Coverage Report

Created: 2024-05-20 06:14

/src/libbpf/src/libbpf.c
Line
Count
Source (jump to first uncovered line)
1
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3
/*
4
 * Common eBPF ELF object loading operations.
5
 *
6
 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7
 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8
 * Copyright (C) 2015 Huawei Inc.
9
 * Copyright (C) 2017 Nicira, Inc.
10
 * Copyright (C) 2019 Isovalent, Inc.
11
 */
12
13
#ifndef _GNU_SOURCE
14
#define _GNU_SOURCE
15
#endif
16
#include <stdlib.h>
17
#include <stdio.h>
18
#include <stdarg.h>
19
#include <libgen.h>
20
#include <inttypes.h>
21
#include <limits.h>
22
#include <string.h>
23
#include <unistd.h>
24
#include <endian.h>
25
#include <fcntl.h>
26
#include <errno.h>
27
#include <ctype.h>
28
#include <asm/unistd.h>
29
#include <linux/err.h>
30
#include <linux/kernel.h>
31
#include <linux/bpf.h>
32
#include <linux/btf.h>
33
#include <linux/filter.h>
34
#include <linux/limits.h>
35
#include <linux/perf_event.h>
36
#include <linux/bpf_perf_event.h>
37
#include <linux/ring_buffer.h>
38
#include <sys/epoll.h>
39
#include <sys/ioctl.h>
40
#include <sys/mman.h>
41
#include <sys/stat.h>
42
#include <sys/types.h>
43
#include <sys/vfs.h>
44
#include <sys/utsname.h>
45
#include <sys/resource.h>
46
#include <libelf.h>
47
#include <gelf.h>
48
#include <zlib.h>
49
50
#include "libbpf.h"
51
#include "bpf.h"
52
#include "btf.h"
53
#include "str_error.h"
54
#include "libbpf_internal.h"
55
#include "hashmap.h"
56
#include "bpf_gen_internal.h"
57
#include "zip.h"
58
59
#ifndef BPF_FS_MAGIC
60
0
#define BPF_FS_MAGIC    0xcafe4a11
61
#endif
62
63
1
#define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
64
65
125k
#define BPF_INSN_SZ (sizeof(struct bpf_insn))
66
67
/* vsprintf() in __base_pr() uses nonliteral format string. It may break
68
 * compilation if user enables corresponding warning. Disable it explicitly.
69
 */
70
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
71
72
#define __printf(a, b)  __attribute__((format(printf, a, b)))
73
74
static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
75
static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
76
static int map_set_def_max_entries(struct bpf_map *map);
77
78
static const char * const attach_type_name[] = {
79
  [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
80
  [BPF_CGROUP_INET_EGRESS]  = "cgroup_inet_egress",
81
  [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
82
  [BPF_CGROUP_INET_SOCK_RELEASE]  = "cgroup_inet_sock_release",
83
  [BPF_CGROUP_SOCK_OPS]   = "cgroup_sock_ops",
84
  [BPF_CGROUP_DEVICE]   = "cgroup_device",
85
  [BPF_CGROUP_INET4_BIND]   = "cgroup_inet4_bind",
86
  [BPF_CGROUP_INET6_BIND]   = "cgroup_inet6_bind",
87
  [BPF_CGROUP_INET4_CONNECT]  = "cgroup_inet4_connect",
88
  [BPF_CGROUP_INET6_CONNECT]  = "cgroup_inet6_connect",
89
  [BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
90
  [BPF_CGROUP_INET4_POST_BIND]  = "cgroup_inet4_post_bind",
91
  [BPF_CGROUP_INET6_POST_BIND]  = "cgroup_inet6_post_bind",
92
  [BPF_CGROUP_INET4_GETPEERNAME]  = "cgroup_inet4_getpeername",
93
  [BPF_CGROUP_INET6_GETPEERNAME]  = "cgroup_inet6_getpeername",
94
  [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername",
95
  [BPF_CGROUP_INET4_GETSOCKNAME]  = "cgroup_inet4_getsockname",
96
  [BPF_CGROUP_INET6_GETSOCKNAME]  = "cgroup_inet6_getsockname",
97
  [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname",
98
  [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
99
  [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
100
  [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg",
101
  [BPF_CGROUP_SYSCTL]   = "cgroup_sysctl",
102
  [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
103
  [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
104
  [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg",
105
  [BPF_CGROUP_GETSOCKOPT]   = "cgroup_getsockopt",
106
  [BPF_CGROUP_SETSOCKOPT]   = "cgroup_setsockopt",
107
  [BPF_SK_SKB_STREAM_PARSER]  = "sk_skb_stream_parser",
108
  [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
109
  [BPF_SK_SKB_VERDICT]    = "sk_skb_verdict",
110
  [BPF_SK_MSG_VERDICT]    = "sk_msg_verdict",
111
  [BPF_LIRC_MODE2]    = "lirc_mode2",
112
  [BPF_FLOW_DISSECTOR]    = "flow_dissector",
113
  [BPF_TRACE_RAW_TP]    = "trace_raw_tp",
114
  [BPF_TRACE_FENTRY]    = "trace_fentry",
115
  [BPF_TRACE_FEXIT]   = "trace_fexit",
116
  [BPF_MODIFY_RETURN]   = "modify_return",
117
  [BPF_LSM_MAC]     = "lsm_mac",
118
  [BPF_LSM_CGROUP]    = "lsm_cgroup",
119
  [BPF_SK_LOOKUP]     = "sk_lookup",
120
  [BPF_TRACE_ITER]    = "trace_iter",
121
  [BPF_XDP_DEVMAP]    = "xdp_devmap",
122
  [BPF_XDP_CPUMAP]    = "xdp_cpumap",
123
  [BPF_XDP]     = "xdp",
124
  [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
125
  [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]  = "sk_reuseport_select_or_migrate",
126
  [BPF_PERF_EVENT]    = "perf_event",
127
  [BPF_TRACE_KPROBE_MULTI]  = "trace_kprobe_multi",
128
  [BPF_STRUCT_OPS]    = "struct_ops",
129
  [BPF_NETFILTER]     = "netfilter",
130
  [BPF_TCX_INGRESS]   = "tcx_ingress",
131
  [BPF_TCX_EGRESS]    = "tcx_egress",
132
  [BPF_TRACE_UPROBE_MULTI]  = "trace_uprobe_multi",
133
  [BPF_NETKIT_PRIMARY]    = "netkit_primary",
134
  [BPF_NETKIT_PEER]   = "netkit_peer",
135
  [BPF_TRACE_KPROBE_SESSION]  = "trace_kprobe_session",
136
};
137
138
static const char * const link_type_name[] = {
139
  [BPF_LINK_TYPE_UNSPEC]      = "unspec",
140
  [BPF_LINK_TYPE_RAW_TRACEPOINT]    = "raw_tracepoint",
141
  [BPF_LINK_TYPE_TRACING]     = "tracing",
142
  [BPF_LINK_TYPE_CGROUP]      = "cgroup",
143
  [BPF_LINK_TYPE_ITER]      = "iter",
144
  [BPF_LINK_TYPE_NETNS]     = "netns",
145
  [BPF_LINK_TYPE_XDP]     = "xdp",
146
  [BPF_LINK_TYPE_PERF_EVENT]    = "perf_event",
147
  [BPF_LINK_TYPE_KPROBE_MULTI]    = "kprobe_multi",
148
  [BPF_LINK_TYPE_STRUCT_OPS]    = "struct_ops",
149
  [BPF_LINK_TYPE_NETFILTER]   = "netfilter",
150
  [BPF_LINK_TYPE_TCX]     = "tcx",
151
  [BPF_LINK_TYPE_UPROBE_MULTI]    = "uprobe_multi",
152
  [BPF_LINK_TYPE_NETKIT]      = "netkit",
153
  [BPF_LINK_TYPE_SOCKMAP]     = "sockmap",
154
};
155
156
static const char * const map_type_name[] = {
157
  [BPF_MAP_TYPE_UNSPEC]     = "unspec",
158
  [BPF_MAP_TYPE_HASH]     = "hash",
159
  [BPF_MAP_TYPE_ARRAY]      = "array",
160
  [BPF_MAP_TYPE_PROG_ARRAY]   = "prog_array",
161
  [BPF_MAP_TYPE_PERF_EVENT_ARRAY]   = "perf_event_array",
162
  [BPF_MAP_TYPE_PERCPU_HASH]    = "percpu_hash",
163
  [BPF_MAP_TYPE_PERCPU_ARRAY]   = "percpu_array",
164
  [BPF_MAP_TYPE_STACK_TRACE]    = "stack_trace",
165
  [BPF_MAP_TYPE_CGROUP_ARRAY]   = "cgroup_array",
166
  [BPF_MAP_TYPE_LRU_HASH]     = "lru_hash",
167
  [BPF_MAP_TYPE_LRU_PERCPU_HASH]    = "lru_percpu_hash",
168
  [BPF_MAP_TYPE_LPM_TRIE]     = "lpm_trie",
169
  [BPF_MAP_TYPE_ARRAY_OF_MAPS]    = "array_of_maps",
170
  [BPF_MAP_TYPE_HASH_OF_MAPS]   = "hash_of_maps",
171
  [BPF_MAP_TYPE_DEVMAP]     = "devmap",
172
  [BPF_MAP_TYPE_DEVMAP_HASH]    = "devmap_hash",
173
  [BPF_MAP_TYPE_SOCKMAP]      = "sockmap",
174
  [BPF_MAP_TYPE_CPUMAP]     = "cpumap",
175
  [BPF_MAP_TYPE_XSKMAP]     = "xskmap",
176
  [BPF_MAP_TYPE_SOCKHASH]     = "sockhash",
177
  [BPF_MAP_TYPE_CGROUP_STORAGE]   = "cgroup_storage",
178
  [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]  = "reuseport_sockarray",
179
  [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]  = "percpu_cgroup_storage",
180
  [BPF_MAP_TYPE_QUEUE]      = "queue",
181
  [BPF_MAP_TYPE_STACK]      = "stack",
182
  [BPF_MAP_TYPE_SK_STORAGE]   = "sk_storage",
183
  [BPF_MAP_TYPE_STRUCT_OPS]   = "struct_ops",
184
  [BPF_MAP_TYPE_RINGBUF]      = "ringbuf",
185
  [BPF_MAP_TYPE_INODE_STORAGE]    = "inode_storage",
186
  [BPF_MAP_TYPE_TASK_STORAGE]   = "task_storage",
187
  [BPF_MAP_TYPE_BLOOM_FILTER]   = "bloom_filter",
188
  [BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
189
  [BPF_MAP_TYPE_CGRP_STORAGE]   = "cgrp_storage",
190
  [BPF_MAP_TYPE_ARENA]      = "arena",
191
};
192
193
static const char * const prog_type_name[] = {
194
  [BPF_PROG_TYPE_UNSPEC]      = "unspec",
195
  [BPF_PROG_TYPE_SOCKET_FILTER]   = "socket_filter",
196
  [BPF_PROG_TYPE_KPROBE]      = "kprobe",
197
  [BPF_PROG_TYPE_SCHED_CLS]   = "sched_cls",
198
  [BPF_PROG_TYPE_SCHED_ACT]   = "sched_act",
199
  [BPF_PROG_TYPE_TRACEPOINT]    = "tracepoint",
200
  [BPF_PROG_TYPE_XDP]     = "xdp",
201
  [BPF_PROG_TYPE_PERF_EVENT]    = "perf_event",
202
  [BPF_PROG_TYPE_CGROUP_SKB]    = "cgroup_skb",
203
  [BPF_PROG_TYPE_CGROUP_SOCK]   = "cgroup_sock",
204
  [BPF_PROG_TYPE_LWT_IN]      = "lwt_in",
205
  [BPF_PROG_TYPE_LWT_OUT]     = "lwt_out",
206
  [BPF_PROG_TYPE_LWT_XMIT]    = "lwt_xmit",
207
  [BPF_PROG_TYPE_SOCK_OPS]    = "sock_ops",
208
  [BPF_PROG_TYPE_SK_SKB]      = "sk_skb",
209
  [BPF_PROG_TYPE_CGROUP_DEVICE]   = "cgroup_device",
210
  [BPF_PROG_TYPE_SK_MSG]      = "sk_msg",
211
  [BPF_PROG_TYPE_RAW_TRACEPOINT]    = "raw_tracepoint",
212
  [BPF_PROG_TYPE_CGROUP_SOCK_ADDR]  = "cgroup_sock_addr",
213
  [BPF_PROG_TYPE_LWT_SEG6LOCAL]   = "lwt_seg6local",
214
  [BPF_PROG_TYPE_LIRC_MODE2]    = "lirc_mode2",
215
  [BPF_PROG_TYPE_SK_REUSEPORT]    = "sk_reuseport",
216
  [BPF_PROG_TYPE_FLOW_DISSECTOR]    = "flow_dissector",
217
  [BPF_PROG_TYPE_CGROUP_SYSCTL]   = "cgroup_sysctl",
218
  [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
219
  [BPF_PROG_TYPE_CGROUP_SOCKOPT]    = "cgroup_sockopt",
220
  [BPF_PROG_TYPE_TRACING]     = "tracing",
221
  [BPF_PROG_TYPE_STRUCT_OPS]    = "struct_ops",
222
  [BPF_PROG_TYPE_EXT]     = "ext",
223
  [BPF_PROG_TYPE_LSM]     = "lsm",
224
  [BPF_PROG_TYPE_SK_LOOKUP]   = "sk_lookup",
225
  [BPF_PROG_TYPE_SYSCALL]     = "syscall",
226
  [BPF_PROG_TYPE_NETFILTER]   = "netfilter",
227
};
228
229
static int __base_pr(enum libbpf_print_level level, const char *format,
230
         va_list args)
231
0
{
232
0
  if (level == LIBBPF_DEBUG)
233
0
    return 0;
234
235
0
  return vfprintf(stderr, format, args);
236
0
}
237
238
static libbpf_print_fn_t __libbpf_pr = __base_pr;
239
240
libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
241
11.0k
{
242
11.0k
  libbpf_print_fn_t old_print_fn;
243
244
11.0k
  old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
245
246
11.0k
  return old_print_fn;
247
11.0k
}
248
249
__printf(2, 3)
250
void libbpf_print(enum libbpf_print_level level, const char *format, ...)
251
128k
{
252
128k
  va_list args;
253
128k
  int old_errno;
254
128k
  libbpf_print_fn_t print_fn;
255
256
128k
  print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
257
128k
  if (!print_fn)
258
0
    return;
259
260
128k
  old_errno = errno;
261
262
128k
  va_start(args, format);
263
128k
  __libbpf_pr(level, format, args);
264
128k
  va_end(args);
265
266
128k
  errno = old_errno;
267
128k
}
268
269
static void pr_perm_msg(int err)
270
0
{
271
0
  struct rlimit limit;
272
0
  char buf[100];
273
274
0
  if (err != -EPERM || geteuid() != 0)
275
0
    return;
276
277
0
  err = getrlimit(RLIMIT_MEMLOCK, &limit);
278
0
  if (err)
279
0
    return;
280
281
0
  if (limit.rlim_cur == RLIM_INFINITY)
282
0
    return;
283
284
0
  if (limit.rlim_cur < 1024)
285
0
    snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
286
0
  else if (limit.rlim_cur < 1024*1024)
287
0
    snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
288
0
  else
289
0
    snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
290
291
0
  pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
292
0
    buf);
293
0
}
294
295
#define STRERR_BUFSIZE  128
296
297
/* Copied from tools/perf/util/util.h */
298
#ifndef zfree
299
240k
# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
300
#endif
301
302
#ifndef zclose
303
42.4k
# define zclose(fd) ({      \
304
42.4k
  int ___err = 0;     \
305
42.4k
  if ((fd) >= 0)     \
306
42.4k
    ___err = close((fd)); \
307
42.4k
  fd = -1;      \
308
42.4k
  ___err; })
309
#endif
310
311
static inline __u64 ptr_to_u64(const void *ptr)
312
0
{
313
0
  return (__u64) (unsigned long) ptr;
314
0
}
315
316
int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
317
0
{
318
  /* as of v1.0 libbpf_set_strict_mode() is a no-op */
319
0
  return 0;
320
0
}
321
322
__u32 libbpf_major_version(void)
323
0
{
324
0
  return LIBBPF_MAJOR_VERSION;
325
0
}
326
327
__u32 libbpf_minor_version(void)
328
0
{
329
0
  return LIBBPF_MINOR_VERSION;
330
0
}
331
332
const char *libbpf_version_string(void)
333
0
{
334
0
#define __S(X) #X
335
0
#define _S(X) __S(X)
336
0
  return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
337
0
#undef _S
338
0
#undef __S
339
0
}
340
341
enum reloc_type {
342
  RELO_LD64,
343
  RELO_CALL,
344
  RELO_DATA,
345
  RELO_EXTERN_LD64,
346
  RELO_EXTERN_CALL,
347
  RELO_SUBPROG_ADDR,
348
  RELO_CORE,
349
};
350
351
struct reloc_desc {
352
  enum reloc_type type;
353
  int insn_idx;
354
  union {
355
    const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
356
    struct {
357
      int map_idx;
358
      int sym_off;
359
      int ext_idx;
360
    };
361
  };
362
};
363
364
/* stored as sec_def->cookie for all libbpf-supported SEC()s */
365
enum sec_def_flags {
366
  SEC_NONE = 0,
367
  /* expected_attach_type is optional, if kernel doesn't support that */
368
  SEC_EXP_ATTACH_OPT = 1,
369
  /* legacy, only used by libbpf_get_type_names() and
370
   * libbpf_attach_type_by_name(), not used by libbpf itself at all.
371
   * This used to be associated with cgroup (and few other) BPF programs
372
   * that were attachable through BPF_PROG_ATTACH command. Pretty
373
   * meaningless nowadays, though.
374
   */
375
  SEC_ATTACHABLE = 2,
376
  SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
377
  /* attachment target is specified through BTF ID in either kernel or
378
   * other BPF program's BTF object
379
   */
380
  SEC_ATTACH_BTF = 4,
381
  /* BPF program type allows sleeping/blocking in kernel */
382
  SEC_SLEEPABLE = 8,
383
  /* BPF program support non-linear XDP buffer */
384
  SEC_XDP_FRAGS = 16,
385
  /* Setup proper attach type for usdt probes. */
386
  SEC_USDT = 32,
387
};
388
389
struct bpf_sec_def {
390
  char *sec;
391
  enum bpf_prog_type prog_type;
392
  enum bpf_attach_type expected_attach_type;
393
  long cookie;
394
  int handler_id;
395
396
  libbpf_prog_setup_fn_t prog_setup_fn;
397
  libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
398
  libbpf_prog_attach_fn_t prog_attach_fn;
399
};
400
401
/*
402
 * bpf_prog should be a better name but it has been used in
403
 * linux/filter.h.
404
 */
405
struct bpf_program {
406
  char *name;
407
  char *sec_name;
408
  size_t sec_idx;
409
  const struct bpf_sec_def *sec_def;
410
  /* this program's instruction offset (in number of instructions)
411
   * within its containing ELF section
412
   */
413
  size_t sec_insn_off;
414
  /* number of original instructions in ELF section belonging to this
415
   * program, not taking into account subprogram instructions possible
416
   * appended later during relocation
417
   */
418
  size_t sec_insn_cnt;
419
  /* Offset (in number of instructions) of the start of instruction
420
   * belonging to this BPF program  within its containing main BPF
421
   * program. For the entry-point (main) BPF program, this is always
422
   * zero. For a sub-program, this gets reset before each of main BPF
423
   * programs are processed and relocated and is used to determined
424
   * whether sub-program was already appended to the main program, and
425
   * if yes, at which instruction offset.
426
   */
427
  size_t sub_insn_off;
428
429
  /* instructions that belong to BPF program; insns[0] is located at
430
   * sec_insn_off instruction within its ELF section in ELF file, so
431
   * when mapping ELF file instruction index to the local instruction,
432
   * one needs to subtract sec_insn_off; and vice versa.
433
   */
434
  struct bpf_insn *insns;
435
  /* actual number of instruction in this BPF program's image; for
436
   * entry-point BPF programs this includes the size of main program
437
   * itself plus all the used sub-programs, appended at the end
438
   */
439
  size_t insns_cnt;
440
441
  struct reloc_desc *reloc_desc;
442
  int nr_reloc;
443
444
  /* BPF verifier log settings */
445
  char *log_buf;
446
  size_t log_size;
447
  __u32 log_level;
448
449
  struct bpf_object *obj;
450
451
  int fd;
452
  bool autoload;
453
  bool autoattach;
454
  bool sym_global;
455
  bool mark_btf_static;
456
  enum bpf_prog_type type;
457
  enum bpf_attach_type expected_attach_type;
458
  int exception_cb_idx;
459
460
  int prog_ifindex;
461
  __u32 attach_btf_obj_fd;
462
  __u32 attach_btf_id;
463
  __u32 attach_prog_fd;
464
465
  void *func_info;
466
  __u32 func_info_rec_size;
467
  __u32 func_info_cnt;
468
469
  void *line_info;
470
  __u32 line_info_rec_size;
471
  __u32 line_info_cnt;
472
  __u32 prog_flags;
473
};
474
475
struct bpf_struct_ops {
476
  const char *tname;
477
  const struct btf_type *type;
478
  struct bpf_program **progs;
479
  __u32 *kern_func_off;
480
  /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
481
  void *data;
482
  /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
483
   *      btf_vmlinux's format.
484
   * struct bpf_struct_ops_tcp_congestion_ops {
485
   *  [... some other kernel fields ...]
486
   *  struct tcp_congestion_ops data;
487
   * }
488
   * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
489
   * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
490
   * from "data".
491
   */
492
  void *kern_vdata;
493
  __u32 type_id;
494
};
495
496
2.22k
#define DATA_SEC ".data"
497
2.18k
#define BSS_SEC ".bss"
498
1.70k
#define RODATA_SEC ".rodata"
499
7.25k
#define KCONFIG_SEC ".kconfig"
500
9.51k
#define KSYMS_SEC ".ksyms"
501
4.11k
#define STRUCT_OPS_SEC ".struct_ops"
502
3.81k
#define STRUCT_OPS_LINK_SEC ".struct_ops.link"
503
840
#define ARENA_SEC ".addr_space.1"
504
505
enum libbpf_map_type {
506
  LIBBPF_MAP_UNSPEC,
507
  LIBBPF_MAP_DATA,
508
  LIBBPF_MAP_BSS,
509
  LIBBPF_MAP_RODATA,
510
  LIBBPF_MAP_KCONFIG,
511
};
512
513
struct bpf_map_def {
514
  unsigned int type;
515
  unsigned int key_size;
516
  unsigned int value_size;
517
  unsigned int max_entries;
518
  unsigned int map_flags;
519
};
520
521
struct bpf_map {
522
  struct bpf_object *obj;
523
  char *name;
524
  /* real_name is defined for special internal maps (.rodata*,
525
   * .data*, .bss, .kconfig) and preserves their original ELF section
526
   * name. This is important to be able to find corresponding BTF
527
   * DATASEC information.
528
   */
529
  char *real_name;
530
  int fd;
531
  int sec_idx;
532
  size_t sec_offset;
533
  int map_ifindex;
534
  int inner_map_fd;
535
  struct bpf_map_def def;
536
  __u32 numa_node;
537
  __u32 btf_var_idx;
538
  int mod_btf_fd;
539
  __u32 btf_key_type_id;
540
  __u32 btf_value_type_id;
541
  __u32 btf_vmlinux_value_type_id;
542
  enum libbpf_map_type libbpf_type;
543
  void *mmaped;
544
  struct bpf_struct_ops *st_ops;
545
  struct bpf_map *inner_map;
546
  void **init_slots;
547
  int init_slots_sz;
548
  char *pin_path;
549
  bool pinned;
550
  bool reused;
551
  bool autocreate;
552
  __u64 map_extra;
553
};
554
555
enum extern_type {
556
  EXT_UNKNOWN,
557
  EXT_KCFG,
558
  EXT_KSYM,
559
};
560
561
enum kcfg_type {
562
  KCFG_UNKNOWN,
563
  KCFG_CHAR,
564
  KCFG_BOOL,
565
  KCFG_INT,
566
  KCFG_TRISTATE,
567
  KCFG_CHAR_ARR,
568
};
569
570
struct extern_desc {
571
  enum extern_type type;
572
  int sym_idx;
573
  int btf_id;
574
  int sec_btf_id;
575
  const char *name;
576
  char *essent_name;
577
  bool is_set;
578
  bool is_weak;
579
  union {
580
    struct {
581
      enum kcfg_type type;
582
      int sz;
583
      int align;
584
      int data_off;
585
      bool is_signed;
586
    } kcfg;
587
    struct {
588
      unsigned long long addr;
589
590
      /* target btf_id of the corresponding kernel var. */
591
      int kernel_btf_obj_fd;
592
      int kernel_btf_id;
593
594
      /* local btf_id of the ksym extern's type. */
595
      __u32 type_id;
596
      /* BTF fd index to be patched in for insn->off, this is
597
       * 0 for vmlinux BTF, index in obj->fd_array for module
598
       * BTF
599
       */
600
      __s16 btf_fd_idx;
601
    } ksym;
602
  };
603
};
604
605
struct module_btf {
606
  struct btf *btf;
607
  char *name;
608
  __u32 id;
609
  int fd;
610
  int fd_array_idx;
611
};
612
613
enum sec_type {
614
  SEC_UNUSED = 0,
615
  SEC_RELO,
616
  SEC_BSS,
617
  SEC_DATA,
618
  SEC_RODATA,
619
  SEC_ST_OPS,
620
};
621
622
struct elf_sec_desc {
623
  enum sec_type sec_type;
624
  Elf64_Shdr *shdr;
625
  Elf_Data *data;
626
};
627
628
struct elf_state {
629
  int fd;
630
  const void *obj_buf;
631
  size_t obj_buf_sz;
632
  Elf *elf;
633
  Elf64_Ehdr *ehdr;
634
  Elf_Data *symbols;
635
  Elf_Data *arena_data;
636
  size_t shstrndx; /* section index for section name strings */
637
  size_t strtabidx;
638
  struct elf_sec_desc *secs;
639
  size_t sec_cnt;
640
  int btf_maps_shndx;
641
  __u32 btf_maps_sec_btf_id;
642
  int text_shndx;
643
  int symbols_shndx;
644
  bool has_st_ops;
645
  int arena_data_shndx;
646
};
647
648
struct usdt_manager;
649
650
struct bpf_object {
651
  char name[BPF_OBJ_NAME_LEN];
652
  char license[64];
653
  __u32 kern_version;
654
655
  struct bpf_program *programs;
656
  size_t nr_programs;
657
  struct bpf_map *maps;
658
  size_t nr_maps;
659
  size_t maps_cap;
660
661
  char *kconfig;
662
  struct extern_desc *externs;
663
  int nr_extern;
664
  int kconfig_map_idx;
665
666
  bool loaded;
667
  bool has_subcalls;
668
  bool has_rodata;
669
670
  struct bpf_gen *gen_loader;
671
672
  /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
673
  struct elf_state efile;
674
675
  struct btf *btf;
676
  struct btf_ext *btf_ext;
677
678
  /* Parse and load BTF vmlinux if any of the programs in the object need
679
   * it at load time.
680
   */
681
  struct btf *btf_vmlinux;
682
  /* Path to the custom BTF to be used for BPF CO-RE relocations as an
683
   * override for vmlinux BTF.
684
   */
685
  char *btf_custom_path;
686
  /* vmlinux BTF override for CO-RE relocations */
687
  struct btf *btf_vmlinux_override;
688
  /* Lazily initialized kernel module BTFs */
689
  struct module_btf *btf_modules;
690
  bool btf_modules_loaded;
691
  size_t btf_module_cnt;
692
  size_t btf_module_cap;
693
694
  /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
695
  char *log_buf;
696
  size_t log_size;
697
  __u32 log_level;
698
699
  int *fd_array;
700
  size_t fd_array_cap;
701
  size_t fd_array_cnt;
702
703
  struct usdt_manager *usdt_man;
704
705
  struct bpf_map *arena_map;
706
  void *arena_data;
707
  size_t arena_data_sz;
708
709
  struct kern_feature_cache *feat_cache;
710
  char *token_path;
711
  int token_fd;
712
713
  char path[];
714
};
715
716
static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
717
static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
718
static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
719
static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
720
static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
721
static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
722
static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
723
static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
724
static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
725
726
void bpf_program__unload(struct bpf_program *prog)
727
28.6k
{
728
28.6k
  if (!prog)
729
0
    return;
730
731
28.6k
  zclose(prog->fd);
732
733
28.6k
  zfree(&prog->func_info);
734
28.6k
  zfree(&prog->line_info);
735
28.6k
}
736
737
static void bpf_program__exit(struct bpf_program *prog)
738
14.3k
{
739
14.3k
  if (!prog)
740
0
    return;
741
742
14.3k
  bpf_program__unload(prog);
743
14.3k
  zfree(&prog->name);
744
14.3k
  zfree(&prog->sec_name);
745
14.3k
  zfree(&prog->insns);
746
14.3k
  zfree(&prog->reloc_desc);
747
748
14.3k
  prog->nr_reloc = 0;
749
14.3k
  prog->insns_cnt = 0;
750
14.3k
  prog->sec_idx = -1;
751
14.3k
}
752
753
static bool insn_is_subprog_call(const struct bpf_insn *insn)
754
0
{
755
0
  return BPF_CLASS(insn->code) == BPF_JMP &&
756
0
         BPF_OP(insn->code) == BPF_CALL &&
757
0
         BPF_SRC(insn->code) == BPF_K &&
758
0
         insn->src_reg == BPF_PSEUDO_CALL &&
759
0
         insn->dst_reg == 0 &&
760
0
         insn->off == 0;
761
0
}
762
763
static bool is_call_insn(const struct bpf_insn *insn)
764
3.52k
{
765
3.52k
  return insn->code == (BPF_JMP | BPF_CALL);
766
3.52k
}
767
768
static bool insn_is_pseudo_func(struct bpf_insn *insn)
769
0
{
770
0
  return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
771
0
}
772
773
static int
774
bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
775
          const char *name, size_t sec_idx, const char *sec_name,
776
          size_t sec_off, void *insn_data, size_t insn_data_sz)
777
14.4k
{
778
14.4k
  if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
779
58
    pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
780
58
      sec_name, name, sec_off, insn_data_sz);
781
58
    return -EINVAL;
782
58
  }
783
784
14.3k
  memset(prog, 0, sizeof(*prog));
785
14.3k
  prog->obj = obj;
786
787
14.3k
  prog->sec_idx = sec_idx;
788
14.3k
  prog->sec_insn_off = sec_off / BPF_INSN_SZ;
789
14.3k
  prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
790
  /* insns_cnt can later be increased by appending used subprograms */
791
14.3k
  prog->insns_cnt = prog->sec_insn_cnt;
792
793
14.3k
  prog->type = BPF_PROG_TYPE_UNSPEC;
794
14.3k
  prog->fd = -1;
795
14.3k
  prog->exception_cb_idx = -1;
796
797
  /* libbpf's convention for SEC("?abc...") is that it's just like
798
   * SEC("abc...") but the corresponding bpf_program starts out with
799
   * autoload set to false.
800
   */
801
14.3k
  if (sec_name[0] == '?') {
802
214
    prog->autoload = false;
803
    /* from now on forget there was ? in section name */
804
214
    sec_name++;
805
14.1k
  } else {
806
14.1k
    prog->autoload = true;
807
14.1k
  }
808
809
14.3k
  prog->autoattach = true;
810
811
  /* inherit object's log_level */
812
14.3k
  prog->log_level = obj->log_level;
813
814
14.3k
  prog->sec_name = strdup(sec_name);
815
14.3k
  if (!prog->sec_name)
816
0
    goto errout;
817
818
14.3k
  prog->name = strdup(name);
819
14.3k
  if (!prog->name)
820
0
    goto errout;
821
822
14.3k
  prog->insns = malloc(insn_data_sz);
823
14.3k
  if (!prog->insns)
824
21
    goto errout;
825
14.3k
  memcpy(prog->insns, insn_data, insn_data_sz);
826
827
14.3k
  return 0;
828
21
errout:
829
21
  pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
830
21
  bpf_program__exit(prog);
831
21
  return -ENOMEM;
832
14.3k
}
833
834
static int
835
bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
836
       const char *sec_name, int sec_idx)
837
1.12k
{
838
1.12k
  Elf_Data *symbols = obj->efile.symbols;
839
1.12k
  struct bpf_program *prog, *progs;
840
1.12k
  void *data = sec_data->d_buf;
841
1.12k
  size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
842
1.12k
  int nr_progs, err, i;
843
1.12k
  const char *name;
844
1.12k
  Elf64_Sym *sym;
845
846
1.12k
  progs = obj->programs;
847
1.12k
  nr_progs = obj->nr_programs;
848
1.12k
  nr_syms = symbols->d_size / sizeof(Elf64_Sym);
849
850
124k
  for (i = 0; i < nr_syms; i++) {
851
123k
    sym = elf_sym_by_idx(obj, i);
852
853
123k
    if (sym->st_shndx != sec_idx)
854
107k
      continue;
855
16.1k
    if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
856
1.54k
      continue;
857
858
14.5k
    prog_sz = sym->st_size;
859
14.5k
    sec_off = sym->st_value;
860
861
14.5k
    name = elf_sym_str(obj, sym->st_name);
862
14.5k
    if (!name) {
863
59
      pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
864
59
        sec_name, sec_off);
865
59
      return -LIBBPF_ERRNO__FORMAT;
866
59
    }
867
868
14.5k
    if (sec_off + prog_sz > sec_sz) {
869
106
      pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
870
106
        sec_name, sec_off);
871
106
      return -LIBBPF_ERRNO__FORMAT;
872
106
    }
873
874
14.4k
    if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
875
3
      pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
876
3
      return -ENOTSUP;
877
3
    }
878
879
14.4k
    pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
880
28.8k
       sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
881
882
14.4k
    progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
883
14.4k
    if (!progs) {
884
      /*
885
       * In this case the original obj->programs
886
       * is still valid, so don't need special treat for
887
       * bpf_close_object().
888
       */
889
0
      pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
890
0
        sec_name, name);
891
0
      return -ENOMEM;
892
0
    }
893
14.4k
    obj->programs = progs;
894
895
14.4k
    prog = &progs[nr_progs];
896
897
14.4k
    err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
898
14.4k
              sec_off, data + sec_off, prog_sz);
899
14.4k
    if (err)
900
79
      return err;
901
902
14.3k
    if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
903
14.1k
      prog->sym_global = true;
904
905
    /* if function is a global/weak symbol, but has restricted
906
     * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
907
     * as static to enable more permissive BPF verification mode
908
     * with more outside context available to BPF verifier
909
     */
910
14.3k
    if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
911
14.1k
        || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
912
10.8k
      prog->mark_btf_static = true;
913
914
14.3k
    nr_progs++;
915
14.3k
    obj->nr_programs = nr_progs;
916
14.3k
  }
917
918
881
  return 0;
919
1.12k
}
920
921
static const struct btf_member *
922
find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
923
0
{
924
0
  struct btf_member *m;
925
0
  int i;
926
927
0
  for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
928
0
    if (btf_member_bit_offset(t, i) == bit_offset)
929
0
      return m;
930
0
  }
931
932
0
  return NULL;
933
0
}
934
935
static const struct btf_member *
936
find_member_by_name(const struct btf *btf, const struct btf_type *t,
937
        const char *name)
938
0
{
939
0
  struct btf_member *m;
940
0
  int i;
941
942
0
  for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
943
0
    if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
944
0
      return m;
945
0
  }
946
947
0
  return NULL;
948
0
}
949
950
static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
951
          __u16 kind, struct btf **res_btf,
952
          struct module_btf **res_mod_btf);
953
954
0
#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
955
static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
956
           const char *name, __u32 kind);
957
958
static int
959
find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
960
         struct module_btf **mod_btf,
961
         const struct btf_type **type, __u32 *type_id,
962
         const struct btf_type **vtype, __u32 *vtype_id,
963
         const struct btf_member **data_member)
964
0
{
965
0
  const struct btf_type *kern_type, *kern_vtype;
966
0
  const struct btf_member *kern_data_member;
967
0
  struct btf *btf;
968
0
  __s32 kern_vtype_id, kern_type_id;
969
0
  char tname[256];
970
0
  __u32 i;
971
972
0
  snprintf(tname, sizeof(tname), "%.*s",
973
0
     (int)bpf_core_essential_name_len(tname_raw), tname_raw);
974
975
0
  kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
976
0
          &btf, mod_btf);
977
0
  if (kern_type_id < 0) {
978
0
    pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
979
0
      tname);
980
0
    return kern_type_id;
981
0
  }
982
0
  kern_type = btf__type_by_id(btf, kern_type_id);
983
984
  /* Find the corresponding "map_value" type that will be used
985
   * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
986
   * find "struct bpf_struct_ops_tcp_congestion_ops" from the
987
   * btf_vmlinux.
988
   */
989
0
  kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
990
0
            tname, BTF_KIND_STRUCT);
991
0
  if (kern_vtype_id < 0) {
992
0
    pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
993
0
      STRUCT_OPS_VALUE_PREFIX, tname);
994
0
    return kern_vtype_id;
995
0
  }
996
0
  kern_vtype = btf__type_by_id(btf, kern_vtype_id);
997
998
  /* Find "struct tcp_congestion_ops" from
999
   * struct bpf_struct_ops_tcp_congestion_ops {
1000
   *  [ ... ]
1001
   *  struct tcp_congestion_ops data;
1002
   * }
1003
   */
1004
0
  kern_data_member = btf_members(kern_vtype);
1005
0
  for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1006
0
    if (kern_data_member->type == kern_type_id)
1007
0
      break;
1008
0
  }
1009
0
  if (i == btf_vlen(kern_vtype)) {
1010
0
    pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1011
0
      tname, STRUCT_OPS_VALUE_PREFIX, tname);
1012
0
    return -EINVAL;
1013
0
  }
1014
1015
0
  *type = kern_type;
1016
0
  *type_id = kern_type_id;
1017
0
  *vtype = kern_vtype;
1018
0
  *vtype_id = kern_vtype_id;
1019
0
  *data_member = kern_data_member;
1020
1021
0
  return 0;
1022
0
}
1023
1024
static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1025
282
{
1026
282
  return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1027
282
}
1028
1029
static bool is_valid_st_ops_program(struct bpf_object *obj,
1030
            const struct bpf_program *prog)
1031
0
{
1032
0
  int i;
1033
1034
0
  for (i = 0; i < obj->nr_programs; i++) {
1035
0
    if (&obj->programs[i] == prog)
1036
0
      return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1037
0
  }
1038
1039
0
  return false;
1040
0
}
1041
1042
/* For each struct_ops program P, referenced from some struct_ops map M,
1043
 * enable P.autoload if there are Ms for which M.autocreate is true,
1044
 * disable P.autoload if for all Ms M.autocreate is false.
1045
 * Don't change P.autoload for programs that are not referenced from any maps.
1046
 */
1047
static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1048
0
{
1049
0
  struct bpf_program *prog, *slot_prog;
1050
0
  struct bpf_map *map;
1051
0
  int i, j, k, vlen;
1052
1053
0
  for (i = 0; i < obj->nr_programs; ++i) {
1054
0
    int should_load = false;
1055
0
    int use_cnt = 0;
1056
1057
0
    prog = &obj->programs[i];
1058
0
    if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1059
0
      continue;
1060
1061
0
    for (j = 0; j < obj->nr_maps; ++j) {
1062
0
      map = &obj->maps[j];
1063
0
      if (!bpf_map__is_struct_ops(map))
1064
0
        continue;
1065
1066
0
      vlen = btf_vlen(map->st_ops->type);
1067
0
      for (k = 0; k < vlen; ++k) {
1068
0
        slot_prog = map->st_ops->progs[k];
1069
0
        if (prog != slot_prog)
1070
0
          continue;
1071
1072
0
        use_cnt++;
1073
0
        if (map->autocreate)
1074
0
          should_load = true;
1075
0
      }
1076
0
    }
1077
0
    if (use_cnt)
1078
0
      prog->autoload = should_load;
1079
0
  }
1080
1081
0
  return 0;
1082
0
}
1083
1084
/* Init the map's fields that depend on kern_btf */
1085
static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1086
0
{
1087
0
  const struct btf_member *member, *kern_member, *kern_data_member;
1088
0
  const struct btf_type *type, *kern_type, *kern_vtype;
1089
0
  __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1090
0
  struct bpf_object *obj = map->obj;
1091
0
  const struct btf *btf = obj->btf;
1092
0
  struct bpf_struct_ops *st_ops;
1093
0
  const struct btf *kern_btf;
1094
0
  struct module_btf *mod_btf;
1095
0
  void *data, *kern_data;
1096
0
  const char *tname;
1097
0
  int err;
1098
1099
0
  st_ops = map->st_ops;
1100
0
  type = st_ops->type;
1101
0
  tname = st_ops->tname;
1102
0
  err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1103
0
           &kern_type, &kern_type_id,
1104
0
           &kern_vtype, &kern_vtype_id,
1105
0
           &kern_data_member);
1106
0
  if (err)
1107
0
    return err;
1108
1109
0
  kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1110
1111
0
  pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1112
0
     map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1113
1114
0
  map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1115
0
  map->def.value_size = kern_vtype->size;
1116
0
  map->btf_vmlinux_value_type_id = kern_vtype_id;
1117
1118
0
  st_ops->kern_vdata = calloc(1, kern_vtype->size);
1119
0
  if (!st_ops->kern_vdata)
1120
0
    return -ENOMEM;
1121
1122
0
  data = st_ops->data;
1123
0
  kern_data_off = kern_data_member->offset / 8;
1124
0
  kern_data = st_ops->kern_vdata + kern_data_off;
1125
1126
0
  member = btf_members(type);
1127
0
  for (i = 0; i < btf_vlen(type); i++, member++) {
1128
0
    const struct btf_type *mtype, *kern_mtype;
1129
0
    __u32 mtype_id, kern_mtype_id;
1130
0
    void *mdata, *kern_mdata;
1131
0
    struct bpf_program *prog;
1132
0
    __s64 msize, kern_msize;
1133
0
    __u32 moff, kern_moff;
1134
0
    __u32 kern_member_idx;
1135
0
    const char *mname;
1136
1137
0
    mname = btf__name_by_offset(btf, member->name_off);
1138
0
    moff = member->offset / 8;
1139
0
    mdata = data + moff;
1140
0
    msize = btf__resolve_size(btf, member->type);
1141
0
    if (msize < 0) {
1142
0
      pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1143
0
        map->name, mname);
1144
0
      return msize;
1145
0
    }
1146
1147
0
    kern_member = find_member_by_name(kern_btf, kern_type, mname);
1148
0
    if (!kern_member) {
1149
0
      if (!libbpf_is_mem_zeroed(mdata, msize)) {
1150
0
        pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1151
0
          map->name, mname);
1152
0
        return -ENOTSUP;
1153
0
      }
1154
1155
0
      if (st_ops->progs[i]) {
1156
        /* If we had declaratively set struct_ops callback, we need to
1157
         * force its autoload to false, because it doesn't have
1158
         * a chance of succeeding from POV of the current struct_ops map.
1159
         * If this program is still referenced somewhere else, though,
1160
         * then bpf_object_adjust_struct_ops_autoload() will update its
1161
         * autoload accordingly.
1162
         */
1163
0
        st_ops->progs[i]->autoload = false;
1164
0
        st_ops->progs[i] = NULL;
1165
0
      }
1166
1167
      /* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1168
0
      pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1169
0
        map->name, mname);
1170
0
      continue;
1171
0
    }
1172
1173
0
    kern_member_idx = kern_member - btf_members(kern_type);
1174
0
    if (btf_member_bitfield_size(type, i) ||
1175
0
        btf_member_bitfield_size(kern_type, kern_member_idx)) {
1176
0
      pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1177
0
        map->name, mname);
1178
0
      return -ENOTSUP;
1179
0
    }
1180
1181
0
    kern_moff = kern_member->offset / 8;
1182
0
    kern_mdata = kern_data + kern_moff;
1183
1184
0
    mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1185
0
    kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1186
0
                &kern_mtype_id);
1187
0
    if (BTF_INFO_KIND(mtype->info) !=
1188
0
        BTF_INFO_KIND(kern_mtype->info)) {
1189
0
      pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1190
0
        map->name, mname, BTF_INFO_KIND(mtype->info),
1191
0
        BTF_INFO_KIND(kern_mtype->info));
1192
0
      return -ENOTSUP;
1193
0
    }
1194
1195
0
    if (btf_is_ptr(mtype)) {
1196
0
      prog = *(void **)mdata;
1197
      /* just like for !kern_member case above, reset declaratively
1198
       * set (at compile time) program's autload to false,
1199
       * if user replaced it with another program or NULL
1200
       */
1201
0
      if (st_ops->progs[i] && st_ops->progs[i] != prog)
1202
0
        st_ops->progs[i]->autoload = false;
1203
1204
      /* Update the value from the shadow type */
1205
0
      st_ops->progs[i] = prog;
1206
0
      if (!prog)
1207
0
        continue;
1208
1209
0
      if (!is_valid_st_ops_program(obj, prog)) {
1210
0
        pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1211
0
          map->name, mname);
1212
0
        return -ENOTSUP;
1213
0
      }
1214
1215
0
      kern_mtype = skip_mods_and_typedefs(kern_btf,
1216
0
                  kern_mtype->type,
1217
0
                  &kern_mtype_id);
1218
1219
      /* mtype->type must be a func_proto which was
1220
       * guaranteed in bpf_object__collect_st_ops_relos(),
1221
       * so only check kern_mtype for func_proto here.
1222
       */
1223
0
      if (!btf_is_func_proto(kern_mtype)) {
1224
0
        pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1225
0
          map->name, mname);
1226
0
        return -ENOTSUP;
1227
0
      }
1228
1229
0
      if (mod_btf)
1230
0
        prog->attach_btf_obj_fd = mod_btf->fd;
1231
1232
      /* if we haven't yet processed this BPF program, record proper
1233
       * attach_btf_id and member_idx
1234
       */
1235
0
      if (!prog->attach_btf_id) {
1236
0
        prog->attach_btf_id = kern_type_id;
1237
0
        prog->expected_attach_type = kern_member_idx;
1238
0
      }
1239
1240
      /* struct_ops BPF prog can be re-used between multiple
1241
       * .struct_ops & .struct_ops.link as long as it's the
1242
       * same struct_ops struct definition and the same
1243
       * function pointer field
1244
       */
1245
0
      if (prog->attach_btf_id != kern_type_id) {
1246
0
        pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1247
0
          map->name, mname, prog->name, prog->sec_name, prog->type,
1248
0
          prog->attach_btf_id, kern_type_id);
1249
0
        return -EINVAL;
1250
0
      }
1251
0
      if (prog->expected_attach_type != kern_member_idx) {
1252
0
        pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1253
0
          map->name, mname, prog->name, prog->sec_name, prog->type,
1254
0
          prog->expected_attach_type, kern_member_idx);
1255
0
        return -EINVAL;
1256
0
      }
1257
1258
0
      st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1259
1260
0
      pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1261
0
         map->name, mname, prog->name, moff,
1262
0
         kern_moff);
1263
1264
0
      continue;
1265
0
    }
1266
1267
0
    kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1268
0
    if (kern_msize < 0 || msize != kern_msize) {
1269
0
      pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1270
0
        map->name, mname, (ssize_t)msize,
1271
0
        (ssize_t)kern_msize);
1272
0
      return -ENOTSUP;
1273
0
    }
1274
1275
0
    pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1276
0
       map->name, mname, (unsigned int)msize,
1277
0
       moff, kern_moff);
1278
0
    memcpy(kern_mdata, mdata, msize);
1279
0
  }
1280
1281
0
  return 0;
1282
0
}
1283
1284
static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1285
0
{
1286
0
  struct bpf_map *map;
1287
0
  size_t i;
1288
0
  int err;
1289
1290
0
  for (i = 0; i < obj->nr_maps; i++) {
1291
0
    map = &obj->maps[i];
1292
1293
0
    if (!bpf_map__is_struct_ops(map))
1294
0
      continue;
1295
1296
0
    if (!map->autocreate)
1297
0
      continue;
1298
1299
0
    err = bpf_map__init_kern_struct_ops(map);
1300
0
    if (err)
1301
0
      return err;
1302
0
  }
1303
1304
0
  return 0;
1305
0
}
1306
1307
static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1308
        int shndx, Elf_Data *data)
1309
175
{
1310
175
  const struct btf_type *type, *datasec;
1311
175
  const struct btf_var_secinfo *vsi;
1312
175
  struct bpf_struct_ops *st_ops;
1313
175
  const char *tname, *var_name;
1314
175
  __s32 type_id, datasec_id;
1315
175
  const struct btf *btf;
1316
175
  struct bpf_map *map;
1317
175
  __u32 i;
1318
1319
175
  if (shndx == -1)
1320
0
    return 0;
1321
1322
175
  btf = obj->btf;
1323
175
  datasec_id = btf__find_by_name_kind(btf, sec_name,
1324
175
              BTF_KIND_DATASEC);
1325
175
  if (datasec_id < 0) {
1326
81
    pr_warn("struct_ops init: DATASEC %s not found\n",
1327
81
      sec_name);
1328
81
    return -EINVAL;
1329
81
  }
1330
1331
94
  datasec = btf__type_by_id(btf, datasec_id);
1332
94
  vsi = btf_var_secinfos(datasec);
1333
122
  for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1334
70
    type = btf__type_by_id(obj->btf, vsi->type);
1335
70
    var_name = btf__name_by_offset(obj->btf, type->name_off);
1336
1337
70
    type_id = btf__resolve_type(obj->btf, vsi->type);
1338
70
    if (type_id < 0) {
1339
11
      pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1340
11
        vsi->type, sec_name);
1341
11
      return -EINVAL;
1342
11
    }
1343
1344
59
    type = btf__type_by_id(obj->btf, type_id);
1345
59
    tname = btf__name_by_offset(obj->btf, type->name_off);
1346
59
    if (!tname[0]) {
1347
1
      pr_warn("struct_ops init: anonymous type is not supported\n");
1348
1
      return -ENOTSUP;
1349
1
    }
1350
58
    if (!btf_is_struct(type)) {
1351
10
      pr_warn("struct_ops init: %s is not a struct\n", tname);
1352
10
      return -EINVAL;
1353
10
    }
1354
1355
48
    map = bpf_object__add_map(obj);
1356
48
    if (IS_ERR(map))
1357
0
      return PTR_ERR(map);
1358
1359
48
    map->sec_idx = shndx;
1360
48
    map->sec_offset = vsi->offset;
1361
48
    map->name = strdup(var_name);
1362
48
    if (!map->name)
1363
0
      return -ENOMEM;
1364
48
    map->btf_value_type_id = type_id;
1365
1366
    /* Follow same convention as for programs autoload:
1367
     * SEC("?.struct_ops") means map is not created by default.
1368
     */
1369
48
    if (sec_name[0] == '?') {
1370
1
      map->autocreate = false;
1371
      /* from now on forget there was ? in section name */
1372
1
      sec_name++;
1373
1
    }
1374
1375
48
    map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1376
48
    map->def.key_size = sizeof(int);
1377
48
    map->def.value_size = type->size;
1378
48
    map->def.max_entries = 1;
1379
48
    map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1380
1381
48
    map->st_ops = calloc(1, sizeof(*map->st_ops));
1382
48
    if (!map->st_ops)
1383
0
      return -ENOMEM;
1384
48
    st_ops = map->st_ops;
1385
48
    st_ops->data = malloc(type->size);
1386
48
    st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1387
48
    st_ops->kern_func_off = malloc(btf_vlen(type) *
1388
48
                 sizeof(*st_ops->kern_func_off));
1389
48
    if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1390
0
      return -ENOMEM;
1391
1392
48
    if (vsi->offset + type->size > data->d_size) {
1393
20
      pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1394
20
        var_name, sec_name);
1395
20
      return -EINVAL;
1396
20
    }
1397
1398
28
    memcpy(st_ops->data,
1399
28
           data->d_buf + vsi->offset,
1400
28
           type->size);
1401
28
    st_ops->tname = tname;
1402
28
    st_ops->type = type;
1403
28
    st_ops->type_id = type_id;
1404
1405
28
    pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1406
28
       tname, type_id, var_name, vsi->offset);
1407
28
  }
1408
1409
52
  return 0;
1410
94
}
1411
1412
static int bpf_object_init_struct_ops(struct bpf_object *obj)
1413
2.06k
{
1414
2.06k
  const char *sec_name;
1415
2.06k
  int sec_idx, err;
1416
1417
17.1k
  for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1418
15.1k
    struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1419
1420
15.1k
    if (desc->sec_type != SEC_ST_OPS)
1421
14.9k
      continue;
1422
1423
175
    sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1424
175
    if (!sec_name)
1425
0
      return -LIBBPF_ERRNO__FORMAT;
1426
1427
175
    err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1428
175
    if (err)
1429
123
      return err;
1430
175
  }
1431
1432
1.94k
  return 0;
1433
2.06k
}
1434
1435
static struct bpf_object *bpf_object__new(const char *path,
1436
            const void *obj_buf,
1437
            size_t obj_buf_sz,
1438
            const char *obj_name)
1439
11.0k
{
1440
11.0k
  struct bpf_object *obj;
1441
11.0k
  char *end;
1442
1443
11.0k
  obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1444
11.0k
  if (!obj) {
1445
0
    pr_warn("alloc memory failed for %s\n", path);
1446
0
    return ERR_PTR(-ENOMEM);
1447
0
  }
1448
1449
11.0k
  strcpy(obj->path, path);
1450
11.0k
  if (obj_name) {
1451
11.0k
    libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1452
11.0k
  } else {
1453
    /* Using basename() GNU version which doesn't modify arg. */
1454
0
    libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1455
0
    end = strchr(obj->name, '.');
1456
0
    if (end)
1457
0
      *end = 0;
1458
0
  }
1459
1460
11.0k
  obj->efile.fd = -1;
1461
  /*
1462
   * Caller of this function should also call
1463
   * bpf_object__elf_finish() after data collection to return
1464
   * obj_buf to user. If not, we should duplicate the buffer to
1465
   * avoid user freeing them before elf finish.
1466
   */
1467
11.0k
  obj->efile.obj_buf = obj_buf;
1468
11.0k
  obj->efile.obj_buf_sz = obj_buf_sz;
1469
11.0k
  obj->efile.btf_maps_shndx = -1;
1470
11.0k
  obj->kconfig_map_idx = -1;
1471
1472
11.0k
  obj->kern_version = get_kernel_version();
1473
11.0k
  obj->loaded = false;
1474
1475
11.0k
  return obj;
1476
11.0k
}
1477
1478
static void bpf_object__elf_finish(struct bpf_object *obj)
1479
14.8k
{
1480
14.8k
  if (!obj->efile.elf)
1481
3.85k
    return;
1482
1483
10.9k
  elf_end(obj->efile.elf);
1484
10.9k
  obj->efile.elf = NULL;
1485
10.9k
  obj->efile.symbols = NULL;
1486
10.9k
  obj->efile.arena_data = NULL;
1487
1488
10.9k
  zfree(&obj->efile.secs);
1489
10.9k
  obj->efile.sec_cnt = 0;
1490
10.9k
  zclose(obj->efile.fd);
1491
10.9k
  obj->efile.obj_buf = NULL;
1492
10.9k
  obj->efile.obj_buf_sz = 0;
1493
10.9k
}
1494
1495
static int bpf_object__elf_init(struct bpf_object *obj)
1496
11.0k
{
1497
11.0k
  Elf64_Ehdr *ehdr;
1498
11.0k
  int err = 0;
1499
11.0k
  Elf *elf;
1500
1501
11.0k
  if (obj->efile.elf) {
1502
0
    pr_warn("elf: init internal error\n");
1503
0
    return -LIBBPF_ERRNO__LIBELF;
1504
0
  }
1505
1506
11.0k
  if (obj->efile.obj_buf_sz > 0) {
1507
    /* obj_buf should have been validated by bpf_object__open_mem(). */
1508
11.0k
    elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1509
11.0k
  } else {
1510
0
    obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1511
0
    if (obj->efile.fd < 0) {
1512
0
      char errmsg[STRERR_BUFSIZE], *cp;
1513
1514
0
      err = -errno;
1515
0
      cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1516
0
      pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1517
0
      return err;
1518
0
    }
1519
1520
0
    elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1521
0
  }
1522
1523
11.0k
  if (!elf) {
1524
81
    pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1525
81
    err = -LIBBPF_ERRNO__LIBELF;
1526
81
    goto errout;
1527
81
  }
1528
1529
10.9k
  obj->efile.elf = elf;
1530
1531
10.9k
  if (elf_kind(elf) != ELF_K_ELF) {
1532
115
    err = -LIBBPF_ERRNO__FORMAT;
1533
115
    pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1534
115
    goto errout;
1535
115
  }
1536
1537
10.8k
  if (gelf_getclass(elf) != ELFCLASS64) {
1538
476
    err = -LIBBPF_ERRNO__FORMAT;
1539
476
    pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1540
476
    goto errout;
1541
476
  }
1542
1543
10.3k
  obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1544
10.3k
  if (!obj->efile.ehdr) {
1545
0
    pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1546
0
    err = -LIBBPF_ERRNO__FORMAT;
1547
0
    goto errout;
1548
0
  }
1549
1550
10.3k
  if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1551
42
    pr_warn("elf: failed to get section names section index for %s: %s\n",
1552
42
      obj->path, elf_errmsg(-1));
1553
42
    err = -LIBBPF_ERRNO__FORMAT;
1554
42
    goto errout;
1555
42
  }
1556
1557
  /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1558
10.3k
  if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1559
1.09k
    pr_warn("elf: failed to get section names strings from %s: %s\n",
1560
1.09k
      obj->path, elf_errmsg(-1));
1561
1.09k
    err = -LIBBPF_ERRNO__FORMAT;
1562
1.09k
    goto errout;
1563
1.09k
  }
1564
1565
  /* Old LLVM set e_machine to EM_NONE */
1566
9.26k
  if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1567
440
    pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1568
440
    err = -LIBBPF_ERRNO__FORMAT;
1569
440
    goto errout;
1570
440
  }
1571
1572
8.82k
  return 0;
1573
2.24k
errout:
1574
2.24k
  bpf_object__elf_finish(obj);
1575
2.24k
  return err;
1576
9.26k
}
1577
1578
static int bpf_object__check_endianness(struct bpf_object *obj)
1579
8.82k
{
1580
8.82k
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1581
8.82k
  if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1582
8.79k
    return 0;
1583
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1584
  if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1585
    return 0;
1586
#else
1587
# error "Unrecognized __BYTE_ORDER__"
1588
#endif
1589
24
  pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1590
24
  return -LIBBPF_ERRNO__ENDIAN;
1591
8.82k
}
1592
1593
static int
1594
bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1595
611
{
1596
611
  if (!data) {
1597
2
    pr_warn("invalid license section in %s\n", obj->path);
1598
2
    return -LIBBPF_ERRNO__FORMAT;
1599
2
  }
1600
  /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1601
   * go over allowed ELF data section buffer
1602
   */
1603
609
  libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1604
609
  pr_debug("license of %s is %s\n", obj->path, obj->license);
1605
609
  return 0;
1606
611
}
1607
1608
static int
1609
bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1610
87
{
1611
87
  __u32 kver;
1612
1613
87
  if (!data || size != sizeof(kver)) {
1614
17
    pr_warn("invalid kver section in %s\n", obj->path);
1615
17
    return -LIBBPF_ERRNO__FORMAT;
1616
17
  }
1617
70
  memcpy(&kver, data, sizeof(kver));
1618
70
  obj->kern_version = kver;
1619
70
  pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1620
70
  return 0;
1621
87
}
1622
1623
static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1624
133
{
1625
133
  if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1626
133
      type == BPF_MAP_TYPE_HASH_OF_MAPS)
1627
47
    return true;
1628
86
  return false;
1629
133
}
1630
1631
static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1632
401
{
1633
401
  Elf_Data *data;
1634
401
  Elf_Scn *scn;
1635
1636
401
  if (!name)
1637
0
    return -EINVAL;
1638
1639
401
  scn = elf_sec_by_name(obj, name);
1640
401
  data = elf_sec_data(obj, scn);
1641
401
  if (data) {
1642
260
    *size = data->d_size;
1643
260
    return 0; /* found it */
1644
260
  }
1645
1646
141
  return -ENOENT;
1647
401
}
1648
1649
static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1650
1.75k
{
1651
1.75k
  Elf_Data *symbols = obj->efile.symbols;
1652
1.75k
  const char *sname;
1653
1.75k
  size_t si;
1654
1655
76.8k
  for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1656
76.5k
    Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1657
1658
76.5k
    if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1659
69.1k
      continue;
1660
1661
7.45k
    if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1662
7.45k
        ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1663
4.94k
      continue;
1664
1665
2.50k
    sname = elf_sym_str(obj, sym->st_name);
1666
2.50k
    if (!sname) {
1667
33
      pr_warn("failed to get sym name string for var %s\n", name);
1668
33
      return ERR_PTR(-EIO);
1669
33
    }
1670
2.47k
    if (strcmp(name, sname) == 0)
1671
1.49k
      return sym;
1672
2.47k
  }
1673
1674
224
  return ERR_PTR(-ENOENT);
1675
1.75k
}
1676
1677
/* Some versions of Android don't provide memfd_create() in their libc
1678
 * implementation, so avoid complications and just go straight to Linux
1679
 * syscall.
