_id != d->map[type_id]) |
4736 | 0 | return 0; |
4737 | | |
4738 | 0 | if (!hashmap__find(names_map, t->name_off, &cand_id)) |
4739 | 0 | return 0; |
4740 | | |
4741 | | /* Zero is a special value indicating that name is not unique */ |
4742 | 0 | if (!cand_id) |
4743 | 0 | return 0; |
4744 | | |
4745 | 0 | cand_t = btf_type_by_id(d->btf, cand_id); |
4746 | 0 | cand_kind = btf_kind(cand_t); |
4747 | 0 | if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) || |
4748 | 0 | (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION)) |
4749 | 0 | return 0; |
4750 | | |
4751 | 0 | d->map[type_id] = cand_id; |
4752 | |
|
4753 | 0 | return 0; |
4754 | 0 | } |
4755 | | |
4756 | | /* |
4757 | | * Resolve unambiguous forward declarations. |
4758 | | * |
4759 | | * The lion's share of all FWD declarations is resolved during |
4760 | | * `btf_dedup_struct_types` phase when different type graphs are |
4761 | | * compared against each other. However, if in some compilation unit a |
4762 | | * FWD declaration is not a part of a type graph compared against |
4763 | | * another type graph that declaration's canonical type would not be |
4764 | | * changed. Example: |
4765 | | * |
4766 | | * CU #1: |
4767 | | * |
4768 | | * struct foo; |
4769 | | * struct foo *some_global; |
4770 | | * |
4771 | | * CU #2: |
4772 | | * |
4773 | | * struct foo { int u; }; |
4774 | | * struct foo *another_global; |
4775 | | * |
4776 | | * After `btf_dedup_struct_types` the BTF looks as follows: |
4777 | | * |
4778 | | * [1] STRUCT 'foo' size=4 vlen=1 ... |
4779 | | * [2] INT 'int' size=4 ... |
4780 | | * [3] PTR '(anon)' type_id=1 |
4781 | | * [4] FWD 'foo' fwd_kind=struct |
4782 | | * [5] PTR '(anon)' type_id=4 |
4783 | | * |
4784 | | * This pass assumes that such FWD declarations should be mapped to |
4785 | | * structs or unions with identical name in case if the name is not |
4786 | | * ambiguous. |
4787 | | */ |
4788 | | static int btf_dedup_resolve_fwds(struct btf_dedup *d) |
4789 | 0 | { |
4790 | 0 | int i, err; |
4791 | 0 | struct hashmap *names_map; |
4792 | |
|
4793 | 0 | names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); |
4794 | 0 | if (IS_ERR(names_map)) |
4795 | 0 | return PTR_ERR(names_map); |
4796 | | |
4797 | 0 | err = btf_dedup_fill_unique_names_map(d, names_map); |
4798 | 0 | if (err < 0) |
4799 | 0 | goto exit; |
4800 | | |
4801 | 0 | for (i = 0; i < d->btf->nr_types; i++) { |
4802 | 0 | err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i); |
4803 | 0 | if (err < 0) |
4804 | 0 | break; |
4805 | 0 | } |
4806 | |
|
4807 | 0 | exit: |
4808 | 0 | hashmap__free(names_map); |
4809 | 0 | return err; |
4810 | 0 | } |
4811 | | |
4812 | | /* |
4813 | | * Compact types. |
4814 | | * |
4815 | | * After we established for each type its corresponding canonical representative |
4816 | | * type, we now can eliminate types that are not canonical and leave only |
4817 | | * canonical ones layed out sequentially in memory by copying them over |
4818 | | * duplicates. During compaction btf_dedup->hypot_map array is reused to store |
4819 | | * a map from original type ID to a new compacted type ID, which will be used |
4820 | | * during next phase to "fix up" type IDs, referenced from struct/union and |
4821 | | * reference types. |
4822 | | */ |
4823 | | static int btf_dedup_compact_types(struct btf_dedup *d) |
4824 | 0 | { |
4825 | 0 | __u32 *new_offs; |
4826 | 0 | __u32 next_type_id = d->btf->start_id; |
4827 | 0 | const struct btf_type *t; |
4828 | 0 | void *p; |
4829 | 0 | int i, id, len; |
4830 | | |
4831 | | /* we are going to reuse hypot_map to store compaction remapping */ |
