Coverage Report

Created: 2025-07-18 06:45

/src/libbpf/src/libbpf.c
Line
Count
Source (jump to first uncovered line)
1
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3
/*
4
 * Common eBPF ELF object loading operations.
5
 *
6
 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7
 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8
 * Copyright (C) 2015 Huawei Inc.
9
 * Copyright (C) 2017 Nicira, Inc.
10
 * Copyright (C) 2019 Isovalent, Inc.
11
 */
12
13
#ifndef _GNU_SOURCE
14
#define _GNU_SOURCE
15
#endif
16
#include <stdlib.h>
17
#include <stdio.h>
18
#include <stdarg.h>
19
#include <libgen.h>
20
#include <inttypes.h>
21
#include <limits.h>
22
#include <string.h>
23
#include <unistd.h>
24
#include <endian.h>
25
#include <fcntl.h>
26
#include <errno.h>
27
#include <ctype.h>
28
#include <asm/unistd.h>
29
#include <linux/err.h>
30
#include <linux/kernel.h>
31
#include <linux/bpf.h>
32
#include <linux/btf.h>
33
#include <linux/filter.h>
34
#include <linux/limits.h>
35
#include <linux/perf_event.h>
36
#include <linux/bpf_perf_event.h>
37
#include <linux/ring_buffer.h>
38
#include <sys/epoll.h>
39
#include <sys/ioctl.h>
40
#include <sys/mman.h>
41
#include <sys/stat.h>
42
#include <sys/types.h>
43
#include <sys/vfs.h>
44
#include <sys/utsname.h>
45
#include <sys/resource.h>
46
#include <libelf.h>
47
#include <gelf.h>
48
#include <zlib.h>
49
50
#include "libbpf.h"
51
#include "bpf.h"
52
#include "btf.h"
53
#include "str_error.h"
54
#include "libbpf_internal.h"
55
#include "hashmap.h"
56
#include "bpf_gen_internal.h"
57
#include "zip.h"
58
59
#ifndef BPF_FS_MAGIC
60
0
#define BPF_FS_MAGIC    0xcafe4a11
61
#endif
62
63
#define MAX_EVENT_NAME_LEN  64
64
65
1
#define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
66
67
90.0k
#define BPF_INSN_SZ (sizeof(struct bpf_insn))
68
69
/* vsprintf() in __base_pr() uses nonliteral format string. It may break
70
 * compilation if user enables corresponding warning. Disable it explicitly.
71
 */
72
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
73
74
#define __printf(a, b)  __attribute__((format(printf, a, b)))
75
76
static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
77
static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
78
static int map_set_def_max_entries(struct bpf_map *map);
79
80
static const char * const attach_type_name[] = {
81
  [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
82
  [BPF_CGROUP_INET_EGRESS]  = "cgroup_inet_egress",
83
  [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
84
  [BPF_CGROUP_INET_SOCK_RELEASE]  = "cgroup_inet_sock_release",
85
  [BPF_CGROUP_SOCK_OPS]   = "cgroup_sock_ops",
86
  [BPF_CGROUP_DEVICE]   = "cgroup_device",
87
  [BPF_CGROUP_INET4_BIND]   = "cgroup_inet4_bind",
88
  [BPF_CGROUP_INET6_BIND]   = "cgroup_inet6_bind",
89
  [BPF_CGROUP_INET4_CONNECT]  = "cgroup_inet4_connect",
90
  [BPF_CGROUP_INET6_CONNECT]  = "cgroup_inet6_connect",
91
  [BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
92
  [BPF_CGROUP_INET4_POST_BIND]  = "cgroup_inet4_post_bind",
93
  [BPF_CGROUP_INET6_POST_BIND]  = "cgroup_inet6_post_bind",
94
  [BPF_CGROUP_INET4_GETPEERNAME]  = "cgroup_inet4_getpeername",
95
  [BPF_CGROUP_INET6_GETPEERNAME]  = "cgroup_inet6_getpeername",
96
  [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername",
97
  [BPF_CGROUP_INET4_GETSOCKNAME]  = "cgroup_inet4_getsockname",
98
  [BPF_CGROUP_INET6_GETSOCKNAME]  = "cgroup_inet6_getsockname",
99
  [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname",
100
  [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
101
  [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
102
  [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg",
103
  [BPF_CGROUP_SYSCTL]   = "cgroup_sysctl",
104
  [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
105
  [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
106
  [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg",
107
  [BPF_CGROUP_GETSOCKOPT]   = "cgroup_getsockopt",
108
  [BPF_CGROUP_SETSOCKOPT]   = "cgroup_setsockopt",
109
  [BPF_SK_SKB_STREAM_PARSER]  = "sk_skb_stream_parser",
110
  [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
111
  [BPF_SK_SKB_VERDICT]    = "sk_skb_verdict",
112
  [BPF_SK_MSG_VERDICT]    = "sk_msg_verdict",
113
  [BPF_LIRC_MODE2]    = "lirc_mode2",
114
  [BPF_FLOW_DISSECTOR]    = "flow_dissector",
115
  [BPF_TRACE_RAW_TP]    = "trace_raw_tp",
116
  [BPF_TRACE_FENTRY]    = "trace_fentry",
117
  [BPF_TRACE_FEXIT]   = "trace_fexit",
118
  [BPF_MODIFY_RETURN]   = "modify_return",
119
  [BPF_LSM_MAC]     = "lsm_mac",
120
  [BPF_LSM_CGROUP]    = "lsm_cgroup",
121
  [BPF_SK_LOOKUP]     = "sk_lookup",
122
  [BPF_TRACE_ITER]    = "trace_iter",
123
  [BPF_XDP_DEVMAP]    = "xdp_devmap",
124
  [BPF_XDP_CPUMAP]    = "xdp_cpumap",
125
  [BPF_XDP]     = "xdp",
126
  [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
127
  [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]  = "sk_reuseport_select_or_migrate",
128
  [BPF_PERF_EVENT]    = "perf_event",
129
  [BPF_TRACE_KPROBE_MULTI]  = "trace_kprobe_multi",
130
  [BPF_STRUCT_OPS]    = "struct_ops",
131
  [BPF_NETFILTER]     = "netfilter",
132
  [BPF_TCX_INGRESS]   = "tcx_ingress",
133
  [BPF_TCX_EGRESS]    = "tcx_egress",
134
  [BPF_TRACE_UPROBE_MULTI]  = "trace_uprobe_multi",
135
  [BPF_NETKIT_PRIMARY]    = "netkit_primary",
136
  [BPF_NETKIT_PEER]   = "netkit_peer",
137
  [BPF_TRACE_KPROBE_SESSION]  = "trace_kprobe_session",
138
  [BPF_TRACE_UPROBE_SESSION]  = "trace_uprobe_session",
139
};
140
141
static const char * const link_type_name[] = {
142
  [BPF_LINK_TYPE_UNSPEC]      = "unspec",
143
  [BPF_LINK_TYPE_RAW_TRACEPOINT]    = "raw_tracepoint",
144
  [BPF_LINK_TYPE_TRACING]     = "tracing",
145
  [BPF_LINK_TYPE_CGROUP]      = "cgroup",
146
  [BPF_LINK_TYPE_ITER]      = "iter",
147
  [BPF_LINK_TYPE_NETNS]     = "netns",
148
  [BPF_LINK_TYPE_XDP]     = "xdp",
149
  [BPF_LINK_TYPE_PERF_EVENT]    = "perf_event",
150
  [BPF_LINK_TYPE_KPROBE_MULTI]    = "kprobe_multi",
151
  [BPF_LINK_TYPE_STRUCT_OPS]    = "struct_ops",
152
  [BPF_LINK_TYPE_NETFILTER]   = "netfilter",
153
  [BPF_LINK_TYPE_TCX]     = "tcx",
154
  [BPF_LINK_TYPE_UPROBE_MULTI]    = "uprobe_multi",
155
  [BPF_LINK_TYPE_NETKIT]      = "netkit",
156
  [BPF_LINK_TYPE_SOCKMAP]     = "sockmap",
157
};
158
159
static const char * const map_type_name[] = {
160
  [BPF_MAP_TYPE_UNSPEC]     = "unspec",
161
  [BPF_MAP_TYPE_HASH]     = "hash",
162
  [BPF_MAP_TYPE_ARRAY]      = "array",
163
  [BPF_MAP_TYPE_PROG_ARRAY]   = "prog_array",
164
  [BPF_MAP_TYPE_PERF_EVENT_ARRAY]   = "perf_event_array",
165
  [BPF_MAP_TYPE_PERCPU_HASH]    = "percpu_hash",
166
  [BPF_MAP_TYPE_PERCPU_ARRAY]   = "percpu_array",
167
  [BPF_MAP_TYPE_STACK_TRACE]    = "stack_trace",
168
  [BPF_MAP_TYPE_CGROUP_ARRAY]   = "cgroup_array",
169
  [BPF_MAP_TYPE_LRU_HASH]     = "lru_hash",
170
  [BPF_MAP_TYPE_LRU_PERCPU_HASH]    = "lru_percpu_hash",
171
  [BPF_MAP_TYPE_LPM_TRIE]     = "lpm_trie",
172
  [BPF_MAP_TYPE_ARRAY_OF_MAPS]    = "array_of_maps",
173
  [BPF_MAP_TYPE_HASH_OF_MAPS]   = "hash_of_maps",
174
  [BPF_MAP_TYPE_DEVMAP]     = "devmap",
175
  [BPF_MAP_TYPE_DEVMAP_HASH]    = "devmap_hash",
176
  [BPF_MAP_TYPE_SOCKMAP]      = "sockmap",
177
  [BPF_MAP_TYPE_CPUMAP]     = "cpumap",
178
  [BPF_MAP_TYPE_XSKMAP]     = "xskmap",
179
  [BPF_MAP_TYPE_SOCKHASH]     = "sockhash",
180
  [BPF_MAP_TYPE_CGROUP_STORAGE]   = "cgroup_storage",
181
  [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]  = "reuseport_sockarray",
182
  [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]  = "percpu_cgroup_storage",
183
  [BPF_MAP_TYPE_QUEUE]      = "queue",
184
  [BPF_MAP_TYPE_STACK]      = "stack",
185
  [BPF_MAP_TYPE_SK_STORAGE]   = "sk_storage",
186
  [BPF_MAP_TYPE_STRUCT_OPS]   = "struct_ops",
187
  [BPF_MAP_TYPE_RINGBUF]      = "ringbuf",
188
  [BPF_MAP_TYPE_INODE_STORAGE]    = "inode_storage",
189
  [BPF_MAP_TYPE_TASK_STORAGE]   = "task_storage",
190
  [BPF_MAP_TYPE_BLOOM_FILTER]   = "bloom_filter",
191
  [BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
192
  [BPF_MAP_TYPE_CGRP_STORAGE]   = "cgrp_storage",
193
  [BPF_MAP_TYPE_ARENA]      = "arena",
194
};
195
196
static const char * const prog_type_name[] = {
197
  [BPF_PROG_TYPE_UNSPEC]      = "unspec",
198
  [BPF_PROG_TYPE_SOCKET_FILTER]   = "socket_filter",
199
  [BPF_PROG_TYPE_KPROBE]      = "kprobe",
200
  [BPF_PROG_TYPE_SCHED_CLS]   = "sched_cls",
201
  [BPF_PROG_TYPE_SCHED_ACT]   = "sched_act",
202
  [BPF_PROG_TYPE_TRACEPOINT]    = "tracepoint",
203
  [BPF_PROG_TYPE_XDP]     = "xdp",
204
  [BPF_PROG_TYPE_PERF_EVENT]    = "perf_event",
205
  [BPF_PROG_TYPE_CGROUP_SKB]    = "cgroup_skb",
206
  [BPF_PROG_TYPE_CGROUP_SOCK]   = "cgroup_sock",
207
  [BPF_PROG_TYPE_LWT_IN]      = "lwt_in",
208
  [BPF_PROG_TYPE_LWT_OUT]     = "lwt_out",
209
  [BPF_PROG_TYPE_LWT_XMIT]    = "lwt_xmit",
210
  [BPF_PROG_TYPE_SOCK_OPS]    = "sock_ops",
211
  [BPF_PROG_TYPE_SK_SKB]      = "sk_skb",
212
  [BPF_PROG_TYPE_CGROUP_DEVICE]   = "cgroup_device",
213
  [BPF_PROG_TYPE_SK_MSG]      = "sk_msg",
214
  [BPF_PROG_TYPE_RAW_TRACEPOINT]    = "raw_tracepoint",
215
  [BPF_PROG_TYPE_CGROUP_SOCK_ADDR]  = "cgroup_sock_addr",
216
  [BPF_PROG_TYPE_LWT_SEG6LOCAL]   = "lwt_seg6local",
217
  [BPF_PROG_TYPE_LIRC_MODE2]    = "lirc_mode2",
218
  [BPF_PROG_TYPE_SK_REUSEPORT]    = "sk_reuseport",
219
  [BPF_PROG_TYPE_FLOW_DISSECTOR]    = "flow_dissector",
220
  [BPF_PROG_TYPE_CGROUP_SYSCTL]   = "cgroup_sysctl",
221
  [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
222
  [BPF_PROG_TYPE_CGROUP_SOCKOPT]    = "cgroup_sockopt",
223
  [BPF_PROG_TYPE_TRACING]     = "tracing",
224
  [BPF_PROG_TYPE_STRUCT_OPS]    = "struct_ops",
225
  [BPF_PROG_TYPE_EXT]     = "ext",
226
  [BPF_PROG_TYPE_LSM]     = "lsm",
227
  [BPF_PROG_TYPE_SK_LOOKUP]   = "sk_lookup",
228
  [BPF_PROG_TYPE_SYSCALL]     = "syscall",
229
  [BPF_PROG_TYPE_NETFILTER]   = "netfilter",
230
};
231
232
static int __base_pr(enum libbpf_print_level level, const char *format,
233
         va_list args)
234
0
{
235
0
  const char *env_var = "LIBBPF_LOG_LEVEL";
236
0
  static enum libbpf_print_level min_level = LIBBPF_INFO;
237
0
  static bool initialized;
238
239
0
  if (!initialized) {
240
0
    char *verbosity;
241
242
0
    initialized = true;
243
0
    verbosity = getenv(env_var);
244
0
    if (verbosity) {
245
0
      if (strcasecmp(verbosity, "warn") == 0)
246
0
        min_level = LIBBPF_WARN;
247
0
      else if (strcasecmp(verbosity, "debug") == 0)
248
0
        min_level = LIBBPF_DEBUG;
249
0
      else if (strcasecmp(verbosity, "info") == 0)
250
0
        min_level = LIBBPF_INFO;
251
0
      else
252
0
        fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n",
253
0
          env_var, verbosity);
254
0
    }
255
0
  }
256
257
  /* if too verbose, skip logging  */
258
0
  if (level > min_level)
259
0
    return 0;
260
261
0
  return vfprintf(stderr, format, args);
262
0
}
263
264
static libbpf_print_fn_t __libbpf_pr = __base_pr;
265
266
libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
267
11.5k
{
268
11.5k
  libbpf_print_fn_t old_print_fn;
269
270
11.5k
  old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
271
272
11.5k
  return old_print_fn;
273
11.5k
}
274
275
__printf(2, 3)
276
void libbpf_print(enum libbpf_print_level level, const char *format, ...)
277
130k
{
278
130k
  va_list args;
279
130k
  int old_errno;
280
130k
  libbpf_print_fn_t print_fn;
281
282
130k
  print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
283
130k
  if (!print_fn)
284
0
    return;
285
286
130k
  old_errno = errno;
287
288
130k
  va_start(args, format);
289
130k
  print_fn(level, format, args);
290
130k
  va_end(args);
291
292
130k
  errno = old_errno;
293
130k
}
294
295
static void pr_perm_msg(int err)
296
0
{
297
0
  struct rlimit limit;
298
0
  char buf[100];
299
300
0
  if (err != -EPERM || geteuid() != 0)
301
0
    return;
302
303
0
  err = getrlimit(RLIMIT_MEMLOCK, &limit);
304
0
  if (err)
305
0
    return;
306
307
0
  if (limit.rlim_cur == RLIM_INFINITY)
308
0
    return;
309
310
0
  if (limit.rlim_cur < 1024)
311
0
    snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
312
0
  else if (limit.rlim_cur < 1024*1024)
313
0
    snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
314
0
  else
315
0
    snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
316
317
0
  pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
318
0
    buf);
319
0
}
320
321
#define STRERR_BUFSIZE  128
322
323
/* Copied from tools/perf/util/util.h */
324
#ifndef zfree
325
220k
# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
326
#endif
327
328
#ifndef zclose
329
32.8k
# define zclose(fd) ({      \
330
32.8k
  int ___err = 0;     \
331
32.8k
  if ((fd) >= 0)     \
332
32.8k
    ___err = close((fd)); \
333
32.8k
  fd = -1;      \
334
32.8k
  ___err; })
335
#endif
336
337
static inline __u64 ptr_to_u64(const void *ptr)
338
0
{
339
0
  return (__u64) (unsigned long) ptr;
340
0
}
341
342
int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
343
0
{
344
  /* as of v1.0 libbpf_set_strict_mode() is a no-op */
345
0
  return 0;
346
0
}
347
348
__u32 libbpf_major_version(void)
349
0
{
350
0
  return LIBBPF_MAJOR_VERSION;
351
0
}
352
353
__u32 libbpf_minor_version(void)
354
0
{
355
0
  return LIBBPF_MINOR_VERSION;
356
0
}
357
358
const char *libbpf_version_string(void)
359
0
{
360
0
#define __S(X) #X
361
0
#define _S(X) __S(X)
362
0
  return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
363
0
#undef _S
364
0
#undef __S
365
0
}
366
367
enum reloc_type {
368
  RELO_LD64,
369
  RELO_CALL,
370
  RELO_DATA,
371
  RELO_EXTERN_LD64,
372
  RELO_EXTERN_CALL,
373
  RELO_SUBPROG_ADDR,
374
  RELO_CORE,
375
};
376
377
struct reloc_desc {
378
  enum reloc_type type;
379
  int insn_idx;
380
  union {
381
    const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
382
    struct {
383
      int map_idx;
384
      int sym_off;
385
      int ext_idx;
386
    };
387
  };
388
};
389
390
/* stored as sec_def->cookie for all libbpf-supported SEC()s */
391
enum sec_def_flags {
392
  SEC_NONE = 0,
393
  /* expected_attach_type is optional, if kernel doesn't support that */
394
  SEC_EXP_ATTACH_OPT = 1,
395
  /* legacy, only used by libbpf_get_type_names() and
396
   * libbpf_attach_type_by_name(), not used by libbpf itself at all.
397
   * This used to be associated with cgroup (and few other) BPF programs
398
   * that were attachable through BPF_PROG_ATTACH command. Pretty
399
   * meaningless nowadays, though.
400
   */
401
  SEC_ATTACHABLE = 2,
402
  SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
403
  /* attachment target is specified through BTF ID in either kernel or
404
   * other BPF program's BTF object
405
   */
406
  SEC_ATTACH_BTF = 4,
407
  /* BPF program type allows sleeping/blocking in kernel */
408
  SEC_SLEEPABLE = 8,
409
  /* BPF program support non-linear XDP buffer */
410
  SEC_XDP_FRAGS = 16,
411
  /* Setup proper attach type for usdt probes. */
412
  SEC_USDT = 32,
413
};
414
415
struct bpf_sec_def {
416
  char *sec;
417
  enum bpf_prog_type prog_type;
418
  enum bpf_attach_type expected_attach_type;
419
  long cookie;
420
  int handler_id;
421
422
  libbpf_prog_setup_fn_t prog_setup_fn;
423
  libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
424
  libbpf_prog_attach_fn_t prog_attach_fn;
425
};
426
427
/*
428
 * bpf_prog should be a better name but it has been used in
429
 * linux/filter.h.
430
 */
431
struct bpf_program {
432
  char *name;
433
  char *sec_name;
434
  size_t sec_idx;
435
  const struct bpf_sec_def *sec_def;
436
  /* this program's instruction offset (in number of instructions)
437
   * within its containing ELF section
438
   */
439
  size_t sec_insn_off;
440
  /* number of original instructions in ELF section belonging to this
441
   * program, not taking into account subprogram instructions possible
442
   * appended later during relocation
443
   */
444
  size_t sec_insn_cnt;
445
  /* Offset (in number of instructions) of the start of instruction
446
   * belonging to this BPF program  within its containing main BPF
447
   * program. For the entry-point (main) BPF program, this is always
448
   * zero. For a sub-program, this gets reset before each of main BPF
449
   * programs are processed and relocated and is used to determined
450
   * whether sub-program was already appended to the main program, and
451
   * if yes, at which instruction offset.
452
   */
453
  size_t sub_insn_off;
454
455
  /* instructions that belong to BPF program; insns[0] is located at
456
   * sec_insn_off instruction within its ELF section in ELF file, so
457
   * when mapping ELF file instruction index to the local instruction,
458
   * one needs to subtract sec_insn_off; and vice versa.
459
   */
460
  struct bpf_insn *insns;
461
  /* actual number of instruction in this BPF program's image; for
462
   * entry-point BPF programs this includes the size of main program
463
   * itself plus all the used sub-programs, appended at the end
464
   */
465
  size_t insns_cnt;
466
467
  struct reloc_desc *reloc_desc;
468
  int nr_reloc;
469
470
  /* BPF verifier log settings */
471
  char *log_buf;
472
  size_t log_size;
473
  __u32 log_level;
474
475
  struct bpf_object *obj;
476
477
  int fd;
478
  bool autoload;
479
  bool autoattach;
480
  bool sym_global;
481
  bool mark_btf_static;
482
  enum bpf_prog_type type;
483
  enum bpf_attach_type expected_attach_type;
484
  int exception_cb_idx;
485
486
  int prog_ifindex;
487
  __u32 attach_btf_obj_fd;
488
  __u32 attach_btf_id;
489
  __u32 attach_prog_fd;
490
491
  void *func_info;
492
  __u32 func_info_rec_size;
493
  __u32 func_info_cnt;
494
495
  void *line_info;
496
  __u32 line_info_rec_size;
497
  __u32 line_info_cnt;
498
  __u32 prog_flags;
499
};
500
501
struct bpf_struct_ops {
502
  struct bpf_program **progs;
503
  __u32 *kern_func_off;
504
  /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
505
  void *data;
506
  /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
507
   *      btf_vmlinux's format.
508
   * struct bpf_struct_ops_tcp_congestion_ops {
509
   *  [... some other kernel fields ...]
510
   *  struct tcp_congestion_ops data;
511
   * }
512
   * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
513
   * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
514
   * from "data".
515
   */
516
  void *kern_vdata;
517
  __u32 type_id;
518
};
519
520
3.14k
#define DATA_SEC ".data"
521
2.27k
#define BSS_SEC ".bss"
522
2.59k
#define RODATA_SEC ".rodata"
523
7.05k
#define KCONFIG_SEC ".kconfig"
524
9.23k
#define KSYMS_SEC ".ksyms"
525
6.20k
#define STRUCT_OPS_SEC ".struct_ops"
526
5.90k
#define STRUCT_OPS_LINK_SEC ".struct_ops.link"
527
1.40k
#define ARENA_SEC ".addr_space.1"
528
529
enum libbpf_map_type {
530
  LIBBPF_MAP_UNSPEC,
531
  LIBBPF_MAP_DATA,
532
  LIBBPF_MAP_BSS,
533
  LIBBPF_MAP_RODATA,
534
  LIBBPF_MAP_KCONFIG,
535
};
536
537
struct bpf_map_def {
538
  unsigned int type;
539
  unsigned int key_size;
540
  unsigned int value_size;
541
  unsigned int max_entries;
542
  unsigned int map_flags;
543
};
544
545
struct bpf_map {
546
  struct bpf_object *obj;
547
  char *name;
548
  /* real_name is defined for special internal maps (.rodata*,
549
   * .data*, .bss, .kconfig) and preserves their original ELF section
550
   * name. This is important to be able to find corresponding BTF
551
   * DATASEC information.
552
   */
553
  char *real_name;
554
  int fd;
555
  int sec_idx;
556
  size_t sec_offset;
557
  int map_ifindex;
558
  int inner_map_fd;
559
  struct bpf_map_def def;
560
  __u32 numa_node;
561
  __u32 btf_var_idx;
562
  int mod_btf_fd;
563
  __u32 btf_key_type_id;
564
  __u32 btf_value_type_id;
565
  __u32 btf_vmlinux_value_type_id;
566
  enum libbpf_map_type libbpf_type;
567
  void *mmaped;
568
  struct bpf_struct_ops *st_ops;
569
  struct bpf_map *inner_map;
570
  void **init_slots;
571
  int init_slots_sz;
572
  char *pin_path;
573
  bool pinned;
574
  bool reused;
575
  bool autocreate;
576
  bool autoattach;
577
  __u64 map_extra;
578
};
579
580
enum extern_type {
581
  EXT_UNKNOWN,
582
  EXT_KCFG,
583
  EXT_KSYM,
584
};
585
586
enum kcfg_type {
587
  KCFG_UNKNOWN,
588
  KCFG_CHAR,
589
  KCFG_BOOL,
590
  KCFG_INT,
591
  KCFG_TRISTATE,
592
  KCFG_CHAR_ARR,
593
};
594
595
struct extern_desc {
596
  enum extern_type type;
597
  int sym_idx;
598
  int btf_id;
599
  int sec_btf_id;
600
  char *name;
601
  char *essent_name;
602
  bool is_set;
603
  bool is_weak;
604
  union {
605
    struct {
606
      enum kcfg_type type;
607
      int sz;
608
      int align;
609
      int data_off;
610
      bool is_signed;
611
    } kcfg;
612
    struct {
613
      unsigned long long addr;
614
615
      /* target btf_id of the corresponding kernel var. */
616
      int kernel_btf_obj_fd;
617
      int kernel_btf_id;
618
619
      /* local btf_id of the ksym extern's type. */
620
      __u32 type_id;
621
      /* BTF fd index to be patched in for insn->off, this is
622
       * 0 for vmlinux BTF, index in obj->fd_array for module
623
       * BTF
624
       */
625
      __s16 btf_fd_idx;
626
    } ksym;
627
  };
628
};
629
630
struct module_btf {
631
  struct btf *btf;
632
  char *name;
633
  __u32 id;
634
  int fd;
635
  int fd_array_idx;
636
};
637
638
enum sec_type {
639
  SEC_UNUSED = 0,
640
  SEC_RELO,
641
  SEC_BSS,
642
  SEC_DATA,
643
  SEC_RODATA,
644
  SEC_ST_OPS,
645
};
646
647
struct elf_sec_desc {
648
  enum sec_type sec_type;
649
  Elf64_Shdr *shdr;
650
  Elf_Data *data;
651
};
652
653
struct elf_state {
654
  int fd;
655
  const void *obj_buf;
656
  size_t obj_buf_sz;
657
  Elf *elf;
658
  Elf64_Ehdr *ehdr;
659
  Elf_Data *symbols;
660
  Elf_Data *arena_data;
661
  size_t shstrndx; /* section index for section name strings */
662
  size_t strtabidx;
663
  struct elf_sec_desc *secs;
664
  size_t sec_cnt;
665
  int btf_maps_shndx;
666
  __u32 btf_maps_sec_btf_id;
667
  int text_shndx;
668
  int symbols_shndx;
669
  bool has_st_ops;
670
  int arena_data_shndx;
671
};
672
673
struct usdt_manager;
674
675
enum bpf_object_state {
676
  OBJ_OPEN,
677
  OBJ_PREPARED,
678
  OBJ_LOADED,
679
};
680
681
struct bpf_object {
682
  char name[BPF_OBJ_NAME_LEN];
683
  char license[64];
684
  __u32 kern_version;
685
686
  enum bpf_object_state state;
687
  struct bpf_program *programs;
688
  size_t nr_programs;
689
  struct bpf_map *maps;
690
  size_t nr_maps;
691
  size_t maps_cap;
692
693
  char *kconfig;
694
  struct extern_desc *externs;
695
  int nr_extern;
696
  int kconfig_map_idx;
697
698
  bool has_subcalls;
699
  bool has_rodata;
700
701
  struct bpf_gen *gen_loader;
702
703
  /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
704
  struct elf_state efile;
705
706
  unsigned char byteorder;
707
708
  struct btf *btf;
709
  struct btf_ext *btf_ext;
710
711
  /* Parse and load BTF vmlinux if any of the programs in the object need
712
   * it at load time.
713
   */
714
  struct btf *btf_vmlinux;
715
  /* Path to the custom BTF to be used for BPF CO-RE relocations as an
716
   * override for vmlinux BTF.
717
   */
718
  char *btf_custom_path;
719
  /* vmlinux BTF override for CO-RE relocations */
720
  struct btf *btf_vmlinux_override;
721
  /* Lazily initialized kernel module BTFs */
722
  struct module_btf *btf_modules;
723
  bool btf_modules_loaded;
724
  size_t btf_module_cnt;
725
  size_t btf_module_cap;
726
727
  /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
728
  char *log_buf;
729
  size_t log_size;
730
  __u32 log_level;
731
732
  int *fd_array;
733
  size_t fd_array_cap;
734
  size_t fd_array_cnt;
735
736
  struct usdt_manager *usdt_man;
737
738
  struct bpf_map *arena_map;
739
  void *arena_data;
740
  size_t arena_data_sz;
741
742
  struct kern_feature_cache *feat_cache;
743
  char *token_path;
744
  int token_fd;
745
746
  char path[];
747
};
748
749
static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
750
static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
751
static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
752
static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
753
static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
754
static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
755
static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
756
static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
757
static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
758
759
void bpf_program__unload(struct bpf_program *prog)
760
18.5k
{
761
18.5k
  if (!prog)
762
0
    return;
763
764
18.5k
  zclose(prog->fd);
765
766
18.5k
  zfree(&prog->func_info);
767
18.5k
  zfree(&prog->line_info);
768
18.5k
}
769
770
static void bpf_program__exit(struct bpf_program *prog)
771
9.26k
{
772
9.26k
  if (!prog)
773
0
    return;
774
775
9.26k
  bpf_program__unload(prog);
776
9.26k
  zfree(&prog->name);
777
9.26k
  zfree(&prog->sec_name);
778
9.26k
  zfree(&prog->insns);
779
9.26k
  zfree(&prog->reloc_desc);
780
781
9.26k
  prog->nr_reloc = 0;
782
9.26k
  prog->insns_cnt = 0;
783
9.26k
  prog->sec_idx = -1;
784
9.26k
}
785
786
static bool insn_is_subprog_call(const struct bpf_insn *insn)
787
0
{
788
0
  return BPF_CLASS(insn->code) == BPF_JMP &&
789
0
         BPF_OP(insn->code) == BPF_CALL &&
790
0
         BPF_SRC(insn->code) == BPF_K &&
791
0
         insn->src_reg == BPF_PSEUDO_CALL &&
792
0
         insn->dst_reg == 0 &&
793
0
         insn->off == 0;
794
0
}
795
796
static bool is_call_insn(const struct bpf_insn *insn)
797
2.61k
{
798
2.61k
  return insn->code == (BPF_JMP | BPF_CALL);
799
2.61k
}
800
801
static bool insn_is_pseudo_func(struct bpf_insn *insn)
802
0
{
803
0
  return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
804
0
}
805
806
static int
807
bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
808
          const char *name, size_t sec_idx, const char *sec_name,
809
          size_t sec_off, void *insn_data, size_t insn_data_sz)
810
9.28k
{
811
9.28k
  if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
812
18
    pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
813
18
      sec_name, name, sec_off, insn_data_sz);
814
18
    return -EINVAL;
815
18
  }
816
817
9.26k
  memset(prog, 0, sizeof(*prog));
818
9.26k
  prog->obj = obj;
819
820
9.26k
  prog->sec_idx = sec_idx;
821
9.26k
  prog->sec_insn_off = sec_off / BPF_INSN_SZ;
822
9.26k
  prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
823
  /* insns_cnt can later be increased by appending used subprograms */
824
9.26k
  prog->insns_cnt = prog->sec_insn_cnt;
825
826
9.26k
  prog->type = BPF_PROG_TYPE_UNSPEC;
827
9.26k
  prog->fd = -1;
828
9.26k
  prog->exception_cb_idx = -1;
829
830
  /* libbpf's convention for SEC("?abc...") is that it's just like
831
   * SEC("abc...") but the corresponding bpf_program starts out with
832
   * autoload set to false.