1680
 */
1681
static int sys_memfd_create(const char *name, unsigned flags)
1682
2.75k
{
1683
2.75k
  return syscall(__NR_memfd_create, name, flags);
1684
2.75k
}
1685
1686
#ifndef MFD_CLOEXEC
1687
#define MFD_CLOEXEC 0x0001U
1688
#endif
1689
1690
static int create_placeholder_fd(void)
1691
2.75k
{
1692
2.75k
  int fd;
1693
1694
2.75k
  fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1695
2.75k
  if (fd < 0)
1696
0
    return -errno;
1697
2.75k
  return fd;
1698
2.75k
}
1699
1700
static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1701
2.75k
{
1702
2.75k
  struct bpf_map *map;
1703
2.75k
  int err;
1704
1705
2.75k
  err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1706
2.75k
        sizeof(*obj->maps), obj->nr_maps + 1);
1707
2.75k
  if (err)
1708
0
    return ERR_PTR(err);
1709
1710
2.75k
  map = &obj->maps[obj->nr_maps++];
1711
2.75k
  map->obj = obj;
1712
  /* Preallocate map FD without actually creating BPF map just yet.
1713
   * These map FD "placeholders" will be reused later without changing
1714
   * FD value when map is actually created in the kernel.
1715
   *
1716
   * This is useful to be able to perform BPF program relocations
1717
   * without having to create BPF maps before that step. This allows us
1718
   * to finalize and load BTF very late in BPF object's loading phase,
1719
   * right before BPF maps have to be created and BPF programs have to
1720
   * be loaded. By having these map FD placeholders we can perform all
1721
   * the sanitizations, relocations, and any other adjustments before we
1722
   * start creating actual BPF kernel objects (BTF, maps, progs).
1723
   */
1724
2.75k
  map->fd = create_placeholder_fd();
1725
2.75k
  if (map->fd < 0)
1726
0
    return ERR_PTR(map->fd);
1727
2.75k
  map->inner_map_fd = -1;
1728
2.75k
  map->autocreate = true;
1729
1730
2.75k
  return map;
1731
2.75k
}
1732
1733
static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1734
3.43k
{
1735
3.43k
  const long page_sz = sysconf(_SC_PAGE_SIZE);
1736
3.43k
  size_t map_sz;
1737
1738
3.43k
  map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1739
3.43k
  map_sz = roundup(map_sz, page_sz);
1740
3.43k
  return map_sz;
1741
3.43k
}
1742
1743
static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1744
3.43k
{
1745
3.43k
  const long page_sz = sysconf(_SC_PAGE_SIZE);
1746
1747
3.43k
  switch (map->def.type) {
1748
3.43k
  case BPF_MAP_TYPE_ARRAY:
1749
3.43k
    return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1750
0
  case BPF_MAP_TYPE_ARENA:
1751
0
    return page_sz * map->def.max_entries;
1752
0
  default:
1753
0
    return 0; /* not supported */
1754
3.43k
  }
1755
3.43k
}
1756
1757
static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1758
0
{
1759
0
  void *mmaped;
1760
1761
0
  if (!map->mmaped)
1762
0
    return -EINVAL;
1763
1764
0
  if (old_sz == new_sz)
1765
0
    return 0;
1766
1767
0
  mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1768
0
  if (mmaped == MAP_FAILED)
1769
0
    return -errno;
1770
1771
0
  memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1772
0
  munmap(map->mmaped, old_sz);
1773
0
  map->mmaped = mmaped;
1774
0
  return 0;
1775
0
}
1776
1777
static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1778
1.76k
{
1779
1.76k
  char map_name[BPF_OBJ_NAME_LEN], *p;
1780
1.76k
  int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1781
1782
  /* This is one of the more confusing parts of libbpf for various
1783
   * reasons, some of which are historical. The original idea for naming
1784
   * internal names was to include as much of BPF object name prefix as
1785
   * possible, so that it can be distinguished from similar internal
1786
   * maps of a different BPF object.
1787
   * As an example, let's say we have bpf_object named 'my_object_name'
1788
   * and internal map corresponding to '.rodata' ELF section. The final
1789
   * map name advertised to user and to the kernel will be
1790
   * 'my_objec.rodata', taking first 8 characters of object name and
1791
   * entire 7 characters of '.rodata'.
1792
   * Somewhat confusingly, if internal map ELF section name is shorter
1793
   * than 7 characters, e.g., '.bss', we still reserve 7 characters
1794
   * for the suffix, even though we only have 4 actual characters, and
1795
   * resulting map will be called 'my_objec.bss', not even using all 15
1796
   * characters allowed by the kernel. Oh well, at least the truncated
1797
   * object name is somewhat consistent in this case. But if the map
1798
   * name is '.kconfig', we'll still have entirety of '.kconfig' added
1799
   * (8 chars) and thus will be left with only first 7 characters of the
1800
   * object name ('my_obje'). Happy guessing, user, that the final map
1801
   * name will be "my_obje.kconfig".
1802
   * Now, with libbpf starting to support arbitrarily named .rodata.*
1803
   * and .data.* data sections, it's possible that ELF section name is
1804
   * longer than allowed 15 chars, so we now need to be careful to take
1805
   * only up to 15 first characters of ELF name, taking no BPF object
1806
   * name characters at all. So '.rodata.abracadabra' will result in
1807
   * '.rodata.abracad' kernel and user-visible name.
1808
   * We need to keep this convoluted logic intact for .data, .bss and
1809
   * .rodata maps, but for new custom .data.custom and .rodata.custom
1810
   * maps we use their ELF names as is, not prepending bpf_object name
1811
   * in front. We still need to truncate them to 15 characters for the
1812
   * kernel. Full name can be recovered for such maps by using DATASEC
1813
   * BTF type associated with such map's value type, though.
1814
   */
1815
1.76k
  if (sfx_len >= BPF_OBJ_NAME_LEN)
1816
348
    sfx_len = BPF_OBJ_NAME_LEN - 1;
1817
1818
  /* if there are two or more dots in map name, it's a custom dot map */
1819
1.76k
  if (strchr(real_name + 1, '.') != NULL)
1820
1.31k
    pfx_len = 0;
1821
451
  else
1822
451
    pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1823
1824
1.76k
  snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1825
1.76k
     sfx_len, real_name);
1826
1827
  /* sanitise map name to characters allowed by kernel */
1828
23.4k
  for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1829
21.6k
    if (!isalnum(*p) && *p != '_' && *p != '.')
1830
3.45k
      *p = '_';
1831
1832
1.76k
  return strdup(map_name);
1833
1.76k
}
1834
1835
static int
1836
map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1837
1838
/* Internal BPF map is mmap()'able only if at least one of corresponding
1839
 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1840
 * variable and it's not marked as __hidden (which turns it into, effectively,
1841
 * a STATIC variable).
1842
 */
1843
static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1844
1.76k
{
1845
1.76k
  const struct btf_type *t, *vt;
1846
1.76k
  struct btf_var_secinfo *vsi;
1847
1.76k
  int i, n;
1848
1849
1.76k
  if (!map->btf_value_type_id)
1850
1.60k
    return false;
1851
1852
158
  t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1853
158
  if (!btf_is_datasec(t))
1854
28
    return false;
1855
1856
130
  vsi = btf_var_secinfos(t);
1857
215
  for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1858
176
    vt = btf__type_by_id(obj->btf, vsi->type);
1859
176
    if (!btf_is_var(vt))
1860
64
      continue;
1861
1862
112
    if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1863
91
      return true;
1864
112
  }
1865
1866
39
  return false;
1867
130
}
1868
1869
static int
1870
bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1871
            const char *real_name, int sec_idx, void *data, size_t data_sz)
1872
1.76k
{
1873
1.76k
  struct bpf_map_def *def;
1874
1.76k
  struct bpf_map *map;
1875
1.76k
  size_t mmap_sz;
1876
1.76k
  int err;
1877
1878
1.76k
  map = bpf_object__add_map(obj);
1879
1.76k
  if (IS_ERR(map))
1880
0
    return PTR_ERR(map);
1881
1882
1.76k
  map->libbpf_type = type;
1883
1.76k
  map->sec_idx = sec_idx;
1884
1.76k
  map->sec_offset = 0;
1885
1.76k
  map->real_name = strdup(real_name);
1886
1.76k
  map->name = internal_map_name(obj, real_name);
1887
1.76k
  if (!map->real_name || !map->name) {
1888
0
    zfree(&map->real_name);
1889
0
    zfree(&map->name);
1890
0
    return -ENOMEM;
1891
0
  }
1892
1893
1.76k
  def = &map->def;
1894
1.76k
  def->type = BPF_MAP_TYPE_ARRAY;
1895
1.76k
  def->key_size = sizeof(int);
1896
1.76k
  def->value_size = data_sz;
1897
1.76k
  def->max_entries = 1;
1898
1.76k
  def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1899
1.76k
    ? BPF_F_RDONLY_PROG : 0;
1900
1901
  /* failures are fine because of maps like .rodata.str1.1 */
1902
1.76k
  (void) map_fill_btf_type_info(obj, map);
1903
1904
1.76k
  if (map_is_mmapable(obj, map))
1905
91
    def->map_flags |= BPF_F_MMAPABLE;
1906
1907
1.76k
  pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1908
1.76k
     map->name, map->sec_idx, map->sec_offset, def->map_flags);
1909
1910
1.76k
  mmap_sz = bpf_map_mmap_sz(map);
1911
1.76k
  map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1912
1.76k
         MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1913
1.76k
  if (map->mmaped == MAP_FAILED) {
1914
94
    err = -errno;
1915
94
    map->mmaped = NULL;
1916
94
    pr_warn("failed to alloc map '%s' content buffer: %d\n",
1917
94
      map->name, err);
1918
94
    zfree(&map->real_name);
1919
94
    zfree(&map->name);
1920
94
    return err;
1921
94
  }
1922
1923
1.67k
  if (data)
1924
861
    memcpy(map->mmaped, data, data_sz);
1925
1926
1.67k
  pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1927
1.67k
  return 0;
1928
1.76k
}
1929
1930
static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1931
2.15k
{
1932
2.15k
  struct elf_sec_desc *sec_desc;
1933
2.15k
  const char *sec_name;
1934
2.15k
  int err = 0, sec_idx;
1935
1936
  /*
1937
   * Populate obj->maps with libbpf internal maps.
1938
   */
1939
17.1k
  for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1940
14.9k
    sec_desc = &obj->efile.secs[sec_idx];
1941
1942
    /* Skip recognized sections with size 0. */
1943
14.9k
    if (!sec_desc->data || sec_desc->data->d_size == 0)
1944
12.1k
      continue;
1945
1946
2.80k
    switch (sec_desc->sec_type) {
1947
502
    case SEC_DATA:
1948
502
      sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1949
502
      err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1950
502
                  sec_name, sec_idx,
1951
502
                  sec_desc->data->d_buf,
1952
502
                  sec_desc->data->d_size);
1953
502
      break;
1954
359
    case SEC_RODATA:
1955
359
      obj->has_rodata = true;
1956
359
      sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1957
359
      err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1958
359
                  sec_name, sec_idx,
1959
359
                  sec_desc->data->d_buf,
1960
359
                  sec_desc->data->d_size);
1961
359
      break;
1962
824
    case SEC_BSS:
1963
824
      sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1964
824
      err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1965
824
                  sec_name, sec_idx,
1966
824
                  NULL,
1967
824
                  sec_desc->data->d_size);
1968
824
      break;
1969
1.12k
    default:
1970
      /* skip */
1971
1.12k
      break;
1972
2.80k
    }
1973
2.80k
    if (err)
1974
29
      return err;
1975
2.80k
  }
1976
2.12k
  return 0;
1977
2.15k
}
1978
1979
1980
static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1981
                 const void *name)
1982
950
{
1983
950
  int i;
1984
1985
2.69k
  for (i = 0; i < obj->nr_extern; i++) {
1986
2.20k
    if (strcmp(obj->externs[i].name, name) == 0)
1987
458
      return &obj->externs[i];
1988
2.20k
  }
1989
492
  return NULL;
1990
950
}
1991
1992
static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
1993
              const void *name, int len)
1994
0
{
1995
0
  const char *ext_name;
1996
0
  int i;
1997
1998
0
  for (i = 0; i < obj->nr_extern; i++) {
1999
0
    ext_name = obj->externs[i].name;
2000
0
    if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2001
0
      return &obj->externs[i];
2002
0
  }
2003
0
  return NULL;
2004
0
}
2005
2006
static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2007
            char value)
2008
0
{
2009
0
  switch (ext->kcfg.type) {
2010
0
  case KCFG_BOOL:
2011
0
    if (value == 'm') {
2012
0
      pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2013
0
        ext->name, value);
2014
0
      return -EINVAL;
2015
0
    }
2016
0
    *(bool *)ext_val = value == 'y' ? true : false;
2017
0
    break;
2018
0
  case KCFG_TRISTATE:
2019
0
    if (value == 'y')
2020
0
      *(enum libbpf_tristate *)ext_val = TRI_YES;
2021
0
    else if (value == 'm')
2022
0
      *(enum libbpf_tristate *)ext_val = TRI_MODULE;
2023
0
    else /* value == 'n' */
2024
0
      *(enum libbpf_tristate *)ext_val = TRI_NO;
2025
0
    break;
2026
0
  case KCFG_CHAR:
2027
0
    *(char *)ext_val = value;
2028
0
    break;
2029
0
  case KCFG_UNKNOWN:
2030
0
  case KCFG_INT:
2031
0
  case KCFG_CHAR_ARR:
2032
0
  default:
2033
0
    pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2034
0
      ext->name, value);
2035
0
    return -EINVAL;
2036
0
  }
2037
0
  ext->is_set = true;
2038
0
  return 0;
2039
0
}
2040
2041
static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2042
            const char *value)
2043
0
{
2044
0
  size_t len;
2045
2046
0
  if (ext->kcfg.type != KCFG_CHAR_ARR) {
2047
0
    pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2048
0
      ext->name, value);
2049
0
    return -EINVAL;
2050
0
  }
2051
2052
0
  len = strlen(value);
2053
0
  if (value[len - 1] != '"') {
2054
0
    pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2055
0
      ext->name, value);
2056
0
    return -EINVAL;
2057
0
  }
2058
2059
  /* strip quotes */
2060
0
  len -= 2;
2061
0
  if (len >= ext->kcfg.sz) {
2062
0
    pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2063
0
      ext->name, value, len, ext->kcfg.sz - 1);
2064
0
    len = ext->kcfg.sz - 1;
2065
0
  }
2066
0
  memcpy(ext_val, value + 1, len);
2067
0
  ext_val[len] = '\0';
2068
0
  ext->is_set = true;
2069
0
  return 0;
2070
0
}
2071
2072
static int parse_u64(const char *value, __u64 *res)
2073
0
{
2074
0
  char *value_end;
2075
0
  int err;
2076
2077
0
  errno = 0;
2078
0
  *res = strtoull(value, &value_end, 0);
2079
0
  if (errno) {
2080
0
    err = -errno;
2081
0
    pr_warn("failed to parse '%s' as integer: %d\n", value, err);
2082
0
    return err;
2083
0
  }
2084
0
  if (*value_end) {
2085
0
    pr_warn("failed to parse '%s' as integer completely\n", value);
2086
0
    return -EINVAL;
2087
0
  }
2088
0
  return 0;
2089
0
}
2090
2091
static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2092
0
{
2093
0
  int bit_sz = ext->kcfg.sz * 8;
2094
2095
0
  if (ext->kcfg.sz == 8)
2096
0
    return true;
2097
2098
  /* Validate that value stored in u64 fits in integer of `ext->sz`
2099
   * bytes size without any loss of information. If the target integer
2100
   * is signed, we rely on the following limits of integer type of
2101
   * Y bits and subsequent transformation:
2102
   *
2103
   *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
2104
   *            0 <= X + 2^(Y-1) <= 2^Y - 1
2105
   *            0 <= X + 2^(Y-1) <  2^Y
2106
   *
2107
   *  For unsigned target integer, check that all the (64 - Y) bits are
2108
   *  zero.
2109
   */
2110
0
  if (ext->kcfg.is_signed)
2111
0
    return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2112
0
  else
2113
0
    return (v >> bit_sz) == 0;
2114
0
}
2115
2116
static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2117
            __u64 value)
2118
0
{
2119
0
  if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2120
0
      ext->kcfg.type != KCFG_BOOL) {
2121
0
    pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2122
0
      ext->name, (unsigned long long)value);
2123
0
    return -EINVAL;
2124
0
  }
2125
0
  if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2126
0
    pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2127
0
      ext->name, (unsigned long long)value);
2128
0
    return -EINVAL;
2129
2130
0
  }
2131
0
  if (!is_kcfg_value_in_range(ext, value)) {
2132
0
    pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2133
0
      ext->name, (unsigned long long)value, ext->kcfg.sz);
2134
0
    return -ERANGE;
2135
0
  }
2136
0
  switch (ext->kcfg.sz) {
2137
0
  case 1:
2138
0
    *(__u8 *)ext_val = value;
2139
0
    break;
2140
0
  case 2:
2141
0
    *(__u16 *)ext_val = value;
2142
0
    break;
2143
0
  case 4:
2144
0
    *(__u32 *)ext_val = value;
2145
0
    break;
2146
0
  case 8:
2147
0
    *(__u64 *)ext_val = value;
2148
0
    break;
2149
0
  default:
2150
0
    return -EINVAL;
2151
0
  }
2152
0
  ext->is_set = true;
2153
0
  return 0;
2154
0
}
2155
2156
static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2157
              char *buf, void *data)
2158
0
{
2159
0
  struct extern_desc *ext;
2160
0
  char *sep, *value;
2161
0
  int len, err = 0;
2162
0
  void *ext_val;
2163
0
  __u64 num;
2164
2165
0
  if (!str_has_pfx(buf, "CONFIG_"))
2166
0
    return 0;
2167
2168
0
  sep = strchr(buf, '=');
2169
0
  if (!sep) {
2170
0
    pr_warn("failed to parse '%s': no separator\n", buf);
2171
0
    return -EINVAL;
2172
0
  }
2173
2174
  /* Trim ending '\n' */
2175
0
  len = strlen(buf);
2176
0
  if (buf[len - 1] == '\n')
2177
0
    buf[len - 1] = '\0';
2178
  /* Split on '=' and ensure that a value is present. */
2179
0
  *sep = '\0';
2180
0
  if (!sep[1]) {
2181
0
    *sep = '=';
2182
0
    pr_warn("failed to parse '%s': no value\n", buf);
2183
0
    return -EINVAL;
2184
0
  }
2185
2186
0
  ext = find_extern_by_name(obj, buf);
2187
0
  if (!ext || ext->is_set)
2188
0
    return 0;
2189
2190
0
  ext_val = data + ext->kcfg.data_off;
2191
0
  value = sep + 1;
2192
2193
0
  switch (*value) {
2194
0
  case 'y': case 'n': case 'm':
2195
0
    err = set_kcfg_value_tri(ext, ext_val, *value);
2196
0
    break;
2197
0
  case '"':
2198
0
    err = set_kcfg_value_str(ext, ext_val, value);
2199
0
    break;
2200
0
  default:
2201
    /* assume integer */
2202
0
    err = parse_u64(value, &num);
2203
0
    if (err) {
2204
0
      pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2205
0
      return err;
2206
0
    }
2207
0
    if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2208
0
      pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2209
0
      return -EINVAL;
2210
0
    }
2211
0
    err = set_kcfg_value_num(ext, ext_val, num);
2212
0
    break;
2213
0
  }
2214
0
  if (err)
2215
0
    return err;
2216
0
  pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2217
0
  return 0;
2218
0
}
2219
2220
static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2221
0
{
2222
0
  char buf[PATH_MAX];
2223
0
  struct utsname uts;
2224
0
  int len, err = 0;
2225
0
  gzFile file;
2226
2227
0
  uname(&uts);
2228
0
  len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2229
0
  if (len < 0)
2230
0
    return -EINVAL;
2231
0
  else if (len >= PATH_MAX)
2232
0
    return -ENAMETOOLONG;
2233
2234
  /* gzopen also accepts uncompressed files. */
2235
0
  file = gzopen(buf, "re");
2236
0
  if (!file)
2237
0
    file = gzopen("/proc/config.gz", "re");
2238
2239
0
  if (!file) {
2240
0
    pr_warn("failed to open system Kconfig\n");
2241
0
    return -ENOENT;
2242
0
  }
2243
2244
0
  while (gzgets(file, buf, sizeof(buf))) {
2245
0
    err = bpf_object__process_kconfig_line(obj, buf, data);
2246
0
    if (err) {
2247
0
      pr_warn("error parsing system Kconfig line '%s': %d\n",
2248
0
        buf, err);
2249
0
      goto out;
2250
0
    }
2251
0
  }
2252
2253
0
out:
2254
0
  gzclose(file);
2255
0
  return err;
2256
0
}
2257
2258
static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2259
          const char *config, void *data)
2260
0
{
2261
0
  char buf[PATH_MAX];
2262
0
  int err = 0;
2263
0
  FILE *file;
2264
2265
0
  file = fmemopen((void *)config, strlen(config), "r");
2266
0
  if (!file) {
2267
0
    err = -errno;
2268
0
    pr_warn("failed to open in-memory Kconfig: %d\n", err);
2269
0
    return err;
2270
0
  }
2271
2272
0
  while (fgets(buf, sizeof(buf), file)) {
2273
0
    err = bpf_object__process_kconfig_line(obj, buf, data);
2274
0
    if (err) {
2275
0
      pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2276
0
        buf, err);
2277
0
      break;
2278
0
    }
2279
0
  }
2280
2281
0
  fclose(file);
2282
0
  return err;
2283
0
}
2284
2285
static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2286
2.12k
{
2287
2.12k
  struct extern_desc *last_ext = NULL, *ext;
2288
2.12k
  size_t map_sz;
2289
2.12k
  int i, err;
2290
2291
3.52k
  for (i = 0; i < obj->nr_extern; i++) {
2292
1.39k
    ext = &obj->externs[i];
2293
1.39k
    if (ext->type == EXT_KCFG)
2294
133
      last_ext = ext;
2295
1.39k
  }
2296
2297
2.12k
  if (!last_ext)
2298
2.04k
    return 0;
2299
2300
79
  map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2301
79
  err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2302
79
              ".kconfig", obj->efile.symbols_shndx,
2303
79
              NULL, map_sz);
2304
79
  if (err)
2305
65
    return err;
2306
2307
14
  obj->kconfig_map_idx = obj->nr_maps - 1;
2308
2309
14
  return 0;
2310
79
}
2311
2312
const struct btf_type *
2313
skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2314
5.29k
{
2315
5.29k
  const struct btf_type *t = btf__type_by_id(btf, id);
2316
2317
5.29k
  if (res_id)
2318
2.48k
    *res_id = id;
2319
2320
7.31k
  while (btf_is_mod(t) || btf_is_typedef(t)) {
2321
2.02k
    if (res_id)
2322
1.35k
      *res_id = t->type;
2323
2.02k
    t = btf__type_by_id(btf, t->type);
2324
2.02k
  }
2325
2326
5.29k
  return t;
2327
5.29k
}
2328
2329
static const struct btf_type *
2330
resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2331
0
{
2332
0
  const struct btf_type *t;
2333
2334
0
  t = skip_mods_and_typedefs(btf, id, NULL);
2335
0
  if (!btf_is_ptr(t))
2336
0
    return NULL;
2337
2338
0
  t = skip_mods_and_typedefs(btf, t->type, res_id);
2339
2340
0
  return btf_is_func_proto(t) ? t : NULL;
2341
0
}
2342
2343
static const char *__btf_kind_str(__u16 kind)
2344
397
{
2345
397
  switch (kind) {
2346
48
  case BTF_KIND_UNKN: return "void";
2347
14
  case BTF_KIND_INT: return "int";
2348
3
  case BTF_KIND_PTR: return "ptr";
2349
10
  case BTF_KIND_ARRAY: return "array";
2350
7
  case BTF_KIND_STRUCT: return "struct";
2351
4
  case BTF_KIND_UNION: return "union";
2352
2
  case BTF_KIND_ENUM: return "enum";
2353
5
  case BTF_KIND_FWD: return "fwd";
2354
6
  case BTF_KIND_TYPEDEF: return "typedef";
2355
2
  case BTF_KIND_VOLATILE: return "volatile";
2356
4
  case BTF_KIND_CONST: return "const";
2357
3
  case BTF_KIND_RESTRICT: return "restrict";
2358
156
  case BTF_KIND_FUNC: return "func";
2359
13
  case BTF_KIND_FUNC_PROTO: return "func_proto";
2360
51
  case BTF_KIND_VAR: return "var";
2361
52
  case BTF_KIND_DATASEC: return "datasec";
2362
5
  case BTF_KIND_FLOAT: return "float";
2363
3
  case BTF_KIND_DECL_TAG: return "decl_tag";
2364
2
  case BTF_KIND_TYPE_TAG: return "type_tag";
2365
7
  case BTF_KIND_ENUM64: return "enum64";
2366
0
  default: return "unknown";
2367
397
  }
2368
397
}
2369
2370
const char *btf_kind_str(const struct btf_type *t)
2371
397
{
2372
397
  return __btf_kind_str(btf_kind(t));
2373
397
}
2374
2375
/*
2376
 * Fetch integer attribute of BTF map definition. Such attributes are
2377
 * represented using a pointer to an array, in which dimensionality of array
2378
 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2379
 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2380
 * type definition, while using only sizeof(void *) space in ELF data section.
2381
 */
2382
static bool get_map_field_int(const char *map_name, const struct btf *btf,
2383
            const struct btf_member *m, __u32 *res)
2384
718
{
2385
718
  const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2386
718
  const char *name = btf__name_by_offset(btf, m->name_off);
2387
718
  const struct btf_array *arr_info;
2388
718
  const struct btf_type *arr_t;
2389
2390
718
  if (!btf_is_ptr(t)) {
2391
21
    pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2392
21
      map_name, name, btf_kind_str(t));
2393
21
    return false;
2394
21
  }
2395
2396
697
  arr_t = btf__type_by_id(btf, t->type);
2397
697
  if (!arr_t) {
2398
0
    pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2399
0
      map_name, name, t->type);
2400
0
    return false;
2401
0
  }
2402
697
  if (!btf_is_array(arr_t)) {
2403
12
    pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2404
12
      map_name, name, btf_kind_str(arr_t));
2405
12
    return false;
2406
12
  }
2407
685
  arr_info = btf_array(arr_t);
2408
685
  *res = arr_info->nelems;
2409
685
  return true;
2410
697
}
2411
2412
static bool get_map_field_long(const char *map_name, const struct btf *btf,
2413
             const struct btf_member *m, __u64 *res)
2414
38
{
2415
38
  const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2416
38
  const char *name = btf__name_by_offset(btf, m->name_off);
2417
2418
38
  if (btf_is_ptr(t)) {
2419
22
    __u32 res32;
2420
22
    bool ret;
2421
2422
22
    ret = get_map_field_int(map_name, btf, m, &res32);
2423
22
    if (ret)
2424
21
      *res = (__u64)res32;
2425
22
    return ret;
2426
22
  }
2427
2428
16
  if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2429
9
    pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2430
9
      map_name, name, btf_kind_str(t));
2431
9
    return false;
2432
9
  }
2433
2434
7
  if (btf_vlen(t) != 1) {
2435
1
    pr_warn("map '%s': attr '%s': invalid __ulong\n",
2436
1
      map_name, name);
2437
1
    return false;
2438
1
  }
2439
2440
6
  if (btf_is_enum(t)) {
2441
3
    const struct btf_enum *e = btf_enum(t);
2442
2443
3
    *res = e->val;
2444
3
  } else {
2445
3
    const struct btf_enum64 *e = btf_enum64(t);
2446
2447
3
    *res = btf_enum64_value(e);
2448
3
  }
2449
6
  return true;
2450
7
}
2451
2452
static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2453
1
{
2454
1
  int len;
2455
2456
1
  len = snprintf(buf, buf_sz, "%s/%s", path, name);
2457
1
  if (len < 0)
2458
0
    return -EINVAL;
2459
1
  if (len >= buf_sz)
2460
0
    return -ENAMETOOLONG;
2461
2462
1
  return 0;
2463
1
}
2464
2465
static int build_map_pin_path(struct bpf_map *map, const char *path)
2466
1
{
2467
1
  char buf[PATH_MAX];
2468
1
  int err;
2469
2470
1
  if (!path)
2471
1
    path = BPF_FS_DEFAULT_PATH;
2472
2473
1
  err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2474
1
  if (err)
2475
0
    return err;
2476
2477
1
  return bpf_map__set_pin_path(map, buf);
2478
1
}
2479
2480
/* should match definition in bpf_helpers.h */
2481
enum libbpf_pin_type {
2482
  LIBBPF_PIN_NONE,
2483
  /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2484
  LIBBPF_PIN_BY_NAME,
2485
};
2486
2487
int parse_btf_map_def(const char *map_name, struct btf *btf,
2488
          const struct btf_type *def_t, bool strict,
2489
          struct btf_map_def *map_def, struct btf_map_def *inner_def)
2490
949
{
2491
949
  const struct btf_type *t;
2492
949
  const struct btf_member *m;
2493
949
  bool is_inner = inner_def == NULL;
2494
949
  int vlen, i;
2495
2496
949
  vlen = btf_vlen(def_t);
2497
949
  m = btf_members(def_t);
2498
2.01k
  for (i = 0; i < vlen; i++, m++) {
2499
1.90k
    const char *name = btf__name_by_offset(btf, m->name_off);
2500
2501
1.90k
    if (!name) {
2502
0
      pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2503
0
      return -EINVAL;
2504
0
    }
2505
1.90k
    if (strcmp(name, "type") == 0) {
2506
259
      if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2507
3
        return -EINVAL;
2508
256
      map_def->parts |= MAP_DEF_MAP_TYPE;
2509
1.64k
    } else if (strcmp(name, "max_entries") == 0) {
2510
26
      if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2511
1
        return -EINVAL;
2512
25
      map_def->parts |= MAP_DEF_MAX_ENTRIES;
2513
1.62k
    } else if (strcmp(name, "map_flags") == 0) {
2514
21
      if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2515
4
        return -EINVAL;
2516
17
      map_def->parts |= MAP_DEF_MAP_FLAGS;
2517
1.59k
    } else if (strcmp(name, "numa_node") == 0) {
2518
18
      if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2519
4
        return -EINVAL;
2520
14
      map_def->parts |= MAP_DEF_NUMA_NODE;
2521
1.58k
    } else if (strcmp(name, "key_size") == 0) {
2522
192
      __u32 sz;
2523
2524
192
      if (!get_map_field_int(map_name, btf, m, &sz))
2525
16
        return -EINVAL;
2526
176
      if (map_def->key_size && map_def->key_size != sz) {
2527
40
        pr_warn("map '%s': conflicting key size %u != %u.\n",
2528
40
          map_name, map_def->key_size, sz);
2529
40
        return -EINVAL;
2530
40
      }
2531
136
      map_def->key_size = sz;
2532
136
      map_def->parts |= MAP_DEF_KEY_SIZE;
2533
1.38k
    } else if (strcmp(name, "key") == 0) {
2534
199
      __s64 sz;
2535
2536
199
      t = btf__type_by_id(btf, m->type);
2537
199
      if (!t) {
2538
0
        pr_warn("map '%s': key type [%d] not found.\n",
2539
0
          map_name, m->type);
2540
0
        return -EINVAL;
2541
0
      }
2542
199
      if (!btf_is_ptr(t)) {
2543
4
        pr_warn("map '%s': key spec is not PTR: %s.\n",
2544
4
          map_name, btf_kind_str(t));
2545
4
        return -EINVAL;
2546
4
      }
2547
195
      sz = btf__resolve_size(btf, t->type);
2548
195
      if (sz < 0) {
2549
11
        pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2550
11
          map_name, t->type, (ssize_t)sz);
2551
11
        return sz;
2552
11
      }
2553
184
      if (map_def->key_size && map_def->key_size != sz) {
2554
5
        pr_warn("map '%s': conflicting key size %u != %zd.\n",
2555
5
          map_name, map_def->key_size, (ssize_t)sz);
2556
5
        return -EINVAL;
2557
5
      }
2558
179
      map_def->key_size = sz;
2559
179
      map_def->key_type_id = t->type;
2560
179
      map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2561
1.19k
    } else if (strcmp(name, "value_size") == 0) {
2562
118
      __u32 sz;
2563
2564
118
      if (!get_map_field_int(map_name, btf, m, &sz))
2565
2
        return -EINVAL;
2566
116
      if (map_def->value_size && map_def->value_size != sz) {
2567
51
        pr_warn("map '%s': conflicting value size %u != %u.\n",
2568
51
          map_name, map_def->value_size, sz);
2569
51
        return -EINVAL;
2570
51
      }
2571
65
      map_def->value_size = sz;
2572
65
      map_def->parts |= MAP_DEF_VALUE_SIZE;
2573
1.07k
    } else if (strcmp(name, "value") == 0) {
2574
348
      __s64 sz;
2575
2576
348
      t = btf__type_by_id(btf, m->type);
2577
348
      if (!t) {
2578
0
        pr_warn("map '%s': value type [%d] not found.\n",
2579
0
          map_name, m->type);
2580
0
        return -EINVAL;
2581
0
      }
2582
348
      if (!btf_is_ptr(t)) {
2583
7
        pr_warn("map '%s': value spec is not PTR: %s.\n",
2584
7
          map_name, btf_kind_str(t));
2585
7
        return -EINVAL;
2586
7
      }
2587
341
      sz = btf__resolve_size(btf, t->type);
2588
341
      if (sz < 0) {
2589
9
        pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2590
9
          map_name, t->type, (ssize_t)sz);
2591
9
        return sz;
2592
9
      }
2593
332
      if (map_def->value_size && map_def->value_size != sz) {
2594
2
        pr_warn("map '%s': conflicting value size %u != %zd.\n",
2595
2
          map_name, map_def->value_size, (ssize_t)sz);
2596
2
        return -EINVAL;
2597
2
      }
2598
330
      map_def->value_size = sz;
2599
330
      map_def->value_type_id = t->type;
2600
330
      map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2601
330
    }
2602
724
    else if (strcmp(name, "values") == 0) {
2603
133
      bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2604
133
      bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2605
133
      const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2606
133
      char inner_map_name[128];
2607
133
      int err;
2608
2609
133
      if (is_inner) {
2610
2
        pr_warn("map '%s': multi-level inner maps not supported.\n",
2611
2
          map_name);
2612
2
        return -ENOTSUP;
2613
2
      }
2614
131
      if (i != vlen - 1) {
2615
41
        pr_warn("map '%s': '%s' member should be last.\n",
2616
41
          map_name, name);
2617
41
        return -EINVAL;
2618
41
      }
2619
90
      if (!is_map_in_map && !is_prog_array) {
2620
23
        pr_warn("map '%s': should be map-in-map or prog-array.\n",
2621
23
          map_name);
2622
23
        return -ENOTSUP;
2623
23
      }
2624
67
      if (map_def->value_size && map_def->value_size != 4) {
2625
42
        pr_warn("map '%s': conflicting value size %u != 4.\n",
2626
42
          map_name, map_def->value_size);
2627
42
        return -EINVAL;
2628
42
      }
2629
25
      map_def->value_size = 4;
2630
25
      t = btf__type_by_id(btf, m->type);
2631
25
      if (!t) {
2632
0
        pr_warn("map '%s': %s type [%d] not found.\n",
2633
0
          map_name, desc, m->type);
2634
0
        return -EINVAL;
2635
0
      }
2636
25
      if (!btf_is_array(t) || btf_array(t)->nelems) {
2637
16
        pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2638
16
          map_name, desc);
2639
16
        return -EINVAL;
2640
16
      }
2641
9
      t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2642
9
      if (!btf_is_ptr(t)) {
2643
2
        pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2644
2
          map_name, desc, btf_kind_str(t));
2645
2
        return -EINVAL;
2646
2
      }
2647
7
      t = skip_mods_and_typedefs(btf, t->type, NULL);
2648
7
      if (is_prog_array) {
2649
1
        if (!btf_is_func_proto(t)) {
2650
1
          pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2651
1
            map_name, btf_kind_str(t));
2652
1
          return -EINVAL;
2653
1
        }
2654
0
        continue;
2655
1
      }
2656
6
      if (!btf_is_struct(t)) {
2657
4
        pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2658
4
          map_name, btf_kind_str(t));
2659
4
        return -EINVAL;
2660
4
      }
2661
2662
2
      snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2663
2
      err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2664
2
      if (err)
2665
2
        return err;
2666
2667
0
      map_def->parts |= MAP_DEF_INNER_MAP;
2668
591
    } else if (strcmp(name, "pinning") == 0) {
2669
62
      __u32 val;
2670
2671
62
      if (is_inner) {
2672
0
        pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2673
0
        return -EINVAL;
2674
0
      }
2675
62
      if (!get_map_field_int(map_name, btf, m, &val))
2676
2
        return -EINVAL;
2677
60
      if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2678
48
        pr_warn("map '%s': invalid pinning value %u.\n",
2679
48
          map_name, val);
2680
48
        return -EINVAL;
2681
48
      }
2682
12
      map_def->pinning = val;
2683
12
      map_def->parts |= MAP_DEF_PINNING;
2684
529
    } else if (strcmp(name, "map_extra") == 0) {
2685
38
      __u64 map_extra;
2686
2687
38
      if (!get_map_field_long(map_name, btf, m, &map_extra))
2688
11
        return -EINVAL;
2689
27
      map_def->map_extra = map_extra;
2690
27
      map_def->parts |= MAP_DEF_MAP_EXTRA;
2691
491
    } else {
2692
491
      if (strict) {
2693
491
        pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2694
491
        return -ENOTSUP;
2695
491
      }
2696
0
      pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2697
0
    }
2698
1.90k
  }
2699
2700
105
  if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2701
34
    pr_warn("map '%s': map type isn't specified.\n", map_name);
2702
34
    return -EINVAL;
2703
34
  }
2704
2705
71
  return 0;
2706
105
}
2707
2708
static size_t adjust_ringbuf_sz(size_t sz)
2709
3
{
2710
3
  __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2711
3
  __u32 mul;
2712
2713
  /* if user forgot to set any size, make sure they see error */
2714
3
  if (sz == 0)
2715
1
    return 0;
2716
  /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2717
   * a power-of-2 multiple of kernel's page size. If user diligently
2718
   * satisified these conditions, pass the size through.
2719
   */
2720
2
  if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2721
0
    return sz;
2722
2723
  /* Otherwise find closest (page_sz * power_of_2) product bigger than
2724
   * user-set size to satisfy both user size request and kernel
2725
   * requirements and substitute correct max_entries for map creation.
2726
   */
2727
2
  for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2728
2
    if (mul * page_sz > sz)
2729
2
      return mul * page_sz;
2730
2
  }
2731
2732
  /* if it's impossible to satisfy the conditions (i.e., user size is
2733
   * very close to UINT_MAX but is not a power-of-2 multiple of
2734
   * page_size) then just return original size and let kernel reject it
2735
   */
2736
0
  return sz;
2737
2
}
2738
2739
static bool map_is_ringbuf(const struct bpf_map *map)
2740
71
{
2741
71
  return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2742
71
         map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2743
71
}
2744
2745
static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2746
71
{
2747
71
  map->def.type = def->map_type;
2748
71
  map->def.key_size = def->key_size;
2749
71
  map->def.value_size = def->value_size;
2750
71
  map->def.max_entries = def->max_entries;
2751
71
  map->def.map_flags = def->map_flags;
2752
71
  map->map_extra = def->map_extra;
2753
2754
71
  map->numa_node = def->numa_node;
2755
71
  map->btf_key_type_id = def->key_type_id;
2756
71
  map->btf_value_type_id = def->value_type_id;
2757
2758
  /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2759
71
  if (map_is_ringbuf(map))
2760
3
    map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2761
2762
71
  if (def->parts & MAP_DEF_MAP_TYPE)
2763
71
    pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2764
2765
71
  if (def->parts & MAP_DEF_KEY_TYPE)
2766
71
    pr_debug("map '%s': found key [%u], sz = %u.\n",
2767
64
       map->name, def->key_type_id, def->key_size);
2768
64
  else if (def->parts & MAP_DEF_KEY_SIZE)
2769
25
    pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2770
2771
71
  if (def->parts & MAP_DEF_VALUE_TYPE)
2772
71
    pr_debug("map '%s': found value [%u], sz = %u.\n",
2773
63
       map->name, def->value_type_id, def->value_size);
2774
63
  else if (def->parts & MAP_DEF_VALUE_SIZE)
2775
7
    pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2776
2777
71
  if (def->parts & MAP_DEF_MAX_ENTRIES)
2778
71
    pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2779
71
  if (def->parts & MAP_DEF_MAP_FLAGS)
2780
71
    pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2781
71
  if (def->parts & MAP_DEF_MAP_EXTRA)
2782
71
    pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2783
71
       (unsigned long long)def->map_extra);
2784
71
  if (def->parts & MAP_DEF_PINNING)
2785
71
    pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2786
71
  if (def->parts & MAP_DEF_NUMA_NODE)
2787
71
    pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2788
2789
71
  if (def->parts & MAP_DEF_INNER_MAP)
2790
71
    pr_debug("map '%s': found inner map definition.\n", map->name);
2791
71
}
2792
2793
static const char *btf_var_linkage_str(__u32 linkage)
2794
66
{
2795
66
  switch (linkage) {
2796
4
  case BTF_VAR_STATIC: return "static";
2797
0
  case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2798
1
  case BTF_VAR_GLOBAL_EXTERN: return "extern";
2799
61
  default: return "unknown";
2800
66
  }
2801
66
}
2802
2803
static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2804
           const struct btf_type *sec,
2805
           int var_idx, int sec_idx,
2806
           const Elf_Data *data, bool strict,
2807
           const char *pin_root_path)
2808
1.06k
{
2809
1.06k
  struct btf_map_def map_def = {}, inner_def = {};
2810
1.06k
  const struct btf_type *var, *def;
2811
1.06k
  const struct btf_var_secinfo *vi;
2812
1.06k
  const struct btf_var *var_extra;
2813
1.06k
  const char *map_name;
2814
1.06k
  struct bpf_map *map;
2815
1.06k
  int err;
2816
2817
1.06k
  vi = btf_var_secinfos(sec) + var_idx;
2818
1.06k
  var = btf__type_by_id(obj->btf, vi->type);
2819
1.06k
  var_extra = btf_var(var);
2820
1.06k
  map_name = btf__name_by_offset(obj->btf, var->name_off);
2821
2822
1.06k
  if (map_name == NULL || map_name[0] == '\0') {
2823
1
    pr_warn("map #%d: empty name.\n", var_idx);
2824
1
    return -EINVAL;
2825
1
  }
2826
1.06k
  if ((__u64)vi->offset + vi->size > data->d_size) {
2827
1
    pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2828
1
    return -EINVAL;
2829
1
  }
2830
1.06k
  if (!btf_is_var(var)) {
2831
0
    pr_warn("map '%s': unexpected var kind %s.\n",
2832
0
      map_name, btf_kind_str(var));
2833
0
    return -EINVAL;
2834
0
  }
2835
1.06k
  if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2836
66
    pr_warn("map '%s': unsupported map linkage %s.\n",
2837
66
      map_name, btf_var_linkage_str(var_extra->linkage));
2838
66
    return -EOPNOTSUPP;
2839
66
  }
2840
2841
1.00k
  def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2842
1.00k
  if (!btf_is_struct(def)) {
2843
14
    pr_warn("map '%s': unexpected def kind %s.\n",
2844
14
      map_name, btf_kind_str(var));
2845
14
    return -EINVAL;
2846
14
  }
2847
987
  if (def->size > vi->size) {
2848
40
    pr_warn("map '%s': invalid def size.\n", map_name);
2849
40
    return -EINVAL;
2850
40
  }
2851
2852
947
  map = bpf_object__add_map(obj);
2853
947
  if (IS_ERR(map))
2854
0
    return PTR_ERR(map);
2855
947
  map->name = strdup(map_name);
2856
947
  if (!map->name) {
2857
0
    pr_warn("map '%s': failed to alloc map name.\n", map_name);
2858
0
    return -ENOMEM;
2859
0
  }
2860
947
  map->libbpf_type = LIBBPF_MAP_UNSPEC;
2861
947
  map->def.type = BPF_MAP_TYPE_UNSPEC;
2862
947
  map->sec_idx = sec_idx;
2863
947
  map->sec_offset = vi->offset;
2864
947
  map->btf_var_idx = var_idx;
2865
947
  pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2866
947
     map_name, map->sec_idx, map->sec_offset);
2867
2868
947
  err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2869
947
  if (err)
2870
876
    return err;
2871
2872
71
  fill_map_from_def(map, &map_def);
2873
2874
71
  if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2875
1
    err = build_map_pin_path(map, pin_root_path);
2876
1
    if (err) {
2877
0
      pr_warn("map '%s': couldn't build pin path.\n", map->name);
2878
0
      return err;
2879
0
    }
2880
1
  }
2881
2882
71
  if (map_def.parts & MAP_DEF_INNER_MAP) {
2883
0
    map->inner_map = calloc(1, sizeof(*map->inner_map));
2884
0
    if (!map->inner_map)
2885
0
      return -ENOMEM;
2886
0
    map->inner_map->fd = create_placeholder_fd();
2887
0
    if (map->inner_map->fd < 0)
2888
0
      return map->inner_map->fd;
2889
0
    map->inner_map->sec_idx = sec_idx;
2890
0
    map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2891
0
    if (!map->inner_map->name)
2892
0
      return -ENOMEM;
2893
0
    sprintf(map->inner_map->name, "%s.inner", map_name);
2894
2895
0
    fill_map_from_def(map->inner_map, &inner_def);
2896
0
  }
2897
2898
71
  err = map_fill_btf_type_info(obj, map);
2899
71
  if (err)
2900
0
    return err;
2901
2902
71
  return 0;
2903
71
}
2904
2905
static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2906
             const char *sec_name, int sec_idx,
2907
             void *data, size_t data_sz)
2908
0
{
2909
0
  const long page_sz = sysconf(_SC_PAGE_SIZE);
2910
0
  size_t mmap_sz;
2911
2912
0
  mmap_sz = bpf_map_mmap_sz(obj->arena_map);
2913
0
  if (roundup(data_sz, page_sz) > mmap_sz) {
2914
0
    pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2915
0
      sec_name, mmap_sz, data_sz);
2916
0
    return -E2BIG;
2917
0
  }
2918
2919
0
  obj->arena_data = malloc(data_sz);
2920
0
  if (!obj->arena_data)
2921
0
    return -ENOMEM;
2922
0
  memcpy(obj->arena_data, data, data_sz);
2923
0
  obj->arena_data_sz = data_sz;
2924
2925
  /* make bpf_map__init_value() work for ARENA maps */
2926
0
  map->mmaped = obj->arena_data;
2927
2928
0
  return 0;
2929
0
}
2930
2931
static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2932
            const char *pin_root_path)
2933
3.20k
{
2934
3.20k
  const struct btf_type *sec = NULL;
2935
3.20k
  int nr_types, i, vlen, err;
2936
3.20k
  const struct btf_type *t;
2937
3.20k
  const char *name;
2938
3.20k
  Elf_Data *data;
2939
3.20k
  Elf_Scn *scn;
2940
2941
3.20k
  if (obj->efile.btf_maps_shndx < 0)
2942
2.08k
    return 0;
2943
2944
1.12k
  scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2945
1.12k
  data = elf_sec_data(obj, scn);
2946
1.12k
  if (!scn || !data) {
2947
0
    pr_warn("elf: failed to get %s map definitions for %s\n",
2948
0
      MAPS_ELF_SEC, obj->path);
2949
0
    return -EINVAL;
2950
0
  }
2951
2952
1.12k
  nr_types = btf__type_cnt(obj->btf);
2953
13.8k
  for (i = 1; i < nr_types; i++) {
2954
13.8k
    t = btf__type_by_id(obj->btf, i);
2955
13.8k
    if (!btf_is_datasec(t))
2956
12.0k
      continue;
2957
1.78k
    name = btf__name_by_offset(obj->btf, t->name_off);
2958
1.78k
    if (strcmp(name, MAPS_ELF_SEC) == 0) {
2959
1.07k
      sec = t;
2960
1.07k
      obj->efile.btf_maps_sec_btf_id = i;
2961
1.07k
      break;
2962
1.07k
    }
2963
1.78k
  }
2964
2965
1.12k
  if (!sec) {
2966
48
    pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2967
48
    return -ENOENT;
2968
48
  }
2969
2970
1.07k
  vlen = btf_vlen(sec);
2971
1.14k
  for (i = 0; i < vlen; i++) {
2972
1.06k
    err = bpf_object__init_user_btf_map(obj, sec, i,
2973
1.06k
                obj->efile.btf_maps_shndx,
2974
1.06k
                data, strict,
2975
1.06k
                pin_root_path);
2976
1.06k
    if (err)
2977
998
      return err;
2978
1.06k
  }
2979
2980
147
  for (i = 0; i < obj->nr_maps; i++) {
2981
71
    struct bpf_map *map = &obj->maps[i];
2982
2983
71
    if (map->def.type != BPF_MAP_TYPE_ARENA)
2984
69
      continue;
2985
2986
2
    if (obj->arena_map) {
2987
0
      pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
2988
0
        map->name, obj->arena_map->name);
2989
0
      return -EINVAL;
2990
0
    }
2991
2
    obj->arena_map = map;
2992
2993
2
    if (obj->efile.arena_data) {
2994
0
      err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
2995
0
              obj->efile.arena_data->d_buf,
2996
0
              obj->efile.arena_data->d_size);
2997
0
      if (err)
2998
0
        return err;
2999
0
    }
3000
2
  }
3001
76
  if (obj->efile.arena_data && !obj->arena_map) {
3002
1
    pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3003
1
      ARENA_SEC);
3004
1
    return -ENOENT;
3005
1
  }
3006
3007
75
  return 0;
3008
76
}
3009
3010
static int bpf_object__init_maps(struct bpf_object *obj,
3011
         const struct bpf_object_open_opts *opts)
3012
3.20k
{
3013
3.20k
  const char *pin_root_path;
3014
3.20k
  bool strict;
3015
3.20k
  int err = 0;
3016
3017
3.20k
  strict = !OPTS_GET(opts, relaxed_maps, false);
3018
3.20k
  pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3019
3020
3.20k
  err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3021
3.20k
  err = err ?: bpf_object__init_global_data_maps(obj);
3022
3.20k
  err = err ?: bpf_object__init_kconfig_map(obj);
3023
18.4E
  err = err ?: bpf_object_init_struct_ops(obj);
3024
3025
18.4E
  return err;
3026
1.08k
}
3027
3028
static bool section_have_execinstr(struct bpf_object *obj, int idx)
3029
1.97k
{
3030
1.97k
  Elf64_Shdr *sh;
3031
3032
1.97k
  sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3033
1.97k
  if (!sh)
3034
0
    return false;
3035
3036
1.97k
  return sh->sh_flags & SHF_EXECINSTR;
3037
1.97k
}
3038
3039
static bool starts_with_qmark(const char *s)
3040
0
{
3041
0
  return s && s[0] == '?';
3042
0
}
3043
3044
static bool btf_needs_sanitization(struct bpf_object *obj)
3045
0
{
3046
0
  bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3047
0
  bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3048
0
  bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3049
0
  bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3050
0
  bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3051
0
  bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3052
0
  bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3053
0
  bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3054
3055
0
  return !has_func || !has_datasec || !has_func_global || !has_float ||
3056
0
         !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3057
0
}
3058
3059
static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3060
0
{
3061
0
  bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3062
0
  bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3063
0
  bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3064
0
  bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3065
0
  bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3066
0
  bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3067
0
  bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3068
0
  bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3069
0
  int enum64_placeholder_id = 0;
3070
0
  struct btf_type *t;
3071
0
  int i, j, vlen;
3072
3073
0
  for (i = 1; i < btf__type_cnt(btf); i++) {
3074
0
    t = (struct btf_type *)btf__type_by_id(btf, i);
3075
3076
0
    if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3077
      /* replace VAR/DECL_TAG with INT */
3078
0
      t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3079
      /*
3080
       * using size = 1 is the safest choice, 4 will be too
3081
       * big and cause kernel BTF validation failure if
3082
       * original variable took less than 4 bytes
3083
       */
3084
0
      t->size = 1;
3085
0
      *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3086
0
    } else if (!has_datasec && btf_is_datasec(t)) {
3087
      /* replace DATASEC with STRUCT */
3088
0
      const struct btf_var_secinfo *v = btf_var_secinfos(t);
3089
0
      struct btf_member *m = btf_members(t);
3090
0
      struct btf_type *vt;
3091
0
      char *name;
3092
3093
0
      name = (char *)btf__name_by_offset(btf, t->name_off);
3094
0
      while (*name) {
3095
0
        if (*name == '.' || *name == '?')
3096
0
          *name = '_';
3097
0
        name++;
3098
0
      }
3099
3100
0
      vlen = btf_vlen(t);
3101
0
      t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3102
0
      for (j = 0; j < vlen; j++, v++, m++) {
3103
        /* order of field assignments is important */
3104
0
        m->offset = v->offset * 8;
3105
0
        m->type = v->type;
3106
        /* preserve variable name as member name */
3107
0
        vt = (void *)btf__type_by_id(btf, v->type);
3108
0
        m->name_off = vt->name_off;
3109
0
      }
3110
0
    } else if (!has_qmark_datasec && btf_is_datasec(t) &&
3111
0
         starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3112
      /* replace '?' prefix with '_' for DATASEC names */
3113
0
      char *name;
3114
3115
0
      name = (char *)btf__name_by_offset(btf, t->name_off);
3116
0
      if (name[0] == '?')
3117
0
        name[0] = '_';
3118
0
    } else if (!has_func && btf_is_func_proto(t)) {
3119
      /* replace FUNC_PROTO with ENUM */
3120
0
      vlen = btf_vlen(t);
3121
0
      t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3122
0
      t->size = sizeof(__u32); /* kernel enforced */
3123
0
    } else if (!has_func && btf_is_func(t)) {
3124
      /* replace FUNC with TYPEDEF */
3125
0
      t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3126
0
    } else if (!has_func_global && btf_is_func(t)) {
3127
      /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3128
0
      t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3129
0
    } else if (!has_float && btf_is_float(t)) {
3130
      /* replace FLOAT with an equally-sized empty STRUCT;
3131
       * since C compilers do not accept e.g. "float" as a
3132
       * valid struct name, make it anonymous
3133
       */
3134
0
      t->name_off = 0;
3135
0
      t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3136
0
    } else if (!has_type_tag && btf_is_type_tag(t)) {
3137
      /* replace TYPE_TAG with a CONST */
3138
0
      t->name_off = 0;
3139
0
      t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3140
0
    } else if (!has_enum64 && btf_is_enum(t)) {
3141
      /* clear the kflag */
3142
0
      t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3143
0
    } else if (!has_enum64 && btf_is_enum64(t)) {
3144
      /* replace ENUM64 with a union */
3145
0
      struct btf_member *m;
3146
3147
0
      if (enum64_placeholder_id == 0) {
3148
0
        enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3149
0
        if (enum64_placeholder_id < 0)
3150
0
          return enum64_placeholder_id;
3151
3152
0
        t = (struct btf_type *)btf__type_by_id(btf, i);
3153
0
      }
3154
3155
0
      m = btf_members(t);
3156
0
      vlen = btf_vlen(t);
3157
0
      t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3158
0
      for (j = 0; j < vlen; j++, m++) {
3159
0
        m->type = enum64_placeholder_id;
3160
0
        m->offset = 0;
3161
0
      }
3162
0
    }
3163
0
  }
3164
3165
0
  return 0;
3166
0
}
3167
3168
static bool libbpf_needs_btf(const struct bpf_object *obj)
3169
2.85k
{
3170
2.85k
  return obj->efile.btf_maps_shndx >= 0 ||
3171
2.85k
         obj->efile.has_st_ops ||
3172
2.85k
         obj->nr_extern > 0;
3173
2.85k
}
3174
3175
static bool kernel_needs_btf(const struct bpf_object *obj)
3176
0
{
3177
0
  return obj->efile.has_st_ops;
3178
0
}
3179
3180
static int bpf_object__init_btf(struct bpf_object *obj,
3181
        Elf_Data *btf_data,
3182
        Elf_Data *btf_ext_data)
3183
6.54k
{
3184
6.54k
  int err = -ENOENT;
3185
3186
6.54k
  if (btf_data) {
3187
4.86k
    obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3188
4.86k
    err = libbpf_get_error(obj->btf);
3189
4.86k
    if (err) {
3190
927
      obj->btf = NULL;
3191
927
      pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
3192
927
      goto out;
3193
927
    }
3194
    /* enforce 8-byte pointers for BPF-targeted BTFs */
3195
3.93k
    btf__set_pointer_size(obj->btf, 8);
3196
3.93k
  }
3197
5.61k
  if (btf_ext_data) {
3198
347
    struct btf_ext_info *ext_segs[3];
3199
347
    int seg_num, sec_num;
3200
3201
347
    if (!obj->btf) {
3202
3
      pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3203
3
         BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3204
3
      goto out;
3205
3
    }
3206
344
    obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3207
344
    err = libbpf_get_error(obj->btf_ext);
3208
344
    if (err) {
3209
247
      pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
3210
247
        BTF_EXT_ELF_SEC, err);
3211
247
      obj->btf_ext = NULL;
3212
247
      goto out;
3213
247
    }
3214
3215
    /* setup .BTF.ext to ELF section mapping */
3216
97
    ext_segs[0] = &obj->btf_ext->func_info;
3217
97
    ext_segs[1] = &obj->btf_ext->line_info;
3218
97
    ext_segs[2] = &obj->btf_ext->core_relo_info;
3219
388
    for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3220
291
      struct btf_ext_info *seg = ext_segs[seg_num];
3221
291
      const struct btf_ext_info_sec *sec;
3222
291
      const char *sec_name;
3223
291
      Elf_Scn *scn;
3224
3225
291
      if (seg->sec_cnt == 0)
3226
188
        continue;
3227
3228
103
      seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3229
103
      if (!seg->sec_idxs) {
3230
0
        err = -ENOMEM;
3231
0
        goto out;
3232
0
      }
3233
3234
103
      sec_num = 0;
3235
403
      for_each_btf_ext_sec(seg, sec) {
3236
        /* preventively increment index to avoid doing
3237
         * this before every continue below
3238
         */
3239
403
        sec_num++;
3240
3241
403
        sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3242
403
        if (str_is_empty(sec_name))
3243
194
          continue;
3244
209
        scn = elf_sec_by_name(obj, sec_name);
3245
209
        if (!scn)
3246
191
          continue;
3247
3248
18
        seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3249
18
      }
3250
103
    }
3251
97
  }
3252
6.54k
out:
3253
6.54k
  if (err && libbpf_needs_btf(obj)) {
3254
60
    pr_warn("BTF is required, but is missing or corrupted.\n");
3255
60
    return err;
3256
60
  }
3257
6.48k
  return 0;
3258
6.54k
}
3259
3260
static int compare_vsi_off(const void *_a, const void *_b)
3261
1.49k
{
3262
1.49k
  const struct btf_var_secinfo *a = _a;
3263
1.49k
  const struct btf_var_secinfo *b = _b;
3264
3265
1.49k
  return a->offset - b->offset;
3266
1.49k
}
3267
3268
static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3269
           struct btf_type *t)
3270
3.48k
{
3271
3.48k
  __u32 size = 0, i, vars = btf_vlen(t);
3272
3.48k
  const char *sec_name = btf__name_by_offset(btf, t->name_off);
3273
3.48k
  struct btf_var_secinfo *vsi;
3274
3.48k
  bool fixup_offsets = false;
3275
3.48k
  int err;
3276
3277
3.48k
  if (!sec_name) {
3278
0
    pr_debug("No name found in string section for DATASEC kind.\n");
3279
0
    return -ENOENT;
3280
0
  }
3281
3282
  /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3283
   * variable offsets set at the previous step. Further, not every
3284
   * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3285
   * all fixups altogether for such sections and go straight to sorting
3286
   * VARs within their DATASEC.
3287
   */
3288
3.48k
  if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3289
434
    goto sort_vars;
3290
3291
  /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3292
   * fix this up. But BPF static linker already fixes this up and fills
3293
   * all the sizes and offsets during static linking. So this step has
3294
   * to be optional. But the STV_HIDDEN handling is non-optional for any
3295
   * non-extern DATASEC, so the variable fixup loop below handles both
3296
   * functions at the same time, paying the cost of BTF VAR <-> ELF
3297
   * symbol matching just once.
3298
   */
3299
3.05k
  if (t->size == 0) {
3300
401
    err = find_elf_sec_sz(obj, sec_name, &size);
3301
401
    if (err || !size) {
3302
143
      pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
3303
143
         sec_name, size, err);
3304
143
      return -ENOENT;
3305
143
    }
3306
3307
258
    t->size = size;
3308
258
    fixup_offsets = true;
3309
258
  }
3310
3311
4.58k
  for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3312
2.05k
    const struct btf_type *t_var;
3313
2.05k
    struct btf_var *var;
3314
2.05k
    const char *var_name;
3315
2.05k
    Elf64_Sym *sym;
3316
3317
2.05k
    t_var = btf__type_by_id(btf, vsi->type);
3318
2.05k
    if (!t_var || !btf_is_var(t_var)) {
3319
118
      pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3320
118
      return -EINVAL;
3321
118
    }
3322
3323
1.93k
    var = btf_var(t_var);
3324
1.93k
    if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3325
183
      continue;
3326
3327
1.75k
    var_name = btf__name_by_offset(btf, t_var->name_off);
3328
1.75k
    if (!var_name) {
3329
0
      pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3330
0
         sec_name, i);
3331
0
      return -ENOENT;
3332
0
    }
3333
3334
1.75k
    sym = find_elf_var_sym(obj, var_name);
3335
1.75k
    if (IS_ERR(sym)) {
3336
257
      pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3337
257
         sec_name, var_name);
3338
257
      return -ENOENT;
3339
257
    }
3340
3341
1.49k
    if (fixup_offsets)
3342
69
      vsi->offset = sym->st_value;
3343
3344
    /* if variable is a global/weak symbol, but has restricted
3345
     * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3346
     * as static. This follows similar logic for functions (BPF
3347
     * subprogs) and influences libbpf's further decisions about
3348
     * whether to make global data BPF array maps as
3349
     * BPF_F_MMAPABLE.