4832 | 0 | d->hypot_map[0] = 0; |
4833 | | /* base BTF types are not renumbered */ |
4834 | 0 | for (id = 1; id < d->btf->start_id; id++) |
4835 | 0 | d->hypot_map[id] = id; |
4836 | 0 | for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) |
4837 | 0 | d->hypot_map[id] = BTF_UNPROCESSED_ID; |
4838 | |
|
4839 | 0 | p = d->btf->types_data; |
4840 | |
|
4841 | 0 | for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { |
4842 | 0 | if (d->map[id] != id) |
4843 | 0 | continue; |
4844 | | |
4845 | 0 | t = btf__type_by_id(d->btf, id); |
4846 | 0 | len = btf_type_size(t); |
4847 | 0 | if (len < 0) |
4848 | 0 | return len; |
4849 | | |
4850 | 0 | memmove(p, t, len); |
4851 | 0 | d->hypot_map[id] = next_type_id; |
4852 | 0 | d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; |
4853 | 0 | p += len; |
4854 | 0 | next_type_id++; |
4855 | 0 | } |
4856 | | |
4857 | | /* shrink struct btf's internal types index and update btf_header */ |
4858 | 0 | d->btf->nr_types = next_type_id - d->btf->start_id; |
4859 | 0 | d->btf->type_offs_cap = d->btf->nr_types; |
4860 | 0 | d->btf->hdr->type_len = p - d->btf->types_data; |
4861 | 0 | new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, |
4862 | 0 | sizeof(*new_offs)); |
4863 | 0 | if (d->btf->type_offs_cap && !new_offs) |
4864 | 0 | return -ENOMEM; |
4865 | 0 | d->btf->type_offs = new_offs; |
4866 | 0 | d->btf->hdr->str_off = d->btf->hdr->type_len; |
4867 | 0 | d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; |
4868 | 0 | return 0; |
4869 | 0 | } |
4870 | | |
4871 | | /* |
4872 | | * Figure out final (deduplicated and compacted) type ID for provided original |
4873 | | * `type_id` by first resolving it into corresponding canonical type ID and |
4874 | | * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, |
4875 | | * which is populated during compaction phase. |
4876 | | */ |
4877 | | static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) |
4878 | 0 | { |
4879 | 0 | struct btf_dedup *d = ctx; |
4880 | 0 | __u32 resolved_type_id, new_type_id; |
4881 | |
|
4882 | 0 | resolved_type_id = resolve_type_id(d, *type_id); |
4883 | 0 | new_type_id = d->hypot_map[resolved_type_id]; |
4884 | 0 | if (new_type_id > BTF_MAX_NR_TYPES) |
4885 | 0 | return -EINVAL; |
4886 | | |
4887 | 0 | *type_id = new_type_id; |
4888 | 0 | return 0; |
4889 | 0 | } |
4890 | | |
4891 | | /* |
4892 | | * Remap referenced type IDs into deduped type IDs. |
4893 | | * |
4894 | | * After BTF types are deduplicated and compacted, their final type IDs may |
4895 | | * differ from original ones. The map from original to a corresponding |
4896 | | * deduped type ID is stored in btf_dedup->hypot_map and is populated during |
4897 | | * compaction phase. During remapping phase we are rewriting all type IDs |
4898 | | * referenced from any BTF type (e.g., struct fields, func proto args, etc) to |
4899 | | * their final deduped type IDs. |
4900 | | */ |
4901 | | static int btf_dedup_remap_types(struct btf_dedup *d) |
4902 | 0 | { |
4903 | 0 | int i, r; |
4904 | |
|
4905 | 0 | for (i = 0; i < d->btf->nr_types; i++) { |
4906 | 0 | struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); |
4907 | |
|
4908 | 0 | r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); |
4909 | 0 | if (r) |
4910 | 0 | return r; |
4911 | 0 | } |
4912 | | |
4913 | 0 | if (!d->btf_ext) |
4914 | 0 | return 0; |
4915 | | |
4916 | 0 | r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); |
4917 | 0 | if (r) |
4918 | 0 | return r; |
4919 | | |
4920 | 0 | return 0; |
4921 | 0 | } |
4922 | | |
4923 | | /* |