833
   */
834
9.26k
  if (sec_name[0] == '?') {
835
308
    prog->autoload = false;
836
    /* from now on forget there was ? in section name */
837
308
    sec_name++;
838
8.95k
  } else {
839
8.95k
    prog->autoload = true;
840
8.95k
  }
841
842
9.26k
  prog->autoattach = true;
843
844
  /* inherit object's log_level */
845
9.26k
  prog->log_level = obj->log_level;
846
847
9.26k
  prog->sec_name = strdup(sec_name);
848
9.26k
  if (!prog->sec_name)
849
0
    goto errout;
850
851
9.26k
  prog->name = strdup(name);
852
9.26k
  if (!prog->name)
853
0
    goto errout;
854
855
9.26k
  prog->insns = malloc(insn_data_sz);
856
9.26k
  if (!prog->insns)
857
0
    goto errout;
858
9.26k
  memcpy(prog->insns, insn_data, insn_data_sz);
859
860
9.26k
  return 0;
861
0
errout:
862
0
  pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
863
0
  bpf_program__exit(prog);
864
0
  return -ENOMEM;
865
9.26k
}
866
867
static int
868
bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
869
       const char *sec_name, int sec_idx)
870
1.33k
{
871
1.33k
  Elf_Data *symbols = obj->efile.symbols;
872
1.33k
  struct bpf_program *prog, *progs;
873
1.33k
  void *data = sec_data->d_buf;
874
1.33k
  size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
875
1.33k
  int nr_progs, err, i;
876
1.33k
  const char *name;
877
1.33k
  Elf64_Sym *sym;
878
879
1.33k
  progs = obj->programs;
880
1.33k
  nr_progs = obj->nr_programs;
881
1.33k
  nr_syms = symbols->d_size / sizeof(Elf64_Sym);
882
883
189k
  for (i = 0; i < nr_syms; i++) {
884
187k
    sym = elf_sym_by_idx(obj, i);
885
886
187k
    if (sym->st_shndx != sec_idx)
887
176k
      continue;
888
11.2k
    if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
889
1.74k
      continue;
890
891
9.49k
    prog_sz = sym->st_size;
892
9.49k
    sec_off = sym->st_value;
893
894
9.49k
    name = elf_sym_str(obj, sym->st_name);
895
9.49k
    if (!name) {
896
67
      pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
897
67
        sec_name, sec_off);
898
67
      return -LIBBPF_ERRNO__FORMAT;
899
67
    }
900
901
9.42k
    if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) {
902
135
      pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
903
135
        sec_name, sec_off);
904
135
      return -LIBBPF_ERRNO__FORMAT;
905
135
    }
906
907
9.29k
    if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
908
8
      pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
909
8
      return -ENOTSUP;
910
8
    }
911
912
9.28k
    pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
913
18.5k
       sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
914
915
9.28k
    progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
916
9.28k
    if (!progs) {
917
      /*
918
       * In this case the original obj->programs
919
       * is still valid, so don't need special treat for
920
       * bpf_close_object().
921
       */
922
0
      pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
923
0
        sec_name, name);
924
0
      return -ENOMEM;
925
0
    }
926
9.28k
    obj->programs = progs;
927
928
9.28k
    prog = &progs[nr_progs];
929
930
9.28k
    err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
931
9.28k
              sec_off, data + sec_off, prog_sz);
932
9.28k
    if (err)
933
18
      return err;
934
935
9.26k
    if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
936
9.07k
      prog->sym_global = true;
937
938
    /* if function is a global/weak symbol, but has restricted
939
     * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
940
     * as static to enable more permissive BPF verification mode
941
     * with more outside context available to BPF verifier
942
     */
943
9.26k
    if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
944
9.07k
        || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
945
6.59k
      prog->mark_btf_static = true;
946
947
9.26k
    nr_progs++;
948
9.26k
    obj->nr_programs = nr_progs;
949
9.26k
  }
950
951
1.10k
  return 0;
952
1.33k
}
953
954
static void bpf_object_bswap_progs(struct bpf_object *obj)
955
220
{
956
220
  struct bpf_program *prog = obj->programs;
957
220
  struct bpf_insn *insn;
958
220
  int p, i;
959
960
602
  for (p = 0; p < obj->nr_programs; p++, prog++) {
961
382
    insn = prog->insns;
962
3.50k
    for (i = 0; i < prog->insns_cnt; i++, insn++)
963
3.12k
      bpf_insn_bswap(insn);
964
382
  }
965
220
  pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs);
966
220
}
967
968
static const struct btf_member *
969
find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
970
0
{
971
0
  struct btf_member *m;
972
0
  int i;
973
974
0
  for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
975
0
    if (btf_member_bit_offset(t, i) == bit_offset)
976
0
      return m;
977
0
  }
978
979
0
  return NULL;
980
0
}
981
982
static const struct btf_member *
983
find_member_by_name(const struct btf *btf, const struct btf_type *t,
984
        const char *name)
985
0
{
986
0
  struct btf_member *m;
987
0
  int i;
988
989
0
  for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
990
0
    if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
991
0
      return m;
992
0
  }
993
994
0
  return NULL;
995
0
}
996
997
static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
998
          __u16 kind, struct btf **res_btf,
999
          struct module_btf **res_mod_btf);
1000
1001
0
#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
1002
static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
1003
           const char *name, __u32 kind);
1004
1005
static int
1006
find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
1007
         struct module_btf **mod_btf,
1008
         const struct btf_type **type, __u32 *type_id,
1009
         const struct btf_type **vtype, __u32 *vtype_id,
1010
         const struct btf_member **data_member)
1011
0
{
1012
0
  const struct btf_type *kern_type, *kern_vtype;
1013
0
  const struct btf_member *kern_data_member;
1014
0
  struct btf *btf = NULL;
1015
0
  __s32 kern_vtype_id, kern_type_id;
1016
0
  char tname[256];
1017
0
  __u32 i;
1018
1019
0
  snprintf(tname, sizeof(tname), "%.*s",
1020
0
     (int)bpf_core_essential_name_len(tname_raw), tname_raw);
1021
1022
0
  kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
1023
0
          &btf, mod_btf);
1024
0
  if (kern_type_id < 0) {
1025
0
    pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
1026
0
      tname);
1027
0
    return kern_type_id;
1028
0
  }
1029
0
  kern_type = btf__type_by_id(btf, kern_type_id);
1030
1031
  /* Find the corresponding "map_value" type that will be used
1032
   * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
1033
   * find "struct bpf_struct_ops_tcp_congestion_ops" from the
1034
   * btf_vmlinux.
1035
   */
1036
0
  kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
1037
0
            tname, BTF_KIND_STRUCT);
1038
0
  if (kern_vtype_id < 0) {
1039
0
    pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
1040
0
      STRUCT_OPS_VALUE_PREFIX, tname);
1041
0
    return kern_vtype_id;
1042
0
  }
1043
0
  kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1044
1045
  /* Find "struct tcp_congestion_ops" from
1046
   * struct bpf_struct_ops_tcp_congestion_ops {
1047
   *  [ ... ]
1048
   *  struct tcp_congestion_ops data;
1049
   * }
1050
   */
1051
0
  kern_data_member = btf_members(kern_vtype);
1052
0
  for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1053
0
    if (kern_data_member->type == kern_type_id)
1054
0
      break;
1055
0
  }
1056
0
  if (i == btf_vlen(kern_vtype)) {
1057
0
    pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1058
0
      tname, STRUCT_OPS_VALUE_PREFIX, tname);
1059
0
    return -EINVAL;
1060
0
  }
1061
1062
0
  *type = kern_type;
1063
0
  *type_id = kern_type_id;
1064
0
  *vtype = kern_vtype;
1065
0
  *vtype_id = kern_vtype_id;
1066
0
  *data_member = kern_data_member;
1067
1068
0
  return 0;
1069
0
}
1070
1071
static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1072
528
{
1073
528
  return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1074
528
}
1075
1076
static bool is_valid_st_ops_program(struct bpf_object *obj,
1077
            const struct bpf_program *prog)
1078
0
{
1079
0
  int i;
1080
1081
0
  for (i = 0; i < obj->nr_programs; i++) {
1082
0
    if (&obj->programs[i] == prog)
1083
0
      return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1084
0
  }
1085
1086
0
  return false;
1087
0
}
1088
1089
/* For each struct_ops program P, referenced from some struct_ops map M,
1090
 * enable P.autoload if there are Ms for which M.autocreate is true,
1091
 * disable P.autoload if for all Ms M.autocreate is false.
1092
 * Don't change P.autoload for programs that are not referenced from any maps.
1093
 */
1094
static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1095
0
{
1096
0
  struct bpf_program *prog, *slot_prog;
1097
0
  struct bpf_map *map;
1098
0
  int i, j, k, vlen;
1099
1100
0
  for (i = 0; i < obj->nr_programs; ++i) {
1101
0
    int should_load = false;
1102
0
    int use_cnt = 0;
1103
1104
0
    prog = &obj->programs[i];
1105
0
    if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1106
0
      continue;
1107
1108
0
    for (j = 0; j < obj->nr_maps; ++j) {
1109
0
      const struct btf_type *type;
1110
1111
0
      map = &obj->maps[j];
1112
0
      if (!bpf_map__is_struct_ops(map))
1113
0
        continue;
1114
1115
0
      type = btf__type_by_id(obj->btf, map->st_ops->type_id);
1116
0
      vlen = btf_vlen(type);
1117
0
      for (k = 0; k < vlen; ++k) {
1118
0
        slot_prog = map->st_ops->progs[k];
1119
0
        if (prog != slot_prog)
1120
0
          continue;
1121
1122
0
        use_cnt++;
1123
0
        if (map->autocreate)
1124
0
          should_load = true;
1125
0
      }
1126
0
    }
1127
0
    if (use_cnt)
1128
0
      prog->autoload = should_load;
1129
0
  }
1130
1131
0
  return 0;
1132
0
}
1133
1134
/* Init the map's fields that depend on kern_btf */
1135
static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1136
0
{
1137
0
  const struct btf_member *member, *kern_member, *kern_data_member;
1138
0
  const struct btf_type *type, *kern_type, *kern_vtype;
1139
0
  __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1140
0
  struct bpf_object *obj = map->obj;
1141
0
  const struct btf *btf = obj->btf;
1142
0
  struct bpf_struct_ops *st_ops;
1143
0
  const struct btf *kern_btf;
1144
0
  struct module_btf *mod_btf = NULL;
1145
0
  void *data, *kern_data;
1146
0
  const char *tname;
1147
0
  int err;
1148
1149
0
  st_ops = map->st_ops;
1150
0
  type = btf__type_by_id(btf, st_ops->type_id);
1151
0
  tname = btf__name_by_offset(btf, type->name_off);
1152
0
  err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1153
0
           &kern_type, &kern_type_id,
1154
0
           &kern_vtype, &kern_vtype_id,
1155
0
           &kern_data_member);
1156
0
  if (err)
1157
0
    return err;
1158
1159
0
  kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1160
1161
0
  pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1162
0
     map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1163
1164
0
  map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1165
0
  map->def.value_size = kern_vtype->size;
1166
0
  map->btf_vmlinux_value_type_id = kern_vtype_id;
1167
1168
0
  st_ops->kern_vdata = calloc(1, kern_vtype->size);
1169
0
  if (!st_ops->kern_vdata)
1170
0
    return -ENOMEM;
1171
1172
0
  data = st_ops->data;
1173
0
  kern_data_off = kern_data_member->offset / 8;
1174
0
  kern_data = st_ops->kern_vdata + kern_data_off;
1175
1176
0
  member = btf_members(type);
1177
0
  for (i = 0; i < btf_vlen(type); i++, member++) {
1178
0
    const struct btf_type *mtype, *kern_mtype;
1179
0
    __u32 mtype_id, kern_mtype_id;
1180
0
    void *mdata, *kern_mdata;
1181
0
    struct bpf_program *prog;
1182
0
    __s64 msize, kern_msize;
1183
0
    __u32 moff, kern_moff;
1184
0
    __u32 kern_member_idx;
1185
0
    const char *mname;
1186
1187
0
    mname = btf__name_by_offset(btf, member->name_off);
1188
0
    moff = member->offset / 8;
1189
0
    mdata = data + moff;
1190
0
    msize = btf__resolve_size(btf, member->type);
1191
0
    if (msize < 0) {
1192
0
      pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1193
0
        map->name, mname);
1194
0
      return msize;
1195
0
    }
1196
1197
0
    kern_member = find_member_by_name(kern_btf, kern_type, mname);
1198
0
    if (!kern_member) {
1199
0
      if (!libbpf_is_mem_zeroed(mdata, msize)) {
1200
0
        pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1201
0
          map->name, mname);
1202
0
        return -ENOTSUP;
1203
0
      }
1204
1205
0
      if (st_ops->progs[i]) {
1206
        /* If we had declaratively set struct_ops callback, we need to
1207
         * force its autoload to false, because it doesn't have
1208
         * a chance of succeeding from POV of the current struct_ops map.
1209
         * If this program is still referenced somewhere else, though,
1210
         * then bpf_object_adjust_struct_ops_autoload() will update its
1211
         * autoload accordingly.
1212
         */
1213
0
        st_ops->progs[i]->autoload = false;
1214
0
        st_ops->progs[i] = NULL;
1215
0
      }
1216
1217
      /* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1218
0
      pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1219
0
        map->name, mname);
1220
0
      continue;
1221
0
    }
1222
1223
0
    kern_member_idx = kern_member - btf_members(kern_type);
1224
0
    if (btf_member_bitfield_size(type, i) ||
1225
0
        btf_member_bitfield_size(kern_type, kern_member_idx)) {
1226
0
      pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1227
0
        map->name, mname);
1228
0
      return -ENOTSUP;
1229
0
    }
1230
1231
0
    kern_moff = kern_member->offset / 8;
1232
0
    kern_mdata = kern_data + kern_moff;
1233
1234
0
    mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1235
0
    kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1236
0
                &kern_mtype_id);
1237
0
    if (BTF_INFO_KIND(mtype->info) !=
1238
0
        BTF_INFO_KIND(kern_mtype->info)) {
1239
0
      pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1240
0
        map->name, mname, BTF_INFO_KIND(mtype->info),
1241
0
        BTF_INFO_KIND(kern_mtype->info));
1242
0
      return -ENOTSUP;
1243
0
    }
1244
1245
0
    if (btf_is_ptr(mtype)) {
1246
0
      prog = *(void **)mdata;
1247
      /* just like for !kern_member case above, reset declaratively
1248
       * set (at compile time) program's autload to false,
1249
       * if user replaced it with another program or NULL
1250
       */
1251
0
      if (st_ops->progs[i] && st_ops->progs[i] != prog)
1252
0
        st_ops->progs[i]->autoload = false;
1253
1254
      /* Update the value from the shadow type */
1255
0
      st_ops->progs[i] = prog;
1256
0
      if (!prog)
1257
0
        continue;
1258
1259
0
      if (!is_valid_st_ops_program(obj, prog)) {
1260
0
        pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1261
0
          map->name, mname);
1262
0
        return -ENOTSUP;
1263
0
      }
1264
1265
0
      kern_mtype = skip_mods_and_typedefs(kern_btf,
1266
0
                  kern_mtype->type,
1267
0
                  &kern_mtype_id);
1268
1269
      /* mtype->type must be a func_proto which was
1270
       * guaranteed in bpf_object__collect_st_ops_relos(),
1271
       * so only check kern_mtype for func_proto here.
1272
       */
1273
0
      if (!btf_is_func_proto(kern_mtype)) {
1274
0
        pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1275
0
          map->name, mname);
1276
0
        return -ENOTSUP;
1277
0
      }
1278
1279
0
      if (mod_btf)
1280
0
        prog->attach_btf_obj_fd = mod_btf->fd;
1281
1282
      /* if we haven't yet processed this BPF program, record proper
1283
       * attach_btf_id and member_idx
1284
       */
1285
0
      if (!prog->attach_btf_id) {
1286
0
        prog->attach_btf_id = kern_type_id;
1287
0
        prog->expected_attach_type = kern_member_idx;
1288
0
      }
1289
1290
      /* struct_ops BPF prog can be re-used between multiple
1291
       * .struct_ops & .struct_ops.link as long as it's the
1292
       * same struct_ops struct definition and the same
1293
       * function pointer field
1294
       */
1295
0
      if (prog->attach_btf_id != kern_type_id) {
1296
0
        pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1297
0
          map->name, mname, prog->name, prog->sec_name, prog->type,
1298
0
          prog->attach_btf_id, kern_type_id);
1299
0
        return -EINVAL;
1300
0
      }
1301
0
      if (prog->expected_attach_type != kern_member_idx) {
1302
0
        pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1303
0
          map->name, mname, prog->name, prog->sec_name, prog->type,
1304
0
          prog->expected_attach_type, kern_member_idx);
1305
0
        return -EINVAL;
1306
0
      }
1307
1308
0
      st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1309
1310
0
      pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1311
0
         map->name, mname, prog->name, moff,
1312
0
         kern_moff);
1313
1314
0
      continue;
1315
0
    }
1316
1317
0
    kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1318
0
    if (kern_msize < 0 || msize != kern_msize) {
1319
0
      pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1320
0
        map->name, mname, (ssize_t)msize,
1321
0
        (ssize_t)kern_msize);
1322
0
      return -ENOTSUP;
1323
0
    }
1324
1325
0
    pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1326
0
       map->name, mname, (unsigned int)msize,
1327
0
       moff, kern_moff);
1328
0
    memcpy(kern_mdata, mdata, msize);
1329
0
  }
1330
1331
0
  return 0;
1332
0
}
1333
1334
static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1335
0
{
1336
0
  struct bpf_map *map;
1337
0
  size_t i;
1338
0
  int err;
1339
1340
0
  for (i = 0; i < obj->nr_maps; i++) {
1341
0
    map = &obj->maps[i];
1342
1343
0
    if (!bpf_map__is_struct_ops(map))
1344
0
      continue;
1345
1346
0
    if (!map->autocreate)
1347
0
      continue;
1348
1349
0
    err = bpf_map__init_kern_struct_ops(map);
1350
0
    if (err)
1351
0
      return err;
1352
0
  }
1353
1354
0
  return 0;
1355
0
}
1356
1357
static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1358
        int shndx, Elf_Data *data)
1359
165
{
1360
165
  const struct btf_type *type, *datasec;
1361
165
  const struct btf_var_secinfo *vsi;
1362
165
  struct bpf_struct_ops *st_ops;
1363
165
  const char *tname, *var_name;
1364
165
  __s32 type_id, datasec_id;
1365
165
  const struct btf *btf;
1366
165
  struct bpf_map *map;
1367
165
  __u32 i;
1368
1369
165
  if (shndx == -1)
1370
0
    return 0;
1371
1372
165
  btf = obj->btf;
1373
165
  datasec_id = btf__find_by_name_kind(btf, sec_name,
1374
165
              BTF_KIND_DATASEC);
1375
165
  if (datasec_id < 0) {
1376
37
    pr_warn("struct_ops init: DATASEC %s not found\n",
1377
37
      sec_name);
1378
37
    return -EINVAL;
1379
37
  }
1380
1381
128
  datasec = btf__type_by_id(btf, datasec_id);
1382
128
  vsi = btf_var_secinfos(datasec);
1383
178
  for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1384
79
    type = btf__type_by_id(obj->btf, vsi->type);
1385
79
    var_name = btf__name_by_offset(obj->btf, type->name_off);
1386
1387
79
    type_id = btf__resolve_type(obj->btf, vsi->type);
1388
79
    if (type_id < 0) {
1389
11
      pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1390
11
        vsi->type, sec_name);
1391
11
      return -EINVAL;
1392
11
    }
1393
1394
68
    type = btf__type_by_id(obj->btf, type_id);
1395
68
    tname = btf__name_by_offset(obj->btf, type->name_off);
1396
68
    if (!tname[0]) {
1397
3
      pr_warn("struct_ops init: anonymous type is not supported\n");
1398
3
      return -ENOTSUP;
1399
3
    }
1400
65
    if (!btf_is_struct(type)) {
1401
5
      pr_warn("struct_ops init: %s is not a struct\n", tname);
1402
5
      return -EINVAL;
1403
5
    }
1404
1405
60
    map = bpf_object__add_map(obj);
1406
60
    if (IS_ERR(map))
1407
0
      return PTR_ERR(map);
1408
1409
60
    map->sec_idx = shndx;
1410
60
    map->sec_offset = vsi->offset;
1411
60
    map->name = strdup(var_name);
1412
60
    if (!map->name)
1413
0
      return -ENOMEM;
1414
60
    map->btf_value_type_id = type_id;
1415
1416
    /* Follow same convention as for programs autoload:
1417
     * SEC("?.struct_ops") means map is not created by default.
1418
     */
1419
60
    if (sec_name[0] == '?') {
1420
17
      map->autocreate = false;
1421
      /* from now on forget there was ? in section name */
1422
17
      sec_name++;
1423
17
    }
1424
1425
60
    map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1426
60
    map->def.key_size = sizeof(int);
1427
60
    map->def.value_size = type->size;
1428
60
    map->def.max_entries = 1;
1429
60
    map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1430
60
    map->autoattach = true;
1431
1432
60
    map->st_ops = calloc(1, sizeof(*map->st_ops));
1433
60
    if (!map->st_ops)
1434
0
      return -ENOMEM;
1435
60
    st_ops = map->st_ops;
1436
60
    st_ops->data = malloc(type->size);
1437
60
    st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1438
60
    st_ops->kern_func_off = malloc(btf_vlen(type) *
1439
60
                 sizeof(*st_ops->kern_func_off));
1440
60
    if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1441
0
      return -ENOMEM;
1442
1443
60
    if (vsi->offset + type->size > data->d_size) {
1444
10
      pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1445
10
        var_name, sec_name);
1446
10
      return -EINVAL;
1447
10
    }
1448
1449
50
    memcpy(st_ops->data,
1450
50
           data->d_buf + vsi->offset,
1451
50
           type->size);
1452
50
    st_ops->type_id = type_id;
1453
1454
50
    pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1455
50
       tname, type_id, var_name, vsi->offset);
1456
50
  }
1457
1458
99
  return 0;
1459
128
}
1460
1461
static int bpf_object_init_struct_ops(struct bpf_object *obj)
1462
2.28k
{
1463
2.28k
  const char *sec_name;
1464
2.28k
  int sec_idx, err;
1465
1466
20.4k
  for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1467
18.2k
    struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1468
1469
18.2k
    if (desc->sec_type != SEC_ST_OPS)
1470
18.0k
      continue;
1471
1472
165
    sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1473
165
    if (!sec_name)
1474
0
      return -LIBBPF_ERRNO__FORMAT;
1475
1476
165
    err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1477
165
    if (err)
1478
66
      return err;
1479
165
  }
1480
1481
2.21k
  return 0;
1482
2.28k
}
1483
1484
static struct bpf_object *bpf_object__new(const char *path,
1485
            const void *obj_buf,
1486
            size_t obj_buf_sz,
1487
            const char *obj_name)
1488
11.5k
{
1489
11.5k
  struct bpf_object *obj;
1490
11.5k
  char *end;
1491
1492
11.5k
  obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1493
11.5k
  if (!obj) {
1494
0
    pr_warn("alloc memory failed for %s\n", path);
1495
0
    return ERR_PTR(-ENOMEM);
1496
0
  }
1497
1498
11.5k
  strcpy(obj->path, path);
1499
11.5k
  if (obj_name) {
1500
11.5k
    libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1501
11.5k
  } else {
1502
    /* Using basename() GNU version which doesn't modify arg. */
1503
0
    libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1504
0
    end = strchr(obj->name, '.');
1505
0
    if (end)
1506
0
      *end = 0;
1507
0
  }
1508
1509
11.5k
  obj->efile.fd = -1;
1510
  /*
1511
   * Caller of this function should also call
1512
   * bpf_object__elf_finish() after data collection to return
1513
   * obj_buf to user. If not, we should duplicate the buffer to
1514
   * avoid user freeing them before elf finish.
1515
   */
1516
11.5k
  obj->efile.obj_buf = obj_buf;
1517
11.5k
  obj->efile.obj_buf_sz = obj_buf_sz;
1518
11.5k
  obj->efile.btf_maps_shndx = -1;
1519
11.5k
  obj->kconfig_map_idx = -1;
1520
1521
11.5k
  obj->kern_version = get_kernel_version();
1522
11.5k
  obj->state  = OBJ_OPEN;
1523
1524
11.5k
  return obj;
1525
11.5k
}
1526
1527
static void bpf_object__elf_finish(struct bpf_object *obj)
1528
15.5k
{
1529
15.5k
  if (!obj->efile.elf)
1530
4.02k
    return;
1531
1532
11.4k
  elf_end(obj->efile.elf);
1533
11.4k
  obj->efile.elf = NULL;
1534
11.4k
  obj->efile.ehdr = NULL;
1535
11.4k
  obj->efile.symbols = NULL;
1536
11.4k
  obj->efile.arena_data = NULL;
1537
1538
11.4k
  zfree(&obj->efile.secs);
1539
11.4k
  obj->efile.sec_cnt = 0;
1540
11.4k
  zclose(obj->efile.fd);
1541
11.4k
  obj->efile.obj_buf = NULL;
1542
11.4k
  obj->efile.obj_buf_sz = 0;
1543
11.4k
}
1544
1545
static int bpf_object__elf_init(struct bpf_object *obj)
1546
11.5k
{
1547
11.5k
  Elf64_Ehdr *ehdr;
1548
11.5k
  int err = 0;
1549
11.5k
  Elf *elf;
1550
1551
11.5k
  if (obj->efile.elf) {
1552
0
    pr_warn("elf: init internal error\n");
1553
0
    return -LIBBPF_ERRNO__LIBELF;
1554
0
  }
1555
1556
11.5k
  if (obj->efile.obj_buf_sz > 0) {
1557
    /* obj_buf should have been validated by bpf_object__open_mem(). */
1558
11.5k
    elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1559
11.5k
  } else {
1560
0
    obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1561
0
    if (obj->efile.fd < 0) {
1562
0
      err = -errno;
1563
0
      pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err));
1564
0
      return err;
1565
0
    }
1566
1567
0
    elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1568
0
  }
1569
1570
11.5k
  if (!elf) {
1571
86
    pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1572
86
    err = -LIBBPF_ERRNO__LIBELF;
1573
86
    goto errout;
1574
86
  }
1575
1576
11.4k
  obj->efile.elf = elf;
1577
1578
11.4k
  if (elf_kind(elf) != ELF_K_ELF) {
1579
120
    err = -LIBBPF_ERRNO__FORMAT;
1580
120
    pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1581
120
    goto errout;
1582
120
  }
1583
1584
11.3k
  if (gelf_getclass(elf) != ELFCLASS64) {
1585
507
    err = -LIBBPF_ERRNO__FORMAT;
1586
507
    pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1587
507
    goto errout;
1588
507
  }
1589
1590
10.8k
  obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1591
10.8k
  if (!obj->efile.ehdr) {
1592
0
    pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1593
0
    err = -LIBBPF_ERRNO__FORMAT;
1594
0
    goto errout;
1595
0
  }
1596
1597
  /* Validate ELF object endianness... */
1598
10.8k
  if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
1599
10.8k
      ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
1600
0
    err = -LIBBPF_ERRNO__ENDIAN;
1601
0
    pr_warn("elf: '%s' has unknown byte order\n", obj->path);
1602
0
    goto errout;
1603
0
  }
1604
  /* and save after bpf_object_open() frees ELF data */
1605
10.8k
  obj->byteorder = ehdr->e_ident[EI_DATA];
1606
1607
10.8k
  if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1608
28
    pr_warn("elf: failed to get section names section index for %s: %s\n",
1609
28
      obj->path, elf_errmsg(-1));
1610
28
    err = -LIBBPF_ERRNO__FORMAT;
1611
28
    goto errout;
1612
28
  }
1613
1614
  /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1615
10.8k
  if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1616
1.10k
    pr_warn("elf: failed to get section names strings from %s: %s\n",
1617
1.10k
      obj->path, elf_errmsg(-1));
1618
1.10k
    err = -LIBBPF_ERRNO__FORMAT;
1619
1.10k
    goto errout;
1620
1.10k
  }
1621
1622
  /* Old LLVM set e_machine to EM_NONE */
1623
9.73k
  if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1624
380
    pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1625
380
    err = -LIBBPF_ERRNO__FORMAT;
1626
380
    goto errout;
1627
380
  }
1628
1629
9.35k
  return 0;
1630
2.22k
errout:
1631
2.22k
  bpf_object__elf_finish(obj);
1632
2.22k
  return err;
1633
9.73k
}
1634
1635
static bool is_native_endianness(struct bpf_object *obj)
1636
6.23k
{
1637
6.23k
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1638
6.23k
  return obj->byteorder == ELFDATA2LSB;
1639
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1640
  return obj->byteorder == ELFDATA2MSB;
1641
#else
1642
# error "Unrecognized __BYTE_ORDER__"
1643
#endif
1644
6.23k
}
1645
1646
static int
1647
bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1648
807
{
1649
807
  if (!data) {
1650
1
    pr_warn("invalid license section in %s\n", obj->path);
1651
1
    return -LIBBPF_ERRNO__FORMAT;
1652
1
  }
1653
  /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1654
   * go over allowed ELF data section buffer
1655
   */
1656
806
  libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1657
806
  pr_debug("license of %s is %s\n", obj->path, obj->license);
1658
806
  return 0;
1659
807
}
1660
1661
static int
1662
bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1663
52
{
1664
52
  __u32 kver;
1665
1666
52
  if (!data || size != sizeof(kver)) {
1667
10
    pr_warn("invalid kver section in %s\n", obj->path);
1668
10
    return -LIBBPF_ERRNO__FORMAT;
1669
10
  }
1670
42
  memcpy(&kver, data, sizeof(kver));
1671
42
  obj->kern_version = kver;
1672
42
  pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1673
42
  return 0;
1674
52
}
1675
1676
static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1677
105
{
1678
105
  if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1679
105
      type == BPF_MAP_TYPE_HASH_OF_MAPS)
1680
58
    return true;
1681
47
  return false;
1682
105
}
1683
1684
static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1685
513
{
1686
513
  Elf_Data *data;
1687
513
  Elf_Scn *scn;
1688
1689
513
  if (!name)
1690
0
    return -EINVAL;
1691
1692
513
  scn = elf_sec_by_name(obj, name);
1693
513
  data = elf_sec_data(obj, scn);
1694
513
  if (data) {
1695
361
    *size = data->d_size;
1696
361
    return 0; /* found it */
1697
361
  }
1698
1699
152
  return -ENOENT;
1700
513
}
1701
1702
static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1703
2.09k
{
1704
2.09k
  Elf_Data *symbols = obj->efile.symbols;
1705
2.09k
  const char *sname;
1706
2.09k
  size_t si;
1707
1708
49.2k
  for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1709
49.0k
    Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1710
1711
49.0k
    if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1712
42.5k
      continue;
1713
1714
6.54k
    if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1715
6.54k
        ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1716
3.92k
      continue;
1717
1718
2.61k
    sname = elf_sym_str(obj, sym->st_name);
1719
2.61k
    if (!sname) {
1720
21
      pr_warn("failed to get sym name string for var %s\n", name);
1721
21
      return ERR_PTR(-EIO);
1722
21
    }
1723
2.59k
    if (strcmp(name, sname) == 0)
1724
1.84k
      return sym;
1725
2.59k
  }
1726
1727
235
  return ERR_PTR(-ENOENT);
1728
2.09k
}
1729
1730
#ifndef MFD_CLOEXEC
1731
#define MFD_CLOEXEC 0x0001U
1732
#endif
1733
#ifndef MFD_NOEXEC_SEAL
1734
5.69k
#define MFD_NOEXEC_SEAL 0x0008U
1735
#endif
1736
1737
static int create_placeholder_fd(void)
1738
2.84k
{
1739
2.84k
  unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL;
1740
2.84k
  const char *name = "libbpf-placeholder-fd";
1741
2.84k
  int fd;
1742
1743
2.84k
  fd = ensure_good_fd(sys_memfd_create(name, flags));
1744
2.84k
  if (fd >= 0)
1745
0
    return fd;
1746
2.84k
  else if (errno != EINVAL)
1747
0
    return -errno;
1748
1749
  /* Possibly running on kernel without MFD_NOEXEC_SEAL */
1750
2.84k
  fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL));
1751
2.84k
  if (fd < 0)
1752
0
    return -errno;
1753
2.84k
  return fd;
1754
2.84k
}
1755
1756
static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1757
2.84k
{
1758
2.84k
  struct bpf_map *map;
1759
2.84k
  int err;
1760
1761
2.84k
  err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1762
2.84k
        sizeof(*obj->maps), obj->nr_maps + 1);
1763
2.84k
  if (err)
1764
0
    return ERR_PTR(err);
1765
1766
2.84k
  map = &obj->maps[obj->nr_maps++];
1767
2.84k
  map->obj = obj;
1768
  /* Preallocate map FD without actually creating BPF map just yet.
1769
   * These map FD "placeholders" will be reused later without changing
1770
   * FD value when map is actually created in the kernel.
1771
   *
1772
   * This is useful to be able to perform BPF program relocations
1773
   * without having to create BPF maps before that step. This allows us
1774
   * to finalize and load BTF very late in BPF object's loading phase,
1775
   * right before BPF maps have to be created and BPF programs have to
1776
   * be loaded. By having these map FD placeholders we can perform all
1777
   * the sanitizations, relocations, and any other adjustments before we
1778
   * start creating actual BPF kernel objects (BTF, maps, progs).