3350
     */
3351
1.49k
    if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3352
1.49k
        || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3353
66
      var->linkage = BTF_VAR_STATIC;
3354
1.49k
  }
3355
3356
2.96k
sort_vars:
3357
2.96k
  qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3358
2.96k
  return 0;
3359
2.90k
}
3360
3361
static int bpf_object_fixup_btf(struct bpf_object *obj)
3362
3.72k
{
3363
3.72k
  int i, n, err = 0;
3364
3365
3.72k
  if (!obj->btf)
3366
1.51k
    return 0;
3367
3368
2.21k
  n = btf__type_cnt(obj->btf);
3369
24.0k
  for (i = 1; i < n; i++) {
3370
22.3k
    struct btf_type *t = btf_type_by_id(obj->btf, i);
3371
3372
    /* Loader needs to fix up some of the things compiler
3373
     * couldn't get its hands on while emitting BTF. This
3374
     * is section size and global variable offset. We use
3375
     * the info from the ELF itself for this purpose.
3376
     */
3377
22.3k
    if (btf_is_datasec(t)) {
3378
3.48k
      err = btf_fixup_datasec(obj, obj->btf, t);
3379
3.48k
      if (err)
3380
518
        return err;
3381
3.48k
    }
3382
22.3k
  }
3383
3384
1.69k
  return 0;
3385
2.21k
}
3386
3387
static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3388
0
{
3389
0
  if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3390
0
      prog->type == BPF_PROG_TYPE_LSM)
3391
0
    return true;
3392
3393
  /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3394
   * also need vmlinux BTF
3395
   */
3396
0
  if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3397
0
    return true;
3398
3399
0
  return false;
3400
0
}
3401
3402
static bool map_needs_vmlinux_btf(struct bpf_map *map)
3403
0
{
3404
0
  return bpf_map__is_struct_ops(map);
3405
0
}
3406
3407
static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3408
0
{
3409
0
  struct bpf_program *prog;
3410
0
  struct bpf_map *map;
3411
0
  int i;
3412
3413
  /* CO-RE relocations need kernel BTF, only when btf_custom_path
3414
   * is not specified
3415
   */
3416
0
  if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3417
0
    return true;
3418
3419
  /* Support for typed ksyms needs kernel BTF */
3420
0
  for (i = 0; i < obj->nr_extern; i++) {
3421
0
    const struct extern_desc *ext;
3422
3423
0
    ext = &obj->externs[i];
3424
0
    if (ext->type == EXT_KSYM && ext->ksym.type_id)
3425
0
      return true;
3426
0
  }
3427
3428
0
  bpf_object__for_each_program(prog, obj) {
3429
0
    if (!prog->autoload)
3430
0
      continue;
3431
0
    if (prog_needs_vmlinux_btf(prog))
3432
0
      return true;
3433
0
  }
3434
3435
0
  bpf_object__for_each_map(map, obj) {
3436
0
    if (map_needs_vmlinux_btf(map))
3437
0
      return true;
3438
0
  }
3439
3440
0
  return false;
3441
0
}
3442
3443
static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3444
0
{
3445
0
  int err;
3446
3447
  /* btf_vmlinux could be loaded earlier */
3448
0
  if (obj->btf_vmlinux || obj->gen_loader)
3449
0
    return 0;
3450
3451
0
  if (!force && !obj_needs_vmlinux_btf(obj))
3452
0
    return 0;
3453
3454
0
  obj->btf_vmlinux = btf__load_vmlinux_btf();
3455
0
  err = libbpf_get_error(obj->btf_vmlinux);
3456
0
  if (err) {
3457
0
    pr_warn("Error loading vmlinux BTF: %d\n", err);
3458
0
    obj->btf_vmlinux = NULL;
3459
0
    return err;
3460
0
  }
3461
0
  return 0;
3462
0
}
3463
3464
static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3465
0
{
3466
0
  struct btf *kern_btf = obj->btf;
3467
0
  bool btf_mandatory, sanitize;
3468
0
  int i, err = 0;
3469
3470
0
  if (!obj->btf)
3471
0
    return 0;
3472
3473
0
  if (!kernel_supports(obj, FEAT_BTF)) {
3474
0
    if (kernel_needs_btf(obj)) {
3475
0
      err = -EOPNOTSUPP;
3476
0
      goto report;
3477
0
    }
3478
0
    pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3479
0
    return 0;
3480
0
  }
3481
3482
  /* Even though some subprogs are global/weak, user might prefer more
3483
   * permissive BPF verification process that BPF verifier performs for
3484
   * static functions, taking into account more context from the caller
3485
   * functions. In such case, they need to mark such subprogs with
3486
   * __attribute__((visibility("hidden"))) and libbpf will adjust
3487
   * corresponding FUNC BTF type to be marked as static and trigger more
3488
   * involved BPF verification process.
3489
   */
3490
0
  for (i = 0; i < obj->nr_programs; i++) {
3491
0
    struct bpf_program *prog = &obj->programs[i];
3492
0
    struct btf_type *t;
3493
0
    const char *name;
3494
0
    int j, n;
3495
3496
0
    if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3497
0
      continue;
3498
3499
0
    n = btf__type_cnt(obj->btf);
3500
0
    for (j = 1; j < n; j++) {
3501
0
      t = btf_type_by_id(obj->btf, j);
3502
0
      if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3503
0
        continue;
3504
3505
0
      name = btf__str_by_offset(obj->btf, t->name_off);
3506
0
      if (strcmp(name, prog->name) != 0)
3507
0
        continue;
3508
3509
0
      t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3510
0
      break;
3511
0
    }
3512
0
  }
3513
3514
0
  sanitize = btf_needs_sanitization(obj);
3515
0
  if (sanitize) {
3516
0
    const void *raw_data;
3517
0
    __u32 sz;
3518
3519
    /* clone BTF to sanitize a copy and leave the original intact */
3520
0
    raw_data = btf__raw_data(obj->btf, &sz);
3521
0
    kern_btf = btf__new(raw_data, sz);
3522
0
    err = libbpf_get_error(kern_btf);
3523
0
    if (err)
3524
0
      return err;
3525
3526
    /* enforce 8-byte pointers for BPF-targeted BTFs */
3527
0
    btf__set_pointer_size(obj->btf, 8);
3528
0
    err = bpf_object__sanitize_btf(obj, kern_btf);
3529
0
    if (err)
3530
0
      return err;
3531
0
  }
3532
3533
0
  if (obj->gen_loader) {
3534
0
    __u32 raw_size = 0;
3535
0
    const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3536
3537
0
    if (!raw_data)
3538
0
      return -ENOMEM;
3539
0
    bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3540
    /* Pretend to have valid FD to pass various fd >= 0 checks.
3541
     * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3542
     */
3543
0
    btf__set_fd(kern_btf, 0);
3544
0
  } else {
3545
    /* currently BPF_BTF_LOAD only supports log_level 1 */
3546
0
    err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3547
0
             obj->log_level ? 1 : 0, obj->token_fd);
3548
0
  }
3549
0
  if (sanitize) {
3550
0
    if (!err) {
3551
      /* move fd to libbpf's BTF */
3552
0
      btf__set_fd(obj->btf, btf__fd(kern_btf));
3553
0
      btf__set_fd(kern_btf, -1);
3554
0
    }
3555
0
    btf__free(kern_btf);
3556
0
  }
3557
0
report:
3558
0
  if (err) {
3559
0
    btf_mandatory = kernel_needs_btf(obj);
3560
0
    pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3561
0
      btf_mandatory ? "BTF is mandatory, can't proceed."
3562
0
              : "BTF is optional, ignoring.");
3563
0
    if (!btf_mandatory)
3564
0
      err = 0;
3565
0
  }
3566
0
  return err;
3567
0
}
3568
3569
static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3570
31.0k
{
3571
31.0k
  const char *name;
3572
3573
31.0k
  name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3574
31.0k
  if (!name) {
3575
7.94k
    pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3576
7.94k
      off, obj->path, elf_errmsg(-1));
3577
7.94k
    return NULL;
3578
7.94k
  }
3579
3580
23.0k
  return name;
3581
31.0k
}
3582
3583
static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3584
50.1k
{
3585
50.1k
  const char *name;
3586
3587
50.1k
  name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3588
50.1k
  if (!name) {
3589
859
    pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3590
859
      off, obj->path, elf_errmsg(-1));
3591
859
    return NULL;
3592
859
  }
3593
3594
49.3k
  return name;
3595
50.1k
}
3596
3597
static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3598
13.9k
{
3599
13.9k
  Elf_Scn *scn;
3600
3601
13.9k
  scn = elf_getscn(obj->efile.elf, idx);
3602
13.9k
  if (!scn) {
3603
0
    pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3604
0
      idx, obj->path, elf_errmsg(-1));
3605
0
    return NULL;
3606
0
  }
3607
13.9k
  return scn;
3608
13.9k
}
3609
3610
static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3611
610
{
3612
610
  Elf_Scn *scn = NULL;
3613
610
  Elf *elf = obj->efile.elf;
3614
610
  const char *sec_name;
3615
3616
4.38k
  while ((scn = elf_nextscn(elf, scn)) != NULL) {
3617
4.05k
    sec_name = elf_sec_name(obj, scn);
3618
4.05k
    if (!sec_name)
3619
0
      return NULL;
3620
3621
4.05k
    if (strcmp(sec_name, name) != 0)
3622
3.77k
      continue;
3623
3624
279
    return scn;
3625
4.05k
  }
3626
331
  return NULL;
3627
610
}
3628
3629
static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3630
103k
{
3631
103k
  Elf64_Shdr *shdr;
3632
3633
103k
  if (!scn)
3634
0
    return NULL;
3635
3636
103k
  shdr = elf64_getshdr(scn);
3637
103k
  if (!shdr) {
3638
0
    pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3639
0
      elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3640
0
    return NULL;
3641
0
  }
3642
3643
103k
  return shdr;
3644
103k
}
3645
3646
static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3647
8.81k
{
3648
8.81k
  const char *name;
3649
8.81k
  Elf64_Shdr *sh;
3650
3651
8.81k
  if (!scn)
3652
0
    return NULL;
3653
3654
8.81k
  sh = elf_sec_hdr(obj, scn);
3655
8.81k
  if (!sh)
3656
0
    return NULL;
3657
3658
8.81k
  name = elf_sec_str(obj, sh->sh_name);
3659
8.81k
  if (!name) {
3660
777
    pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3661
777
      elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3662
777
    return NULL;
3663
777
  }
3664
3665
8.03k
  return name;
3666
8.81k
}
3667
3668
static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3669
42.3k
{
3670
42.3k
  Elf_Data *data;
3671
3672
42.3k
  if (!scn)
3673
140
    return NULL;
3674
3675
42.2k
  data = elf_getdata(scn, 0);
3676
42.2k
  if (!data) {
3677
431
    pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3678
431
      elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3679
431
      obj->path, elf_errmsg(-1));
3680
431
    return NULL;
3681
431
  }
3682
3683
41.8k
  return data;
3684
42.2k
}
3685
3686
static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3687
565k
{
3688
565k
  if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3689
126
    return NULL;
3690
3691
565k
  return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3692
565k
}
3693
3694
static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3695
7.66k
{
3696
7.66k
  if (idx >= data->d_size / sizeof(Elf64_Rel))
3697
0
    return NULL;
3698
3699
7.66k
  return (Elf64_Rel *)data->d_buf + idx;
3700
7.66k
}
3701
3702
static bool is_sec_name_dwarf(const char *name)
3703
36.7k
{
3704
  /* approximation, but the actual list is too long */
3705
36.7k
  return str_has_pfx(name, ".debug_");
3706
36.7k
}
3707
3708
static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3709
40.4k
{
3710
  /* no special handling of .strtab */
3711
40.4k
  if (hdr->sh_type == SHT_STRTAB)
3712
5.54k
    return true;
3713
3714
  /* ignore .llvm_addrsig section as well */
3715
34.8k
  if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3716
41
    return true;
3717
3718
  /* no subprograms will lead to an empty .text section, ignore it */
3719
34.8k
  if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3720
34.8k
      strcmp(name, ".text") == 0)
3721
77
    return true;
3722
3723
  /* DWARF sections */
3724
34.7k
  if (is_sec_name_dwarf(name))
3725
2.90k
    return true;
3726
3727
31.8k
  if (str_has_pfx(name, ".rel")) {
3728
1.97k
    name += sizeof(".rel") - 1;
3729
    /* DWARF section relocations */
3730
1.97k
    if (is_sec_name_dwarf(name))
3731
207
      return true;
3732
3733
    /* .BTF and .BTF.ext don't need relocations */
3734
1.77k
    if (strcmp(name, BTF_ELF_SEC) == 0 ||
3735
1.77k
        strcmp(name, BTF_EXT_ELF_SEC) == 0)
3736
453
      return true;
3737
1.77k
  }
3738
3739
31.2k
  return false;
3740
31.8k
}
3741
3742
static int cmp_progs(const void *_a, const void *_b)
3743
72.8k
{
3744
72.8k
  const struct bpf_program *a = _a;
3745
72.8k
  const struct bpf_program *b = _b;
3746
3747
72.8k
  if (a->sec_idx != b->sec_idx)
3748
513
    return a->sec_idx < b->sec_idx ? -1 : 1;
3749
3750
  /* sec_insn_off can't be the same within the section */
3751
72.3k
  return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3752
72.8k
}
3753
3754
static int bpf_object__elf_collect(struct bpf_object *obj)
3755
8.79k
{
3756
8.79k
  struct elf_sec_desc *sec_desc;
3757
8.79k
  Elf *elf = obj->efile.elf;
3758
8.79k
  Elf_Data *btf_ext_data = NULL;
3759
8.79k
  Elf_Data *btf_data = NULL;
3760
8.79k
  int idx = 0, err = 0;
3761
8.79k
  const char *name;
3762
8.79k
  Elf_Data *data;
3763
8.79k
  Elf_Scn *scn;
3764
8.79k
  Elf64_Shdr *sh;
3765
3766
  /* ELF section indices are 0-based, but sec #0 is special "invalid"
3767
   * section. Since section count retrieved by elf_getshdrnum() does
3768
   * include sec #0, it is already the necessary size of an array to keep
3769
   * all the sections.
3770
   */
3771
8.79k
  if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3772
0
    pr_warn("elf: failed to get the number of sections for %s: %s\n",
3773
0
      obj->path, elf_errmsg(-1));
3774
0
    return -LIBBPF_ERRNO__FORMAT;
3775
0
  }
3776
8.79k
  obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3777
8.79k
  if (!obj->efile.secs)
3778
0
    return -ENOMEM;
3779
3780
  /* a bunch of ELF parsing functionality depends on processing symbols,
3781
   * so do the first pass and find the symbol table
3782
   */
3783
8.79k
  scn = NULL;
3784
53.9k
  while ((scn = elf_nextscn(elf, scn)) != NULL) {
3785
45.3k
    sh = elf_sec_hdr(obj, scn);
3786
45.3k
    if (!sh)
3787
0
      return -LIBBPF_ERRNO__FORMAT;
3788
3789
45.3k
    if (sh->sh_type == SHT_SYMTAB) {
3790
8.77k
      if (obj->efile.symbols) {
3791
1
        pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3792
1
        return -LIBBPF_ERRNO__FORMAT;
3793
1
      }
3794
3795
8.77k
      data = elf_sec_data(obj, scn);
3796
8.77k
      if (!data)
3797
239
        return -LIBBPF_ERRNO__FORMAT;
3798
3799
8.53k
      idx = elf_ndxscn(scn);
3800
3801
8.53k
      obj->efile.symbols = data;
3802
8.53k
      obj->efile.symbols_shndx = idx;
3803
8.53k
      obj->efile.strtabidx = sh->sh_link;
3804
8.53k
    }
3805
45.3k
  }
3806
3807
8.55k
  if (!obj->efile.symbols) {
3808
21
    pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3809
21
      obj->path);
3810
21
    return -ENOENT;
3811
21
  }
3812
3813
8.53k
  scn = NULL;
3814
47.9k
  while ((scn = elf_nextscn(elf, scn)) != NULL) {
3815
40.5k
    idx = elf_ndxscn(scn);
3816
40.5k
    sec_desc = &obj->efile.secs[idx];
3817
3818
40.5k
    sh = elf_sec_hdr(obj, scn);
3819
40.5k
    if (!sh)
3820
0
      return -LIBBPF_ERRNO__FORMAT;
3821
3822
40.5k
    name = elf_sec_str(obj, sh->sh_name);
3823
40.5k
    if (!name)
3824
82
      return -LIBBPF_ERRNO__FORMAT;
3825
3826
40.4k
    if (ignore_elf_section(sh, name))
3827
9.22k
      continue;
3828
3829
31.2k
    data = elf_sec_data(obj, scn);
3830
31.2k
    if (!data)
3831
175
      return -LIBBPF_ERRNO__FORMAT;
3832
3833
31.0k
    pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3834
31.0k
       idx, name, (unsigned long)data->d_size,
3835
31.0k
       (int)sh->sh_link, (unsigned long)sh->sh_flags,
3836
31.0k
       (int)sh->sh_type);
3837
3838
31.0k
    if (strcmp(name, "license") == 0) {
3839
611
      err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3840
611
      if (err)
3841
2
        return err;
3842
30.4k
    } else if (strcmp(name, "version") == 0) {
3843
87
      err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3844
87
      if (err)
3845
17
        return err;
3846
30.3k
    } else if (strcmp(name, "maps") == 0) {
3847
7
      pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3848
7
      return -ENOTSUP;
3849
30.3k
    } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3850
1.63k
      obj->efile.btf_maps_shndx = idx;
3851
28.7k
    } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3852
5.01k
      if (sh->sh_type != SHT_PROGBITS)
3853
62
        return -LIBBPF_ERRNO__FORMAT;
3854
4.94k
      btf_data = data;
3855
23.6k
    } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3856
452
      if (sh->sh_type != SHT_PROGBITS)
3857
38
        return -LIBBPF_ERRNO__FORMAT;
3858
414
      btf_ext_data = data;
3859
23.2k
    } else if (sh->sh_type == SHT_SYMTAB) {
3860
      /* already processed during the first pass above */
3861
16.0k
    } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3862
3.35k
      if (sh->sh_flags & SHF_EXECINSTR) {
3863
1.12k
        if (strcmp(name, ".text") == 0)
3864
226
          obj->efile.text_shndx = idx;
3865
1.12k
        err = bpf_object__add_programs(obj, data, name, idx);
3866
1.12k
        if (err)
3867
247
          return err;
3868
2.22k
      } else if (strcmp(name, DATA_SEC) == 0 ||
3869
2.22k
           str_has_pfx(name, DATA_SEC ".")) {
3870
519
        sec_desc->sec_type = SEC_DATA;
3871
519
        sec_desc->shdr = sh;
3872
519
        sec_desc->data = data;
3873
1.70k
      } else if (strcmp(name, RODATA_SEC) == 0 ||
3874
1.70k
           str_has_pfx(name, RODATA_SEC ".")) {
3875
373
        sec_desc->sec_type = SEC_RODATA;
3876
373
        sec_desc->shdr = sh;
3877
373
        sec_desc->data = data;
3878
1.33k
      } else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3879
1.33k
           strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3880
1.33k
           strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3881
1.33k
           strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3882
491
        sec_desc->sec_type = SEC_ST_OPS;
3883
491
        sec_desc->shdr = sh;
3884
491
        sec_desc->data = data;
3885
491
        obj->efile.has_st_ops = true;
3886
839
      } else if (strcmp(name, ARENA_SEC) == 0) {
3887
78
        obj->efile.arena_data = data;
3888
78
        obj->efile.arena_data_shndx = idx;
3889
761
      } else {
3890
761
        pr_info("elf: skipping unrecognized data section(%d) %s\n",
3891
761
          idx, name);
3892
761
      }
3893
12.6k
    } else if (sh->sh_type == SHT_REL) {
3894
2.13k
      int targ_sec_idx = sh->sh_info; /* points to other section */
3895
3896
2.13k
      if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3897
2.13k
          targ_sec_idx >= obj->efile.sec_cnt)
3898
163
        return -LIBBPF_ERRNO__FORMAT;
3899
3900
      /* Only do relo for section with exec instructions */
3901
1.97k
      if (!section_have_execinstr(obj, targ_sec_idx) &&
3902
1.97k
          strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3903
1.97k
          strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3904
1.97k
          strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3905
1.97k
          strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3906
1.97k
          strcmp(name, ".rel" MAPS_ELF_SEC)) {
3907
566
        pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3908
566
          idx, name, targ_sec_idx,
3909
566
          elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3910
566
        continue;
3911
566
      }
3912
3913
1.40k
      sec_desc->sec_type = SEC_RELO;
3914
1.40k
      sec_desc->shdr = sh;
3915
1.40k
      sec_desc->data = data;
3916
10.5k
    } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3917
2.18k
               str_has_pfx(name, BSS_SEC "."))) {
3918
1.35k
      sec_desc->sec_type = SEC_BSS;
3919
1.35k
      sec_desc->shdr = sh;
3920
1.35k
      sec_desc->data = data;
3921
9.19k
    } else {
3922
9.19k
      pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3923
9.19k
        (size_t)sh->sh_size);
3924
9.19k
    }
3925
31.0k
  }
3926
3927
7.64k
  if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3928
1.20k
    pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3929
1.20k
    return -LIBBPF_ERRNO__FORMAT;
3930
1.20k
  }
3931
3932
  /* sort BPF programs by section name and in-section instruction offset
3933
   * for faster search
3934
   */
3935
6.23k
  if (obj->nr_programs)
3936
569
    qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3937
3938
6.23k
  return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3939
7.43k
}
3940
3941
static bool sym_is_extern(const Elf64_Sym *sym)
3942
358k
{
3943
358k
  int bind = ELF64_ST_BIND(sym->st_info);
3944
  /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3945
358k
  return sym->st_shndx == SHN_UNDEF &&
3946
358k
         (bind == STB_GLOBAL || bind == STB_WEAK) &&
3947
358k
         ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3948
358k
}
3949
3950
static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3951
1.43k
{
3952
1.43k
  int bind = ELF64_ST_BIND(sym->st_info);
3953
1.43k
  int type = ELF64_ST_TYPE(sym->st_info);
3954
3955
  /* in .text section */
3956
1.43k
  if (sym->st_shndx != text_shndx)
3957
485
    return false;
3958
3959
  /* local function */
3960
954
  if (bind == STB_LOCAL && type == STT_SECTION)
3961
647
    return true;
3962
3963
  /* global function */
3964
307
  return bind == STB_GLOBAL && type == STT_FUNC;
3965
954
}
3966
3967
static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3968
4.06k
{
3969
4.06k
  const struct btf_type *t;
3970
4.06k
  const char *tname;
3971
4.06k
  int i, n;
3972
3973
4.06k
  if (!btf)
3974
38
    return -ESRCH;
3975
3976
4.02k
  n = btf__type_cnt(btf);
3977
30.3k
  for (i = 1; i < n; i++) {
3978
30.1k
    t = btf__type_by_id(btf, i);
3979
3980
30.1k
    if (!btf_is_var(t) && !btf_is_func(t))
3981
22.4k
      continue;
3982
3983
7.71k
    tname = btf__name_by_offset(btf, t->name_off);
3984
7.71k
    if (strcmp(tname, ext_name))
3985
3.83k
      continue;
3986
3987
3.87k
    if (btf_is_var(t) &&
3988
3.87k
        btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3989
53
      return -EINVAL;
3990
3991
3.81k
    if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3992
12
      return -EINVAL;
3993
3994
3.80k
    return i;
3995
3.81k
  }
3996
3997
153
  return -ENOENT;
3998
4.02k
}
3999
4000
3.80k
static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4001
3.80k
  const struct btf_var_secinfo *vs;
4002
3.80k
  const struct btf_type *t;
4003
3.80k
  int i, j, n;
4004
4005
3.80k
  if (!btf)
4006
0
    return -ESRCH;
4007
4008
3.80k
  n = btf__type_cnt(btf);
4009
22.6k
  for (i = 1; i < n; i++) {
4010
22.5k
    t = btf__type_by_id(btf, i);
4011
4012
22.5k
    if (!btf_is_datasec(t))
4013
15.0k
      continue;
4014
4015
7.48k
    vs = btf_var_secinfos(t);
4016
15.3k
    for (j = 0; j < btf_vlen(t); j++, vs++) {
4017
11.6k
      if (vs->type == ext_btf_id)
4018
3.77k
        return i;
4019
11.6k
    }
4020
7.48k
  }
4021
4022
35
  return -ENOENT;
4023
3.80k
}
4024
4025
static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4026
             bool *is_signed)
4027
1.03k
{
4028
1.03k
  const struct btf_type *t;
4029
1.03k
  const char *name;
4030
4031
1.03k
  t = skip_mods_and_typedefs(btf, id, NULL);
4032
1.03k
  name = btf__name_by_offset(btf, t->name_off);
4033
4034
1.03k
  if (is_signed)
4035
970
    *is_signed = false;
4036
1.03k
  switch (btf_kind(t)) {
4037
666
  case BTF_KIND_INT: {
4038
666
    int enc = btf_int_encoding(t);
4039
4040
666
    if (enc & BTF_INT_BOOL)
4041
257
      return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4042
409
    if (is_signed)
4043
371
      *is_signed = enc & BTF_INT_SIGNED;
4044
409
    if (t->size == 1)
4045
189
      return KCFG_CHAR;
4046
220
    if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4047
36
      return KCFG_UNKNOWN;
4048
184
    return KCFG_INT;
4049
220
  }
4050
163
  case BTF_KIND_ENUM:
4051
163
    if (t->size != 4)
4052
34
      return KCFG_UNKNOWN;
4053
129
    if (strcmp(name, "libbpf_tristate"))
4054
119
      return KCFG_UNKNOWN;
4055
10
    return KCFG_TRISTATE;
4056
97
  case BTF_KIND_ENUM64:
4057
97
    if (strcmp(name, "libbpf_tristate"))
4058
87
      return KCFG_UNKNOWN;
4059
10
    return KCFG_TRISTATE;
4060
63
  case BTF_KIND_ARRAY:
4061
63
    if (btf_array(t)->nelems == 0)
4062
0
      return KCFG_UNKNOWN;
4063
63
    if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4064
33
      return KCFG_UNKNOWN;
4065
30
    return KCFG_CHAR_ARR;
4066
44
  default:
4067
44
    return KCFG_UNKNOWN;
4068
1.03k
  }
4069
1.03k
}
4070
4071
static int cmp_externs(const void *_a, const void *_b)
4072
6.39k
{
4073
6.39k
  const struct extern_desc *a = _a;
4074
6.39k
  const struct extern_desc *b = _b;
4075
4076
6.39k
  if (a->type != b->type)
4077
0
    return a->type < b->type ? -1 : 1;
4078
4079
6.39k
  if (a->type == EXT_KCFG) {
4080
    /* descending order by alignment requirements */
4081
994
    if (a->kcfg.align != b->kcfg.align)
4082
0
      return a->kcfg.align > b->kcfg.align ? -1 : 1;
4083
    /* ascending order by size, within same alignment class */
4084
994
    if (a->kcfg.sz != b->kcfg.sz)
4085
0
      return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4086
994
  }
4087
4088
  /* resolve ties by name */
4089
6.39k
  return strcmp(a->name, b->name);
4090
6.39k
}
4091
4092
static int find_int_btf_id(const struct btf *btf)
4093
916
{
4094
916
  const struct btf_type *t;
4095
916
  int i, n;
4096
4097
916
  n = btf__type_cnt(btf);
4098
9.84k
  for (i = 1; i < n; i++) {
4099
9.01k
    t = btf__type_by_id(btf, i);
4100
4101
9.01k
    if (btf_is_int(t) && btf_int_bits(t) == 32)
4102
80
      return i;
4103
9.01k
  }
4104
4105
836
  return 0;
4106
916
}
4107
4108
static int add_dummy_ksym_var(struct btf *btf)
4109
5.10k
{
4110
5.10k
  int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4111
5.10k
  const struct btf_var_secinfo *vs;
4112
5.10k
  const struct btf_type *sec;
4113
4114
5.10k
  if (!btf)
4115
1.54k
    return 0;
4116
4117
3.55k
  sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4118
3.55k
              BTF_KIND_DATASEC);
4119
3.55k
  if (sec_btf_id < 0)
4120
2.81k
    return 0;
4121
4122
743
  sec = btf__type_by_id(btf, sec_btf_id);
4123
743
  vs = btf_var_secinfos(sec);
4124
1.68k
  for (i = 0; i < btf_vlen(sec); i++, vs++) {
4125
1.48k
    const struct btf_type *vt;
4126
4127
1.48k
    vt = btf__type_by_id(btf, vs->type);
4128
1.48k
    if (btf_is_func(vt))
4129
545
      break;
4130
1.48k
  }
4131
4132
  /* No func in ksyms sec.  No need to add dummy var. */
4133
743
  if (i == btf_vlen(sec))
4134
198
    return 0;
4135
4136
545
  int_btf_id = find_int_btf_id(btf);
4137
545
  dummy_var_btf_id = btf__add_var(btf,
4138
545
          "dummy_ksym",
4139
545
          BTF_VAR_GLOBAL_ALLOCATED,
4140
545
          int_btf_id);
4141
545
  if (dummy_var_btf_id < 0)
4142
545
    pr_warn("cannot create a dummy_ksym var\n");
4143
4144
545
  return dummy_var_btf_id;
4145
743
}
4146
4147
static int bpf_object__collect_externs(struct bpf_object *obj)
4148
6.48k
{
4149
6.48k
  struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4150
6.48k
  const struct btf_type *t;
4151
6.48k
  struct extern_desc *ext;
4152
6.48k
  int i, n, off, dummy_var_btf_id;
4153
6.48k
  const char *ext_name, *sec_name;
4154
6.48k
  size_t ext_essent_len;
4155
6.48k
  Elf_Scn *scn;
4156
6.48k
  Elf64_Shdr *sh;
4157
4158
6.48k
  if (!obj->efile.symbols)
4159
0
    return 0;
4160
4161
6.48k
  scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4162
6.48k
  sh = elf_sec_hdr(obj, scn);
4163
6.48k
  if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4164
1.37k
    return -LIBBPF_ERRNO__FORMAT;
4165
4166
5.10k
  dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4167
5.10k
  if (dummy_var_btf_id < 0)
4168
0
    return dummy_var_btf_id;
4169
4170
5.10k
  n = sh->sh_size / sh->sh_entsize;
4171
5.10k
  pr_debug("looking for externs among %d symbols...\n", n);
4172
4173
361k
  for (i = 0; i < n; i++) {
4174
357k
    Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4175
4176
357k
    if (!sym)
4177
0
      return -LIBBPF_ERRNO__FORMAT;
4178
357k
    if (!sym_is_extern(sym))
4179
349k
      continue;
4180
7.09k
    ext_name = elf_sym_str(obj, sym->st_name);
4181
7.09k
    if (!ext_name || !ext_name[0])
4182
3.03k
      continue;
4183
4184
4.06k
    ext = obj->externs;
4185
4.06k
    ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4186
4.06k
    if (!ext)
4187
0
      return -ENOMEM;
4188
4.06k
    obj->externs = ext;
4189
4.06k
    ext = &ext[obj->nr_extern];
4190
4.06k
    memset(ext, 0, sizeof(*ext));
4191
4.06k
    obj->nr_extern++;
4192
4193
4.06k
    ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4194
4.06k
    if (ext->btf_id <= 0) {
4195
256
      pr_warn("failed to find BTF for extern '%s': %d\n",
4196
256
        ext_name, ext->btf_id);
4197
256
      return ext->btf_id;
4198
256
    }
4199
3.80k
    t = btf__type_by_id(obj->btf, ext->btf_id);
4200
3.80k
    ext->name = btf__name_by_offset(obj->btf, t->name_off);
4201
3.80k
    ext->sym_idx = i;
4202
3.80k
    ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4203
4204
3.80k
    ext_essent_len = bpf_core_essential_name_len(ext->name);
4205
3.80k
    ext->essent_name = NULL;
4206
3.80k
    if (ext_essent_len != strlen(ext->name)) {
4207
246
      ext->essent_name = strndup(ext->name, ext_essent_len);
4208
246
      if (!ext->essent_name)
4209
0
        return -ENOMEM;
4210
246
    }
4211
4212
3.80k
    ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4213
3.80k
    if (ext->sec_btf_id <= 0) {
4214
35
      pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4215
35
        ext_name, ext->btf_id, ext->sec_btf_id);
4216
35
      return ext->sec_btf_id;
4217
35
    }
4218
3.77k
    sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4219
3.77k
    sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4220
4221
3.77k
    if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4222
1.18k
      if (btf_is_func(t)) {
4223
1
        pr_warn("extern function %s is unsupported under %s section\n",
4224
1
          ext->name, KCONFIG_SEC);
4225
1
        return -ENOTSUP;
4226
1
      }
4227
1.18k
      kcfg_sec = sec;
4228
1.18k
      ext->type = EXT_KCFG;
4229
1.18k
      ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4230
1.18k
      if (ext->kcfg.sz <= 0) {
4231
170
        pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4232
170
          ext_name, ext->kcfg.sz);
4233
170
        return ext->kcfg.sz;
4234
170
      }
4235
1.01k
      ext->kcfg.align = btf__align_of(obj->btf, t->type);
4236
1.01k
      if (ext->kcfg.align <= 0) {
4237
40
        pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4238
40
          ext_name, ext->kcfg.align);
4239
40
        return -EINVAL;
4240
40
      }
4241
970
      ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4242
970
              &ext->kcfg.is_signed);
4243
970
      if (ext->kcfg.type == KCFG_UNKNOWN) {
4244
348
        pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4245
348
        return -ENOTSUP;
4246
348
      }
4247
2.59k
    } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4248
2.48k
      ksym_sec = sec;
4249
2.48k
      ext->type = EXT_KSYM;
4250
2.48k
      skip_mods_and_typedefs(obj->btf, t->type,
4251
2.48k
                 &ext->ksym.type_id);
4252
2.48k
    } else {
4253
107
      pr_warn("unrecognized extern section '%s'\n", sec_name);
4254
107
      return -ENOTSUP;
4255
107
    }
4256
3.77k
  }
4257
4.14k
  pr_debug("collected %d externs total\n", obj->nr_extern);
4258
4259
4.14k
  if (!obj->nr_extern)
4260
3.59k
    return 0;
4261
4262
  /* sort externs by type, for kcfg ones also by (align, size, name) */
4263
555
  qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4264
4265
  /* for .ksyms section, we need to turn all externs into allocated
4266
   * variables in BTF to pass kernel verification; we do this by
4267
   * pretending that each extern is a 8-byte variable
4268
   */
4269
555
  if (ksym_sec) {
4270
    /* find existing 4-byte integer type in BTF to use for fake
4271
     * extern variables in DATASEC
4272
     */
4273
371
    int int_btf_id = find_int_btf_id(obj->btf);
4274
    /* For extern function, a dummy_var added earlier
4275
     * will be used to replace the vs->type and
4276
     * its name string will be used to refill
4277
     * the missing param's name.
4278
     */
4279
371
    const struct btf_type *dummy_var;
4280
4281
371
    dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4282
2.69k
    for (i = 0; i < obj->nr_extern; i++) {
4283
2.32k
      ext = &obj->externs[i];
4284
2.32k
      if (ext->type != EXT_KSYM)
4285
0
        continue;
4286
2.32k
      pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4287
2.32k
         i, ext->sym_idx, ext->name);
4288
2.32k
    }
4289
4290
371
    sec = ksym_sec;
4291
371
    n = btf_vlen(sec);
4292
779
    for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4293
731
      struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4294
731
      struct btf_type *vt;
4295
4296
731
      vt = (void *)btf__type_by_id(obj->btf, vs->type);
4297
731
      ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4298
731
      ext = find_extern_by_name(obj, ext_name);
4299
731
      if (!ext) {
4300
323
        pr_warn("failed to find extern definition for BTF %s '%s'\n",
4301
323
          btf_kind_str(vt), ext_name);
4302
323
        return -ESRCH;
4303
323
      }
4304
408
      if (btf_is_func(vt)) {
4305
63
        const struct btf_type *func_proto;
4306
63
        struct btf_param *param;
4307
63
        int j;
4308
4309
63
        func_proto = btf__type_by_id(obj->btf,
4310
63
                   vt->type);
4311
63
        param = btf_params(func_proto);
4312
        /* Reuse the dummy_var string if the
4313
         * func proto does not have param name.
4314
         */
4315
156
        for (j = 0; j < btf_vlen(func_proto); j++)
4316
93
          if (param[j].type && !param[j].name_off)
4317
23
            param[j].name_off =
4318
23
              dummy_var->name_off;
4319
63
        vs->type = dummy_var_btf_id;
4320
63
        vt->info &= ~0xffff;
4321
63
        vt->info |= BTF_FUNC_GLOBAL;
4322
345
      } else {
4323
345
        btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4324
345
        vt->type = int_btf_id;
4325
345
      }
4326
408
      vs->offset = off;
4327
408
      vs->size = sizeof(int);
4328
408
    }
4329
48
    sec->size = off;
4330
48
  }
4331
4332
232
  if (kcfg_sec) {
4333
184
    sec = kcfg_sec;
4334
    /* for kcfg externs calculate their offsets within a .kconfig map */
4335
184
    off = 0;
4336
799
    for (i = 0; i < obj->nr_extern; i++) {
4337
615
      ext = &obj->externs[i];
4338
615
      if (ext->type != EXT_KCFG)
4339
0
        continue;
4340
4341
615
      ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4342
615
      off = ext->kcfg.data_off + ext->kcfg.sz;
4343
615
      pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4344
615
         i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4345
615
    }
4346
184
    sec->size = off;
4347
184
    n = btf_vlen(sec);
4348
234
    for (i = 0; i < n; i++) {
4349
219
      struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4350
4351
219
      t = btf__type_by_id(obj->btf, vs->type);
4352
219
      ext_name = btf__name_by_offset(obj->btf, t->name_off);
4353
219
      ext = find_extern_by_name(obj, ext_name);
4354
219
      if (!ext) {
4355
169
        pr_warn("failed to find extern definition for BTF var '%s'\n",
4356
169
          ext_name);
4357
169
        return -ESRCH;
4358
169
      }
4359
50
      btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4360
50
      vs->offset = ext->kcfg.data_off;
4361
50
    }
4362
184
  }
4363
63
  return 0;
4364
232
}
4365
4366
static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4367
13.4k
{
4368
13.4k
  return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4369
13.4k
}
4370
4371
struct bpf_program *
4372
bpf_object__find_program_by_name(const struct bpf_object *obj,
4373
         const char *name)
4374
0
{
4375
0
  struct bpf_program *prog;
4376
4377
0
  bpf_object__for_each_program(prog, obj) {
4378
0
    if (prog_is_subprog(obj, prog))
4379
0
      continue;
4380
0
    if (!strcmp(prog->name, name))
4381
0
      return prog;
4382
0
  }
4383
0
  return errno = ENOENT, NULL;
4384
0
}
4385
4386
static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4387
              int shndx)
4388
401
{
4389
401
  switch (obj->efile.secs[shndx].sec_type) {
4390
90
  case SEC_BSS:
4391
276
  case SEC_DATA:
4392
399
  case SEC_RODATA:
4393
399
    return true;
4394
2
  default:
4395
2
    return false;
4396
401
  }
4397
401
}
4398
4399
static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4400
              int shndx)
4401
27
{
4402
27
  return shndx == obj->efile.btf_maps_shndx;
4403
27
}
4404
4405
static enum libbpf_map_type
4406
bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4407
499
{
4408
499
  if (shndx == obj->efile.symbols_shndx)
4409
2
    return LIBBPF_MAP_KCONFIG;
4410
4411
497
  switch (obj->efile.secs[shndx].sec_type) {
4412
90
  case SEC_BSS:
4413
90
    return LIBBPF_MAP_BSS;
4414
186
  case SEC_DATA:
4415
186
    return LIBBPF_MAP_DATA;
4416
123
  case SEC_RODATA:
4417
123
    return LIBBPF_MAP_RODATA;
4418
98
  default:
4419
98
    return LIBBPF_MAP_UNSPEC;
4420
497
  }
4421
497
}
4422
4423
static int bpf_program__record_reloc(struct bpf_program *prog,
4424
             struct reloc_desc *reloc_desc,
4425
             __u32 insn_idx, const char *sym_name,
4426
             const Elf64_Sym *sym, const Elf64_Rel *rel)
4427
1.78k
{
4428
1.78k
  struct bpf_insn *insn = &prog->insns[insn_idx];
4429
1.78k
  size_t map_idx, nr_maps = prog->obj->nr_maps;
4430
1.78k
  struct bpf_object *obj = prog->obj;
4431
1.78k
  __u32 shdr_idx = sym->st_shndx;
4432
1.78k
  enum libbpf_map_type type;
4433
1.78k
  const char *sym_sec_name;
4434
1.78k
  struct bpf_map *map;
4435
4436
1.78k
  if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4437
38
    pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4438
38
      prog->name, sym_name, insn_idx, insn->code);
4439
38
    return -LIBBPF_ERRNO__RELOC;
4440
38
  }
4441
4442
1.74k
  if (sym_is_extern(sym)) {
4443
1
    int sym_idx = ELF64_R_SYM(rel->r_info);
4444
1
    int i, n = obj->nr_extern;
4445
1
    struct extern_desc *ext;
4446
4447
1
    for (i = 0; i < n; i++) {
4448
0
      ext = &obj->externs[i];
4449
0
      if (ext->sym_idx == sym_idx)
4450
0
        break;
4451
0
    }
4452
1
    if (i >= n) {
4453
1
      pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4454
1
        prog->name, sym_name, sym_idx);
4455
1
      return -LIBBPF_ERRNO__RELOC;
4456
1
    }
4457
0
    pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4458
0
       prog->name, i, ext->name, ext->sym_idx, insn_idx);
4459
0
    if (insn->code == (BPF_JMP | BPF_CALL))
4460
0
      reloc_desc->type = RELO_EXTERN_CALL;
4461
0
    else
4462
0
      reloc_desc->type = RELO_EXTERN_LD64;
4463
0
    reloc_desc->insn_idx = insn_idx;
4464
0
    reloc_desc->ext_idx = i;
4465
0
    return 0;
4466
1
  }
4467
4468
  /* sub-program call relocation */
4469
1.74k
  if (is_call_insn(insn)) {
4470
298
    if (insn->src_reg != BPF_PSEUDO_CALL) {
4471
3
      pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4472
3
      return -LIBBPF_ERRNO__RELOC;
4473
3
    }
4474
    /* text_shndx can be 0, if no default "main" program exists */
4475
295
    if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4476
10
      sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4477
10
      pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4478
10
        prog->name, sym_name, sym_sec_name);
4479
10
      return -LIBBPF_ERRNO__RELOC;
4480
10
    }
4481
285
    if (sym->st_value % BPF_INSN_SZ) {
4482
3
      pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4483
3
        prog->name, sym_name, (size_t)sym->st_value);
4484
3
      return -LIBBPF_ERRNO__RELOC;
4485
3
    }
4486
282
    reloc_desc->type = RELO_CALL;
4487
282
    reloc_desc->insn_idx = insn_idx;
4488
282
    reloc_desc->sym_off = sym->st_value;
4489
282
    return 0;
4490
285
  }
4491
4492
1.44k
  if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4493
4
    pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4494
4
      prog->name, sym_name, shdr_idx);
4495
4
    return -LIBBPF_ERRNO__RELOC;
4496
4
  }
4497
4498
  /* loading subprog addresses */
4499
1.43k
  if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4500
    /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4501
     * local_func: sym->st_value = 0, insn->imm = offset in the section.
4502
     */
4503
940
    if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4504
6
      pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4505
6
        prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4506
6
      return -LIBBPF_ERRNO__RELOC;
4507
6
    }
4508
4509
934
    reloc_desc->type = RELO_SUBPROG_ADDR;
4510
934
    reloc_desc->insn_idx = insn_idx;
4511
934
    reloc_desc->sym_off = sym->st_value;
4512
934
    return 0;
4513
940
  }
4514
4515
499
  type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4516
499
  sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4517
4518
  /* arena data relocation */
4519
499
  if (shdr_idx == obj->efile.arena_data_shndx) {
4520
71
    reloc_desc->type = RELO_DATA;
4521
71
    reloc_desc->insn_idx = insn_idx;
4522
71
    reloc_desc->map_idx = obj->arena_map - obj->maps;
4523
71
    reloc_desc->sym_off = sym->st_value;
4524
71
    return 0;
4525
71
  }
4526
4527
  /* generic map reference relocation */
4528
428
  if (type == LIBBPF_MAP_UNSPEC) {
4529
27
    if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4530
27
      pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4531
27
        prog->name, sym_name, sym_sec_name);
4532
27
      return -LIBBPF_ERRNO__RELOC;
4533
27
    }
4534
0
    for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4535
0
      map = &obj->maps[map_idx];
4536
0
      if (map->libbpf_type != type ||
4537
0
          map->sec_idx != sym->st_shndx ||
4538
0
          map->sec_offset != sym->st_value)
4539
0
        continue;
4540
0
      pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4541
0
         prog->name, map_idx, map->name, map->sec_idx,
4542
0
         map->sec_offset, insn_idx);
4543
0
      break;
4544
0
    }
4545
0
    if (map_idx >= nr_maps) {
4546
0
      pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4547
0
        prog->name, sym_sec_name, (size_t)sym->st_value);
4548
0
      return -LIBBPF_ERRNO__RELOC;
4549
0
    }
4550
0
    reloc_desc->type = RELO_LD64;
4551
0
    reloc_desc->insn_idx = insn_idx;
4552
0
    reloc_desc->map_idx = map_idx;
4553
0
    reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4554
0
    return 0;
4555
0
  }
4556
4557
  /* global data map relocation */
4558
401
  if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4559
2
    pr_warn("prog '%s': bad data relo against section '%s'\n",
4560
2
      prog->name, sym_sec_name);
4561
2
    return -LIBBPF_ERRNO__RELOC;
4562
2
  }
4563
582
  for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4564
580
    map = &obj->maps[map_idx];
4565
580
    if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4566
183
      continue;
4567
397
    pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4568
397
       prog->name, map_idx, map->name, map->sec_idx,
4569
397
       map->sec_offset, insn_idx);
4570
397
    break;
4571
580
  }
4572
399
  if (map_idx >= nr_maps) {
4573
2
    pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4574
2
      prog->name, sym_sec_name);
4575
2
    return -LIBBPF_ERRNO__RELOC;
4576
2
  }
4577
4578
397
  reloc_desc->type = RELO_DATA;
4579
397
  reloc_desc->insn_idx = insn_idx;
4580
397
  reloc_desc->map_idx = map_idx;
4581
397
  reloc_desc->sym_off = sym->st_value;
4582
397
  return 0;
4583
399
}
4584
4585
static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4586
2.50k
{
4587
2.50k
  return insn_idx >= prog->sec_insn_off &&
4588
2.50k
         insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4589
2.50k
}
4590
4591
static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4592
             size_t sec_idx, size_t insn_idx)
4593
7.38k
{
4594
7.38k
  int l = 0, r = obj->nr_programs - 1, m;
4595
7.38k
  struct bpf_program *prog;
4596
4597
7.38k
  if (!obj->nr_programs)
4598
4.48k
    return NULL;
4599
4600
4.35k
  while (l < r) {
4601
1.46k
    m = l + (r - l + 1) / 2;
4602
1.46k
    prog = &obj->programs[m];
4603
4604
1.46k
    if (prog->sec_idx < sec_idx ||
4605
1.46k
        (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4606
577
      l = m;
4607
883
    else
4608
883
      r = m - 1;
4609
1.46k
  }
4610
  /* matching program could be at index l, but it still might be the
4611
   * wrong one, so we need to double check conditions for the last time
4612
   */
4613
2.89k
  prog = &obj->programs[l];
4614
2.89k
  if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4615
1.78k
    return prog;
4616
1.11k
  return NULL;
4617
2.89k
}
4618
4619
static int
4620
bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4621
860
{
4622
860
  const char *relo_sec_name, *sec_name;
4623
860
  size_t sec_idx = shdr->sh_info, sym_idx;
4624
860
  struct bpf_program *prog;
4625
860
  struct reloc_desc *relos;
4626
860
  int err, i, nrels;
4627
860
  const char *sym_name;
4628
860
  __u32 insn_idx;
4629
860
  Elf_Scn *scn;
4630
860
  Elf_Data *scn_data;
4631
860
  Elf64_Sym *sym;
4632
860
  Elf64_Rel *rel;
4633
4634
860
  if (sec_idx >= obj->efile.sec_cnt)
4635
0
    return -EINVAL;
4636
4637
860
  scn = elf_sec_by_idx(obj, sec_idx);
4638
860
  scn_data = elf_sec_data(obj, scn);
4639
860
  if (!scn_data)
4640
16
    return -LIBBPF_ERRNO__FORMAT;
4641
4642
844
  relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4643
844
  sec_name = elf_sec_name(obj, scn);
4644
844
  if (!relo_sec_name || !sec_name)
4645
20
    return -EINVAL;
4646
4647
824
  pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4648
824
     relo_sec_name, sec_idx, sec_name);
4649
824
  nrels = shdr->sh_size / shdr->sh_entsize;
4650
4651
7.66k
  for (i = 0; i < nrels; i++) {
4652
7.66k
    rel = elf_rel_by_idx(data, i);
4653
7.66k
    if (!rel) {
4654
0
      pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4655
0
      return -LIBBPF_ERRNO__FORMAT;
4656
0
    }
4657
4658
7.66k
    sym_idx = ELF64_R_SYM(rel->r_info);
4659
7.66k
    sym = elf_sym_by_idx(obj, sym_idx);
4660
7.66k
    if (!sym) {
4661
126
      pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4662
126
        relo_sec_name, sym_idx, i);
4663
126
      return -LIBBPF_ERRNO__FORMAT;
4664
126
    }
4665
4666
7.53k
    if (sym->st_shndx >= obj->efile.sec_cnt) {
4667
28
      pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4668
28
        relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4669
28
      return -LIBBPF_ERRNO__FORMAT;
4670
28
    }
4671
4672
7.51k
    if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4673
127
      pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4674
127
        relo_sec_name, (size_t)rel->r_offset, i);
4675
127
      return -LIBBPF_ERRNO__FORMAT;
4676
127
    }
4677
4678
7.38k
    insn_idx = rel->r_offset / BPF_INSN_SZ;
4679
    /* relocations against static functions are recorded as
4680
     * relocations against the section that contains a function;
4681
     * in such case, symbol will be STT_SECTION and sym.st_name
4682
     * will point to empty string (0), so fetch section name
4683
     * instead
4684
     */
4685
7.38k
    if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4686
544
      sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4687
6.83k
    else
4688
6.83k
      sym_name = elf_sym_str(obj, sym->st_name);
4689
7.38k
    sym_name = sym_name ?: "<?";
4690
4691
7.38k
    pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4692
5.70k
       relo_sec_name, i, insn_idx, sym_name);
4693
4694
5.70k
    prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4695
5.70k
    if (!prog) {
4696
5.60k
      pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4697
5.60k
        relo_sec_name, i, sec_name, insn_idx);
4698
5.60k
      continue;
4699
5.60k
    }
4700
4701
103
    relos = libbpf_reallocarray(prog->reloc_desc,
4702
103
              prog->nr_reloc + 1, sizeof(*relos));
4703
103
    if (!relos)
4704
0
      return -ENOMEM;
4705
103
    prog->reloc_desc = relos;
4706
4707
    /* adjust insn_idx to local BPF program frame of reference */
4708
103
    insn_idx -= prog->sec_insn_off;
4709
103
    err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4710
103
            insn_idx, sym_name, sym, rel);
4711
103
    if (err)
4712
96
      return err;
4713
4714
7
    prog->nr_reloc++;
4715
7
  }
4716
18.4E
  return 0;
4717
824
}
4718
4719
static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4720
1.83k
{
4721
1.83k
  int id;
4722
4723
1.83k
  if (!obj->btf)
4724
1.48k
    return -ENOENT;
4725
4726
  /* if it's BTF-defined map, we don't need to search for type IDs.
4727
   * For struct_ops map, it does not need btf_key_type_id and
4728
   * btf_value_type_id.
4729
   */
4730
353
  if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4731
71
    return 0;
4732
4733
  /*
4734
   * LLVM annotates global data differently in BTF, that is,
4735
   * only as '.data', '.bss' or '.rodata'.
4736
   */
4737
282
  if (!bpf_map__is_internal(map))
4738
0
    return -ENOENT;
4739
4740
282
  id = btf__find_by_name(obj->btf, map->real_name);
4741
282
  if (id < 0)
4742
124
    return id;
4743
4744
158
  map->btf_key_type_id = 0;
4745
158
  map->btf_value_type_id = id;
4746
158
  return 0;
4747
282
}
4748
4749
static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4750
0
{
4751
0
  char file[PATH_MAX], buff[4096];
4752
0
  FILE *fp;
4753
0
  __u32 val;
4754
0
  int err;
4755
4756
0
  snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4757
0
  memset(info, 0, sizeof(*info));
4758
4759
0
  fp = fopen(file, "re");
4760
0
  if (!fp) {
4761
0
    err = -errno;
4762
0
    pr_warn("failed to open %s: %d. No procfs support?\n", file,
4763
0
      err);
4764
0
    return err;
4765
0
  }
4766
4767
0
  while (fgets(buff, sizeof(buff), fp)) {
4768
0
    if (sscanf(buff, "map_type:\t%u", &val) == 1)
4769
0
      info->type = val;
4770
0
    else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4771
0
      info->key_size = val;
4772
0
    else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4773
0
      info->value_size = val;
4774
0
    else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4775
0
      info->max_entries = val;
4776
0
    else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4777
0
      info->map_flags = val;
4778
0
  }
4779
4780
0
  fclose(fp);
4781
4782
0
  return 0;
4783
0
}
4784
4785
bool bpf_map__autocreate(const struct bpf_map *map)
4786
0
{
4787
0
  return map->autocreate;
4788
0
}
4789
4790
int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4791
0
{
4792
0
  if (map->obj->loaded)
4793
0
    return libbpf_err(-EBUSY);
4794
4795
0
  map->autocreate = autocreate;
4796
0
  return 0;
4797
0
}
4798
4799
int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4800
0
{
4801
0
  struct bpf_map_info info;
4802
0
  __u32 len = sizeof(info), name_len;
4803
0
  int new_fd, err;
4804
0
  char *new_name;
4805
4806
0
  memset(&info, 0, len);
4807
0
  err = bpf_map_get_info_by_fd(fd, &info, &len);
4808
0
  if (err && errno == EINVAL)
4809
0
    err = bpf_get_map_info_from_fdinfo(fd, &info);
4810
0
  if (err)
4811
0
    return libbpf_err(err);
4812
4813
0
  name_len = strlen(info.name);
4814
0
  if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4815
0
    new_name = strdup(map->name);
4816
0
  else
4817
0
    new_name = strdup(info.name);
4818
4819
0
  if (!new_name)
4820
0
    return libbpf_err(-errno);
4821
4822
  /*
4823
   * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4824
   * This is similar to what we do in ensure_good_fd(), but without
4825
   * closing original FD.
4826
   */
4827
0
  new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4828
0
  if (new_fd < 0) {
4829
0
    err = -errno;
4830
0
    goto err_free_new_name;
4831
0
  }
4832
4833
0
  err = reuse_fd(map->fd, new_fd);
4834
0
  if (err)
4835
0
    goto err_free_new_name;
4836
4837
0
  free(map->name);
4838
4839
0
  map->name = new_name;
4840
0
  map->def.type = info.type;
4841
0
  map->def.key_size = info.key_size;
4842
0
  map->def.value_size = info.value_size;
4843
0
  map->def.max_entries = info.max_entries;
4844
0
  map->def.map_flags = info.map_flags;
4845
0
  map->btf_key_type_id = info.btf_key_type_id;
4846
0
  map->btf_value_type_id = info.btf_value_type_id;
4847
0
  map->reused = true;
4848
0
  map->map_extra = info.map_extra;
4849
4850
0
  return 0;
4851
4852
0
err_free_new_name:
4853
0
  free(new_name);
4854
0
  return libbpf_err(err);
4855
0
}
4856
4857
__u32 bpf_map__max_entries(const struct bpf_map *map)
4858
0
{
4859
0
  return map->def.max_entries;
4860
0
}
4861
4862
struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4863
0
{
4864
0
  if (!bpf_map_type__is_map_in_map(map->def.type))
4865
0
    return errno = EINVAL, NULL;
4866
4867
0
  return map->inner_map;
4868
0
}
4869
4870
int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4871
0
{
4872
0
  if (map->obj->loaded)
4873
0
    return libbpf_err(-EBUSY);
4874
4875
0
  map->def.max_entries = max_entries;
4876
4877
  /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4878
0
  if (map_is_ringbuf(map))
4879
0
    map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4880
4881
0
  return 0;
4882
0
}
4883
4884
static int bpf_object_prepare_token(struct bpf_object *obj)
4885
0
{
4886
0
  const char *bpffs_path;
4887
0
  int bpffs_fd = -1, token_fd, err;
4888
0
  bool mandatory;
4889
0
  enum libbpf_print_level level;
4890
4891
  /* token is explicitly prevented */
4892
0
  if (obj->token_path && obj->token_path[0] == '\0') {
4893
0
    pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4894
0
    return 0;
4895
0
  }
4896
4897
0
  mandatory = obj->token_path != NULL;
4898
0
  level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4899
4900
0
  bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4901
0
  bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4902
0
  if (bpffs_fd < 0) {
4903
0
    err = -errno;
4904
0
    __pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n",
4905
0
         obj->name, err, bpffs_path,
4906
0
         mandatory ? "" : ", skipping optional step...");
4907
0
    return mandatory ? err : 0;
4908
0
  }
4909
4910
0
  token_fd = bpf_token_create(bpffs_fd, 0);
4911
0
  close(bpffs_fd);
4912
0
  if (token_fd < 0) {
4913
0
    if (!mandatory && token_fd == -ENOENT) {
4914
0
      pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
4915
0
         obj->name, bpffs_path);
4916
0
      return 0;
4917
0
    }
4918
0
    __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
4919
0
         obj->name, token_fd, bpffs_path,
4920
0
         mandatory ? "" : ", skipping optional step...");
4921
0
    return mandatory ? token_fd : 0;
4922
0
  }
4923
4924
0
  obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
4925
0
  if (!obj->feat_cache) {
4926
0
    close(token_fd);
4927
0
    return -ENOMEM;
4928
0
  }
4929
4930
0
  obj->token_fd = token_fd;
4931
0
  obj->feat_cache->token_fd = token_fd;
4932
4933
0
  return 0;
4934
0
}
4935
4936
static int
4937
bpf_object__probe_loading(struct bpf_object *obj)
4938
0
{
4939
0
  char *cp, errmsg[STRERR_BUFSIZE];
4940
0
  struct bpf_insn insns[] = {
4941
0
    BPF_MOV64_IMM(BPF_REG_0, 0),
4942
0
    BPF_EXIT_INSN(),
4943
0
  };
4944
0
  int ret, insn_cnt = ARRAY_SIZE(insns);
4945
0
  LIBBPF_OPTS(bpf_prog_load_opts, opts,
4946
0
    .token_fd = obj->token_fd,
4947
0
    .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
4948
0
  );
4949
4950
0
  if (obj->gen_loader)
4951
0
    return 0;
4952
4953
0
  ret = bump_rlimit_memlock();
4954
0
  if (ret)
4955
0
    pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4956
4957
  /* make sure basic loading works */
4958
0
  ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
4959
0
  if (ret < 0)
4960
0
    ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
4961
0
  if (ret < 0) {
4962
0
    ret = errno;
4963
0
    cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4964
0
    pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4965
0
      "program. Make sure your kernel supports BPF "
4966
0
      "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4967
0
      "set to big enough value.\n", __func__, cp, ret);
4968
0
    return -ret;
4969
0
  }
4970
0
  close(ret);
4971
4972
0
  return 0;
4973
0
}
4974
4975
bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4976
0
{
4977
0
  if (obj->gen_loader)
4978
    /* To generate loader program assume the latest kernel
4979
     * to avoid doing extra prog_load, map_create syscalls.