4924 | | * Probe few well-known locations for vmlinux kernel image and try to load BTF |
4925 | | * data out of it to use for target BTF. |
4926 | | */ |
4927 | | struct btf *btf__load_vmlinux_btf(void) |
4928 | 0 | { |
4929 | 0 | const char *locations[] = { |
4930 | | /* try canonical vmlinux BTF through sysfs first */ |
4931 | 0 | "/sys/kernel/btf/vmlinux", |
4932 | | /* fall back to trying to find vmlinux on disk otherwise */ |
4933 | 0 | "/boot/vmlinux-%1$s", |
4934 | 0 | "/lib/modules/%1$s/vmlinux-%1$s", |
4935 | 0 | "/lib/modules/%1$s/build/vmlinux", |
4936 | 0 | "/usr/lib/modules/%1$s/kernel/vmlinux", |
4937 | 0 | "/usr/lib/debug/boot/vmlinux-%1$s", |
4938 | 0 | "/usr/lib/debug/boot/vmlinux-%1$s.debug", |
4939 | 0 | "/usr/lib/debug/lib/modules/%1$s/vmlinux", |
4940 | 0 | }; |
4941 | 0 | char path[PATH_MAX + 1]; |
4942 | 0 | struct utsname buf; |
4943 | 0 | struct btf *btf; |
4944 | 0 | int i, err; |
4945 | |
|
4946 | 0 | uname(&buf); |
4947 | |
|
4948 | 0 | for (i = 0; i < ARRAY_SIZE(locations); i++) { |
4949 | 0 | snprintf(path, PATH_MAX, locations[i], buf.release); |
4950 | |
|
4951 | 0 | if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS)) |
4952 | 0 | continue; |
4953 | | |
4954 | 0 | btf = btf__parse(path, NULL); |
4955 | 0 | err = libbpf_get_error(btf); |
4956 | 0 | pr_debug("loading kernel BTF '%s': %d\n", path, err); |
4957 | 0 | if (err) |
4958 | 0 | continue; |
4959 | | |
4960 | 0 | return btf; |
4961 | 0 | } |
4962 | | |
4963 | 0 | pr_warn("failed to find valid kernel BTF\n"); |
4964 | 0 | return libbpf_err_ptr(-ESRCH); |
4965 | 0 | } |
4966 | | |
4967 | | struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); |
4968 | | |
4969 | | struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) |
4970 | 0 | { |
4971 | 0 | char path[80]; |
4972 | |
|
4973 | 0 | snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); |
4974 | 0 | return btf__parse_split(path, vmlinux_btf); |
4975 | 0 | } |
4976 | | |
4977 | | int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) |
4978 | 0 | { |
4979 | 0 | int i, n, err; |
4980 | |
|
4981 | 0 | switch (btf_kind(t)) { |
4982 | 0 | case BTF_KIND_INT: |
4983 | 0 | case BTF_KIND_FLOAT: |
4984 | 0 | case BTF_KIND_ENUM: |
4985 | 0 | case BTF_KIND_ENUM64: |
4986 | 0 | return 0; |
4987 | | |
4988 | 0 | case BTF_KIND_FWD: |
4989 | 0 | case BTF_KIND_CONST: |
4990 | 0 | case BTF_KIND_VOLATILE: |
4991 | 0 | case BTF_KIND_RESTRICT: |
4992 | 0 | case BTF_KIND_PTR: |
4993 | 0 | case BTF_KIND_TYPEDEF: |
4994 | 0 | case BTF_KIND_FUNC: |
4995 | 0 | case BTF_KIND_VAR: |
4996 | 0 | case BTF_KIND_DECL_TAG: |
4997 | 0 | case BTF_KIND_TYPE_TAG: |
4998 | 0 | return visit(&t->type, ctx); |
4999 | | |
5000 | 0 | case BTF_KIND_ARRAY: { |
5001 | 0 | struct btf_array *a = btf_array(t); |
5002 | |
|
5003 | 0 | err = visit(&a->type, ctx); |
5004 | 0 | err = err ?: visit(&a->index_type, ctx); |
5005 | 0 | return err; |
5006 | 0 | } |
5007 | | |
5008 | 0 | case BTF_KIND_STRUCT: |
5009 | 0 | case BTF_KIND_UNION: { |
5010 | 0 | struct btf_member *m = btf_members(t); |
5011 | |
|
5012 | 0 | for (i = 0, n = btf_vlen(t); i < n; i++, m++) { |
5013 | 0 | err = visit(&m->type, ctx); |
5014 | 0 | if (err) |
5015 | 0 | return err; |
5016 | 0 | } |
5017 | 0 | return 0; |
5018 | 0 | } |
5019 | | |
5020 | 0 | case BTF_KIND_FUNC_PROTO: { |
5021 | 0 | struct btf_param *m = btf_params(t); |
5022 | |
|
5023 | 0 | err = visit(&t->type, ctx); |
5024 | 0 | if (err) |
5025 | 0 | return err; |
5026 | 0 | for (i = 0, n = btf_vlen(t); i < n; i++, m++) { |
5027 | 0 | err = visit(&m->type, ctx); |
5028 | 0 | if (err) |
5029 | 0 | return err; |
5030 | 0 | } |
5031 | 0 | <
|