1779
   */
1780
2.84k
  map->fd = create_placeholder_fd();
1781
2.84k
  if (map->fd < 0)
1782
0
    return ERR_PTR(map->fd);
1783
2.84k
  map->inner_map_fd = -1;
1784
2.84k
  map->autocreate = true;
1785
1786
2.84k
  return map;
1787
2.84k
}
1788
1789
static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1790
3.65k
{
1791
3.65k
  const long page_sz = sysconf(_SC_PAGE_SIZE);
1792
3.65k
  size_t map_sz;
1793
1794
3.65k
  map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1795
3.65k
  map_sz = roundup(map_sz, page_sz);
1796
3.65k
  return map_sz;
1797
3.65k
}
1798
1799
static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1800
3.65k
{
1801
3.65k
  const long page_sz = sysconf(_SC_PAGE_SIZE);
1802
1803
3.65k
  switch (map->def.type) {
1804
3.65k
  case BPF_MAP_TYPE_ARRAY:
1805
3.65k
    return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1806
0
  case BPF_MAP_TYPE_ARENA:
1807
0
    return page_sz * map->def.max_entries;
1808
0
  default:
1809
0
    return 0; /* not supported */
1810
3.65k
  }
1811
3.65k
}
1812
1813
static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1814
0
{
1815
0
  void *mmaped;
1816
1817
0
  if (!map->mmaped)
1818
0
    return -EINVAL;
1819
1820
0
  if (old_sz == new_sz)
1821
0
    return 0;
1822
1823
0
  mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1824
0
  if (mmaped == MAP_FAILED)
1825
0
    return -errno;
1826
1827
0
  memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1828
0
  munmap(map->mmaped, old_sz);
1829
0
  map->mmaped = mmaped;
1830
0
  return 0;
1831
0
}
1832
1833
static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1834
1.85k
{
1835
1.85k
  char map_name[BPF_OBJ_NAME_LEN], *p;
1836
1.85k
  int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1837
1838
  /* This is one of the more confusing parts of libbpf for various
1839
   * reasons, some of which are historical. The original idea for naming
1840
   * internal names was to include as much of BPF object name prefix as
1841
   * possible, so that it can be distinguished from similar internal
1842
   * maps of a different BPF object.
1843
   * As an example, let's say we have bpf_object named 'my_object_name'
1844
   * and internal map corresponding to '.rodata' ELF section. The final
1845
   * map name advertised to user and to the kernel will be
1846
   * 'my_objec.rodata', taking first 8 characters of object name and
1847
   * entire 7 characters of '.rodata'.
1848
   * Somewhat confusingly, if internal map ELF section name is shorter
1849
   * than 7 characters, e.g., '.bss', we still reserve 7 characters
1850
   * for the suffix, even though we only have 4 actual characters, and
1851
   * resulting map will be called 'my_objec.bss', not even using all 15
1852
   * characters allowed by the kernel. Oh well, at least the truncated
1853
   * object name is somewhat consistent in this case. But if the map
1854
   * name is '.kconfig', we'll still have entirety of '.kconfig' added
1855
   * (8 chars) and thus will be left with only first 7 characters of the
1856
   * object name ('my_obje'). Happy guessing, user, that the final map
1857
   * name will be "my_obje.kconfig".
1858
   * Now, with libbpf starting to support arbitrarily named .rodata.*
1859
   * and .data.* data sections, it's possible that ELF section name is
1860
   * longer than allowed 15 chars, so we now need to be careful to take
1861
   * only up to 15 first characters of ELF name, taking no BPF object
1862
   * name characters at all. So '.rodata.abracadabra' will result in
1863
   * '.rodata.abracad' kernel and user-visible name.
1864
   * We need to keep this convoluted logic intact for .data, .bss and
1865
   * .rodata maps, but for new custom .data.custom and .rodata.custom
1866
   * maps we use their ELF names as is, not prepending bpf_object name
1867
   * in front. We still need to truncate them to 15 characters for the
1868
   * kernel. Full name can be recovered for such maps by using DATASEC
1869
   * BTF type associated with such map's value type, though.
1870
   */
1871
1.85k
  if (sfx_len >= BPF_OBJ_NAME_LEN)
1872
656
    sfx_len = BPF_OBJ_NAME_LEN - 1;
1873
1874
  /* if there are two or more dots in map name, it's a custom dot map */
1875
1.85k
  if (strchr(real_name + 1, '.') != NULL)
1876
1.13k
    pfx_len = 0;
1877
726
  else
1878
726
    pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1879
1880
1.85k
  snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1881
1.85k
     sfx_len, real_name);
1882
1883
  /* sanities map name to characters allowed by kernel */
1884
25.7k
  for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1885
23.8k
    if (!isalnum(*p) && *p != '_' && *p != '.')
1886
3.03k
      *p = '_';
1887
1888
1.85k
  return strdup(map_name);
1889
1.85k
}
1890
1891
static int
1892
map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1893
1894
/* Internal BPF map is mmap()'able only if at least one of corresponding
1895
 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1896
 * variable and it's not marked as __hidden (which turns it into, effectively,
1897
 * a STATIC variable).
1898
 */
1899
static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1900
1.85k
{
1901
1.85k
  const struct btf_type *t, *vt;
1902
1.85k
  struct btf_var_secinfo *vsi;
1903
1.85k
  int i, n;
1904
1905
1.85k
  if (!map->btf_value_type_id)
1906
1.68k
    return false;
1907
1908
169
  t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1909
169
  if (!btf_is_datasec(t))
1910
38
    return false;
1911
1912
131
  vsi = btf_var_secinfos(t);
1913
199
  for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1914
155
    vt = btf__type_by_id(obj->btf, vsi->type);
1915
155
    if (!btf_is_var(vt))
1916
43
      continue;
1917
1918
112
    if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1919
87
      return true;
1920
112
  }
1921
1922
44
  return false;
1923
131
}
1924
1925
static int
1926
bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1927
            const char *real_name, int sec_idx, void *data, size_t data_sz)
1928
1.85k
{
1929
1.85k
  struct bpf_map_def *def;
1930
1.85k
  struct bpf_map *map;
1931
1.85k
  size_t mmap_sz;
1932
1.85k
  int err;
1933
1934
1.85k
  map = bpf_object__add_map(obj);
1935
1.85k
  if (IS_ERR(map))
1936
0
    return PTR_ERR(map);
1937
1938
1.85k
  map->libbpf_type = type;
1939
1.85k
  map->sec_idx = sec_idx;
1940
1.85k
  map->sec_offset = 0;
1941
1.85k
  map->real_name = strdup(real_name);
1942
1.85k
  map->name = internal_map_name(obj, real_name);
1943
1.85k
  if (!map->real_name || !map->name) {
1944
0
    zfree(&map->real_name);
1945
0
    zfree(&map->name);
1946
0
    return -ENOMEM;
1947
0
  }
1948
1949
1.85k
  def = &map->def;
1950
1.85k
  def->type = BPF_MAP_TYPE_ARRAY;
1951
1.85k
  def->key_size = sizeof(int);
1952
1.85k
  def->value_size = data_sz;
1953
1.85k
  def->max_entries = 1;
1954
1.85k
  def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1955
1.85k
    ? BPF_F_RDONLY_PROG : 0;
1956
1957
  /* failures are fine because of maps like .rodata.str1.1 */
1958
1.85k
  (void) map_fill_btf_type_info(obj, map);
1959
1960
1.85k
  if (map_is_mmapable(obj, map))
1961
87
    def->map_flags |= BPF_F_MMAPABLE;
1962
1963
1.85k
  pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1964
1.85k
     map->name, map->sec_idx, map->sec_offset, def->map_flags);
1965
1966
1.85k
  mmap_sz = bpf_map_mmap_sz(map);
1967
1.85k
  map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1968
1.85k
         MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1969
1.85k
  if (map->mmaped == MAP_FAILED) {
1970
57
    err = -errno;
1971
57
    map->mmaped = NULL;
1972
57
    pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err));
1973
57
    zfree(&map->real_name);
1974
57
    zfree(&map->name);
1975
57
    return err;
1976
57
  }
1977
1978
1.80k
  if (data)
1979
988
    memcpy(map->mmaped, data, data_sz);
1980
1981
1.80k
  pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1982
1.80k
  return 0;
1983
1.85k
}
1984
1985
static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1986
2.33k
{
1987
2.33k
  struct elf_sec_desc *sec_desc;
1988
2.33k
  const char *sec_name;
1989
2.33k
  int err = 0, sec_idx;
1990
1991
  /*
1992
   * Populate obj->maps with libbpf internal maps.
1993
   */
1994
19.4k
  for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1995
17.1k
    sec_desc = &obj->efile.secs[sec_idx];
1996
1997
    /* Skip recognized sections with size 0. */
1998
17.1k
    if (!sec_desc->data || sec_desc->data->d_size == 0)
1999
14.0k
      continue;
2000
2001
3.09k
    switch (sec_desc->sec_type) {
2002
494
    case SEC_DATA:
2003
494
      sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2004
494
      err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
2005
494
                  sec_name, sec_idx,
2006
494
                  sec_desc->data->d_buf,
2007
494
                  sec_desc->data->d_size);
2008
494
      break;
2009
494
    case SEC_RODATA:
2010
494
      obj->has_rodata = true;
2011
494
      sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2012
494
      err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
2013
494
                  sec_name, sec_idx,
2014
494
                  sec_desc->data->d_buf,
2015
494
                  sec_desc->data->d_size);
2016
494
      break;
2017
810
    case SEC_BSS:
2018
810
      sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2019
810
      err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
2020
810
                  sec_name, sec_idx,
2021
810
                  NULL,
2022
810
                  sec_desc->data->d_size);
2023
810
      break;
2024
1.29k
    default:
2025
      /* skip */
2026
1.29k
      break;
2027
3.09k
    }
2028
3.09k
    if (err)
2029
22
      return err;
2030
3.09k
  }
2031
2.31k
  return 0;
2032
2.33k
}
2033
2034
2035
static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
2036
                 const void *name)
2037
1.11k
{
2038
1.11k
  int i;
2039
2040
2.99k
  for (i = 0; i < obj->nr_extern; i++) {
2041
2.56k
    if (strcmp(obj->externs[i].name, name) == 0)
2042
673
      return &obj->externs[i];
2043
2.56k
  }
2044
437
  return NULL;
2045
1.11k
}
2046
2047
static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
2048
              const void *name, int len)
2049
0
{
2050
0
  const char *ext_name;
2051
0
  int i;
2052
2053
0
  for (i = 0; i < obj->nr_extern; i++) {
2054
0
    ext_name = obj->externs[i].name;
2055
0
    if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2056
0
      return &obj->externs[i];
2057
0
  }
2058
0
  return NULL;
2059
0
}
2060
2061
static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2062
            char value)
2063
0
{
2064
0
  switch (ext->kcfg.type) {
2065
0
  case KCFG_BOOL:
2066
0
    if (value == 'm') {
2067
0
      pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2068
0
        ext->name, value);
2069
0
      return -EINVAL;
2070
0
    }
2071
0
    *(bool *)ext_val = value == 'y' ? true : false;
2072
0
    break;
2073
0
  case KCFG_TRISTATE:
2074
0
    if (value == 'y')
2075
0
      *(enum libbpf_tristate *)ext_val = TRI_YES;
2076
0
    else if (value == 'm')
2077
0
      *(enum libbpf_tristate *)ext_val = TRI_MODULE;
2078
0
    else /* value == 'n' */
2079
0
      *(enum libbpf_tristate *)ext_val = TRI_NO;
2080
0
    break;
2081
0
  case KCFG_CHAR:
2082
0
    *(char *)ext_val = value;
2083
0
    break;
2084
0
  case KCFG_UNKNOWN:
2085
0
  case KCFG_INT:
2086
0
  case KCFG_CHAR_ARR:
2087
0
  default:
2088
0
    pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2089
0
      ext->name, value);
2090
0
    return -EINVAL;
2091
0
  }
2092
0
  ext->is_set = true;
2093
0
  return 0;
2094
0
}
2095
2096
static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2097
            const char *value)
2098
0
{
2099
0
  size_t len;
2100
2101
0
  if (ext->kcfg.type != KCFG_CHAR_ARR) {
2102
0
    pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2103
0
      ext->name, value);
2104
0
    return -EINVAL;
2105
0
  }
2106
2107
0
  len = strlen(value);
2108
0
  if (len < 2 || value[len - 1] != '"') {
2109
0
    pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2110
0
      ext->name, value);
2111
0
    return -EINVAL;
2112
0
  }
2113
2114
  /* strip quotes */
2115
0
  len -= 2;
2116
0
  if (len >= ext->kcfg.sz) {
2117
0
    pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2118
0
      ext->name, value, len, ext->kcfg.sz - 1);
2119
0
    len = ext->kcfg.sz - 1;
2120
0
  }
2121
0
  memcpy(ext_val, value + 1, len);
2122
0
  ext_val[len] = '\0';
2123
0
  ext->is_set = true;
2124
0
  return 0;
2125
0
}
2126
2127
static int parse_u64(const char *value, __u64 *res)
2128
0
{
2129
0
  char *value_end;
2130
0
  int err;
2131
2132
0
  errno = 0;
2133
0
  *res = strtoull(value, &value_end, 0);
2134
0
  if (errno) {
2135
0
    err = -errno;
2136
0
    pr_warn("failed to parse '%s': %s\n", value, errstr(err));
2137
0
    return err;
2138
0
  }
2139
0
  if (*value_end) {
2140
0
    pr_warn("failed to parse '%s' as integer completely\n", value);
2141
0
    return -EINVAL;
2142
0
  }
2143
0
  return 0;
2144
0
}
2145
2146
static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2147
0
{
2148
0
  int bit_sz = ext->kcfg.sz * 8;
2149
2150
0
  if (ext->kcfg.sz == 8)
2151
0
    return true;
2152
2153
  /* Validate that value stored in u64 fits in integer of `ext->sz`
2154
   * bytes size without any loss of information. If the target integer
2155
   * is signed, we rely on the following limits of integer type of
2156
   * Y bits and subsequent transformation:
2157
   *
2158
   *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
2159
   *            0 <= X + 2^(Y-1) <= 2^Y - 1
2160
   *            0 <= X + 2^(Y-1) <  2^Y
2161
   *
2162
   *  For unsigned target integer, check that all the (64 - Y) bits are
2163
   *  zero.
2164
   */
2165
0
  if (ext->kcfg.is_signed)
2166
0
    return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2167
0
  else
2168
0
    return (v >> bit_sz) == 0;
2169
0
}
2170
2171
static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2172
            __u64 value)
2173
0
{
2174
0
  if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2175
0
      ext->kcfg.type != KCFG_BOOL) {
2176
0
    pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2177
0
      ext->name, (unsigned long long)value);
2178
0
    return -EINVAL;
2179
0
  }
2180
0
  if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2181
0
    pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2182
0
      ext->name, (unsigned long long)value);
2183
0
    return -EINVAL;
2184
2185
0
  }
2186
0
  if (!is_kcfg_value_in_range(ext, value)) {
2187
0
    pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2188
0
      ext->name, (unsigned long long)value, ext->kcfg.sz);
2189
0
    return -ERANGE;
2190
0
  }
2191
0
  switch (ext->kcfg.sz) {
2192
0
  case 1:
2193
0
    *(__u8 *)ext_val = value;
2194
0
    break;
2195
0
  case 2:
2196
0
    *(__u16 *)ext_val = value;
2197
0
    break;
2198
0
  case 4:
2199
0
    *(__u32 *)ext_val = value;
2200
0
    break;
2201
0
  case 8:
2202
0
    *(__u64 *)ext_val = value;
2203
0
    break;
2204
0
  default:
2205
0
    return -EINVAL;
2206
0
  }
2207
0
  ext->is_set = true;
2208
0
  return 0;
2209
0
}
2210
2211
static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2212
              char *buf, void *data)
2213
0
{
2214
0
  struct extern_desc *ext;
2215
0
  char *sep, *value;
2216
0
  int len, err = 0;
2217
0
  void *ext_val;
2218
0
  __u64 num;
2219
2220
0
  if (!str_has_pfx(buf, "CONFIG_"))
2221
0
    return 0;
2222
2223
0
  sep = strchr(buf, '=');
2224
0
  if (!sep) {
2225
0
    pr_warn("failed to parse '%s': no separator\n", buf);
2226
0
    return -EINVAL;
2227
0
  }
2228
2229
  /* Trim ending '\n' */
2230
0
  len = strlen(buf);
2231
0
  if (buf[len - 1] == '\n')
2232
0
    buf[len - 1] = '\0';
2233
  /* Split on '=' and ensure that a value is present. */
2234
0
  *sep = '\0';
2235
0
  if (!sep[1]) {
2236
0
    *sep = '=';
2237
0
    pr_warn("failed to parse '%s': no value\n", buf);
2238
0
    return -EINVAL;
2239
0
  }
2240
2241
0
  ext = find_extern_by_name(obj, buf);
2242
0
  if (!ext || ext->is_set)
2243
0
    return 0;
2244
2245
0
  ext_val = data + ext->kcfg.data_off;
2246
0
  value = sep + 1;
2247
2248
0
  switch (*value) {
2249
0
  case 'y': case 'n': case 'm':
2250
0
    err = set_kcfg_value_tri(ext, ext_val, *value);
2251
0
    break;
2252
0
  case '"':
2253
0
    err = set_kcfg_value_str(ext, ext_val, value);
2254
0
    break;
2255
0
  default:
2256
    /* assume integer */
2257
0
    err = parse_u64(value, &num);
2258
0
    if (err) {
2259
0
      pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2260
0
      return err;
2261
0
    }
2262
0
    if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2263
0
      pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2264
0
      return -EINVAL;
2265
0
    }
2266
0
    err = set_kcfg_value_num(ext, ext_val, num);
2267
0
    break;
2268
0
  }
2269
0
  if (err)
2270
0
    return err;
2271
0
  pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2272
0
  return 0;
2273
0
}
2274
2275
static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2276
0
{
2277
0
  char buf[PATH_MAX];
2278
0
  struct utsname uts;
2279
0
  int len, err = 0;
2280
0
  gzFile file;
2281
2282
0
  uname(&uts);
2283
0
  len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2284
0
  if (len < 0)
2285
0
    return -EINVAL;
2286
0
  else if (len >= PATH_MAX)
2287
0
    return -ENAMETOOLONG;
2288
2289
  /* gzopen also accepts uncompressed files. */
2290
0
  file = gzopen(buf, "re");
2291
0
  if (!file)
2292
0
    file = gzopen("/proc/config.gz", "re");
2293
2294
0
  if (!file) {
2295
0
    pr_warn("failed to open system Kconfig\n");
2296
0
    return -ENOENT;
2297
0
  }
2298
2299
0
  while (gzgets(file, buf, sizeof(buf))) {
2300
0
    err = bpf_object__process_kconfig_line(obj, buf, data);
2301
0
    if (err) {
2302
0
      pr_warn("error parsing system Kconfig line '%s': %s\n",
2303
0
        buf, errstr(err));
2304
0
      goto out;
2305
0
    }
2306
0
  }
2307
2308
0
out:
2309
0
  gzclose(file);
2310
0
  return err;
2311
0
}
2312
2313
static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2314
          const char *config, void *data)
2315
0
{
2316
0
  char buf[PATH_MAX];
2317
0
  int err = 0;
2318
0
  FILE *file;
2319
2320
0
  file = fmemopen((void *)config, strlen(config), "r");
2321
0
  if (!file) {
2322
0
    err = -errno;
2323
0
    pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err));
2324
0
    return err;
2325
0
  }
2326
2327
0
  while (fgets(buf, sizeof(buf), file)) {
2328
0
    err = bpf_object__process_kconfig_line(obj, buf, data);
2329
0
    if (err) {
2330
0
      pr_warn("error parsing in-memory Kconfig line '%s': %s\n",
2331
0
        buf, errstr(err));
2332
0
      break;
2333
0
    }
2334
0
  }
2335
2336
0
  fclose(file);
2337
0
  return err;
2338
0
}
2339
2340
static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2341
2.31k
{
2342
2.31k
  struct extern_desc *last_ext = NULL, *ext;
2343
2.31k
  size_t map_sz;
2344
2.31k
  int i, err;
2345
2346
3.43k
  for (i = 0; i < obj->nr_extern; i++) {
2347
1.12k
    ext = &obj->externs[i];
2348
1.12k
    if (ext->type == EXT_KCFG)
2349
267
      last_ext = ext;
2350
1.12k
  }
2351
2352
2.31k
  if (!last_ext)
2353
2.25k
    return 0;
2354
2355
60
  map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2356
60
  err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2357
60
              ".kconfig", obj->efile.symbols_shndx,
2358
60
              NULL, map_sz);
2359
60
  if (err)
2360
35
    return err;
2361
2362
25
  obj->kconfig_map_idx = obj->nr_maps - 1;
2363
2364
25
  return 0;
2365
60
}
2366
2367
const struct btf_type *
2368
skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2369
5.07k
{
2370
5.07k
  const struct btf_type *t = btf__type_by_id(btf, id);
2371
2372
5.07k
  if (res_id)
2373
2.16k
    *res_id = id;
2374
2375
6.81k
  while (btf_is_mod(t) || btf_is_typedef(t)) {
2376
1.73k
    if (res_id)
2377
832
      *res_id = t->type;
2378
1.73k
    t = btf__type_by_id(btf, t->type);
2379
1.73k
  }
2380
2381
5.07k
  return t;
2382
5.07k
}
2383
2384
static const struct btf_type *
2385
resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2386
0
{
2387
0
  const struct btf_type *t;
2388
2389
0
  t = skip_mods_and_typedefs(btf, id, NULL);
2390
0
  if (!btf_is_ptr(t))
2391
0
    return NULL;
2392
2393
0
  t = skip_mods_and_typedefs(btf, t->type, res_id);
2394
2395
0
  return btf_is_func_proto(t) ? t : NULL;
2396
0
}
2397
2398
static const char *__btf_kind_str(__u16 kind)
2399
342
{
2400
342
  switch (kind) {
2401
46
  case BTF_KIND_UNKN: return "void";
2402
11
  case BTF_KIND_INT: return "int";
2403
1
  case BTF_KIND_PTR: return "ptr";
2404
6
  case BTF_KIND_ARRAY: return "array";
2405
5
  case BTF_KIND_STRUCT: return "struct";
2406
2
  case BTF_KIND_UNION: return "union";
2407
2
  case BTF_KIND_ENUM: return "enum";
2408
2
  case BTF_KIND_FWD: return "fwd";
2409
1
  case BTF_KIND_TYPEDEF: return "typedef";
2410
6
  case BTF_KIND_VOLATILE: return "volatile";
2411
4
  case BTF_KIND_CONST: return "const";
2412
5
  case BTF_KIND_RESTRICT: return "restrict";
2413
142
  case BTF_KIND_FUNC: return "func";
2414
6
  case BTF_KIND_FUNC_PROTO: return "func_proto";
2415
35
  case BTF_KIND_VAR: return "var";
2416
14
  case BTF_KIND_DATASEC: return "datasec";
2417
45
  case BTF_KIND_FLOAT: return "float";
2418
2
  case BTF_KIND_DECL_TAG: return "decl_tag";
2419
4
  case BTF_KIND_TYPE_TAG: return "type_tag";
2420
3
  case BTF_KIND_ENUM64: return "enum64";
2421
0
  default: return "unknown";
2422
342
  }
2423
342
}
2424
2425
const char *btf_kind_str(const struct btf_type *t)
2426
342
{
2427
342
  return __btf_kind_str(btf_kind(t));
2428
342
}
2429
2430
/*
2431
 * Fetch integer attribute of BTF map definition. Such attributes are
2432
 * represented using a pointer to an array, in which dimensionality of array
2433
 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2434
 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2435
 * type definition, while using only sizeof(void *) space in ELF data section.
2436
 */
2437
static bool get_map_field_int(const char *map_name, const struct btf *btf,
2438
            const struct btf_member *m, __u32 *res)
2439
702
{
2440
702
  const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2441
702
  const char *name = btf__name_by_offset(btf, m->name_off);
2442
702
  const struct btf_array *arr_info;
2443
702
  const struct btf_type *arr_t;
2444
2445
702
  if (!btf_is_ptr(t)) {
2446
14
    pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2447
14
      map_name, name, btf_kind_str(t));
2448
14
    return false;
2449
14
  }
2450
2451
688
  arr_t = btf__type_by_id(btf, t->type);
2452
688
  if (!arr_t) {
2453
0
    pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2454
0
      map_name, name, t->type);
2455
0
    return false;
2456
0
  }
2457
688
  if (!btf_is_array(arr_t)) {
2458
8
    pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2459
8
      map_name, name, btf_kind_str(arr_t));
2460
8
    return false;
2461
8
  }
2462
680
  arr_info = btf_array(arr_t);
2463
680
  *res = arr_info->nelems;
2464
680
  return true;
2465
688
}
2466
2467
static bool get_map_field_long(const char *map_name, const struct btf *btf,
2468
             const struct btf_member *m, __u64 *res)
2469
60
{
2470
60
  const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2471
60
  const char *name = btf__name_by_offset(btf, m->name_off);
2472
2473
60
  if (btf_is_ptr(t)) {
2474
30
    __u32 res32;
2475
30
    bool ret;
2476
2477
30
    ret = get_map_field_int(map_name, btf, m, &res32);
2478
30
    if (ret)
2479
29
      *res = (__u64)res32;
2480
30
    return ret;
2481
30
  }
2482
2483
30
  if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2484
11
    pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2485
11
      map_name, name, btf_kind_str(t));
2486
11
    return false;
2487
11
  }
2488
2489
19
  if (btf_vlen(t) != 1) {
2490
2
    pr_warn("map '%s': attr '%s': invalid __ulong\n",
2491
2
      map_name, name);
2492
2
    return false;
2493
2
  }
2494
2495
17
  if (btf_is_enum(t)) {
2496
9
    const struct btf_enum *e = btf_enum(t);
2497
2498
9
    *res = e->val;
2499
9
  } else {
2500
8
    const struct btf_enum64 *e = btf_enum64(t);
2501
2502
8
    *res = btf_enum64_value(e);
2503
8
  }
2504
17
  return true;
2505
19
}
2506
2507
static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2508
1
{
2509
1
  int len;
2510
2511
1
  len = snprintf(buf, buf_sz, "%s/%s", path, name);
2512
1
  if (len < 0)
2513
0
    return -EINVAL;
2514
1
  if (len >= buf_sz)
2515
0
    return -ENAMETOOLONG;
2516
2517
1
  return 0;
2518
1
}
2519
2520
static int build_map_pin_path(struct bpf_map *map, const char *path)
2521
1
{
2522
1
  char buf[PATH_MAX];
2523
1
  int err;
2524
2525
1
  if (!path)
2526
1
    path = BPF_FS_DEFAULT_PATH;
2527
2528
1
  err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2529
1
  if (err)
2530
0
    return err;
2531
2532
1
  return bpf_map__set_pin_path(map, buf);
2533
1
}
2534
2535
/* should match definition in bpf_helpers.h */
2536
enum libbpf_pin_type {
2537
  LIBBPF_PIN_NONE,
2538
  /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2539
  LIBBPF_PIN_BY_NAME,
2540
};
2541
2542
int parse_btf_map_def(const char *map_name, struct btf *btf,
2543
          const struct btf_type *def_t, bool strict,
2544
          struct btf_map_def *map_def, struct btf_map_def *inner_def)
2545
932
{
2546
932
  const struct btf_type *t;
2547
932
  const struct btf_member *m;
2548
932
  bool is_inner = inner_def == NULL;
2549
932
  int vlen, i;
2550
2551
932
  vlen = btf_vlen(def_t);
2552
932
  m = btf_members(def_t);
2553
2.09k
  for (i = 0; i < vlen; i++, m++) {
2554
1.97k
    const char *name = btf__name_by_offset(btf, m->name_off);
2555
2556
1.97k
    if (!name) {
2557
0
      pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2558
0
      return -EINVAL;
2559
0
    }
2560
1.97k
    if (strcmp(name, "type") == 0) {
2561
278
      if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2562
6
        return -EINVAL;
2563
272
      map_def->parts |= MAP_DEF_MAP_TYPE;
2564
1.70k
    } else if (strcmp(name, "max_entries") == 0) {
2565
70
      if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2566
3
        return -EINVAL;
2567
67
      map_def->parts |= MAP_DEF_MAX_ENTRIES;
2568
1.63k
    } else if (strcmp(name, "map_flags") == 0) {
2569
9
      if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2570
1
        return -EINVAL;
2571
8
      map_def->parts |= MAP_DEF_MAP_FLAGS;
2572
1.62k
    } else if (strcmp(name, "numa_node") == 0) {
2573
17
      if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2574
1
        return -EINVAL;
2575
16
      map_def->parts |= MAP_DEF_NUMA_NODE;
2576
1.60k
    } else if (strcmp(name, "key_size") == 0) {
2577
94
      __u32 sz;
2578
2579
94
      if (!get_map_field_int(map_name, btf, m, &sz))
2580
2
        return -EINVAL;
2581
92
      if (map_def->key_size && map_def->key_size != sz) {
2582
36
        pr_warn("map '%s': conflicting key size %u != %u.\n",
2583
36
          map_name, map_def->key_size, sz);
2584
36
        return -EINVAL;
2585
36
      }
2586
56
      map_def->key_size = sz;
2587
56
      map_def->parts |= MAP_DEF_KEY_SIZE;
2588
1.51k
    } else if (strcmp(name, "key") == 0) {
2589
327
      __s64 sz;
2590
2591
327
      t = btf__type_by_id(btf, m->type);
2592
327
      if (!t) {
2593
0
        pr_warn("map '%s': key type [%d] not found.\n",
2594
0
          map_name, m->type);
2595
0
        return -EINVAL;
2596
0
      }
2597
327
      if (!btf_is_ptr(t)) {
2598
7
        pr_warn("map '%s': key spec is not PTR: %s.\n",
2599
7
          map_name, btf_kind_str(t));
2600
7
        return -EINVAL;
2601
7
      }
2602
320
      sz = btf__resolve_size(btf, t->type);
2603
320
      if (sz < 0) {
2604
15
        pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2605
15
          map_name, t->type, (ssize_t)sz);
2606
15
        return sz;
2607
15
      }
2608
305
      if (map_def->key_size && map_def->key_size != sz) {
2609
33
        pr_warn("map '%s': conflicting key size %u != %zd.\n",
2610
33
          map_name, map_def->key_size, (ssize_t)sz);
2611
33
        return -EINVAL;
2612
33
      }
2613
272
      map_def->key_size = sz;
2614
272
      map_def->key_type_id = t->type;
2615
272
      map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2616
1.18k
    } else if (strcmp(name, "value_size") == 0) {
2617
151
      __u32 sz;
2618
2619
151
      if (!get_map_field_int(map_name, btf, m, &sz))
2620
6
        return -EINVAL;
2621
145
      if (map_def->value_size && map_def->value_size != sz) {
2622
33
        pr_warn("map '%s': conflicting value size %u != %u.\n",
2623
33
          map_name, map_def->value_size, sz);
2624
33
        return -EINVAL;
2625
33
      }
2626
112
      map_def->value_size = sz;
2627
112
      map_def->parts |= MAP_DEF_VALUE_SIZE;
2628
1.03k
    } else if (strcmp(name, "value") == 0) {
2629
373
      __s64 sz;
2630
2631
373
      t = btf__type_by_id(btf, m->type);
2632
373
      if (!t) {
2633
0
        pr_warn("map '%s': value type [%d] not found.\n",
2634
0
          map_name, m->type);
2635
0
        return -EINVAL;
2636
0
      }
2637
373
      if (!btf_is_ptr(t)) {
2638
12
        pr_warn("map '%s': value spec is not PTR: %s.\n",
2639
12
          map_name, btf_kind_str(t));
2640
12
        return -EINVAL;
2641
12
      }
2642
361
      sz = btf__resolve_size(btf, t->type);
2643
361
      if (sz < 0) {
2644
27
        pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2645
27
          map_name, t->type, (ssize_t)sz);
2646
27
        return sz;
2647
27
      }
2648
334
      if (map_def->value_size && map_def->value_size != sz) {
2649
36
        pr_warn("map '%s': conflicting value size %u != %zd.\n",
2650
36
          map_name, map_def->value_size, (ssize_t)sz);
2651
36
        return -EINVAL;
2652
36
      }
2653
298
      map_def->value_size = sz;
2654
298
      map_def->value_type_id = t->type;
2655
298
      map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2656
298
    }
2657
660
    else if (strcmp(name, "values") == 0) {
2658
105
      bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2659
105
      bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2660
105
      const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2661
105
      char inner_map_name[128];
2662
105
      int err;
2663
2664
105
      if (is_inner) {
2665
2
        pr_warn("map '%s': multi-level inner maps not supported.\n",
2666
2
          map_name);
2667
2
        return -ENOTSUP;
2668
2
      }
2669
103
      if (i != vlen - 1) {
2670
2
        pr_warn("map '%s': '%s' member should be last.\n",
2671
2
          map_name, name);
2672
2
        return -EINVAL;
2673
2
      }
2674
101
      if (!is_map_in_map && !is_prog_array) {
2675
36
        pr_warn("map '%s': should be map-in-map or prog-array.\n",
2676
36
          map_name);
2677
36
        return -ENOTSUP;
2678
36
      }
2679
65
      if (map_def->value_size && map_def->value_size != 4) {
2680
30
        pr_warn("map '%s': conflicting value size %u != 4.\n",
2681
30
          map_name, map_def->value_size);
2682
30
        return -EINVAL;
2683
30
      }
2684
35
      map_def->value_size = 4;
2685
35
      t = btf__type_by_id(btf, m->type);
2686
35
      if (!t) {
2687
0
        pr_warn("map '%s': %s type [%d] not found.\n",
2688
0
          map_name, desc, m->type);
2689
0
        return -EINVAL;
2690
0
      }
2691
35
      if (!btf_is_array(t) || btf_array(t)->nelems) {
2692
27
        pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2693
27
          map_name, desc);
2694
27
        return -EINVAL;
2695
27
      }
2696
8
      t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2697
8
      if (!btf_is_ptr(t)) {
2698
3
        pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2699
3
          map_name, desc, btf_kind_str(t));
2700
3
        return -EINVAL;
2701
3
      }
2702
5
      t = skip_mods_and_typedefs(btf, t->type, NULL);
2703
5
      if (is_prog_array) {
2704
2
        if (!btf_is_func_proto(t)) {
2705
1
          pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2706
1
            map_name, btf_kind_str(t));
2707
1
          return -EINVAL;
2708
1
        }
2709
1
        continue;
2710
2
      }
2711
3
      if (!btf_is_struct(t)) {
2712
1
        pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2713
1
          map_name, btf_kind_str(t));
2714
1
        return -EINVAL;
2715
1
      }
2716
2717
2
      snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2718
2
      err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2719
2
      if (err)
2720
2
        return err;
2721
2722
0
      map_def->parts |= MAP_DEF_INNER_MAP;
2723
555
    } else if (strcmp(name, "pinning") == 0) {
2724
53
      __u32 val;
2725
2726
53
      if (is_inner) {
2727
0
        pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2728
0
        return -EINVAL;
2729
0
      }
2730
53
      if (!get_map_field_int(map_name, btf, m, &val))
2731
2
        return -EINVAL;
2732
51
      if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2733
35
        pr_warn("map '%s': invalid pinning value %u.\n",
2734
35
          map_name, val);
2735
35
        return -EINVAL;
2736
35
      }
2737
16
      map_def->pinning = val;
2738
16
      map_def->parts |= MAP_DEF_PINNING;
2739
502
    } else if (strcmp(name, "map_extra") == 0) {
2740
60
      __u64 map_extra;
2741
2742
60
      if (!get_map_field_long(map_name, btf, m, &map_extra))
2743
14
        return -EINVAL;
2744
46
      map_def->map_extra = map_extra;
2745
46
      map_def->parts |= MAP_DEF_MAP_EXTRA;
2746
442
    } else {
2747
442
      if (strict) {
2748
442
        pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2749
442
        return -ENOTSUP;
2750
442
      }
2751
0
      pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2752
0
    }
2753
1.97k
  }
2754
2755
117
  if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2756
31
    pr_warn("map '%s': map type isn't specified.\n", map_name);
2757
31
    return -EINVAL;
2758
31
  }
2759
2760
86
  return 0;
2761
117
}
2762
2763
static size_t adjust_ringbuf_sz(size_t sz)
2764
26
{
2765
26
  __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2766
26
  __u32 mul;
2767
2768
  /* if user forgot to set any size, make sure they see error */
2769
26
  if (sz == 0)
2770
1
    return 0;
2771
  /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2772
   * a power-of-2 multiple of kernel's page size. If user diligently
2773
   * satisified these conditions, pass the size through.