4980
     */
4981
0
    return true;
4982
4983
0
  if (obj->token_fd)
4984
0
    return feat_supported(obj->feat_cache, feat_id);
4985
4986
0
  return feat_supported(NULL, feat_id);
4987
0
}
4988
4989
static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4990
0
{
4991
0
  struct bpf_map_info map_info;
4992
0
  char msg[STRERR_BUFSIZE];
4993
0
  __u32 map_info_len = sizeof(map_info);
4994
0
  int err;
4995
4996
0
  memset(&map_info, 0, map_info_len);
4997
0
  err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
4998
0
  if (err && errno == EINVAL)
4999
0
    err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5000
0
  if (err) {
5001
0
    pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5002
0
      libbpf_strerror_r(errno, msg, sizeof(msg)));
5003
0
    return false;
5004
0
  }
5005
5006
0
  return (map_info.type == map->def.type &&
5007
0
    map_info.key_size == map->def.key_size &&
5008
0
    map_info.value_size == map->def.value_size &&
5009
0
    map_info.max_entries == map->def.max_entries &&
5010
0
    map_info.map_flags == map->def.map_flags &&
5011
0
    map_info.map_extra == map->map_extra);
5012
0
}
5013
5014
static int
5015
bpf_object__reuse_map(struct bpf_map *map)
5016
0
{
5017
0
  char *cp, errmsg[STRERR_BUFSIZE];
5018
0
  int err, pin_fd;
5019
5020
0
  pin_fd = bpf_obj_get(map->pin_path);
5021
0
  if (pin_fd < 0) {
5022
0
    err = -errno;
5023
0
    if (err == -ENOENT) {
5024
0
      pr_debug("found no pinned map to reuse at '%s'\n",
5025
0
         map->pin_path);
5026
0
      return 0;
5027
0
    }
5028
5029
0
    cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5030
0
    pr_warn("couldn't retrieve pinned map '%s': %s\n",
5031
0
      map->pin_path, cp);
5032
0
    return err;
5033
0
  }
5034
5035
0
  if (!map_is_reuse_compat(map, pin_fd)) {
5036
0
    pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5037
0
      map->pin_path);
5038
0
    close(pin_fd);
5039
0
    return -EINVAL;
5040
0
  }
5041
5042
0
  err = bpf_map__reuse_fd(map, pin_fd);
5043
0
  close(pin_fd);
5044
0
  if (err)
5045
0
    return err;
5046
5047
0
  map->pinned = true;
5048
0
  pr_debug("reused pinned map at '%s'\n", map->pin_path);
5049
5050
0
  return 0;
5051
0
}
5052
5053
static int
5054
bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5055
0
{
5056
0
  enum libbpf_map_type map_type = map->libbpf_type;
5057
0
  char *cp, errmsg[STRERR_BUFSIZE];
5058
0
  int err, zero = 0;
5059
5060
0
  if (obj->gen_loader) {
5061
0
    bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5062
0
           map->mmaped, map->def.value_size);
5063
0
    if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5064
0
      bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5065
0
    return 0;
5066
0
  }
5067
5068
0
  err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5069
0
  if (err) {
5070
0
    err = -errno;
5071
0
    cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5072
0
    pr_warn("Error setting initial map(%s) contents: %s\n",
5073
0
      map->name, cp);
5074
0
    return err;
5075
0
  }
5076
5077
  /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5078
0
  if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5079
0
    err = bpf_map_freeze(map->fd);
5080
0
    if (err) {
5081
0
      err = -errno;
5082
0
      cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5083
0
      pr_warn("Error freezing map(%s) as read-only: %s\n",
5084
0
        map->name, cp);
5085
0
      return err;
5086
0
    }
5087
0
  }
5088
0
  return 0;
5089
0
}
5090
5091
static void bpf_map__destroy(struct bpf_map *map);
5092
5093
static bool map_is_created(const struct bpf_map *map)
5094
0
{
5095
0
  return map->obj->loaded || map->reused;
5096
0
}
5097
5098
static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5099
0
{
5100
0
  LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5101
0
  struct bpf_map_def *def = &map->def;
5102
0
  const char *map_name = NULL;
5103
0
  int err = 0, map_fd;
5104
5105
0
  if (kernel_supports(obj, FEAT_PROG_NAME))
5106
0
    map_name = map->name;
5107
0
  create_attr.map_ifindex = map->map_ifindex;
5108
0
  create_attr.map_flags = def->map_flags;
5109
0
  create_attr.numa_node = map->numa_node;
5110
0
  create_attr.map_extra = map->map_extra;
5111
0
  create_attr.token_fd = obj->token_fd;
5112
0
  if (obj->token_fd)
5113
0
    create_attr.map_flags |= BPF_F_TOKEN_FD;
5114
5115
0
  if (bpf_map__is_struct_ops(map)) {
5116
0
    create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5117
0
    if (map->mod_btf_fd >= 0) {
5118
0
      create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5119
0
      create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5120
0
    }
5121
0
  }
5122
5123
0
  if (obj->btf && btf__fd(obj->btf) >= 0) {
5124
0
    create_attr.btf_fd = btf__fd(obj->btf);
5125
0
    create_attr.btf_key_type_id = map->btf_key_type_id;
5126
0
    create_attr.btf_value_type_id = map->btf_value_type_id;
5127
0
  }
5128
5129
0
  if (bpf_map_type__is_map_in_map(def->type)) {
5130
0
    if (map->inner_map) {
5131
0
      err = map_set_def_max_entries(map->inner_map);
5132
0
      if (err)
5133
0
        return err;
5134
0
      err = bpf_object__create_map(obj, map->inner_map, true);
5135
0
      if (err) {
5136
0
        pr_warn("map '%s': failed to create inner map: %d\n",
5137
0
          map->name, err);
5138
0
        return err;
5139
0
      }
5140
0
      map->inner_map_fd = map->inner_map->fd;
5141
0
    }
5142
0
    if (map->inner_map_fd >= 0)
5143
0
      create_attr.inner_map_fd = map->inner_map_fd;
5144
0
  }
5145
5146
0
  switch (def->type) {
5147
0
  case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5148
0
  case BPF_MAP_TYPE_CGROUP_ARRAY:
5149
0
  case BPF_MAP_TYPE_STACK_TRACE:
5150
0
  case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5151
0
  case BPF_MAP_TYPE_HASH_OF_MAPS:
5152
0
  case BPF_MAP_TYPE_DEVMAP:
5153
0
  case BPF_MAP_TYPE_DEVMAP_HASH:
5154
0
  case BPF_MAP_TYPE_CPUMAP:
5155
0
  case BPF_MAP_TYPE_XSKMAP:
5156
0
  case BPF_MAP_TYPE_SOCKMAP:
5157
0
  case BPF_MAP_TYPE_SOCKHASH:
5158
0
  case BPF_MAP_TYPE_QUEUE:
5159
0
  case BPF_MAP_TYPE_STACK:
5160
0
  case BPF_MAP_TYPE_ARENA:
5161
0
    create_attr.btf_fd = 0;
5162
0
    create_attr.btf_key_type_id = 0;
5163
0
    create_attr.btf_value_type_id = 0;
5164
0
    map->btf_key_type_id = 0;
5165
0
    map->btf_value_type_id = 0;
5166
0
    break;
5167
0
  case BPF_MAP_TYPE_STRUCT_OPS:
5168
0
    create_attr.btf_value_type_id = 0;
5169
0
    break;
5170
0
  default:
5171
0
    break;
5172
0
  }
5173
5174
0
  if (obj->gen_loader) {
5175
0
    bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5176
0
            def->key_size, def->value_size, def->max_entries,
5177
0
            &create_attr, is_inner ? -1 : map - obj->maps);
5178
    /* We keep pretenting we have valid FD to pass various fd >= 0
5179
     * checks by just keeping original placeholder FDs in place.
5180
     * See bpf_object__add_map() comment.
5181
     * This placeholder fd will not be used with any syscall and
5182
     * will be reset to -1 eventually.
5183
     */
5184
0
    map_fd = map->fd;
5185
0
  } else {
5186
0
    map_fd = bpf_map_create(def->type, map_name,
5187
0
          def->key_size, def->value_size,
5188
0
          def->max_entries, &create_attr);
5189
0
  }
5190
0
  if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5191
0
    char *cp, errmsg[STRERR_BUFSIZE];
5192
5193
0
    err = -errno;
5194
0
    cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5195
0
    pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5196
0
      map->name, cp, err);
5197
0
    create_attr.btf_fd = 0;
5198
0
    create_attr.btf_key_type_id = 0;
5199
0
    create_attr.btf_value_type_id = 0;
5200
0
    map->btf_key_type_id = 0;
5201
0
    map->btf_value_type_id = 0;
5202
0
    map_fd = bpf_map_create(def->type, map_name,
5203
0
          def->key_size, def->value_size,
5204
0
          def->max_entries, &create_attr);
5205
0
  }
5206
5207
0
  if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5208
0
    if (obj->gen_loader)
5209
0
      map->inner_map->fd = -1;
5210
0
    bpf_map__destroy(map->inner_map);
5211
0
    zfree(&map->inner_map);
5212
0
  }
5213
5214
0
  if (map_fd < 0)
5215
0
    return map_fd;
5216
5217
  /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5218
0
  if (map->fd == map_fd)
5219
0
    return 0;
5220
5221
  /* Keep placeholder FD value but now point it to the BPF map object.
5222
   * This way everything that relied on this map's FD (e.g., relocated
5223
   * ldimm64 instructions) will stay valid and won't need adjustments.
5224
   * map->fd stays valid but now point to what map_fd points to.
5225
   */
5226
0
  return reuse_fd(map->fd, map_fd);
5227
0
}
5228
5229
static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5230
0
{
5231
0
  const struct bpf_map *targ_map;
5232
0
  unsigned int i;
5233
0
  int fd, err = 0;
5234
5235
0
  for (i = 0; i < map->init_slots_sz; i++) {
5236
0
    if (!map->init_slots[i])
5237
0
      continue;
5238
5239
0
    targ_map = map->init_slots[i];
5240
0
    fd = targ_map->fd;
5241
5242
0
    if (obj->gen_loader) {
5243
0
      bpf_gen__populate_outer_map(obj->gen_loader,
5244
0
                map - obj->maps, i,
5245
0
                targ_map - obj->maps);
5246
0
    } else {
5247
0
      err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5248
0
    }
5249
0
    if (err) {
5250
0
      err = -errno;
5251
0
      pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5252
0
        map->name, i, targ_map->name, fd, err);
5253
0
      return err;
5254
0
    }
5255
0
    pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5256
0
       map->name, i, targ_map->name, fd);
5257
0
  }
5258
5259
0
  zfree(&map->init_slots);
5260
0
  map->init_slots_sz = 0;
5261
5262
0
  return 0;
5263
0
}
5264
5265
static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5266
0
{
5267
0
  const struct bpf_program *targ_prog;
5268
0
  unsigned int i;
5269
0
  int fd, err;
5270
5271
0
  if (obj->gen_loader)
5272
0
    return -ENOTSUP;
5273
5274
0
  for (i = 0; i < map->init_slots_sz; i++) {
5275
0
    if (!map->init_slots[i])
5276
0
      continue;
5277
5278
0
    targ_prog = map->init_slots[i];
5279
0
    fd = bpf_program__fd(targ_prog);
5280
5281
0
    err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5282
0
    if (err) {
5283
0
      err = -errno;
5284
0
      pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5285
0
        map->name, i, targ_prog->name, fd, err);
5286
0
      return err;
5287
0
    }
5288
0
    pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5289
0
       map->name, i, targ_prog->name, fd);
5290
0
  }
5291
5292
0
  zfree(&map->init_slots);
5293
0
  map->init_slots_sz = 0;
5294
5295
0
  return 0;
5296
0
}
5297
5298
static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5299
0
{
5300
0
  struct bpf_map *map;
5301
0
  int i, err;
5302
5303
0
  for (i = 0; i < obj->nr_maps; i++) {
5304
0
    map = &obj->maps[i];
5305
5306
0
    if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5307
0
      continue;
5308
5309
0
    err = init_prog_array_slots(obj, map);
5310
0
    if (err < 0)
5311
0
      return err;
5312
0
  }
5313
0
  return 0;
5314
0
}
5315
5316
static int map_set_def_max_entries(struct bpf_map *map)
5317
0
{
5318
0
  if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5319
0
    int nr_cpus;
5320
5321
0
    nr_cpus = libbpf_num_possible_cpus();
5322
0
    if (nr_cpus < 0) {
5323
0
      pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5324
0
        map->name, nr_cpus);
5325
0
      return nr_cpus;
5326
0
    }
5327
0
    pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5328
0
    map->def.max_entries = nr_cpus;
5329
0
  }
5330
5331
0
  return 0;
5332
0
}
5333
5334
static int
5335
bpf_object__create_maps(struct bpf_object *obj)
5336
0
{
5337
0
  struct bpf_map *map;
5338
0
  char *cp, errmsg[STRERR_BUFSIZE];
5339
0
  unsigned int i, j;
5340
0
  int err;
5341
0
  bool retried;
5342
5343
0
  for (i = 0; i < obj->nr_maps; i++) {
5344
0
    map = &obj->maps[i];
5345
5346
    /* To support old kernels, we skip creating global data maps
5347
     * (.rodata, .data, .kconfig, etc); later on, during program
5348
     * loading, if we detect that at least one of the to-be-loaded
5349
     * programs is referencing any global data map, we'll error
5350
     * out with program name and relocation index logged.
5351
     * This approach allows to accommodate Clang emitting
5352
     * unnecessary .rodata.str1.1 sections for string literals,
5353
     * but also it allows to have CO-RE applications that use
5354
     * global variables in some of BPF programs, but not others.
5355
     * If those global variable-using programs are not loaded at
5356
     * runtime due to bpf_program__set_autoload(prog, false),
5357
     * bpf_object loading will succeed just fine even on old
5358
     * kernels.
5359
     */
5360
0
    if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5361
0
      map->autocreate = false;
5362
5363
0
    if (!map->autocreate) {
5364
0
      pr_debug("map '%s': skipped auto-creating...\n", map->name);
5365
0
      continue;
5366
0
    }
5367
5368
0
    err = map_set_def_max_entries(map);
5369
0
    if (err)
5370
0
      goto err_out;
5371
5372
0
    retried = false;
5373
0
retry:
5374
0
    if (map->pin_path) {
5375
0
      err = bpf_object__reuse_map(map);
5376
0
      if (err) {
5377
0
        pr_warn("map '%s': error reusing pinned map\n",
5378
0
          map->name);
5379
0
        goto err_out;
5380
0
      }
5381
0
      if (retried && map->fd < 0) {
5382
0
        pr_warn("map '%s': cannot find pinned map\n",
5383
0
          map->name);
5384
0
        err = -ENOENT;
5385
0
        goto err_out;
5386
0
      }
5387
0
    }
5388
5389
0
    if (map->reused) {
5390
0
      pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5391
0
         map->name, map->fd);
5392
0
    } else {
5393
0
      err = bpf_object__create_map(obj, map, false);
5394
0
      if (err)
5395
0
        goto err_out;
5396
5397
0
      pr_debug("map '%s': created successfully, fd=%d\n",
5398
0
         map->name, map->fd);
5399
5400
0
      if (bpf_map__is_internal(map)) {
5401
0
        err = bpf_object__populate_internal_map(obj, map);
5402
0
        if (err < 0)
5403
0
          goto err_out;
5404
0
      }
5405
0
      if (map->def.type == BPF_MAP_TYPE_ARENA) {
5406
0
        map->mmaped = mmap((void *)(long)map->map_extra,
5407
0
               bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5408
0
               map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5409
0
               map->fd, 0);
5410
0
        if (map->mmaped == MAP_FAILED) {
5411
0
          err = -errno;
5412
0
          map->mmaped = NULL;
5413
0
          pr_warn("map '%s': failed to mmap arena: %d\n",
5414
0
            map->name, err);
5415
0
          return err;
5416
0
        }
5417
0
        if (obj->arena_data) {
5418
0
          memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5419
0
          zfree(&obj->arena_data);
5420
0
        }
5421
0
      }
5422
0
      if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5423
0
        err = init_map_in_map_slots(obj, map);
5424
0
        if (err < 0)
5425
0
          goto err_out;
5426
0
      }
5427
0
    }
5428
5429
0
    if (map->pin_path && !map->pinned) {
5430
0
      err = bpf_map__pin(map, NULL);
5431
0
      if (err) {
5432
0
        if (!retried && err == -EEXIST) {
5433
0
          retried = true;
5434
0
          goto retry;
5435
0
        }
5436
0
        pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5437
0
          map->name, map->pin_path, err);
5438
0
        goto err_out;
5439
0
      }
5440
0
    }
5441
0
  }
5442
5443
0
  return 0;
5444
5445
0
err_out:
5446
0
  cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5447
0
  pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5448
0
  pr_perm_msg(err);
5449
0
  for (j = 0; j < i; j++)
5450
0
    zclose(obj->maps[j].fd);
5451
0
  return err;
5452
0
}
5453
5454
static bool bpf_core_is_flavor_sep(const char *s)
5455
29.2k
{
5456
  /* check X___Y name pattern, where X and Y are not underscores */
5457
29.2k
  return s[0] != '_' &&             /* X */
5458
29.2k
         s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5459
29.2k
         s[4] != '_';             /* Y */
5460
29.2k
}
5461
5462
/* Given 'some_struct_name___with_flavor' return the length of a name prefix
5463
 * before last triple underscore. Struct name part after last triple
5464
 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5465
 */
5466
size_t bpf_core_essential_name_len(const char *name)
5467
3.80k
{
5468
3.80k
  size_t n = strlen(name);
5469
3.80k
  int i;
5470
5471
32.7k
  for (i = n - 5; i >= 0; i--) {
5472
29.2k
    if (bpf_core_is_flavor_sep(name + i))
5473
246
      return i + 1;
5474
29.2k
  }
5475
3.56k
  return n;
5476
3.80k
}
5477
5478
void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5479
0
{
5480
0
  if (!cands)
5481
0
    return;
5482
5483
0
  free(cands->cands);
5484
0
  free(cands);
5485
0
}
5486
5487
int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5488
           size_t local_essent_len,
5489
           const struct btf *targ_btf,
5490
           const char *targ_btf_name,
5491
           int targ_start_id,
5492
           struct bpf_core_cand_list *cands)
5493
0
{
5494
0
  struct bpf_core_cand *new_cands, *cand;
5495
0
  const struct btf_type *t, *local_t;
5496
0
  const char *targ_name, *local_name;
5497
0
  size_t targ_essent_len;
5498
0
  int n, i;
5499
5500
0
  local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5501
0
  local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5502
5503
0
  n = btf__type_cnt(targ_btf);
5504
0
  for (i = targ_start_id; i < n; i++) {
5505
0
    t = btf__type_by_id(targ_btf, i);
5506
0
    if (!btf_kind_core_compat(t, local_t))
5507
0
      continue;
5508
5509
0
    targ_name = btf__name_by_offset(targ_btf, t->name_off);
5510
0
    if (str_is_empty(targ_name))
5511
0
      continue;
5512
5513
0
    targ_essent_len = bpf_core_essential_name_len(targ_name);
5514
0
    if (targ_essent_len != local_essent_len)
5515
0
      continue;
5516
5517
0
    if (strncmp(local_name, targ_name, local_essent_len) != 0)
5518
0
      continue;
5519
5520
0
    pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5521
0
       local_cand->id, btf_kind_str(local_t),
5522
0
       local_name, i, btf_kind_str(t), targ_name,
5523
0
       targ_btf_name);
5524
0
    new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5525
0
                sizeof(*cands->cands));
5526
0
    if (!new_cands)
5527
0
      return -ENOMEM;
5528
5529
0
    cand = &new_cands[cands->len];
5530
0
    cand->btf = targ_btf;
5531
0
    cand->id = i;
5532
5533
0
    cands->cands = new_cands;
5534
0
    cands->len++;
5535
0
  }
5536
0
  return 0;
5537
0
}
5538
5539
static int load_module_btfs(struct bpf_object *obj)
5540
0
{
5541
0
  struct bpf_btf_info info;
5542
0
  struct module_btf *mod_btf;
5543
0
  struct btf *btf;
5544
0
  char name[64];
5545
0
  __u32 id = 0, len;
5546
0
  int err, fd;
5547
5548
0
  if (obj->btf_modules_loaded)
5549
0
    return 0;
5550
5551
0
  if (obj->gen_loader)
5552
0
    return 0;
5553
5554
  /* don't do this again, even if we find no module BTFs */
5555
0
  obj->btf_modules_loaded = true;
5556
5557
  /* kernel too old to support module BTFs */
5558
0
  if (!kernel_supports(obj, FEAT_MODULE_BTF))
5559
0
    return 0;
5560
5561
0
  while (true) {
5562
0
    err = bpf_btf_get_next_id(id, &id);
5563
0
    if (err && errno == ENOENT)
5564
0
      return 0;
5565
0
    if (err && errno == EPERM) {
5566
0
      pr_debug("skipping module BTFs loading, missing privileges\n");
5567
0
      return 0;
5568
0
    }
5569
0
    if (err) {
5570
0
      err = -errno;
5571
0
      pr_warn("failed to iterate BTF objects: %d\n", err);
5572
0
      return err;
5573
0
    }
5574
5575
0
    fd = bpf_btf_get_fd_by_id(id);
5576
0
    if (fd < 0) {
5577
0
      if (errno == ENOENT)
5578
0
        continue; /* expected race: BTF was unloaded */
5579
0
      err = -errno;
5580
0
      pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5581
0
      return err;
5582
0
    }
5583
5584
0
    len = sizeof(info);
5585
0
    memset(&info, 0, sizeof(info));
5586
0
    info.name = ptr_to_u64(name);
5587
0
    info.name_len = sizeof(name);
5588
5589
0
    err = bpf_btf_get_info_by_fd(fd, &info, &len);
5590
0
    if (err) {
5591
0
      err = -errno;
5592
0
      pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5593
0
      goto err_out;
5594
0
    }
5595
5596
    /* ignore non-module BTFs */
5597
0
    if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5598
0
      close(fd);
5599
0
      continue;
5600
0
    }
5601
5602
0
    btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5603
0
    err = libbpf_get_error(btf);
5604
0
    if (err) {
5605
0
      pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5606
0
        name, id, err);
5607
0
      goto err_out;
5608
0
    }
5609
5610
0
    err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5611
0
          sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5612
0
    if (err)
5613
0
      goto err_out;
5614
5615
0
    mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5616
5617
0
    mod_btf->btf = btf;
5618
0
    mod_btf->id = id;
5619
0
    mod_btf->fd = fd;
5620
0
    mod_btf->name = strdup(name);
5621
0
    if (!mod_btf->name) {
5622
0
      err = -ENOMEM;
5623
0
      goto err_out;
5624
0
    }
5625
0
    continue;
5626
5627
0
err_out:
5628
0
    close(fd);
5629
0
    return err;
5630
0
  }
5631
5632
0
  return 0;
5633
0
}
5634
5635
static struct bpf_core_cand_list *
5636
bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5637
0
{
5638
0
  struct bpf_core_cand local_cand = {};
5639
0
  struct bpf_core_cand_list *cands;
5640
0
  const struct btf *main_btf;
5641
0
  const struct btf_type *local_t;
5642
0
  const char *local_name;
5643
0
  size_t local_essent_len;
5644
0
  int err, i;
5645
5646
0
  local_cand.btf = local_btf;
5647
0
  local_cand.id = local_type_id;
5648
0
  local_t = btf__type_by_id(local_btf, local_type_id);
5649
0
  if (!local_t)
5650
0
    return ERR_PTR(-EINVAL);
5651
5652
0
  local_name = btf__name_by_offset(local_btf, local_t->name_off);
5653
0
  if (str_is_empty(local_name))
5654
0
    return ERR_PTR(-EINVAL);
5655
0
  local_essent_len = bpf_core_essential_name_len(local_name);
5656
5657
0
  cands = calloc(1, sizeof(*cands));
5658
0
  if (!cands)
5659
0
    return ERR_PTR(-ENOMEM);
5660
5661
  /* Attempt to find target candidates in vmlinux BTF first */
5662
0
  main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5663
0
  err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5664
0
  if (err)
5665
0
    goto err_out;
5666
5667
  /* if vmlinux BTF has any candidate, don't got for module BTFs */
5668
0
  if (cands->len)
5669
0
    return cands;
5670
5671
  /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5672
0
  if (obj->btf_vmlinux_override)
5673
0
    return cands;
5674
5675
  /* now look through module BTFs, trying to still find candidates */
5676
0
  err = load_module_btfs(obj);
5677
0
  if (err)
5678
0
    goto err_out;
5679
5680
0
  for (i = 0; i < obj->btf_module_cnt; i++) {
5681
0
    err = bpf_core_add_cands(&local_cand, local_essent_len,
5682
0
           obj->btf_modules[i].btf,
5683
0
           obj->btf_modules[i].name,
5684
0
           btf__type_cnt(obj->btf_vmlinux),
5685
0
           cands);
5686
0
    if (err)
5687
0
      goto err_out;
5688
0
  }
5689
5690
0
  return cands;
5691
0
err_out:
5692
0
  bpf_core_free_cands(cands);
5693
0
  return ERR_PTR(err);
5694
0
}
5695
5696
/* Check local and target types for compatibility. This check is used for
5697
 * type-based CO-RE relocations and follow slightly different rules than
5698
 * field-based relocations. This function assumes that root types were already
5699
 * checked for name match. Beyond that initial root-level name check, names
5700
 * are completely ignored. Compatibility rules are as follows:
5701
 *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5702
 *     kind should match for local and target types (i.e., STRUCT is not
5703
 *     compatible with UNION);
5704
 *   - for ENUMs, the size is ignored;
5705
 *   - for INT, size and signedness are ignored;
5706
 *   - for ARRAY, dimensionality is ignored, element types are checked for
5707
 *     compatibility recursively;
5708
 *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5709
 *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5710
 *   - FUNC_PROTOs are compatible if they have compatible signature: same
5711
 *     number of input args and compatible return and argument types.
5712
 * These rules are not set in stone and probably will be adjusted as we get
5713
 * more experience with using BPF CO-RE relocations.
5714
 */
5715
int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5716
            const struct btf *targ_btf, __u32 targ_id)
5717
0
{
5718
0
  return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5719
0
}
5720
5721
int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5722
       const struct btf *targ_btf, __u32 targ_id)
5723
0
{
5724
0
  return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5725
0
}
5726
5727
static size_t bpf_core_hash_fn(const long key, void *ctx)
5728
0
{
5729
0
  return key;
5730
0
}
5731
5732
static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5733
0
{
5734
0
  return k1 == k2;
5735
0
}
5736
5737
static int record_relo_core(struct bpf_program *prog,
5738
          const struct bpf_core_relo *core_relo, int insn_idx)
5739
0
{
5740
0
  struct reloc_desc *relos, *relo;
5741
5742
0
  relos = libbpf_reallocarray(prog->reloc_desc,
5743
0
            prog->nr_reloc + 1, sizeof(*relos));
5744
0
  if (!relos)
5745
0
    return -ENOMEM;
5746
0
  relo = &relos[prog->nr_reloc];
5747
0
  relo->type = RELO_CORE;
5748
0
  relo->insn_idx = insn_idx;
5749
0
  relo->core_relo = core_relo;
5750
0
  prog->reloc_desc = relos;
5751
0
  prog->nr_reloc++;
5752
0
  return 0;
5753
0
}
5754
5755
static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5756
0
{
5757
0
  struct reloc_desc *relo;
5758
0
  int i;
5759
5760
0
  for (i = 0; i < prog->nr_reloc; i++) {
5761
0
    relo = &prog->reloc_desc[i];
5762
0
    if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5763
0
      continue;
5764
5765
0
    return relo->core_relo;
5766
0
  }
5767
5768
0
  return NULL;
5769
0
}
5770
5771
static int bpf_core_resolve_relo(struct bpf_program *prog,
5772
         const struct bpf_core_relo *relo,
5773
         int relo_idx,
5774
         const struct btf *local_btf,
5775
         struct hashmap *cand_cache,
5776
         struct bpf_core_relo_res *targ_res)
5777
0
{
5778
0
  struct bpf_core_spec specs_scratch[3] = {};
5779
0
  struct bpf_core_cand_list *cands = NULL;
5780
0
  const char *prog_name = prog->name;
5781
0
  const struct btf_type *local_type;
5782
0
  const char *local_name;
5783
0
  __u32 local_id = relo->type_id;
5784
0
  int err;
5785
5786
0
  local_type = btf__type_by_id(local_btf, local_id);
5787
0
  if (!local_type)
5788
0
    return -EINVAL;
5789
5790
0
  local_name = btf__name_by_offset(local_btf, local_type->name_off);
5791
0
  if (!local_name)
5792
0
    return -EINVAL;
5793
5794
0
  if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5795
0
      !hashmap__find(cand_cache, local_id, &cands)) {
5796
0
    cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5797
0
    if (IS_ERR(cands)) {
5798
0
      pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5799
0
        prog_name, relo_idx, local_id, btf_kind_str(local_type),
5800
0
        local_name, PTR_ERR(cands));
5801
0
      return PTR_ERR(cands);
5802
0
    }
5803
0
    err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5804
0
    if (err) {
5805
0
      bpf_core_free_cands(cands);
5806
0
      return err;
5807
0
    }
5808
0
  }
5809
5810
0
  return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5811
0
               targ_res);
5812
0
}
5813
5814
static int
5815
bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5816
0
{
5817
0
  const struct btf_ext_info_sec *sec;
5818
0
  struct bpf_core_relo_res targ_res;
5819
0
  const struct bpf_core_relo *rec;
5820
0
  const struct btf_ext_info *seg;
5821
0
  struct hashmap_entry *entry;
5822
0
  struct hashmap *cand_cache = NULL;
5823
0
  struct bpf_program *prog;
5824
0
  struct bpf_insn *insn;
5825
0
  const char *sec_name;
5826
0
  int i, err = 0, insn_idx, sec_idx, sec_num;
5827
5828
0
  if (obj->btf_ext->core_relo_info.len == 0)
5829
0
    return 0;
5830
5831
0
  if (targ_btf_path) {
5832
0
    obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5833
0
    err = libbpf_get_error(obj->btf_vmlinux_override);
5834
0
    if (err) {
5835
0
      pr_warn("failed to parse target BTF: %d\n", err);
5836
0
      return err;
5837
0
    }
5838
0
  }
5839
5840
0
  cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5841
0
  if (IS_ERR(cand_cache)) {
5842
0
    err = PTR_ERR(cand_cache);
5843
0
    goto out;
5844
0
  }
5845
5846
0
  seg = &obj->btf_ext->core_relo_info;
5847
0
  sec_num = 0;
5848
0
  for_each_btf_ext_sec(seg, sec) {
5849
0
    sec_idx = seg->sec_idxs[sec_num];
5850
0
    sec_num++;
5851
5852
0
    sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5853
0
    if (str_is_empty(sec_name)) {
5854
0
      err = -EINVAL;
5855
0
      goto out;
5856
0
    }
5857
5858
0
    pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5859
5860
0
    for_each_btf_ext_rec(seg, sec, i, rec) {
5861
0
      if (rec->insn_off % BPF_INSN_SZ)
5862
0
        return -EINVAL;
5863
0
      insn_idx = rec->insn_off / BPF_INSN_SZ;
5864
0
      prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5865
0
      if (!prog) {
5866
        /* When __weak subprog is "overridden" by another instance
5867
         * of the subprog from a different object file, linker still
5868
         * appends all the .BTF.ext info that used to belong to that
5869
         * eliminated subprogram.
5870
         * This is similar to what x86-64 linker does for relocations.
5871
         * So just ignore such relocations just like we ignore
5872
         * subprog instructions when discovering subprograms.
5873
         */
5874
0
        pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5875
0
           sec_name, i, insn_idx);
5876
0
        continue;
5877
0
      }
5878
      /* no need to apply CO-RE relocation if the program is
5879
       * not going to be loaded
5880
       */
5881
0
      if (!prog->autoload)
5882
0
        continue;
5883
5884
      /* adjust insn_idx from section frame of reference to the local
5885
       * program's frame of reference; (sub-)program code is not yet
5886
       * relocated, so it's enough to just subtract in-section offset
5887
       */
5888
0
      insn_idx = insn_idx - prog->sec_insn_off;
5889
0
      if (insn_idx >= prog->insns_cnt)
5890
0
        return -EINVAL;
5891
0
      insn = &prog->insns[insn_idx];
5892
5893
0
      err = record_relo_core(prog, rec, insn_idx);
5894
0
      if (err) {
5895
0
        pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5896
0
          prog->name, i, err);
5897
0
        goto out;
5898
0
      }
5899
5900
0
      if (prog->obj->gen_loader)
5901
0
        continue;
5902
5903
0
      err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5904
0
      if (err) {
5905
0
        pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5906
0
          prog->name, i, err);
5907
0
        goto out;
5908
0
      }
5909
5910
0
      err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5911
0
      if (err) {
5912
0
        pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5913
0
          prog->name, i, insn_idx, err);
5914
0
        goto out;
5915
0
      }
5916
0
    }
5917
0
  }
5918
5919
0
out:
5920
  /* obj->btf_vmlinux and module BTFs are freed after object load */
5921
0
  btf__free(obj->btf_vmlinux_override);
5922
0
  obj->btf_vmlinux_override = NULL;
5923
5924
0
  if (!IS_ERR_OR_NULL(cand_cache)) {
5925
0
    hashmap__for_each_entry(cand_cache, entry, i) {
5926
0
      bpf_core_free_cands(entry->pvalue);
5927
0
    }
5928
0
    hashmap__free(cand_cache);
5929
0
  }
5930
0
  return err;
5931
0
}
5932
5933
/* base map load ldimm64 special constant, used also for log fixup logic */
5934
0
#define POISON_LDIMM64_MAP_BASE 2001000000
5935
#define POISON_LDIMM64_MAP_PFX "200100"
5936
5937
static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5938
             int insn_idx, struct bpf_insn *insn,
5939
             int map_idx, const struct bpf_map *map)
5940
0
{
5941
0
  int i;
5942
5943
0
  pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5944
0
     prog->name, relo_idx, insn_idx, map_idx, map->name);
5945
5946
  /* we turn single ldimm64 into two identical invalid calls */
5947
0
  for (i = 0; i < 2; i++) {
5948
0
    insn->code = BPF_JMP | BPF_CALL;
5949
0
    insn->dst_reg = 0;
5950
0
    insn->src_reg = 0;
5951
0
    insn->off = 0;
5952
    /* if this instruction is reachable (not a dead code),
5953
     * verifier will complain with something like:
5954
     * invalid func unknown#2001000123
5955
     * where lower 123 is map index into obj->maps[] array
5956
     */
5957
0
    insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5958
5959
0
    insn++;
5960
0
  }
5961
0
}
5962
5963
/* unresolved kfunc call special constant, used also for log fixup logic */
5964
0
#define POISON_CALL_KFUNC_BASE 2002000000
5965
#define POISON_CALL_KFUNC_PFX "2002"
5966
5967
static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5968
            int insn_idx, struct bpf_insn *insn,
5969
            int ext_idx, const struct extern_desc *ext)
5970
0
{
5971
0
  pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5972
0
     prog->name, relo_idx, insn_idx, ext->name);
5973
5974
  /* we turn kfunc call into invalid helper call with identifiable constant */
5975
0
  insn->code = BPF_JMP | BPF_CALL;
5976
0
  insn->dst_reg = 0;
5977
0
  insn->src_reg = 0;
5978
0
  insn->off = 0;
5979
  /* if this instruction is reachable (not a dead code),
5980
   * verifier will complain with something like:
5981
   * invalid func unknown#2001000123
5982
   * where lower 123 is extern index into obj->externs[] array
5983
   */
5984
0
  insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5985
0
}
5986
5987
/* Relocate data references within program code:
5988
 *  - map references;
5989
 *  - global variable references;
5990
 *  - extern references.
5991
 */
5992
static int
5993
bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5994
0
{
5995
0
  int i;
5996
5997
0
  for (i = 0; i < prog->nr_reloc; i++) {
5998
0
    struct reloc_desc *relo = &prog->reloc_desc[i];
5999
0
    struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6000
0
    const struct bpf_map *map;
6001
0
    struct extern_desc *ext;
6002
6003
0
    switch (relo->type) {
6004
0
    case RELO_LD64:
6005
0
      map = &obj->maps[relo->map_idx];
6006
0
      if (obj->gen_loader) {
6007
0
        insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6008
0
        insn[0].imm = relo->map_idx;
6009
0
      } else if (map->autocreate) {
6010
0
        insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6011
0
        insn[0].imm = map->fd;
6012
0
      } else {
6013
0
        poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6014
0
               relo->map_idx, map);
6015
0
      }
6016
0
      break;
6017
0
    case RELO_DATA:
6018
0
      map = &obj->maps[relo->map_idx];
6019
0
      insn[1].imm = insn[0].imm + relo->sym_off;
6020
0
      if (obj->gen_loader) {
6021
0
        insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6022
0
        insn[0].imm = relo->map_idx;
6023
0
      } else if (map->autocreate) {
6024
0
        insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6025
0
        insn[0].imm = map->fd;
6026
0
      } else {
6027
0
        poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6028
0
               relo->map_idx, map);
6029
0
      }
6030
0
      break;
6031
0
    case RELO_EXTERN_LD64:
6032
0
      ext = &obj->externs[relo->ext_idx];
6033
0
      if (ext->type == EXT_KCFG) {
6034
0
        if (obj->gen_loader) {
6035
0
          insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6036
0
          insn[0].imm = obj->kconfig_map_idx;
6037
0
        } else {
6038
0
          insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6039
0
          insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6040
0
        }
6041
0
        insn[1].imm = ext->kcfg.data_off;
6042
0
      } else /* EXT_KSYM */ {
6043
0
        if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6044
0
          insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6045
0
          insn[0].imm = ext->ksym.kernel_btf_id;
6046
0
          insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6047
0
        } else { /* typeless ksyms or unresolved typed ksyms */
6048
0
          insn[0].imm = (__u32)ext->ksym.addr;
6049
0
          insn[1].imm = ext->ksym.addr >> 32;
6050
0
        }
6051
0
      }
6052
0
      break;
6053
0
    case RELO_EXTERN_CALL:
6054
0
      ext = &obj->externs[relo->ext_idx];
6055
0
      insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6056
0
      if (ext->is_set) {
6057
0
        insn[0].imm = ext->ksym.kernel_btf_id;
6058
0
        insn[0].off = ext->ksym.btf_fd_idx;
6059
0
      } else { /* unresolved weak kfunc call */
6060
0
        poison_kfunc_call(prog, i, relo->insn_idx, insn,
6061
0
              relo->ext_idx, ext);
6062
0
      }
6063
0
      break;
6064
0
    case RELO_SUBPROG_ADDR:
6065
0
      if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6066
0
        pr_warn("prog '%s': relo #%d: bad insn\n",
6067
0
          prog->name, i);
6068
0
        return -EINVAL;
6069
0
      }
6070
      /* handled already */
6071
0
      break;
6072
0
    case RELO_CALL:
6073
      /* handled already */
6074
0
      break;
6075
0
    case RELO_CORE:
6076
      /* will be handled by bpf_program_record_relos() */
6077
0
      break;
6078
0
    default:
6079
0
      pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6080
0
        prog->name, i, relo->type);
6081
0
      return -EINVAL;
6082
0
    }
6083
0
  }
6084
6085
0
  return 0;
6086
0
}
6087
6088
static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6089
            const struct bpf_program *prog,
6090
            const struct btf_ext_info *ext_info,
6091
            void **prog_info, __u32 *prog_rec_cnt,
6092
            __u32 *prog_rec_sz)
6093
0
{
6094
0
  void *copy_start = NULL, *copy_end = NULL;
6095
0
  void *rec, *rec_end, *new_prog_info;
6096
0
  const struct btf_ext_info_sec *sec;
6097
0
  size_t old_sz, new_sz;
6098
0
  int i, sec_num, sec_idx, off_adj;
6099
6100
0
  sec_num = 0;
6101
0
  for_each_btf_ext_sec(ext_info, sec) {
6102
0
    sec_idx = ext_info->sec_idxs[sec_num];
6103
0
    sec_num++;
6104
0
    if (prog->sec_idx != sec_idx)
6105
0
      continue;
6106
6107
0
    for_each_btf_ext_rec(ext_info, sec, i, rec) {
6108
0
      __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6109
6110
0
      if (insn_off < prog->sec_insn_off)
6111
0
        continue;
6112
0
      if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6113
0
        break;
6114
6115
0
      if (!copy_start)
6116
0
        copy_start = rec;
6117
0
      copy_end = rec + ext_info->rec_size;
6118
0
    }
6119
6120
0
    if (!copy_start)
6121
0
      return -ENOENT;
6122
6123
    /* append func/line info of a given (sub-)program to the main
6124
     * program func/line info
6125
     */
6126
0
    old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6127
0
    new_sz = old_sz + (copy_end - copy_start);
6128
0
    new_prog_info = realloc(*prog_info, new_sz);
6129
0
    if (!new_prog_info)
6130
0
      return -ENOMEM;
6131
0
    *prog_info = new_prog_info;
6132
0
    *prog_rec_cnt = new_sz / ext_info->rec_size;
6133
0
    memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6134
6135
    /* Kernel instruction offsets are in units of 8-byte
6136
     * instructions, while .BTF.ext instruction offsets generated
6137
     * by Clang are in units of bytes. So convert Clang offsets
6138
     * into kernel offsets and adjust offset according to program
6139
     * relocated position.
6140
     */
6141
0
    off_adj = prog->sub_insn_off - prog->sec_insn_off;
6142
0
    rec = new_prog_info + old_sz;
6143
0
    rec_end = new_prog_info + new_sz;
6144
0
    for (; rec < rec_end; rec += ext_info->rec_size) {
6145
0
      __u32 *insn_off = rec;
6146
6147
0
      *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6148
0
    }
6149
0
    *prog_rec_sz = ext_info->rec_size;
6150
0
    return 0;
6151
0
  }
6152
6153
0
  return -ENOENT;
6154
0
}
6155
6156
static int
6157
reloc_prog_func_and_line_info(const struct bpf_object *obj,
6158
            struct bpf_program *main_prog,
6159
            const struct bpf_program *prog)
6160
0
{
6161
0
  int err;
6162
6163
  /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6164
   * support func/line info
6165
   */
6166
0
  if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6167
0
    return 0;
6168
6169
  /* only attempt func info relocation if main program's func_info
6170
   * relocation was successful
6171
   */
6172
0
  if (main_prog != prog && !main_prog->func_info)
6173
0
    goto line_info;
6174
6175
0
  err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6176
0
               &main_prog->func_info,
6177
0
               &main_prog->func_info_cnt,
6178
0
               &main_prog->func_info_rec_size);
6179
0
  if (err) {
6180
0
    if (err != -ENOENT) {
6181
0
      pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6182
0
        prog->name, err);
6183
0
      return err;
6184
0
    }
6185
0
    if (main_prog->func_info) {
6186
      /*
6187
       * Some info has already been found but has problem
6188
       * in the last btf_ext reloc. Must have to error out.
6189
       */
6190
0
      pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6191
0
      return err;
6192
0
    }
6193
    /* Have problem loading the very first info. Ignore the rest. */
6194
0
    pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6195
0
      prog->name);
6196
0
  }
6197
6198
0
line_info:
6199
  /* don't relocate line info if main program's relocation failed */
6200
0
  if (main_prog != prog && !main_prog->line_info)
6201
0
    return 0;
6202
6203
0
  err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6204
0
               &main_prog->line_info,
6205
0
               &main_prog->line_info_cnt,
6206
0
               &main_prog->line_info_rec_size);
6207
0
  if (err) {
6208
0
    if (err != -ENOENT) {
6209
0
      pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6210
0
        prog->name, err);
6211
0
      return err;
6212
0
    }
6213
0
    if (main_prog->line_info) {
6214
      /*
6215
       * Some info has already been found but has problem
6216
       * in the last btf_ext reloc. Must have to error out.
6217
       */
6218
0
      pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6219
0
      return err;
6220
0
    }
6221
    /* Have problem loading the very first info. Ignore the rest. */
6222
0
    pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6223
0
      prog->name);
6224
0
  }
6225
0
  return 0;
6226
0
}
6227
6228
static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6229
0
{
6230
0
  size_t insn_idx = *(const size_t *)key;
6231
0
  const struct reloc_desc *relo = elem;
6232
6233
0
  if (insn_idx == relo->insn_idx)
6234
0
    return 0;
6235
0
  return insn_idx < relo->insn_idx ? -1 : 1;
6236
0
}
6237
6238
static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6239
0
{
6240
0
  if (!prog->nr_reloc)
6241
0
    return NULL;
6242
0
  return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6243
0
           sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6244
0
}
6245
6246
static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6247
0
{
6248
0
  int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6249
0
  struct reloc_desc *relos;
6250
0
  int i;
6251
6252
0
  if (main_prog == subprog)
6253
0
    return 0;
6254
0
  relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6255
  /* if new count is zero, reallocarray can return a valid NULL result;
6256
   * in this case the previous pointer will be freed, so we *have to*
6257
   * reassign old pointer to the new value (even if it's NULL)
6258
   */
6259
0
  if (!relos && new_cnt)
6260
0
    return -ENOMEM;
6261
0
  if (subprog->nr_reloc)
6262
0
    memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6263
0
           sizeof(*relos) * subprog->nr_reloc);
6264
6265
0
  for (i = main_prog->nr_reloc; i < new_cnt; i++)
6266
0
    relos[i].insn_idx += subprog->sub_insn_off;
6267
  /* After insn_idx adjustment the 'relos' array is still sorted
6268
   * by insn_idx and doesn't break bsearch.
6269
   */
6270
0
  main_prog->reloc_desc = relos;
6271
0
  main_prog->nr_reloc = new_cnt;
6272
0
  return 0;
6273
0
}
6274
6275
static int
6276
bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6277
        struct bpf_program *subprog)
6278
0
{
6279
0
       struct bpf_insn *insns;
6280
0
       size_t new_cnt;
6281
0
       int err;
6282
6283
0
       subprog->sub_insn_off = main_prog->insns_cnt;
6284
6285
0
       new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6286
0
       insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6287
0
       if (!insns) {
6288
0
               pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6289
0
               return -ENOMEM;
6290
0
       }
6291
0
       main_prog->insns = insns;
6292
0
       main_prog->insns_cnt = new_cnt;
6293
6294
0
       memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6295
0
              subprog->insns_cnt * sizeof(*insns));
6296
6297
0
       pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6298
0
                main_prog->name, subprog->insns_cnt, subprog->name);
6299
6300
       /* The subprog insns are now appended. Append its relos too. */
6301
0
       err = append_subprog_relos(main_prog, subprog);
6302
0
       if (err)
6303
0
               return err;
6304
0
       return 0;
6305
0
}
6306
6307
static int
6308
bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6309
           struct bpf_program *prog)
6310
0
{
6311
0
  size_t sub_insn_idx, insn_idx;
6312
0
  struct bpf_program *subprog;
6313
0
  struct reloc_desc *relo;
6314
0
  struct bpf_insn *insn;
6315
0
  int err;
6316
6317
0
  err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6318
0
  if (err)
6319
0
    return err;
6320
6321
0
  for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6322
0
    insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6323
0
    if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6324
0
      continue;
6325
6326
0
    relo = find_prog_insn_relo(prog, insn_idx);
6327
0
    if (relo && relo->type == RELO_EXTERN_CALL)
6328
      /* kfunc relocations will be handled later
6329
       * in bpf_object__relocate_data()
6330
       */
6331
0
      continue;
6332
0
    if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6333
0
      pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6334
0
        prog->name, insn_idx, relo->type);
6335
0
      return -LIBBPF_ERRNO__RELOC;
6336
0
    }
6337
0
    if (relo) {
6338
      /* sub-program instruction index is a combination of
6339
       * an offset of a symbol pointed to by relocation and
6340
       * call instruction's imm field; for global functions,
6341
       * call always has imm = -1, but for static functions
6342
       * relocation is against STT_SECTION and insn->imm
6343
       * points to a start of a static function
6344
       *
6345
       * for subprog addr relocation, the relo->sym_off + insn->imm is
6346
       * the byte offset in the corresponding section.
6347
       */
6348
0
      if (relo->type == RELO_CALL)
6349
0
        sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6350
0
      else
6351
0
        sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6352
0
    } else if (insn_is_pseudo_func(insn)) {
6353
      /*
6354
       * RELO_SUBPROG_ADDR relo is always emitted even if both
6355
       * functions are in the same section, so it shouldn't reach here.
6356
       */
6357
0
      pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6358
0
        prog->name, insn_idx);
6359
0
      return -LIBBPF_ERRNO__RELOC;
6360
0
    } else {
6361
      /* if subprogram call is to a static function within
6362
       * the same ELF section, there won't be any relocation
6363
       * emitted, but it also means there is no additional
6364
       * offset necessary, insns->imm is relative to
6365
       * instruction's original position within the section
6366
       */
6367
0
      sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6368
0
    }
6369
6370
    /* we enforce that sub-programs should be in .text section */
6371
0
    subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6372
0
    if (!subprog) {
6373
0
      pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6374
0
        prog->name);
6375
0
      return -LIBBPF_ERRNO__RELOC;
6376
0
    }
6377
6378
    /* if it's the first call instruction calling into this
6379
     * subprogram (meaning this subprog hasn't been processed
6380
     * yet) within the context of current main program:
6381
     *   - append it at the end of main program's instructions blog;
6382
     *   - process is recursively, while current program is put on hold;
6383
     *   - if that subprogram calls some other not yet processes
6384
     *   subprogram, same thing will happen recursively until
6385
     *   there are no more unprocesses subprograms left to append
6386
     *   and relocate.
6387
     */
6388
0
    if (subprog->sub_insn_off == 0) {
6389
0
      err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6390
0
      if (err)
6391
0
        return err;
6392
0
      err = bpf_object__reloc_code(obj, main_prog, subprog);
6393
0
      if (err)
6394
0
        return err;
6395
0
    }
6396
6397
    /* main_prog->insns memory could have been re-allocated, so
6398
     * calculate pointer again
6399
     */
6400
0
    insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6401
    /* calculate correct instruction position within current main
6402
     * prog; each main prog can have a different set of
6403
     * subprograms appended (potentially in different order as
6404
     * well), so position of any subprog can be different for
6405
     * different main programs
6406
     */
6407
0
    insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6408
6409
0
    pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6410
0
       prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6411
0
  }
6412
6413
0
  return 0;
6414
0
}
6415
6416
/*
6417
 * Relocate sub-program calls.
6418
 *
6419
 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6420
 * main prog) is processed separately. For each subprog (non-entry functions,
6421
 * that can be called from either entry progs or other subprogs) gets their
6422
 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6423
 * hasn't been yet appended and relocated within current main prog. Once its
6424
 * relocated, sub_insn_off will point at the position within current main prog
6425
 * where given subprog was appended. This will further be used to relocate all
6426
 * the call instructions jumping into this subprog.
6427
 *
6428
 * We start with main program and process all call instructions. If the call
6429
 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6430
 * is zero), subprog instructions are appended at the end of main program's
6431
 * instruction array. Then main program is "put on hold" while we recursively
6432
 * process newly appended subprogram. If that subprogram calls into another
6433
 * subprogram that hasn't been appended, new subprogram is appended again to
6434
 * the *main* prog's instructions (subprog's instructions are always left
6435
 * untouched, as they need to be in unmodified state for subsequent main progs
6436
 * and subprog instructions are always sent only as part of a main prog) and
6437
 * the process continues recursively. Once all the subprogs called from a main
6438
 * prog or any of its subprogs are appended (and relocated), all their
6439
 * positions within finalized instructions array are known, so it's easy to
6440
 * rewrite call instructions with correct relative offsets, corresponding to
6441
 * desired target subprog.
6442
 *
6443
 * Its important to realize that some subprogs might not be called from some
6444
 * main prog and any of its called/used subprogs. Those will keep their
6445
 * subprog->sub_insn_off as zero at all times and won't be appended to current
6446
 * main prog and won't be relocated within the context of current main prog.
6447
 * They might still be used from other main progs later.
6448
 *
6449
 * Visually this process can be shown as below. Suppose we have two main
6450
 * programs mainA and mainB and BPF object contains three subprogs: subA,
6451
 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6452
 * subC both call subB:
6453
 *
6454
 *        +--------+ +-------+
6455
 *        |        v v       |
6456
 *     +--+---+ +--+-+-+ +---+--+
6457
 *     | subA | | subB | | subC |
6458
 *     +--+---+ +------+ +---+--+
6459
 *        ^                  ^
6460
 *        |                  |
6461
 *    +---+-------+   +------+----+
6462
 *    |   mainA   |   |   mainB   |
6463
 *    +-----------+   +-----------+
6464
 *
6465
 * We'll start relocating mainA, will find subA, append it and start
6466
 * processing sub A recursively:
6467
 *
6468
 *    +-----------+------+
6469
 *    |   mainA   | subA |
6470
 *    +-----------+------+
6471
 *
6472
 * At this point we notice that subB is used from subA, so we append it and
6473
 * relocate (there are no further subcalls from subB):
6474
 *
6475
 *    +-----------+------+------+
6476
 *    |   mainA   | subA | subB |
6477
 *    +-----------+------+------+
6478
 *
6479
 * At this point, we relocate subA calls, then go one level up and finish with
6480
 * relocatin mainA calls. mainA is done.
6481
 *
6482
 * For mainB process is similar but results in different order. We start with
6483
 * mainB and skip subA and subB, as mainB never calls them (at least
6484
 * directly), but we see subC is needed, so we append and start processing it:
6485
 *
6486
 *    +-----------+------+
6487
 *    |   mainB   | subC |
6488
 *    +-----------+------+
6489
 * Now we see subC needs subB, so we go back to it, append and relocate it:
6490
 *
6491
 *    +-----------+------+------+
6492
 *    |   mainB   | subC | subB |
6493
 *    +-----------+------+------+
6494
 *
6495
 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6496
 */
6497
static int
6498
bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6499
0
{
6500
0
  struct bpf_program *subprog;
6501
0
  int i, err;
6502
6503
  /* mark all subprogs as not relocated (yet) within the context of
6504
   * current main program
6505
   */
6506
0
  for (i = 0; i < obj->nr_programs; i++) {
6507
0
    subprog = &obj->programs[i];
6508
0
    if (!prog_is_subprog(obj, subprog))
6509
0
      continue;
6510
6511
0
    subprog->sub_insn_off = 0;
6512
0
  }
6513
6514
0
  err = bpf_object__reloc_code(obj, prog, prog);
6515
0
  if (err)
6516
0
    return err;
6517
6518
0
  return 0;
6519
0
}
6520
6521
static void
6522
bpf_object__free_relocs(struct bpf_object *obj)
6523
0
{
6524
0
  struct bpf_program *prog;
6525
0
  int i;
6526
6527
  /* free up relocation descriptors */
6528
0
  for (i = 0; i < obj->nr_programs; i++) {
6529
0
    prog = &obj->programs[i];
6530
0
    zfree(&prog->reloc_desc);
6531
0
    prog->nr_reloc = 0;
6532
0
  }
6533
0
}
6534
6535
static int cmp_relocs(const void *_a, const void *_b)
6536
4.70k
{
6537
4.70k
  const struct reloc_desc *a = _a;
6538
4.70k
  const struct reloc_desc *b = _b;
6539
6540
4.70k
  if (a->insn_idx != b->insn_idx)
6541
738
    return a->insn_idx < b->insn_idx ? -1 : 1;
6542
6543
  /* no two relocations should have the same insn_idx, but ... */
6544
3.96k
  if (a->type != b->type)
6545
185
    return a->type < b->type ? -1 : 1;
6546
6547
3.78k
  return 0;
6548
3.96k
}
6549
6550
static void bpf_object__sort_relos(struct bpf_object *obj)
6551
1.52k
{
6552
1.52k
  int i;
6553
6554
10.4k
  for (i = 0; i < obj->nr_programs; i++) {
6555
8.94k
    struct bpf_program *p = &obj->programs[i];
6556
6557
8.94k
    if (!p->nr_reloc)
6558
8.90k
      continue;
6559
6560
47
    qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6561
47
  }
6562
1.52k
}
6563
6564
static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6565
0
{
6566
0
  const char *str = "exception_callback:";
6567
0
  size_t pfx_len = strlen(str);
6568
0
  int i, j, n;
6569
6570
0
  if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6571
0
    return 0;
6572
6573
0
  n = btf__type_cnt(obj->btf);
6574
0
  for (i = 1; i < n; i++) {
6575
0
    const char *name;
6576
0
    struct btf_type *t;
6577
6578
0
    t = btf_type_by_id(obj->btf, i);
6579
0
    if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6580
0
      continue;
6581
6582
0
    name = btf__str_by_offset(obj->btf, t->name_off);
6583
0
    if (strncmp(name, str, pfx_len) != 0)
6584
0
      continue;
6585
6586
0
    t = btf_type_by_id(obj->btf, t->type);
6587
0
    if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6588
0
      pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6589
0
        prog->name);
6590
0
      return -EINVAL;
6591
0
    }
6592
0
    if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6593
0
      continue;
6594
    /* Multiple callbacks are specified for the same prog,
6595
     * the verifier will eventually return an error for this
6596
     * case, hence simply skip appending a subprog.
6597
     */
6598
0
    if (prog->exception_cb_idx >= 0) {
6599
0
      prog->exception_cb_idx = -1;
6600
0
      break;
6601
0
    }
6602
6603
0
    name += pfx_len;
6604
0
    if (str_is_empty(name)) {
6605
0
      pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6606
0
        prog->name);
6607
0
      return -EINVAL;
6608
0
    }
6609
6610
0
    for (j = 0; j < obj->nr_programs; j++) {
6611
0
      struct bpf_program *subprog = &obj->programs[j];
6612
6613
0
      if (!prog_is_subprog(obj, subprog))
6614
0
        continue;
6615
0
      if (strcmp(name, subprog->name) != 0)
6616
0
        continue;
6617
      /* Enforce non-hidden, as from verifier point of
6618
       * view it expects global functions, whereas the
6619
       * mark_btf_static fixes up linkage as static.
6620
       */
6621
0
      if (!subprog->sym_global || subprog->mark_btf_static) {
6622
0
        pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6623
0
          prog->name, subprog->name);
6624
0
        return -EINVAL;
6625
0
      }
6626
      /* Let's see if we already saw a static exception callback with the same name */
6627
0
      if (prog->exception_cb_idx >= 0) {
6628
0
        pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6629
0
          prog->name, subprog->name);
6630
0
        return -EINVAL;
6631
0
      }
6632
0
      prog->exception_cb_idx = j;
6633
0
      break;
6634
0
    }
6635
6636
0
    if (prog->exception_cb_idx >= 0)
6637
0
      continue;
6638
6639
0
    pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6640
0
    return -ENOENT;
6641
0
  }
6642
6643
0
  return 0;
6644
0
}
6645
6646
static struct {
6647
  enum bpf_prog_type prog_type;
6648
  const char *ctx_name;
6649
} global_ctx_map[] = {
6650
  { BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
6651
  { BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
6652
  { BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
6653
  { BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
6654
  { BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
6655
  { BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
6656
  { BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
6657
  { BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
6658
  { BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
6659
  { BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
6660
  { BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
6661
  { BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
6662
  { BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
6663
  { BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
6664
  { BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
6665
  { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6666
  { BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
6667
  { BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
6668
  { BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
6669
  { BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
6670
  { BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
6671
  { BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
6672
  { BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
6673
  { BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
6674
  { BPF_PROG_TYPE_XDP,                     "xdp_md" },
6675
  /* all other program types don't have "named" context structs */
6676
};
6677
6678
/* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6679
 * for below __builtin_types_compatible_p() checks;
6680
 * with this approach we don't need any extra arch-specific #ifdef guards
6681
 */
6682
struct pt_regs;
6683
struct user_pt_regs;
6684
struct user_regs_struct;
6685
6686
static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6687
             const char *subprog_name, int arg_idx,
6688
             int arg_type_id, const char *ctx_name)
6689
0
{
6690
0
  const struct btf_type *t;
6691
0
  const char *tname;
6692
6693
  /* check if existing parameter already matches verifier expectations */
6694
0
  t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6695
0
  if (!btf_is_ptr(t))
6696
0
    goto out_warn;
6697
6698
  /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6699
   * and perf_event programs, so check this case early on and forget
6700
   * about it for subsequent checks
6701
   */
6702
0
  while (btf_is_mod(t))
6703
0
    t = btf__type_by_id(btf, t->type);
6704
0
  if (btf_is_typedef(t) &&
6705
0
      (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6706
0
    tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6707
0
    if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6708
0
      return false; /* canonical type for kprobe/perf_event */
6709
0
  }
6710
6711
  /* now we can ignore typedefs moving forward */
6712
0
  t = skip_mods_and_typedefs(btf, t->type, NULL);
6713
6714
  /* if it's `void *`, definitely fix up BTF info */
6715
0
  if (btf_is_void(t))
6716
0
    return true;
6717
6718
  /* if it's already proper canonical type, no need to fix up */
6719
0
  tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6720
0
  if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6721
0
    return false;
6722
6723
  /* special cases */
6724
0
  switch (prog->type) {
6725
0
  case BPF_PROG_TYPE_KPROBE:
6726
    /* `struct pt_regs *` is expected, but we need to fix up */
6727
0
    if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6728
0
      return true;
6729
0
    break;
6730
0
  case BPF_PROG_TYPE_PERF_EVENT:
6731
0
    if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6732
0
        btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6733
0
      return true;
6734
0
    if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6735
0
        btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6736
0
      return true;
6737
0
    if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6738
0
        btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6739
0
      return true;
6740
0
    break;
6741
0
  case BPF_PROG_TYPE_RAW_TRACEPOINT:
6742
0
  case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6743
    /* allow u64* as ctx */
6744
0
    if (btf_is_int(t) && t->size == 8)
6745
0
      return true;
6746
0
    break;
6747
0
  default:
6748
0
    break;
6749
0
  }
6750
6751
0
out_warn:
6752
0
  pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6753
0
    prog->name, subprog_name, arg_idx, ctx_name);
6754
0
  return false;
6755
0
}
6756
6757
static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6758
0
{
6759
0
  int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6760
0
  int i, err, arg_cnt, fn_name_off, linkage;
6761
0
  struct btf_type *fn_t, *fn_proto_t, *t;
6762
0
  struct btf_param *p;
6763
6764
  /* caller already validated FUNC -> FUNC_PROTO validity */
6765
0
  fn_t = btf_type_by_id(btf, orig_fn_id);
6766
0
  fn_proto_t = btf_type_by_id(btf, fn_t->type);
6767
6768
  /* Note that each btf__add_xxx() operation invalidates
6769
   * all btf_type and string pointers, so we need to be
6770
   * very careful when cloning BTF types. BTF type
6771
   * pointers have to be always refetched. And to avoid
6772
   * problems with invalidated string pointers, we
6773
   * add empty strings initially, then just fix up
6774
   * name_off offsets in place. Offsets are stable for
6775
   * existing strings, so that works out.
6776
   */
6777
0
  fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6778
0
  linkage = btf_func_linkage(fn_t);
6779
0
  orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6780
0
  ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6781
0
  arg_cnt = btf_vlen(fn_proto_t);
6782
6783
  /* clone FUNC_PROTO and its params */
6784
0
  fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6785
0
  if (fn_proto_id < 0)
6786
0
    return -EINVAL;
6787
6788
0
  for (i = 0; i < arg_cnt; i++) {
6789
0
    int name_off;
6790
6791
    /* copy original parameter data */
6792
0
    t = btf_type_by_id(btf, orig_proto_id);
6793
0
    p = &btf_params(t)[i];
6794
0
    name_off = p->name_off;
6795
6796
0
    err = btf__add_func_param(btf, "", p->type);
6797
0
    if (err)
6798
0
      return err;
6799
6800
0
    fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6801
0
    p = &btf_params(fn_proto_t)[i];
6802
0
    p->name_off = name_off; /* use remembered str offset */
6803
0
  }
6804
6805
  /* clone FUNC now, btf__add_func() enforces non-empty name, so use
6806
   * entry program's name as a placeholder, which we replace immediately
6807
   * with original name_off
6808
   */
6809
0
  fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6810
0
  if (fn_id < 0)
6811
0
    return -EINVAL;
6812
6813
0
  fn_t = btf_type_by_id(btf, fn_id);
6814
0
  fn_t->name_off = fn_name_off; /* reuse original string */
6815
6816
0
  return fn_id;
6817
0
}
6818
6819
/* Check if main program or global subprog's function prototype has `arg:ctx`
6820
 * argument tags, and, if necessary, substitute correct type to match what BPF
6821
 * verifier would expect, taking into account specific program type. This
6822
 * allows to support __arg_ctx tag transparently on old kernels that don't yet
6823
 * have a native support for it in the verifier, making user's life much
6824
 * easier.
6825
 */
6826
static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6827
0
{
6828
0
  const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6829
0
  struct bpf_func_info_min *func_rec;
6830
0
  struct btf_type *fn_t, *fn_proto_t;
6831
0
  struct btf *btf = obj->btf;
6832
0
  const struct btf_type *t;
6833
0
  struct btf_param *p;
6834
0
  int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6835
0
  int i, n, arg_idx, arg_cnt, err, rec_idx;
6836
0
  int *orig_ids;
6837
6838
  /* no .BTF.ext, no problem */
6839
0
  if (!obj->btf_ext || !prog->func_info)
6840
0
    return 0;
6841
6842
  /* don't do any fix ups if kernel natively supports __arg_ctx */
6843
0
  if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6844
0
    return 0;
6845
6846
  /* some BPF program types just don't have named context structs, so
6847
   * this fallback mechanism doesn't work for them
6848
   */
6849
0
  for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6850
0
    if (global_ctx_map[i].prog_type != prog->type)
6851
0
      continue;
6852
0
    ctx_name = global_ctx_map[i].ctx_name;
6853
0
    break;
6854
0
  }
6855
0
  if (!ctx_name)
6856
0
    return 0;
6857
6858
  /* remember original func BTF IDs to detect if we already cloned them */
6859
0
  orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6860
0
  if (!orig_ids)
6861
0
    return -ENOMEM;
6862
0
  for (i = 0; i < prog->func_info_cnt; i++) {
6863
0
    func_rec = prog->func_info + prog->func_info_rec_size * i;
6864
0
    orig_ids[i] = func_rec->type_id;
6865
0
  }
6866
6867
  /* go through each DECL_TAG with "arg:ctx" and see if it points to one
6868
   * of our subprogs; if yes and subprog is global and needs adjustment,
6869
   * clone and adjust FUNC -> FUNC_PROTO combo
6870
   */
6871
0
  for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6872
    /* only DECL_TAG with "arg:ctx" value are interesting */
6873
0
    t = btf__type_by_id(btf, i);
6874
0
    if (!btf_is_decl_tag(t))
6875
0
      continue;
6876
0
    if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6877
0
      continue;
6878
6879
    /* only global funcs need adjustment, if at all */
6880
0
    orig_fn_id = t->type;
6881
0
    fn_t = btf_type_by_id(btf, orig_fn_id);
6882
0
    if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6883
0
      continue;
6884
6885
    /* sanity check FUNC -> FUNC_PROTO chain, just in case */
6886
0
    fn_proto_t = btf_type_by_id(btf, fn_t->type);
6887
0
    if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6888
0
      continue;
6889
6890
    /* find corresponding func_info record */
6891
0
    func_rec = NULL;
6892
0
    for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6893
0
      if (orig_ids[rec_idx] == t->type) {
6894
0
        func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6895
0
        break;
6896
0
      }
6897
0
    }
6898
    /* current main program doesn't call into this subprog */
6899
0
    if (!func_rec)
6900
0
      continue;
6901
6902
    /* some more sanity checking of DECL_TAG */
6903
0
    arg_cnt = btf_vlen(fn_proto_t);
6904
0
    arg_idx = btf_decl_tag(t)->component_idx;
6905
0
    if (arg_idx < 0 || arg_idx >= arg_cnt)
6906
0
      continue;
6907
6908
    /* check if we should fix up argument type */
6909
0
    p = &btf_params(fn_proto_t)[arg_idx];
6910
0
    fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6911
0
    if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6912
0
      continue;
6913
6914
    /* clone fn/fn_proto, unless we already did it for another arg */
6915
0
    if (func_rec->type_id == orig_fn_id) {
6916
0
      int fn_id;
6917
6918
0
      fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
6919
0
      if (fn_id < 0) {
6920
0
        err = fn_id;
6921
0
        goto err_out;
6922
0
      }
6923
6924
      /* point func_info record to a cloned FUNC type */
6925
0
      func_rec->type_id = fn_id;
6926
0
    }
6927
6928
    /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
6929
     * we do it just once per main BPF program, as all global
6930
     * funcs share the same program type, so need only PTR ->
6931
     * STRUCT type chain
6932
     */
6933
0
    if (ptr_id == 0) {
6934
0
      struct_id = btf__add_struct(btf, ctx_name, 0);
6935
0
      ptr_id = btf__add_ptr(btf, struct_id);
6936
0
      if (ptr_id < 0 || struct_id < 0) {
6937
0
        err = -EINVAL;
6938
0
        goto err_out;
6939
0
      }
6940
0
    }
6941
6942
    /* for completeness, clone DECL_TAG and point it to cloned param */
6943
0
    tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
6944
0
    if (tag_id < 0) {
6945
0
      err = -EINVAL;
6946
0
      goto err_out;
6947
0
    }
6948
6949
    /* all the BTF manipulations invalidated pointers, refetch them */
6950
0
    fn_t = btf_type_by_id(btf, func_rec->type_id);
6951
0
    fn_proto_t = btf_type_by_id(btf, fn_t->type);
6952
6953
    /* fix up type ID pointed to by param */
6954
0
    p = &btf_params(fn_proto_t)[arg_idx];
6955
0
    p->type = ptr_id;
6956
0
  }
6957
6958
0
  free(orig_ids);
6959
0
  return 0;
6960
0
err_out:
6961
0
  free(orig_ids);
6962
0
  return err;
6963
0
}
6964
6965
static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6966
0
{
6967
0
  struct bpf_program *prog;
6968
0
  size_t i, j;
6969
0
  int err;
6970
6971
0
  if (obj->btf_ext) {
6972
0
    err = bpf_object__relocate_core(obj, targ_btf_path);
6973
0
    if (err) {
6974
0
      pr_warn("failed to perform CO-RE relocations: %d\n",
6975
0
        err);
6976
0
      return err;
6977
0
    }
6978
0
    bpf_object__sort_relos(obj);
6979
0
  }
6980
6981
  /* Before relocating calls pre-process relocations and mark
6982
   * few ld_imm64 instructions that points to subprogs.
6983
   * Otherwise bpf_object__reloc_code() later would have to consider
6984
   * all ld_imm64 insns as relocation candidates. That would
6985
   * reduce relocation speed, since amount of find_prog_insn_relo()
6986
   * would increase and most of them will fail to find a relo.
6987
   */
6988
0
  for (i = 0; i < obj->nr_programs; i++) {
6989
0
    prog = &obj->programs[i];
6990
0
    for (j = 0; j < prog->nr_reloc; j++) {
6991
0
      struct reloc_desc *relo = &prog->reloc_desc[j];
6992
0
      struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6993
6994
      /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6995
0
      if (relo->type == RELO_SUBPROG_ADDR)
6996
0
        insn[0].src_reg = BPF_PSEUDO_FUNC;
6997
0
    }
6998
0
  }
6999
7000
  /* relocate subprogram calls and append used subprograms to main
7001
   * programs; each copy of subprogram code needs to be relocated
7002
   * differently for each main program, because its code location might
7003
   * have changed.
7004
   * Append subprog relos to main programs to allow data relos to be
7005
   * processed after text is completely relocated.
7006
   */
7007
0
  for (i = 0; i < obj->nr_programs; i++) {
7008
0
    prog = &obj->programs[i];
7009
    /* sub-program's sub-calls are relocated within the context of
7010
     * its main program only
7011
     */
7012
0
    if (prog_is_subprog(obj, prog))
7013
0
      continue;
7014
0
    if (!prog->autoload)
7015
0
      continue;
7016
7017
0
    err = bpf_object__relocate_calls(obj, prog);
7018
0
    if (err) {
7019
0
      pr_warn("prog '%s': failed to relocate calls: %d\n",
7020
0
        prog->name, err);
7021
0
      return err;
7022
0
    }
7023
7024
0
    err = bpf_prog_assign_exc_cb(obj, prog);
7025
0
    if (err)
7026
0
      return err;
7027
    /* Now, also append exception callback if it has not been done already. */
7028
0
    if (prog->exception_cb_idx >= 0) {
7029
0
      struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7030
7031
      /* Calling exception callback directly is disallowed, which the
7032
       * verifier will reject later. In case it was processed already,
7033
       * we can skip this step, otherwise for all other valid cases we
7034
       * have to append exception callback now.
7035
       */
7036
0
      if (subprog->sub_insn_off == 0) {
7037
0
        err = bpf_object__append_subprog_code(obj, prog, subprog);
7038
0
        if (err)
7039
0
          return err;
7040
0
        err = bpf_object__reloc_code(obj, prog, subprog);
7041
0
        if (err)
7042
0
          return err;
7043
0
      }
7044
0
    }
7045
0
  }
7046
0
  for (i = 0; i < obj->nr_programs; i++) {
7047
0
    prog = &obj->programs[i];
7048
0
    if (prog_is_subprog(obj, prog))
7049
0
      continue;
7050
0
    if (!prog->autoload)
7051
0
      continue;
7052
7053
    /* Process data relos for main programs */
7054
0
    err = bpf_object__relocate_data(obj, prog);
7055
0
    if (err) {
7056
0
      pr_warn("prog '%s': failed to relocate data references: %d\n",
7057
0
        prog->name, err);
7058
0
      return err;
7059
0
    }
7060
7061
    /* Fix up .BTF.ext information, if necessary */
7062
0
    err = bpf_program_fixup_func_info(obj, prog);
7063
0
    if (err) {
7064
0
      pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n",
7065
0
        prog->name, err);
7066
0
      return err;
7067
0
    }
7068
0
  }
7069
7070
0
  return 0;
7071
0
}
7072
7073
static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7074
              Elf64_Shdr *shdr, Elf_Data *data);
7075
7076
static int bpf_object__collect_map_relos(struct bpf_object *obj,
7077
           Elf64_Shdr *shdr, Elf_Data *data)
7078
0
{
7079
0
  const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7080
0
  int i, j, nrels, new_sz;
7081
0
  const struct btf_var_secinfo *vi = NULL;
7082
0
  const struct btf_type *sec, *var, *def;
7083
0
  struct bpf_map *map = NULL, *targ_map = NULL;
7084
0
  struct bpf_program *targ_prog = NULL;
7085
0
  bool is_prog_array, is_map_in_map;
7086
0
  const struct btf_member *member;
7087
0
  const char *name, *mname, *type;
7088
0
  unsigned int moff;
7089
0
  Elf64_Sym *sym;
7090
0
  Elf64_Rel *rel;
7091
0
  void *tmp;
7092
7093
0
  if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7094
0
    return -EINVAL;
7095
0
  sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7096
0
  if (!sec)
7097
0
    return -EINVAL;
7098
7099
0
  nrels = shdr->sh_size / shdr->sh_entsize;
7100
0
  for (i = 0; i < nrels; i++) {
7101
0
    rel = elf_rel_by_idx(data, i);
7102
0
    if (!rel) {
7103
0
      pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7104
0
      return -LIBBPF_ERRNO__FORMAT;
7105
0
    }
7106
7107
0
    sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7108
0
    if (!sym) {
7109
0
      pr_warn(".maps relo #%d: symbol %zx not found\n",
7110
0
        i, (size_t)ELF64_R_SYM(rel->r_info));
7111
0
      return -LIBBPF_ERRNO__FORMAT;
7112
0
    }
7113
0
    name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7114
7115
0
    pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7116
0
       i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7117
0
       (size_t)rel->r_offset, sym->st_name, name);
7118
7119
0
    for (j = 0; j < obj->nr_maps; j++) {
7120
0
      map = &obj->maps[j];
7121
0
      if (map->sec_idx != obj->efile.btf_maps_shndx)
7122
0
        continue;
7123
7124
0
      vi = btf_var_secinfos(sec) + map->btf_var_idx;
7125
0
      if (vi->offset <= rel->r_offset &&
7126
0
          rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7127
0
        break;
7128
0
    }
7129
0
    if (j == obj->nr_maps) {
7130
0
      pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7131
0
        i, name, (size_t)rel->r_offset);
7132
0
      return -EINVAL;
7133
0
    }
7134
7135
0
    is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7136
0
    is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7137
0
    type = is_map_in_map ? "map" : "prog";
7138
0
    if (is_map_in_map) {
7139
0
      if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7140
0
        pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7141
0
          i, name);
7142
0
        return -LIBBPF_ERRNO__RELOC;
7143
0
      }
7144
0
      if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7145
0
          map->def.key_size != sizeof(int)) {
7146
0
        pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7147
0
          i, map->name, sizeof(int));
7148
0
        return -EINVAL;
7149
0
      }
7150
0
      targ_map = bpf_object__find_map_by_name(obj, name);
7151
0
      if (!targ_map) {
7152
0
        pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7153
0
          i, name);
7154
0
        return -ESRCH;
7155
0
      }
7156
0
    } else if (is_prog_array) {
7157
0
      targ_prog = bpf_object__find_program_by_name(obj, name);
7158
0
      if (!targ_prog) {
7159
0
        pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7160
0
          i, name);
7161
0
        return -ESRCH;
7162
0
      }
7163
0
      if (targ_prog->sec_idx != sym->st_shndx ||
7164
0
          targ_prog->sec_insn_off * 8 != sym->st_value ||
7165
0
          prog_is_subprog(obj, targ_prog)) {
7166
0
        pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7167
0
          i, name);
7168
0
        return -LIBBPF_ERRNO__RELOC;
7169
0
      }
7170
0
    } else {
7171
0
      return -EINVAL;
7172
0
    }
7173
7174
0
    var = btf__type_by_id(obj->btf, vi->type);
7175
0
    def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7176
0
    if (btf_vlen(def) == 0)
7177
0
      return -EINVAL;
7178
0
    member = btf_members(def) + btf_vlen(def) - 1;
7179
0
    mname = btf__name_by_offset(obj->btf, member->name_off);
7180
0
    if (strcmp(mname, "values"))
7181
0
      return -EINVAL;
7182
7183
0
    moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7184
0
    if (rel->r_offset - vi->offset < moff)
7185
0
      return -EINVAL;
7186
7187
0
    moff = rel->r_offset - vi->offset - moff;
7188
    /* here we use BPF pointer size, which is always 64 bit, as we
7189
     * are parsing ELF that was built for BPF target
7190
     */
7191
0
    if (moff % bpf_ptr_sz)
7192
0
      return -EINVAL;
7193
0
    moff /= bpf_ptr_sz;
7194
0
    if (moff >= map->init_slots_sz) {
7195
0
      new_sz = moff + 1;
7196
0
      tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7197
0
      if (!tmp)
7198
0
        return -ENOMEM;
7199
0
      map->init_slots = tmp;
7200
0
      memset(map->init_slots + map->init_slots_sz, 0,
7201
0
             (new_sz - map->init_slots_sz) * host_ptr_sz);
7202
0
      map->init_slots_sz = new_sz;
7203
0
    }
7204
0
    map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7205
7206
0
    pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7207
0
       i, map->name, moff, type, name);
7208
0
  }
7209
7210
0
  return 0;
7211
0
}
7212
7213
static int bpf_object__collect_relos(struct bpf_object *obj)
7214
1.94k
{
7215
1.94k
  int i, err;
7216
7217
14.7k
  for (i = 0; i < obj->efile.sec_cnt; i++) {
7218
13.1k
    struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7219
13.1k
    Elf64_Shdr *shdr;
7220
13.1k
    Elf_Data *data;
7221
13.1k
    int idx;
7222
7223
13.1k
    if (sec_desc->sec_type != SEC_RELO)
7224
12.3k
      continue;
7225
7226
860
    shdr = sec_desc->shdr;
7227
860
    data = sec_desc->data;
7228
860
    idx = shdr->sh_info;
7229
7230
860
    if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7231
0
      pr_warn("internal error at %d\n", __LINE__);
7232
0
      return -LIBBPF_ERRNO__INTERNAL;
7233
0
    }
7234
7235
860
    if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7236
0
      err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7237
860
    else if (idx == obj->efile.btf_maps_shndx)
7238
0
      err = bpf_object__collect_map_relos(obj, shdr, data);
7239
860
    else
7240
860
      err = bpf_object__collect_prog_relos(obj, shdr, data);
7241
860
    if (err)
7242
413
      return err;
7243
860
  }
7244
7245
1.52k
  bpf_object__sort_relos(obj);
7246
1.52k
  return 0;
7247
1.94k
}
7248
7249
static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7250
0
{
7251
0
  if (BPF_CLASS(insn->code) == BPF_JMP &&
7252
0
      BPF_OP(insn->code) == BPF_CALL &&
7253
0
      BPF_SRC(insn->code) == BPF_K &&
7254
0
      insn->src_reg == 0 &&
7255
0
      insn->dst_reg == 0) {
7256
0
        *func_id = insn->imm;
7257
0
        return true;
7258
0
  }
7259
0
  return false;
7260
0
}
7261
7262
static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7263
0
{
7264
0
  struct bpf_insn *insn = prog->insns;
7265
0
  enum bpf_func_id func_id;
7266
0
  int i;
7267
7268
0
  if (obj->gen_loader)
7269
0
    return 0;
7270
7271
0
  for (i = 0; i < prog->insns_cnt; i++, insn++) {
7272
0
    if (!insn_is_helper_call(insn, &func_id))
7273
0
      continue;
7274
7275
    /* on kernels that don't yet support
7276
     * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7277
     * to bpf_probe_read() which works well for old kernels
7278
     */
7279
0
    switch (func_id) {
7280
0
    case BPF_FUNC_probe_read_kernel:
7281
0
    case BPF_FUNC_probe_read_user:
7282
0
      if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7283
0
        insn->imm = BPF_FUNC_probe_read;
7284
0
      break;
7285
0
    case BPF_FUNC_probe_read_kernel_str:
7286
0
    case BPF_FUNC_probe_read_user_str:
7287
0
      if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7288
0
        insn->imm = BPF_FUNC_probe_read_str;
7289
0
      break;
7290
0
    default:
7291
0
      break;
7292
0
    }
7293
0
  }
7294
0
  return 0;
7295
0
}
7296
7297
static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7298
             int *btf_obj_fd, int *btf_type_id);
7299
7300
/* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7301
static int libbpf_prepare_prog_load(struct bpf_program *prog,
7302
            struct bpf_prog_load_opts *opts, long cookie)
7303
0
{
7304
0
  enum sec_def_flags def = cookie;
7305
7306
  /* old kernels might not support specifying expected_attach_type */
7307
0
  if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7308
0
    opts->expected_attach_type = 0;
7309
7310
0
  if (def & SEC_SLEEPABLE)
7311
0
    opts->prog_flags |= BPF_F_SLEEPABLE;
7312
7313
0
  if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7314
0
    opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7315
7316
  /* special check for usdt to use uprobe_multi link */
7317
0
  if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7318
0
    prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7319
7320
0
  if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7321
0
    int btf_obj_fd = 0, btf_type_id = 0, err;
7322
0
    const char *attach_name;
7323
7324
0
    attach_name = strchr(prog->sec_name, '/');
7325
0
    if (!attach_name) {
7326
      /* if BPF program is annotated with just SEC("fentry")
7327
       * (or similar) without declaratively specifying
7328
       * target, then it is expected that target will be
7329
       * specified with bpf_program__set_attach_target() at
7330
       * runtime before BPF object load step. If not, then
7331
       * there is nothing to load into the kernel as BPF
7332
       * verifier won't be able to validate BPF program
7333
       * correctness anyways.
7334
       */
7335
0
      pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7336
0
        prog->name);
7337
0
      return -EINVAL;
7338
0
    }
7339
0
    attach_name++; /* skip over / */
7340
7341
0
    err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7342
0
    if (err)
7343
0
      return err;
7344
7345
    /* cache resolved BTF FD and BTF type ID in the prog */
7346
0
    prog->attach_btf_obj_fd = btf_obj_fd;
7347
0
    prog->attach_btf_id = btf_type_id;
7348
7349
    /* but by now libbpf common logic is not utilizing
7350
     * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7351
     * this callback is called after opts were populated by
7352
     * libbpf, so this callback has to update opts explicitly here
7353
     */
7354
0
    opts->attach_btf_obj_fd = btf_obj_fd;
7355
0
    opts->attach_btf_id = btf_type_id;
7356
0
  }
7357
0
  return 0;
7358
0
}
7359
7360
static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7361
7362
static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7363
        struct bpf_insn *insns, int insns_cnt,
7364
        const char *license, __u32 kern_version, int *prog_fd)
7365
0
{
7366
0
  LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7367
0
  const char *prog_name = NULL;
7368
0
  char *cp, errmsg[STRERR_BUFSIZE];
7369
0
  size_t log_buf_size = 0;
7370
0
  char *log_buf = NULL, *tmp;
7371
0
  bool own_log_buf = true;
7372
0
  __u32 log_level = prog->log_level;
7373
0
  int ret, err;
7374
7375
  /* Be more helpful by rejecting programs that can't be validated early
7376
   * with more meaningful and actionable error message.
7377
   */
7378
0
  switch (prog->type) {
7379
0
  case BPF_PROG_TYPE_UNSPEC:
7380
    /*
7381
     * The program type must be set.  Most likely we couldn't find a proper
7382
     * section definition at load time, and thus we didn't infer the type.
7383
     */
7384
0
    pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7385
0
      prog->name, prog->sec_name);
7386
0
    return -EINVAL;
7387
0
  case BPF_PROG_TYPE_STRUCT_OPS:
7388
0
    if (prog->attach_btf_id == 0) {
7389
0
      pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7390
0
        prog->name);
7391
0
      return -EINVAL;
7392
0
    }
7393
0
    break;
7394
0
  default:
7395
0
    break;
7396
0
  }
7397
7398
0
  if (!insns || !insns_cnt)
7399
0
    return -EINVAL;
7400
7401
0
  if (kernel_supports(obj, FEAT_PROG_NAME))
7402
0
    prog_name = prog->name;
7403
0
  load_attr.attach_prog_fd = prog->attach_prog_fd;
7404
0
  load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7405
0
  load_attr.attach_btf_id = prog->attach_btf_id;
7406
0
  load_attr.kern_version = kern_version;
7407
0
  load_attr.prog_ifindex = prog->prog_ifindex;
7408
7409
  /* specify func_info/line_info only if kernel supports them */
7410
0
  if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7411
0
    load_attr.prog_btf_fd = btf__fd(obj->btf);
7412
0
    load_attr.func_info = prog->func_info;
7413
0
    load_attr.func_info_rec_size = prog->func_info_rec_size;
7414
0
    load_attr.func_info_cnt = prog->func_info_cnt;
7415
0
    load_attr.line_info = prog->line_info;
7416
0
    load_attr.line_info_rec_size = prog->line_info_rec_size;
7417
0
    load_attr.line_info_cnt = prog->line_info_cnt;
7418
0
  }
7419
0
  load_attr.log_level = log_level;
7420
0
  load_attr.prog_flags = prog->prog_flags;
7421
0
  load_attr.fd_array = obj->fd_array;
7422
7423
0
  load_attr.token_fd = obj->token_fd;
7424
0
  if (obj->token_fd)
7425
0
    load_attr.prog_flags |= BPF_F_TOKEN_FD;
7426
7427
  /* adjust load_attr if sec_def provides custom preload callback */
7428
0
  if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7429
0
    err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7430
0
    if (err < 0) {
7431
0
      pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7432
0
        prog->name, err);
7433
0
      return err;
7434
0
    }
7435
0
    insns = prog->insns;
7436
0
    insns_cnt = prog->insns_cnt;
7437
0
  }
7438
7439
  /* allow prog_prepare_load_fn to change expected_attach_type */
7440
0
  load_attr.expected_attach_type = prog->expected_attach_type;
7441
7442
0
  if (obj->gen_loader) {
7443
0
    bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7444
0
           license, insns, insns_cnt, &load_attr,
7445
0
           prog - obj->programs);
7446
0
    *prog_fd = -1;
7447
0
    return 0;
7448
0
  }
7449
7450
0
retry_load:
7451
  /* if log_level is zero, we don't request logs initially even if
7452
   * custom log_buf is specified; if the program load fails, then we'll
7453
   * bump log_level to 1 and use either custom log_buf or we'll allocate
7454
   * our own and retry the load to get details on what failed
7455
   */
7456
0
  if (log_level) {
7457
0
    if (prog->log_buf) {
7458
0
      log_buf = prog->log_buf;
7459
0
      log_buf_size = prog->log_size;
7460
0
      own_log_buf = false;
7461
0
    } else if (obj->log_buf) {
7462
0
      log_buf = obj->log_buf;
7463
0
      log_buf_size = obj->log_size;
7464
0
      own_log_buf = false;
7465
0
    } else {
7466
0
      log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7467
0
      tmp = realloc(log_buf, log_buf_size);
7468
0
      if (!tmp) {
7469
0
        ret = -ENOMEM;
7470
0
        goto out;
7471
0
      }
7472
0
      log_buf = tmp;
7473
0
      log_buf[0] = '\0';
7474
0
      own_log_buf = true;
7475
0
    }
7476
0
  }
7477
7478
0
  load_attr.log_buf = log_buf;
7479
0
  load_attr.log_size = log_buf_size;
7480
0
  load_attr.log_level = log_level;
7481
7482
0
  ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7483
0
  if (ret >= 0) {
7484
0
    if (log_level && own_log_buf) {
7485
0
      pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7486
0
         prog->name, log_buf);
7487
0
    }
7488
7489
0
    if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7490
0
      struct bpf_map *map;
7491
0
      int i;
7492
7493
0
      for (i = 0; i < obj->nr_maps; i++) {
7494
0
        map = &prog->obj->maps[i];
7495
0
        if (map->libbpf_type != LIBBPF_MAP_RODATA)
7496
0
          continue;
7497
7498
0
        if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7499
0
          cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7500
0
          pr_warn("prog '%s': failed to bind map '%s': %s\n",
7501
0
            prog->name, map->real_name, cp);
7502
          /* Don't fail hard if can't bind rodata. */
7503
0
        }
7504
0
      }
7505
0
    }
7506
7507
0
    *prog_fd = ret;
7508
0
    ret = 0;
7509
0
    goto out;
7510
0
  }
7511
7512
0
  if (log_level == 0) {
7513
0
    log_level = 1;
7514
0
    goto retry_load;
7515
0
  }
7516
  /* On ENOSPC, increase log buffer size and retry, unless custom
7517
   * log_buf is specified.
7518
   * Be careful to not overflow u32, though. Kernel's log buf size limit
7519
   * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7520
   * multiply by 2 unless we are sure we'll fit within 32 bits.
7521
   * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7522
   */
7523
0
  if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7524
0
    goto retry_load;
7525
7526
0
  ret = -errno;
7527
7528
  /* post-process verifier log to improve error descriptions */
7529
0
  fixup_verifier_log(prog, log_buf, log_buf_size);
7530
7531
0
  cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7532
0
  pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7533
0
  pr_perm_msg(ret);
7534
7535
0
  if (own_log_buf && log_buf && log_buf[0] != '\0') {
7536
0
    pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7537
0
      prog->name, log_buf);
7538
0
  }
7539
7540
0
out:
7541
0
  if (own_log_buf)
7542
0
    free(log_buf);
7543
0
  return ret;
7544
0
}
7545
7546
static char *find_prev_line(char *buf, char *cur)
7547
0
{
7548
0
  char *p;
7549
7550
0
  if (cur == buf) /* end of a log buf */
7551
0
    return NULL;
7552
7553
0
  p = cur - 1;
7554
0
  while (p - 1 >= buf && *(p - 1) != '\n')
7555
0
    p--;
7556
7557
0
  return p;
7558
0
}
7559
7560
static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7561
          char *orig, size_t orig_sz, const char *patch)
7562
0
{
7563
  /* size of the remaining log content to the right from the to-be-replaced part */
7564
0
  size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7565
0
  size_t patch_sz = strlen(patch);
7566
7567
0
  if (patch_sz != orig_sz) {
7568
    /* If patch line(s) are longer than original piece of verifier log,
7569
     * shift log contents by (patch_sz - orig_sz) bytes to the right
7570
     * starting from after to-be-replaced part of the log.
7571
     *
7572
     * If patch line(s) are shorter than original piece of verifier log,
7573
     * shift log contents by (orig_sz - patch_sz) bytes to the left
7574
     * starting from after to-be-replaced part of the log
7575
     *
7576
     * We need to be careful about not overflowing available
7577
     * buf_sz capacity. If that's the case, we'll truncate the end
7578
     * of the original log, as necessary.
7579
     */
7580
0
    if (patch_sz > orig_sz) {
7581
0
      if (orig + patch_sz >= buf + buf_sz) {
7582
        /* patch is big enough to cover remaining space completely */
7583
0
        patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7584
0
        rem_sz = 0;
7585
0
      } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7586
        /* patch causes part of remaining log to be truncated */
7587
0
        rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7588
0
      }
7589
0
    }
7590
    /* shift remaining log to the right by calculated amount */
7591
0
    memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7592
0
  }
7593
7594
0
  memcpy(orig, patch, patch_sz);
7595
0
}
7596
7597
static void fixup_log_failed_core_relo(struct bpf_program *prog,
7598
               char *buf, size_t buf_sz, size_t log_sz,
7599
               char *line1, char *line2, char *line3)
7600
0
{
7601
  /* Expected log for failed and not properly guarded CO-RE relocation:
7602
   * line1 -> 123: (85) call unknown#195896080
7603
   * line2 -> invalid func unknown#195896080
7604
   * line3 -> <anything else or end of buffer>
7605
   *
7606
   * "123" is the index of the instruction that was poisoned. We extract
7607
   * instruction index to find corresponding CO-RE relocation and
7608
   * replace this part of the log with more relevant information about
7609
   * failed CO-RE relocation.
7610
   */
7611
0
  const struct bpf_core_relo *relo;
7612
0
  struct bpf_core_spec spec;
7613
0
  char patch[512], spec_buf[256];
7614
0
  int insn_idx, err, spec_len;
7615
7616
0
  if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7617
0
    return;
7618
7619
0
  relo = find_relo_core(prog, insn_idx);
7620
0
  if (!relo)
7621
0
    return;
7622
7623
0
  err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7624
0
  if (err)
7625
0
    return;
7626
7627
0
  spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7628
0
  snprintf(patch, sizeof(patch),
7629
0
     "%d: <invalid CO-RE relocation>\n"
7630
0
     "failed to resolve CO-RE relocation %s%s\n",
7631
0
     insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7632
7633
0
  patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7634
0
}
7635
7636
static void fixup_log_missing_map_load(struct bpf_program *prog,
7637
               char *buf, size_t buf_sz, size_t log_sz,
7638
               char *line1, char *line2, char *line3)
7639
0
{
7640
  /* Expected log for failed and not properly guarded map reference:
7641
   * line1 -> 123: (85) call unknown#2001000345
7642
   * line2 -> invalid func unknown#2001000345
7643
   * line3 -> <anything else or end of buffer>
7644
   *
7645
   * "123" is the index of the instruction that was poisoned.
7646
   * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7647
   */
7648
0
  struct bpf_object *obj = prog->obj;
7649
0
  const struct bpf_map *map;
7650
0
  int insn_idx, map_idx;
7651
0
  char patch[128];
7652
7653
0
  if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7654
0
    return;
7655
7656
0
  map_idx -= POISON_LDIMM64_MAP_BASE;
7657
0
  if (map_idx < 0 || map_idx >= obj->nr_maps)
7658
0
    return;
7659
0
  map = &obj->maps[map_idx];
7660
7661
0
  snprintf(patch, sizeof(patch),
7662
0
     "%d: <invalid BPF map reference>\n"
7663
0
     "BPF map '%s' is referenced but wasn't created\n",
7664
0
     insn_idx, map->name);
7665
7666
0
  patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7667
0
}
7668
7669
static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7670
           char *buf, size_t buf_sz, size_t log_sz,
7671
           char *line1, char *line2, char *line3)
7672
0
{
7673
  /* Expected log for failed and not properly guarded kfunc call:
7674
   * line1 -> 123: (85) call unknown#2002000345
7675
   * line2 -> invalid func unknown#2002000345
7676
   * line3 -> <anything else or end of buffer>
7677
   *
7678
   * "123" is the index of the instruction that was poisoned.
7679
   * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7680
   */
7681
0
  struct bpf_object *obj = prog->obj;
7682
0
  const struct extern_desc *ext;
7683
0
  int insn_idx, ext_idx;
7684
0
  char patch[128];
7685
7686
0
  if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7687
0
    return;
7688
7689
0
  ext_idx -= POISON_CALL_KFUNC_BASE;
7690
0
  if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7691
0
    return;
7692
0
  ext = &obj->externs[ext_idx];
7693
7694
0
  snprintf(patch, sizeof(patch),
7695
0
     "%d: <invalid kfunc call>\n"
7696
0
     "kfunc '%s' is referenced but wasn't resolved\n",
7697
0
     insn_idx, ext->name);
7698
7699
0
  patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7700
0
}
7701
7702
static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7703
0
{
7704
  /* look for familiar error patterns in last N lines of the log */
7705
0
  const size_t max_last_line_cnt = 10;
7706
0
  char *prev_line, *cur_line, *next_line;
7707
0
  size_t log_sz;
7708
0
  int i;
7709
7710
0
  if (!buf)
7711
0
    return;
7712
7713
0
  log_sz = strlen(buf) + 1;
7714
0
  next_line = buf + log_sz - 1;
7715
7716
0
  for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7717
0
    cur_line = find_prev_line(buf, next_line);
7718
0
    if (!cur_line)
7719
0
      return;
7720
7721
0
    if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7722
0
      prev_line = find_prev_line(buf, cur_line);
7723
0
      if (!prev_line)
7724
0
        continue;
7725
7726
      /* failed CO-RE relocation case */
7727
0
      fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7728
0
               prev_line, cur_line, next_line);
7729
0
      return;
7730
0
    } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7731
0
      prev_line = find_prev_line(buf, cur_line);
7732
0
      if (!prev_line)
7733
0
        continue;
7734
7735
      /* reference to uncreated BPF map */
7736
0
      fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7737
0
               prev_line, cur_line, next_line);
7738
0
      return;
7739
0
    } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7740
0
      prev_line = find_prev_line(buf, cur_line);
7741
0
      if (!prev_line)
7742
0
        continue;
7743
7744
      /* reference to unresolved kfunc */
7745
0
      fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7746
0
                 prev_line, cur_line, next_line);
7747
0
      return;
7748
0
    }
7749
0
  }
7750
0
}
7751
7752
static int bpf_program_record_relos(struct bpf_program *prog)
7753
0
{
7754
0
  struct bpf_object *obj = prog->obj;
7755
0
  int i;
7756
7757
0
  for (i = 0; i < prog->nr_reloc; i++) {
7758
0
    struct reloc_desc *relo = &prog->reloc_desc[i];
7759
0
    struct extern_desc *ext = &obj->externs[relo->ext_idx];
7760
0
    int kind;
7761
7762
0
    switch (relo->type) {
7763
0
    case RELO_EXTERN_LD64:
7764
0
      if (ext->type != EXT_KSYM)
7765
0
        continue;
7766
0
      kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7767
0
        BTF_KIND_VAR : BTF_KIND_FUNC;
7768
0
      bpf_gen__record_extern(obj->gen_loader, ext->name,
7769
0
                 ext->is_weak, !ext->ksym.type_id,
7770
0
                 true, kind, relo->insn_idx);
7771
0
      break;
7772
0
    case RELO_EXTERN_CALL:
7773
0
      bpf_gen__record_extern(obj->gen_loader, ext->name,
7774
0
                 ext->is_weak, false, false, BTF_KIND_FUNC,
7775
0
                 relo->insn_idx);
7776
0
      break;
7777
0
    case RELO_CORE: {
7778
0
      struct bpf_core_relo cr = {
7779
0
        .insn_off = relo->insn_idx * 8,
7780
0
        .type_id = relo->core_relo->type_id,
7781
0
        .access_str_off = relo->core_relo->access_str_off,
7782
0
        .kind = relo->core_relo->kind,
7783
0
      };
7784
7785
0
      bpf_gen__record_relo_core(obj->gen_loader, &cr);
7786
0
      break;
7787
0
    }
7788
0
    default:
7789
0
      continue;
7790
0
    }
7791
0
  }
7792
0
  return 0;
7793
0
}
7794
7795
static int
7796
bpf_object__load_progs(struct bpf_object *obj, int log_level)
7797
0
{
7798
0
  struct bpf_program *prog;
7799
0
  size_t i;
7800
0
  int err;
7801
7802
0
  for (i = 0; i < obj->nr_programs; i++) {
7803
0
    prog = &obj->programs[i];
7804
0
    err = bpf_object__sanitize_prog(obj, prog);
7805
0
    if (err)
7806
0
      return err;
7807
0
  }
7808
7809
0
  for (i = 0; i < obj->nr_programs; i++) {
7810
0
    prog = &obj->programs[i];
7811
0
    if (prog_is_subprog(obj, prog))
7812
0
      continue;
7813
0
    if (!prog->autoload) {
7814
0
      pr_debug("prog '%s': skipped loading\n", prog->name);
7815
0
      continue;
7816
0
    }
7817
0
    prog->log_level |= log_level;
7818
7819
0
    if (obj->gen_loader)
7820
0
      bpf_program_record_relos(prog);
7821
7822
0
    err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7823
0
             obj->license, obj->kern_version, &prog->fd);
7824
0
    if (err) {
7825
0
      pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7826
0
      return err;
7827
0
    }
7828
0
  }
7829
7830
0
  bpf_object__free_relocs(obj);
7831
0
  return 0;
7832
0
}
7833
7834
static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7835
7836
static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7837
1.94k
{
7838
1.94k
  struct bpf_program *prog;
7839
1.94k
  int err;
7840
7841
10.7k
  bpf_object__for_each_program(prog, obj) {
7842
10.7k
    prog->sec_def = find_sec_def(prog->sec_name);
7843
10.7k
    if (!prog->sec_def) {
7844
      /* couldn't guess, but user might manually specify */
7845
9.50k
      pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7846
9.50k
        prog->name, prog->sec_name);
7847
9.50k
      continue;
7848
9.50k
    }
7849
7850
1.24k
    prog->type = prog->sec_def->prog_type;
7851
1.24k
    prog->expected_attach_type = prog->sec_def->expected_attach_type;
7852
7853
    /* sec_def can have custom callback which should be called
7854
     * after bpf_program is initialized to adjust its properties
7855
     */
7856
1.24k
    if (prog->sec_def->prog_setup_fn) {
7857
0
      err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7858
0
      if (err < 0) {
7859
0
        pr_warn("prog '%s': failed to initialize: %d\n",
7860
0
          prog->name, err);
7861
0
        return err;
7862
0
      }
7863
0
    }
7864
1.24k
  }
7865
7866
1.94k
  return 0;
7867
1.94k
}
7868
7869
static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7870
            const struct bpf_object_open_opts *opts)
7871
11.0k
{
7872
11.0k
  const char *obj_name, *kconfig, *btf_tmp_path, *token_path;
7873
11.0k
  struct bpf_object *obj;
7874
11.0k
  char tmp_name[64];
7875
11.0k
  int err;
7876
11.0k
  char *log_buf;
7877
11.0k
  size_t log_size;
7878
11.0k
  __u32 log_level;
7879
7880
11.0k
  if (elf_version(EV_CURRENT) == EV_NONE) {
7881
0
    pr_warn("failed to init libelf for %s\n",
7882
0
      path ? : "(mem buf)");
7883
0
    return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7884
0
  }
7885
7886
11.0k
  if (!OPTS_VALID(opts, bpf_object_open_opts))
7887
0
    return ERR_PTR(-EINVAL);
7888
7889
11.0k
  obj_name = OPTS_GET(opts, object_name, NULL);
7890
11.0k
  if (obj_buf) {
7891
11.0k
    if (!obj_name) {
7892
0
      snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7893
0
         (unsigned long)obj_buf,
7894
0
         (unsigned long)obj_buf_sz);
7895
0
      obj_name = tmp_name;
7896
0
    }
7897
11.0k
    path = obj_name;
7898
11.0k
    pr_debug("loading object '%s' from buffer\n", obj_name);
7899
11.0k
  }
7900
7901
11.0k
  log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7902
11.0k
  log_size = OPTS_GET(opts, kernel_log_size, 0);
7903
11.0k
  log_level = OPTS_GET(opts, kernel_log_level, 0);
7904
11.0k
  if (log_size > UINT_MAX)
7905
0
    return ERR_PTR(-EINVAL);
7906
11.0k
  if (log_size && !log_buf)
7907
0
    return ERR_PTR(-EINVAL);
7908
7909
11.0k
  token_path = OPTS_GET(opts, bpf_token_path, NULL);
7910
  /* if user didn't specify bpf_token_path explicitly, check if
7911
   * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
7912
   * option
7913
   */
7914
11.0k
  if (!token_path)
7915
11.0k
    token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
7916
11.0k
  if (token_path && strlen(token_path) >= PATH_MAX)
7917
0
    return ERR_PTR(-ENAMETOOLONG);
7918
7919
11.0k
  obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7920
11.0k
  if (IS_ERR(obj))
7921
0
    return obj;
7922
7923
11.0k
  obj->log_buf = log_buf;
7924
11.0k
  obj->log_size = log_size;
7925
11.0k
  obj->log_level = log_level;
7926
7927
11.0k
  if (token_path) {
7928
0
    obj->token_path = strdup(token_path);
7929
0
    if (!obj->token_path) {
7930
0
      err = -ENOMEM;
7931
0
      goto out;
7932
0
    }
7933
0
  }
7934
7935
11.0k
  btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7936
11.0k
  if (btf_tmp_path) {
7937
0
    if (strlen(btf_tmp_path) >= PATH_MAX) {
7938
0
      err = -ENAMETOOLONG;
7939
0
      goto out;
7940
0
    }
7941
0
    obj->btf_custom_path = strdup(btf_tmp_path);
7942
0
    if (!obj->btf_custom_path) {
7943
0
      err = -ENOMEM;
7944
0
      goto out;
7945
0
    }
7946
0
  }
7947
7948
11.0k
  kconfig = OPTS_GET(opts, kconfig, NULL);
7949
11.0k
  if (kconfig) {
7950
0
    obj->kconfig = strdup(kconfig);
7951
0
    if (!obj->kconfig) {
7952
0
      err = -ENOMEM;
7953
0
      goto out;
7954
0
    }
7955
0
  }
7956
7957
11.0k
  err = bpf_object__elf_init(obj);
7958
11.0k
  err = err ? : bpf_object__check_endianness(obj);
7959
11.0k
  err = err ? : bpf_object__elf_collect(obj);
7960
8.82k
  err = err ? : bpf_object__collect_externs(obj);
7961
18.4E
  err = err ? : bpf_object_fixup_btf(obj);
7962
18.4E
  err = err ? : bpf_object__init_maps(obj, opts);
7963
18.4E
  err = err ? : bpf_object_init_progs(obj, opts);
7964
18.4E
  err = err ? : bpf_object__collect_relos(obj);
7965
18.4E
  if (err)
7966
9.53k
    goto out;
7967
7968
18.4E
  bpf_object__elf_finish(obj);
7969
7970
18.4E
  return obj;
7971
9.53k
out:
7972
9.53k
  bpf_object__close(obj);
7973
9.53k
  return ERR_PTR(err);
7974
18.4E
}
7975
7976
struct bpf_object *
7977
bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7978
0
{
7979
0
  if (!path)
7980
0
    return libbpf_err_ptr(-EINVAL);
7981
7982
0
  pr_debug("loading %s\n", path);
7983
7984
0
  return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7985
0
}
7986
7987
struct bpf_object *bpf_object__open(const char *path)
7988
0
{
7989
0
  return bpf_object__open_file(path, NULL);
7990
0
}
7991
7992
struct bpf_object *
7993
bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7994
         const struct bpf_object_open_opts *opts)
7995
11.0k
{
7996
11.0k
  if (!obj_buf || obj_buf_sz == 0)
7997
0
    return libbpf_err_ptr(-EINVAL);
7998
7999
11.0k
  return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
8000
11.0k
}
8001
8002
static int bpf_object_unload(struct bpf_object *obj)
8003
11.0k
{
8004
11.0k
  size_t i;
8005
8006
11.0k
  if (!obj)
8007
0
    return libbpf_err(-EINVAL);
8008
8009
13.8k
  for (i = 0; i < obj->nr_maps; i++) {
8010
2.75k
    zclose(obj->maps[i].fd);
8011
2.75k
    if (obj->maps[i].st_ops)
8012
48
      zfree(&obj->maps[i].st_ops->kern_vdata);
8013
2.75k
  }
8014
8015
25.4k
  for (i = 0; i < obj->nr_programs; i++)
8016
14.3k
    bpf_program__unload(&obj->programs[i]);
8017
8018
11.0k
  return 0;
8019
11.0k
}
8020
8021
static int bpf_object__sanitize_maps(struct bpf_object *obj)
8022
0
{
8023
0
  struct bpf_map *m;
8024
8025
0
  bpf_object__for_each_map(m, obj) {
8026
0
    if (!bpf_map__is_internal(m))
8027
0
      continue;
8028
0
    if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8029
0
      m->def.map_flags &= ~BPF_F_MMAPABLE;
8030
0
  }
8031
8032
0
  return 0;
8033
0
}
8034
8035
typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8036
           const char *sym_name, void *ctx);
8037
8038
static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8039
0
{
8040
0
  char sym_type, sym_name[500];
8041
0
  unsigned long long sym_addr;
8042
0
  int ret, err = 0;
8043
0
  FILE *f;
8044
8045
0
  f = fopen("/proc/kallsyms", "re");
8046
0
  if (!f) {
8047
0
    err = -errno;
8048
0
    pr_warn("failed to open /proc/kallsyms: %d\n", err);
8049
0
    return err;
8050
0
  }
8051
8052
0
  while (true) {
8053
0
    ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8054
0
           &sym_addr, &sym_type, sym_name);
8055
0
    if (ret == EOF && feof(f))
8056
0
      break;
8057
0
    if (ret != 3) {
8058
0
      pr_warn("failed to read kallsyms entry: %d\n", ret);
8059
0
      err = -EINVAL;
8060
0
      break;
8061
0
    }
8062
8063
0
    err = cb(sym_addr, sym_type, sym_name, ctx);
8064
0
    if (err)
8065
0
      break;
8066
0
  }
8067
8068
0
  fclose(f);
8069
0
  return err;
8070
0
}
8071
8072
static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8073
           const char *sym_name, void *ctx)
8074
0
{
8075
0
  struct bpf_object *obj = ctx;
8076
0
  const struct btf_type *t;
8077
0
  struct extern_desc *ext;
8078
0
  char *res;
8079
8080
0
  res = strstr(sym_name, ".llvm.");
8081
0
  if (sym_type == 'd' && res)
8082
0
    ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8083
0
  else
8084
0
    ext = find_extern_by_name(obj, sym_name);
8085
0
  if (!ext || ext->type != EXT_KSYM)
8086
0
    return 0;
8087
8088
0
  t = btf__type_by_id(obj->btf, ext->btf_id);
8089
0
  if (!btf_is_var(t))
8090
0
    return 0;
8091
8092
0
  if (ext->is_set && ext->ksym.addr != sym_addr) {
8093
0
    pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8094
0
      sym_name, ext->ksym.addr, sym_addr);
8095
0
    return -EINVAL;
8096
0
  }
8097
0
  if (!ext->is_set) {
8098
0
    ext->is_set = true;
8099
0
    ext->ksym.addr = sym_addr;
8100
0
    pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8101
0
  }
8102
0
  return 0;
8103
0
}
8104
8105
static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8106
0
{
8107
0
  return libbpf_kallsyms_parse(kallsyms_cb, obj);
8108
0
}
8109
8110
static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8111
          __u16 kind, struct btf **res_btf,
8112
          struct module_btf **res_mod_btf)
8113
0
{
8114
0
  struct module_btf *mod_btf;
8115
0
  struct btf *btf;
8116
0
  int i, id, err;
8117
8118
0
  btf = obj->btf_vmlinux;
8119
0
  mod_btf = NULL;
8120
0
  id = btf__find_by_name_kind(btf, ksym_name, kind);
8121
8122
0
  if (id == -ENOENT) {
8123
0
    err = load_module_btfs(obj);
8124
0
    if (err)
8125
0
      return err;
8126
8127
0
    for (i = 0; i < obj->btf_module_cnt; i++) {
8128
      /* we assume module_btf's BTF FD is always >0 */
8129
0
      mod_btf = &obj->btf_modules[i];
8130
0
      btf = mod_btf->btf;
8131
0
      id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8132
0
      if (id != -ENOENT)
8133
0
        break;
8134
0
    }
8135
0
  }
8136
0
  if (id <= 0)
8137
0
    return -ESRCH;
8138
8139
0
  *res_btf = btf;
8140
0
  *res_mod_btf = mod_btf;
8141
0
  return id;
8142
0
}
8143
8144
static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8145
                 struct extern_desc *ext)
8146
0
{
8147
0
  const struct btf_type *targ_var, *targ_type;
8148
0
  __u32 targ_type_id, local_type_id;
8149
0
  struct module_btf *mod_btf = NULL;
8150
0
  const char *targ_var_name;
8151
0
  struct btf *btf = NULL;
8152
0
  int id, err;
8153
8154
0
  id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8155
0
  if (id < 0) {
8156
0
    if (id == -ESRCH && ext->is_weak)
8157
0
      return 0;
8158
0
    pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8159
0
      ext->name);
8160
0
    return id;
8161
0
  }
8162
8163
  /* find local type_id */
8164
0
  local_type_id = ext->ksym.type_id;
8165
8166
  /* find target type_id */
8167
0
  targ_var = btf__type_by_id(btf, id);
8168
0
  targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8169
0
  targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8170
8171
0
  err = bpf_core_types_are_compat(obj->btf, local_type_id,
8172
0
          btf, targ_type_id);
8173
0
  if (err <= 0) {
8174
0
    const struct btf_type *local_type;
8175
0
    const char *targ_name, *local_name;
8176
8177
0
    local_type = btf__type_by_id(obj->btf, local_type_id);
8178
0
    local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8179
0
    targ_name = btf__name_by_offset(btf, targ_type->name_off);
8180
8181
0
    pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8182
0
      ext->name, local_type_id,
8183
0
      btf_kind_str(local_type), local_name, targ_type_id,
8184
0
      btf_kind_str(targ_type), targ_name);
8185
0
    return -EINVAL;
8186
0
  }
8187
8188
0
  ext->is_set = true;
8189
0
  ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8190
0
  ext->ksym.kernel_btf_id = id;
8191
0
  pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8192
0
     ext->name, id, btf_kind_str(targ_var), targ_var_name);
8193
8194
0
  return 0;
8195
0
}
8196
8197
static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8198
            struct extern_desc *ext)
8199
0
{
8200
0
  int local_func_proto_id, kfunc_proto_id, kfunc_id;
8201
0
  struct module_btf *mod_btf = NULL;
8202
0
  const struct btf_type *kern_func;
8203
0
  struct btf *kern_btf = NULL;
8204
0
  int ret;
8205
8206
0
  local_func_proto_id = ext->ksym.type_id;
8207
8208
0
  kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8209
0
            &mod_btf);
8210
0
  if (kfunc_id < 0) {
8211
0
    if (kfunc_id == -ESRCH && ext->is_weak)
8212
0
      return 0;
8213
0
    pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8214
0
      ext->name);
8215
0
    return kfunc_id;
8216
0
  }
8217
8218
0
  kern_func = btf__type_by_id(kern_btf, kfunc_id);
8219
0
  kfunc_proto_id = kern_func->type;
8220
8221
0
  ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8222
0
          kern_btf, kfunc_proto_id);
8223
0
  if (ret <= 0) {
8224
0
    if (ext->is_weak)
8225
0
      return 0;
8226
8227
0
    pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8228
0
      ext->name, local_func_proto_id,
8229
0
      mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8230
0
    return -EINVAL;
8231
0
  }
8232
8233
  /* set index for module BTF fd in fd_array, if unset */
8234
0
  if (mod_btf && !mod_btf->fd_array_idx) {
8235
    /* insn->off is s16 */
8236
0
    if (obj->fd_array_cnt == INT16_MAX) {
8237
0
      pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8238
0
        ext->name, mod_btf->fd_array_idx);
8239
0
      return -E2BIG;
8240
0
    }
8241
    /* Cannot use index 0 for module BTF fd */
8242
0
    if (!obj->fd_array_cnt)
8243
0
      obj->fd_array_cnt = 1;
8244
8245
0
    ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8246
0
          obj->fd_array_cnt + 1);
8247
0
    if (ret)
8248
0
      return ret;
8249
0
    mod_btf->fd_array_idx = obj->fd_array_cnt;
8250
    /* we assume module BTF FD is always >0 */
8251
0
    obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8252
0
  }
8253
8254
0
  ext->is_set = true;
8255
0
  ext->ksym.kernel_btf_id = kfunc_id;
8256
0
  ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8257
  /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8258
   * populates FD into ld_imm64 insn when it's used to point to kfunc.
8259
   * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8260
   * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8261
   */
8262
0
  ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8263
0
  pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8264
0
     ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8265
8266
0
  return 0;
8267
0
}
8268
8269
static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8270
0
{
8271
0
  const struct btf_type *t;
8272
0
  struct extern_desc *ext;
8273
0
  int i, err;
8274
8275
0
  for (i = 0; i < obj->nr_extern; i++) {
8276
0
    ext = &obj->externs[i];
8277
0
    if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8278
0
      continue;
8279
8280
0
    if (obj->gen_loader) {
8281
0
      ext->is_set = true;
8282
0
      ext->ksym.kernel_btf_obj_fd = 0;
8283
0
      ext->ksym.kernel_btf_id = 0;
8284
0
      continue;
8285
0
    }
8286
0
    t = btf__type_by_id(obj->btf, ext->btf_id);
8287
0
    if (btf_is_var(t))
8288
0
      err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8289
0
    else
8290
0
      err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8291
0
    if (err)
8292
0
      return err;
8293
0
  }
8294
0
  return 0;
8295
0
}
8296
8297
static int bpf_object__resolve_externs(struct bpf_object *obj,
8298
               const char *extra_kconfig)
8299
0
{
8300
0
  bool need_config = false, need_kallsyms = false;
8301
0
  bool need_vmlinux_btf = false;
8302
0
  struct extern_desc *ext;
8303
0
  void *kcfg_data = NULL;
8304
0
  int err, i;
8305
8306
0
  if (obj->nr_extern == 0)
8307
0
    return 0;
8308
8309
0
  if (obj->kconfig_map_idx >= 0)
8310
0
    kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8311
8312
0
  for (i = 0; i < obj->nr_extern; i++) {
8313
0
    ext = &obj->externs[i];
8314
8315
0
    if (ext->type == EXT_KSYM) {
8316
0
      if (ext->ksym.type_id)
8317
0
        need_vmlinux_btf = true;
8318
0
      else
8319
0
        need_kallsyms = true;
8320
0
      continue;
8321
0
    } else if (ext->type == EXT_KCFG) {
8322
0
      void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8323
0
      __u64 value = 0;
8324
8325
      /* Kconfig externs need actual /proc/config.gz */
8326
0
      if (str_has_pfx(ext->name, "CONFIG_")) {
8327
0
        need_config = true;
8328
0
        continue;
8329
0
      }
8330
8331
      /* Virtual kcfg externs are customly handled by libbpf */
8332
0
      if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8333
0
        value = get_kernel_version();
8334
0
        if (!value) {
8335
0
          pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8336
0
          return -EINVAL;
8337
0
        }
8338
0
      } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8339
0
        value = kernel_supports(obj, FEAT_BPF_COOKIE);
8340
0
      } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8341
0
        value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8342
0
      } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8343
        /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8344
         * __kconfig externs, where LINUX_ ones are virtual and filled out
8345
         * customly by libbpf (their values don't come from Kconfig).
8346
         * If LINUX_xxx variable is not recognized by libbpf, but is marked
8347
         * __weak, it defaults to zero value, just like for CONFIG_xxx
8348
         * externs.