2774
   */
2775
25
  if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2776
1
    return sz;
2777
2778
  /* Otherwise find closest (page_sz * power_of_2) product bigger than
2779
   * user-set size to satisfy both user size request and kernel
2780
   * requirements and substitute correct max_entries for map creation.
2781
   */
2782
373
  for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2783
364
    if (mul * page_sz > sz)
2784
15
      return mul * page_sz;
2785
364
  }
2786
2787
  /* if it's impossible to satisfy the conditions (i.e., user size is
2788
   * very close to UINT_MAX but is not a power-of-2 multiple of
2789
   * page_size) then just return original size and let kernel reject it
2790
   */
2791
9
  return sz;
2792
24
}
2793
2794
static bool map_is_ringbuf(const struct bpf_map *map)
2795
86
{
2796
86
  return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2797
86
         map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2798
86
}
2799
2800
static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2801
86
{
2802
86
  map->def.type = def->map_type;
2803
86
  map->def.key_size = def->key_size;
2804
86
  map->def.value_size = def->value_size;
2805
86
  map->def.max_entries = def->max_entries;
2806
86
  map->def.map_flags = def->map_flags;
2807
86
  map->map_extra = def->map_extra;
2808
2809
86
  map->numa_node = def->numa_node;
2810
86
  map->btf_key_type_id = def->key_type_id;
2811
86
  map->btf_value_type_id = def->value_type_id;
2812
2813
  /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2814
86
  if (map_is_ringbuf(map))
2815
26
    map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2816
2817
86
  if (def->parts & MAP_DEF_MAP_TYPE)
2818
86
    pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2819
2820
86
  if (def->parts & MAP_DEF_KEY_TYPE)
2821
86
    pr_debug("map '%s': found key [%u], sz = %u.\n",
2822
77
       map->name, def->key_type_id, def->key_size);
2823
77
  else if (def->parts & MAP_DEF_KEY_SIZE)
2824
3
    pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2825
2826
86
  if (def->parts & MAP_DEF_VALUE_TYPE)
2827
86
    pr_debug("map '%s': found value [%u], sz = %u.\n",
2828
50
       map->name, def->value_type_id, def->value_size);
2829
50
  else if (def->parts & MAP_DEF_VALUE_SIZE)
2830
5
    pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2831
2832
86
  if (def->parts & MAP_DEF_MAX_ENTRIES)
2833
86
    pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2834
86
  if (def->parts & MAP_DEF_MAP_FLAGS)
2835
86
    pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2836
86
  if (def->parts & MAP_DEF_MAP_EXTRA)
2837
86
    pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2838
86
       (unsigned long long)def->map_extra);
2839
86
  if (def->parts & MAP_DEF_PINNING)
2840
86
    pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2841
86
  if (def->parts & MAP_DEF_NUMA_NODE)
2842
86
    pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2843
2844
86
  if (def->parts & MAP_DEF_INNER_MAP)
2845
86
    pr_debug("map '%s': found inner map definition.\n", map->name);
2846
86
}
2847
2848
static const char *btf_var_linkage_str(__u32 linkage)
2849
56
{
2850
56
  switch (linkage) {
2851
1
  case BTF_VAR_STATIC: return "static";
2852
0
  case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2853
2
  case BTF_VAR_GLOBAL_EXTERN: return "extern";
2854
53
  default: return "unknown";
2855
56
  }
2856
56
}
2857
2858
static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2859
           const struct btf_type *sec,
2860
           int var_idx, int sec_idx,
2861
           const Elf_Data *data, bool strict,
2862
           const char *pin_root_path)
2863
1.08k
{
2864
1.08k
  struct btf_map_def map_def = {}, inner_def = {};
2865
1.08k
  const struct btf_type *var, *def;
2866
1.08k
  const struct btf_var_secinfo *vi;
2867
1.08k
  const struct btf_var *var_extra;
2868
1.08k
  const char *map_name;
2869
1.08k
  struct bpf_map *map;
2870
1.08k
  int err;
2871
2872
1.08k
  vi = btf_var_secinfos(sec) + var_idx;
2873
1.08k
  var = btf__type_by_id(obj->btf, vi->type);
2874
1.08k
  var_extra = btf_var(var);
2875
1.08k
  map_name = btf__name_by_offset(obj->btf, var->name_off);
2876
2877
1.08k
  if (map_name == NULL || map_name[0] == '\0') {
2878
1
    pr_warn("map #%d: empty name.\n", var_idx);
2879
1
    return -EINVAL;
2880
1
  }
2881
1.08k
  if ((__u64)vi->offset + vi->size > data->d_size) {
2882
41
    pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2883
41
    return -EINVAL;
2884
41
  }
2885
1.04k
  if (!btf_is_var(var)) {
2886
0
    pr_warn("map '%s': unexpected var kind %s.\n",
2887
0
      map_name, btf_kind_str(var));
2888
0
    return -EINVAL;
2889
0
  }
2890
1.04k
  if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2891
56
    pr_warn("map '%s': unsupported map linkage %s.\n",
2892
56
      map_name, btf_var_linkage_str(var_extra->linkage));
2893
56
    return -EOPNOTSUPP;
2894
56
  }
2895
2896
986
  def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2897
986
  if (!btf_is_struct(def)) {
2898
18
    pr_warn("map '%s': unexpected def kind %s.\n",
2899
18
      map_name, btf_kind_str(var));
2900
18
    return -EINVAL;
2901
18
  }
2902
968
  if (def->size > vi->size) {
2903
38
    pr_warn("map '%s': invalid def size.\n", map_name);
2904
38
    return -EINVAL;
2905
38
  }
2906
2907
930
  map = bpf_object__add_map(obj);
2908
930
  if (IS_ERR(map))
2909
0
    return PTR_ERR(map);
2910
930
  map->name = strdup(map_name);
2911
930
  if (!map->name) {
2912
0
    pr_warn("map '%s': failed to alloc map name.\n", map_name);
2913
0
    return -ENOMEM;
2914
0
  }
2915
930
  map->libbpf_type = LIBBPF_MAP_UNSPEC;
2916
930
  map->def.type = BPF_MAP_TYPE_UNSPEC;
2917
930
  map->sec_idx = sec_idx;
2918
930
  map->sec_offset = vi->offset;
2919
930
  map->btf_var_idx = var_idx;
2920
930
  pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2921
930
     map_name, map->sec_idx, map->sec_offset);
2922
2923
930
  err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2924
930
  if (err)
2925
844
    return err;
2926
2927
86
  fill_map_from_def(map, &map_def);
2928
2929
86
  if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2930
1
    err = build_map_pin_path(map, pin_root_path);
2931
1
    if (err) {
2932
0
      pr_warn("map '%s': couldn't build pin path.\n", map->name);
2933
0
      return err;
2934
0
    }
2935
1
  }
2936
2937
86
  if (map_def.parts & MAP_DEF_INNER_MAP) {
2938
0
    map->inner_map = calloc(1, sizeof(*map->inner_map));
2939
0
    if (!map->inner_map)
2940
0
      return -ENOMEM;
2941
0
    map->inner_map->fd = create_placeholder_fd();
2942
0
    if (map->inner_map->fd < 0)
2943
0
      return map->inner_map->fd;
2944
0
    map->inner_map->sec_idx = sec_idx;
2945
0
    map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2946
0
    if (!map->inner_map->name)
2947
0
      return -ENOMEM;
2948
0
    sprintf(map->inner_map->name, "%s.inner", map_name);
2949
2950
0
    fill_map_from_def(map->inner_map, &inner_def);
2951
0
  }
2952
2953
86
  err = map_fill_btf_type_info(obj, map);
2954
86
  if (err)
2955
0
    return err;
2956
2957
86
  return 0;
2958
86
}
2959
2960
static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2961
             const char *sec_name, int sec_idx,
2962
             void *data, size_t data_sz)
2963
0
{
2964
0
  const long page_sz = sysconf(_SC_PAGE_SIZE);
2965
0
  size_t mmap_sz;
2966
2967
0
  mmap_sz = bpf_map_mmap_sz(obj->arena_map);
2968
0
  if (roundup(data_sz, page_sz) > mmap_sz) {
2969
0
    pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2970
0
      sec_name, mmap_sz, data_sz);
2971
0
    return -E2BIG;
2972
0
  }
2973
2974
0
  obj->arena_data = malloc(data_sz);
2975
0
  if (!obj->arena_data)
2976
0
    return -ENOMEM;
2977
0
  memcpy(obj->arena_data, data, data_sz);
2978
0
  obj->arena_data_sz = data_sz;
2979
2980
  /* make bpf_map__init_value() work for ARENA maps */
2981
0
  map->mmaped = obj->arena_data;
2982
2983
0
  return 0;
2984
0
}
2985
2986
static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2987
            const char *pin_root_path)
2988
3.38k
{
2989
3.38k
  const struct btf_type *sec = NULL;
2990
3.38k
  int nr_types, i, vlen, err;
2991
3.38k
  const struct btf_type *t;
2992
3.38k
  const char *name;
2993
3.38k
  Elf_Data *data;
2994
3.38k
  Elf_Scn *scn;
2995
2996
3.38k
  if (obj->efile.btf_maps_shndx < 0)
2997
2.22k
    return 0;
2998
2999
1.16k
  scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
3000
1.16k
  data = elf_sec_data(obj, scn);
3001
1.16k
  if (!scn || !data) {
3002
0
    pr_warn("elf: failed to get %s map definitions for %s\n",
3003
0
      MAPS_ELF_SEC, obj->path);
3004
0
    return -EINVAL;
3005
0
  }
3006
3007
1.16k
  nr_types = btf__type_cnt(obj->btf);
3008
14.2k
  for (i = 1; i < nr_types; i++) {
3009
14.1k
    t = btf__type_by_id(obj->btf, i);
3010
14.1k
    if (!btf_is_datasec(t))
3011
12.3k
      continue;
3012
1.85k
    name = btf__name_by_offset(obj->btf, t->name_off);
3013
1.85k
    if (strcmp(name, MAPS_ELF_SEC) == 0) {
3014
1.11k
      sec = t;
3015
1.11k
      obj->efile.btf_maps_sec_btf_id = i;
3016
1.11k
      break;
3017
1.11k
    }
3018
1.85k
  }
3019
3020
1.16k
  if (!sec) {
3021
51
    pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
3022
51
    return -ENOENT;
3023
51
  }
3024
3025
1.11k
  vlen = btf_vlen(sec);
3026
1.19k
  for (i = 0; i < vlen; i++) {
3027
1.08k
    err = bpf_object__init_user_btf_map(obj, sec, i,
3028
1.08k
                obj->efile.btf_maps_shndx,
3029
1.08k
                data, strict,
3030
1.08k
                pin_root_path);
3031
1.08k
    if (err)
3032
998
      return err;
3033
1.08k
  }
3034
3035
199
  for (i = 0; i < obj->nr_maps; i++) {
3036
86
    struct bpf_map *map = &obj->maps[i];
3037
3038
86
    if (map->def.type != BPF_MAP_TYPE_ARENA)
3039
85
      continue;
3040
3041
1
    if (obj->arena_map) {
3042
0
      pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
3043
0
        map->name, obj->arena_map->name);
3044
0
      return -EINVAL;
3045
0
    }
3046
1
    obj->arena_map = map;
3047
3048
1
    if (obj->efile.arena_data) {
3049
0
      err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
3050
0
              obj->efile.arena_data->d_buf,
3051
0
              obj->efile.arena_data->d_size);
3052
0
      if (err)
3053
0
        return err;
3054
0
    }
3055
1
  }
3056
113
  if (obj->efile.arena_data && !obj->arena_map) {
3057
1
    pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3058
1
      ARENA_SEC);
3059
1
    return -ENOENT;
3060
1
  }
3061
3062
112
  return 0;
3063
113
}
3064
3065
static int bpf_object__init_maps(struct bpf_object *obj,
3066
         const struct bpf_object_open_opts *opts)
3067
3.38k
{
3068
3.38k
  const char *pin_root_path;
3069
3.38k
  bool strict;
3070
3.38k
  int err = 0;
3071
3072
3.38k
  strict = !OPTS_GET(opts, relaxed_maps, false);
3073
3.38k
  pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3074
3075
3.38k
  err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3076
3.38k
  err = err ?: bpf_object__init_global_data_maps(obj);
3077
3.38k
  err = err ?: bpf_object__init_kconfig_map(obj);
3078
2.33k
  err = err ?: bpf_object_init_struct_ops(obj);
3079
3080
1.26k
  return err;
3081
1.26k
}
3082
3083
static bool section_have_execinstr(struct bpf_object *obj, int idx)
3084
2.48k
{
3085
2.48k
  Elf64_Shdr *sh;
3086
3087
2.48k
  sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3088
2.48k
  if (!sh)
3089
0
    return false;
3090
3091
2.48k
  return sh->sh_flags & SHF_EXECINSTR;
3092
2.48k
}
3093
3094
static bool starts_with_qmark(const char *s)
3095
0
{
3096
0
  return s && s[0] == '?';
3097
0
}
3098
3099
static bool btf_needs_sanitization(struct bpf_object *obj)
3100
0
{
3101
0
  bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3102
0
  bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3103
0
  bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3104
0
  bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3105
0
  bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3106
0
  bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3107
0
  bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3108
0
  bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3109
3110
0
  return !has_func || !has_datasec || !has_func_global || !has_float ||
3111
0
         !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3112
0
}
3113
3114
static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3115
0
{
3116
0
  bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3117
0
  bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3118
0
  bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3119
0
  bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3120
0
  bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3121
0
  bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3122
0
  bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3123
0
  bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3124
0
  int enum64_placeholder_id = 0;
3125
0
  struct btf_type *t;
3126
0
  int i, j, vlen;
3127
3128
0
  for (i = 1; i < btf__type_cnt(btf); i++) {
3129
0
    t = (struct btf_type *)btf__type_by_id(btf, i);
3130
3131
0
    if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3132
      /* replace VAR/DECL_TAG with INT */
3133
0
      t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3134
      /*
3135
       * using size = 1 is the safest choice, 4 will be too
3136
       * big and cause kernel BTF validation failure if
3137
       * original variable took less than 4 bytes
3138
       */
3139
0
      t->size = 1;
3140
0
      *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3141
0
    } else if (!has_datasec && btf_is_datasec(t)) {
3142
      /* replace DATASEC with STRUCT */
3143
0
      const struct btf_var_secinfo *v = btf_var_secinfos(t);
3144
0
      struct btf_member *m = btf_members(t);
3145
0
      struct btf_type *vt;
3146
0
      char *name;
3147
3148
0
      name = (char *)btf__name_by_offset(btf, t->name_off);
3149
0
      while (*name) {
3150
0
        if (*name == '.' || *name == '?')
3151
0
          *name = '_';
3152
0
        name++;
3153
0
      }
3154
3155
0
      vlen = btf_vlen(t);
3156
0
      t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3157
0
      for (j = 0; j < vlen; j++, v++, m++) {
3158
        /* order of field assignments is important */
3159
0
        m->offset = v->offset * 8;
3160
0
        m->type = v->type;
3161
        /* preserve variable name as member name */
3162
0
        vt = (void *)btf__type_by_id(btf, v->type);
3163
0
        m->name_off = vt->name_off;
3164
0
      }
3165
0
    } else if (!has_qmark_datasec && btf_is_datasec(t) &&
3166
0
         starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3167
      /* replace '?' prefix with '_' for DATASEC names */
3168
0
      char *name;
3169
3170
0
      name = (char *)btf__name_by_offset(btf, t->name_off);
3171
0
      if (name[0] == '?')
3172
0
        name[0] = '_';
3173
0
    } else if (!has_func && btf_is_func_proto(t)) {
3174
      /* replace FUNC_PROTO with ENUM */
3175
0
      vlen = btf_vlen(t);
3176
0
      t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3177
0
      t->size = sizeof(__u32); /* kernel enforced */
3178
0
    } else if (!has_func && btf_is_func(t)) {
3179
      /* replace FUNC with TYPEDEF */
3180
0
      t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3181
0
    } else if (!has_func_global && btf_is_func(t)) {
3182
      /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3183
0
      t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3184
0
    } else if (!has_float && btf_is_float(t)) {
3185
      /* replace FLOAT with an equally-sized empty STRUCT;
3186
       * since C compilers do not accept e.g. "float" as a
3187
       * valid struct name, make it anonymous
3188
       */
3189
0
      t->name_off = 0;
3190
0
      t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3191
0
    } else if (!has_type_tag && btf_is_type_tag(t)) {
3192
      /* replace TYPE_TAG with a CONST */
3193
0
      t->name_off = 0;
3194
0
      t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3195
0
    } else if (!has_enum64 && btf_is_enum(t)) {
3196
      /* clear the kflag */
3197
0
      t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3198
0
    } else if (!has_enum64 && btf_is_enum64(t)) {
3199
      /* replace ENUM64 with a union */
3200
0
      struct btf_member *m;
3201
3202
0
      if (enum64_placeholder_id == 0) {
3203
0
        enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3204
0
        if (enum64_placeholder_id < 0)
3205
0
          return enum64_placeholder_id;
3206
3207
0
        t = (struct btf_type *)btf__type_by_id(btf, i);
3208
0
      }
3209
3210
0
      m = btf_members(t);
3211
0
      vlen = btf_vlen(t);
3212
0
      t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3213
0
      for (j = 0; j < vlen; j++, m++) {
3214
0
        m->type = enum64_placeholder_id;
3215
0
        m->offset = 0;
3216
0
      }
3217
0
    }
3218
0
  }
3219
3220
0
  return 0;
3221
0
}
3222
3223
static bool libbpf_needs_btf(const struct bpf_object *obj)
3224
2.94k
{
3225
2.94k
  return obj->efile.btf_maps_shndx >= 0 ||
3226
2.94k
         obj->efile.has_st_ops ||
3227
2.94k
         obj->nr_extern > 0;
3228
2.94k
}
3229
3230
static bool kernel_needs_btf(const struct bpf_object *obj)
3231
0
{
3232
0
  return obj->efile.has_st_ops;
3233
0
}
3234
3235
static int bpf_object__init_btf(struct bpf_object *obj,
3236
        Elf_Data *btf_data,
3237
        Elf_Data *btf_ext_data)
3238
6.23k
{
3239
6.23k
  int err = -ENOENT;
3240
3241
6.23k
  if (btf_data) {
3242
4.57k
    obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3243
4.57k
    err = libbpf_get_error(obj->btf);
3244
4.57k
    if (err) {
3245
946
      obj->btf = NULL;
3246
946
      pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err));
3247
946
      goto out;
3248
946
    }
3249
    /* enforce 8-byte pointers for BPF-targeted BTFs */
3250
3.62k
    btf__set_pointer_size(obj->btf, 8);
3251
3.62k
  }
3252
5.29k
  if (btf_ext_data) {
3253
433
    struct btf_ext_info *ext_segs[3];
3254
433
    int seg_num, sec_num;
3255
3256
433
    if (!obj->btf) {
3257
5
      pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3258
5
         BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3259
5
      goto out;
3260
5
    }
3261
428
    obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3262
428
    err = libbpf_get_error(obj->btf_ext);
3263
428
    if (err) {
3264
332
      pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n",
3265
332
        BTF_EXT_ELF_SEC, errstr(err));
3266
332
      obj->btf_ext = NULL;
3267
332
      goto out;
3268
332
    }
3269
3270
    /* setup .BTF.ext to ELF section mapping */
3271
96
    ext_segs[0] = &obj->btf_ext->func_info;
3272
96
    ext_segs[1] = &obj->btf_ext->line_info;
3273
96
    ext_segs[2] = &obj->btf_ext->core_relo_info;
3274
384
    for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3275
288
      struct btf_ext_info *seg = ext_segs[seg_num];
3276
288
      const struct btf_ext_info_sec *sec;
3277
288
      const char *sec_name;
3278
288
      Elf_Scn *scn;
3279
3280
288
      if (seg->sec_cnt == 0)
3281
183
        continue;
3282
3283
105
      seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3284
105
      if (!seg->sec_idxs) {
3285
0
        err = -ENOMEM;
3286
0
        goto out;
3287
0
      }
3288
3289
105
      sec_num = 0;
3290
264
      for_each_btf_ext_sec(seg, sec) {
3291
        /* preventively increment index to avoid doing
3292
         * this before every continue below
3293
         */
3294
264
        sec_num++;
3295
3296
264
        sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3297
264
        if (str_is_empty(sec_name))
3298
129
          continue;
3299
135
        scn = elf_sec_by_name(obj, sec_name);
3300
135
        if (!scn)
3301
121
          continue;
3302
3303
14
        seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3304
14
      }
3305
105
    }
3306
96
  }
3307
6.23k
out:
3308
6.23k
  if (err && libbpf_needs_btf(obj)) {
3309
48
    pr_warn("BTF is required, but is missing or corrupted.\n");
3310
48
    return err;
3311
48
  }
3312
6.18k
  return 0;
3313
6.23k
}
3314
3315
static int compare_vsi_off(const void *_a, const void *_b)
3316
1.92k
{
3317
1.92k
  const struct btf_var_secinfo *a = _a;
3318
1.92k
  const struct btf_var_secinfo *b = _b;
3319
3320
1.92k
  return a->offset - b->offset;
3321
1.92k
}
3322
3323
static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3324
           struct btf_type *t)
3325
3.67k
{
3326
3.67k
  __u32 size = 0, i, vars = btf_vlen(t);
3327
3.67k
  const char *sec_name = btf__name_by_offset(btf, t->name_off);
3328
3.67k
  struct btf_var_secinfo *vsi;
3329
3.67k
  bool fixup_offsets = false;
3330
3.67k
  int err;
3331
3332
3.67k
  if (!sec_name) {
3333
0
    pr_debug("No name found in string section for DATASEC kind.\n");
3334
0
    return -ENOENT;
3335
0
  }
3336
3337
  /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3338
   * variable offsets set at the previous step. Further, not every
3339
   * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3340
   * all fixups altogether for such sections and go straight to sorting
3341
   * VARs within their DATASEC.
3342
   */
3343
3.67k
  if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3344
414
    goto sort_vars;
3345
3346
  /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3347
   * fix this up. But BPF static linker already fixes this up and fills
3348
   * all the sizes and offsets during static linking. So this step has
3349
   * to be optional. But the STV_HIDDEN handling is non-optional for any
3350
   * non-extern DATASEC, so the variable fixup loop below handles both
3351
   * functions at the same time, paying the cost of BTF VAR <-> ELF
3352
   * symbol matching just once.
3353
   */
3354
3.26k
  if (t->size == 0) {
3355
513
    err = find_elf_sec_sz(obj, sec_name, &size);
3356
513
    if (err || !size) {
3357
158
      pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n",
3358
158
         sec_name, size, errstr(err));
3359
158
      return -ENOENT;
3360
158
    }
3361
3362
355
    t->size = size;
3363
355
    fixup_offsets = true;
3364
355
  }
3365
3366
5.22k
  for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3367
2.46k
    const struct btf_type *t_var;
3368
2.46k
    struct btf_var *var;
3369
2.46k
    const char *var_name;
3370
2.46k
    Elf64_Sym *sym;
3371
3372
2.46k
    t_var = btf__type_by_id(btf, vsi->type);
3373
2.46k
    if (!t_var || !btf_is_var(t_var)) {
3374
88
      pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3375
88
      return -EINVAL;
3376
88
    }
3377
3378
2.38k
    var = btf_var(t_var);
3379
2.38k
    if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3380
284
      continue;
3381
3382
2.09k
    var_name = btf__name_by_offset(btf, t_var->name_off);
3383
2.09k
    if (!var_name) {
3384
0
      pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3385
0
         sec_name, i);
3386
0
      return -ENOENT;
3387
0
    }
3388
3389
2.09k
    sym = find_elf_var_sym(obj, var_name);
3390
2.09k
    if (IS_ERR(sym)) {
3391
256
      pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3392
256
         sec_name, var_name);
3393
256
      return -ENOENT;
3394
256
    }
3395
3396
1.84k
    if (fixup_offsets)
3397
208
      vsi->offset = sym->st_value;
3398
3399
    /* if variable is a global/weak symbol, but has restricted
3400
     * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3401
     * as static. This follows similar logic for functions (BPF
3402
     * subprogs) and influences libbpf's further decisions about
3403
     * whether to make global data BPF array maps as
3404
     * BPF_F_MMAPABLE.
3405
     */
3406
1.84k
    if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3407
1.84k
        || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3408
138
      var->linkage = BTF_VAR_STATIC;
3409
1.84k
  }
3410
3411
3.17k
sort_vars:
3412
3.17k
  qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3413
3.17k
  return 0;
3414
3.10k
}
3415
3416
static int bpf_object_fixup_btf(struct bpf_object *obj)
3417
3.88k
{
3418
3.88k
  int i, n, err = 0;
3419
3420
3.88k
  if (!obj->btf)
3421
1.60k
    return 0;
3422
3423
2.28k
  n = btf__type_cnt(obj->btf);
3424
25.9k
  for (i = 1; i < n; i++) {
3425
24.1k
    struct btf_type *t = btf_type_by_id(obj->btf, i);
3426
3427
    /* Loader needs to fix up some of the things compiler
3428
     * couldn't get its hands on while emitting BTF. This
3429
     * is section size and global variable offset. We use
3430
     * the info from the ELF itself for this purpose.
3431
     */
3432
24.1k
    if (btf_is_datasec(t)) {
3433
3.67k
      err = btf_fixup_datasec(obj, obj->btf, t);
3434
3.67k
      if (err)
3435
502
        return err;
3436
3.67k
    }
3437
24.1k
  }
3438
3439
1.78k
  return 0;
3440
2.28k
}
3441
3442
static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3443
0
{
3444
0
  if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3445
0
      prog->type == BPF_PROG_TYPE_LSM)
3446
0
    return true;
3447
3448
  /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3449
   * also need vmlinux BTF
3450
   */
3451
0
  if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3452
0
    return true;
3453
3454
0
  return false;
3455
0
}
3456
3457
static bool map_needs_vmlinux_btf(struct bpf_map *map)
3458
0
{
3459
0
  return bpf_map__is_struct_ops(map);
3460
0
}
3461
3462
static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3463
0
{
3464
0
  struct bpf_program *prog;
3465
0
  struct bpf_map *map;
3466
0
  int i;
3467
3468
  /* CO-RE relocations need kernel BTF, only when btf_custom_path
3469
   * is not specified
3470
   */
3471
0
  if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3472
0
    return true;
3473
3474
  /* Support for typed ksyms needs kernel BTF */
3475
0
  for (i = 0; i < obj->nr_extern; i++) {
3476
0
    const struct extern_desc *ext;
3477
3478
0
    ext = &obj->externs[i];
3479
0
    if (ext->type == EXT_KSYM && ext->ksym.type_id)
3480
0
      return true;
3481
0
  }
3482
3483
0
  bpf_object__for_each_program(prog, obj) {
3484
0
    if (!prog->autoload)
3485
0
      continue;
3486
0
    if (prog_needs_vmlinux_btf(prog))
3487
0
      return true;
3488
0
  }
3489
3490
0
  bpf_object__for_each_map(map, obj) {
3491
0
    if (map_needs_vmlinux_btf(map))
3492
0
      return true;
3493
0
  }
3494
3495
0
  return false;
3496
0
}
3497
3498
static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3499
0
{
3500
0
  int err;
3501
3502
  /* btf_vmlinux could be loaded earlier */
3503
0
  if (obj->btf_vmlinux || obj->gen_loader)
3504
0
    return 0;
3505
3506
0
  if (!force && !obj_needs_vmlinux_btf(obj))
3507
0
    return 0;
3508
3509
0
  obj->btf_vmlinux = btf__load_vmlinux_btf();
3510
0
  err = libbpf_get_error(obj->btf_vmlinux);
3511
0
  if (err) {
3512
0
    pr_warn("Error loading vmlinux BTF: %s\n", errstr(err));
3513
0
    obj->btf_vmlinux = NULL;
3514
0
    return err;
3515
0
  }
3516
0
  return 0;
3517
0
}
3518
3519
static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3520
0
{
3521
0
  struct btf *kern_btf = obj->btf;
3522
0
  bool btf_mandatory, sanitize;
3523
0
  int i, err = 0;
3524
3525
0
  if (!obj->btf)
3526
0
    return 0;
3527
3528
0
  if (!kernel_supports(obj, FEAT_BTF)) {
3529
0
    if (kernel_needs_btf(obj)) {
3530
0
      err = -EOPNOTSUPP;
3531
0
      goto report;
3532
0
    }
3533
0
    pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3534
0
    return 0;
3535
0
  }
3536
3537
  /* Even though some subprogs are global/weak, user might prefer more
3538
   * permissive BPF verification process that BPF verifier performs for
3539
   * static functions, taking into account more context from the caller
3540
   * functions. In such case, they need to mark such subprogs with
3541
   * __attribute__((visibility("hidden"))) and libbpf will adjust
3542
   * corresponding FUNC BTF type to be marked as static and trigger more
3543
   * involved BPF verification process.
3544
   */
3545
0
  for (i = 0; i < obj->nr_programs; i++) {
3546
0
    struct bpf_program *prog = &obj->programs[i];
3547
0
    struct btf_type *t;
3548
0
    const char *name;
3549
0
    int j, n;
3550
3551
0
    if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3552
0
      continue;
3553
3554
0
    n = btf__type_cnt(obj->btf);
3555
0
    for (j = 1; j < n; j++) {
3556
0
      t = btf_type_by_id(obj->btf, j);
3557
0
      if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3558
0
        continue;
3559
3560
0
      name = btf__str_by_offset(obj->btf, t->name_off);
3561
0
      if (strcmp(name, prog->name) != 0)
3562
0
        continue;
3563
3564
0
      t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3565
0
      break;
3566
0
    }
3567
0
  }
3568
3569
0
  sanitize = btf_needs_sanitization(obj);
3570
0
  if (sanitize) {
3571
0
    const void *raw_data;
3572
0
    __u32 sz;
3573
3574
    /* clone BTF to sanitize a copy and leave the original intact */
3575
0
    raw_data = btf__raw_data(obj->btf, &sz);
3576
0
    kern_btf = btf__new(raw_data, sz);
3577
0
    err = libbpf_get_error(kern_btf);
3578
0
    if (err)
3579
0
      return err;
3580
3581
    /* enforce 8-byte pointers for BPF-targeted BTFs */
3582
0
    btf__set_pointer_size(obj->btf, 8);
3583
0
    err = bpf_object__sanitize_btf(obj, kern_btf);
3584
0
    if (err)
3585
0
      return err;
3586
0
  }
3587
3588
0
  if (obj->gen_loader) {
3589
0
    __u32 raw_size = 0;
3590
0
    const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3591
3592
0
    if (!raw_data)
3593
0
      return -ENOMEM;
3594
0
    bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3595
    /* Pretend to have valid FD to pass various fd >= 0 checks.