8349
         */
8350
0
        pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8351
0
        return -EINVAL;
8352
0
      }
8353
8354
0
      err = set_kcfg_value_num(ext, ext_ptr, value);
8355
0
      if (err)
8356
0
        return err;
8357
0
      pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8358
0
         ext->name, (long long)value);
8359
0
    } else {
8360
0
      pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8361
0
      return -EINVAL;
8362
0
    }
8363
0
  }
8364
0
  if (need_config && extra_kconfig) {
8365
0
    err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8366
0
    if (err)
8367
0
      return -EINVAL;
8368
0
    need_config = false;
8369
0
    for (i = 0; i < obj->nr_extern; i++) {
8370
0
      ext = &obj->externs[i];
8371
0
      if (ext->type == EXT_KCFG && !ext->is_set) {
8372
0
        need_config = true;
8373
0
        break;
8374
0
      }
8375
0
    }
8376
0
  }
8377
0
  if (need_config) {
8378
0
    err = bpf_object__read_kconfig_file(obj, kcfg_data);
8379
0
    if (err)
8380
0
      return -EINVAL;
8381
0
  }
8382
0
  if (need_kallsyms) {
8383
0
    err = bpf_object__read_kallsyms_file(obj);
8384
0
    if (err)
8385
0
      return -EINVAL;
8386
0
  }
8387
0
  if (need_vmlinux_btf) {
8388
0
    err = bpf_object__resolve_ksyms_btf_id(obj);
8389
0
    if (err)
8390
0
      return -EINVAL;
8391
0
  }
8392
0
  for (i = 0; i < obj->nr_extern; i++) {
8393
0
    ext = &obj->externs[i];
8394
8395
0
    if (!ext->is_set && !ext->is_weak) {
8396
0
      pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8397
0
      return -ESRCH;
8398
0
    } else if (!ext->is_set) {
8399
0
      pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8400
0
         ext->name);
8401
0
    }
8402
0
  }
8403
8404
0
  return 0;
8405
0
}
8406
8407
static void bpf_map_prepare_vdata(const struct bpf_map *map)
8408
0
{
8409
0
  struct bpf_struct_ops *st_ops;
8410
0
  __u32 i;
8411
8412
0
  st_ops = map->st_ops;
8413
0
  for (i = 0; i < btf_vlen(st_ops->type); i++) {
8414
0
    struct bpf_program *prog = st_ops->progs[i];
8415
0
    void *kern_data;
8416
0
    int prog_fd;
8417
8418
0
    if (!prog)
8419
0
      continue;
8420
8421
0
    prog_fd = bpf_program__fd(prog);
8422
0
    kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8423
0
    *(unsigned long *)kern_data = prog_fd;
8424
0
  }
8425
0
}
8426
8427
static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8428
0
{
8429
0
  struct bpf_map *map;
8430
0
  int i;
8431
8432
0
  for (i = 0; i < obj->nr_maps; i++) {
8433
0
    map = &obj->maps[i];
8434
8435
0
    if (!bpf_map__is_struct_ops(map))
8436
0
      continue;
8437
8438
0
    if (!map->autocreate)
8439
0
      continue;
8440
8441
0
    bpf_map_prepare_vdata(map);
8442
0
  }
8443
8444
0
  return 0;
8445
0
}
8446
8447
static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8448
0
{
8449
0
  int err, i;
8450
8451
0
  if (!obj)
8452
0
    return libbpf_err(-EINVAL);
8453
8454
0
  if (obj->loaded) {
8455
0
    pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8456
0
    return libbpf_err(-EINVAL);
8457
0
  }
8458
8459
0
  if (obj->gen_loader)
8460
0
    bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8461
8462
0
  err = bpf_object_prepare_token(obj);
8463
0
  err = err ? : bpf_object__probe_loading(obj);
8464
0
  err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8465
0
  err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8466
0
  err = err ? : bpf_object__sanitize_maps(obj);
8467
0
  err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8468
0
  err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8469
0
  err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8470
0
  err = err ? : bpf_object__sanitize_and_load_btf(obj);
8471
0
  err = err ? : bpf_object__create_maps(obj);
8472
0
  err = err ? : bpf_object__load_progs(obj, extra_log_level);
8473
0
  err = err ? : bpf_object_init_prog_arrays(obj);
8474
0
  err = err ? : bpf_object_prepare_struct_ops(obj);
8475
8476
0
  if (obj->gen_loader) {
8477
    /* reset FDs */
8478
0
    if (obj->btf)
8479
0
      btf__set_fd(obj->btf, -1);
8480
0
    if (!err)
8481
0
      err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8482
0
  }
8483
8484
  /* clean up fd_array */
8485
0
  zfree(&obj->fd_array);
8486
8487
  /* clean up module BTFs */
8488
0
  for (i = 0; i < obj->btf_module_cnt; i++) {
8489
0
    close(obj->btf_modules[i].fd);
8490
0
    btf__free(obj->btf_modules[i].btf);
8491
0
    free(obj->btf_modules[i].name);
8492
0
  }
8493
0
  free(obj->btf_modules);
8494
8495
  /* clean up vmlinux BTF */
8496
0
  btf__free(obj->btf_vmlinux);
8497
0
  obj->btf_vmlinux = NULL;
8498
8499
0
  obj->loaded = true; /* doesn't matter if successfully or not */
8500
8501
0
  if (err)
8502
0
    goto out;
8503
8504
0
  return 0;
8505
0
out:
8506
  /* unpin any maps that were auto-pinned during load */
8507
0
  for (i = 0; i < obj->nr_maps; i++)
8508
0
    if (obj->maps[i].pinned && !obj->maps[i].reused)
8509
0
      bpf_map__unpin(&obj->maps[i], NULL);
8510
8511
0
  bpf_object_unload(obj);
8512
0
  pr_warn("failed to load object '%s'\n", obj->path);
8513
0
  return libbpf_err(err);
8514
0
}
8515
8516
int bpf_object__load(struct bpf_object *obj)
8517
0
{
8518
0
  return bpf_object_load(obj, 0, NULL);
8519
0
}
8520
8521
static int make_parent_dir(const char *path)
8522
0
{
8523
0
  char *cp, errmsg[STRERR_BUFSIZE];
8524
0
  char *dname, *dir;
8525
0
  int err = 0;
8526
8527
0
  dname = strdup(path);
8528
0
  if (dname == NULL)
8529
0
    return -ENOMEM;
8530
8531
0
  dir = dirname(dname);
8532
0
  if (mkdir(dir, 0700) && errno != EEXIST)
8533
0
    err = -errno;
8534
8535
0
  free(dname);
8536
0
  if (err) {
8537
0
    cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8538
0
    pr_warn("failed to mkdir %s: %s\n", path, cp);
8539
0
  }
8540
0
  return err;
8541
0
}
8542
8543
static int check_path(const char *path)
8544
0
{
8545
0
  char *cp, errmsg[STRERR_BUFSIZE];
8546
0
  struct statfs st_fs;
8547
0
  char *dname, *dir;
8548
0
  int err = 0;
8549
8550
0
  if (path == NULL)
8551
0
    return -EINVAL;
8552
8553
0
  dname = strdup(path);
8554
0
  if (dname == NULL)
8555
0
    return -ENOMEM;
8556
8557
0
  dir = dirname(dname);
8558
0
  if (statfs(dir, &st_fs)) {
8559
0
    cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8560
0
    pr_warn("failed to statfs %s: %s\n", dir, cp);
8561
0
    err = -errno;
8562
0
  }
8563
0
  free(dname);
8564
8565
0
  if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8566
0
    pr_warn("specified path %s is not on BPF FS\n", path);
8567
0
    err = -EINVAL;
8568
0
  }
8569
8570
0
  return err;
8571
0
}
8572
8573
int bpf_program__pin(struct bpf_program *prog, const char *path)
8574
0
{
8575
0
  char *cp, errmsg[STRERR_BUFSIZE];
8576
0
  int err;
8577
8578
0
  if (prog->fd < 0) {
8579
0
    pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8580
0
    return libbpf_err(-EINVAL);
8581
0
  }
8582
8583
0
  err = make_parent_dir(path);
8584
0
  if (err)
8585
0
    return libbpf_err(err);
8586
8587
0
  err = check_path(path);
8588
0
  if (err)
8589
0
    return libbpf_err(err);
8590
8591
0
  if (bpf_obj_pin(prog->fd, path)) {
8592
0
    err = -errno;
8593
0
    cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8594
0
    pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8595
0
    return libbpf_err(err);
8596
0
  }
8597
8598
0
  pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8599
0
  return 0;
8600
0
}
8601
8602
int bpf_program__unpin(struct bpf_program *prog, const char *path)
8603
0
{
8604
0
  int err;
8605
8606
0
  if (prog->fd < 0) {
8607
0
    pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8608
0
    return libbpf_err(-EINVAL);
8609
0
  }
8610
8611
0
  err = check_path(path);
8612
0
  if (err)
8613
0
    return libbpf_err(err);
8614
8615
0
  err = unlink(path);
8616
0
  if (err)
8617
0
    return libbpf_err(-errno);
8618
8619
0
  pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8620
0
  return 0;
8621
0
}
8622
8623
int bpf_map__pin(struct bpf_map *map, const char *path)
8624
0
{
8625
0
  char *cp, errmsg[STRERR_BUFSIZE];
8626
0
  int err;
8627
8628
0
  if (map == NULL) {
8629
0
    pr_warn("invalid map pointer\n");
8630
0
    return libbpf_err(-EINVAL);
8631
0
  }
8632
8633
0
  if (map->fd < 0) {
8634
0
    pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8635
0
    return libbpf_err(-EINVAL);
8636
0
  }
8637
8638
0
  if (map->pin_path) {
8639
0
    if (path && strcmp(path, map->pin_path)) {
8640
0
      pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8641
0
        bpf_map__name(map), map->pin_path, path);
8642
0
      return libbpf_err(-EINVAL);
8643
0
    } else if (map->pinned) {
8644
0
      pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8645
0
         bpf_map__name(map), map->pin_path);
8646
0
      return 0;
8647
0
    }
8648
0
  } else {
8649
0
    if (!path) {
8650
0
      pr_warn("missing a path to pin map '%s' at\n",
8651
0
        bpf_map__name(map));
8652
0
      return libbpf_err(-EINVAL);
8653
0
    } else if (map->pinned) {
8654
0
      pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8655
0
      return libbpf_err(-EEXIST);
8656
0
    }
8657
8658
0
    map->pin_path = strdup(path);
8659
0
    if (!map->pin_path) {
8660
0
      err = -errno;
8661
0
      goto out_err;
8662
0
    }
8663
0
  }
8664
8665
0
  err = make_parent_dir(map->pin_path);
8666
0
  if (err)
8667
0
    return libbpf_err(err);
8668
8669
0
  err = check_path(map->pin_path);
8670
0
  if (err)
8671
0
    return libbpf_err(err);
8672
8673
0
  if (bpf_obj_pin(map->fd, map->pin_path)) {
8674
0
    err = -errno;
8675
0
    goto out_err;
8676
0
  }
8677
8678
0
  map->pinned = true;
8679
0
  pr_debug("pinned map '%s'\n", map->pin_path);
8680
8681
0
  return 0;
8682
8683
0
out_err:
8684
0
  cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8685
0
  pr_warn("failed to pin map: %s\n", cp);
8686
0
  return libbpf_err(err);
8687
0
}
8688
8689
int bpf_map__unpin(struct bpf_map *map, const char *path)
8690
0
{
8691
0
  int err;
8692
8693
0
  if (map == NULL) {
8694
0
    pr_warn("invalid map pointer\n");
8695
0
    return libbpf_err(-EINVAL);
8696
0
  }
8697
8698
0
  if (map->pin_path) {
8699
0
    if (path && strcmp(path, map->pin_path)) {
8700
0
      pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8701
0
        bpf_map__name(map), map->pin_path, path);
8702
0
      return libbpf_err(-EINVAL);
8703
0
    }
8704
0
    path = map->pin_path;
8705
0
  } else if (!path) {
8706
0
    pr_warn("no path to unpin map '%s' from\n",
8707
0
      bpf_map__name(map));
8708
0
    return libbpf_err(-EINVAL);
8709
0
  }
8710
8711
0
  err = check_path(path);
8712
0
  if (err)
8713
0
    return libbpf_err(err);
8714
8715
0
  err = unlink(path);
8716
0
  if (err != 0)
8717
0
    return libbpf_err(-errno);
8718
8719
0
  map->pinned = false;
8720
0
  pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8721
8722
0
  return 0;
8723
0
}
8724
8725
int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8726
1
{
8727
1
  char *new = NULL;
8728
8729
1
  if (path) {
8730
1
    new = strdup(path);
8731
1
    if (!new)
8732
0
      return libbpf_err(-errno);
8733
1
  }
8734
8735
1
  free(map->pin_path);
8736
1
  map->pin_path = new;
8737
1
  return 0;
8738
1
}
8739
8740
__alias(bpf_map__pin_path)
8741
const char *bpf_map__get_pin_path(const struct bpf_map *map);
8742
8743
const char *bpf_map__pin_path(const struct bpf_map *map)
8744
0
{
8745
0
  return map->pin_path;
8746
0
}
8747
8748
bool bpf_map__is_pinned(const struct bpf_map *map)
8749
0
{
8750
0
  return map->pinned;
8751
0
}
8752
8753
static void sanitize_pin_path(char *s)
8754
0
{
8755
  /* bpffs disallows periods in path names */
8756
0
  while (*s) {
8757
0
    if (*s == '.')
8758
0
      *s = '_';
8759
0
    s++;
8760
0
  }
8761
0
}
8762
8763
int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8764
0
{
8765
0
  struct bpf_map *map;
8766
0
  int err;
8767
8768
0
  if (!obj)
8769
0
    return libbpf_err(-ENOENT);
8770
8771
0
  if (!obj->loaded) {
8772
0
    pr_warn("object not yet loaded; load it first\n");
8773
0
    return libbpf_err(-ENOENT);
8774
0
  }
8775
8776
0
  bpf_object__for_each_map(map, obj) {
8777
0
    char *pin_path = NULL;
8778
0
    char buf[PATH_MAX];
8779
8780
0
    if (!map->autocreate)
8781
0
      continue;
8782
8783
0
    if (path) {
8784
0
      err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8785
0
      if (err)
8786
0
        goto err_unpin_maps;
8787
0
      sanitize_pin_path(buf);
8788
0
      pin_path = buf;
8789
0
    } else if (!map->pin_path) {
8790
0
      continue;
8791
0
    }
8792
8793
0
    err = bpf_map__pin(map, pin_path);
8794
0
    if (err)
8795
0
      goto err_unpin_maps;
8796
0
  }
8797
8798
0
  return 0;
8799
8800
0
err_unpin_maps:
8801
0
  while ((map = bpf_object__prev_map(obj, map))) {
8802
0
    if (!map->pin_path)
8803
0
      continue;
8804
8805
0
    bpf_map__unpin(map, NULL);
8806
0
  }
8807
8808
0
  return libbpf_err(err);
8809
0
}
8810
8811
int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8812
0
{
8813
0
  struct bpf_map *map;
8814
0
  int err;
8815
8816
0
  if (!obj)
8817
0
    return libbpf_err(-ENOENT);
8818
8819
0
  bpf_object__for_each_map(map, obj) {
8820
0
    char *pin_path = NULL;
8821
0
    char buf[PATH_MAX];
8822
8823
0
    if (path) {
8824
0
      err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8825
0
      if (err)
8826
0
        return libbpf_err(err);
8827
0
      sanitize_pin_path(buf);
8828
0
      pin_path = buf;
8829
0
    } else if (!map->pin_path) {
8830
0
      continue;
8831
0
    }
8832
8833
0
    err = bpf_map__unpin(map, pin_path);
8834
0
    if (err)
8835
0
      return libbpf_err(err);
8836
0
  }
8837
8838
0
  return 0;
8839
0
}
8840
8841
int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8842
0
{
8843
0
  struct bpf_program *prog;
8844
0
  char buf[PATH_MAX];
8845
0
  int err;
8846
8847
0
  if (!obj)
8848
0
    return libbpf_err(-ENOENT);
8849
8850
0
  if (!obj->loaded) {
8851
0
    pr_warn("object not yet loaded; load it first\n");
8852
0
    return libbpf_err(-ENOENT);
8853
0
  }
8854
8855
0
  bpf_object__for_each_program(prog, obj) {
8856
0
    err = pathname_concat(buf, sizeof(buf), path, prog->name);
8857
0
    if (err)
8858
0
      goto err_unpin_programs;
8859
8860
0
    err = bpf_program__pin(prog, buf);
8861
0
    if (err)
8862
0
      goto err_unpin_programs;
8863
0
  }
8864
8865
0
  return 0;
8866
8867
0
err_unpin_programs:
8868
0
  while ((prog = bpf_object__prev_program(obj, prog))) {
8869
0
    if (pathname_concat(buf, sizeof(buf), path, prog->name))
8870
0
      continue;
8871
8872
0
    bpf_program__unpin(prog, buf);
8873
0
  }
8874
8875
0
  return libbpf_err(err);
8876
0
}
8877
8878
int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8879
0
{
8880
0
  struct bpf_program *prog;
8881
0
  int err;
8882
8883
0
  if (!obj)
8884
0
    return libbpf_err(-ENOENT);
8885
8886
0
  bpf_object__for_each_program(prog, obj) {
8887
0
    char buf[PATH_MAX];
8888
8889
0
    err = pathname_concat(buf, sizeof(buf), path, prog->name);
8890
0
    if (err)
8891
0
      return libbpf_err(err);
8892
8893
0
    err = bpf_program__unpin(prog, buf);
8894
0
    if (err)
8895
0
      return libbpf_err(err);
8896
0
  }
8897
8898
0
  return 0;
8899
0
}
8900
8901
int bpf_object__pin(struct bpf_object *obj, const char *path)
8902
0
{
8903
0
  int err;
8904
8905
0
  err = bpf_object__pin_maps(obj, path);
8906
0
  if (err)
8907
0
    return libbpf_err(err);
8908
8909
0
  err = bpf_object__pin_programs(obj, path);
8910
0
  if (err) {
8911
0
    bpf_object__unpin_maps(obj, path);
8912
0
    return libbpf_err(err);
8913
0
  }
8914
8915
0
  return 0;
8916
0
}
8917
8918
int bpf_object__unpin(struct bpf_object *obj, const char *path)
8919
0
{
8920
0
  int err;
8921
8922
0
  err = bpf_object__unpin_programs(obj, path);
8923
0
  if (err)
8924
0
    return libbpf_err(err);
8925
8926
0
  err = bpf_object__unpin_maps(obj, path);
8927
0
  if (err)
8928
0
    return libbpf_err(err);
8929
8930
0
  return 0;
8931
0
}
8932
8933
static void bpf_map__destroy(struct bpf_map *map)
8934
2.75k
{
8935
2.75k
  if (map->inner_map) {
8936
0
    bpf_map__destroy(map->inner_map);
8937
0
    zfree(&map->inner_map);
8938
0
  }
8939
8940
2.75k
  zfree(&map->init_slots);
8941
2.75k
  map->init_slots_sz = 0;
8942
8943
2.75k
  if (map->mmaped && map->mmaped != map->obj->arena_data)
8944
1.67k
    munmap(map->mmaped, bpf_map_mmap_sz(map));
8945
2.75k
  map->mmaped = NULL;
8946
8947
2.75k
  if (map->st_ops) {
8948
48
    zfree(&map->st_ops->data);
8949
48
    zfree(&map->st_ops->progs);
8950
48
    zfree(&map->st_ops->kern_func_off);
8951
48
    zfree(&map->st_ops);
8952
48
  }
8953
8954
2.75k
  zfree(&map->name);
8955
2.75k
  zfree(&map->real_name);
8956
2.75k
  zfree(&map->pin_path);
8957
8958
2.75k
  if (map->fd >= 0)
8959
0
    zclose(map->fd);
8960
2.75k
}
8961
8962
void bpf_object__close(struct bpf_object *obj)
8963
11.0k
{
8964
11.0k
  size_t i;
8965
8966
11.0k
  if (IS_ERR_OR_NULL(obj))
8967
0
    return;
8968
8969
11.0k
  usdt_manager_free(obj->usdt_man);
8970
11.0k
  obj->usdt_man = NULL;
8971
8972
11.0k
  bpf_gen__free(obj->gen_loader);
8973
11.0k
  bpf_object__elf_finish(obj);
8974
11.0k
  bpf_object_unload(obj);
8975
11.0k
  btf__free(obj->btf);
8976
11.0k
  btf__free(obj->btf_vmlinux);
8977
11.0k
  btf_ext__free(obj->btf_ext);
8978
8979
13.8k
  for (i = 0; i < obj->nr_maps; i++)
8980
2.75k
    bpf_map__destroy(&obj->maps[i]);
8981
8982
11.0k
  zfree(&obj->btf_custom_path);
8983
11.0k
  zfree(&obj->kconfig);
8984
8985
15.1k
  for (i = 0; i < obj->nr_extern; i++)
8986
4.06k
    zfree(&obj->externs[i].essent_name);
8987
8988
11.0k
  zfree(&obj->externs);
8989
11.0k
  obj->nr_extern = 0;
8990
8991
11.0k
  zfree(&obj->maps);
8992
11.0k
  obj->nr_maps = 0;
8993
8994
11.0k
  if (obj->programs && obj->nr_programs) {
8995
14.9k
    for (i = 0; i < obj->nr_programs; i++)
8996
14.3k
      bpf_program__exit(&obj->programs[i]);
8997
625
  }
8998
11.0k
  zfree(&obj->programs);
8999
9000
11.0k
  zfree(&obj->feat_cache);
9001
11.0k
  zfree(&obj->token_path);
9002
11.0k
  if (obj->token_fd > 0)
9003
0
    close(obj->token_fd);
9004
9005
11.0k
  zfree(&obj->arena_data);
9006
9007
11.0k
  free(obj);
9008
11.0k
}
9009
9010
const char *bpf_object__name(const struct bpf_object *obj)
9011
0
{
9012
0
  return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9013
0
}
9014
9015
unsigned int bpf_object__kversion(const struct bpf_object *obj)
9016
0
{
9017
0
  return obj ? obj->kern_version : 0;
9018
0
}
9019
9020
struct btf *bpf_object__btf(const struct bpf_object *obj)
9021
0
{
9022
0
  return obj ? obj->btf : NULL;
9023
0
}
9024
9025
int bpf_object__btf_fd(const struct bpf_object *obj)
9026
0
{
9027
0
  return obj->btf ? btf__fd(obj->btf) : -1;
9028
0
}
9029
9030
int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9031
0
{
9032
0
  if (obj->loaded)
9033
0
    return libbpf_err(-EINVAL);
9034
9035
0
  obj->kern_version = kern_version;
9036
9037
0
  return 0;
9038
0
}
9039
9040
int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9041
0
{
9042
0
  struct bpf_gen *gen;
9043
9044
0
  if (!opts)
9045
0
    return -EFAULT;
9046
0
  if (!OPTS_VALID(opts, gen_loader_opts))
9047
0
    return -EINVAL;
9048
0
  gen = calloc(sizeof(*gen), 1);
9049
0
  if (!gen)
9050
0
    return -ENOMEM;
9051
0
  gen->opts = opts;
9052
0
  obj->gen_loader = gen;
9053
0
  return 0;
9054
0
}
9055
9056
static struct bpf_program *
9057
__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9058
        bool forward)
9059
15.3k
{
9060
15.3k
  size_t nr_programs = obj->nr_programs;
9061
15.3k
  ssize_t idx;
9062
9063
15.3k
  if (!nr_programs)
9064
1.37k
    return NULL;
9065
9066
13.9k
  if (!p)
9067
    /* Iter from the beginning */
9068
562
    return forward ? &obj->programs[0] :
9069
562
      &obj->programs[nr_programs - 1];
9070
9071
13.4k
  if (p->obj != obj) {
9072
0
    pr_warn("error: program handler doesn't match object\n");
9073
0
    return errno = EINVAL, NULL;
9074
0
  }
9075
9076
13.4k
  idx = (p - obj->programs) + (forward ? 1 : -1);
9077
13.4k
  if (idx >= obj->nr_programs || idx < 0)
9078
562
    return NULL;
9079
12.8k
  return &obj->programs[idx];
9080
13.4k
}
9081
9082
struct bpf_program *
9083
bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9084
12.6k
{
9085
12.6k
  struct bpf_program *prog = prev;
9086
9087
15.3k
  do {
9088
15.3k
    prog = __bpf_program__iter(prog, obj, true);
9089
15.3k
  } while (prog && prog_is_subprog(obj, prog));
9090
9091
12.6k
  return prog;
9092
12.6k
}
9093
9094
struct bpf_program *
9095
bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9096
0
{
9097
0
  struct bpf_program *prog = next;
9098
9099
0
  do {
9100
0
    prog = __bpf_program__iter(prog, obj, false);
9101
0
  } while (prog && prog_is_subprog(obj, prog));
9102
9103
0
  return prog;
9104
0
}
9105
9106
void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9107
0
{
9108
0
  prog->prog_ifindex = ifindex;
9109
0
}
9110
9111
const char *bpf_program__name(const struct bpf_program *prog)
9112
0
{
9113
0
  return prog->name;
9114
0
}
9115
9116
const char *bpf_program__section_name(const struct bpf_program *prog)
9117
0
{
9118
0
  return prog->sec_name;
9119
0
}
9120
9121
bool bpf_program__autoload(const struct bpf_program *prog)
9122
0
{
9123
0
  return prog->autoload;
9124
0
}
9125
9126
int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9127
0
{
9128
0
  if (prog->obj->loaded)
9129
0
    return libbpf_err(-EINVAL);
9130
9131
0
  prog->autoload = autoload;
9132
0
  return 0;
9133
0
}
9134
9135
bool bpf_program__autoattach(const struct bpf_program *prog)
9136
0
{
9137
0
  return prog->autoattach;
9138
0
}
9139
9140
void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9141
0
{
9142
0
  prog->autoattach = autoattach;
9143
0
}
9144
9145
const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9146
0
{
9147
0
  return prog->insns;
9148
0
}
9149
9150
size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9151
0
{
9152
0
  return prog->insns_cnt;
9153
0
}
9154
9155
int bpf_program__set_insns(struct bpf_program *prog,
9156
         struct bpf_insn *new_insns, size_t new_insn_cnt)
9157
0
{
9158
0
  struct bpf_insn *insns;
9159
9160
0
  if (prog->obj->loaded)
9161
0
    return -EBUSY;
9162
9163
0
  insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9164
  /* NULL is a valid return from reallocarray if the new count is zero */
9165
0
  if (!insns && new_insn_cnt) {
9166
0
    pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9167
0
    return -ENOMEM;
9168
0
  }
9169
0
  memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9170
9171
0
  prog->insns = insns;
9172
0
  prog->insns_cnt = new_insn_cnt;
9173
0
  return 0;
9174
0
}
9175
9176
int bpf_program__fd(const struct bpf_program *prog)
9177
0
{
9178
0
  if (!prog)
9179
0
    return libbpf_err(-EINVAL);
9180
9181
0
  if (prog->fd < 0)
9182
0
    return libbpf_err(-ENOENT);
9183
9184
0
  return prog->fd;
9185
0
}
9186
9187
__alias(bpf_program__type)
9188
enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9189
9190
enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9191
0
{
9192
0
  return prog->type;
9193
0
}
9194
9195
static size_t custom_sec_def_cnt;
9196
static struct bpf_sec_def *custom_sec_defs;
9197
static struct bpf_sec_def custom_fallback_def;
9198
static bool has_custom_fallback_def;
9199
static int last_custom_sec_def_handler_id;
9200
9201
int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9202
0
{
9203
0
  if (prog->obj->loaded)
9204
0
    return libbpf_err(-EBUSY);
9205
9206
  /* if type is not changed, do nothing */
9207
0
  if (prog->type == type)
9208
0
    return 0;
9209
9210
0
  prog->type = type;
9211
9212
  /* If a program type was changed, we need to reset associated SEC()
9213
   * handler, as it will be invalid now. The only exception is a generic
9214
   * fallback handler, which by definition is program type-agnostic and
9215
   * is a catch-all custom handler, optionally set by the application,
9216
   * so should be able to handle any type of BPF program.
9217
   */
9218
0
  if (prog->sec_def != &custom_fallback_def)
9219
0
    prog->sec_def = NULL;
9220
0
  return 0;
9221
0
}
9222
9223
__alias(bpf_program__expected_attach_type)
9224
enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9225
9226
enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9227
0
{
9228
0
  return prog->expected_attach_type;
9229
0
}
9230
9231
int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9232
             enum bpf_attach_type type)
9233
0
{
9234
0
  if (prog->obj->loaded)
9235
0
    return libbpf_err(-EBUSY);
9236
9237
0
  prog->expected_attach_type = type;
9238
0
  return 0;
9239
0
}
9240
9241
__u32 bpf_program__flags(const struct bpf_program *prog)
9242
0
{
9243
0
  return prog->prog_flags;
9244
0
}
9245
9246
int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9247
0
{
9248
0
  if (prog->obj->loaded)
9249
0
    return libbpf_err(-EBUSY);
9250
9251
0
  prog->prog_flags = flags;
9252
0
  return 0;
9253
0
}
9254
9255
__u32 bpf_program__log_level(const struct bpf_program *prog)
9256
0
{
9257
0
  return prog->log_level;
9258
0
}
9259
9260
int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9261
0
{
9262
0
  if (prog->obj->loaded)
9263
0
    return libbpf_err(-EBUSY);
9264
9265
0
  prog->log_level = log_level;
9266
0
  return 0;
9267
0
}
9268
9269
const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9270
0
{
9271
0
  *log_size = prog->log_size;
9272
0
  return prog->log_buf;
9273
0
}
9274
9275
int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9276
0
{
9277
0
  if (log_size && !log_buf)
9278
0
    return -EINVAL;
9279
0
  if (prog->log_size > UINT_MAX)
9280
0
    return -EINVAL;
9281
0
  if (prog->obj->loaded)
9282
0
    return -EBUSY;
9283
9284
0
  prog->log_buf = log_buf;
9285
0
  prog->log_size = log_size;
9286
0
  return 0;
9287
0
}
9288
9289
#define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {          \
9290
  .sec = (char *)sec_pfx,               \
9291
  .prog_type = BPF_PROG_TYPE_##ptype,           \
9292
  .expected_attach_type = atype,              \
9293
  .cookie = (long)(flags),              \
9294
  .prog_prepare_load_fn = libbpf_prepare_prog_load,       \
9295
  __VA_ARGS__                 \
9296
}
9297
9298
static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9299
static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9300
static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9301
static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9302
static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9303
static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9304
static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9305
static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9306
static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9307
static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9308
static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9309
static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9310
9311
static const struct bpf_sec_def section_defs[] = {
9312
  SEC_DEF("socket",   SOCKET_FILTER, 0, SEC_NONE),
9313
  SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9314
  SEC_DEF("sk_reuseport",   SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9315
  SEC_DEF("kprobe+",    KPROBE, 0, SEC_NONE, attach_kprobe),
9316
  SEC_DEF("uprobe+",    KPROBE, 0, SEC_NONE, attach_uprobe),
9317
  SEC_DEF("uprobe.s+",    KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9318
  SEC_DEF("kretprobe+",   KPROBE, 0, SEC_NONE, attach_kprobe),
9319
  SEC_DEF("uretprobe+",   KPROBE, 0, SEC_NONE, attach_uprobe),
9320
  SEC_DEF("uretprobe.s+",   KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9321
  SEC_DEF("kprobe.multi+",  KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9322
  SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9323
  SEC_DEF("kprobe.session+",  KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9324
  SEC_DEF("uprobe.multi+",  KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9325
  SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9326
  SEC_DEF("uprobe.multi.s+",  KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9327
  SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9328
  SEC_DEF("ksyscall+",    KPROBE, 0, SEC_NONE, attach_ksyscall),
9329
  SEC_DEF("kretsyscall+",   KPROBE, 0, SEC_NONE, attach_ksyscall),
9330
  SEC_DEF("usdt+",    KPROBE, 0, SEC_USDT, attach_usdt),
9331
  SEC_DEF("usdt.s+",    KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9332
  SEC_DEF("tc/ingress",   SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9333
  SEC_DEF("tc/egress",    SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9334
  SEC_DEF("tcx/ingress",    SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9335
  SEC_DEF("tcx/egress",   SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9336
  SEC_DEF("tc",     SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9337
  SEC_DEF("classifier",   SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9338
  SEC_DEF("action",   SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9339
  SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9340
  SEC_DEF("netkit/peer",    SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9341
  SEC_DEF("tracepoint+",    TRACEPOINT, 0, SEC_NONE, attach_tp),
9342
  SEC_DEF("tp+",      TRACEPOINT, 0, SEC_NONE, attach_tp),
9343
  SEC_DEF("raw_tracepoint+",  RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9344
  SEC_DEF("raw_tp+",    RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9345
  SEC_DEF("raw_tracepoint.w+",  RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9346
  SEC_DEF("raw_tp.w+",    RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9347
  SEC_DEF("tp_btf+",    TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9348
  SEC_DEF("fentry+",    TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9349
  SEC_DEF("fmod_ret+",    TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9350
  SEC_DEF("fexit+",   TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9351
  SEC_DEF("fentry.s+",    TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9352
  SEC_DEF("fmod_ret.s+",    TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9353
  SEC_DEF("fexit.s+",   TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9354
  SEC_DEF("freplace+",    EXT, 0, SEC_ATTACH_BTF, attach_trace),
9355
  SEC_DEF("lsm+",     LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9356
  SEC_DEF("lsm.s+",   LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9357
  SEC_DEF("lsm_cgroup+",    LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9358
  SEC_DEF("iter+",    TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9359
  SEC_DEF("iter.s+",    TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9360
  SEC_DEF("syscall",    SYSCALL, 0, SEC_SLEEPABLE),
9361
  SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9362
  SEC_DEF("xdp/devmap",   XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9363
  SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9364
  SEC_DEF("xdp/cpumap",   XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9365
  SEC_DEF("xdp.frags",    XDP, BPF_XDP, SEC_XDP_FRAGS),
9366
  SEC_DEF("xdp",      XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9367
  SEC_DEF("perf_event",   PERF_EVENT, 0, SEC_NONE),
9368
  SEC_DEF("lwt_in",   LWT_IN, 0, SEC_NONE),
9369
  SEC_DEF("lwt_out",    LWT_OUT, 0, SEC_NONE),
9370
  SEC_DEF("lwt_xmit",   LWT_XMIT, 0, SEC_NONE),
9371
  SEC_DEF("lwt_seg6local",  LWT_SEG6LOCAL, 0, SEC_NONE),
9372
  SEC_DEF("sockops",    SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9373
  SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9374
  SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9375
  SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9376
  SEC_DEF("sk_skb",   SK_SKB, 0, SEC_NONE),
9377
  SEC_DEF("sk_msg",   SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9378
  SEC_DEF("lirc_mode2",   LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9379
  SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9380
  SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9381
  SEC_DEF("cgroup_skb/egress",  CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9382
  SEC_DEF("cgroup/skb",   CGROUP_SKB, 0, SEC_NONE),
9383
  SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9384
  SEC_DEF("cgroup/sock_release",  CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9385
  SEC_DEF("cgroup/sock",    CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9386
  SEC_DEF("cgroup/post_bind4",  CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9387
  SEC_DEF("cgroup/post_bind6",  CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9388
  SEC_DEF("cgroup/bind4",   CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9389
  SEC_DEF("cgroup/bind6",   CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9390
  SEC_DEF("cgroup/connect4",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9391
  SEC_DEF("cgroup/connect6",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9392
  SEC_DEF("cgroup/connect_unix",  CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9393
  SEC_DEF("cgroup/sendmsg4",  CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9394
  SEC_DEF("cgroup/sendmsg6",  CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9395
  SEC_DEF("cgroup/sendmsg_unix",  CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9396
  SEC_DEF("cgroup/recvmsg4",  CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9397
  SEC_DEF("cgroup/recvmsg6",  CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9398
  SEC_DEF("cgroup/recvmsg_unix",  CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9399
  SEC_DEF("cgroup/getpeername4",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9400
  SEC_DEF("cgroup/getpeername6",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9401
  SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9402
  SEC_DEF("cgroup/getsockname4",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9403
  SEC_DEF("cgroup/getsockname6",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9404
  SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9405
  SEC_DEF("cgroup/sysctl",  CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9406
  SEC_DEF("cgroup/getsockopt",  CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9407
  SEC_DEF("cgroup/setsockopt",  CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9408
  SEC_DEF("cgroup/dev",   CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9409
  SEC_DEF("struct_ops+",    STRUCT_OPS, 0, SEC_NONE),
9410
  SEC_DEF("struct_ops.s+",  STRUCT_OPS, 0, SEC_SLEEPABLE),
9411
  SEC_DEF("sk_lookup",    SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9412
  SEC_DEF("netfilter",    NETFILTER, BPF_NETFILTER, SEC_NONE),
9413
};
9414
9415
int libbpf_register_prog_handler(const char *sec,
9416
         enum bpf_prog_type prog_type,
9417
         enum bpf_attach_type exp_attach_type,
9418
         const struct libbpf_prog_handler_opts *opts)
9419
0
{
9420
0
  struct bpf_sec_def *sec_def;
9421
9422
0
  if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9423
0
    return libbpf_err(-EINVAL);
9424
9425
0
  if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9426
0
    return libbpf_err(-E2BIG);
9427
9428
0
  if (sec) {
9429
0
    sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9430
0
                sizeof(*sec_def));
9431
0
    if (!sec_def)
9432
0
      return libbpf_err(-ENOMEM);
9433
9434
0
    custom_sec_defs = sec_def;
9435
0
    sec_def = &custom_sec_defs[custom_sec_def_cnt];
9436
0
  } else {
9437
0
    if (has_custom_fallback_def)
9438
0
      return libbpf_err(-EBUSY);
9439
9440
0
    sec_def = &custom_fallback_def;
9441
0
  }
9442
9443
0
  sec_def->sec = sec ? strdup(sec) : NULL;
9444
0
  if (sec && !sec_def->sec)
9445
0
    return libbpf_err(-ENOMEM);
9446
9447
0
  sec_def->prog_type = prog_type;
9448
0
  sec_def->expected_attach_type = exp_attach_type;
9449
0
  sec_def->cookie = OPTS_GET(opts, cookie, 0);
9450
9451
0
  sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9452
0
  sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9453
0
  sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9454
9455
0
  sec_def->handler_id = ++last_custom_sec_def_handler_id;
9456
9457
0
  if (sec)
9458
0
    custom_sec_def_cnt++;
9459
0
  else
9460
0
    has_custom_fallback_def = true;
9461
9462
0
  return sec_def->handler_id;
9463
0
}
9464
9465
int libbpf_unregister_prog_handler(int handler_id)
9466
0
{
9467
0
  struct bpf_sec_def *sec_defs;
9468
0
  int i;
9469
9470
0
  if (handler_id <= 0)
9471
0
    return libbpf_err(-EINVAL);
9472
9473
0
  if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9474
0
    memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9475
0
    has_custom_fallback_def = false;
9476
0
    return 0;
9477
0
  }
9478
9479
0
  for (i = 0; i < custom_sec_def_cnt; i++) {
9480
0
    if (custom_sec_defs[i].handler_id == handler_id)
9481
0
      break;
9482
0
  }
9483
9484
0
  if (i == custom_sec_def_cnt)
9485
0
    return libbpf_err(-ENOENT);
9486
9487
0
  free(custom_sec_defs[i].sec);
9488
0
  for (i = i + 1; i < custom_sec_def_cnt; i++)
9489
0
    custom_sec_defs[i - 1] = custom_sec_defs[i];
9490
0
  custom_sec_def_cnt--;
9491
9492
  /* try to shrink the array, but it's ok if we couldn't */
9493
0
  sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9494
  /* if new count is zero, reallocarray can return a valid NULL result;
9495
   * in this case the previous pointer will be freed, so we *have to*
9496
   * reassign old pointer to the new value (even if it's NULL)
9497
   */
9498
0
  if (sec_defs || custom_sec_def_cnt == 0)
9499
0
    custom_sec_defs = sec_defs;
9500
9501
0
  return 0;
9502
0
}
9503
9504
static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9505
1.03M
{
9506
1.03M
  size_t len = strlen(sec_def->sec);
9507
9508
  /* "type/" always has to have proper SEC("type/extras") form */
9509
1.03M
  if (sec_def->sec[len - 1] == '/') {
9510
0
    if (str_has_pfx(sec_name, sec_def->sec))
9511
0
      return true;
9512
0
    return false;
9513
0
  }
9514
9515
  /* "type+" means it can be either exact SEC("type") or
9516
   * well-formed SEC("type/extras") with proper '/' separator
9517
   */
9518
1.03M
  if (sec_def->sec[len - 1] == '+') {
9519
401k
    len--;
9520
    /* not even a prefix */
9521
401k
    if (strncmp(sec_name, sec_def->sec, len) != 0)
9522
399k
      return false;
9523
    /* exact match or has '/' separator */
9524
1.68k
    if (sec_name[len] == '\0' || sec_name[len] == '/')
9525
727
      return true;
9526
953
    return false;
9527
1.68k
  }
9528
9529
631k
  return strcmp(sec_name, sec_def->sec) == 0;
9530
1.03M
}
9531
9532
static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9533
10.7k
{
9534
10.7k
  const struct bpf_sec_def *sec_def;
9535
10.7k
  int i, n;
9536
9537
10.7k
  n = custom_sec_def_cnt;
9538
10.7k
  for (i = 0; i < n; i++) {
9539
0
    sec_def = &custom_sec_defs[i];
9540
0
    if (sec_def_matches(sec_def, sec_name))
9541
0
      return sec_def;
9542
0
  }
9543
9544
10.7k
  n = ARRAY_SIZE(section_defs);
9545
1.04M
  for (i = 0; i < n; i++) {
9546
1.03M
    sec_def = &section_defs[i];
9547
1.03M
    if (sec_def_matches(sec_def, sec_name))
9548
1.24k
      return sec_def;
9549
1.03M
  }
9550
9551
9.50k
  if (has_custom_fallback_def)
9552
0
    return &custom_fallback_def;
9553
9554
9.50k
  return NULL;
9555
9.50k
}
9556
9557
0
#define MAX_TYPE_NAME_SIZE 32
9558
9559
static char *libbpf_get_type_names(bool attach_type)
9560
0
{
9561
0
  int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9562
0
  char *buf;
9563
9564
0
  buf = malloc(len);
9565
0
  if (!buf)
9566
0
    return NULL;
9567
9568
0
  buf[0] = '\0';
9569
  /* Forge string buf with all available names */
9570
0
  for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9571
0
    const struct bpf_sec_def *sec_def = &section_defs[i];
9572
9573
0
    if (attach_type) {
9574
0
      if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9575
0
        continue;
9576
9577
0
      if (!(sec_def->cookie & SEC_ATTACHABLE))
9578
0
        continue;
9579
0
    }
9580
9581
0
    if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9582
0
      free(buf);
9583
0
      return NULL;
9584
0
    }
9585
0
    strcat(buf, " ");
9586
0
    strcat(buf, section_defs[i].sec);
9587
0
  }
9588
9589
0
  return buf;
9590
0
}
9591
9592
int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9593
           enum bpf_attach_type *expected_attach_type)
9594
0
{
9595
0
  const struct bpf_sec_def *sec_def;
9596
0
  char *type_names;
9597
9598
0
  if (!name)
9599
0
    return libbpf_err(-EINVAL);
9600
9601
0
  sec_def = find_sec_def(name);
9602
0
  if (sec_def) {
9603
0
    *prog_type = sec_def->prog_type;
9604
0
    *expected_attach_type = sec_def->expected_attach_type;
9605
0
    return 0;
9606
0
  }
9607
9608
0
  pr_debug("failed to guess program type from ELF section '%s'\n", name);
9609
0
  type_names = libbpf_get_type_names(false);
9610
0
  if (type_names != NULL) {
9611
0
    pr_debug("supported section(type) names are:%s\n", type_names);
9612
0
    free(type_names);
9613
0
  }
9614
9615
0
  return libbpf_err(-ESRCH);
9616
0
}
9617
9618
const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9619
0
{
9620
0
  if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9621
0
    return NULL;
9622
9623
0
  return attach_type_name[t];
9624
0
}
9625
9626
const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9627
0
{
9628
0
  if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9629
0
    return NULL;
9630
9631
0
  return link_type_name[t];
9632
0
}
9633
9634
const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9635
0
{
9636
0
  if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9637
0
    return NULL;
9638
9639
0
  return map_type_name[t];
9640
0
}
9641
9642
const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9643
0
{
9644
0
  if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9645
0
    return NULL;
9646
9647
0
  return prog_type_name[t];
9648
0
}
9649
9650
static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9651
                 int sec_idx,
9652
                 size_t offset)
9653
0
{
9654
0
  struct bpf_map *map;
9655
0
  size_t i;
9656
9657
0
  for (i = 0; i < obj->nr_maps; i++) {
9658
0
    map = &obj->maps[i];
9659
0
    if (!bpf_map__is_struct_ops(map))
9660
0
      continue;
9661
0
    if (map->sec_idx == sec_idx &&
9662
0
        map->sec_offset <= offset &&
9663
0
        offset - map->sec_offset < map->def.value_size)
9664
0
      return map;
9665
0
  }
9666
9667
0
  return NULL;
9668
0
}
9669
9670
/* Collect the reloc from ELF, populate the st_ops->progs[], and update
9671
 * st_ops->data for shadow type.
9672
 */
9673
static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9674
              Elf64_Shdr *shdr, Elf_Data *data)
9675
0
{
9676
0
  const struct btf_member *member;
9677
0
  struct bpf_struct_ops *st_ops;
9678
0
  struct bpf_program *prog;
9679
0
  unsigned int shdr_idx;
9680
0
  const struct btf *btf;
9681
0
  struct bpf_map *map;
9682
0
  unsigned int moff, insn_idx;
9683
0
  const char *name;
9684
0
  __u32 member_idx;
9685
0
  Elf64_Sym *sym;
9686
0
  Elf64_Rel *rel;
9687
0
  int i, nrels;
9688
9689
0
  btf = obj->btf;
9690
0
  nrels = shdr->sh_size / shdr->sh_entsize;
9691
0
  for (i = 0; i < nrels; i++) {
9692
0
    rel = elf_rel_by_idx(data, i);
9693
0
    if (!rel) {
9694
0
      pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9695
0
      return -LIBBPF_ERRNO__FORMAT;
9696
0
    }
9697
9698
0
    sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9699
0
    if (!sym) {
9700
0
      pr_warn("struct_ops reloc: symbol %zx not found\n",
9701
0
        (size_t)ELF64_R_SYM(rel->r_info));
9702
0
      return -LIBBPF_ERRNO__FORMAT;
9703
0
    }
9704
9705
0
    name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9706
0
    map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9707
0
    if (!map) {
9708
0
      pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9709
0
        (size_t)rel->r_offset);
9710
0
      return -EINVAL;
9711
0
    }
9712
9713
0
    moff = rel->r_offset - map->sec_offset;
9714
0
    shdr_idx = sym->st_shndx;
9715
0
    st_ops = map->st_ops;
9716
0
    pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9717
0
       map->name,
9718
0
       (long long)(rel->r_info >> 32),
9719
0
       (long long)sym->st_value,
9720
0
       shdr_idx, (size_t)rel->r_offset,
9721
0
       map->sec_offset, sym->st_name, name);
9722
9723
0
    if (shdr_idx >= SHN_LORESERVE) {
9724
0
      pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9725
0
        map->name, (size_t)rel->r_offset, shdr_idx);
9726
0
      return -LIBBPF_ERRNO__RELOC;
9727
0
    }
9728
0
    if (sym->st_value % BPF_INSN_SZ) {
9729
0
      pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9730
0
        map->name, (unsigned long long)sym->st_value);
9731
0
      return -LIBBPF_ERRNO__FORMAT;
9732
0
    }
9733
0
    insn_idx = sym->st_value / BPF_INSN_SZ;
9734
9735
0
    member = find_member_by_offset(st_ops->type, moff * 8);
9736
0
    if (!member) {
9737
0
      pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9738
0
        map->name, moff);
9739
0
      return -EINVAL;
9740
0
    }
9741
0
    member_idx = member - btf_members(st_ops->type);
9742
0
    name = btf__name_by_offset(btf, member->name_off);
9743
9744
0
    if (!resolve_func_ptr(btf, member->type, NULL)) {
9745
0
      pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9746
0
        map->name, name);
9747
0
      return -EINVAL;
9748
0
    }
9749
9750
0
    prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9751
0
    if (!prog) {
9752
0
      pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9753
0
        map->name, shdr_idx, name);
9754
0
      return -EINVAL;
9755
0
    }
9756
9757
    /* prevent the use of BPF prog with invalid type */
9758
0
    if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9759
0
      pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9760
0
        map->name, prog->name);
9761
0
      return -EINVAL;
9762
0
    }
9763
9764
0
    st_ops->progs[member_idx] = prog;
9765
9766
    /* st_ops->data will be exposed to users, being returned by
9767
     * bpf_map__initial_value() as a pointer to the shadow
9768
     * type. All function pointers in the original struct type
9769
     * should be converted to a pointer to struct bpf_program
9770
     * in the shadow type.
9771
     */
9772
0
    *((struct bpf_program **)(st_ops->data + moff)) = prog;
9773
0
  }
9774
9775
0
  return 0;
9776
0
}
9777
9778
0
#define BTF_TRACE_PREFIX "btf_trace_"
9779
0
#define BTF_LSM_PREFIX "bpf_lsm_"
9780
0
#define BTF_ITER_PREFIX "bpf_iter_"
9781
#define BTF_MAX_NAME_SIZE 128
9782
9783
void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9784
        const char **prefix, int *kind)
9785
0
{
9786
0
  switch (attach_type) {
9787
0
  case BPF_TRACE_RAW_TP:
9788
0
    *prefix = BTF_TRACE_PREFIX;
9789
0
    *kind = BTF_KIND_TYPEDEF;
9790
0
    break;
9791
0
  case BPF_LSM_MAC:
9792
0
  case BPF_LSM_CGROUP:
9793
0
    *prefix = BTF_LSM_PREFIX;
9794
0
    *kind = BTF_KIND_FUNC;
9795
0
    break;
9796
0
  case BPF_TRACE_ITER:
9797
0
    *prefix = BTF_ITER_PREFIX;
9798
0
    *kind = BTF_KIND_FUNC;
9799
0
    break;
9800
0
  default:
9801
0
    *prefix = "";
9802
0
    *kind = BTF_KIND_FUNC;
9803
0
  }
9804
0
}
9805
9806
static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9807
           const char *name, __u32 kind)
9808
0
{
9809
0
  char btf_type_name[BTF_MAX_NAME_SIZE];
9810
0
  int ret;
9811
9812
0
  ret = snprintf(btf_type_name, sizeof(btf_type_name),
9813
0
           "%s%s", prefix, name);
9814
  /* snprintf returns the number of characters written excluding the
9815
   * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9816
   * indicates truncation.
9817
   */
9818
0
  if (ret < 0 || ret >= sizeof(btf_type_name))
9819
0
    return -ENAMETOOLONG;
9820
0
  return btf__find_by_name_kind(btf, btf_type_name, kind);
9821
0
}
9822
9823
static inline int find_attach_btf_id(struct btf *btf, const char *name,
9824
             enum bpf_attach_type attach_type)
9825
0
{
9826
0
  const char *prefix;
9827
0
  int kind;
9828
9829
0
  btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9830
0
  return find_btf_by_prefix_kind(btf, prefix, name, kind);
9831
0
}
9832
9833
int libbpf_find_vmlinux_btf_id(const char *name,
9834
             enum bpf_attach_type attach_type)
9835
0
{
9836
0
  struct btf *btf;
9837
0
  int err;
9838
9839
0
  btf = btf__load_vmlinux_btf();
9840
0
  err = libbpf_get_error(btf);
9841
0
  if (err) {
9842
0
    pr_warn("vmlinux BTF is not found\n");
9843
0
    return libbpf_err(err);
9844
0
  }
9845
9846
0
  err = find_attach_btf_id(btf, name, attach_type);
9847
0
  if (err <= 0)
9848
0
    pr_warn("%s is not found in vmlinux BTF\n", name);
9849
9850
0
  btf__free(btf);
9851
0
  return libbpf_err(err);
9852
0
}
9853
9854
static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9855
0
{
9856
0
  struct bpf_prog_info info;
9857
0
  __u32 info_len = sizeof(info);
9858
0
  struct btf *btf;
9859
0
  int err;
9860
9861
0
  memset(&info, 0, info_len);
9862
0
  err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9863
0
  if (err) {
9864
0
    pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9865
0
      attach_prog_fd, err);
9866
0
    return err;
9867
0
  }
9868
9869
0
  err = -EINVAL;
9870
0
  if (!info.btf_id) {
9871
0
    pr_warn("The target program doesn't have BTF\n");
9872
0
    goto out;
9873
0
  }
9874
0
  btf = btf__load_from_kernel_by_id(info.btf_id);
9875
0
  err = libbpf_get_error(btf);
9876
0
  if (err) {
9877
0
    pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9878
0
    goto out;
9879
0
  }
9880
0
  err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9881
0
  btf__free(btf);
9882
0
  if (err <= 0) {
9883
0
    pr_warn("%s is not found in prog's BTF\n", name);
9884
0
    goto out;
9885
0
  }
9886
0
out:
9887
0
  return err;
9888
0
}
9889
9890
static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9891
            enum bpf_attach_type attach_type,
9892
            int *btf_obj_fd, int *btf_type_id)
9893
0
{
9894
0
  int ret, i, mod_len;
9895
0
  const char *fn_name, *mod_name = NULL;
9896
9897
0
  fn_name = strchr(attach_name, ':');
9898
0
  if (fn_name) {
9899
0
    mod_name = attach_name;
9900
0
    mod_len = fn_name - mod_name;
9901
0
    fn_name++;
9902
0
  }
9903
9904
0
  if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
9905
0
    ret = find_attach_btf_id(obj->btf_vmlinux,
9906
0
           mod_name ? fn_name : attach_name,
9907
0
           attach_type);
9908
0
    if (ret > 0) {
9909
0
      *btf_obj_fd = 0; /* vmlinux BTF */
9910
0
      *btf_type_id = ret;
9911
0
      return 0;
9912
0
    }
9913
0
    if (ret != -ENOENT)
9914
0
      return ret;
9915
0
  }
9916
9917
0
  ret = load_module_btfs(obj);
9918
0
  if (ret)
9919
0
    return ret;
9920
9921
0
  for (i = 0; i < obj->btf_module_cnt; i++) {
9922
0
    const struct module_btf *mod = &obj->btf_modules[i];
9923
9924
0
    if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
9925
0
      continue;
9926
9927
0
    ret = find_attach_btf_id(mod->btf,
9928
0
           mod_name ? fn_name : attach_name,
9929
0
           attach_type);
9930
0
    if (ret > 0) {
9931
0
      *btf_obj_fd = mod->fd;
9932
0
      *btf_type_id = ret;
9933
0
      return 0;
9934
0
    }
9935
0
    if (ret == -ENOENT)
9936
0
      continue;
9937
9938
0
    return ret;
9939
0
  }
9940
9941
0
  return -ESRCH;
9942
0
}
9943
9944
static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9945
             int *btf_obj_fd, int *btf_type_id)
9946
0
{
9947
0
  enum bpf_attach_type attach_type = prog->expected_attach_type;
9948
0
  __u32 attach_prog_fd = prog->attach_prog_fd;
9949
0
  int err = 0;
9950
9951
  /* BPF program's BTF ID */
9952
0
  if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9953
0
    if (!attach_prog_fd) {
9954
0
      pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9955
0
      return -EINVAL;
9956
0
    }
9957
0
    err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9958
0
    if (err < 0) {
9959
0
      pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9960
0
         prog->name, attach_prog_fd, attach_name, err);
9961
0
      return err;
9962
0
    }
9963
0
    *btf_obj_fd = 0;
9964
0
    *btf_type_id = err;
9965
0
    return 0;
9966
0
  }
9967
9968
  /* kernel/module BTF ID */
9969
0
  if (prog->obj->gen_loader) {
9970
0
    bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9971
0
    *btf_obj_fd = 0;
9972
0
    *btf_type_id = 1;
9973
0
  } else {
9974
0
    err = find_kernel_btf_id(prog->obj, attach_name,
9975
0
           attach_type, btf_obj_fd,
9976
0
           btf_type_id);
9977
0
  }
9978
0
  if (err) {
9979
0
    pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9980
0
      prog->name, attach_name, err);
9981
0
    return err;
9982
0
  }
9983
0
  return 0;
9984
0
}
9985
9986
int libbpf_attach_type_by_name(const char *name,
9987
             enum bpf_attach_type *attach_type)
9988
0
{
9989
0
  char *type_names;
9990
0
  const struct bpf_sec_def *sec_def;
9991
9992
0
  if (!name)
9993
0
    return libbpf_err(-EINVAL);
9994
9995
0
  sec_def = find_sec_def(name);
9996
0
  if (!sec_def) {
9997
0
    pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9998
0
    type_names = libbpf_get_type_names(true);
9999
0
    if (type_names != NULL) {
10000
0
      pr_debug("attachable section(type) names are:%s\n", type_names);
10001
0
      free(type_names);
10002
0
    }
10003
10004
0
    return libbpf_err(-EINVAL);
10005
0
  }
10006
10007
0
  if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10008
0
    return libbpf_err(-EINVAL);
10009
0
  if (!(sec_def->cookie & SEC_ATTACHABLE))
10010
0
    return libbpf_err(-EINVAL);
10011
10012
0
  *attach_type = sec_def->expected_attach_type;
10013
0
  return 0;
10014
0
}
10015
10016
int bpf_map__fd(const struct bpf_map *map)
10017
0
{
10018
0
  if (!map)
10019
0
    return libbpf_err(-EINVAL);
10020
0
  if (!map_is_created(map))
10021
0
    return -1;
10022
0
  return map->fd;
10023
0
}
10024
10025
static bool map_uses_real_name(const struct bpf_map *map)
10026
1
{
10027
  /* Since libbpf started to support custom .data.* and .rodata.* maps,
10028
   * their user-visible name differs from kernel-visible name. Users see
10029
   * such map's corresponding ELF section name as a map name.
10030
   * This check distinguishes .data/.rodata from .data.* and .rodata.*
10031
   * maps to know which name has to be returned to the user.
10032
   */
10033
1
  if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10034
0
    return true;
10035
1
  if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10036
0
    return true;
10037
1
  return false;
10038
1
}
10039
10040
const char *bpf_map__name(const struct bpf_map *map)
10041
1
{
10042
1
  if (!map)
10043
0
    return NULL;
10044
10045
1
  if (map_uses_real_name(map))
10046
0
    return map->real_name;
10047
10048
1
  return map->name;
10049
1
}
10050
10051
enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10052
0
{
10053
0
  return map->def.type;
10054
0
}
10055
10056
int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10057
0
{
10058
0
  if (map_is_created(map))
10059
0
    return libbpf_err(-EBUSY);
10060
0
  map->def.type = type;
10061
0
  return 0;
10062
0
}
10063
10064
__u32 bpf_map__map_flags(const struct bpf_map *map)
10065
0
{
10066
0
  return map->def.map_flags;
10067
0
}
10068
10069
int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10070
0
{
10071
0
  if (map_is_created(map))
10072
0
    return libbpf_err(-EBUSY);
10073
0
  map->def.map_flags = flags;
10074
0
  return 0;
10075
0
}
10076
10077
__u64 bpf_map__map_extra(const struct bpf_map *map)
10078
0
{
10079
0
  return map->map_extra;
10080
0
}
10081
10082
int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10083
0
{
10084
0
  if (map_is_created(map))
10085
0
    return libbpf_err(-EBUSY);
10086
0
  map->map_extra = map_extra;
10087
0
  return 0;
10088
0
}
10089
10090
__u32 bpf_map__numa_node(const struct bpf_map *map)
10091
0
{
10092
0
  return map->numa_node;
10093
0
}
10094
10095
int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10096
0
{
10097
0
  if (map_is_created(map))
10098
0
    return libbpf_err(-EBUSY);
10099
0
  map->numa_node = numa_node;
10100
0
  return 0;
10101
0
}
10102
10103
__u32 bpf_map__key_size(const struct bpf_map *map)
10104
0
{
10105
0
  return map->def.key_size;
10106
0
}
10107
10108
int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10109
0
{
10110
0
  if (map_is_created(map))
10111
0
    return libbpf_err(-EBUSY);
10112
0
  map->def.key_size = size;
10113
0
  return 0;
10114
0
}
10115
10116
__u32 bpf_map__value_size(const struct bpf_map *map)
10117
0
{
10118
0
  return map->def.value_size;
10119
0
}
10120
10121
static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10122
0
{
10123
0
  struct btf *btf;
10124
0
  struct btf_type *datasec_type, *var_type;
10125
0
  struct btf_var_secinfo *var;
10126
0
  const struct btf_type *array_type;
10127
0
  const struct btf_array *array;
10128
0
  int vlen, element_sz, new_array_id;
10129
0
  __u32 nr_elements;
10130
10131
  /* check btf existence */
10132
0
  btf = bpf_object__btf(map->obj);
10133
0
  if (!btf)
10134
0
    return -ENOENT;
10135
10136
  /* verify map is datasec */
10137
0
  datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10138
0
  if (!btf_is_datasec(datasec_type)) {
10139
0
    pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10140
0
      bpf_map__name(map));
10141
0
    return -EINVAL;
10142
0
  }
10143
10144
  /* verify datasec has at least one var */
10145
0
  vlen = btf_vlen(datasec_type);
10146
0
  if (vlen == 0) {
10147
0
    pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10148
0
      bpf_map__name(map));
10149
0
    return -EINVAL;
10150
0
  }
10151
10152
  /* verify last var in the datasec is an array */
10153
0
  var = &btf_var_secinfos(datasec_type)[vlen - 1];
10154
0
  var_type = btf_type_by_id(btf, var->type);
10155
0
  array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10156
0
  if (!btf_is_array(array_type)) {
10157
0
    pr_warn("map '%s': cannot be resized, last var must be an array\n",
10158
0
      bpf_map__name(map));
10159
0
    return -EINVAL;
10160
0
  }
10161
10162
  /* verify request size aligns with array */
10163
0
  array = btf_array(array_type);
10164
0
  element_sz = btf__resolve_size(btf, array->type);
10165
0
  if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10166
0
    pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10167
0
      bpf_map__name(map), element_sz, size);
10168
0
    return -EINVAL;
10169
0
  }
10170
10171
  /* create a new array based on the existing array, but with new length */
10172
0
  nr_elements = (size - var->offset) / element_sz;
10173
0
  new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10174
0
  if (new_array_id < 0)
10175
0
    return new_array_id;
10176
10177
  /* adding a new btf type invalidates existing pointers to btf objects,
10178
   * so refresh pointers before proceeding
10179
   */
10180
0
  datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10181
0
  var = &btf_var_secinfos(datasec_type)[vlen - 1];
10182
0
  var_type = btf_type_by_id(btf, var->type);
10183
10184
  /* finally update btf info */
10185
0
  datasec_type->size = size;
10186
0
  var->size = size - var->offset;
10187
0
  var_type->type = new_array_id;
10188
10189
0
  return 0;
10190
0
}
10191
10192
int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10193
0
{
10194
0
  if (map->obj->loaded || map->reused)
10195
0
    return libbpf_err(-EBUSY);
10196
10197
0
  if (map->mmaped) {
10198
0
    size_t mmap_old_sz, mmap_new_sz;
10199
0
    int err;
10200
10201
0
    if (map->def.type != BPF_MAP_TYPE_ARRAY)
10202
0
      return -EOPNOTSUPP;
10203
10204
0
    mmap_old_sz = bpf_map_mmap_sz(map);
10205
0
    mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10206
0
    err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10207
0
    if (err) {
10208
0
      pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10209
0
        bpf_map__name(map), err);
10210
0
      return err;
10211
0
    }
10212
0
    err = map_btf_datasec_resize(map, size);
10213
0
    if (err && err != -ENOENT) {
10214
0
      pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10215
0
        bpf_map__name(map), err);
10216
0
      map->btf_value_type_id = 0;
10217
0
      map->btf_key_type_id = 0;
10218
0
    }
10219
0
  }
10220
10221
0
  map->def.value_size = size;
10222
0
  return 0;
10223
0
}
10224
10225
__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10226
0
{
10227
0
  return map ? map->btf_key_type_id : 0;
10228
0
}
10229
10230
__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10231
0
{
10232
0
  return map ? map->btf_value_type_id : 0;
10233
0
}
10234
10235
int bpf_map__set_initial_value(struct bpf_map *map,
10236
             const void *data, size_t size)
10237
0
{
10238
0
  size_t actual_sz;
10239
10240
0
  if (map->obj->loaded || map->reused)
10241
0
    return libbpf_err(-EBUSY);
10242
10243
0
  if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10244
0
    return libbpf_err(-EINVAL);
10245
10246
0
  if (map->def.type == BPF_MAP_TYPE_ARENA)
10247
0
    actual_sz = map->obj->arena_data_sz;
10248
0
  else
10249
0
    actual_sz = map->def.value_size;
10250
0
  if (size != actual_sz)
10251
0
    return libbpf_err(-EINVAL);
10252
10253
0
  memcpy(map->mmaped, data, size);
10254
0
  return 0;
10255
0
}
10256
10257
void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10258
0
{
10259
0
  if (bpf_map__is_struct_ops(map)) {
10260
0
    if (psize)
10261
0
      *psize = map->def.value_size;
10262
0
    return map->st_ops->data;
10263
0
  }
10264
10265
0
  if (!map->mmaped)
10266
0
    return NULL;
10267
10268
0
  if (map->def.type == BPF_MAP_TYPE_ARENA)
10269
0
    *psize = map->obj->arena_data_sz;
10270
0
  else
10271
0
    *psize = map->def.value_size;
10272
10273
0
  return map->mmaped;
10274
0
}
10275
10276
bool bpf_map__is_internal(const struct bpf_map *map)
10277
282
{
10278
282
  return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10279
282
}
10280
10281
__u32 bpf_map__ifindex(const struct bpf_map *map)
10282
0
{
10283
0
  return map->map_ifindex;
10284
0
}
10285
10286
int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10287
0
{
10288
0
  if (map_is_created(map))
10289
0
    return libbpf_err(-EBUSY);
10290
0
  map->map_ifindex = ifindex;
10291
0
  return 0;
10292
0
}
10293
10294
int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10295
0
{
10296
0
  if (!bpf_map_type__is_map_in_map(map->def.type)) {
10297
0
    pr_warn("error: unsupported map type\n");
10298
0
    return libbpf_err(-EINVAL);
10299
0
  }
10300
0
  if (map->inner_map_fd != -1) {
10301
0
    pr_warn("error: inner_map_fd already specified\n");
10302
0
    return libbpf_err(-EINVAL);
10303
0
  }
10304
0
  if (map->inner_map) {
10305
0
    bpf_map__destroy(map->inner_map);
10306
0
    zfree(&map->inner_map);
10307
0
  }
10308
0
  map->inner_map_fd = fd;
10309
0
  return 0;
10310
0
}
10311
10312
static struct bpf_map *
10313
__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10314
0
{
10315
0
  ssize_t idx;
10316
0
  struct bpf_map *s, *e;
10317
10318
0
  if (!obj || !obj->maps)
10319
0
    return errno = EINVAL, NULL;
10320
10321
0
  s = obj->maps;
10322
0
  e = obj->maps + obj->nr_maps;
10323
10324
0
  if ((m < s) || (m >= e)) {
10325
0
    pr_warn("error in %s: map handler doesn't belong to object\n",
10326
0
       __func__);
10327
0
    return errno = EINVAL, NULL;
10328
0
  }
10329
10330
0
  idx = (m - obj->maps) + i;
10331
0
  if (idx >= obj->nr_maps || idx < 0)
10332
0
    return NULL;
10333
0
  return &obj->maps[idx];
10334
0
}
10335
10336
struct bpf_map *
10337
bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10338
0
{
10339
0
  if (prev == NULL)
10340
0
    return obj->maps;
10341
10342
0
  return __bpf_map__iter(prev, obj, 1);
10343
0
}
10344
10345
struct bpf_map *
10346
bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10347
0
{
10348
0
  if (next == NULL) {
10349
0
    if (!obj->nr_maps)
10350
0
      return NULL;
10351
0
    return obj->maps + obj->nr_maps - 1;
10352
0
  }
10353
10354
0
  return __bpf_map__iter(next, obj, -1);
10355
0
}
10356
10357
struct bpf_map *
10358
bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10359
0
{
10360
0
  struct bpf_map *pos;
10361
10362
0
  bpf_object__for_each_map(pos, obj) {
10363
    /* if it's a special internal map name (which always starts
10364
     * with dot) then check if that special name matches the
10365
     * real map name (ELF section name)
10366
     */
10367
0
    if (name[0] == '.') {
10368
0
      if (pos->real_name && strcmp(pos->real_name, name) == 0)
10369
0
        return pos;
10370
0
      continue;
10371
0
    }
10372
    /* otherwise map name has to be an exact match */
10373
0
    if (map_uses_real_name(pos)) {
10374
0
      if (strcmp(pos->real_name, name) == 0)
10375
0
        return pos;
10376
0
      continue;
10377
0
    }
10378
0
    if (strcmp(pos->name, name) == 0)
10379
0
      return pos;
10380
0
  }
10381
0
  return errno = ENOENT, NULL;
10382
0
}
10383
10384
int
10385
bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10386
0
{
10387
0
  return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10388
0
}
10389
10390
static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10391
         size_t value_sz, bool check_value_sz)
10392
0
{
10393
0
  if (!map_is_created(map)) /* map is not yet created */
10394
0
    return -ENOENT;
10395
10396
0
  if (map->def.key_size != key_sz) {
10397
0
    pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10398
0
      map->name, key_sz, map->def.key_size);
10399
0
    return -EINVAL;
10400
0
  }
10401
10402
0
  if (map->fd < 0) {
10403
0
    pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10404
0
    return -EINVAL;
10405
0
  }
10406
10407
0
  if (!check_value_sz)
10408
0
    return 0;
10409
10410
0
  switch (map->def.type) {
10411
0
  case BPF_MAP_TYPE_PERCPU_ARRAY:
10412
0
  case BPF_MAP_TYPE_PERCPU_HASH:
10413
0
  case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10414
0
  case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10415
0
    int num_cpu = libbpf_num_possible_cpus();
10416
0
    size_t elem_sz = roundup(map->def.value_size, 8);
10417
10418
0
    if (value_sz != num_cpu * elem_sz) {
10419
0
      pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10420
0
        map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10421
0
      return -EINVAL;
10422
0
    }
10423
0
    break;
10424
0
  }
10425
0
  default:
10426
0
    if (map->def.value_size != value_sz) {
10427
0
      pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10428
0
        map->name, value_sz, map->def.value_size);
10429
0
      return -EINVAL;
10430
0
    }
10431
0
    break;
10432
0
  }
10433
0
  return 0;
10434
0
}
10435
10436
int bpf_map__lookup_elem(const struct bpf_map *map,
10437
       const void *key, size_t key_sz,
10438
       void *value, size_t value_sz, __u64 flags)
10439
0
{
10440
0
  int err;
10441
10442
0
  err = validate_map_op(map, key_sz, value_sz, true);
10443
0
  if (err)
10444
0
    return libbpf_err(err);
10445
10446
0
  return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10447
0
}
10448
10449
int bpf_map__update_elem(const struct bpf_map *map,
10450
       const void *key, size_t key_sz,
10451
       const void *value, size_t value_sz, __u64 flags)
10452
0
{
10453
0
  int err;
10454
10455
0
  err = validate_map_op(map, key_sz, value_sz, true);
10456
0
  if (err)
10457
0
    return libbpf_err(err);
10458
10459
0
  return bpf_map_update_elem(map->fd, key, value, flags);
10460
0
}
10461
10462
int bpf_map__delete_elem(const struct bpf_map *map,
10463
       const void *key, size_t key_sz, __u64 flags)
10464
0
{
10465
0
  int err;
10466
10467
0
  err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10468
0
  if (err)
10469
0
    return libbpf_err(err);
10470
10471
0
  return bpf_map_delete_elem_flags(map->fd, key, flags);
10472
0
}
10473
10474
int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10475
            const void *key, size_t key_sz,
10476
            void *value, size_t value_sz, __u64 flags)
10477
0
{
10478
0
  int err;
10479
10480
0
  err = validate_map_op(map, key_sz, value_sz, true);
10481
0
  if (err)
10482
0
    return libbpf_err(err);
10483
10484
0
  return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10485
0
}
10486
10487
int bpf_map__get_next_key(const struct bpf_map *map,
10488
        const void *cur_key, void *next_key, size_t key_sz)
10489
0
{
10490
0
  int err;
10491
10492
0
  err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10493
0
  if (err)
10494
0
    return libbpf_err(err);
10495
10496
0
  return bpf_map_get_next_key(map->fd, cur_key, next_key);
10497
0
}
10498
10499
long libbpf_get_error(const void *ptr)
10500
16.2k
{
10501
16.2k
  if (!IS_ERR_OR_NULL(ptr))
10502
5.56k
    return 0;
10503
10504
10.7k
  if (IS_ERR(ptr))
10505
0
    errno = -PTR_ERR(ptr);
10506
10507
  /* If ptr == NULL, then errno should be already set by the failing
10508
   * API, because libbpf never returns NULL on success and it now always
10509
   * sets errno on error. So no extra errno handling for ptr == NULL
10510
   * case.
10511
   */
10512
10.7k
  return -errno;
10513
16.2k
}
10514
10515
/* Replace link's underlying BPF program with the new one */
10516
int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10517
0
{
10518
0
  int ret;
10519
0
  int prog_fd = bpf_program__fd(prog);
10520
10521
0
  if (prog_fd < 0) {
10522
0
    pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10523
0
      prog->name);
10524
0
    return libbpf_err(-EINVAL);
10525
0
  }
10526
10527
0
  ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10528
0
  return libbpf_err_errno(ret);
10529
0
}
10530
10531
/* Release "ownership" of underlying BPF resource (typically, BPF program
10532
 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10533
 * link, when destructed through bpf_link__destroy() call won't attempt to
10534
 * detach/unregisted that BPF resource. This is useful in situations where,
10535
 * say, attached BPF program has to outlive userspace program that attached it
10536
 * in the system. Depending on type of BPF program, though, there might be
10537
 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10538
 * exit of userspace program doesn't trigger automatic detachment and clean up
10539
 * inside the kernel.
10540
 */
10541
void bpf_link__disconnect(struct bpf_link *link)
10542
0
{
10543
0
  link->disconnected = true;
10544
0
}
10545
10546
int bpf_link__destroy(struct bpf_link *link)
10547
0
{
10548
0
  int err = 0;
10549
10550
0
  if (IS_ERR_OR_NULL(link))
10551
0
    return 0;
10552
10553
0
  if (!link->disconnected && link->detach)
10554
0
    err = link->detach(link);
10555
0
  if (link->pin_path)
10556
0
    free(link->pin_path);
10557
0
  if (link->dealloc)
10558
0
    link->dealloc(link);
10559
0
  else
10560
0
    free(link);
10561
10562
0
  return libbpf_err(err);
10563
0
}
10564
10565
int bpf_link__fd(const struct bpf_link *link)
10566
0
{
10567
0
  return link->fd;
10568
0
}
10569
10570
const char *bpf_link__pin_path(const struct bpf_link *link)
10571
0
{
10572
0
  return link->pin_path;
10573
0
}
10574
10575
static int bpf_link__detach_fd(struct bpf_link *link)
10576
0
{
10577
0
  return libbpf_err_errno(close(link->fd));
10578
0
}
10579
10580
struct bpf_link *bpf_link__open(const char *path)
10581
0
{
10582
0
  struct bpf_link *link;
10583
0
  int fd;
10584
10585
0
  fd = bpf_obj_get(path);
10586
0
  if (fd < 0) {
10587
0
    fd = -errno;
10588
0
    pr_warn("failed to open link at %s: %d\n", path, fd);
10589
0
    return libbpf_err_ptr(fd);
10590
0
  }
10591
10592
0
  link = calloc(1, sizeof(*link));
10593
0
  if (!link) {
10594
0
    close(fd);
10595
0
    return libbpf_err_ptr(-ENOMEM);
10596
0
  }
10597
0
  link->detach = &bpf_link__detach_fd;
10598
0
  link->fd = fd;
10599
10600
0
  link->pin_path = strdup(path);
10601
0
  if (!link->pin_path) {
10602
0
    bpf_link__destroy(link);
10603
0
    return libbpf_err_ptr(-ENOMEM);
10604
0
  }
10605
10606
0
  return link;
10607
0
}
10608
10609
int bpf_link__detach(struct bpf_link *link)
10610
0
{
10611
0
  return bpf_link_detach(link->fd) ? -errno : 0;
10612
0
}
10613
10614
int bpf_link__pin(struct bpf_link *link, const char *path)
10615
0
{
10616
0
  int err;
10617
10618
0
  if (link->pin_path)
10619
0
    return libbpf_err(-EBUSY);
10620
0
  err = make_parent_dir(path);
10621
0
  if (err)
10622
0
    return libbpf_err(err);
10623
0
  err = check_path(path);
10624
0
  if (err)
10625
0
    return libbpf_err(err);
10626
10627
0
  link->pin_path = strdup(path);
10628
0
  if (!link->pin_path)
10629
0
    return libbpf_err(-ENOMEM);
10630
10631
0
  if (bpf_obj_pin(link->fd, link->pin_path)) {
10632
0
    err = -errno;
10633
0
    zfree(&link->pin_path);
10634
0
    return libbpf_err(err);
10635
0
  }
10636
10637
0
  pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10638
0
  return 0;
10639
0
}
10640
10641
int bpf_link__unpin(struct bpf_link *link)
10642
0
{
10643
0
  int err;
10644
10645
0
  if (!link->pin_path)
10646
0
    return libbpf_err(-EINVAL);
10647
10648
0
  err = unlink(link->pin_path);
10649
0
  if (err != 0)
10650
0
    return -errno;
10651
10652
0
  pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10653
0
  zfree(&link->pin_path);
10654
0
  return 0;
10655
0
}
10656
10657
struct bpf_link_perf {
10658
  struct bpf_link link;
10659
  int perf_event_fd;
10660
  /* legacy kprobe support: keep track of probe identifier and type */
10661
  char *legacy_probe_name;
10662
  bool legacy_is_kprobe;
10663
  bool legacy_is_retprobe;
10664
};
10665
10666
static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10667
static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10668
10669
static int bpf_link_perf_detach(struct bpf_link *link)
10670
0
{
10671
0
  struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10672
0
  int err = 0;
10673
10674
0
  if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10675
0
    err = -errno;
10676
10677
0
  if (perf_link->perf_event_fd != link->fd)
10678
0
    close(perf_link->perf_event_fd);
10679
0
  close(link->fd);
10680
10681
  /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10682
0
  if (perf_link->legacy_probe_name) {
10683
0
    if (perf_link->legacy_is_kprobe) {
10684
0
      err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10685
0
               perf_link->legacy_is_retprobe);
10686
0
    } else {
10687
0
      err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10688
0
               perf_link->legacy_is_retprobe);
10689
0
    }
10690
0
  }
10691
10692
0
  return err;
10693
0
}
10694
10695
static void bpf_link_perf_dealloc(struct bpf_link *link)
10696
0
{
10697
0
  struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10698
10699
0
  free(perf_link->legacy_probe_name);
10700
0
  free(perf_link);
10701
0
}
10702
10703
struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10704
                 const struct bpf_perf_event_opts *opts)
10705
0
{
10706
0
  char errmsg[STRERR_BUFSIZE];
10707
0
  struct bpf_link_perf *link;
10708
0
  int prog_fd, link_fd = -1, err;
10709
0
  bool force_ioctl_attach;
10710
10711
0
  if (!OPTS_VALID(opts, bpf_perf_event_opts))
10712
0
    return libbpf_err_ptr(-EINVAL);
10713
10714
0
  if (pfd < 0) {
10715
0
    pr_warn("prog '%s': invalid perf event FD %d\n",
10716
0
      prog->name, pfd);
10717
0
    return libbpf_err_ptr(-EINVAL);
10718
0
  }
10719
0
  prog_fd = bpf_program__fd(prog);
10720
0
  if (prog_fd < 0) {
10721
0
    pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
10722
0
      prog->name);
10723
0
    return libbpf_err_ptr(-EINVAL);
10724
0
  }
10725
10726
0
  link = calloc(1, sizeof(*link));
10727
0
  if (!link)
10728
0
    return libbpf_err_ptr(-ENOMEM);
10729
0
  link->link.detach = &bpf_link_perf_detach;
10730
0
  link->link.dealloc = &bpf_link_perf_dealloc;
10731
0
  link->perf_event_fd = pfd;
10732
10733
0
  force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10734
0
  if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10735
0
    DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10736
0
      .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10737
10738
0
    link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10739
0
    if (link_fd < 0) {
10740
0
      err = -errno;
10741
0
      pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10742
0
        prog->name, pfd,
10743
0
        err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10744
0
      goto err_out;
10745
0
    }
10746
0
    link->link.fd = link_fd;
10747
0
  } else {
10748
0
    if (OPTS_GET(opts, bpf_cookie, 0)) {
10749
0
      pr_warn("prog '%s': user context value is not supported\n", prog->name);
10750
0
      err = -EOPNOTSUPP;
10751
0
      goto err_out;
10752
0
    }
10753
10754
0
    if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10755
0
      err = -errno;
10756
0
      pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10757
0
        prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10758
0
      if (err == -EPROTO)
10759
0
        pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10760
0
          prog->name, pfd);
10761
0
      goto err_out;
10762
0
    }
10763
0
    link->link.fd = pfd;
10764
0
  }
10765
0
  if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10766
0
    err = -errno;
10767
0
    pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10768
0
      prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10769
0
    goto err_out;
10770
0
  }
10771
10772
0
  return &link->link;
10773
0
err_out:
10774
0
  if (link_fd >= 0)
10775
0
    close(link_fd);
10776
0
  free(link);
10777
0
  return libbpf_err_ptr(err);
10778
0
}
10779
10780
struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10781
0
{
10782
0
  return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10783
0
}
10784
10785
/*
10786
 * this function is expected to parse integer in the range of [0, 2^31-1] from
10787
 * given file using scanf format string fmt. If actual parsed value is
10788
 * negative, the result might be indistinguishable from error
10789
 */
10790
static int parse_uint_from_file(const char *file, const char *fmt)
10791
0
{
10792
0
  char buf[STRERR_BUFSIZE];
10793
0
  int err, ret;
10794
0
  FILE *f;
10795
10796
0
  f = fopen(file, "re");
10797
0
  if (!f) {
10798
0
    err = -errno;
10799
0
    pr_debug("failed to open '%s': %s\n", file,
10800
0
       libbpf_strerror_r(err, buf, sizeof(buf)));
10801
0
    return err;
10802
0
  }
10803
0
  err = fscanf(f, fmt, &ret);
10804
0
  if (err != 1) {
10805
0
    err = err == EOF ? -EIO : -errno;
10806
0
    pr_debug("failed to parse '%s': %s\n", file,
10807
0
      libbpf_strerror_r(err, buf, sizeof(buf)));
10808
0
    fclose(f);
10809
0
    return err;
10810
0
  }
10811
0
  fclose(f);
10812
0
  return ret;
10813
0
}
10814
10815
static int determine_kprobe_perf_type(void)
10816
0
{
10817
0
  const char *file = "/sys/bus/event_source/devices/kprobe/type";
10818
10819
0
  return parse_uint_from_file(file, "%d\n");
10820
0
}
10821
10822
static int determine_uprobe_perf_type(void)
10823
0
{
10824
0
  const char *file = "/sys/bus/event_source/devices/uprobe/type";
10825
10826
0
  return parse_uint_from_file(file, "%d\n");
10827
0
}
10828
10829
static int determine_kprobe_retprobe_bit(void)
10830
0
{
10831
0
  const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10832
10833
0
  return parse_uint_from_file(file, "config:%d\n");
10834
0
}
10835
10836
static int determine_uprobe_retprobe_bit(void)
10837
0
{
10838
0
  const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10839
10840
0
  return parse_uint_from_file(file, "config:%d\n");
10841
0
}
10842
10843
0
#define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10844
0
#define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10845
10846
static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10847
         uint64_t offset, int pid, size_t ref_ctr_off)
10848
0
{
10849
0
  const size_t attr_sz = sizeof(struct perf_event_attr);
10850
0
  struct perf_event_attr attr;
10851
0
  char errmsg[STRERR_BUFSIZE];
10852
0
  int type, pfd;
10853
10854
0
  if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10855
0
    return -EINVAL;
10856
10857
0
  memset(&attr, 0, attr_sz);
10858
10859
0
  type = uprobe ? determine_uprobe_perf_type()
10860
0
          : determine_kprobe_perf_type();
10861
0
  if (type < 0) {
10862
0
    pr_warn("failed to determine %s perf type: %s\n",
10863
0
      uprobe ? "uprobe" : "kprobe",
10864
0
      libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10865
0
    return type;
10866
0
  }
10867
0
  if (retprobe) {
10868
0
    int bit = uprobe ? determine_uprobe_retprobe_bit()
10869
0
         : determine_kprobe_retprobe_bit();
10870
10871
0
    if (bit < 0) {
10872
0
      pr_warn("failed to determine %s retprobe bit: %s\n",
10873
0
        uprobe ? "uprobe" : "kprobe",
10874
0
        libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10875
0
      return bit;
10876
0
    }
10877
0
    attr.config |= 1 << bit;
10878
0
  }
10879
0
  attr.size = attr_sz;
10880
0
  attr.type = type;
10881
0
  attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10882
0
  attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10883
0
  attr.config2 = offset;     /* kprobe_addr or probe_offset */
10884
10885
  /* pid filter is meaningful only for uprobes */
10886
0
  pfd = syscall(__NR_perf_event_open, &attr,
10887
0
          pid < 0 ? -1 : pid /* pid */,
10888
0
          pid == -1 ? 0 : -1 /* cpu */,
10889
0
          -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10890
0
  return pfd >= 0 ? pfd : -errno;
10891
0
}
10892
10893
static int append_to_file(const char *file, const char *fmt, ...)
10894
0
{
10895
0
  int fd, n, err = 0;
10896
0
  va_list ap;
10897
0
  char buf[1024];
10898
10899
0
  va_start(ap, fmt);
10900
0
  n = vsnprintf(buf, sizeof(buf), fmt, ap);
10901
0
  va_end(ap);
10902
10903
0
  if (n < 0 || n >= sizeof(buf))
10904
0
    return -EINVAL;
10905
10906
0
  fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10907
0
  if (fd < 0)
10908
0
    return -errno;
10909
10910
0
  if (write(fd, buf, n) < 0)
10911
0
    err = -errno;
10912
10913
0
  close(fd);
10914
0
  return err;
10915
0
}
10916
10917
0
#define DEBUGFS "/sys/kernel/debug/tracing"
10918
0
#define TRACEFS "/sys/kernel/tracing"
10919
10920
static bool use_debugfs(void)
10921
0
{
10922
0
  static int has_debugfs = -1;
10923
10924
0
  if (has_debugfs < 0)
10925
0
    has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10926
10927
0
  return has_debugfs == 1;
10928
0
}
10929
10930
static const char *tracefs_path(void)
10931
0
{
10932
0
  return use_debugfs() ? DEBUGFS : TRACEFS;
10933
0
}
10934
10935
static const char *tracefs_kprobe_events(void)
10936
0
{
10937
0
  return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10938
0
}
10939
10940
static const char *tracefs_uprobe_events(void)
10941
0
{
10942
0
  return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10943
0
}
10944
10945
static const char *tracefs_available_filter_functions(void)
10946
0
{
10947
0
  return use_debugfs() ? DEBUGFS"/available_filter_functions"
10948
0
           : TRACEFS"/available_filter_functions";
10949
0
}
10950
10951
static const char *tracefs_available_filter_functions_addrs(void)
10952
0
{
10953
0
  return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10954
0
           : TRACEFS"/available_filter_functions_addrs";
10955
0
}
10956
10957
static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10958
           const char *kfunc_name, size_t offset)
10959
0
{
10960
0
  static int index = 0;
10961
0
  int i;
10962
10963
0
  snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10964
0
     __sync_fetch_and_add(&index, 1));
10965
10966
  /* sanitize binary_path in the probe name */
10967
0
  for (i = 0; buf[i]; i++) {
10968
0
    if (!isalnum(buf[i]))
10969
0
      buf[i] = '_';
10970
0
  }
10971
0
}
10972
10973
static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10974
           const char *kfunc_name, size_t offset)
10975
0
{
10976
0
  return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10977
0
            retprobe ? 'r' : 'p',
10978
0
            retprobe ? "kretprobes" : "kprobes",
10979
0
            probe_name, kfunc_name, offset);
10980
0
}
10981
10982
static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10983
0
{
10984
0
  return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10985
0
            retprobe ? "kretprobes" : "kprobes", probe_name);
10986
0
}
10987
10988
static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10989
0
{
10990
0
  char file[256];
10991
10992
0
  snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10993
0
     tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10994
10995
0
  return parse_uint_from_file(file, "%d\n");
10996
0
}
10997
10998
static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10999
           const char *kfunc_name, size_t offset, int pid)
11000
0
{
11001
0
  const size_t attr_sz = sizeof(struct perf_event_attr);
11002
0
  struct perf_event_attr attr;
11003
0
  char errmsg[STRERR_BUFSIZE];
11004
0
  int type, pfd, err;
11005
11006
0
  err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11007
0
  if (err < 0) {
11008
0
    pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11009
0
      kfunc_name, offset,
11010
0
      libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11011
0
    return err;
11012
0
  }
11013
0
  type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11014
0
  if (type < 0) {
11015
0
    err = type;
11016
0
    pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11017
0
      kfunc_name, offset,
11018
0
      libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11019
0
    goto err_clean_legacy;
11020
0
  }
11021
11022
0
  memset(&attr, 0, attr_sz);
11023
0
  attr.size = attr_sz;
11024
0
  attr.config = type;
11025
0
  attr.type = PERF_TYPE_TRACEPOINT;
11026
11027
0
  pfd = syscall(__NR_perf_event_open, &attr,
11028
0
          pid < 0 ? -1 : pid, /* pid */
11029
0
          pid == -1 ? 0 : -1, /* cpu */
11030
0
          -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11031
0
  if (pfd < 0) {
11032
0
    err = -errno;
11033
0
    pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11034
0
      libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11035
0
    goto err_clean_legacy;
11036
0
  }
11037
0
  return pfd;
11038
11039
0
err_clean_legacy:
11040
  /* Clear the newly added legacy kprobe_event */
11041
0
  remove_kprobe_event_legacy(probe_name, retprobe);
11042
0
  return err;
11043
0
}
11044
11045
static const char *arch_specific_syscall_pfx(void)
11046
0
{
11047
0
#if defined(__x86_64__)
11048
0
  return "x64";
11049
#elif defined(__i386__)
11050
  return "ia32";
11051
#elif defined(__s390x__)
11052
  return "s390x";
11053
#elif defined(__s390__)
11054
  return "s390";
11055
#elif defined(__arm__)
11056
  return "arm";
11057
#elif defined(__aarch64__)
11058
  return "arm64";
11059
#elif defined(__mips__)
11060
  return "mips";
11061
#elif defined(__riscv)
11062
  return "riscv";
11063
#elif defined(__powerpc__)
11064
  return "powerpc";
11065
#elif defined(__powerpc64__)
11066
  return "powerpc64";
11067
#else
11068
  return NULL;
11069
#endif
11070
0
}
11071
11072
int probe_kern_syscall_wrapper(int token_fd)
11073
0
{
11074
0
  char syscall_name[64];
11075
0
  const char *ksys_pfx;
11076
11077
0
  ksys_pfx = arch_specific_syscall_pfx();
11078
0
  if (!ksys_pfx)
11079
0
    return 0;
11080
11081
0
  snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11082
11083
0
  if (determine_kprobe_perf_type() >= 0) {
11084
0
    int pfd;
11085
11086
0
    pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11087
0
    if (pfd >= 0)
11088
0
      close(pfd);
11089
11090
0
    return pfd >= 0 ? 1 : 0;
11091
0
  } else { /* legacy mode */
11092
0
    char probe_name[128];
11093
11094
0
    gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11095
0
    if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11096
0
      return 0;
11097
11098
0
    (void)remove_kprobe_event_legacy(probe_name, false);
11099
0
    return 1;
11100
0
  }
11101
0
}
11102
11103
struct bpf_link *
11104
bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11105
        const char *func_name,
11106
        const struct bpf_kprobe_opts *opts)
11107
0
{
11108
0
  DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11109
0
  enum probe_attach_mode attach_mode;
11110
0
  char errmsg[STRERR_BUFSIZE];
11111
0
  char *legacy_probe = NULL;
11112
0
  struct bpf_link *link;
11113
0
  size_t offset;
11114
0
  bool retprobe, legacy;
11115
0
  int pfd, err;
11116
11117
0
  if (!OPTS_VALID(opts, bpf_kprobe_opts))
11118
0
    return libbpf_err_ptr(-EINVAL);
11119
11120
0
  attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11121
0
  retprobe = OPTS_GET(opts, retprobe, false);
11122
0
  offset = OPTS_GET(opts, offset, 0);
11123
0
  pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11124
11125
0
  legacy = determine_kprobe_perf_type() < 0;
11126
0
  switch (attach_mode) {
11127
0
  case PROBE_ATTACH_MODE_LEGACY:
11128
0
    legacy = true;
11129
0
    pe_opts.force_ioctl_attach = true;
11130
0
    break;
11131
0
  case PROBE_ATTACH_MODE_PERF:
11132
0
    if (legacy)
11133
0
      return libbpf_err_ptr(-ENOTSUP);
11134
0
    pe_opts.force_ioctl_attach = true;
11135
0
    break;
11136
0
  case PROBE_ATTACH_MODE_LINK:
11137
0
    if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11138
0
      return libbpf_err_ptr(-ENOTSUP);
11139
0
    break;
11140
0
  case PROBE_ATTACH_MODE_DEFAULT:
11141
0
    break;
11142
0
  default:
11143
0
    return libbpf_err_ptr(-EINVAL);
11144
0
  }
11145
11146
0
  if (!legacy) {
11147
0
    pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11148
0
              func_name, offset,
11149
0
              -1 /* pid */, 0 /* ref_ctr_off */);
11150
0
  } else {
11151
0
    char probe_name[256];
11152
11153
0
    gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11154
0
               func_name, offset);
11155
11156
0
    legacy_probe = strdup(probe_name);
11157
0
    if (!legacy_probe)
11158
0
      return libbpf_err_ptr(-ENOMEM);
11159
11160
0
    pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11161
0
                offset, -1 /* pid */);
11162
0
  }
11163
0
  if (pfd < 0) {
11164
0
    err = -errno;
11165
0
    pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11166
0
      prog->name, retprobe ? "kretprobe" : "kprobe",
11167
0
      func_name, offset,
11168
0
      libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11169
0
    goto err_out;
11170
0
  }
11171
0
  link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11172
0
  err = libbpf_get_error(link);
11173
0
  if (err) {
11174
0
    close(pfd);
11175
0
    pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11176
0
      prog->name, retprobe ? "kretprobe" : "kprobe",
11177
0
      func_name, offset,
11178
0
      libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11179
0
    goto err_clean_legacy;
11180
0
  }
11181
0
  if (legacy) {
11182
0
    struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11183
11184
0
    perf_link->legacy_probe_name = legacy_probe;
11185
0
    perf_link->legacy_is_kprobe = true;
11186
0
    perf_link->legacy_is_retprobe = retprobe;
11187
0
  }
11188
11189
0
  return link;
11190
11191
0
err_clean_legacy:
11192
0
  if (legacy)
11193
0
    remove_kprobe_event_legacy(legacy_probe, retprobe);
11194
0
err_out:
11195
0
  free(legacy_probe);
11196
0
  return libbpf_err_ptr(err);
11197
0
}
11198
11199
struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11200
              bool retprobe,
11201
              const char *func_name)
11202
0
{
11203
0
  DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11204
0
    .retprobe = retprobe,
11205
0
  );
11206
11207
0
  return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11208
0
}
11209
11210
struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11211
                const char *syscall_name,
11212
                const struct bpf_ksyscall_opts *opts)
11213
0
{
11214
0
  LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11215
0
  char func_name[128];
11216
11217
0
  if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11218
0
    return libbpf_err_ptr(-EINVAL);
11219
11220
0
  if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11221
    /* arch_specific_syscall_pfx() should never return NULL here
11222
     * because it is guarded by kernel_supports(). However, since
11223
     * compiler does not know that we have an explicit conditional
11224
     * as well.
11225
     */
11226
0
    snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11227
0
       arch_specific_syscall_pfx() ? : "", syscall_name);
11228
0
  } else {
11229
0
    snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11230
0
  }
11231
11232
0
  kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11233
0
  kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11234
11235
0
  return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11236
0
}
11237
11238
/* Adapted from perf/util/string.c */
11239
bool glob_match(const char *str, const char *pat)
11240
0
{
11241
0
  while (*str && *pat && *pat != '*') {
11242
0
    if (*pat == '?') {      /* Matches any single character */
11243
0
      str++;
11244
0
      pat++;
11245
0
      continue;
11246
0
    }
11247
0
    if (*str != *pat)
11248
0
      return false;
11249
0
    str++;
11250
0
    pat++;
11251
0
  }
11252
  /* Check wild card */
11253
0
  if (*pat == '*') {
11254
0
    while (*pat == '*')
11255
0
      pat++;
11256
0
    if (!*pat) /* Tail wild card matches all */
11257
0
      return true;
11258
0
    while (*str)
11259
0
      if (glob_match(str++, pat))
11260
0
        return true;
11261
0
  }
11262
0
  return !*str && !*pat;
11263
0
}
11264
11265
struct kprobe_multi_resolve {
11266
  const char *pattern;
11267
  unsigned long *addrs;
11268
  size_t cap;
11269
  size_t cnt;
11270
};
11271
11272
struct avail_kallsyms_data {
11273
  char **syms;
11274
  size_t cnt;
11275
  struct kprobe_multi_resolve *res;
11276
};
11277
11278
static int avail_func_cmp(const void *a, const void *b)
11279
0
{
11280
0
  return strcmp(*(const char **)a, *(const char **)b);
11281
0
}
11282
11283
static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11284
           const char *sym_name, void *ctx)
11285
0
{
11286
0
  struct avail_kallsyms_data *data = ctx;
11287
0
  struct kprobe_multi_resolve *res = data->res;
11288
0
  int err;
11289
11290
0
  if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11291
0
    return 0;
11292
11293
0
  err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11294
0
  if (err)
11295
0
    return err;
11296
11297
0
  res->addrs[res->cnt++] = (unsigned long)sym_addr;
11298
0
  return 0;
11299
0
}
11300
11301
static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11302
0
{
11303
0
  const char *available_functions_file = tracefs_available_filter_functions();
11304
0
  struct avail_kallsyms_data data;
11305
0
  char sym_name[500];
11306
0
  FILE *f;
11307
0
  int err = 0, ret, i;
11308
0
  char **syms = NULL;
11309
0
  size_t cap = 0, cnt = 0;
11310
11311
0
  f = fopen(available_functions_file, "re");
11312
0
  if (!f) {
11313
0
    err = -errno;
11314
0
    pr_warn("failed to open %s: %d\n", available_functions_file, err);
11315
0
    return err;
11316
0
  }
11317
11318
0
  while (true) {
11319
0
    char *name;
11320
11321
0
    ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11322
0
    if (ret == EOF && feof(f))
11323
0
      break;
11324
11325
0
    if (ret != 1) {
11326
0
      pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11327
0
      err = -EINVAL;
11328
0
      goto cleanup;
11329
0
    }
11330
11331
0
    if (!glob_match(sym_name, res->pattern))
11332
0
      continue;
11333
11334
0
    err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11335
0
    if (err)
11336
0
      goto cleanup;
11337
11338
0
    name = strdup(sym_name);
11339
0
    if (!name) {
11340
0
      err = -errno;
11341
0
      goto cleanup;
11342
0
    }
11343
11344
0
    syms[cnt++] = name;
11345
0
  }
11346
11347
  /* no entries found, bail out */
11348
0
  if (cnt == 0) {
11349
0
    err = -ENOENT;
11350
0
    goto cleanup;
11351
0
  }
11352
11353
  /* sort available functions */
11354
0
  qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11355
11356
0
  data.syms = syms;
11357
0
  data.res = res;
11358
0
  data.cnt = cnt;
11359
0
  libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11360
11361
0
  if (res->cnt == 0)
11362
0
    err = -ENOENT;
11363
11364
0
cleanup:
11365
0
  for (i = 0; i < cnt; i++)
11366
0
    free((char *)syms[i]);
11367
0
  free(syms);
11368
11369
0
  fclose(f);
11370
0
  return err;
11371
0
}
11372
11373
static bool has_available_filter_functions_addrs(void)
11374
0
{
11375
0
  return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11376
0
}
11377
11378
static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11379
0
{
11380
0
  const char *available_path = tracefs_available_filter_functions_addrs();
11381
0
  char sym_name[500];
11382
0
  FILE *f;
11383
0
  int ret, err = 0;
11384
0
  unsigned long long sym_addr;
11385
11386
0
  f = fopen(available_path, "re");
11387
0
  if (!f) {
11388
0
    err = -errno;
11389
0
    pr_warn("failed to open %s: %d\n", available_path, err);
11390
0
    return err;
11391
0
  }
11392
11393
0
  while (true) {
11394
0
    ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11395
0
    if (ret == EOF && feof(f))
11396
0
      break;
11397
11398
0
    if (ret != 2) {
11399
0
      pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11400
0
        ret);
11401
0
      err = -EINVAL;
11402
0
      goto cleanup;
11403
0
    }
11404
11405
0
    if (!glob_match(sym_name, res->pattern))
11406
0
      continue;
11407
11408
0
    err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11409
0
          sizeof(*res->addrs), res->cnt + 1);
11410
0
    if (err)
11411
0
      goto cleanup;
11412
11413
0
    res->addrs[res->cnt++] = (unsigned long)sym_addr;
11414
0
  }
11415
11416
0
  if (res->cnt == 0)
11417
0
    err = -ENOENT;
11418
11419
0
cleanup:
11420
0
  fclose(f);
11421
0
  return err;
11422
0
}
11423
11424
struct bpf_link *
11425
bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11426
              const char *pattern,
11427
              const struct bpf_kprobe_multi_opts *opts)
11428
0
{
11429
0
  LIBBPF_OPTS(bpf_link_create_opts, lopts);
11430
0
  struct kprobe_multi_resolve res = {
11431
0
    .pattern = pattern,
11432
0
  };
11433
0
  enum bpf_attach_type attach_type;
11434
0
  struct bpf_link *link = NULL;
11435
0
  char errmsg[STRERR_BUFSIZE];
11436
0
  const unsigned long *addrs;
11437
0
  int err, link_fd, prog_fd;
11438
0
  bool retprobe, session;
11439
0
  const __u64 *cookies;
11440
0
  const char **syms;
11441
0
  size_t cnt;
11442
11443
0
  if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11444
0
    return libbpf_err_ptr(-EINVAL);
11445
11446
0
  prog_fd = bpf_program__fd(prog);
11447
0
  if (prog_fd < 0) {
11448
0
    pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11449
0
      prog->name);
11450
0
    return libbpf_err_ptr(-EINVAL);
11451
0
  }
11452
11453
0
  syms    = OPTS_GET(opts, syms, false);
11454
0
  addrs   = OPTS_GET(opts, addrs, false);
11455
0
  cnt     = OPTS_GET(opts, cnt, false);
11456
0
  cookies = OPTS_GET(opts, cookies, false);
11457
11458
0
  if (!pattern && !addrs && !syms)
11459
0
    return libbpf_err_ptr(-EINVAL);
11460
0
  if (pattern && (addrs || syms || cookies || cnt))
11461
0
    return libbpf_err_ptr(-EINVAL);
11462
0
  if (!pattern && !cnt)
11463
0
    return libbpf_err_ptr(-EINVAL);
11464
0
  if (addrs && syms)
11465
0
    return libbpf_err_ptr(-EINVAL);
11466
11467
0
  if (pattern) {
11468
0
    if (has_available_filter_functions_addrs())
11469
0
      err = libbpf_available_kprobes_parse(&res);
11470
0
    else
11471
0
      err = libbpf_available_kallsyms_parse(&res);
11472
0
    if (err)
11473
0
      goto error;
11474
0
    addrs = res.addrs;
11475
0
    cnt = res.cnt;
11476
0
  }
11477
11478
0
  retprobe = OPTS_GET(opts, retprobe, false);
11479
0
  session  = OPTS_GET(opts, session, false);
11480
11481
0
  if (retprobe && session)
11482
0
    return libbpf_err_ptr(-EINVAL);
11483
11484
0
  attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
11485
11486
0
  lopts.kprobe_multi.syms = syms;
11487
0
  lopts.kprobe_multi.addrs = addrs;
11488
0
  lopts.kprobe_multi.cookies = cookies;
11489
0
  lopts.kprobe_multi.cnt = cnt;
11490
0
  lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11491
11492
0
  link = calloc(1, sizeof(*link));
11493
0
  if (!link) {
11494
0
    err = -ENOMEM;
11495
0
    goto error;
11496
0
  }
11497
0
  link->detach = &bpf_link__detach_fd;
11498
11499
0
  link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
11500
0
  if (link_fd < 0) {
11501
0
    err = -errno;
11502
0
    pr_warn("prog '%s': failed to attach: %s\n",
11503
0
      prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11504
0
    goto error;
11505
0
  }
11506
0
  link->fd = link_fd;
11507
0
  free(res.addrs);
11508
0
  return link;
11509
11510
0
error:
11511
0
  free(link);
11512
0
  free(res.addrs);
11513
0
  return libbpf_err_ptr(err);
11514
0
}
11515
11516
static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11517
0
{
11518
0
  DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11519
0
  unsigned long offset = 0;
11520
0
  const char *func_name;
11521
0
  char *func;
11522
0
  int n;
11523
11524
0
  *link = NULL;
11525
11526
  /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11527
0
  if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11528
0
    return 0;
11529
11530
0
  opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11531
0
  if (opts.retprobe)
11532
0
    func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11533
0
  else
11534
0
    func_name = prog->sec_name + sizeof("kprobe/") - 1;
11535
11536
0
  n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11537
0
  if (n < 1) {
11538
0
    pr_warn("kprobe name is invalid: %s\n", func_name);
11539
0
    return -EINVAL;
11540
0
  }
11541
0
  if (opts.retprobe && offset != 0) {
11542
0
    free(func);
11543
0
    pr_warn("kretprobes do not support offset specification\n");
11544
0
    return -EINVAL;
11545
0
  }
11546
11547
0
  opts.offset = offset;
11548
0
  *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11549
0
  free(func);
11550
0
  return libbpf_get_error(*link);
11551
0
}
11552
11553
static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11554
0
{
11555
0
  LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11556
0
  const char *syscall_name;
11557
11558
0
  *link = NULL;
11559
11560
  /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11561
0
  if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11562
0
    return 0;
11563
11564
0
  opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11565
0
  if (opts.retprobe)
11566
0
    syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11567
0
  else
11568
0
    syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11569
11570
0
  *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11571
0
  return *link ? 0 : -errno;
11572
0
}
11573
11574
static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11575
0
{
11576
0
  LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11577
0
  const char *spec;
11578
0
  char *pattern;
11579
0
  int n;
11580
11581
0
  *link = NULL;
11582
11583
  /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11584
0
  if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11585
0
      strcmp(prog->sec_name, "kretprobe.multi") == 0)
11586
0
    return 0;
11587
11588
0
  opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11589
0
  if (opts.retprobe)
11590
0
    spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11591
0
  else
11592
0
    spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11593
11594
0
  n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11595
0
  if (n < 1) {
11596
0
    pr_warn("kprobe multi pattern is invalid: %s\n", spec);
11597
0
    return -EINVAL;
11598
0
  }
11599
11600
0
  *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11601
0
  free(pattern);
11602
0
  return libbpf_get_error(*link);
11603
0
}
11604
11605
static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
11606
         struct bpf_link **link)
11607
0
{
11608
0
  LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
11609
0
  const char *spec;
11610
0
  char *pattern;
11611
0
  int n;
11612
11613
0
  *link = NULL;
11614
11615
  /* no auto-attach for SEC("kprobe.session") */
11616
0
  if (strcmp(prog->sec_name, "kprobe.session") == 0)
11617
0
    return 0;
11618
11619
0
  spec = prog->sec_name + sizeof("kprobe.session/") - 1;
11620
0
  n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11621
0
  if (n < 1) {
11622
0
    pr_warn("kprobe session pattern is invalid: %s\n", spec);
11623
0
    return -EINVAL;
11624
0
  }
11625
11626
0
  *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11627
0
  free(pattern);
11628
0
  return *link ? 0 : -errno;
11629
0
}
11630
11631
static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11632
0
{
11633
0
  char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11634
0
  LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11635
0
  int n, ret = -EINVAL;
11636
11637
0
  *link = NULL;
11638
11639
0
  n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11640
0
       &probe_type, &binary_path, &func_name);
11641
0
  switch (n) {
11642
0
  case 1:
11643
    /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11644
0
    ret = 0;
11645
0
    break;
11646
0
  case 3:
11647
0
    opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11648
0
    *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11649
0
    ret = libbpf_get_error(*link);
11650
0
    break;
11651
0
  default:
11652
0
    pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11653
0
      prog->sec_name);
11654
0
    break;
11655
0
  }
11656
0
  free(probe_type);
11657
0
  free(binary_path);
11658
0
  free(func_name);
11659
0
  return ret;
11660
0
}
11661
11662
static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11663
           const char *binary_path, uint64_t offset)
11664
0
{
11665
0
  int i;
11666
11667
0
  snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11668
11669
  /* sanitize binary_path in the probe name */
11670
0
  for (i = 0; buf[i]; i++) {
11671
0
    if (!isalnum(buf[i]))
11672
0
      buf[i] = '_';
11673
0
  }
11674
0
}
11675
11676
static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11677
            const char *binary_path, size_t offset)
11678
0
{
11679
0
  return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11680
0
            retprobe ? 'r' : 'p',
11681
0
            retprobe ? "uretprobes" : "uprobes",
11682
0
            probe_name, binary_path, offset);
11683
0
}
11684
11685
static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11686
0
{
11687
0
  return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11688
0
            retprobe ? "uretprobes" : "uprobes", probe_name);
11689
0
}
11690
11691
static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11692
0
{
11693
0
  char file[512];
11694
11695
0
  snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11696
0
     tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11697
11698
0
  return parse_uint_from_file(file, "%d\n");
11699
0
}
11700
11701
static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11702
           const char *binary_path, size_t offset, int pid)
11703
0
{
11704
0
  const size_t attr_sz = sizeof(struct perf_event_attr);
11705
0
  struct perf_event_attr attr;
11706
0
  int type, pfd, err;
11707
11708
0
  err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11709
0
  if (err < 0) {
11710
0
    pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11711
0
      binary_path, (size_t)offset, err);
11712
0
    return err;
11713
0
  }
11714
0
  type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11715
0
  if (type < 0) {
11716
0
    err = type;
11717
0
    pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11718
0
      binary_path, offset, err);
11719
0
    goto err_clean_legacy;
11720
0
  }
11721
11722
0
  memset(&attr, 0, attr_sz);
11723
0
  attr.size = attr_sz;
11724
0
  attr.config = type;
11725
0
  attr.type = PERF_TYPE_TRACEPOINT;
11726
11727
0
  pfd = syscall(__NR_perf_event_open, &attr,
11728
0
          pid < 0 ? -1 : pid, /* pid */
11729
0
          pid == -1 ? 0 : -1, /* cpu */
11730
0
          -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11731
0
  if (pfd < 0) {
11732
0
    err = -errno;
11733
0
    pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11734
0
    goto err_clean_legacy;
11735
0
  }
11736
0
  return pfd;
11737
11738
0
err_clean_legacy:
11739
  /* Clear the newly added legacy uprobe_event */
11740
0
  remove_uprobe_event_legacy(probe_name, retprobe);
11741
0
  return err;
11742
0
}
11743
11744
/* Find offset of function name in archive specified by path. Currently
11745
 * supported are .zip files that do not compress their contents, as used on
11746
 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11747
 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11748
 * library functions.
11749
 *
11750
 * An overview of the APK format specifically provided here:
11751
 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11752
 */
11753
static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11754
                const char *func_name)
11755
0
{
11756
0
  struct zip_archive *archive;
11757
0
  struct zip_entry entry;
11758
0
  long ret;
11759
0
  Elf *elf;
11760
11761
0
  archive = zip_archive_open(archive_path);
11762
0
  if (IS_ERR(archive)) {
11763
0
    ret = PTR_ERR(archive);
11764
0
    pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11765
0
    return ret;
11766
0
  }
11767
11768
0
  ret = zip_archive_find_entry(archive, file_name, &entry);
11769
0
  if (ret) {
11770
0
    pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11771
0
      archive_path, ret);
11772
0
    goto out;
11773
0
  }
11774
0
  pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11775
0
     (unsigned long)entry.data_offset);
11776
11777
0
  if (entry.compression) {
11778
0
    pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11779
0
      archive_path);
11780
0
    ret = -LIBBPF_ERRNO__FORMAT;
11781
0
    goto out;
11782
0
  }
11783
11784
0
  elf = elf_memory((void *)entry.data, entry.data_length);
11785
0
  if (!elf) {
11786
0
    pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11787
0
      elf_errmsg(-1));
11788
0
    ret = -LIBBPF_ERRNO__LIBELF;
11789
0
    goto out;
11790
0
  }
11791
11792
0
  ret = elf_find_func_offset(elf, file_name, func_name);
11793
0
  if (ret > 0) {
11794
0
    pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11795
0
       func_name, file_name, archive_path, entry.data_offset, ret,
11796
0
       ret + entry.data_offset);
11797
0
    ret += entry.data_offset;
11798
0
  }
11799
0
  elf_end(elf);
11800
11801
0
out:
11802
0
  zip_archive_close(archive);
11803
0
  return ret;
11804
0
}
11805
11806
static const char *arch_specific_lib_paths(void)
11807
0
{
11808
  /*
11809
   * Based on https://packages.debian.org/sid/libc6.
11810
   *
11811
   * Assume that the traced program is built for the same architecture
11812
   * as libbpf, which should cover the vast majority of cases.
11813
   */
11814
0
#if defined(__x86_64__)
11815
0
  return "/lib/x86_64-linux-gnu";
11816
#elif defined(__i386__)
11817
  return "/lib/i386-linux-gnu";
11818
#elif defined(__s390x__)
11819
  return "/lib/s390x-linux-gnu";
11820
#elif defined(__s390__)
11821
  return "/lib/s390-linux-gnu";
11822
#elif defined(__arm__) && defined(__SOFTFP__)
11823
  return "/lib/arm-linux-gnueabi";
11824
#elif defined(__arm__) && !defined(__SOFTFP__)
11825
  return "/lib/arm-linux-gnueabihf";
11826
#elif defined(__aarch64__)
11827
  return "/lib/aarch64-linux-gnu";
11828
#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11829
  return "/lib/mips64el-linux-gnuabi64";
11830
#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11831
  return "/lib/mipsel-linux-gnu";
11832
#elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11833
  return "/lib/powerpc64le-linux-gnu";
11834
#elif defined(__sparc__) && defined(__arch64__)
11835
  return "/lib/sparc64-linux-gnu";
11836
#elif defined(__riscv) && __riscv_xlen == 64
11837
  return "/lib/riscv64-linux-gnu";
11838
#else
11839
  return NULL;
11840
#endif
11841
0
}
11842
11843
/* Get full path to program/shared library. */
11844
static int resolve_full_path(const char *file, char *result, size_t result_sz)
11845
0
{
11846
0
  const char *search_paths[3] = {};
11847
0
  int i, perm;
11848
11849
0
  if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11850
0
    search_paths[0] = getenv("LD_LIBRARY_PATH");
11851
0
    search_paths[1] = "/usr/lib64:/usr/lib";
11852
0
    search_paths[2] = arch_specific_lib_paths();
11853
0
    perm = R_OK;
11854
0
  } else {
11855
0
    search_paths[0] = getenv("PATH");
11856
0
    search_paths[1] = "/usr/bin:/usr/sbin";
11857
0
    perm = R_OK | X_OK;
11858
0
  }
11859
11860
0
  for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11861
0
    const char *s;
11862
11863
0
    if (!search_paths[i])
11864
0
      continue;
11865
0
    for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11866
0
      char *next_path;
11867
0
      int seg_len;
11868
11869
0
      if (s[0] == ':')
11870
0
        s++;
11871
0
      next_path = strchr(s, ':');
11872
0
      seg_len = next_path ? next_path - s : strlen(s);
11873
0
      if (!seg_len)
11874
0
        continue;
11875
0
      snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11876
      /* ensure it has required permissions */
11877
0
      if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11878
0
        continue;
11879
0
      pr_debug("resolved '%s' to '%s'\n", file, result);
11880
0
      return 0;
11881
0
    }
11882
0
  }
11883
0
  return -ENOENT;
11884
0
}
11885
11886
struct bpf_link *
11887
bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11888
         pid_t pid,
11889
         const char *path,
11890
         const char *func_pattern,
11891
         const struct bpf_uprobe_multi_opts *opts)
11892
0
{
11893
0
  const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11894
0
  LIBBPF_OPTS(bpf_link_create_opts, lopts);
11895
0
  unsigned long *resolved_offsets = NULL;
11896
0
  int err = 0, link_fd, prog_fd;
11897
0
  struct bpf_link *link = NULL;
11898
0
  char errmsg[STRERR_BUFSIZE];
11899
0
  char full_path[PATH_MAX];
11900
0
  const __u64 *cookies;
11901
0
  const char **syms;
11902
0
  size_t cnt;
11903
11904
0
  if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11905
0
    return libbpf_err_ptr(-EINVAL);
11906
11907
0
  prog_fd = bpf_program__fd(prog);
11908
0
  if (prog_fd < 0) {
11909
0
    pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11910
0
      prog->name);
11911
0
    return libbpf_err_ptr(-EINVAL);
11912
0
  }
11913
11914
0
  syms = OPTS_GET(opts, syms, NULL);
11915
0
  offsets = OPTS_GET(opts, offsets, NULL);
11916
0
  ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11917
0
  cookies = OPTS_GET(opts, cookies, NULL);
11918
0
  cnt = OPTS_GET(opts, cnt, 0);
11919
11920
  /*
11921
   * User can specify 2 mutually exclusive set of inputs:
11922
   *
11923
   * 1) use only path/func_pattern/pid arguments
11924
   *
11925
   * 2) use path/pid with allowed combinations of:
11926
   *    syms/offsets/ref_ctr_offsets/cookies/cnt
11927
   *
11928
   *    - syms and offsets are mutually exclusive
11929
   *    - ref_ctr_offsets and cookies are optional
11930
   *
11931
   * Any other usage results in error.
11932
   */
11933
11934
0
  if (!path)
11935
0
    return libbpf_err_ptr(-EINVAL);
11936
0
  if (!func_pattern && cnt == 0)
11937
0
    return libbpf_err_ptr(-EINVAL);
11938
11939
0
  if (func_pattern) {
11940
0
    if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11941
0
      return libbpf_err_ptr(-EINVAL);
11942
0
  } else {
11943
0
    if (!!syms == !!offsets)
11944
0
      return libbpf_err_ptr(-EINVAL);
11945
0
  }
11946
11947
0
  if (func_pattern) {
11948
0
    if (!strchr(path, '/')) {
11949
0
      err = resolve_full_path(path, full_path, sizeof(full_path));
11950
0
      if (err) {
11951
0
        pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11952
0
          prog->name, path, err);
11953
0
        return libbpf_err_ptr(err);
11954
0
      }
11955
0
      path = full_path;
11956
0
    }
11957
11958
0
    err = elf_resolve_pattern_offsets(path, func_pattern,
11959
0
              &resolved_offsets, &cnt);
11960
0
    if (err < 0)
11961
0
      return libbpf_err_ptr(err);
11962
0
    offsets = resolved_offsets;
11963
0
  } else if (syms) {
11964
0
    err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
11965
0
    if (err < 0)
11966
0
      return libbpf_err_ptr(err);
11967
0
    offsets = resolved_offsets;
11968
0
  }
11969
11970
0
  lopts.uprobe_multi.path = path;
11971
0
  lopts.uprobe_multi.offsets = offsets;
11972
0
  lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11973
0
  lopts.uprobe_multi.cookies = cookies;
11974
0
  lopts.uprobe_multi.cnt = cnt;
11975
0
  lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11976
11977
0
  if (pid == 0)
11978
0
    pid = getpid();
11979
0
  if (pid > 0)
11980
0
    lopts.uprobe_multi.pid = pid;
11981
11982
0
  link = calloc(1, sizeof(*link));
11983
0
  if (!link) {
11984
0
    err = -ENOMEM;
11985
0
    goto error;
11986
0
  }
11987
0
  link->detach = &bpf_link__detach_fd;
11988
11989
0
  link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11990
0
  if (link_fd < 0) {
11991
0
    err = -errno;
11992
0
    pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11993
0
      prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11994
0
    goto error;
11995
0
  }
11996
0
  link->fd = link_fd;
11997
0
  free(resolved_offsets);
11998
0
  return link;
11999
12000
0
error:
12001
0
  free(resolved_offsets);
12002
0
  free(link);
12003
0
  return libbpf_err_ptr(err);
12004
0
}
12005
12006
LIBBPF_API struct bpf_link *
12007
bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12008
        const char *binary_path, size_t func_offset,
12009
        const struct bpf_uprobe_opts *opts)
12010
0
{
12011
0
  const char *archive_path = NULL, *archive_sep = NULL;
12012
0
  char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
12013
0
  DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12014
0
  enum probe_attach_mode attach_mode;
12015
0
  char full_path[PATH_MAX];
12016
0
  struct bpf_link *link;
12017
0
  size_t ref_ctr_off;
12018
0
  int pfd, err;
12019
0
  bool retprobe, legacy;
12020
0
  const char *func_name;
12021
12022
0
  if (!OPTS_VALID(opts, bpf_uprobe_opts))
12023
0
    return libbpf_err_ptr(-EINVAL);
12024
12025
0
  attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12026
0
  retprobe = OPTS_GET(opts, retprobe, false);
12027
0
  ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12028
0
  pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12029
12030
0
  if (!binary_path)
12031
0
    return libbpf_err_ptr(-EINVAL);
12032
12033
  /* Check if "binary_path" refers to an archive. */
12034
0
  archive_sep = strstr(binary_path, "!/");
12035
0
  if (archive_sep) {
12036
0
    full_path[0] = '\0';
12037
0
    libbpf_strlcpy(full_path, binary_path,
12038
0
             min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12039
0
    archive_path = full_path;
12040
0
    binary_path = archive_sep + 2;
12041
0
  } else if (!strchr(binary_path, '/')) {
12042
0
    err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12043
0
    if (err) {
12044
0
      pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12045
0
        prog->name, binary_path, err);
12046
0
      return libbpf_err_ptr(err);
12047
0
    }
12048
0
    binary_path = full_path;
12049
0
  }
12050
0
  func_name = OPTS_GET(opts, func_name, NULL);
12051
0
  if (func_name) {
12052
0
    long sym_off;
12053
12054
0
    if (archive_path) {
12055
0
      sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12056
0
                    func_name);
12057
0
      binary_path = archive_path;
12058
0
    } else {
12059
0
      sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12060
0
    }
12061
0
    if (sym_off < 0)
12062
0
      return libbpf_err_ptr(sym_off);
12063
0
    func_offset += sym_off;
12064
0
  }
12065
12066
0
  legacy = determine_uprobe_perf_type() < 0;
12067
0
  switch (attach_mode) {
12068
0
  case PROBE_ATTACH_MODE_LEGACY:
12069
0
    legacy = true;
12070
0
    pe_opts.force_ioctl_attach = true;
12071
0
    break;
12072
0
  case PROBE_ATTACH_MODE_PERF:
12073
0
    if (legacy)
12074
0
      return libbpf_err_ptr(-ENOTSUP);
12075
0
    pe_opts.force_ioctl_attach = true;
12076
0
    break;
12077
0
  case PROBE_ATTACH_MODE_LINK:
12078
0
    if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12079
0
      return libbpf_err_ptr(-ENOTSUP);
12080
0
    break;
12081
0
  case PROBE_ATTACH_MODE_DEFAULT:
12082
0
    break;
12083
0
  default:
12084
0
    return libbpf_err_ptr(-EINVAL);
12085
0
  }
12086
12087
0
  if (!legacy) {
12088
0
    pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12089
0
              func_offset, pid, ref_ctr_off);
12090
0
  } else {
12091
0
    char probe_name[PATH_MAX + 64];
12092
12093
0
    if (ref_ctr_off)
12094
0
      return libbpf_err_ptr(-EINVAL);
12095
12096
0
    gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
12097
0
               binary_path, func_offset);
12098
12099
0
    legacy_probe = strdup(probe_name);
12100
0
    if (!legacy_probe)
12101
0
      return libbpf_err_ptr(-ENOMEM);
12102
12103
0
    pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12104
0
                binary_path, func_offset, pid);
12105
0
  }
12106
0
  if (pfd < 0) {
12107
0
    err = -errno;
12108
0
    pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12109
0
      prog->name, retprobe ? "uretprobe" : "uprobe",
12110
0
      binary_path, func_offset,
12111
0
      libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12112
0
    goto err_out;
12113
0
  }
12114
12115
0
  link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12116
0
  err = libbpf_get_error(link);
12117
0
  if (err) {
12118
0
    close(pfd);
12119
0
    pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12120
0
      prog->name, retprobe ? "uretprobe" : "uprobe",
12121
0
      binary_path, func_offset,
12122
0
      libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12123
0
    goto err_clean_legacy;
12124
0
  }
12125
0
  if (legacy) {
12126
0
    struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12127
12128
0
    perf_link->legacy_probe_name = legacy_probe;
12129
0
    perf_link->legacy_is_kprobe = false;
12130
0
    perf_link->legacy_is_retprobe = retprobe;
12131
0
  }
12132
0
  return link;
12133
12134
0
err_clean_legacy:
12135
0
  if (legacy)
12136
0
    remove_uprobe_event_legacy(legacy_probe, retprobe);
12137
0
err_out:
12138
0
  free(legacy_probe);
12139
0
  return libbpf_err_ptr(err);
12140
0
}
12141
12142
/* Format of u[ret]probe section definition supporting auto-attach:
12143
 * u[ret]probe/binary:function[+offset]
12144
 *
12145
 * binary can be an absolute/relative path or a filename; the latter is resolved to a
12146
 * full binary path via bpf_program__attach_uprobe_opts.