3596
     * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3597
     */
3598
0
    btf__set_fd(kern_btf, 0);
3599
0
  } else {
3600
    /* currently BPF_BTF_LOAD only supports log_level 1 */
3601
0
    err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3602
0
             obj->log_level ? 1 : 0, obj->token_fd);
3603
0
  }
3604
0
  if (sanitize) {
3605
0
    if (!err) {
3606
      /* move fd to libbpf's BTF */
3607
0
      btf__set_fd(obj->btf, btf__fd(kern_btf));
3608
0
      btf__set_fd(kern_btf, -1);
3609
0
    }
3610
0
    btf__free(kern_btf);
3611
0
  }
3612
0
report:
3613
0
  if (err) {
3614
0
    btf_mandatory = kernel_needs_btf(obj);
3615
0
    if (btf_mandatory) {
3616
0
      pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n",
3617
0
        errstr(err));
3618
0
    } else {
3619
0
      pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n",
3620
0
        errstr(err));
3621
0
      err = 0;
3622
0
    }
3623
0
  }
3624
0
  return err;
3625
0
}
3626
3627
static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3628
25.5k
{
3629
25.5k
  const char *name;
3630
3631
25.5k
  name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3632
25.5k
  if (!name) {
3633
8.20k
    pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3634
8.20k
      off, obj->path, elf_errmsg(-1));
3635
8.20k
    return NULL;
3636
8.20k
  }
3637
3638
17.3k
  return name;
3639
25.5k
}
3640
3641
static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3642
57.6k
{
3643
57.6k
  const char *name;
3644
3645
57.6k
  name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3646
57.6k
  if (!name) {
3647
1.14k
    pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3648
1.14k
      off, obj->path, elf_errmsg(-1));
3649
1.14k
    return NULL;
3650
1.14k
  }
3651
3652
56.5k
  return name;
3653
57.6k
}
3654
3655
static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3656
15.2k
{
3657
15.2k
  Elf_Scn *scn;
3658
3659
15.2k
  scn = elf_getscn(obj->efile.elf, idx);
3660
15.2k
  if (!scn) {
3661
0
    pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3662
0
      idx, obj->path, elf_errmsg(-1));
3663
0
    return NULL;
3664
0
  }
3665
15.2k
  return scn;
3666
15.2k
}
3667
3668
static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3669
648
{
3670
648
  Elf_Scn *scn = NULL;
3671
648
  Elf *elf = obj->efile.elf;
3672
648
  const char *sec_name;
3673
3674
4.99k
  while ((scn = elf_nextscn(elf, scn)) != NULL) {
3675
4.72k
    sec_name = elf_sec_name(obj, scn);
3676
4.72k
    if (!sec_name)
3677
0
      return NULL;
3678
3679
4.72k
    if (strcmp(sec_name, name) != 0)
3680
4.34k
      continue;
3681
3682
380
    return scn;
3683
4.72k
  }
3684
268
  return NULL;
3685
648
}
3686
3687
static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3688
123k
{
3689
123k
  Elf64_Shdr *shdr;
3690
3691
123k
  if (!scn)
3692
0
    return NULL;
3693
3694
123k
  shdr = elf64_getshdr(scn);
3695
123k
  if (!shdr) {
3696
0
    pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3697
0
      elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3698
0
    return NULL;
3699
0
  }
3700
3701
123k
  return shdr;
3702
123k
}
3703
3704
static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3705
10.7k
{
3706
10.7k
  const char *name;
3707
10.7k
  Elf64_Shdr *sh;
3708
3709
10.7k
  if (!scn)
3710
0
    return NULL;
3711
3712
10.7k
  sh = elf_sec_hdr(obj, scn);
3713
10.7k
  if (!sh)
3714
0
    return NULL;
3715
3716
10.7k
  name = elf_sec_str(obj, sh->sh_name);
3717
10.7k
  if (!name) {
3718
777
    pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3719
777
      elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3720
777
    return NULL;
3721
777
  }
3722
3723
9.93k
  return name;
3724
10.7k
}
3725
3726
static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3727
48.3k
{
3728
48.3k
  Elf_Data *data;
3729
3730
48.3k
  if (!scn)
3731
147
    return NULL;
3732
3733
48.1k
  data = elf_getdata(scn, 0);
3734
48.1k
  if (!data) {
3735
551
    pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3736
551
      elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3737
551
      obj->path, elf_errmsg(-1));
3738
551
    return NULL;
3739
551
  }
3740
3741
47.6k
  return data;
3742
48.1k
}
3743
3744
static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3745
507k
{
3746
507k
  if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3747
144
    return NULL;
3748
3749
507k
  return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3750
507k
}
3751
3752
static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3753
8.16k
{
3754
8.16k
  if (idx >= data->d_size / sizeof(Elf64_Rel))
3755
0
    return NULL;
3756
3757
8.16k
  return (Elf64_Rel *)data->d_buf + idx;
3758
8.16k
}
3759
3760
static bool is_sec_name_dwarf(const char *name)
3761
42.7k
{
3762
  /* approximation, but the actual list is too long */
3763
42.7k
  return str_has_pfx(name, ".debug_");
3764
42.7k
}
3765
3766
static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3767
45.5k
{
3768
  /* no special handling of .strtab */
3769
45.5k
  if (hdr->sh_type == SHT_STRTAB)
3770
5.40k
    return true;
3771
3772
  /* ignore .llvm_addrsig section as well */
3773
40.1k
  if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3774
334
    return true;
3775
3776
  /* no subprograms will lead to an empty .text section, ignore it */
3777
39.8k
  if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3778
39.8k
      strcmp(name, ".text") == 0)
3779
148
    return true;
3780
3781
  /* DWARF sections */
3782
39.7k
  if (is_sec_name_dwarf(name))
3783
2.17k
    return true;
3784
3785
37.5k
  if (str_has_pfx(name, ".rel")) {
3786
3.02k
    name += sizeof(".rel") - 1;
3787
    /* DWARF section relocations */
3788
3.02k
    if (is_sec_name_dwarf(name))
3789
371
      return true;
3790
3791
    /* .BTF and .BTF.ext don't need relocations */
3792
2.65k
    if (strcmp(name, BTF_ELF_SEC) == 0 ||
3793
2.65k
        strcmp(name, BTF_EXT_ELF_SEC) == 0)
3794
773
      return true;
3795
2.65k
  }
3796
3797
36.3k
  return false;
3798
37.5k
}
3799
3800
static int cmp_progs(const void *_a, const void *_b)
3801
34.8k
{
3802
34.8k
  const struct bpf_program *a = _a;
3803
34.8k
  const struct bpf_program *b = _b;
3804
3805
34.8k
  if (a->sec_idx != b->sec_idx)
3806
698
    return a->sec_idx < b->sec_idx ? -1 : 1;
3807
3808
  /* sec_insn_off can't be the same within the section */
3809
34.1k
  return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3810
34.8k
}
3811
3812
static int bpf_object__elf_collect(struct bpf_object *obj)
3813
9.35k
{
3814
9.35k
  struct elf_sec_desc *sec_desc;
3815
9.35k
  Elf *elf = obj->efile.elf;
3816
9.35k
  Elf_Data *btf_ext_data = NULL;
3817
9.35k
  Elf_Data *btf_data = NULL;
3818
9.35k
  int idx = 0, err = 0;
3819
9.35k
  const char *name;
3820
9.35k
  Elf_Data *data;
3821
9.35k
  Elf_Scn *scn;
3822
9.35k
  Elf64_Shdr *sh;
3823
3824
  /* ELF section indices are 0-based, but sec #0 is special "invalid"
3825
   * section. Since section count retrieved by elf_getshdrnum() does
3826
   * include sec #0, it is already the necessary size of an array to keep
3827
   * all the sections.
3828
   */
3829
9.35k
  if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3830
0
    pr_warn("elf: failed to get the number of sections for %s: %s\n",
3831
0
      obj->path, elf_errmsg(-1));
3832
0
    return -LIBBPF_ERRNO__FORMAT;
3833
0
  }
3834
9.35k
  obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3835
9.35k
  if (!obj->efile.secs)
3836
0
    return -ENOMEM;
3837
3838
  /* a bunch of ELF parsing functionality depends on processing symbols,
3839
   * so do the first pass and find the symbol table
3840
   */
3841
9.35k
  scn = NULL;
3842
67.1k
  while ((scn = elf_nextscn(elf, scn)) != NULL) {
3843
58.0k
    sh = elf_sec_hdr(obj, scn);
3844
58.0k
    if (!sh)
3845
0
      return -LIBBPF_ERRNO__FORMAT;
3846
3847
58.0k
    if (sh->sh_type == SHT_SYMTAB) {
3848
9.28k
      if (obj->efile.symbols) {
3849
5
        pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3850
5
        return -LIBBPF_ERRNO__FORMAT;
3851
5
      }
3852
3853
9.27k
      data = elf_sec_data(obj, scn);
3854
9.27k
      if (!data)
3855
244
        return -LIBBPF_ERRNO__FORMAT;
3856
3857
9.03k
      idx = elf_ndxscn(scn);
3858
3859
9.03k
      obj->efile.symbols = data;
3860
9.03k
      obj->efile.symbols_shndx = idx;
3861
9.03k
      obj->efile.strtabidx = sh->sh_link;
3862
9.03k
    }
3863
58.0k
  }
3864
3865
9.10k
  if (!obj->efile.symbols) {
3866
78
    pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3867
78
      obj->path);
3868
78
    return -ENOENT;
3869
78
  }
3870
3871
9.02k
  scn = NULL;
3872
53.0k
  while ((scn = elf_nextscn(elf, scn)) != NULL) {
3873
45.9k
    idx = elf_ndxscn(scn);
3874
45.9k
    sec_desc = &obj->efile.secs[idx];
3875
3876
45.9k
    sh = elf_sec_hdr(obj, scn);
3877
45.9k
    if (!sh)
3878
0
      return -LIBBPF_ERRNO__FORMAT;
3879
3880
45.9k
    name = elf_sec_str(obj, sh->sh_name);
3881
45.9k
    if (!name)
3882
369
      return -LIBBPF_ERRNO__FORMAT;
3883
3884
45.5k
    if (ignore_elf_section(sh, name))
3885
9.20k
      continue;
3886
3887
36.3k
    data = elf_sec_data(obj, scn);
3888
36.3k
    if (!data)
3889
297
      return -LIBBPF_ERRNO__FORMAT;
3890
3891
36.0k
    pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3892
36.0k
       idx, name, (unsigned long)data->d_size,
3893
36.0k
       (int)sh->sh_link, (unsigned long)sh->sh_flags,
3894
36.0k
       (int)sh->sh_type);
3895
3896
36.0k
    if (strcmp(name, "license") == 0) {
3897
807
      err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3898
807
      if (err)
3899
1
        return err;
3900
35.2k
    } else if (strcmp(name, "version") == 0) {
3901
52
      err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3902
52
      if (err)
3903
10
        return err;
3904
35.2k
    } else if (strcmp(name, "maps") == 0) {
3905
8
      pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3906
8
      return -ENOTSUP;
3907
35.2k
    } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3908
1.47k
      obj->efile.btf_maps_shndx = idx;
3909
33.7k
    } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3910
4.74k
      if (sh->sh_type != SHT_PROGBITS)
3911
56
        return -LIBBPF_ERRNO__FORMAT;
3912
4.68k
      btf_data = data;
3913
29.0k
    } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3914
581
      if (sh->sh_type != SHT_PROGBITS)
3915
46
        return -LIBBPF_ERRNO__FORMAT;
3916
535
      btf_ext_data = data;
3917
28.4k
    } else if (sh->sh_type == SHT_SYMTAB) {
3918
      /* already processed during the first pass above */
3919
21.0k
    } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3920
4.48k
      if (sh->sh_flags & SHF_EXECINSTR) {
3921
1.33k
        if (strcmp(name, ".text") == 0)
3922
223
          obj->efile.text_shndx = idx;
3923
1.33k
        err = bpf_object__add_programs(obj, data, name, idx);
3924
1.33k
        if (err)
3925
228
          return err;
3926
3.14k
      } else if (strcmp(name, DATA_SEC) == 0 ||
3927
3.14k
           str_has_pfx(name, DATA_SEC ".")) {
3928
555
        sec_desc->sec_type = SEC_DATA;
3929
555
        sec_desc->shdr = sh;
3930
555
        sec_desc->data = data;
3931
2.59k
      } else if (strcmp(name, RODATA_SEC) == 0 ||
3932
2.59k
           str_has_pfx(name, RODATA_SEC ".")) {
3933
608
        sec_desc->sec_type = SEC_RODATA;
3934
608
        sec_desc->shdr = sh;
3935
608
        sec_desc->data = data;
3936
1.98k
      } else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3937
1.98k
           strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3938
1.98k
           strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3939
1.98k
           strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3940
585
        sec_desc->sec_type = SEC_ST_OPS;
3941
585
        sec_desc->shdr = sh;
3942
585
        sec_desc->data = data;
3943
585
        obj->efile.has_st_ops = true;
3944
1.40k
      } else if (strcmp(name, ARENA_SEC) == 0) {
3945
85
        obj->efile.arena_data = data;
3946
85
        obj->efile.arena_data_shndx = idx;
3947
1.31k
      } else {
3948
1.31k
        pr_info("elf: skipping unrecognized data section(%d) %s\n",
3949
1.31k
          idx, name);
3950
1.31k
      }
3951
16.5k
    } else if (sh->sh_type == SHT_REL) {
3952
2.66k
      int targ_sec_idx = sh->sh_info; /* points to other section */
3953
3954
2.66k
      if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3955
2.66k
          targ_sec_idx >= obj->efile.sec_cnt)
3956
178
        return -LIBBPF_ERRNO__FORMAT;
3957
3958
      /* Only do relo for section with exec instructions */
3959
2.48k
      if (!section_have_execinstr(obj, targ_sec_idx) &&
3960
2.48k
          strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3961
2.48k
          strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3962
2.48k
          strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3963
2.48k
          strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3964
2.48k
          strcmp(name, ".rel" MAPS_ELF_SEC)) {
3965
994
        pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3966
994
          idx, name, targ_sec_idx,
3967
994
          elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3968
994
        continue;
3969
994
      }
3970
3971
1.49k
      sec_desc->sec_type = SEC_RELO;
3972
1.49k
      sec_desc->shdr = sh;
3973
1.49k
      sec_desc->data = data;
3974
13.8k
    } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3975
2.27k
               str_has_pfx(name, BSS_SEC "."))) {
3976
1.50k
      sec_desc->sec_type = SEC_BSS;
3977
1.50k
      sec_desc->shdr = sh;
3978
1.50k
      sec_desc->data = data;
3979
12.3k
    } else {
3980
12.3k
      pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3981
12.3k
        (size_t)sh->sh_size);
3982
12.3k
    }
3983
36.0k
  }
3984
3985
7.63k
  if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3986
1.59k
    pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3987
1.59k
    return -LIBBPF_ERRNO__FORMAT;
3988
1.59k
  }
3989
3990
  /* change BPF program insns to native endianness for introspection */
3991
5.49k
  if (!is_native_endianness(obj))
3992
220
    bpf_object_bswap_progs(obj);
3993
3994
  /* sort BPF programs by section name and in-section instruction offset
3995
   * for faster search
3996
   */
3997
5.49k
  if (obj->nr_programs)
3998
556
    qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3999
4000
5.49k
  return bpf_object__init_btf(obj, btf_data, btf_ext_data);
4001
7.09k
}
4002
4003
static bool sym_is_extern(const Elf64_Sym *sym)
4004
263k
{
4005
263k
  int bind = ELF64_ST_BIND(sym->st_info);
4006
  /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
4007
263k
  return sym->st_shndx == SHN_UNDEF &&
4008
263k
         (bind == STB_GLOBAL || bind == STB_WEAK) &&
4009
263k
         ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
4010
263k
}
4011
4012
static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
4013
1.02k
{
4014
1.02k
  int bind = ELF64_ST_BIND(sym->st_info);
4015
1.02k
  int type = ELF64_ST_TYPE(sym->st_info);
4016
4017
  /* in .text section */
4018
1.02k
  if (sym->st_shndx != text_shndx)
4019
434
    return false;
4020
4021
  /* local function */
4022
586
  if (bind == STB_LOCAL && type == STT_SECTION)
4023
363
    return true;
4024
4025
  /* global function */
4026
223
  return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
4027
586
}
4028
4029
static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
4030
3.56k
{
4031
3.56k
  const struct btf_type *t;
4032
3.56k
  const char *tname;
4033
3.56k
  int i, n;
4034
4035
3.56k
  if (!btf)
4036
28
    return -ESRCH;
4037
4038
3.53k
  n = btf__type_cnt(btf);
4039
24.5k
  for (i = 1; i < n; i++) {
4040
24.4k
    t = btf__type_by_id(btf, i);
4041
4042
24.4k
    if (!btf_is_var(t) && !btf_is_func(t))
4043
17.7k
      continue;
4044
4045
6.74k
    tname = btf__name_by_offset(btf, t->name_off);
4046
6.74k
    if (strcmp(tname, ext_name))
4047
3.28k
      continue;
4048
4049
3.46k
    if (btf_is_var(t) &&
4050
3.46k
        btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
4051
48
      return -EINVAL;
4052
4053
3.41k
    if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
4054
16
      return -EINVAL;
4055
4056
3.39k
    return i;
4057
3.41k
  }
4058
4059
78
  return -ENOENT;
4060
3.53k
}
4061
4062
3.39k
static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4063
3.39k
  const struct btf_var_secinfo *vs;
4064
3.39k
  const struct btf_type *t;
4065
3.39k
  int i, j, n;
4066
4067
3.39k
  if (!btf)
4068
0
    return -ESRCH;
4069
4070
3.39k
  n = btf__type_cnt(btf);
4071
28.1k
  for (i = 1; i < n; i++) {
4072
28.0k
    t = btf__type_by_id(btf, i);
4073
4074
28.0k
    if (!btf_is_datasec(t))
4075
19.4k
      continue;
4076
4077
8.60k
    vs = btf_var_secinfos(t);
4078
19.8k
    for (j = 0; j < btf_vlen(t); j++, vs++) {
4079
14.6k
      if (vs->type == ext_btf_id)
4080
3.37k
        return i;
4081
14.6k
    }
4082
8.60k
  }
4083
4084
23
  return -ENOENT;
4085
3.39k
}
4086
4087
static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4088
             bool *is_signed)
4089
1.14k
{
4090
1.14k
  const struct btf_type *t;
4091
1.14k
  const char *name;
4092
4093
1.14k
  t = skip_mods_and_typedefs(btf, id, NULL);
4094
1.14k
  name = btf__name_by_offset(btf, t->name_off);
4095
4096
1.14k
  if (is_signed)
4097
993
    *is_signed = false;
4098
1.14k
  switch (btf_kind(t)) {
4099
739
  case BTF_KIND_INT: {
4100
739
    int enc = btf_int_encoding(t);
4101
4102
739
    if (enc & BTF_INT_BOOL)
4103
336
      return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4104
403
    if (is_signed)
4105
319
      *is_signed = enc & BTF_INT_SIGNED;
4106
403
    if (t->size == 1)
4107
253
      return KCFG_CHAR;
4108
150
    if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4109
34
      return KCFG_UNKNOWN;
4110
116
    return KCFG_INT;
4111
150
  }
4112
119
  case BTF_KIND_ENUM:
4113
119
    if (t->size != 4)
4114
34
      return KCFG_UNKNOWN;
4115
85
    if (strcmp(name, "libbpf_tristate"))
4116
75
      return KCFG_UNKNOWN;
4117
10
    return KCFG_TRISTATE;
4118
100
  case BTF_KIND_ENUM64:
4119
100
    if (strcmp(name, "libbpf_tristate"))
4120
90
      return KCFG_UNKNOWN;
4121
10
    return KCFG_TRISTATE;
4122
156
  case BTF_KIND_ARRAY:
4123
156
    if (btf_array(t)->nelems == 0)
4124
0
      return KCFG_UNKNOWN;
4125
156
    if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4126
74
      return KCFG_UNKNOWN;
4127
82
    return KCFG_CHAR_ARR;
4128
35
  default:
4129
35
    return KCFG_UNKNOWN;
4130
1.14k
  }
4131
1.14k
}
4132
4133
static int cmp_externs(const void *_a, const void *_b)
4134
6.26k
{
4135
6.26k
  const struct extern_desc *a = _a;
4136
6.26k
  const struct extern_desc *b = _b;
4137
4138
6.26k
  if (a->type != b->type)
4139
0
    return a->type < b->type ? -1 : 1;
4140
4141
6.26k
  if (a->type == EXT_KCFG) {
4142
    /* descending order by alignment requirements */
4143
1.12k
    if (a->kcfg.align != b->kcfg.align)
4144
0
      return a->kcfg.align > b->kcfg.align ? -1 : 1;
4145
    /* ascending order by size, within same alignment class */
4146
1.12k
    if (a->kcfg.sz != b->kcfg.sz)
4147
0
      return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4148
1.12k
  }
4149
4150
  /* resolve ties by name */
4151
6.26k
  return strcmp(a->name, b->name);
4152
6.26k
}
4153
4154
static int find_int_btf_id(const struct btf *btf)
4155
790
{
4156
790
  const struct btf_type *t;
4157
790
  int i, n;
4158
4159
790
  n = btf__type_cnt(btf);
4160
8.19k
  for (i = 1; i < n; i++) {
4161
7.46k
    t = btf__type_by_id(btf, i);
4162
4163
7.46k
    if (btf_is_int(t) && btf_int_bits(t) == 32)
4164
57
      return i;
4165
7.46k
  }
4166
4167
733
  return 0;
4168
790
}
4169
4170
static int add_dummy_ksym_var(struct btf *btf)
4171
4.98k
{
4172
4.98k
  int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4173
4.98k
  const struct btf_var_secinfo *vs;
4174
4.98k
  const struct btf_type *sec;
4175
4176
4.98k
  if (!btf)
4177
1.63k
    return 0;
4178
4179
3.35k
  sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4180
3.35k
              BTF_KIND_DATASEC);
4181
3.35k
  if (sec_btf_id < 0)
4182
2.72k
    return 0;
4183
4184
625
  sec = btf__type_by_id(btf, sec_btf_id);
4185
625
  vs = btf_var_secinfos(sec);
4186
1.50k
  for (i = 0; i < btf_vlen(sec); i++, vs++) {
4187
1.36k
    const struct btf_type *vt;
4188
4189
1.36k
    vt = btf__type_by_id(btf, vs->type);
4190
1.36k
    if (btf_is_func(vt))
4191
480
      break;
4192
1.36k
  }
4193
4194
  /* No func in ksyms sec.  No need to add dummy var. */
4195
625
  if (i == btf_vlen(sec))
4196
145
    return 0;
4197
4198
480
  int_btf_id = find_int_btf_id(btf);
4199
480
  dummy_var_btf_id = btf__add_var(btf,
4200
480
          "dummy_ksym",
4201
480
          BTF_VAR_GLOBAL_ALLOCATED,
4202
480
          int_btf_id);
4203
480
  if (dummy_var_btf_id < 0)
4204
480
    pr_warn("cannot create a dummy_ksym var\n");
4205
4206
480
  return dummy_var_btf_id;
4207
625
}
4208
4209
static int bpf_object__collect_externs(struct bpf_object *obj)
4210
6.18k
{
4211
6.18k
  struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4212
6.18k
  const struct btf_type *t;
4213
6.18k
  struct extern_desc *ext;
4214
6.18k
  int i, n, off, dummy_var_btf_id;
4215
6.18k
  const char *ext_name, *sec_name;
4216
6.18k
  size_t ext_essent_len;
4217
6.18k
  Elf_Scn *scn;
4218
6.18k
  Elf64_Shdr *sh;
4219
4220
6.18k
  if (!obj->efile.symbols)
4221
0
    return 0;
4222
4223
6.18k
  scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4224
6.18k
  sh = elf_sec_hdr(obj, scn);
4225
6.18k
  if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4226
1.20k
    return -LIBBPF_ERRNO__FORMAT;
4227
4228
4.98k
  dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4229
4.98k
  if (dummy_var_btf_id < 0)
4230
0
    return dummy_var_btf_id;
4231
4232
4.98k
  n = sh->sh_size / sh->sh_entsize;
4233
4.98k
  pr_debug("looking for externs among %d symbols...\n", n);
4234
4235
266k
  for (i = 0; i < n; i++) {
4236
262k
    Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4237
4238
262k
    if (!sym)
4239
0
      return -LIBBPF_ERRNO__FORMAT;
4240
262k
    if (!sym_is_extern(sym))
4241
255k
      continue;
4242
6.76k
    ext_name = elf_sym_str(obj, sym->st_name);
4243
6.76k
    if (!ext_name || !ext_name[0])
4244
3.19k
      continue;
4245
4246
3.56k
    ext = obj->externs;
4247
3.56k
    ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4248
3.56k
    if (!ext)
4249
0
      return -ENOMEM;
4250
3.56k
    obj->externs = ext;
4251
3.56k
    ext = &ext[obj->nr_extern];
4252
3.56k
    memset(ext, 0, sizeof(*ext));
4253
3.56k
    obj->nr_extern++;
4254
4255
3.56k
    ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4256
3.56k
    if (ext->btf_id <= 0) {
4257
170
      pr_warn("failed to find BTF for extern '%s': %d\n",
4258
170
        ext_name, ext->btf_id);
4259
170
      return ext->btf_id;
4260
170
    }
4261
3.39k
    t = btf__type_by_id(obj->btf, ext->btf_id);
4262
3.39k
    ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off));
4263
3.39k
    if (!ext->name)
4264
0
      return -ENOMEM;
4265
3.39k
    ext->sym_idx = i;
4266
3.39k
    ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4267
4268
3.39k
    ext_essent_len = bpf_core_essential_name_len(ext->name);
4269
3.39k
    ext->essent_name = NULL;
4270
3.39k
    if (ext_essent_len != strlen(ext->name)) {
4271
365
      ext->essent_name = strndup(ext->name, ext_essent_len);
4272
365
      if (!ext->essent_name)
4273
0
        return -ENOMEM;
4274
365
    }
4275
4276
3.39k
    ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4277
3.39k
    if (ext->sec_btf_id <= 0) {
4278
23
      pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4279
23
        ext_name, ext->btf_id, ext->sec_btf_id);
4280
23
      return ext->sec_btf_id;
4281
23
    }
4282
3.37k
    sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4283
3.37k
    sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4284
4285
3.37k
    if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4286
1.09k
      if (btf_is_func(t)) {
4287
1
        pr_warn("extern function %s is unsupported under %s section\n",
4288
1
          ext->name, KCONFIG_SEC);
4289
1
        return -ENOTSUP;
4290
1
      }
4291
1.08k
      kcfg_sec = sec;
4292
1.08k
      ext->type = EXT_KCFG;
4293
1.08k
      ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4294
1.08k
      if (ext->kcfg.sz <= 0) {
4295
87
        pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4296
87
          ext_name, ext->kcfg.sz);
4297
87
        return ext->kcfg.sz;
4298
87
      }
4299
1.00k
      ext->kcfg.align = btf__align_of(obj->btf, t->type);
4300
1.00k
      if (ext->kcfg.align <= 0) {
4301
9
        pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4302
9
          ext_name, ext->kcfg.align);
4303
9
        return -EINVAL;
4304
9
      }
4305
993
      ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4306
993
              &ext->kcfg.is_signed);
4307
993
      if (ext->kcfg.type == KCFG_UNKNOWN) {
4308
285
        pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4309
285
        return -ENOTSUP;
4310
285
      }
4311
2.28k
    } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4312
2.16k
      ksym_sec = sec;
4313
2.16k
      ext->type = EXT_KSYM;
4314
2.16k
      skip_mods_and_typedefs(obj->btf, t->type,
4315
2.16k
                 &ext->ksym.type_id);
4316
2.16k
    } else {
4317
116
      pr_warn("unrecognized extern section '%s'\n", sec_name);
4318
116
      return -ENOTSUP;
4319
116
    }
4320
3.37k
  }
4321
4.29k
  pr_debug("collected %d externs total\n", obj->nr_extern);
4322
4323
4.29k
  if (!obj->nr_extern)
4324
3.78k
    return 0;
4325
4326
  /* sort externs by type, for kcfg ones also by (align, size, name) */
4327
506
  qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4328
4329
  /* for .ksyms section, we need to turn all externs into allocated
4330
   * variables in BTF to pass kernel verification; we do this by
4331
   * pretending that each extern is a 8-byte variable
4332
   */
4333
506
  if (ksym_sec) {
4334
    /* find existing 4-byte integer type in BTF to use for fake
4335
     * extern variables in DATASEC
4336
     */
4337
310
    int int_btf_id = find_int_btf_id(obj->btf);
4338
    /* For extern function, a dummy_var added earlier
4339
     * will be used to replace the vs->type and
4340
     * its name string will be used to refill
4341
     * the missing param's name.
4342
     */
4343
310
    const struct btf_type *dummy_var;
4344
4345
310
    dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4346
2.45k
    for (i = 0; i < obj->nr_extern; i++) {
4347
2.14k
      ext = &obj->externs[i];
4348
2.14k
      if (ext->type != EXT_KSYM)
4349
0
        continue;
4350
2.14k
      pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4351
2.14k
         i, ext->sym_idx, ext->name);
4352
2.14k
    }
4353
4354
310
    sec = ksym_sec;
4355
310
    n = btf_vlen(sec);
4356
704
    for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4357
661
      struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4358
661
      struct btf_type *vt;
4359
4360
661
      vt = (void *)btf__type_by_id(obj->btf, vs->type);
4361
661
      ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4362
661
      ext = find_extern_by_name(obj, ext_name);
4363
661
      if (!ext) {
4364
267
        pr_warn("failed to find extern definition for BTF %s '%s'\n",
4365
267
          btf_kind_str(vt), ext_name);
4366
267
        return -ESRCH;
4367
267
      }
4368
394
      if (btf_is_func(vt)) {
4369
68
        const struct btf_type *func_proto;
4370
68
        struct btf_param *param;
4371
68
        int j;
4372
4373
68
        func_proto = btf__type_by_id(obj->btf,
4374
68
                   vt->type);
4375
68
        param = btf_params(func_proto);
4376
        /* Reuse the dummy_var string if the
4377
         * func proto does not have param name.
4378
         */
4379
300
        for (j = 0; j < btf_vlen(func_proto); j++)
4380
232
          if (param[j].type && !param[j].name_off)
4381
39
            param[j].name_off =
4382
39
              dummy_var->name_off;
4383
68
        vs->type = dummy_var_btf_id;
4384
68
        vt->info &= ~0xffff;
4385
68
        vt->info |= BTF_FUNC_GLOBAL;
4386
326
      } else {
4387
326
        btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4388
326
        vt->type = int_btf_id;
4389
326
      }
4390
394
      vs->offset = off;
4391
394
      vs->size = sizeof(int);
4392
394
    }
4393
43
    sec->size = off;
4394
43
  }
4395
4396
239
  if (kcfg_sec) {
4397
196
    sec = kcfg_sec;
4398
    /* for kcfg externs calculate their offsets within a .kconfig map */
4399
196
    off = 0;
4400
904
    for (i = 0; i < obj->nr_extern; i++) {
4401
708
      ext = &obj->externs[i];
4402
708
      if (ext->type != EXT_KCFG)
4403
0
        continue;
4404
4405
708
      ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4406
708
      off = ext->kcfg.data_off + ext->kcfg.sz;
4407
708
      pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4408
708
         i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4409
708
    }
4410
196
    sec->size = off;
4411
196
    n = btf_vlen(sec);
4412
475
    for (i = 0; i < n; i++) {
4413
449
      struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4414
4415
449
      t = btf__type_by_id(obj->btf, vs->type);
4416
449
      ext_name = btf__name_by_offset(obj->btf, t->name_off);
4417
449
      ext = find_extern_by_name(obj, ext_name);
4418
449
      if (!ext) {
4419
170
        pr_warn("failed to find extern definition for BTF var '%s'\n",
4420
170
          ext_name);
4421
170
        return -ESRCH;
4422
170
      }
4423
279
      btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4424
279
      vs->offset = ext->kcfg.data_off;
4425
279
    }
4426
196
  }
4427
69
  return 0;
4428
239
}
4429
4430
static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4431
7.53k
{
4432
7.53k
  return prog->sec_idx == obj->efile.text_shndx;
4433
7.53k
}
4434
4435
struct bpf_program *
4436
bpf_object__find_program_by_name(const struct bpf_object *obj,
4437
         const char *name)
4438
0
{
4439
0
  struct bpf_program *prog;
4440
4441
0
  bpf_object__for_each_program(prog, obj) {
4442
0
    if (prog_is_subprog(obj, prog))
4443
0
      continue;
4444
0
    if (!strcmp(prog->name, name))
4445
0
      return prog;
4446
0
  }
4447
0
  return errno = ENOENT, NULL;
4448
0
}
4449
4450
static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4451
              int shndx)
4452
387
{
4453
387
  switch (obj->efile.secs[shndx].sec_type) {
4454
90
  case SEC_BSS:
4455
280
  case SEC_DATA:
4456
386
  case SEC_RODATA:
4457
386
    return true;
4458
1
  default:
4459
1
    return false;
4460
387
  }
4461
387
}
4462
4463
static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4464
              int shndx)
4465
15
{
4466
15
  return shndx == obj->efile.btf_maps_shndx;
4467
15
}
4468
4469
static enum libbpf_map_type
4470
bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4471
441
{
4472
441
  if (shndx == obj->efile.symbols_shndx)
4473
1
    return LIBBPF_MAP_KCONFIG;
4474
4475
440
  switch (obj->efile.secs[shndx].sec_type) {
4476
90
  case SEC_BSS:
4477
90
    return LIBBPF_MAP_BSS;
4478
190
  case SEC_DATA:
4479
190
    return LIBBPF_MAP_DATA;
4480
106
  case SEC_RODATA:
4481
106
    return LIBBPF_MAP_RODATA;
4482
54
  default:
4483
54
    return LIBBPF_MAP_UNSPEC;
4484
440
  }
4485
440
}
4486
4487
static int bpf_program__record_reloc(struct bpf_program *prog,
4488
             struct reloc_desc *reloc_desc,
4489
             __u32 insn_idx, const char *sym_name,
4490
             const Elf64_Sym *sym, const Elf64_Rel *rel)
4491
1.32k
{
4492
1.32k
  struct bpf_insn *insn = &prog->insns[insn_idx];
4493
1.32k
  size_t map_idx, nr_maps = prog->obj->nr_maps;
4494
1.32k
  struct bpf_object *obj = prog->obj;
4495
1.32k
  __u32 shdr_idx = sym->st_shndx;
4496
1.32k
  enum libbpf_map_type type;
4497
1.32k
  const char *sym_sec_name;
4498
1.32k
  struct bpf_map *map;
4499
4500
1.32k
  if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4501
31
    pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4502
31
      prog->name, sym_name, insn_idx, insn->code);
4503
31
    return -LIBBPF_ERRNO__RELOC;
4504
31
  }
4505
4506
1.29k
  if (sym_is_extern(sym)) {
4507
1
    int sym_idx = ELF64_R_SYM(rel->r_info);
4508
1
    int i, n = obj->nr_extern;
4509
1
    struct extern_desc *ext;
4510
4511
1
    for (i = 0; i < n; i++) {
4512
0
      ext = &obj->externs[i];
4513
0
      if (ext->sym_idx == sym_idx)
4514
0
        break;
4515
0
    }
4516
1
    if (i >= n) {
4517
1
      pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4518
1
        prog->name, sym_name, sym_idx);
4519
1
      return -LIBBPF_ERRNO__RELOC;
4520
1
    }
4521
0
    pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4522
0
       prog->name, i, ext->name, ext->sym_idx, insn_idx);
4523
0
    if (insn->code == (BPF_JMP | BPF_CALL))
4524
0
      reloc_desc->type = RELO_EXTERN_CALL;
4525
0
    else
4526
0
      reloc_desc->type = RELO_EXTERN_LD64;
4527
0
    reloc_desc->insn_idx = insn_idx;
4528
0
    reloc_desc->ext_idx = i;
4529
0
    return 0;
4530
1
  }
4531
4532
  /* sub-program call relocation */
4533
1.28k
  if (is_call_insn(insn)) {
4534
262
    if (insn->src_reg != BPF_PSEUDO_CALL) {
4535
7
      pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4536
7
      return -LIBBPF_ERRNO__RELOC;
4537
7
    }
4538
    /* text_shndx can be 0, if no default "main" program exists */
4539
255
    if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4540
3
      sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4541
3
      pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4542
3
        prog->name, sym_name, sym_sec_name);
4543
3
      return -LIBBPF_ERRNO__RELOC;
4544
3
    }
4545
252
    if (sym->st_value % BPF_INSN_SZ) {
4546
3
      pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4547
3
        prog->name, sym_name, (size_t)sym->st_value);
4548
3
      return -LIBBPF_ERRNO__RELOC;
4549
3
    }
4550
249
    reloc_desc->type = RELO_CALL;
4551
249
    reloc_desc->insn_idx = insn_idx;
4552
249
    reloc_desc->sym_off = sym->st_value;
4553
249
    return 0;
4554
252
  }
4555
4556
1.02k
  if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4557
7
    pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4558
7
      prog->name, sym_name, shdr_idx);
4559
7
    return -LIBBPF_ERRNO__RELOC;
4560
7
  }
4561
4562
  /* loading subprog addresses */
4563
1.02k
  if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4564
    /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4565
     * local_func: sym->st_value = 0, insn->imm = offset in the section.
4566
     */
4567
579
    if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4568
5
      pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4569
5
        prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4570
5
      return -LIBBPF_ERRNO__RELOC;
4571
5
    }
4572
4573
574
    reloc_desc->type = RELO_SUBPROG_ADDR;
4574
574
    reloc_desc->insn_idx = insn_idx;
4575
574
    reloc_desc->sym_off = sym->st_value;
4576
574
    return 0;
4577
579
  }
4578
4579
441
  type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4580
441
  sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4581
4582
  /* arena data relocation */
4583
441
  if (shdr_idx == obj->efile.arena_data_shndx) {
4584
39
    reloc_desc->type = RELO_DATA;
4585
39
    reloc_desc->insn_idx = insn_idx;
4586
39
    reloc_desc->map_idx = obj->arena_map - obj->maps;
4587
39
    reloc_desc->sym_off = sym->st_value;
4588
39
    return 0;
4589
39
  }
4590
4591
  /* generic map reference relocation */
4592
402
  if (type == LIBBPF_MAP_UNSPEC) {
4593
15
    if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4594
15
      pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4595
15
        prog->name, sym_name, sym_sec_name);
4596
15
      return -LIBBPF_ERRNO__RELOC;
4597
15
    }
4598
0
    for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4599
0
      map = &obj->maps[map_idx];
4600
0
      if (map->libbpf_type != type ||
4601
0
          map->sec_idx != sym->st_shndx ||
4602
0
          map->sec_offset != sym->st_value)
4603
0
        continue;
4604
0
      pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4605
0
         prog->name, map_idx, map->name, map->sec_idx,
4606
0
         map->sec_offset, insn_idx);
4607
0
      break;
4608
0
    }
4609
0
    if (map_idx >= nr_maps) {
4610
0
      pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4611
0
        prog->name, sym_sec_name, (size_t)sym->st_value);
4612
0
      return -LIBBPF_ERRNO__RELOC;
4613
0
    }
4614
0
    reloc_desc->type = RELO_LD64;
4615
0
    reloc_desc->insn_idx = insn_idx;
4616
0
    reloc_desc->map_idx = map_idx;
4617
0
    reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4618
0
    return 0;
4619
0
  }
4620
4621
  /* global data map relocation */
4622
387
  if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4623
1
    pr_warn("prog '%s': bad data relo against section '%s'\n",
4624
1
      prog->name, sym_sec_name);
4625
1
    return -LIBBPF_ERRNO__RELOC;
4626
1
  }
4627
537
  for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4628
534
    map = &obj->maps[map_idx];
4629
534
    if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4630
151
      continue;
4631
383
    pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4632
383
       prog->name, map_idx, map->name, map->sec_idx,
4633
383
       map->sec_offset, insn_idx);
4634
383
    break;
4635
534
  }
4636
386
  if (map_idx >= nr_maps) {
4637
3
    pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4638
3
      prog->name, sym_sec_name);
4639
3
    return -LIBBPF_ERRNO__RELOC;
4640
3
  }
4641
4642
383
  reloc_desc->type = RELO_DATA;
4643
383
  reloc_desc->insn_idx = insn_idx;
4644
383
  reloc_desc->map_idx = map_idx;
4645
383
  reloc_desc->sym_off = sym->st_value;
4646
383
  return 0;
4647
386
}
4648
4649
static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4650
1.77k
{
4651
1.77k
  return insn_idx >= prog->sec_insn_off &&
4652
1.77k
         insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4653
1.77k
}
4654
4655
static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4656
             size_t sec_idx, size_t insn_idx)
4657
7.76k
{
4658
7.76k
  int l = 0, r = obj->nr_programs - 1, m;
4659
7.76k
  struct bpf_program *prog;
4660
4661
7.76k
  if (!obj->nr_programs)
4662
5.34k
    return NULL;
4663
4664
3.77k
  while (l < r) {
4665
1.35k
    m = l + (r - l + 1) / 2;
4666
1.35k
    prog = &obj->programs[m];
4667
4668
1.35k
    if (prog->sec_idx < sec_idx ||
4669
1.35k
        (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4670
621
      l = m;
4671
735
    else
4672
735
      r = m - 1;
4673
1.35k
  }
4674
  /* matching program could be at index l, but it still might be the
4675
   * wrong one, so we need to double check conditions for the last time
4676
   */
4677
2.41k
  prog = &obj->programs[l];
4678
2.41k
  if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4679
1.32k
    return prog;
4680
1.09k
  return NULL;
4681
2.41k
}
4682
4683
static int
4684
bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4685
991
{
4686
991
  const char *relo_sec_name, *sec_name;
4687
991
  size_t sec_idx = shdr->sh_info, sym_idx;
4688
991
  struct bpf_program *prog;
4689
991
  struct reloc_desc *relos;
4690
991
  int err, i, nrels;
4691
991
  const char *sym_name;
4692
991
  __u32 insn_idx;
4693
991
  Elf_Scn *scn;
4694
991
  Elf_Data *scn_data;
4695
991
  Elf64_Sym *sym;
4696
991
  Elf64_Rel *rel;
4697
4698
991
  if (sec_idx >= obj->efile.sec_cnt)
4699
0
    return -EINVAL;
4700
4701
991
  scn = elf_sec_by_idx(obj, sec_idx);
4702
991
  scn_data = elf_sec_data(obj, scn);
4703
991
  if (!scn_data)
4704
5
    return -LIBBPF_ERRNO__FORMAT;
4705
4706
986
  relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4707
986
  sec_name = elf_sec_name(obj, scn);
4708
986
  if (!relo_sec_name || !sec_name)
4709
11
    return -EINVAL;
4710
4711
975
  pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4712
975
     relo_sec_name, sec_idx, sec_name);
4713
975
  nrels = shdr->sh_size / shdr->sh_entsize;
4714
4715
8.13k
  for (i = 0; i < nrels; i++) {
4716
8.13k
    rel = elf_rel_by_idx(data, i);
4717
8.13k
    if (!rel) {
4718
0
      pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4719
0
      return -LIBBPF_ERRNO__FORMAT;
4720
0
    }
4721
4722
8.13k
    sym_idx = ELF64_R_SYM(rel->r_info);
4723
8.13k
    sym = elf_sym_by_idx(obj, sym_idx);
4724
8.13k
    if (!sym) {
4725
129
      pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4726
129
        relo_sec_name, sym_idx, i);
4727
129
      return -LIBBPF_ERRNO__FORMAT;
4728
129
    }
4729
4730
8.00k
    if (sym->st_shndx >= obj->efile.sec_cnt) {
4731
27
      pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4732
27
        relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4733
27
      return -LIBBPF_ERRNO__FORMAT;
4734
27
    }
4735
4736
7.98k
    if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4737
219
      pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4738
219
        relo_sec_name, (size_t)rel->r_offset, i);
4739
219
      return -LIBBPF_ERRNO__FORMAT;
4740
219
    }
4741
4742
7.76k
    insn_idx = rel->r_offset / BPF_INSN_SZ;
4743
    /* relocations against static functions are recorded as
4744
     * relocations against the section that contains a function;
4745
     * in such case, symbol will be STT_SECTION and sym.st_name
4746
     * will point to empty string (0), so fetch section name
4747
     * instead
4748
     */
4749
7.76k
    if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4750
1.05k
      sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4751
6.71k
    else
4752
6.71k
      sym_name = elf_sym_str(obj, sym->st_name);
4753
7.76k
    sym_name = sym_name ?: "<?";
4754
4755
7.76k
    pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4756
5.82k
       relo_sec_name, i, insn_idx, sym_name);
4757
4758
5.82k
    prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4759
6.44k
    if (!prog) {
4760
6.44k
      pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4761
6.44k
        relo_sec_name, i, sec_name, insn_idx);
4762
6.44k
      continue;
4763
6.44k
    }
4764
4765
18.4E
    relos = libbpf_reallocarray(prog->reloc_desc,
4766
18.4E
              prog->nr_reloc + 1, sizeof(*relos));
4767
18.4E
    if (!relos)
4768
0
      return -ENOMEM;
4769
18.4E
    prog->reloc_desc = relos;
4770
4771
    /* adjust insn_idx to local BPF program frame of reference */
4772
18.4E
    insn_idx -= prog->sec_insn_off;
4773
18.4E
    err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4774
18.4E
            insn_idx, sym_name, sym, rel);
4775
18.4E
    if (err)
4776
76
      return err;
4777
4778
18.4E
    prog->nr_reloc++;
4779
18.4E
  }
4780
18.4E
  return 0;
4781
975
}
4782
4783
static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4784
1.94k
{
4785
1.94k
  int id;
4786
4787
1.94k
  if (!obj->btf)
4788
1.34k
    return -ENOENT;
4789
4790
  /* if it's BTF-defined map, we don't need to search for type IDs.
4791
   * For struct_ops map, it does not need btf_key_type_id and
4792
   * btf_value_type_id.
4793
   */
4794
599
  if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4795
86
    return 0;
4796
4797
  /*
4798
   * LLVM annotates global data differently in BTF, that is,
4799
   * only as '.data', '.bss' or '.rodata'.
4800
   */
4801
513
  if (!bpf_map__is_internal(map))
4802
0
    return -ENOENT;
4803
4804
513
  id = btf__find_by_name(obj->btf, map->real_name);
4805
513
  if (id < 0)
4806
344
    return id;
4807
4808
169
  map->btf_key_type_id = 0;
4809
169
  map->btf_value_type_id = id;
4810
169
  return 0;
4811
513
}
4812
4813
static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4814
0
{
4815
0
  char file[PATH_MAX], buff[4096];
4816
0
  FILE *fp;
4817
0
  __u32 val;
4818
0
  int err;
4819
4820
0
  snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4821
0
  memset(info, 0, sizeof(*info));
4822
4823
0
  fp = fopen(file, "re");
4824
0
  if (!fp) {
4825
0
    err = -errno;
4826
0
    pr_warn("failed to open %s: %s. No procfs support?\n", file,
4827
0
      errstr(err));
4828
0
    return err;
4829
0
  }
4830
4831
0
  while (fgets(buff, sizeof(buff), fp)) {
4832
0
    if (sscanf(buff, "map_type:\t%u", &val) == 1)
4833
0
      info->type = val;
4834
0
    else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4835
0
      info->key_size = val;
4836
0
    else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4837
0
      info->value_size = val;
4838
0
    else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4839
0
      info->max_entries = val;
4840
0
    else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4841
0
      info->map_flags = val;
4842
0
  }
4843
4844
0
  fclose(fp);
4845
4846
0
  return 0;
4847
0
}
4848
4849
static bool map_is_created(const struct bpf_map *map)
4850
0
{
4851
0
  return map->obj->state >= OBJ_PREPARED || map->reused;
4852
0
}
4853
4854
bool bpf_map__autocreate(const struct bpf_map *map)
4855
0
{
4856
0
  return map->autocreate;
4857
0
}
4858
4859
int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4860
0
{
4861
0
  if (map_is_created(map))
4862
0
    return libbpf_err(-EBUSY);
4863
4864
0
  map->autocreate = autocreate;
4865
0
  return 0;
4866
0
}
4867
4868
int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach)
4869
0
{
4870
0
  if (!bpf_map__is_struct_ops(map))
4871
0
    return libbpf_err(-EINVAL);
4872
4873
0
  map->autoattach = autoattach;
4874
0
  return 0;
4875
0
}
4876
4877
bool bpf_map__autoattach(const struct bpf_map *map)
4878
0
{
4879
0
  return map->autoattach;
4880
0
}
4881
4882
int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4883
0
{
4884
0
  struct bpf_map_info info;
4885
0
  __u32 len = sizeof(info), name_len;
4886
0
  int new_fd, err;
4887
0
  char *new_name;
4888
4889
0
  memset(&info, 0, len);
4890
0
  err = bpf_map_get_info_by_fd(fd, &info, &len);
4891
0
  if (err && errno == EINVAL)
4892
0
    err = bpf_get_map_info_from_fdinfo(fd, &info);
4893
0
  if (err)
4894
0
    return libbpf_err(err);
4895
4896
0
  name_len = strlen(info.name);
4897
0
  if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4898
0
    new_name = strdup(map->name);
4899
0
  else
4900
0
    new_name = strdup(info.name);
4901
4902
0
  if (!new_name)
4903
0
    return libbpf_err(-errno);
4904
4905
  /*
4906
   * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4907
   * This is similar to what we do in ensure_good_fd(), but without
4908
   * closing original FD.
4909
   */
4910
0
  new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4911
0
  if (new_fd < 0) {
4912
0
    err = -errno;
4913
0
    goto err_free_new_name;
4914
0
  }
4915
4916
0
  err = reuse_fd(map->fd, new_fd);
4917
0
  if (err)
4918
0
    goto err_free_new_name;
4919
4920
0
  free(map->name);
4921
4922
0
  map->name = new_name;
4923
0
  map->def.type = info.type;
4924
0
  map->def.key_size = info.key_size;
4925
0
  map->def.value_size = info.value_size;
4926
0
  map->def.max_entries = info.max_entries;
4927
0
  map->def.map_flags = info.map_flags;
4928
0
  map->btf_key_type_id = info.btf_key_type_id;
4929
0
  map->btf_value_type_id = info.btf_value_type_id;
4930
0
  map->reused = true;
4931
0
  map->map_extra = info.map_extra;
4932
4933
0
  return 0;
4934
4935
0
err_free_new_name:
4936
0
  free(new_name);
4937
0
  return libbpf_err(err);
4938
0
}
4939
4940
__u32 bpf_map__max_entries(const struct bpf_map *map)
4941
0
{
4942
0
  return map->def.max_entries;
4943
0
}
4944
4945
struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4946
0
{
4947
0
  if (!bpf_map_type__is_map_in_map(map->def.type))
4948
0
    return errno = EINVAL, NULL;
4949
4950
0
  return map->inner_map;
4951
0
}
4952
4953
int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4954
0
{
4955
0
  if (map_is_created(map))
4956
0
    return libbpf_err(-EBUSY);
4957
4958
0
  map->def.max_entries = max_entries;
4959
4960
  /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4961
0
  if (map_is_ringbuf(map))
4962
0
    map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4963
4964
0
  return 0;
4965
0
}
4966
4967
static int bpf_object_prepare_token(struct bpf_object *obj)
4968
0
{
4969
0
  const char *bpffs_path;
4970
0
  int bpffs_fd = -1, token_fd, err;
4971
0
  bool mandatory;
4972
0
  enum libbpf_print_level level;
4973
4974
  /* token is explicitly prevented */
4975
0
  if (obj->token_path && obj->token_path[0] == '\0') {
4976
0
    pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4977
0
    return 0;
4978
0
  }
4979
4980
0
  mandatory = obj->token_path != NULL;
4981
0
  level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4982
4983
0
  bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4984
0
  bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4985
0
  if (bpffs_fd < 0) {
4986
0
    err = -errno;
4987
0
    __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n",
4988
0
         obj->name, errstr(err), bpffs_path,
4989
0
         mandatory ? "" : ", skipping optional step...");
4990
0
    return mandatory ? err : 0;
4991
0
  }
4992
4993
0
  token_fd = bpf_token_create(bpffs_fd, 0);
4994
0
  close(bpffs_fd);
4995
0
  if (token_fd < 0) {
4996
0
    if (!mandatory && token_fd == -ENOENT) {
4997
0
      pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
4998
0
         obj->name, bpffs_path);
4999
0
      return 0;
5000
0
    }
5001
0
    __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
5002
0
         obj->name, token_fd, bpffs_path,
5003
0
         mandatory ? "" : ", skipping optional step...");
5004
0
    return mandatory ? token_fd : 0;
5005
0
  }
5006
5007
0
  obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
5008
0
  if (!obj->feat_cache) {
5009
0
    close(token_fd);
5010
0
    return -ENOMEM;
5011
0
  }
5012
5013
0
  obj->token_fd = token_fd;
5014
0
  obj->feat_cache->token_fd = token_fd;
5015
5016
0
  return 0;
5017
0
}
5018
5019
static int
5020
bpf_object__probe_loading(struct bpf_object *obj)
5021
0
{
5022
0
  struct bpf_insn insns[] = {
5023
0
    BPF_MOV64_IMM(BPF_REG_0, 0),
5024
0
    BPF_EXIT_INSN(),
5025
0
  };
5026
0
  int ret, insn_cnt = ARRAY_SIZE(insns);
5027
0
  LIBBPF_OPTS(bpf_prog_load_opts, opts,
5028
0
    .token_fd = obj->token_fd,
5029
0
    .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
5030
0
  );
5031
5032
0
  if (obj->gen_loader)
5033
0
    return 0;
5034
5035
0
  ret = bump_rlimit_memlock();
5036
0
  if (ret)
5037
0
    pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n",
5038
0
      errstr(ret));
5039
5040
  /* make sure basic loading works */
5041
0
  ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
5042
0
  if (ret < 0)
5043
0
    ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
5044
0
  if (ret < 0) {
5045
0
    ret = errno;
5046
0
    pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n",
5047
0
      __func__, errstr(ret));
5048
0
    return -ret;
5049
0
  }
5050
0
  close(ret);
5051
5052
0
  return 0;
5053
0
}
5054
5055
bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5056
0
{
5057
0
  if (obj->gen_loader)
5058
    /* To generate loader program assume the latest kernel
5059
     * to avoid doing extra prog_load, map_create syscalls.
5060
     */
5061
0
    return true;
5062
5063
0
  if (obj->token_fd)
5064
0
    return feat_supported(obj->feat_cache, feat_id);
5065
5066
0
  return feat_supported(NULL, feat_id);
5067
0
}
5068
5069
static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5070
0
{
5071
0
  struct bpf_map_info map_info;
5072
0
  __u32 map_info_len = sizeof(map_info);
5073
0
  int err;
5074
5075
0
  memset(&map_info, 0, map_info_len);
5076
0
  err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5077
0
  if (err && errno == EINVAL)
5078
0
    err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5079
0
  if (err) {
5080
0
    pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5081
0
      errstr(err));
5082
0
    return false;
5083
0
  }
5084
5085
0
  return (map_info.type == map->def.type &&
5086
0
    map_info.key_size == map->def.key_size &&
5087
0
    map_info.value_size == map->def.value_size &&
5088
0
    map_info.max_entries == map->def.max_entries &&
5089
0
    map_info.map_flags == map->def.map_flags &&
5090
0
    map_info.map_extra == map->map_extra);
5091
0
}
5092
5093
static int
5094
bpf_object__reuse_map(struct bpf_map *map)
5095
0
{
5096
0
  int err, pin_fd;
5097
5098
0
  pin_fd = bpf_obj_get(map->pin_path);
5099
0
  if (pin_fd < 0) {
5100
0
    err = -errno;
5101
0
    if (err == -ENOENT) {
5102
0
      pr_debug("found no pinned map to reuse at '%s'\n",
5103
0
         map->pin_path);
5104
0
      return 0;
5105
0
    }
5106
5107
0
    pr_warn("couldn't retrieve pinned map '%s': %s\n",
5108
0
      map->pin_path, errstr(err));
5109
0
    return err;
5110
0
  }
5111
5112
0
  if (!map_is_reuse_compat(map, pin_fd)) {
5113
0
    pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5114
0
      map->pin_path);
5115
0
    close(pin_fd);
5116
0
    return -EINVAL;
5117
0
  }
5118
5119
0
  err = bpf_map__reuse_fd(map, pin_fd);
5120
0
  close(pin_fd);
5121
0
  if (err)
5122
0
    return err;
5123
5124
0
  map->pinned = true;
5125
0
  pr_debug("reused pinned map at '%s'\n", map->pin_path);
5126
5127
0
  return 0;
5128
0
}
5129
5130
static int
5131
bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5132
0
{
5133
0
  enum libbpf_map_type map_type = map->libbpf_type;
5134
0
  int err, zero = 0;
5135
0
  size_t mmap_sz;
5136
5137
0
  if (obj->gen_loader) {
5138
0
    bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5139
0
           map->mmaped, map->def.value_size);
5140
0
    if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5141
0
      bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5142
0
    return 0;
5143
0
  }
5144
5145
0
  err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5146
0
  if (err) {
5147
0
    err = -errno;
5148
0
    pr_warn("map '%s': failed to set initial contents: %s\n",
5149
0
      bpf_map__name(map), errstr(err));
5150
0
    return err;
5151
0
  }
5152
5153
  /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5154
0
  if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5155
0
    err = bpf_map_freeze(map->fd);
5156
0
    if (err) {
5157
0
      err = -errno;
5158
0
      pr_warn("map '%s': failed to freeze as read-only: %s\n",
5159
0
        bpf_map__name(map), errstr(err));
5160
0
      return err;
5161
0
    }
5162
0
  }
5163
5164
  /* Remap anonymous mmap()-ed "map initialization image" as
5165
   * a BPF map-backed mmap()-ed memory, but preserving the same
5166
   * memory address. This will cause kernel to change process'
5167
   * page table to point to a different piece of kernel memory,
5168
   * but from userspace point of view memory address (and its
5169
   * contents, being identical at this point) will stay the
5170
   * same. This mapping will be released by bpf_object__close()
5171
   * as per normal clean up procedure.
5172
   */
5173
0
  mmap_sz = bpf_map_mmap_sz(map);
5174
0
  if (map->def.map_flags & BPF_F_MMAPABLE) {
5175
0
    void *mmaped;
5176
0
    int prot;
5177
5178
0
    if (map->def.map_flags & BPF_F_RDONLY_PROG)
5179
0
      prot = PROT_READ;
5180
0
    else
5181
0
      prot = PROT_READ | PROT_WRITE;
5182
0
    mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0);
5183
0
    if (mmaped == MAP_FAILED) {
5184
0
      err = -errno;
5185
0
      pr_warn("map '%s': failed to re-mmap() contents: %s\n",
5186
0
        bpf_map__name(map), errstr(err));
5187
0
      return err;
5188
0
    }
5189
0
    map->mmaped = mmaped;
5190
0
  } else if (map->mmaped) {
5191
0
    munmap(map->mmaped, mmap_sz);
5192
0
    map->mmaped = NULL;
5193
0
  }
5194
5195
0
  return 0;
5196
0
}
5197
5198
static void bpf_map__destroy(struct bpf_map *map);
5199
5200
static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5201
0
{
5202
0
  LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5203
0
  struct bpf_map_def *def = &map->def;
5204
0
  const char *map_name = NULL;
5205
0
  int err = 0, map_fd;
5206
5207
0
  if (kernel_supports(obj, FEAT_PROG_NAME))
5208
0
    map_name = map->name;
5209
0
  create_attr.map_ifindex = map->map_ifindex;
5210
0
  create_attr.map_flags = def->map_flags;
5211
0
  create_attr.numa_node = map->numa_node;
5212
0
  create_attr.map_extra = map->map_extra;
5213
0
  create_attr.token_fd = obj->token_fd;
5214
0
  if (obj->token_fd)
5215
0
    create_attr.map_flags |= BPF_F_TOKEN_FD;
5216
5217
0
  if (bpf_map__is_struct_ops(map)) {
5218
0
    create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5219
0
    if (map->mod_btf_fd >= 0) {
5220
0
      create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5221
0
      create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5222
0
    }
5223
0
  }
5224
5225
0
  if (obj->btf && btf__fd(obj->btf) >= 0) {
5226
0
    create_attr.btf_fd = btf__fd(obj->btf);
5227
0
    create_attr.btf_key_type_id = map->btf_key_type_id;
5228
0
    create_attr.btf_value_type_id = map->btf_value_type_id;
5229
0
  }
5230
5231
0
  if (bpf_map_type__is_map_in_map(def->type)) {
5232
0
    if (map->inner_map) {
5233
0
      err = map_set_def_max_entries(map->inner_map);
5234
0
      if (err)
5235
0
        return err;
5236
0
      err = bpf_object__create_map(obj, map->inner_map, true);
5237
0
      if (err) {
5238
0
        pr_warn("map '%s': failed to create inner map: %s\n",
5239
0
          map->name, errstr(err));
5240
0
        return err;
5241
0
      }
5242
0
      map->inner_map_fd = map->inner_map->fd;
5243
0
    }
5244
0
    if (map->inner_map_fd >= 0)
5245
0
      create_attr.inner_map_fd = map->inner_map_fd;
5246
0
  }
5247
5248
0
  switch (def->type) {
5249
0
  case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5250
0
  case BPF_MAP_TYPE_CGROUP_ARRAY:
5251
0
  case BPF_MAP_TYPE_STACK_TRACE:
5252
0
  case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5253
0
  case BPF_MAP_TYPE_HASH_OF_MAPS:
5254
0
  case BPF_MAP_TYPE_DEVMAP:
5255
0
  case BPF_MAP_TYPE_DEVMAP_HASH:
5256
0
  case BPF_MAP_TYPE_CPUMAP:
5257
0
  case BPF_MAP_TYPE_XSKMAP:
5258
0
  case BPF_MAP_TYPE_SOCKMAP:
5259
0
  case BPF_MAP_TYPE_SOCKHASH:
5260
0
  case BPF_MAP_TYPE_QUEUE:
5261
0
  case BPF_MAP_TYPE_STACK:
5262
0
  case BPF_MAP_TYPE_ARENA:
5263
0
    create_attr.btf_fd = 0;
5264
0
    create_attr.btf_key_type_id = 0;
5265
0
    create_attr.btf_value_type_id = 0;
5266
0
    map->btf_key_type_id = 0;
5267
0
    map->btf_value_type_id = 0;
5268
0
    break;
5269
0
  case BPF_MAP_TYPE_STRUCT_OPS:
5270
0
    create_attr.btf_value_type_id = 0;
5271
0
    break;
5272
0
  default:
5273
0
    break;
5274
0
  }
5275
5276
0
  if (obj->gen_loader) {
5277
0
    bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5278
0
            def->key_size, def->value_size, def->max_entries,
5279
0
            &create_attr, is_inner ? -1 : map - obj->maps);
5280
    /* We keep pretenting we have valid FD to pass various fd >= 0
5281
     * checks by just keeping original placeholder FDs in place.
5282
     * See bpf_object__add_map() comment.
5283
     * This placeholder fd will not be used with any syscall and
5284
     * will be reset to -1 eventually.
5285
     */
5286
0
    map_fd = map->fd;
5287
0
  } else {
5288
0
    map_fd = bpf_map_create(def->type, map_name,
5289
0
          def->key_size, def->value_size,
5290
0
          def->max_entries, &create_attr);
5291
0
  }
5292
0
  if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5293
0
    err = -errno;
5294
0
    pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n",
5295
0
      map->name, errstr(err));
5296
0
    create_attr.btf_fd = 0;
5297
0
    create_attr.btf_key_type_id = 0;
5298
0
    create_attr.btf_value_type_id = 0;
5299
0
    map->btf_key_type_id = 0;
5300
0
    map->btf_value_type_id = 0;
5301
0
    map_fd = bpf_map_create(def->type, map_name,
5302
0
          def->key_size, def->value_size,
5303
0
          def->max_entries, &create_attr);
5304
0
  }
5305
5306
0
  if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5307
0
    if (obj->gen_loader)
5308
0
      map->inner_map->fd = -1;
5309
0
    bpf_map__destroy(map->inner_map);
5310
0
    zfree(&map->inner_map);
5311
0
  }
5312
5313
0
  if (map_fd < 0)
5314
0
    return map_fd;
5315
5316
  /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5317
0
  if (map->fd == map_fd)
5318
0
    return 0;
5319
5320
  /* Keep placeholder FD value but now point it to the BPF map object.
5321
   * This way everything that relied on this map's FD (e.g., relocated
5322
   * ldimm64 instructions) will stay valid and won't need adjustments.
5323
   * map->fd stays valid but now point to what map_fd points to.