12147
 *
12148
 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12149
 * specified (and auto-attach is not possible) or the above format is specified for
12150
 * auto-attach.
12151
 */
12152
static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12153
0
{
12154
0
  DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12155
0
  char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12156
0
  int n, c, ret = -EINVAL;
12157
0
  long offset = 0;
12158
12159
0
  *link = NULL;
12160
12161
0
  n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12162
0
       &probe_type, &binary_path, &func_name);
12163
0
  switch (n) {
12164
0
  case 1:
12165
    /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12166
0
    ret = 0;
12167
0
    break;
12168
0
  case 2:
12169
0
    pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12170
0
      prog->name, prog->sec_name);
12171
0
    break;
12172
0
  case 3:
12173
    /* check if user specifies `+offset`, if yes, this should be
12174
     * the last part of the string, make sure sscanf read to EOL
12175
     */
12176
0
    func_off = strrchr(func_name, '+');
12177
0
    if (func_off) {
12178
0
      n = sscanf(func_off, "+%li%n", &offset, &c);
12179
0
      if (n == 1 && *(func_off + c) == '\0')
12180
0
        func_off[0] = '\0';
12181
0
      else
12182
0
        offset = 0;
12183
0
    }
12184
0
    opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12185
0
        strcmp(probe_type, "uretprobe.s") == 0;
12186
0
    if (opts.retprobe && offset != 0) {
12187
0
      pr_warn("prog '%s': uretprobes do not support offset specification\n",
12188
0
        prog->name);
12189
0
      break;
12190
0
    }
12191
0
    opts.func_name = func_name;
12192
0
    *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12193
0
    ret = libbpf_get_error(*link);
12194
0
    break;
12195
0
  default:
12196
0
    pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12197
0
      prog->sec_name);
12198
0
    break;
12199
0
  }
12200
0
  free(probe_type);
12201
0
  free(binary_path);
12202
0
  free(func_name);
12203
12204
0
  return ret;
12205
0
}
12206
12207
struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12208
              bool retprobe, pid_t pid,
12209
              const char *binary_path,
12210
              size_t func_offset)
12211
0
{
12212
0
  DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12213
12214
0
  return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12215
0
}
12216
12217
struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12218
            pid_t pid, const char *binary_path,
12219
            const char *usdt_provider, const char *usdt_name,
12220
            const struct bpf_usdt_opts *opts)
12221
0
{
12222
0
  char resolved_path[512];
12223
0
  struct bpf_object *obj = prog->obj;
12224
0
  struct bpf_link *link;
12225
0
  __u64 usdt_cookie;
12226
0
  int err;
12227
12228
0
  if (!OPTS_VALID(opts, bpf_uprobe_opts))
12229
0
    return libbpf_err_ptr(-EINVAL);
12230
12231
0
  if (bpf_program__fd(prog) < 0) {
12232
0
    pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12233
0
      prog->name);
12234
0
    return libbpf_err_ptr(-EINVAL);
12235
0
  }
12236
12237
0
  if (!binary_path)
12238
0
    return libbpf_err_ptr(-EINVAL);
12239
12240
0
  if (!strchr(binary_path, '/')) {
12241
0
    err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12242
0
    if (err) {
12243
0
      pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12244
0
        prog->name, binary_path, err);
12245
0
      return libbpf_err_ptr(err);
12246
0
    }
12247
0
    binary_path = resolved_path;
12248
0
  }
12249
12250
  /* USDT manager is instantiated lazily on first USDT attach. It will
12251
   * be destroyed together with BPF object in bpf_object__close().
12252
   */
12253
0
  if (IS_ERR(obj->usdt_man))
12254
0
    return libbpf_ptr(obj->usdt_man);
12255
0
  if (!obj->usdt_man) {
12256
0
    obj->usdt_man = usdt_manager_new(obj);
12257
0
    if (IS_ERR(obj->usdt_man))
12258
0
      return libbpf_ptr(obj->usdt_man);
12259
0
  }
12260
12261
0
  usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12262
0
  link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12263
0
          usdt_provider, usdt_name, usdt_cookie);
12264
0
  err = libbpf_get_error(link);
12265
0
  if (err)
12266
0
    return libbpf_err_ptr(err);
12267
0
  return link;
12268
0
}
12269
12270
static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12271
0
{
12272
0
  char *path = NULL, *provider = NULL, *name = NULL;
12273
0
  const char *sec_name;
12274
0
  int n, err;
12275
12276
0
  sec_name = bpf_program__section_name(prog);
12277
0
  if (strcmp(sec_name, "usdt") == 0) {
12278
    /* no auto-attach for just SEC("usdt") */
12279
0
    *link = NULL;
12280
0
    return 0;
12281
0
  }
12282
12283
0
  n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12284
0
  if (n != 3) {
12285
0
    pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12286
0
      sec_name);
12287
0
    err = -EINVAL;
12288
0
  } else {
12289
0
    *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12290
0
             provider, name, NULL);
12291
0
    err = libbpf_get_error(*link);
12292
0
  }
12293
0
  free(path);
12294
0
  free(provider);
12295
0
  free(name);
12296
0
  return err;
12297
0
}
12298
12299
static int determine_tracepoint_id(const char *tp_category,
12300
           const char *tp_name)
12301
0
{
12302
0
  char file[PATH_MAX];
12303
0
  int ret;
12304
12305
0
  ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12306
0
           tracefs_path(), tp_category, tp_name);
12307
0
  if (ret < 0)
12308
0
    return -errno;
12309
0
  if (ret >= sizeof(file)) {
12310
0
    pr_debug("tracepoint %s/%s path is too long\n",
12311
0
       tp_category, tp_name);
12312
0
    return -E2BIG;
12313
0
  }
12314
0
  return parse_uint_from_file(file, "%d\n");
12315
0
}
12316
12317
static int perf_event_open_tracepoint(const char *tp_category,
12318
              const char *tp_name)
12319
0
{
12320
0
  const size_t attr_sz = sizeof(struct perf_event_attr);
12321
0
  struct perf_event_attr attr;
12322
0
  char errmsg[STRERR_BUFSIZE];
12323
0
  int tp_id, pfd, err;
12324
12325
0
  tp_id = determine_tracepoint_id(tp_category, tp_name);
12326
0
  if (tp_id < 0) {
12327
0
    pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12328
0
      tp_category, tp_name,
12329
0
      libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12330
0
    return tp_id;
12331
0
  }
12332
12333
0
  memset(&attr, 0, attr_sz);
12334
0
  attr.type = PERF_TYPE_TRACEPOINT;
12335
0
  attr.size = attr_sz;
12336
0
  attr.config = tp_id;
12337
12338
0
  pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12339
0
          -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12340
0
  if (pfd < 0) {
12341
0
    err = -errno;
12342
0
    pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12343
0
      tp_category, tp_name,
12344
0
      libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12345
0
    return err;
12346
0
  }
12347
0
  return pfd;
12348
0
}
12349
12350
struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12351
                 const char *tp_category,
12352
                 const char *tp_name,
12353
                 const struct bpf_tracepoint_opts *opts)
12354
0
{
12355
0
  DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12356
0
  char errmsg[STRERR_BUFSIZE];
12357
0
  struct bpf_link *link;
12358
0
  int pfd, err;
12359
12360
0
  if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12361
0
    return libbpf_err_ptr(-EINVAL);
12362
12363
0
  pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12364
12365
0
  pfd = perf_event_open_tracepoint(tp_category, tp_name);
12366
0
  if (pfd < 0) {
12367
0
    pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12368
0
      prog->name, tp_category, tp_name,
12369
0
      libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12370
0
    return libbpf_err_ptr(pfd);
12371
0
  }
12372
0
  link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12373
0
  err = libbpf_get_error(link);
12374
0
  if (err) {
12375
0
    close(pfd);
12376
0
    pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12377
0
      prog->name, tp_category, tp_name,
12378
0
      libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12379
0
    return libbpf_err_ptr(err);
12380
0
  }
12381
0
  return link;
12382
0
}
12383
12384
struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12385
            const char *tp_category,
12386
            const char *tp_name)
12387
0
{
12388
0
  return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12389
0
}
12390
12391
static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12392
0
{
12393
0
  char *sec_name, *tp_cat, *tp_name;
12394
12395
0
  *link = NULL;
12396
12397
  /* no auto-attach for SEC("tp") or SEC("tracepoint") */
12398
0
  if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12399
0
    return 0;
12400
12401
0
  sec_name = strdup(prog->sec_name);
12402
0
  if (!sec_name)
12403
0
    return -ENOMEM;
12404
12405
  /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12406
0
  if (str_has_pfx(prog->sec_name, "tp/"))
12407
0
    tp_cat = sec_name + sizeof("tp/") - 1;
12408
0
  else
12409
0
    tp_cat = sec_name + sizeof("tracepoint/") - 1;
12410
0
  tp_name = strchr(tp_cat, '/');
12411
0
  if (!tp_name) {
12412
0
    free(sec_name);
12413
0
    return -EINVAL;
12414
0
  }
12415
0
  *tp_name = '\0';
12416
0
  tp_name++;
12417
12418
0
  *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12419
0
  free(sec_name);
12420
0
  return libbpf_get_error(*link);
12421
0
}
12422
12423
struct bpf_link *
12424
bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12425
          const char *tp_name,
12426
          struct bpf_raw_tracepoint_opts *opts)
12427
0
{
12428
0
  LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12429
0
  char errmsg[STRERR_BUFSIZE];
12430
0
  struct bpf_link *link;
12431
0
  int prog_fd, pfd;
12432
12433
0
  if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12434
0
    return libbpf_err_ptr(-EINVAL);
12435
12436
0
  prog_fd = bpf_program__fd(prog);
12437
0
  if (prog_fd < 0) {
12438
0
    pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12439
0
    return libbpf_err_ptr(-EINVAL);
12440
0
  }
12441
12442
0
  link = calloc(1, sizeof(*link));
12443
0
  if (!link)
12444
0
    return libbpf_err_ptr(-ENOMEM);
12445
0
  link->detach = &bpf_link__detach_fd;
12446
12447
0
  raw_opts.tp_name = tp_name;
12448
0
  raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12449
0
  pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12450
0
  if (pfd < 0) {
12451
0
    pfd = -errno;
12452
0
    free(link);
12453
0
    pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12454
0
      prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12455
0
    return libbpf_err_ptr(pfd);
12456
0
  }
12457
0
  link->fd = pfd;
12458
0
  return link;
12459
0
}
12460
12461
struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12462
                const char *tp_name)
12463
0
{
12464
0
  return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12465
0
}
12466
12467
static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12468
0
{
12469
0
  static const char *const prefixes[] = {
12470
0
    "raw_tp",
12471
0
    "raw_tracepoint",
12472
0
    "raw_tp.w",
12473
0
    "raw_tracepoint.w",
12474
0
  };
12475
0
  size_t i;
12476
0
  const char *tp_name = NULL;
12477
12478
0
  *link = NULL;
12479
12480
0
  for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12481
0
    size_t pfx_len;
12482
12483
0
    if (!str_has_pfx(prog->sec_name, prefixes[i]))
12484
0
      continue;
12485
12486
0
    pfx_len = strlen(prefixes[i]);
12487
    /* no auto-attach case of, e.g., SEC("raw_tp") */
12488
0
    if (prog->sec_name[pfx_len] == '\0')
12489
0
      return 0;
12490
12491
0
    if (prog->sec_name[pfx_len] != '/')
12492
0
      continue;
12493
12494
0
    tp_name = prog->sec_name + pfx_len + 1;
12495
0
    break;
12496
0
  }
12497
12498
0
  if (!tp_name) {
12499
0
    pr_warn("prog '%s': invalid section name '%s'\n",
12500
0
      prog->name, prog->sec_name);
12501
0
    return -EINVAL;
12502
0
  }
12503
12504
0
  *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12505
0
  return libbpf_get_error(*link);
12506
0
}
12507
12508
/* Common logic for all BPF program types that attach to a btf_id */
12509
static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12510
               const struct bpf_trace_opts *opts)
12511
0
{
12512
0
  LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12513
0
  char errmsg[STRERR_BUFSIZE];
12514
0
  struct bpf_link *link;
12515
0
  int prog_fd, pfd;
12516
12517
0
  if (!OPTS_VALID(opts, bpf_trace_opts))
12518
0
    return libbpf_err_ptr(-EINVAL);
12519
12520
0
  prog_fd = bpf_program__fd(prog);
12521
0
  if (prog_fd < 0) {
12522
0
    pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12523
0
    return libbpf_err_ptr(-EINVAL);
12524
0
  }
12525
12526
0
  link = calloc(1, sizeof(*link));
12527
0
  if (!link)
12528
0
    return libbpf_err_ptr(-ENOMEM);
12529
0
  link->detach = &bpf_link__detach_fd;
12530
12531
  /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12532
0
  link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12533
0
  pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12534
0
  if (pfd < 0) {
12535
0
    pfd = -errno;
12536
0
    free(link);
12537
0
    pr_warn("prog '%s': failed to attach: %s\n",
12538
0
      prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12539
0
    return libbpf_err_ptr(pfd);
12540
0
  }
12541
0
  link->fd = pfd;
12542
0
  return link;
12543
0
}
12544
12545
struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12546
0
{
12547
0
  return bpf_program__attach_btf_id(prog, NULL);
12548
0
}
12549
12550
struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12551
            const struct bpf_trace_opts *opts)
12552
0
{
12553
0
  return bpf_program__attach_btf_id(prog, opts);
12554
0
}
12555
12556
struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12557
0
{
12558
0
  return bpf_program__attach_btf_id(prog, NULL);
12559
0
}
12560
12561
static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12562
0
{
12563
0
  *link = bpf_program__attach_trace(prog);
12564
0
  return libbpf_get_error(*link);
12565
0
}
12566
12567
static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12568
0
{
12569
0
  *link = bpf_program__attach_lsm(prog);
12570
0
  return libbpf_get_error(*link);
12571
0
}
12572
12573
static struct bpf_link *
12574
bpf_program_attach_fd(const struct bpf_program *prog,
12575
          int target_fd, const char *target_name,
12576
          const struct bpf_link_create_opts *opts)
12577
0
{
12578
0
  enum bpf_attach_type attach_type;
12579
0
  char errmsg[STRERR_BUFSIZE];
12580
0
  struct bpf_link *link;
12581
0
  int prog_fd, link_fd;
12582
12583
0
  prog_fd = bpf_program__fd(prog);
12584
0
  if (prog_fd < 0) {
12585
0
    pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12586
0
    return libbpf_err_ptr(-EINVAL);
12587
0
  }
12588
12589
0
  link = calloc(1, sizeof(*link));
12590
0
  if (!link)
12591
0
    return libbpf_err_ptr(-ENOMEM);
12592
0
  link->detach = &bpf_link__detach_fd;
12593
12594
0
  attach_type = bpf_program__expected_attach_type(prog);
12595
0
  link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12596
0
  if (link_fd < 0) {
12597
0
    link_fd = -errno;
12598
0
    free(link);
12599
0
    pr_warn("prog '%s': failed to attach to %s: %s\n",
12600
0
      prog->name, target_name,
12601
0
      libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12602
0
    return libbpf_err_ptr(link_fd);
12603
0
  }
12604
0
  link->fd = link_fd;
12605
0
  return link;
12606
0
}
12607
12608
struct bpf_link *
12609
bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12610
0
{
12611
0
  return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12612
0
}
12613
12614
struct bpf_link *
12615
bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12616
0
{
12617
0
  return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12618
0
}
12619
12620
struct bpf_link *
12621
bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
12622
0
{
12623
0
  return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
12624
0
}
12625
12626
struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12627
0
{
12628
  /* target_fd/target_ifindex use the same field in LINK_CREATE */
12629
0
  return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12630
0
}
12631
12632
struct bpf_link *
12633
bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12634
      const struct bpf_tcx_opts *opts)
12635
0
{
12636
0
  LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12637
0
  __u32 relative_id;
12638
0
  int relative_fd;
12639
12640
0
  if (!OPTS_VALID(opts, bpf_tcx_opts))
12641
0
    return libbpf_err_ptr(-EINVAL);
12642
12643
0
  relative_id = OPTS_GET(opts, relative_id, 0);
12644
0
  relative_fd = OPTS_GET(opts, relative_fd, 0);
12645
12646
  /* validate we don't have unexpected combinations of non-zero fields */
12647
0
  if (!ifindex) {
12648
0
    pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12649
0
      prog->name);
12650
0
    return libbpf_err_ptr(-EINVAL);
12651
0
  }
12652
0
  if (relative_fd && relative_id) {
12653
0
    pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12654
0
      prog->name);
12655
0
    return libbpf_err_ptr(-EINVAL);
12656
0
  }
12657
12658
0
  link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12659
0
  link_create_opts.tcx.relative_fd = relative_fd;
12660
0
  link_create_opts.tcx.relative_id = relative_id;
12661
0
  link_create_opts.flags = OPTS_GET(opts, flags, 0);
12662
12663
  /* target_fd/target_ifindex use the same field in LINK_CREATE */
12664
0
  return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12665
0
}
12666
12667
struct bpf_link *
12668
bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12669
         const struct bpf_netkit_opts *opts)
12670
0
{
12671
0
  LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12672
0
  __u32 relative_id;
12673
0
  int relative_fd;
12674
12675
0
  if (!OPTS_VALID(opts, bpf_netkit_opts))
12676
0
    return libbpf_err_ptr(-EINVAL);
12677
12678
0
  relative_id = OPTS_GET(opts, relative_id, 0);
12679
0
  relative_fd = OPTS_GET(opts, relative_fd, 0);
12680
12681
  /* validate we don't have unexpected combinations of non-zero fields */
12682
0
  if (!ifindex) {
12683
0
    pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12684
0
      prog->name);
12685
0
    return libbpf_err_ptr(-EINVAL);
12686
0
  }
12687
0
  if (relative_fd && relative_id) {
12688
0
    pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12689
0
      prog->name);
12690
0
    return libbpf_err_ptr(-EINVAL);
12691
0
  }
12692
12693
0
  link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12694
0
  link_create_opts.netkit.relative_fd = relative_fd;
12695
0
  link_create_opts.netkit.relative_id = relative_id;
12696
0
  link_create_opts.flags = OPTS_GET(opts, flags, 0);
12697
12698
0
  return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12699
0
}
12700
12701
struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12702
                int target_fd,
12703
                const char *attach_func_name)
12704
0
{
12705
0
  int btf_id;
12706
12707
0
  if (!!target_fd != !!attach_func_name) {
12708
0
    pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12709
0
      prog->name);
12710
0
    return libbpf_err_ptr(-EINVAL);
12711
0
  }
12712
12713
0
  if (prog->type != BPF_PROG_TYPE_EXT) {
12714
0
    pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12715
0
      prog->name);
12716
0
    return libbpf_err_ptr(-EINVAL);
12717
0
  }
12718
12719
0
  if (target_fd) {
12720
0
    LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12721
12722
0
    btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12723
0
    if (btf_id < 0)
12724
0
      return libbpf_err_ptr(btf_id);
12725
12726
0
    target_opts.target_btf_id = btf_id;
12727
12728
0
    return bpf_program_attach_fd(prog, target_fd, "freplace",
12729
0
               &target_opts);
12730
0
  } else {
12731
    /* no target, so use raw_tracepoint_open for compatibility
12732
     * with old kernels
12733
     */
12734
0
    return bpf_program__attach_trace(prog);
12735
0
  }
12736
0
}
12737
12738
struct bpf_link *
12739
bpf_program__attach_iter(const struct bpf_program *prog,
12740
       const struct bpf_iter_attach_opts *opts)
12741
0
{
12742
0
  DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12743
0
  char errmsg[STRERR_BUFSIZE];
12744
0
  struct bpf_link *link;
12745
0
  int prog_fd, link_fd;
12746
0
  __u32 target_fd = 0;
12747
12748
0
  if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12749
0
    return libbpf_err_ptr(-EINVAL);
12750
12751
0
  link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12752
0
  link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12753
12754
0
  prog_fd = bpf_program__fd(prog);
12755
0
  if (prog_fd < 0) {
12756
0
    pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12757
0
    return libbpf_err_ptr(-EINVAL);
12758
0
  }
12759
12760
0
  link = calloc(1, sizeof(*link));
12761
0
  if (!link)
12762
0
    return libbpf_err_ptr(-ENOMEM);
12763
0
  link->detach = &bpf_link__detach_fd;
12764
12765
0
  link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12766
0
          &link_create_opts);
12767
0
  if (link_fd < 0) {
12768
0
    link_fd = -errno;
12769
0
    free(link);
12770
0
    pr_warn("prog '%s': failed to attach to iterator: %s\n",
12771
0
      prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12772
0
    return libbpf_err_ptr(link_fd);
12773
0
  }
12774
0
  link->fd = link_fd;
12775
0
  return link;
12776
0
}
12777
12778
static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12779
0
{
12780
0
  *link = bpf_program__attach_iter(prog, NULL);
12781
0
  return libbpf_get_error(*link);
12782
0
}
12783
12784
struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12785
                 const struct bpf_netfilter_opts *opts)
12786
0
{
12787
0
  LIBBPF_OPTS(bpf_link_create_opts, lopts);
12788
0
  struct bpf_link *link;
12789
0
  int prog_fd, link_fd;
12790
12791
0
  if (!OPTS_VALID(opts, bpf_netfilter_opts))
12792
0
    return libbpf_err_ptr(-EINVAL);
12793
12794
0
  prog_fd = bpf_program__fd(prog);
12795
0
  if (prog_fd < 0) {
12796
0
    pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12797
0
    return libbpf_err_ptr(-EINVAL);
12798
0
  }
12799
12800
0
  link = calloc(1, sizeof(*link));
12801
0
  if (!link)
12802
0
    return libbpf_err_ptr(-ENOMEM);
12803
12804
0
  link->detach = &bpf_link__detach_fd;
12805
12806
0
  lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12807
0
  lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12808
0
  lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12809
0
  lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12810
12811
0
  link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12812
0
  if (link_fd < 0) {
12813
0
    char errmsg[STRERR_BUFSIZE];
12814
12815
0
    link_fd = -errno;
12816
0
    free(link);
12817
0
    pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12818
0
      prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12819
0
    return libbpf_err_ptr(link_fd);
12820
0
  }
12821
0
  link->fd = link_fd;
12822
12823
0
  return link;
12824
0
}
12825
12826
struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12827
0
{
12828
0
  struct bpf_link *link = NULL;
12829
0
  int err;
12830
12831
0
  if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12832
0
    return libbpf_err_ptr(-EOPNOTSUPP);
12833
12834
0
  if (bpf_program__fd(prog) < 0) {
12835
0
    pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12836
0
      prog->name);
12837
0
    return libbpf_err_ptr(-EINVAL);
12838
0
  }
12839
12840
0
  err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12841
0
  if (err)
12842
0
    return libbpf_err_ptr(err);
12843
12844
  /* When calling bpf_program__attach() explicitly, auto-attach support
12845
   * is expected to work, so NULL returned link is considered an error.
12846
   * This is different for skeleton's attach, see comment in
12847
   * bpf_object__attach_skeleton().
12848
   */
12849
0
  if (!link)
12850
0
    return libbpf_err_ptr(-EOPNOTSUPP);
12851
12852
0
  return link;
12853
0
}
12854
12855
struct bpf_link_struct_ops {
12856
  struct bpf_link link;
12857
  int map_fd;
12858
};
12859
12860
static int bpf_link__detach_struct_ops(struct bpf_link *link)
12861
0
{
12862
0
  struct bpf_link_struct_ops *st_link;
12863
0
  __u32 zero = 0;
12864
12865
0
  st_link = container_of(link, struct bpf_link_struct_ops, link);
12866
12867
0
  if (st_link->map_fd < 0)
12868
    /* w/o a real link */
12869
0
    return bpf_map_delete_elem(link->fd, &zero);
12870
12871
0
  return close(link->fd);
12872
0
}
12873
12874
struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12875
0
{
12876
0
  struct bpf_link_struct_ops *link;
12877
0
  __u32 zero = 0;
12878
0
  int err, fd;
12879
12880
0
  if (!bpf_map__is_struct_ops(map))
12881
0
    return libbpf_err_ptr(-EINVAL);
12882
12883
0
  if (map->fd < 0) {
12884
0
    pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
12885
0
    return libbpf_err_ptr(-EINVAL);
12886
0
  }
12887
12888
0
  link = calloc(1, sizeof(*link));
12889
0
  if (!link)
12890
0
    return libbpf_err_ptr(-EINVAL);
12891
12892
  /* kern_vdata should be prepared during the loading phase. */
12893
0
  err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12894
  /* It can be EBUSY if the map has been used to create or
12895
   * update a link before.  We don't allow updating the value of
12896
   * a struct_ops once it is set.  That ensures that the value
12897
   * never changed.  So, it is safe to skip EBUSY.
12898
   */
12899
0
  if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12900
0
    free(link);
12901
0
    return libbpf_err_ptr(err);
12902
0
  }
12903
12904
0
  link->link.detach = bpf_link__detach_struct_ops;
12905
12906
0
  if (!(map->def.map_flags & BPF_F_LINK)) {
12907
    /* w/o a real link */
12908
0
    link->link.fd = map->fd;
12909
0
    link->map_fd = -1;
12910
0
    return &link->link;
12911
0
  }
12912
12913
0
  fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12914
0
  if (fd < 0) {
12915
0
    free(link);
12916
0
    return libbpf_err_ptr(fd);
12917
0
  }
12918
12919
0
  link->link.fd = fd;
12920
0
  link->map_fd = map->fd;
12921
12922
0
  return &link->link;
12923
0
}
12924
12925
/*
12926
 * Swap the back struct_ops of a link with a new struct_ops map.
12927
 */
12928
int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12929
0
{
12930
0
  struct bpf_link_struct_ops *st_ops_link;
12931
0
  __u32 zero = 0;
12932
0
  int err;
12933
12934
0
  if (!bpf_map__is_struct_ops(map))
12935
0
    return -EINVAL;
12936
12937
0
  if (map->fd < 0) {
12938
0
    pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
12939
0
    return -EINVAL;
12940
0
  }
12941
12942
0
  st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12943
  /* Ensure the type of a link is correct */
12944
0
  if (st_ops_link->map_fd < 0)
12945
0
    return -EINVAL;
12946
12947
0
  err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12948
  /* It can be EBUSY if the map has been used to create or
12949
   * update a link before.  We don't allow updating the value of
12950
   * a struct_ops once it is set.  That ensures that the value
12951
   * never changed.  So, it is safe to skip EBUSY.
12952
   */
12953
0
  if (err && err != -EBUSY)
12954
0
    return err;
12955
12956
0
  err = bpf_link_update(link->fd, map->fd, NULL);
12957
0
  if (err < 0)
12958
0
    return err;
12959
12960
0
  st_ops_link->map_fd = map->fd;
12961
12962
0
  return 0;
12963
0
}
12964
12965
typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12966
                void *private_data);
12967
12968
static enum bpf_perf_event_ret
12969
perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12970
           void **copy_mem, size_t *copy_size,
12971
           bpf_perf_event_print_t fn, void *private_data)
12972
0
{
12973
0
  struct perf_event_mmap_page *header = mmap_mem;
12974
0
  __u64 data_head = ring_buffer_read_head(header);
12975
0
  __u64 data_tail = header->data_tail;
12976
0
  void *base = ((__u8 *)header) + page_size;
12977
0
  int ret = LIBBPF_PERF_EVENT_CONT;
12978
0
  struct perf_event_header *ehdr;
12979
0
  size_t ehdr_size;
12980
12981
0
  while (data_head != data_tail) {
12982
0
    ehdr = base + (data_tail & (mmap_size - 1));
12983
0
    ehdr_size = ehdr->size;
12984
12985
0
    if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12986
0
      void *copy_start = ehdr;
12987
0
      size_t len_first = base + mmap_size - copy_start;
12988
0
      size_t len_secnd = ehdr_size - len_first;
12989
12990
0
      if (*copy_size < ehdr_size) {
12991
0
        free(*copy_mem);
12992
0
        *copy_mem = malloc(ehdr_size);
12993
0
        if (!*copy_mem) {
12994
0
          *copy_size = 0;
12995
0
          ret = LIBBPF_PERF_EVENT_ERROR;
12996
0
          break;
12997
0
        }
12998
0
        *copy_size = ehdr_size;
12999
0
      }
13000
13001
0
      memcpy(*copy_mem, copy_start, len_first);
13002
0
      memcpy(*copy_mem + len_first, base, len_secnd);
13003
0
      ehdr = *copy_mem;
13004
0
    }
13005
13006
0
    ret = fn(ehdr, private_data);
13007
0
    data_tail += ehdr_size;
13008
0
    if (ret != LIBBPF_PERF_EVENT_CONT)
13009
0
      break;
13010
0
  }
13011
13012
0
  ring_buffer_write_tail(header, data_tail);
13013
0
  return libbpf_err(ret);
13014
0
}
13015
13016
struct perf_buffer;
13017
13018
struct perf_buffer_params {
13019
  struct perf_event_attr *attr;
13020
  /* if event_cb is specified, it takes precendence */
13021
  perf_buffer_event_fn event_cb;
13022
  /* sample_cb and lost_cb are higher-level common-case callbacks */
13023
  perf_buffer_sample_fn sample_cb;
13024
  perf_buffer_lost_fn lost_cb;
13025
  void *ctx;
13026
  int cpu_cnt;
13027
  int *cpus;
13028
  int *map_keys;
13029
};
13030
13031
struct perf_cpu_buf {
13032
  struct perf_buffer *pb;
13033
  void *base; /* mmap()'ed memory */
13034
  void *buf; /* for reconstructing segmented data */
13035
  size_t buf_size;
13036
  int fd;
13037
  int cpu;
13038
  int map_key;
13039
};
13040
13041
struct perf_buffer {
13042
  perf_buffer_event_fn event_cb;
13043
  perf_buffer_sample_fn sample_cb;
13044
  perf_buffer_lost_fn lost_cb;
13045
  void *ctx; /* passed into callbacks */
13046
13047
  size_t page_size;
13048
  size_t mmap_size;
13049
  struct perf_cpu_buf **cpu_bufs;
13050
  struct epoll_event *events;
13051
  int cpu_cnt; /* number of allocated CPU buffers */
13052
  int epoll_fd; /* perf event FD */
13053
  int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13054
};
13055
13056
static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13057
              struct perf_cpu_buf *cpu_buf)
13058
0
{
13059
0
  if (!cpu_buf)
13060
0
    return;
13061
0
  if (cpu_buf->base &&
13062
0
      munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13063
0
    pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13064
0
  if (cpu_buf->fd >= 0) {
13065
0
    ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13066
0
    close(cpu_buf->fd);
13067
0
  }
13068
0
  free(cpu_buf->buf);
13069
0
  free(cpu_buf);
13070
0
}
13071
13072
void perf_buffer__free(struct perf_buffer *pb)
13073
0
{
13074
0
  int i;
13075
13076
0
  if (IS_ERR_OR_NULL(pb))
13077
0
    return;
13078
0
  if (pb->cpu_bufs) {
13079
0
    for (i = 0; i < pb->cpu_cnt; i++) {
13080
0
      struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13081
13082
0
      if (!cpu_buf)
13083
0
        continue;
13084
13085
0
      bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13086
0
      perf_buffer__free_cpu_buf(pb, cpu_buf);
13087
0
    }
13088
0
    free(pb->cpu_bufs);
13089
0
  }
13090
0
  if (pb->epoll_fd >= 0)
13091
0
    close(pb->epoll_fd);
13092
0
  free(pb->events);
13093
0
  free(pb);
13094
0
}
13095
13096
static struct perf_cpu_buf *
13097
perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13098
        int cpu, int map_key)
13099
0
{
13100
0
  struct perf_cpu_buf *cpu_buf;
13101
0
  char msg[STRERR_BUFSIZE];
13102
0
  int err;
13103
13104
0
  cpu_buf = calloc(1, sizeof(*cpu_buf));
13105
0
  if (!cpu_buf)
13106
0
    return ERR_PTR(-ENOMEM);
13107
13108
0
  cpu_buf->pb = pb;
13109
0
  cpu_buf->cpu = cpu;
13110
0
  cpu_buf->map_key = map_key;
13111
13112
0
  cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13113
0
            -1, PERF_FLAG_FD_CLOEXEC);
13114
0
  if (cpu_buf->fd < 0) {
13115
0
    err = -errno;
13116
0
    pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13117
0
      cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13118
0
    goto error;
13119
0
  }
13120
13121
0
  cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13122
0
           PROT_READ | PROT_WRITE, MAP_SHARED,
13123
0
           cpu_buf->fd, 0);
13124
0
  if (cpu_buf->base == MAP_FAILED) {
13125
0
    cpu_buf->base = NULL;
13126
0
    err = -errno;
13127
0
    pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13128
0
      cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13129
0
    goto error;
13130
0
  }
13131
13132
0
  if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13133
0
    err = -errno;
13134
0
    pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13135
0
      cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13136
0
    goto error;
13137
0
  }
13138
13139
0
  return cpu_buf;
13140
13141
0
error:
13142
0
  perf_buffer__free_cpu_buf(pb, cpu_buf);
13143
0
  return (struct perf_cpu_buf *)ERR_PTR(err);
13144
0
}
13145
13146
static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13147
                struct perf_buffer_params *p);
13148
13149
struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13150
             perf_buffer_sample_fn sample_cb,
13151
             perf_buffer_lost_fn lost_cb,
13152
             void *ctx,
13153
             const struct perf_buffer_opts *opts)
13154
0
{
13155
0
  const size_t attr_sz = sizeof(struct perf_event_attr);
13156
0
  struct perf_buffer_params p = {};
13157
0
  struct perf_event_attr attr;
13158
0
  __u32 sample_period;
13159
13160
0
  if (!OPTS_VALID(opts, perf_buffer_opts))
13161
0
    return libbpf_err_ptr(-EINVAL);
13162
13163
0
  sample_period = OPTS_GET(opts, sample_period, 1);
13164
0
  if (!sample_period)
13165
0
    sample_period = 1;
13166
13167
0
  memset(&attr, 0, attr_sz);
13168
0
  attr.size = attr_sz;
13169
0
  attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13170
0
  attr.type = PERF_TYPE_SOFTWARE;
13171
0
  attr.sample_type = PERF_SAMPLE_RAW;
13172
0
  attr.sample_period = sample_period;
13173
0
  attr.wakeup_events = sample_period;
13174
13175
0
  p.attr = &attr;
13176
0
  p.sample_cb = sample_cb;
13177
0
  p.lost_cb = lost_cb;
13178
0
  p.ctx = ctx;
13179
13180
0
  return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13181
0
}
13182
13183
struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13184
           struct perf_event_attr *attr,
13185
           perf_buffer_event_fn event_cb, void *ctx,
13186
           const struct perf_buffer_raw_opts *opts)
13187
0
{
13188
0
  struct perf_buffer_params p = {};
13189
13190
0
  if (!attr)
13191
0
    return libbpf_err_ptr(-EINVAL);
13192
13193
0
  if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13194
0
    return libbpf_err_ptr(-EINVAL);
13195
13196
0
  p.attr = attr;
13197
0
  p.event_cb = event_cb;
13198
0
  p.ctx = ctx;
13199
0
  p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13200
0
  p.cpus = OPTS_GET(opts, cpus, NULL);
13201
0
  p.map_keys = OPTS_GET(opts, map_keys, NULL);
13202
13203
0
  return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13204
0
}
13205
13206
static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13207
                struct perf_buffer_params *p)
13208
0
{
13209
0
  const char *online_cpus_file = "/sys/devices/system/cpu/online";
13210
0
  struct bpf_map_info map;
13211
0
  char msg[STRERR_BUFSIZE];
13212
0
  struct perf_buffer *pb;
13213
0
  bool *online = NULL;
13214
0
  __u32 map_info_len;
13215
0
  int err, i, j, n;
13216
13217
0
  if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13218
0
    pr_warn("page count should be power of two, but is %zu\n",
13219
0
      page_cnt);
13220
0
    return ERR_PTR(-EINVAL);
13221
0
  }
13222
13223
  /* best-effort sanity checks */
13224
0
  memset(&map, 0, sizeof(map));
13225
0
  map_info_len = sizeof(map);
13226
0
  err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13227
0
  if (err) {
13228
0
    err = -errno;
13229
    /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13230
     * -EBADFD, -EFAULT, or -E2BIG on real error
13231
     */
13232
0
    if (err != -EINVAL) {
13233
0
      pr_warn("failed to get map info for map FD %d: %s\n",
13234
0
        map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13235
0
      return ERR_PTR(err);
13236
0
    }
13237
0
    pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13238
0
       map_fd);
13239
0
  } else {
13240
0
    if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13241
0
      pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13242
0
        map.name);
13243
0
      return ERR_PTR(-EINVAL);
13244
0
    }
13245
0
  }
13246
13247
0
  pb = calloc(1, sizeof(*pb));
13248
0
  if (!pb)
13249
0
    return ERR_PTR(-ENOMEM);
13250
13251
0
  pb->event_cb = p->event_cb;
13252
0
  pb->sample_cb = p->sample_cb;
13253
0
  pb->lost_cb = p->lost_cb;
13254
0
  pb->ctx = p->ctx;
13255
13256
0
  pb->page_size = getpagesize();
13257
0
  pb->mmap_size = pb->page_size * page_cnt;
13258
0
  pb->map_fd = map_fd;
13259
13260
0
  pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13261
0
  if (pb->epoll_fd < 0) {
13262
0
    err = -errno;
13263
0
    pr_warn("failed to create epoll instance: %s\n",
13264
0
      libbpf_strerror_r(err, msg, sizeof(msg)));
13265
0
    goto error;
13266
0
  }
13267
13268
0
  if (p->cpu_cnt > 0) {
13269
0
    pb->cpu_cnt = p->cpu_cnt;
13270
0
  } else {
13271
0
    pb->cpu_cnt = libbpf_num_possible_cpus();
13272
0
    if (pb->cpu_cnt < 0) {
13273
0
      err = pb->cpu_cnt;
13274
0
      goto error;
13275
0
    }
13276
0
    if (map.max_entries && map.max_entries < pb->cpu_cnt)
13277
0
      pb->cpu_cnt = map.max_entries;
13278
0
  }
13279
13280
0
  pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13281
0
  if (!pb->events) {
13282
0
    err = -ENOMEM;
13283
0
    pr_warn("failed to allocate events: out of memory\n");
13284
0
    goto error;
13285
0
  }
13286
0
  pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13287
0
  if (!pb->cpu_bufs) {
13288
0
    err = -ENOMEM;
13289
0
    pr_warn("failed to allocate buffers: out of memory\n");
13290
0
    goto error;
13291
0
  }
13292
13293
0
  err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13294
0
  if (err) {
13295
0
    pr_warn("failed to get online CPU mask: %d\n", err);
13296
0
    goto error;
13297
0
  }
13298
13299
0
  for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13300
0
    struct perf_cpu_buf *cpu_buf;
13301
0
    int cpu, map_key;
13302
13303
0
    cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13304
0
    map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13305
13306
    /* in case user didn't explicitly requested particular CPUs to
13307
     * be attached to, skip offline/not present CPUs
13308
     */
13309
0
    if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13310
0
      continue;
13311
13312
0
    cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13313
0
    if (IS_ERR(cpu_buf)) {
13314
0
      err = PTR_ERR(cpu_buf);
13315
0
      goto error;
13316
0
    }
13317
13318
0
    pb->cpu_bufs[j] = cpu_buf;
13319
13320
0
    err = bpf_map_update_elem(pb->map_fd, &map_key,
13321
0
            &cpu_buf->fd, 0);
13322
0
    if (err) {
13323
0
      err = -errno;
13324
0
      pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13325
0
        cpu, map_key, cpu_buf->fd,
13326
0
        libbpf_strerror_r(err, msg, sizeof(msg)));
13327
0
      goto error;
13328
0
    }
13329
13330
0
    pb->events[j].events = EPOLLIN;
13331
0
    pb->events[j].data.ptr = cpu_buf;
13332
0
    if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13333
0
            &pb->events[j]) < 0) {
13334
0
      err = -errno;
13335
0
      pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13336
0
        cpu, cpu_buf->fd,
13337
0
        libbpf_strerror_r(err, msg, sizeof(msg)));
13338
0
      goto error;
13339
0
    }
13340
0
    j++;
13341
0
  }
13342
0
  pb->cpu_cnt = j;
13343
0
  free(online);
13344
13345
0
  return pb;
13346
13347
0
error:
13348
0
  free(online);
13349
0
  if (pb)
13350
0
    perf_buffer__free(pb);
13351
0
  return ERR_PTR(err);
13352
0
}
13353
13354
struct perf_sample_raw {
13355
  struct perf_event_header header;
13356
  uint32_t size;
13357
  char data[];
13358
};
13359
13360
struct perf_sample_lost {
13361
  struct perf_event_header header;
13362
  uint64_t id;
13363
  uint64_t lost;
13364
  uint64_t sample_id;
13365
};
13366
13367
static enum bpf_perf_event_ret
13368
perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13369
0
{
13370
0
  struct perf_cpu_buf *cpu_buf = ctx;
13371
0
  struct perf_buffer *pb = cpu_buf->pb;
13372
0
  void *data = e;
13373
13374
  /* user wants full control over parsing perf event */
13375
0
  if (pb->event_cb)
13376
0
    return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13377
13378
0
  switch (e->type) {
13379
0
  case PERF_RECORD_SAMPLE: {
13380
0
    struct perf_sample_raw *s = data;
13381
13382
0
    if (pb->sample_cb)
13383
0
      pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13384
0
    break;
13385
0
  }
13386
0
  case PERF_RECORD_LOST: {
13387
0
    struct perf_sample_lost *s = data;
13388
13389
0
    if (pb->lost_cb)
13390
0
      pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13391
0
    break;
13392
0
  }
13393
0
  default:
13394
0
    pr_warn("unknown perf sample type %d\n", e->type);
13395
0
    return LIBBPF_PERF_EVENT_ERROR;
13396
0
  }
13397
0
  return LIBBPF_PERF_EVENT_CONT;
13398
0
}
13399
13400
static int perf_buffer__process_records(struct perf_buffer *pb,
13401
          struct perf_cpu_buf *cpu_buf)
13402
0
{
13403
0
  enum bpf_perf_event_ret ret;
13404
13405
0
  ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13406
0
             pb->page_size, &cpu_buf->buf,
13407
0
             &cpu_buf->buf_size,
13408
0
             perf_buffer__process_record, cpu_buf);
13409
0
  if (ret != LIBBPF_PERF_EVENT_CONT)
13410
0
    return ret;
13411
0
  return 0;
13412
0
}
13413
13414
int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13415
0
{
13416
0
  return pb->epoll_fd;
13417
0
}
13418
13419
int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13420
0
{
13421
0
  int i, cnt, err;
13422
13423
0
  cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13424
0
  if (cnt < 0)
13425
0
    return -errno;
13426
13427
0
  for (i = 0; i < cnt; i++) {
13428
0
    struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13429
13430
0
    err = perf_buffer__process_records(pb, cpu_buf);
13431
0
    if (err) {
13432
0
      pr_warn("error while processing records: %d\n", err);
13433
0
      return libbpf_err(err);
13434
0
    }
13435
0
  }
13436
0
  return cnt;
13437
0
}
13438
13439
/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13440
 * manager.
13441
 */
13442
size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13443
0
{
13444
0
  return pb->cpu_cnt;
13445
0
}
13446
13447
/*
13448
 * Return perf_event FD of a ring buffer in *buf_idx* slot of
13449
 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13450
 * select()/poll()/epoll() Linux syscalls.
13451
 */
13452
int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13453
0
{
13454
0
  struct perf_cpu_buf *cpu_buf;
13455
13456
0
  if (buf_idx >= pb->cpu_cnt)
13457
0
    return libbpf_err(-EINVAL);
13458
13459
0
  cpu_buf = pb->cpu_bufs[buf_idx];
13460
0
  if (!cpu_buf)
13461
0
    return libbpf_err(-ENOENT);
13462
13463
0
  return cpu_buf->fd;
13464
0
}
13465
13466
int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13467
0
{
13468
0
  struct perf_cpu_buf *cpu_buf;
13469
13470
0
  if (buf_idx >= pb->cpu_cnt)
13471
0
    return libbpf_err(-EINVAL);
13472
13473
0
  cpu_buf = pb->cpu_bufs[buf_idx];
13474
0
  if (!cpu_buf)
13475
0
    return libbpf_err(-ENOENT);
13476
13477
0
  *buf = cpu_buf->base;
13478
0
  *buf_size = pb->mmap_size;
13479
0
  return 0;
13480
0
}
13481
13482
/*
13483
 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13484
 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13485
 * consume, do nothing and return success.
13486
 * Returns:
13487
 *   - 0 on success;
13488
 *   - <0 on failure.
13489
 */
13490
int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13491
0
{
13492
0
  struct perf_cpu_buf *cpu_buf;
13493
13494
0
  if (buf_idx >= pb->cpu_cnt)
13495
0
    return libbpf_err(-EINVAL);
13496
13497
0
  cpu_buf = pb->cpu_bufs[buf_idx];
13498
0
  if (!cpu_buf)
13499
0
    return libbpf_err(-ENOENT);
13500
13501
0
  return perf_buffer__process_records(pb, cpu_buf);
13502
0
}
13503
13504
int perf_buffer__consume(struct perf_buffer *pb)
13505
0
{
13506
0
  int i, err;
13507
13508
0
  for (i = 0; i < pb->cpu_cnt; i++) {
13509
0
    struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13510
13511
0
    if (!cpu_buf)
13512
0
      continue;
13513
13514
0
    err = perf_buffer__process_records(pb, cpu_buf);
13515
0
    if (err) {
13516
0
      pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13517
0
      return libbpf_err(err);
13518
0
    }
13519
0
  }
13520
0
  return 0;
13521
0
}
13522
13523
int bpf_program__set_attach_target(struct bpf_program *prog,
13524
           int attach_prog_fd,
13525
           const char *attach_func_name)
13526
0
{
13527
0
  int btf_obj_fd = 0, btf_id = 0, err;
13528
13529
0
  if (!prog || attach_prog_fd < 0)
13530
0
    return libbpf_err(-EINVAL);
13531
13532
0
  if (prog->obj->loaded)
13533
0
    return libbpf_err(-EINVAL);
13534
13535
0
  if (attach_prog_fd && !attach_func_name) {
13536
    /* remember attach_prog_fd and let bpf_program__load() find
13537
     * BTF ID during the program load
13538
     */
13539
0
    prog->attach_prog_fd = attach_prog_fd;
13540
0
    return 0;
13541
0
  }
13542
13543
0
  if (attach_prog_fd) {
13544
0
    btf_id = libbpf_find_prog_btf_id(attach_func_name,
13545
0
             attach_prog_fd);
13546
0
    if (btf_id < 0)
13547
0
      return libbpf_err(btf_id);
13548
0
  } else {
13549
0
    if (!attach_func_name)
13550
0
      return libbpf_err(-EINVAL);
13551
13552
    /* load btf_vmlinux, if not yet */
13553
0
    err = bpf_object__load_vmlinux_btf(prog->obj, true);
13554
0
    if (err)
13555
0
      return libbpf_err(err);
13556
0
    err = find_kernel_btf_id(prog->obj, attach_func_name,
13557
0
           prog->expected_attach_type,
13558
0
           &btf_obj_fd, &btf_id);
13559
0
    if (err)
13560
0
      return libbpf_err(err);
13561
0
  }
13562
13563
0
  prog->attach_btf_id = btf_id;
13564
0
  prog->attach_btf_obj_fd = btf_obj_fd;
13565
0
  prog->attach_prog_fd = attach_prog_fd;
13566
0
  return 0;
13567
0
}
13568
13569
int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13570
0
{
13571
0
  int err = 0, n, len, start, end = -1;
13572
0
  bool *tmp;
13573
13574
0
  *mask = NULL;
13575
0
  *mask_sz = 0;
13576
13577
  /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13578
0
  while (*s) {
13579
0
    if (*s == ',' || *s == '\n') {
13580
0
      s++;
13581
0
      continue;
13582
0
    }
13583
0
    n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13584
0
    if (n <= 0 || n > 2) {
13585
0
      pr_warn("Failed to get CPU range %s: %d\n", s, n);
13586
0
      err = -EINVAL;
13587
0
      goto cleanup;
13588
0
    } else if (n == 1) {
13589
0
      end = start;
13590
0
    }
13591
0
    if (start < 0 || start > end) {
13592
0
      pr_warn("Invalid CPU range [%d,%d] in %s\n",
13593
0
        start, end, s);
13594
0
      err = -EINVAL;
13595
0
      goto cleanup;
13596
0
    }
13597
0
    tmp = realloc(*mask, end + 1);
13598
0
    if (!tmp) {
13599
0
      err = -ENOMEM;
13600
0
      goto cleanup;
13601
0
    }
13602
0
    *mask = tmp;
13603
0
    memset(tmp + *mask_sz, 0, start - *mask_sz);
13604
0
    memset(tmp + start, 1, end - start + 1);
13605
0
    *mask_sz = end + 1;
13606
0
    s += len;
13607
0
  }
13608
0
  if (!*mask_sz) {
13609
0
    pr_warn("Empty CPU range\n");
13610
0
    return -EINVAL;
13611
0
  }
13612
0
  return 0;
13613
0
cleanup:
13614
0
  free(*mask);
13615
0
  *mask = NULL;
13616
0
  return err;
13617
0
}
13618
13619
int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13620
0
{
13621
0
  int fd, err = 0, len;
13622
0
  char buf[128];
13623
13624
0
  fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13625
0
  if (fd < 0) {
13626
0
    err = -errno;
13627
0
    pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13628
0
    return err;
13629
0
  }
13630
0
  len = read(fd, buf, sizeof(buf));
13631
0
  close(fd);
13632
0
  if (len <= 0) {
13633
0
    err = len ? -errno : -EINVAL;
13634
0
    pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13635
0
    return err;
13636
0
  }
13637
0
  if (len >= sizeof(buf)) {
13638
0
    pr_warn("CPU mask is too big in file %s\n", fcpu);
13639
0
    return -E2BIG;
13640
0
  }
13641
0
  buf[len] = '\0';
13642
13643
0
  return parse_cpu_mask_str(buf, mask, mask_sz);
13644
0
}
13645
13646
int libbpf_num_possible_cpus(void)
13647
0
{
13648
0
  static const char *fcpu = "/sys/devices/system/cpu/possible";
13649
0
  static int cpus;
13650
0
  int err, n, i, tmp_cpus;
13651
0
  bool *mask;
13652
13653
0
  tmp_cpus = READ_ONCE(cpus);
13654
0
  if (tmp_cpus > 0)
13655
0
    return tmp_cpus;
13656
13657
0
  err = parse_cpu_mask_file(fcpu, &mask, &n);
13658
0
  if (err)
13659
0
    return libbpf_err(err);
13660
13661
0
  tmp_cpus = 0;
13662
0
  for (i = 0; i < n; i++) {
13663
0
    if (mask[i])
13664
0
      tmp_cpus++;
13665
0
  }
13666
0
  free(mask);
13667
13668
0
  WRITE_ONCE(cpus, tmp_cpus);
13669
0
  return tmp_cpus;
13670
0
}
13671
13672
static int populate_skeleton_maps(const struct bpf_object *obj,
13673
          struct bpf_map_skeleton *maps,
13674
          size_t map_cnt)
13675
0
{
13676
0
  int i;
13677
13678
0
  for (i = 0; i < map_cnt; i++) {
13679
0
    struct bpf_map **map = maps[i].map;
13680
0
    const char *name = maps[i].name;
13681
0
    void **mmaped = maps[i].mmaped;
13682
13683
0
    *map = bpf_object__find_map_by_name(obj, name);
13684
0
    if (!*map) {
13685
0
      pr_warn("failed to find skeleton map '%s'\n", name);
13686
0
      return -ESRCH;
13687
0
    }
13688
13689
    /* externs shouldn't be pre-setup from user code */
13690
0
    if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13691
0
      *mmaped = (*map)->mmaped;
13692
0
  }
13693
0
  return 0;
13694
0
}
13695
13696
static int populate_skeleton_progs(const struct bpf_object *obj,
13697
           struct bpf_prog_skeleton *progs,
13698
           size_t prog_cnt)
13699
0
{
13700
0
  int i;
13701
13702
0
  for (i = 0; i < prog_cnt; i++) {
13703
0
    struct bpf_program **prog = progs[i].prog;
13704
0
    const char *name = progs[i].name;
13705
13706
0
    *prog = bpf_object__find_program_by_name(obj, name);
13707
0
    if (!*prog) {
13708
0
      pr_warn("failed to find skeleton program '%s'\n", name);
13709
0
      return -ESRCH;
13710
0
    }
13711
0
  }
13712
0
  return 0;
13713
0
}
13714
13715
int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13716
            const struct bpf_object_open_opts *opts)
13717
0
{
13718
0
  DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13719
0
    .object_name = s->name,
13720
0
  );
13721
0
  struct bpf_object *obj;
13722
0
  int err;
13723
13724
  /* Attempt to preserve opts->object_name, unless overriden by user
13725
   * explicitly. Overwriting object name for skeletons is discouraged,
13726
   * as it breaks global data maps, because they contain object name
13727
   * prefix as their own map name prefix. When skeleton is generated,
13728
   * bpftool is making an assumption that this name will stay the same.
13729
   */
13730
0
  if (opts) {
13731
0
    memcpy(&skel_opts, opts, sizeof(*opts));
13732
0
    if (!opts->object_name)
13733
0
      skel_opts.object_name = s->name;
13734
0
  }
13735
13736
0
  obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13737
0
  err = libbpf_get_error(obj);
13738
0
  if (err) {
13739
0
    pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13740
0
      s->name, err);
13741
0
    return libbpf_err(err);
13742
0
  }
13743
13744
0
  *s->obj = obj;
13745
0
  err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13746
0
  if (err) {
13747
0
    pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13748
0
    return libbpf_err(err);
13749
0
  }
13750
13751
0
  err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13752
0
  if (err) {
13753
0
    pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13754
0
    return libbpf_err(err);
13755
0
  }
13756
13757
0
  return 0;
13758
0
}
13759
13760
int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13761
0
{
13762
0
  int err, len, var_idx, i;
13763
0
  const char *var_name;
13764
0
  const struct bpf_map *map;
13765
0
  struct btf *btf;
13766
0
  __u32 map_type_id;
13767
0
  const struct btf_type *map_type, *var_type;
13768
0
  const struct bpf_var_skeleton *var_skel;
13769
0
  struct btf_var_secinfo *var;
13770
13771
0
  if (!s->obj)
13772
0
    return libbpf_err(-EINVAL);
13773
13774
0
  btf = bpf_object__btf(s->obj);
13775
0
  if (!btf) {
13776
0
    pr_warn("subskeletons require BTF at runtime (object %s)\n",
13777
0
      bpf_object__name(s->obj));
13778
0
    return libbpf_err(-errno);
13779
0
  }
13780
13781
0
  err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13782
0
  if (err) {
13783
0
    pr_warn("failed to populate subskeleton maps: %d\n", err);
13784
0
    return libbpf_err(err);
13785
0
  }
13786
13787
0
  err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13788
0
  if (err) {
13789
0
    pr_warn("failed to populate subskeleton maps: %d\n", err);
13790
0
    return libbpf_err(err);
13791
0
  }
13792
13793
0
  for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13794
0
    var_skel = &s->vars[var_idx];
13795
0
    map = *var_skel->map;
13796
0
    map_type_id = bpf_map__btf_value_type_id(map);
13797
0
    map_type = btf__type_by_id(btf, map_type_id);
13798
13799
0
    if (!btf_is_datasec(map_type)) {
13800
0
      pr_warn("type for map '%1$s' is not a datasec: %2$s",
13801
0
        bpf_map__name(map),
13802
0
        __btf_kind_str(btf_kind(map_type)));
13803
0
      return libbpf_err(-EINVAL);
13804
0
    }
13805
13806
0
    len = btf_vlen(map_type);
13807
0
    var = btf_var_secinfos(map_type);
13808
0
    for (i = 0; i < len; i++, var++) {
13809
0
      var_type = btf__type_by_id(btf, var->type);
13810
0
      var_name = btf__name_by_offset(btf, var_type->name_off);
13811
0
      if (strcmp(var_name, var_skel->name) == 0) {
13812
0
        *var_skel->addr = map->mmaped + var->offset;
13813
0
        break;
13814
0
      }
13815
0
    }
13816
0
  }
13817
0
  return 0;
13818
0
}
13819
13820
void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13821
0
{
13822
0
  if (!s)
13823
0
    return;
13824
0
  free(s->maps);
13825
0
  free(s->progs);
13826
0
  free(s->vars);
13827
0
  free(s);
13828
0
}
13829
13830
int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13831
0
{
13832
0
  int i, err;
13833
13834
0
  err = bpf_object__load(*s->obj);
13835
0
  if (err) {
13836
0
    pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13837
0
    return libbpf_err(err);
13838
0
  }
13839
13840
0
  for (i = 0; i < s->map_cnt; i++) {
13841
0
    struct bpf_map *map = *s->maps[i].map;
13842
0
    size_t mmap_sz = bpf_map_mmap_sz(map);
13843
0
    int prot, map_fd = map->fd;
13844
0
    void **mmaped = s->maps[i].mmaped;
13845
13846
0
    if (!mmaped)
13847
0
      continue;
13848
13849
0
    if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13850
0
      *mmaped = NULL;
13851
0
      continue;
13852
0
    }
13853
13854
0
    if (map->def.type == BPF_MAP_TYPE_ARENA) {
13855
0
      *mmaped = map->mmaped;
13856
0
      continue;
13857
0
    }
13858
13859
0
    if (map->def.map_flags & BPF_F_RDONLY_PROG)
13860
0
      prot = PROT_READ;
13861
0
    else
13862
0
      prot = PROT_READ | PROT_WRITE;
13863
13864
    /* Remap anonymous mmap()-ed "map initialization image" as
13865
     * a BPF map-backed mmap()-ed memory, but preserving the same
13866
     * memory address. This will cause kernel to change process'
13867
     * page table to point to a different piece of kernel memory,
13868
     * but from userspace point of view memory address (and its
13869
     * contents, being identical at this point) will stay the
13870
     * same. This mapping will be released by bpf_object__close()
13871
     * as per normal clean up procedure, so we don't need to worry
13872
     * about it from skeleton's clean up perspective.
13873
     */
13874
0
    *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13875
0
    if (*mmaped == MAP_FAILED) {
13876
0
      err = -errno;
13877
0
      *mmaped = NULL;
13878
0
      pr_warn("failed to re-mmap() map '%s': %d\n",
13879
0
         bpf_map__name(map), err);
13880
0
      return libbpf_err(err);
13881
0
    }
13882
0
  }
13883
13884
0
  return 0;
13885
0
}
13886
13887
int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13888
0
{
13889
0
  int i, err;
13890
13891
0
  for (i = 0; i < s->prog_cnt; i++) {
13892
0
    struct bpf_program *prog = *s->progs[i].prog;
13893
0
    struct bpf_link **link = s->progs[i].link;
13894
13895
0
    if (!prog->autoload || !prog->autoattach)
13896
0
      continue;
13897
13898
    /* auto-attaching not supported for this program */
13899
0
    if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13900
0
      continue;
13901
13902
    /* if user already set the link manually, don't attempt auto-attach */
13903
0
    if (*link)
13904
0
      continue;
13905
13906
0
    err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13907
0
    if (err) {
13908
0
      pr_warn("prog '%s': failed to auto-attach: %d\n",
13909
0
        bpf_program__name(prog), err);
13910
0
      return libbpf_err(err);
13911
0
    }
13912
13913
    /* It's possible that for some SEC() definitions auto-attach
13914
     * is supported in some cases (e.g., if definition completely
13915
     * specifies target information), but is not in other cases.
13916
     * SEC("uprobe") is one such case. If user specified target
13917
     * binary and function name, such BPF program can be
13918
     * auto-attached. But if not, it shouldn't trigger skeleton's
13919
     * attach to fail. It should just be skipped.
13920
     * attach_fn signals such case with returning 0 (no error) and
13921
     * setting link to NULL.
13922
     */
13923
0
  }
13924
13925
0
  return 0;
13926
0
}
13927
13928
void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13929
0
{
13930
0
  int i;
13931
13932
0
  for (i = 0; i < s->prog_cnt; i++) {
13933
0
    struct bpf_link **link = s->progs[i].link;
13934
13935
0
    bpf_link__destroy(*link);
13936
0
    *link = NULL;
13937
0
  }
13938
0
}
13939
13940
void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13941
0
{
13942
0
  if (!s)
13943
0
    return;
13944
13945
0
  if (s->progs)
13946
0
    bpf_object__detach_skeleton(s);
13947
0
  if (s->obj)
13948
0
    bpf_object__close(*s->obj);
13949
0
  free(s->maps);
13950
0
  free(s->progs);
13951
0
  free(s);
13952
0
}