5324
   */
5325
0
  return reuse_fd(map->fd, map_fd);
5326
0
}
5327
5328
static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5329
0
{
5330
0
  const struct bpf_map *targ_map;
5331
0
  unsigned int i;
5332
0
  int fd, err = 0;
5333
5334
0
  for (i = 0; i < map->init_slots_sz; i++) {
5335
0
    if (!map->init_slots[i])
5336
0
      continue;
5337
5338
0
    targ_map = map->init_slots[i];
5339
0
    fd = targ_map->fd;
5340
5341
0
    if (obj->gen_loader) {
5342
0
      bpf_gen__populate_outer_map(obj->gen_loader,
5343
0
                map - obj->maps, i,
5344
0
                targ_map - obj->maps);
5345
0
    } else {
5346
0
      err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5347
0
    }
5348
0
    if (err) {
5349
0
      err = -errno;
5350
0
      pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n",
5351
0
        map->name, i, targ_map->name, fd, errstr(err));
5352
0
      return err;
5353
0
    }
5354
0
    pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5355
0
       map->name, i, targ_map->name, fd);
5356
0
  }
5357
5358
0
  zfree(&map->init_slots);
5359
0
  map->init_slots_sz = 0;
5360
5361
0
  return 0;
5362
0
}
5363
5364
static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5365
0
{
5366
0
  const struct bpf_program *targ_prog;
5367
0
  unsigned int i;
5368
0
  int fd, err;
5369
5370
0
  if (obj->gen_loader)
5371
0
    return -ENOTSUP;
5372
5373
0
  for (i = 0; i < map->init_slots_sz; i++) {
5374
0
    if (!map->init_slots[i])
5375
0
      continue;
5376
5377
0
    targ_prog = map->init_slots[i];
5378
0
    fd = bpf_program__fd(targ_prog);
5379
5380
0
    err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5381
0
    if (err) {
5382
0
      err = -errno;
5383
0
      pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n",
5384
0
        map->name, i, targ_prog->name, fd, errstr(err));
5385
0
      return err;
5386
0
    }
5387
0
    pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5388
0
       map->name, i, targ_prog->name, fd);
5389
0
  }
5390
5391
0
  zfree(&map->init_slots);
5392
0
  map->init_slots_sz = 0;
5393
5394
0
  return 0;
5395
0
}
5396
5397
static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5398
0
{
5399
0
  struct bpf_map *map;
5400
0
  int i, err;
5401
5402
0
  for (i = 0; i < obj->nr_maps; i++) {
5403
0
    map = &obj->maps[i];
5404
5405
0
    if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5406
0
      continue;
5407
5408
0
    err = init_prog_array_slots(obj, map);
5409
0
    if (err < 0)
5410
0
      return err;
5411
0
  }
5412
0
  return 0;
5413
0
}
5414
5415
static int map_set_def_max_entries(struct bpf_map *map)
5416
0
{
5417
0
  if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5418
0
    int nr_cpus;
5419
5420
0
    nr_cpus = libbpf_num_possible_cpus();
5421
0
    if (nr_cpus < 0) {
5422
0
      pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5423
0
        map->name, nr_cpus);
5424
0
      return nr_cpus;
5425
0
    }
5426
0
    pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5427
0
    map->def.max_entries = nr_cpus;
5428
0
  }
5429
5430
0
  return 0;
5431
0
}
5432
5433
static int
5434
bpf_object__create_maps(struct bpf_object *obj)
5435
0
{
5436
0
  struct bpf_map *map;
5437
0
  unsigned int i, j;
5438
0
  int err;
5439
0
  bool retried;
5440
5441
0
  for (i = 0; i < obj->nr_maps; i++) {
5442
0
    map = &obj->maps[i];
5443
5444
    /* To support old kernels, we skip creating global data maps
5445
     * (.rodata, .data, .kconfig, etc); later on, during program
5446
     * loading, if we detect that at least one of the to-be-loaded
5447
     * programs is referencing any global data map, we'll error
5448
     * out with program name and relocation index logged.
5449
     * This approach allows to accommodate Clang emitting
5450
     * unnecessary .rodata.str1.1 sections for string literals,
5451
     * but also it allows to have CO-RE applications that use
5452
     * global variables in some of BPF programs, but not others.
5453
     * If those global variable-using programs are not loaded at
5454
     * runtime due to bpf_program__set_autoload(prog, false),
5455
     * bpf_object loading will succeed just fine even on old
5456
     * kernels.
5457
     */
5458
0
    if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5459
0
      map->autocreate = false;
5460
5461
0
    if (!map->autocreate) {
5462
0
      pr_debug("map '%s': skipped auto-creating...\n", map->name);
5463
0
      continue;
5464
0
    }
5465
5466
0
    err = map_set_def_max_entries(map);
5467
0
    if (err)
5468
0
      goto err_out;
5469
5470
0
    retried = false;
5471
0
retry:
5472
0
    if (map->pin_path) {
5473
0
      err = bpf_object__reuse_map(map);
5474
0
      if (err) {
5475
0
        pr_warn("map '%s': error reusing pinned map\n",
5476
0
          map->name);
5477
0
        goto err_out;
5478
0
      }
5479
0
      if (retried && map->fd < 0) {
5480
0
        pr_warn("map '%s': cannot find pinned map\n",
5481
0
          map->name);
5482
0
        err = -ENOENT;
5483
0
        goto err_out;
5484
0
      }
5485
0
    }
5486
5487
0
    if (map->reused) {
5488
0
      pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5489
0
         map->name, map->fd);
5490
0
    } else {
5491
0
      err = bpf_object__create_map(obj, map, false);
5492
0
      if (err)
5493
0
        goto err_out;
5494
5495
0
      pr_debug("map '%s': created successfully, fd=%d\n",
5496
0
         map->name, map->fd);
5497
5498
0
      if (bpf_map__is_internal(map)) {
5499
0
        err = bpf_object__populate_internal_map(obj, map);
5500
0
        if (err < 0)
5501
0
          goto err_out;
5502
0
      } else if (map->def.type == BPF_MAP_TYPE_ARENA) {
5503
0
        map->mmaped = mmap((void *)(long)map->map_extra,
5504
0
               bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5505
0
               map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5506
0
               map->fd, 0);
5507
0
        if (map->mmaped == MAP_FAILED) {
5508
0
          err = -errno;
5509
0
          map->mmaped = NULL;
5510
0
          pr_warn("map '%s': failed to mmap arena: %s\n",
5511
0
            map->name, errstr(err));
5512
0
          return err;
5513
0
        }
5514
0
        if (obj->arena_data) {
5515
0
          memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5516
0
          zfree(&obj->arena_data);
5517
0
        }
5518
0
      }
5519
0
      if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5520
0
        err = init_map_in_map_slots(obj, map);
5521
0
        if (err < 0)
5522
0
          goto err_out;
5523
0
      }
5524
0
    }
5525
5526
0
    if (map->pin_path && !map->pinned) {
5527
0
      err = bpf_map__pin(map, NULL);
5528
0
      if (err) {
5529
0
        if (!retried && err == -EEXIST) {
5530
0
          retried = true;
5531
0
          goto retry;
5532
0
        }
5533
0
        pr_warn("map '%s': failed to auto-pin at '%s': %s\n",
5534
0
          map->name, map->pin_path, errstr(err));
5535
0
        goto err_out;
5536
0
      }
5537
0
    }
5538
0
  }
5539
5540
0
  return 0;
5541
5542
0
err_out:
5543
0
  pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err));
5544
0
  pr_perm_msg(err);
5545
0
  for (j = 0; j < i; j++)
5546
0
    zclose(obj->maps[j].fd);
5547
0
  return err;
5548
0
}
5549
5550
static bool bpf_core_is_flavor_sep(const char *s)
5551
51.0k
{
5552
  /* check X___Y name pattern, where X and Y are not underscores */
5553
51.0k
  return s[0] != '_' &&             /* X */
5554
51.0k
         s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5555
51.0k
         s[4] != '_';             /* Y */
5556
51.0k
}
5557
5558
/* Given 'some_struct_name___with_flavor' return the length of a name prefix
5559
 * before last triple underscore. Struct name part after last triple
5560
 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5561
 */
5562
size_t bpf_core_essential_name_len(const char *name)
5563
3.39k
{
5564
3.39k
  size_t n = strlen(name);
5565
3.39k
  int i;
5566
5567
54.1k
  for (i = n - 5; i >= 0; i--) {
5568
51.0k
    if (bpf_core_is_flavor_sep(name + i))
5569
365
      return i + 1;
5570
51.0k
  }
5571
3.03k
  return n;
5572
3.39k
}
5573
5574
void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5575
0
{
5576
0
  if (!cands)
5577
0
    return;
5578
5579
0
  free(cands->cands);
5580
0
  free(cands);
5581
0
}
5582
5583
int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5584
           size_t local_essent_len,
5585
           const struct btf *targ_btf,
5586
           const char *targ_btf_name,
5587
           int targ_start_id,
5588
           struct bpf_core_cand_list *cands)
5589
0
{
5590
0
  struct bpf_core_cand *new_cands, *cand;
5591
0
  const struct btf_type *t, *local_t;
5592
0
  const char *targ_name, *local_name;
5593
0
  size_t targ_essent_len;
5594
0
  int n, i;
5595
5596
0
  local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5597
0
  local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5598
5599
0
  n = btf__type_cnt(targ_btf);
5600
0
  for (i = targ_start_id; i < n; i++) {
5601
0
    t = btf__type_by_id(targ_btf, i);
5602
0
    if (!btf_kind_core_compat(t, local_t))
5603
0
      continue;
5604
5605
0
    targ_name = btf__name_by_offset(targ_btf, t->name_off);
5606
0
    if (str_is_empty(targ_name))
5607
0
      continue;
5608
5609
0
    targ_essent_len = bpf_core_essential_name_len(targ_name);
5610
0
    if (targ_essent_len != local_essent_len)
5611
0
      continue;
5612
5613
0
    if (strncmp(local_name, targ_name, local_essent_len) != 0)
5614
0
      continue;
5615
5616
0
    pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5617
0
       local_cand->id, btf_kind_str(local_t),
5618
0
       local_name, i, btf_kind_str(t), targ_name,
5619
0
       targ_btf_name);
5620
0
    new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5621
0
                sizeof(*cands->cands));
5622
0
    if (!new_cands)
5623
0
      return -ENOMEM;
5624
5625
0
    cand = &new_cands[cands->len];
5626
0
    cand->btf = targ_btf;
5627
0
    cand->id = i;
5628
5629
0
    cands->cands = new_cands;
5630
0
    cands->len++;
5631
0
  }
5632
0
  return 0;
5633
0
}
5634
5635
static int load_module_btfs(struct bpf_object *obj)
5636
0
{
5637
0
  struct bpf_btf_info info;
5638
0
  struct module_btf *mod_btf;
5639
0
  struct btf *btf;
5640
0
  char name[64];
5641
0
  __u32 id = 0, len;
5642
0
  int err, fd;
5643
5644
0
  if (obj->btf_modules_loaded)
5645
0
    return 0;
5646
5647
0
  if (obj->gen_loader)
5648
0
    return 0;
5649
5650
  /* don't do this again, even if we find no module BTFs */
5651
0
  obj->btf_modules_loaded = true;
5652
5653
  /* kernel too old to support module BTFs */
5654
0
  if (!kernel_supports(obj, FEAT_MODULE_BTF))
5655
0
    return 0;
5656
5657
0
  while (true) {
5658
0
    err = bpf_btf_get_next_id(id, &id);
5659
0
    if (err && errno == ENOENT)
5660
0
      return 0;
5661
0
    if (err && errno == EPERM) {
5662
0
      pr_debug("skipping module BTFs loading, missing privileges\n");
5663
0
      return 0;
5664
0
    }
5665
0
    if (err) {
5666
0
      err = -errno;
5667
0
      pr_warn("failed to iterate BTF objects: %s\n", errstr(err));
5668
0
      return err;
5669
0
    }
5670
5671
0
    fd = bpf_btf_get_fd_by_id(id);
5672
0
    if (fd < 0) {
5673
0
      if (errno == ENOENT)
5674
0
        continue; /* expected race: BTF was unloaded */
5675
0
      err = -errno;
5676
0
      pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err));
5677
0
      return err;
5678
0
    }
5679
5680
0
    len = sizeof(info);
5681
0
    memset(&info, 0, sizeof(info));
5682
0
    info.name = ptr_to_u64(name);
5683
0
    info.name_len = sizeof(name);
5684
5685
0
    err = bpf_btf_get_info_by_fd(fd, &info, &len);
5686
0
    if (err) {
5687
0
      err = -errno;
5688
0
      pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err));
5689
0
      goto err_out;
5690
0
    }
5691
5692
    /* ignore non-module BTFs */
5693
0
    if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5694
0
      close(fd);
5695
0
      continue;
5696
0
    }
5697
5698
0
    btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5699
0
    err = libbpf_get_error(btf);
5700
0
    if (err) {
5701
0
      pr_warn("failed to load module [%s]'s BTF object #%d: %s\n",
5702
0
        name, id, errstr(err));
5703
0
      goto err_out;
5704
0
    }
5705
5706
0
    err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5707
0
          sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5708
0
    if (err)
5709
0
      goto err_out;
5710
5711
0
    mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5712
5713
0
    mod_btf->btf = btf;
5714
0
    mod_btf->id = id;
5715
0
    mod_btf->fd = fd;
5716
0
    mod_btf->name = strdup(name);
5717
0
    if (!mod_btf->name) {
5718
0
      err = -ENOMEM;
5719
0
      goto err_out;
5720
0
    }
5721
0
    continue;
5722
5723
0
err_out:
5724
0
    close(fd);
5725
0
    return err;
5726
0
  }
5727
5728
0
  return 0;
5729
0
}
5730
5731
static struct bpf_core_cand_list *
5732
bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5733
0
{
5734
0
  struct bpf_core_cand local_cand = {};
5735
0
  struct bpf_core_cand_list *cands;
5736
0
  const struct btf *main_btf;
5737
0
  const struct btf_type *local_t;
5738
0
  const char *local_name;
5739
0
  size_t local_essent_len;
5740
0
  int err, i;
5741
5742
0
  local_cand.btf = local_btf;
5743
0
  local_cand.id = local_type_id;
5744
0
  local_t = btf__type_by_id(local_btf, local_type_id);
5745
0
  if (!local_t)
5746
0
    return ERR_PTR(-EINVAL);
5747
5748
0
  local_name = btf__name_by_offset(local_btf, local_t->name_off);
5749
0
  if (str_is_empty(local_name))
5750
0
    return ERR_PTR(-EINVAL);
5751
0
  local_essent_len = bpf_core_essential_name_len(local_name);
5752
5753
0
  cands = calloc(1, sizeof(*cands));
5754
0
  if (!cands)
5755
0
    return ERR_PTR(-ENOMEM);
5756
5757
  /* Attempt to find target candidates in vmlinux BTF first */
5758
0
  main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5759
0
  err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5760
0
  if (err)
5761
0
    goto err_out;
5762
5763
  /* if vmlinux BTF has any candidate, don't got for module BTFs */
5764
0
  if (cands->len)
5765
0
    return cands;
5766
5767
  /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5768
0
  if (obj->btf_vmlinux_override)
5769
0
    return cands;
5770
5771
  /* now look through module BTFs, trying to still find candidates */
5772
0
  err = load_module_btfs(obj);
5773
0
  if (err)
5774
0
    goto err_out;
5775
5776
0
  for (i = 0; i < obj->btf_module_cnt; i++) {
5777
0
    err = bpf_core_add_cands(&local_cand, local_essent_len,
5778
0
           obj->btf_modules[i].btf,
5779
0
           obj->btf_modules[i].name,
5780
0
           btf__type_cnt(obj->btf_vmlinux),
5781
0
           cands);
5782
0
    if (err)
5783
0
      goto err_out;
5784
0
  }
5785
5786
0
  return cands;
5787
0
err_out:
5788
0
  bpf_core_free_cands(cands);
5789
0
  return ERR_PTR(err);
5790
0
}
5791
5792
/* Check local and target types for compatibility. This check is used for
5793
 * type-based CO-RE relocations and follow slightly different rules than
5794
 * field-based relocations. This function assumes that root types were already
5795
 * checked for name match. Beyond that initial root-level name check, names
5796
 * are completely ignored. Compatibility rules are as follows:
5797
 *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5798
 *     kind should match for local and target types (i.e., STRUCT is not
5799
 *     compatible with UNION);
5800
 *   - for ENUMs, the size is ignored;
5801
 *   - for INT, size and signedness are ignored;
5802
 *   - for ARRAY, dimensionality is ignored, element types are checked for
5803
 *     compatibility recursively;
5804
 *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5805
 *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5806
 *   - FUNC_PROTOs are compatible if they have compatible signature: same
5807
 *     number of input args and compatible return and argument types.
5808
 * These rules are not set in stone and probably will be adjusted as we get
5809
 * more experience with using BPF CO-RE relocations.
5810
 */
5811
int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5812
            const struct btf *targ_btf, __u32 targ_id)
5813
0
{
5814
0
  return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5815
0
}
5816
5817
int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5818
       const struct btf *targ_btf, __u32 targ_id)
5819
0
{
5820
0
  return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5821
0
}
5822
5823
static size_t bpf_core_hash_fn(const long key, void *ctx)
5824
0
{
5825
0
  return key;
5826
0
}
5827
5828
static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5829
0
{
5830
0
  return k1 == k2;
5831
0
}
5832
5833
static int record_relo_core(struct bpf_program *prog,
5834
          const struct bpf_core_relo *core_relo, int insn_idx)
5835
0
{
5836
0
  struct reloc_desc *relos, *relo;
5837
5838
0
  relos = libbpf_reallocarray(prog->reloc_desc,
5839
0
            prog->nr_reloc + 1, sizeof(*relos));
5840
0
  if (!relos)
5841
0
    return -ENOMEM;
5842
0
  relo = &relos[prog->nr_reloc];
5843
0
  relo->type = RELO_CORE;
5844
0
  relo->insn_idx = insn_idx;
5845
0
  relo->core_relo = core_relo;
5846
0
  prog->reloc_desc = relos;
5847
0
  prog->nr_reloc++;
5848
0
  return 0;
5849
0
}
5850
5851
static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5852
0
{
5853
0
  struct reloc_desc *relo;
5854
0
  int i;
5855
5856
0
  for (i = 0; i < prog->nr_reloc; i++) {
5857
0
    relo = &prog->reloc_desc[i];
5858
0
    if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5859
0
      continue;
5860
5861
0
    return relo->core_relo;
5862
0
  }
5863
5864
0
  return NULL;
5865
0
}
5866
5867
static int bpf_core_resolve_relo(struct bpf_program *prog,
5868
         const struct bpf_core_relo *relo,
5869
         int relo_idx,
5870
         const struct btf *local_btf,
5871
         struct hashmap *cand_cache,
5872
         struct bpf_core_relo_res *targ_res)
5873
0
{
5874
0
  struct bpf_core_spec specs_scratch[3] = {};
5875
0
  struct bpf_core_cand_list *cands = NULL;
5876
0
  const char *prog_name = prog->name;
5877
0
  const struct btf_type *local_type;
5878
0
  const char *local_name;
5879
0
  __u32 local_id = relo->type_id;
5880
0
  int err;
5881
5882
0
  local_type = btf__type_by_id(local_btf, local_id);
5883
0
  if (!local_type)
5884
0
    return -EINVAL;
5885
5886
0
  local_name = btf__name_by_offset(local_btf, local_type->name_off);
5887
0
  if (!local_name)
5888
0
    return -EINVAL;
5889
5890
0
  if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5891
0
      !hashmap__find(cand_cache, local_id, &cands)) {
5892
0
    cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5893
0
    if (IS_ERR(cands)) {
5894
0
      pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5895
0
        prog_name, relo_idx, local_id, btf_kind_str(local_type),
5896
0
        local_name, PTR_ERR(cands));
5897
0
      return PTR_ERR(cands);
5898
0
    }
5899
0
    err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5900
0
    if (err) {
5901
0
      bpf_core_free_cands(cands);
5902
0
      return err;
5903
0
    }
5904
0
  }
5905
5906
0
  return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5907
0
               targ_res);
5908
0
}
5909
5910
static int
5911
bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5912
0
{
5913
0
  const struct btf_ext_info_sec *sec;
5914
0
  struct bpf_core_relo_res targ_res;
5915
0
  const struct bpf_core_relo *rec;
5916
0
  const struct btf_ext_info *seg;
5917
0
  struct hashmap_entry *entry;
5918
0
  struct hashmap *cand_cache = NULL;
5919
0
  struct bpf_program *prog;
5920
0
  struct bpf_insn *insn;
5921
0
  const char *sec_name;
5922
0
  int i, err = 0, insn_idx, sec_idx, sec_num;
5923
5924
0
  if (obj->btf_ext->core_relo_info.len == 0)
5925
0
    return 0;
5926
5927
0
  if (targ_btf_path) {
5928
0
    obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5929
0
    err = libbpf_get_error(obj->btf_vmlinux_override);
5930
0
    if (err) {
5931
0
      pr_warn("failed to parse target BTF: %s\n", errstr(err));
5932
0
      return err;
5933
0
    }
5934
0
  }
5935
5936
0
  cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5937
0
  if (IS_ERR(cand_cache)) {
5938
0
    err = PTR_ERR(cand_cache);
5939
0
    goto out;
5940
0
  }
5941
5942
0
  seg = &obj->btf_ext->core_relo_info;
5943
0
  sec_num = 0;
5944
0
  for_each_btf_ext_sec(seg, sec) {
5945
0
    sec_idx = seg->sec_idxs[sec_num];
5946
0
    sec_num++;
5947
5948
0
    sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5949
0
    if (str_is_empty(sec_name)) {
5950
0
      err = -EINVAL;
5951
0
      goto out;
5952
0
    }
5953
5954
0
    pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5955
5956
0
    for_each_btf_ext_rec(seg, sec, i, rec) {
5957
0
      if (rec->insn_off % BPF_INSN_SZ)
5958
0
        return -EINVAL;
5959
0
      insn_idx = rec->insn_off / BPF_INSN_SZ;
5960
0
      prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5961
0
      if (!prog) {
5962
        /* When __weak subprog is "overridden" by another instance
5963
         * of the subprog from a different object file, linker still
5964
         * appends all the .BTF.ext info that used to belong to that
5965
         * eliminated subprogram.
5966
         * This is similar to what x86-64 linker does for relocations.
5967
         * So just ignore such relocations just like we ignore
5968
         * subprog instructions when discovering subprograms.
5969
         */
5970
0
        pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5971
0
           sec_name, i, insn_idx);
5972
0
        continue;
5973
0
      }
5974
      /* no need to apply CO-RE relocation if the program is
5975
       * not going to be loaded
5976
       */
5977
0
      if (!prog->autoload)
5978
0
        continue;
5979
5980
      /* adjust insn_idx from section frame of reference to the local
5981
       * program's frame of reference; (sub-)program code is not yet
5982
       * relocated, so it's enough to just subtract in-section offset
5983
       */
5984
0
      insn_idx = insn_idx - prog->sec_insn_off;
5985
0
      if (insn_idx >= prog->insns_cnt)
5986
0
        return -EINVAL;
5987
0
      insn = &prog->insns[insn_idx];
5988
5989
0
      err = record_relo_core(prog, rec, insn_idx);
5990
0
      if (err) {
5991
0
        pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n",
5992
0
          prog->name, i, errstr(err));
5993
0
        goto out;
5994
0
      }
5995
5996
0
      if (prog->obj->gen_loader)
5997
0
        continue;
5998
5999
0
      err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
6000
0
      if (err) {
6001
0
        pr_warn("prog '%s': relo #%d: failed to relocate: %s\n",
6002
0
          prog->name, i, errstr(err));
6003
0
        goto out;
6004
0
      }
6005
6006
0
      err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
6007
0
      if (err) {
6008
0
        pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n",
6009
0
          prog->name, i, insn_idx, errstr(err));
6010
0
        goto out;
6011
0
      }
6012
0
    }
6013
0
  }
6014
6015
0
out:
6016
  /* obj->btf_vmlinux and module BTFs are freed after object load */
6017
0
  btf__free(obj->btf_vmlinux_override);
6018
0
  obj->btf_vmlinux_override = NULL;
6019
6020
0
  if (!IS_ERR_OR_NULL(cand_cache)) {
6021
0
    hashmap__for_each_entry(cand_cache, entry, i) {
6022
0
      bpf_core_free_cands(entry->pvalue);
6023
0
    }
6024
0
    hashmap__free(cand_cache);
6025
0
  }
6026
0
  return err;
6027
0
}
6028
6029
/* base map load ldimm64 special constant, used also for log fixup logic */
6030
0
#define POISON_LDIMM64_MAP_BASE 2001000000
6031
#define POISON_LDIMM64_MAP_PFX "200100"
6032
6033
static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6034
             int insn_idx, struct bpf_insn *insn,
6035
             int map_idx, const struct bpf_map *map)
6036
0
{
6037
0
  int i;
6038
6039
0
  pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6040
0
     prog->name, relo_idx, insn_idx, map_idx, map->name);
6041
6042
  /* we turn single ldimm64 into two identical invalid calls */
6043
0
  for (i = 0; i < 2; i++) {
6044
0
    insn->code = BPF_JMP | BPF_CALL;
6045
0
    insn->dst_reg = 0;
6046
0
    insn->src_reg = 0;
6047
0
    insn->off = 0;
6048
    /* if this instruction is reachable (not a dead code),
6049
     * verifier will complain with something like:
6050
     * invalid func unknown#2001000123
6051
     * where lower 123 is map index into obj->maps[] array
6052
     */
6053
0
    insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6054
6055
0
    insn++;
6056
0
  }
6057
0
}
6058
6059
/* unresolved kfunc call special constant, used also for log fixup logic */
6060
0
#define POISON_CALL_KFUNC_BASE 2002000000
6061
#define POISON_CALL_KFUNC_PFX "2002"
6062
6063
static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6064
            int insn_idx, struct bpf_insn *insn,
6065
            int ext_idx, const struct extern_desc *ext)
6066
0
{
6067
0
  pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6068
0
     prog->name, relo_idx, insn_idx, ext->name);
6069
6070
  /* we turn kfunc call into invalid helper call with identifiable constant */
6071
0
  insn->code = BPF_JMP | BPF_CALL;
6072
0
  insn->dst_reg = 0;
6073
0
  insn->src_reg = 0;
6074
0
  insn->off = 0;
6075
  /* if this instruction is reachable (not a dead code),
6076
   * verifier will complain with something like:
6077
   * invalid func unknown#2001000123
6078
   * where lower 123 is extern index into obj->externs[] array
6079
   */
6080
0
  insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6081
0
}
6082
6083
/* Relocate data references within program code:
6084
 *  - map references;
6085
 *  - global variable references;
6086
 *  - extern references.
6087
 */
6088
static int
6089
bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6090
0
{
6091
0
  int i;
6092
6093
0
  for (i = 0; i < prog->nr_reloc; i++) {
6094
0
    struct reloc_desc *relo = &prog->reloc_desc[i];
6095
0
    struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6096
0
    const struct bpf_map *map;
6097
0
    struct extern_desc *ext;
6098
6099
0
    switch (relo->type) {
6100
0
    case RELO_LD64:
6101
0
      map = &obj->maps[relo->map_idx];
6102
0
      if (obj->gen_loader) {
6103
0
        insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6104
0
        insn[0].imm = relo->map_idx;
6105
0
      } else if (map->autocreate) {
6106
0
        insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6107
0
        insn[0].imm = map->fd;
6108
0
      } else {
6109
0
        poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6110
0
               relo->map_idx, map);
6111
0
      }
6112
0
      break;
6113
0
    case RELO_DATA:
6114
0
      map = &obj->maps[relo->map_idx];
6115
0
      insn[1].imm = insn[0].imm + relo->sym_off;
6116
0
      if (obj->gen_loader) {
6117
0
        insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6118
0
        insn[0].imm = relo->map_idx;
6119
0
      } else if (map->autocreate) {
6120
0
        insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6121
0
        insn[0].imm = map->fd;
6122
0
      } else {
6123
0
        poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6124
0
               relo->map_idx, map);
6125
0
      }
6126
0
      break;
6127
0
    case RELO_EXTERN_LD64:
6128
0
      ext = &obj->externs[relo->ext_idx];
6129
0
      if (ext->type == EXT_KCFG) {
6130
0
        if (obj->gen_loader) {
6131
0
          insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6132
0
          insn[0].imm = obj->kconfig_map_idx;
6133
0
        } else {
6134
0
          insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6135
0
          insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6136
0
        }
6137
0
        insn[1].imm = ext->kcfg.data_off;
6138
0
      } else /* EXT_KSYM */ {
6139
0
        if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6140
0
          insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6141
0
          insn[0].imm = ext->ksym.kernel_btf_id;
6142
0
          insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6143
0
        } else { /* typeless ksyms or unresolved typed ksyms */
6144
0
          insn[0].imm = (__u32)ext->ksym.addr;
6145
0
          insn[1].imm = ext->ksym.addr >> 32;
6146
0
        }
6147
0
      }
6148
0
      break;
6149
0
    case RELO_EXTERN_CALL:
6150
0
      ext = &obj->externs[relo->ext_idx];
6151
0
      insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6152
0
      if (ext->is_set) {
6153
0
        insn[0].imm = ext->ksym.kernel_btf_id;
6154
0
        insn[0].off = ext->ksym.btf_fd_idx;
6155
0
      } else { /* unresolved weak kfunc call */
6156
0
        poison_kfunc_call(prog, i, relo->insn_idx, insn,
6157
0
              relo->ext_idx, ext);
6158
0
      }
6159
0
      break;
6160
0
    case RELO_SUBPROG_ADDR:
6161
0
      if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6162
0
        pr_warn("prog '%s': relo #%d: bad insn\n",
6163
0
          prog->name, i);
6164
0
        return -EINVAL;
6165
0
      }
6166
      /* handled already */
6167
0
      break;
6168
0
    case RELO_CALL:
6169
      /* handled already */
6170
0
      break;
6171
0
    case RELO_CORE:
6172
      /* will be handled by bpf_program_record_relos() */
6173
0
      break;
6174
0
    default:
6175
0
      pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6176
0
        prog->name, i, relo->type);
6177
0
      return -EINVAL;
6178
0
    }
6179
0
  }
6180
6181
0
  return 0;
6182
0
}
6183
6184
static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6185
            const struct bpf_program *prog,
6186
            const struct btf_ext_info *ext_info,
6187
            void **prog_info, __u32 *prog_rec_cnt,
6188
            __u32 *prog_rec_sz)
6189
0
{
6190
0
  void *copy_start = NULL, *copy_end = NULL;
6191
0
  void *rec, *rec_end, *new_prog_info;
6192
0
  const struct btf_ext_info_sec *sec;
6193
0
  size_t old_sz, new_sz;
6194
0
  int i, sec_num, sec_idx, off_adj;
6195
6196
0
  sec_num = 0;
6197
0
  for_each_btf_ext_sec(ext_info, sec) {
6198
0
    sec_idx = ext_info->sec_idxs[sec_num];
6199
0
    sec_num++;
6200
0
    if (prog->sec_idx != sec_idx)
6201
0
      continue;
6202
6203
0
    for_each_btf_ext_rec(ext_info, sec, i, rec) {
6204
0
      __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6205
6206
0
      if (insn_off < prog->sec_insn_off)
6207
0
        continue;
6208
0
      if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6209
0
        break;
6210
6211
0
      if (!copy_start)
6212
0
        copy_start = rec;
6213
0
      copy_end = rec + ext_info->rec_size;
6214
0
    }
6215
6216
0
    if (!copy_start)
6217
0
      return -ENOENT;
6218
6219
    /* append func/line info of a given (sub-)program to the main
6220
     * program func/line info
6221
     */
6222
0
    old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6223
0
    new_sz = old_sz + (copy_end - copy_start);
6224
0
    new_prog_info = realloc(*prog_info, new_sz);
6225
0
    if (!new_prog_info)
6226
0
      return -ENOMEM;
6227
0
    *prog_info = new_prog_info;
6228
0
    *prog_rec_cnt = new_sz / ext_info->rec_size;
6229
0
    memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6230
6231
    /* Kernel instruction offsets are in units of 8-byte
6232
     * instructions, while .BTF.ext instruction offsets generated
6233
     * by Clang are in units of bytes. So convert Clang offsets
6234
     * into kernel offsets and adjust offset according to program
6235
     * relocated position.
6236
     */
6237
0
    off_adj = prog->sub_insn_off - prog->sec_insn_off;
6238
0
    rec = new_prog_info + old_sz;
6239
0
    rec_end = new_prog_info + new_sz;
6240
0
    for (; rec < rec_end; rec += ext_info->rec_size) {
6241
0
      __u32 *insn_off = rec;
6242
6243
0
      *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6244
0
    }
6245
0
    *prog_rec_sz = ext_info->rec_size;
6246
0
    return 0;
6247
0
  }
6248
6249
0
  return -ENOENT;
6250
0
}
6251
6252
static int
6253
reloc_prog_func_and_line_info(const struct bpf_object *obj,
6254
            struct bpf_program *main_prog,
6255
            const struct bpf_program *prog)
6256
0
{
6257
0
  int err;
6258
6259
  /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6260
   * support func/line info
6261
   */
6262
0
  if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6263
0
    return 0;
6264
6265
  /* only attempt func info relocation if main program's func_info
6266
   * relocation was successful
6267
   */
6268
0
  if (main_prog != prog && !main_prog->func_info)
6269
0
    goto line_info;
6270
6271
0
  err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6272
0
               &main_prog->func_info,
6273
0
               &main_prog->func_info_cnt,
6274
0
               &main_prog->func_info_rec_size);
6275
0
  if (err) {
6276
0
    if (err != -ENOENT) {
6277
0
      pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n",
6278
0
        prog->name, errstr(err));
6279
0
      return err;
6280
0
    }
6281
0
    if (main_prog->func_info) {
6282
      /*
6283
       * Some info has already been found but has problem
6284
       * in the last btf_ext reloc. Must have to error out.
6285
       */
6286
0
      pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6287
0
      return err;
6288
0
    }
6289
    /* Have problem loading the very first info. Ignore the rest. */
6290
0
    pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6291
0
      prog->name);
6292
0
  }
6293
6294
0
line_info:
6295
  /* don't relocate line info if main program's relocation failed */
6296
0
  if (main_prog != prog && !main_prog->line_info)
6297
0
    return 0;
6298
6299
0
  err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6300
0
               &main_prog->line_info,
6301
0
               &main_prog->line_info_cnt,
6302
0
               &main_prog->line_info_rec_size);
6303
0
  if (err) {
6304
0
    if (err != -ENOENT) {
6305
0
      pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n",
6306
0
        prog->name, errstr(err));
6307
0
      return err;
6308
0
    }
6309
0
    if (main_prog->line_info) {
6310
      /*
6311
       * Some info has already been found but has problem
6312
       * in the last btf_ext reloc. Must have to error out.
6313
       */
6314
0
      pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6315
0
      return err;
6316
0
    }
6317
    /* Have problem loading the very first info. Ignore the rest. */
6318
0
    pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6319
0
      prog->name);
6320
0
  }
6321
0
  return 0;
6322
0
}
6323
6324
static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6325
0
{
6326
0
  size_t insn_idx = *(const size_t *)key;
6327
0
  const struct reloc_desc *relo = elem;
6328
6329
0
  if (insn_idx == relo->insn_idx)
6330
0
    return 0;
6331
0
  return insn_idx < relo->insn_idx ? -1 : 1;
6332
0
}
6333
6334
static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6335
0
{
6336
0
  if (!prog->nr_reloc)
6337
0
    return NULL;
6338
0
  return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6339
0
           sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6340
0
}
6341
6342
static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6343
0
{
6344
0
  int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6345
0
  struct reloc_desc *relos;
6346
0
  int i;
6347
6348
0
  if (main_prog == subprog)
6349
0
    return 0;
6350
0
  relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6351
  /* if new count is zero, reallocarray can return a valid NULL result;
6352
   * in this case the previous pointer will be freed, so we *have to*
6353
   * reassign old pointer to the new value (even if it's NULL)
6354
   */
6355
0
  if (!relos && new_cnt)
6356
0
    return -ENOMEM;
6357
0
  if (subprog->nr_reloc)
6358
0
    memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6359
0
           sizeof(*relos) * subprog->nr_reloc);
6360
6361
0
  for (i = main_prog->nr_reloc; i < new_cnt; i++)
6362
0
    relos[i].insn_idx += subprog->sub_insn_off;
6363
  /* After insn_idx adjustment the 'relos' array is still sorted
6364
   * by insn_idx and doesn't break bsearch.
6365
   */
6366
0
  main_prog->reloc_desc = relos;
6367
0
  main_prog->nr_reloc = new_cnt;
6368
0
  return 0;
6369
0
}
6370
6371
static int
6372
bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6373
        struct bpf_program *subprog)
6374
0
{
6375
0
       struct bpf_insn *insns;
6376
0
       size_t new_cnt;
6377
0
       int err;
6378
6379
0
       subprog->sub_insn_off = main_prog->insns_cnt;
6380
6381
0
       new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6382
0
       insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6383
0
       if (!insns) {
6384
0
               pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6385
0
               return -ENOMEM;
6386
0
       }
6387
0
       main_prog->insns = insns;
6388
0
       main_prog->insns_cnt = new_cnt;
6389
6390
0
       memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6391
0
              subprog->insns_cnt * sizeof(*insns));
6392
6393
0
       pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6394
0
                main_prog->name, subprog->insns_cnt, subprog->name);
6395
6396
       /* The subprog insns are now appended. Append its relos too. */
6397
0
       err = append_subprog_relos(main_prog, subprog);
6398
0
       if (err)
6399
0
               return err;
6400
0
       return 0;
6401
0
}
6402
6403
static int
6404
bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6405
           struct bpf_program *prog)
6406
0
{
6407
0
  size_t sub_insn_idx, insn_idx;
6408
0
  struct bpf_program *subprog;
6409
0
  struct reloc_desc *relo;
6410
0
  struct bpf_insn *insn;
6411
0
  int err;
6412
6413
0
  err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6414
0
  if (err)
6415
0
    return err;
6416
6417
0
  for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6418
0
    insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6419
0
    if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6420
0
      continue;
6421
6422
0
    relo = find_prog_insn_relo(prog, insn_idx);
6423
0
    if (relo && relo->type == RELO_EXTERN_CALL)
6424
      /* kfunc relocations will be handled later
6425
       * in bpf_object__relocate_data()
6426
       */
6427
0
      continue;
6428
0
    if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6429
0
      pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6430
0
        prog->name, insn_idx, relo->type);
6431
0
      return -LIBBPF_ERRNO__RELOC;
6432
0
    }
6433
0
    if (relo) {
6434
      /* sub-program instruction index is a combination of
6435
       * an offset of a symbol pointed to by relocation and
6436
       * call instruction's imm field; for global functions,
6437
       * call always has imm = -1, but for static functions
6438
       * relocation is against STT_SECTION and insn->imm
6439
       * points to a start of a static function
6440
       *
6441
       * for subprog addr relocation, the relo->sym_off + insn->imm is
6442
       * the byte offset in the corresponding section.
6443
       */
6444
0
      if (relo->type == RELO_CALL)
6445
0
        sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6446
0
      else
6447
0
        sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6448
0
    } else if (insn_is_pseudo_func(insn)) {
6449
      /*
6450
       * RELO_SUBPROG_ADDR relo is always emitted even if both
6451
       * functions are in the same section, so it shouldn't reach here.
6452
       */
6453
0
      pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6454
0
        prog->name, insn_idx);
6455
0
      return -LIBBPF_ERRNO__RELOC;
6456
0
    } else {
6457
      /* if subprogram call is to a static function within
6458
       * the same ELF section, there won't be any relocation
6459
       * emitted, but it also means there is no additional
6460
       * offset necessary, insns->imm is relative to
6461
       * instruction's original position within the section
6462
       */
6463
0
      sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6464
0
    }
6465
6466
    /* we enforce that sub-programs should be in .text section */
6467
0
    subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6468
0
    if (!subprog) {
6469
0
      pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6470
0
        prog->name);
6471
0
      return -LIBBPF_ERRNO__RELOC;
6472
0
    }
6473
6474
    /* if it's the first call instruction calling into this
6475
     * subprogram (meaning this subprog hasn't been processed
6476
     * yet) within the context of current main program:
6477
     *   - append it at the end of main program's instructions blog;
6478
     *   - process is recursively, while current program is put on hold;
6479
     *   - if that subprogram calls some other not yet processes
6480
     *   subprogram, same thing will happen recursively until
6481
     *   there are no more unprocesses subprograms left to append
6482
     *   and relocate.
6483
     */
6484
0
    if (subprog->sub_insn_off == 0) {
6485
0
      err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6486
0
      if (err)
6487
0
        return err;
6488
0
      err = bpf_object__reloc_code(obj, main_prog, subprog);
6489
0
      if (err)
6490
0
        return err;
6491
0
    }
6492
6493
    /* main_prog->insns memory could have been re-allocated, so
6494
     * calculate pointer again
6495
     */
6496
0
    insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6497
    /* calculate correct instruction position within current main
6498
     * prog; each main prog can have a different set of
6499
     * subprograms appended (potentially in different order as
6500
     * well), so position of any subprog can be different for
6501
     * different main programs
6502
     */
6503
0
    insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6504
6505
0
    pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6506
0
       prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6507
0
  }
6508
6509
0
  return 0;
6510
0
}
6511
6512
/*
6513
 * Relocate sub-program calls.
6514
 *
6515
 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6516
 * main prog) is processed separately. For each subprog (non-entry functions,
6517
 * that can be called from either entry progs or other subprogs) gets their
6518
 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6519
 * hasn't been yet appended and relocated within current main prog. Once its
6520
 * relocated, sub_insn_off will point at the position within current main prog
6521
 * where given subprog was appended. This will further be used to relocate all
6522
 * the call instructions jumping into this subprog.
6523
 *
6524
 * We start with main program and process all call instructions. If the call
6525
 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6526
 * is zero), subprog instructions are appended at the end of main program's
6527
 * instruction array. Then main program is "put on hold" while we recursively
6528
 * process newly appended subprogram. If that subprogram calls into another
6529
 * subprogram that hasn't been appended, new subprogram is appended again to
6530
 * the *main* prog's instructions (subprog's instructions are always left
6531
 * untouched, as they need to be in unmodified state for subsequent main progs
6532
 * and subprog instructions are always sent only as part of a main prog) and
6533
 * the process continues recursively. Once all the subprogs called from a main
6534
 * prog or any of its subprogs are appended (and relocated), all their
6535
 * positions within finalized instructions array are known, so it's easy to
6536
 * rewrite call instructions with correct relative offsets, corresponding to
6537
 * desired target subprog.
6538
 *
6539
 * Its important to realize that some subprogs might not be called from some
6540
 * main prog and any of its called/used subprogs. Those will keep their
6541
 * subprog->sub_insn_off as zero at all times and won't be appended to current
6542
 * main prog and won't be relocated within the context of current main prog.
6543
 * They might still be used from other main progs later.
6544
 *
6545
 * Visually this process can be shown as below. Suppose we have two main
6546
 * programs mainA and mainB and BPF object contains three subprogs: subA,
6547
 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6548
 * subC both call subB:
6549
 *
6550
 *        +--------+ +-------+
6551
 *        |        v v       |
6552
 *     +--+---+ +--+-+-+ +---+--+
6553
 *     | subA | | subB | | subC |
6554
 *     +--+---+ +------+ +---+--+
6555
 *        ^                  ^
6556
 *        |                  |
6557
 *    +---+-------+   +------+----+
6558
 *    |   mainA   |   |   mainB   |
6559
 *    +-----------+   +-----------+
6560
 *
6561
 * We'll start relocating mainA, will find subA, append it and start
6562
 * processing sub A recursively:
6563
 *
6564
 *    +-----------+------+
6565
 *    |   mainA   | subA |
6566
 *    +-----------+------+
6567
 *
6568
 * At this point we notice that subB is used from subA, so we append it and
6569
 * relocate (there are no further subcalls from subB):
6570
 *
6571
 *    +-----------+------+------+
6572
 *    |   mainA   | subA | subB |
6573
 *    +-----------+------+------+
6574
 *
6575
 * At this point, we relocate subA calls, then go one level up and finish with
6576
 * relocatin mainA calls. mainA is done.
6577
 *
6578
 * For mainB process is similar but results in different order. We start with
6579
 * mainB and skip subA and subB, as mainB never calls them (at least
6580
 * directly), but we see subC is needed, so we append and start processing it:
6581
 *
6582
 *    +-----------+------+
6583
 *    |   mainB   | subC |
6584
 *    +-----------+------+
6585
 * Now we see subC needs subB, so we go back to it, append and relocate it:
6586
 *
6587
 *    +-----------+------+------+
6588
 *    |   mainB   | subC | subB |
6589
 *    +-----------+------+------+
6590
 *
6591
 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6592
 */
6593
static int
6594
bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6595
0
{
6596
0
  struct bpf_program *subprog;
6597
0
  int i, err;
6598
6599
  /* mark all subprogs as not relocated (yet) within the context of
6600
   * current main program
6601
   */
6602
0
  for (i = 0; i < obj->nr_programs; i++) {
6603
0
    subprog = &obj->programs[i];
6604
0
    if (!prog_is_subprog(obj, subprog))
6605
0
      continue;
6606
6607
0
    subprog->sub_insn_off = 0;
6608
0
  }
6609
6610
0
  err = bpf_object__reloc_code(obj, prog, prog);
6611
0
  if (err)
6612
0
    return err;
6613
6614
0
  return 0;
6615
0
}
6616
6617
static void
6618
bpf_object__free_relocs(struct bpf_object *obj)
6619
0
{
6620
0
  struct bpf_program *prog;
6621
0
  int i;
6622
6623
  /* free up relocation descriptors */
6624
0
  for (i = 0; i < obj->nr_programs; i++) {
6625
0
    prog = &obj->programs[i];
6626
0
    zfree(&prog->reloc_desc);
6627
0
    prog->nr_reloc = 0;
6628
0
  }
6629
0
}
6630
6631
static int cmp_relocs(const void *_a, const void *_b)
6632
2.83k
{
6633
2.83k
  const struct reloc_desc *a = _a;
6634
2.83k
  const struct reloc_desc *b = _b;
6635
6636
2.83k
  if (a->insn_idx != b->insn_idx)
6637
292
    return a->insn_idx < b->insn_idx ? -1 : 1;
6638
6639
  /* no two relocations should have the same insn_idx, but ... */
6640
2.54k
  if (a->type != b->type)
6641
224
    return a->type < b->type ? -1 : 1;
6642
6643
2.31k
  return 0;
6644
2.54k
}
6645
6646
static void bpf_object__sort_relos(struct bpf_object *obj)
6647
1.72k
{
6648
1.72k
  int i;
6649
6650
8.48k
  for (i = 0; i < obj->nr_programs; i++) {
6651
6.76k
    struct bpf_program *p = &obj->programs[i];
6652
6653
6.76k
    if (!p->nr_reloc)
6654
6.72k
      continue;
6655
6656
46
    qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6657
46
  }
6658
1.72k
}
6659
6660
static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6661
0
{
6662
0
  const char *str = "exception_callback:";
6663
0
  size_t pfx_len = strlen(str);
6664
0
  int i, j, n;
6665
6666
0
  if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6667
0
    return 0;
6668
6669
0
  n = btf__type_cnt(obj->btf);
6670
0
  for (i = 1; i < n; i++) {
6671
0
    const char *name;
6672
0
    struct btf_type *t;
6673
6674
0
    t = btf_type_by_id(obj->btf, i);
6675
0
    if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6676
0
      continue;
6677
6678
0
    name = btf__str_by_offset(obj->btf, t->name_off);
6679
0
    if (strncmp(name, str, pfx_len) != 0)
6680
0
      continue;
6681
6682
0
    t = btf_type_by_id(obj->btf, t->type);
6683
0
    if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6684
0
      pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6685
0
        prog->name);
6686
0
      return -EINVAL;
6687
0
    }
6688
0
    if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6689
0
      continue;
6690
    /* Multiple callbacks are specified for the same prog,
6691
     * the verifier will eventually return an error for this
6692
     * case, hence simply skip appending a subprog.
6693
     */
6694
0
    if (prog->exception_cb_idx >= 0) {
6695
0
      prog->exception_cb_idx = -1;
6696
0
      break;
6697
0
    }
6698
6699
0
    name += pfx_len;
6700
0
    if (str_is_empty(name)) {
6701
0
      pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6702
0
        prog->name);
6703
0
      return -EINVAL;
6704
0
    }
6705
6706
0
    for (j = 0; j < obj->nr_programs; j++) {
6707
0
      struct bpf_program *subprog = &obj->programs[j];
6708
6709
0
      if (!prog_is_subprog(obj, subprog))
6710
0
        continue;
6711
0
      if (strcmp(name, subprog->name) != 0)
6712
0
        continue;
6713
      /* Enforce non-hidden, as from verifier point of
6714
       * view it expects global functions, whereas the
6715
       * mark_btf_static fixes up linkage as static.
6716
       */
6717
0
      if (!subprog->sym_global || subprog->mark_btf_static) {
6718
0
        pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6719
0
          prog->name, subprog->name);
6720
0
        return -EINVAL;
6721
0
      }
6722
      /* Let's see if we already saw a static exception callback with the same name */
6723
0
      if (prog->exception_cb_idx >= 0) {
6724
0
        pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6725
0
          prog->name, subprog->name);
6726
0
        return -EINVAL;
6727
0
      }
6728
0
      prog->exception_cb_idx = j;
6729
0
      break;
6730
0
    }
6731
6732
0
    if (prog->exception_cb_idx >= 0)
6733
0
      continue;
6734
6735
0
    pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6736
0
    return -ENOENT;
6737
0
  }
6738
6739
0
  return 0;
6740
0
}
6741
6742
static struct {
6743
  enum bpf_prog_type prog_type;
6744
  const char *ctx_name;
6745
} global_ctx_map[] = {
6746
  { BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
6747
  { BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
6748
  { BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
6749
  { BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
6750
  { BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
6751
  { BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
6752
  { BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
6753
  { BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
6754
  { BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
6755
  { BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
6756
  { BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
6757
  { BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
6758
  { BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
6759
  { BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
6760
  { BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
6761
  { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6762
  { BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
6763
  { BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
6764
  { BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
6765
  { BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
6766
  { BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
6767
  { BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
6768
  { BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
6769
  { BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
6770
  { BPF_PROG_TYPE_XDP,                     "xdp_md" },
6771
  /* all other program types don't have "named" context structs */
6772
};
6773
6774
/* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6775
 * for below __builtin_types_compatible_p() checks;
6776
 * with this approach we don't need any extra arch-specific #ifdef guards
6777
 */
6778
struct pt_regs;
6779
struct user_pt_regs;
6780
struct user_regs_struct;
6781
6782
static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6783
             const char *subprog_name, int arg_idx,
6784
             int arg_type_id, const char *ctx_name)
6785
0
{
6786
0
  const struct btf_type *t;
6787
0
  const char *tname;
6788
6789
  /* check if existing parameter already matches verifier expectations */
6790
0
  t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6791
0
  if (!btf_is_ptr(t))
6792
0
    goto out_warn;
6793
6794
  /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6795
   * and perf_event programs, so check this case early on and forget
6796
   * about it for subsequent checks
6797
   */
6798
0
  while (btf_is_mod(t))
6799
0
    t = btf__type_by_id(btf, t->type);
6800
0
  if (btf_is_typedef(t) &&
6801
0
      (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6802
0
    tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6803
0
    if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6804
0
      return false; /* canonical type for kprobe/perf_event */
6805
0
  }
6806
6807
  /* now we can ignore typedefs moving forward */
6808
0
  t = skip_mods_and_typedefs(btf, t->type, NULL);
6809
6810
  /* if it's `void *`, definitely fix up BTF info */
6811
0
  if (btf_is_void(t))
6812
0
    return true;
6813
6814
  /* if it's already proper canonical type, no need to fix up */
6815
0
  tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6816
0
  if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6817
0
    return false;
6818
6819
  /* special cases */
6820
0
  switch (prog->type) {
6821
0
  case BPF_PROG_TYPE_KPROBE:
6822
    /* `struct pt_regs *` is expected, but we need to fix up */
6823
0
    if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6824
0
      return true;
6825
0
    break;
6826
0
  case BPF_PROG_TYPE_PERF_EVENT:
6827
0
    if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6828
0
        btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6829
0
      return true;
6830
0
    if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6831
0
        btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6832
0
      return true;
6833
0
    if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6834
0
        btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6835
0
      return true;
6836
0
    break;
6837
0
  case BPF_PROG_TYPE_RAW_TRACEPOINT:
6838
0
  case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6839
    /* allow u64* as ctx */
6840
0
    if (btf_is_int(t) && t->size == 8)
6841
0
      return true;
6842
0
    break;
6843
0
  default:
6844
0
    break;
6845
0
  }
6846
6847
0
out_warn:
6848
0
  pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6849
0
    prog->name, subprog_name, arg_idx, ctx_name);
6850
0
  return false;
6851
0
}
6852
6853
static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6854
0
{
6855
0
  int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6856
0
  int i, err, arg_cnt, fn_name_off, linkage;
6857
0
  struct btf_type *fn_t, *fn_proto_t, *t;
6858
0
  struct btf_param *p;
6859
6860
  /* caller already validated FUNC -> FUNC_PROTO validity */
6861
0
  fn_t = btf_type_by_id(btf, orig_fn_id);
6862
0
  fn_proto_t = btf_type_by_id(btf, fn_t->type);
6863
6864
  /* Note that each btf__add_xxx() operation invalidates
6865
   * all btf_type and string pointers, so we need to be
6866
   * very careful when cloning BTF types. BTF type
6867
   * pointers have to be always refetched. And to avoid
6868
   * problems with invalidated string pointers, we
6869
   * add empty strings initially, then just fix up
6870
   * name_off offsets in place. Offsets are stable for
6871
   * existing strings, so that works out.
6872
   */
6873
0
  fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6874
0
  linkage = btf_func_linkage(fn_t);
6875
0
  orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6876
0
  ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6877
0
  arg_cnt = btf_vlen(fn_proto_t);
6878
6879
  /* clone FUNC_PROTO and its params */
6880
0
  fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6881
0
  if (fn_proto_id < 0)
6882
0
    return -EINVAL;
6883
6884
0
  for (i = 0; i < arg_cnt; i++) {
6885
0
    int name_off;
6886
6887
    /* copy original parameter data */
6888
0
    t = btf_type_by_id(btf, orig_proto_id);
6889
0
    p = &btf_params(t)[i];
6890
0
    name_off = p->name_off;
6891
6892
0
    err = btf__add_func_param(btf, "", p->type);
6893
0
    if (err)
6894
0
      return err;
6895
6896
0
    fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6897
0
    p = &btf_params(fn_proto_t)[i];
6898
0
    p->name_off = name_off; /* use remembered str offset */
6899
0
  }
6900
6901
  /* clone FUNC now, btf__add_func() enforces non-empty name, so use
6902
   * entry program's name as a placeholder, which we replace immediately
6903
   * with original name_off
6904
   */
6905
0
  fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6906
0
  if (fn_id < 0)
6907
0
    return -EINVAL;
6908
6909
0
  fn_t = btf_type_by_id(btf, fn_id);
6910
0
  fn_t->name_off = fn_name_off; /* reuse original string */
6911
6912
0
  return fn_id;
6913
0
}
6914
6915
/* Check if main program or global subprog's function prototype has `arg:ctx`
6916
 * argument tags, and, if necessary, substitute correct type to match what BPF
6917
 * verifier would expect, taking into account specific program type. This
6918
 * allows to support __arg_ctx tag transparently on old kernels that don't yet
6919
 * have a native support for it in the verifier, making user's life much
6920
 * easier.
6921
 */
6922
static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6923
0
{
6924
0
  const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6925
0
  struct bpf_func_info_min *func_rec;
6926
0
  struct btf_type *fn_t, *fn_proto_t;
6927
0
  struct btf *btf = obj->btf;
6928
0
  const struct btf_type *t;
6929
0
  struct btf_param *p;
6930
0
  int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6931
0
  int i, n, arg_idx, arg_cnt, err, rec_idx;
6932
0
  int *orig_ids;
6933
6934
  /* no .BTF.ext, no problem */
6935
0
  if (!obj->btf_ext || !prog->func_info)
6936
0
    return 0;
6937
6938
  /* don't do any fix ups if kernel natively supports __arg_ctx */
6939
0
  if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6940
0
    return 0;
6941
6942
  /* some BPF program types just don't have named context structs, so
6943
   * this fallback mechanism doesn't work for them
6944
   */
6945
0
  for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6946
0
    if (global_ctx_map[i].prog_type != prog->type)
6947
0
      continue;
6948
0
    ctx_name = global_ctx_map[i].ctx_name;
6949
0
    break;
6950
0
  }
6951
0
  if (!ctx_name)
6952
0
    return 0;
6953
6954
  /* remember original func BTF IDs to detect if we already cloned them */
6955
0
  orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6956
0
  if (!orig_ids)
6957
0
    return -ENOMEM;
6958
0
  for (i = 0; i < prog->func_info_cnt; i++) {
6959
0
    func_rec = prog->func_info + prog->func_info_rec_size * i;
6960
0
    orig_ids[i] = func_rec->type_id;
6961
0
  }
6962
6963
  /* go through each DECL_TAG with "arg:ctx" and see if it points to one
6964
   * of our subprogs; if yes and subprog is global and needs adjustment,
6965
   * clone and adjust FUNC -> FUNC_PROTO combo
6966
   */
6967
0
  for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6968
    /* only DECL_TAG with "arg:ctx" value are interesting */
6969
0
    t = btf__type_by_id(btf, i);
6970
0
    if (!btf_is_decl_tag(t))
6971
0
      continue;
6972
0
    if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6973
0
      continue;
6974
6975
    /* only global funcs need adjustment, if at all */
6976
0
    orig_fn_id = t->type;
6977
0
    fn_t = btf_type_by_id(btf, orig_fn_id);
6978
0
    if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6979
0
      continue;
6980
6981
    /* sanity check FUNC -> FUNC_PROTO chain, just in case */
6982
0
    fn_proto_t = btf_type_by_id(btf, fn_t->type);
6983
0
    if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6984
0
      continue;
6985
6986
    /* find corresponding func_info record */
6987
0
    func_rec = NULL;
6988
0
    for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6989
0
      if (orig_ids[rec_idx] == t->type) {
6990
0
        func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6991
0
        break;
6992
0
      }
6993
0
    }
6994
    /* current main program doesn't call into this subprog */
6995
0
    if (!func_rec)
6996
0
      continue;
6997
6998
    /* some more sanity checking of DECL_TAG */
6999
0
    arg_cnt = btf_vlen(fn_proto_t);
7000
0
    arg_idx = btf_decl_tag(t)->component_idx;
7001
0
    if (arg_idx < 0 || arg_idx >= arg_cnt)
7002
0
      continue;
7003
7004
    /* check if we should fix up argument type */
7005
0
    p = &btf_params(fn_proto_t)[arg_idx];
7006
0
    fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
7007
0
    if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
7008
0
      continue;
7009
7010
    /* clone fn/fn_proto, unless we already did it for another arg */
7011
0
    if (func_rec->type_id == orig_fn_id) {
7012
0
      int fn_id;
7013
7014
0
      fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
7015
0
      if (fn_id < 0) {
7016
0
        err = fn_id;
7017
0
        goto err_out;
7018
0
      }
7019
7020
      /* point func_info record to a cloned FUNC type */
7021
0
      func_rec->type_id = fn_id;
7022
0
    }
7023
7024
    /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
7025
     * we do it just once per main BPF program, as all global
7026
     * funcs share the same program type, so need only PTR ->
7027
     * STRUCT type chain
7028
     */
7029
0
    if (ptr_id == 0) {
7030
0
      struct_id = btf__add_struct(btf, ctx_name, 0);
7031
0
      ptr_id = btf__add_ptr(btf, struct_id);
7032
0
      if (ptr_id < 0 || struct_id < 0) {
7033
0
        err = -EINVAL;
7034
0
        goto err_out;
7035
0
      }
7036
0
    }
7037
7038
    /* for completeness, clone DECL_TAG and point it to cloned param */
7039
0
    tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7040
0
    if (tag_id < 0) {
7041
0
      err = -EINVAL;
7042
0
      goto err_out;
7043
0
    }
7044
7045
    /* all the BTF manipulations invalidated pointers, refetch them */
7046
0
    fn_t = btf_type_by_id(btf, func_rec->type_id);
7047
0
    fn_proto_t = btf_type_by_id(btf, fn_t->type);
7048
7049
    /* fix up type ID pointed to by param */
7050
0
    p = &btf_params(fn_proto_t)[arg_idx];
7051
0
    p->type = ptr_id;
7052
0
  }
7053
7054
0
  free(orig_ids);
7055
0
  return 0;
7056
0
err_out:
7057
0
  free(orig_ids);
7058
0
  return err;
7059
0
}
7060
7061
static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7062
0
{
7063
0
  struct bpf_program *prog;
7064
0
  size_t i, j;
7065
0
  int err;
7066
7067
0
  if (obj->btf_ext) {
7068
0
    err = bpf_object__relocate_core(obj, targ_btf_path);
7069
0
    if (err) {
7070
0
      pr_warn("failed to perform CO-RE relocations: %s\n",
7071
0
        errstr(err));
7072
0
      return err;
7073
0
    }
7074
0
    bpf_object__sort_relos(obj);
7075
0
  }
7076
7077
  /* Before relocating calls pre-process relocations and mark
7078
   * few ld_imm64 instructions that points to subprogs.
7079
   * Otherwise bpf_object__reloc_code() later would have to consider
7080
   * all ld_imm64 insns as relocation candidates. That would
7081
   * reduce relocation speed, since amount of find_prog_insn_relo()
7082
   * would increase and most of them will fail to find a relo.
7083
   */
7084
0
  for (i = 0; i < obj->nr_programs; i++) {
7085
0
    prog = &obj->programs[i];
7086
0
    for (j = 0; j < prog->nr_reloc; j++) {
7087
0
      struct reloc_desc *relo = &prog->reloc_desc[j];
7088
0
      struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7089
7090
      /* mark the insn, so it's recognized by insn_is_pseudo_func() */
7091
0
      if (relo->type == RELO_SUBPROG_ADDR)
7092
0
        insn[0].src_reg = BPF_PSEUDO_FUNC;
7093
0
    }
7094
0
  }
7095
7096
  /* relocate subprogram calls and append used subprograms to main
7097
   * programs; each copy of subprogram code needs to be relocated
7098
   * differently for each main program, because its code location might
7099
   * have changed.
7100
   * Append subprog relos to main programs to allow data relos to be
7101
   * processed after text is completely relocated.
7102
   */
7103
0
  for (i = 0; i < obj->nr_programs; i++) {
7104
0
    prog = &obj->programs[i];
7105
    /* sub-program's sub-calls are relocated within the context of
7106
     * its main program only
7107
     */
7108
0
    if (prog_is_subprog(obj, prog))
7109
0
      continue;
7110
0
    if (!prog->autoload)
7111
0
      continue;
7112
7113
0
    err = bpf_object__relocate_calls(obj, prog);
7114
0
    if (err) {
7115
0
      pr_warn("prog '%s': failed to relocate calls: %s\n",
7116
0
        prog->name, errstr(err));
7117
0
      return err;
7118
0
    }
7119
7120
0
    err = bpf_prog_assign_exc_cb(obj, prog);
7121
0
    if (err)
7122
0
      return err;
7123
    /* Now, also append exception callback if it has not been done already. */
7124
0
    if (prog->exception_cb_idx >= 0) {
7125
0
      struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7126
7127
      /* Calling exception callback directly is disallowed, which the
7128
       * verifier will reject later. In case it was processed already,
7129
       * we can skip this step, otherwise for all other valid cases we
7130
       * have to append exception callback now.
7131
       */
7132
0
      if (subprog->sub_insn_off == 0) {
7133
0
        err = bpf_object__append_subprog_code(obj, prog, subprog);
7134
0
        if (err)
7135
0
          return err;
7136
0
        err = bpf_object__reloc_code(obj, prog, subprog);
7137
0
        if (err)
7138
0
          return err;
7139
0
      }
7140
0
    }
7141
0
  }
7142
0
  for (i = 0; i < obj->nr_programs; i++) {
7143
0
    prog = &obj->programs[i];
7144
0
    if (prog_is_subprog(obj, prog))
7145
0
      continue;
7146
0
    if (!prog->autoload)
7147
0
      continue;
7148
7149
    /* Process data relos for main programs */
7150
0
    err = bpf_object__relocate_data(obj, prog);
7151
0
    if (err) {
7152
0
      pr_warn("prog '%s': failed to relocate data references: %s\n",
7153
0
        prog->name, errstr(err));
7154
0
      return err;
7155
0
    }
7156
7157
    /* Fix up .BTF.ext information, if necessary */
7158
0
    err = bpf_program_fixup_func_info(obj, prog);
7159
0
    if (err) {
7160
0
      pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n",
7161
0
        prog->name, errstr(err));
7162
0
      return err;
7163
0
    }
7164
0
  }
7165
7166
0
  return 0;
7167
0
}
7168
7169
static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7170
              Elf64_Shdr *shdr, Elf_Data *data);
7171
7172
static int bpf_object__collect_map_relos(struct bpf_object *obj,
7173
           Elf64_Shdr *shdr, Elf_Data *data)
7174
28
{
7175
28
  const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7176
28
  int i, j, nrels, new_sz;
7177
28
  const struct btf_var_secinfo *vi = NULL;
7178
28
  const struct btf_type *sec, *var, *def;
7179
28
  struct bpf_map *map = NULL, *targ_map = NULL;
7180
28
  struct bpf_program *targ_prog = NULL;
7181
28
  bool is_prog_array, is_map_in_map;
7182
28
  const struct btf_member *member;
7183
28
  const char *name, *mname, *type;
7184
28
  unsigned int moff;
7185
28
  Elf64_Sym *sym;
7186
28
  Elf64_Rel *rel;
7187
28
  void *tmp;
7188
7189
28
  if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7190
0
    return -EINVAL;
7191
28
  sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7192
28
  if (!sec)
7193
0
    return -EINVAL;
7194
7195
28
  nrels = shdr->sh_size / shdr->sh_entsize;
7196
28
  for (i = 0; i < nrels; i++) {
7197
20
    rel = elf_rel_by_idx(data, i);
7198
20
    if (!rel) {
7199
0
      pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7200
0
      return -LIBBPF_ERRNO__FORMAT;
7201
0
    }
7202
7203
20
    sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7204
20
    if (!sym) {
7205
14
      pr_warn(".maps relo #%d: symbol %zx not found\n",
7206
14
        i, (size_t)ELF64_R_SYM(rel->r_info));
7207
14
      return -LIBBPF_ERRNO__FORMAT;
7208
14
    }
7209
6
    name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7210
7211
6
    pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7212
4
       i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7213
4
       (size_t)rel->r_offset, sym->st_name, name);
7214
7215
19
    for (j = 0; j < obj->nr_maps; j++) {
7216
15
      map = &obj->maps[j];
7217
15
      if (map->sec_idx != obj->efile.btf_maps_shndx)
7218
15
        continue;
7219
7220
0
      vi = btf_var_secinfos(sec) + map->btf_var_idx;
7221
0
      if (vi->offset <= rel->r_offset &&
7222
0
          rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7223
0
        break;
7224
0
    }
7225
6
    if (j == obj->nr_maps) {
7226
6
      pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7227
6
        i, name, (size_t)rel->r_offset);
7228
6
      return -EINVAL;
7229
6
    }
7230
7231
18.4E
    is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7232
18.4E
    is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7233
18.4E
    type = is_map_in_map ? "map" : "prog";
7234
18.4E
    if (is_map_in_map) {
7235
0
      if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7236
0
        pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7237
0
          i, name);
7238
0
        return -LIBBPF_ERRNO__RELOC;
7239
0
      }
7240
0
      if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7241
0
          map->def.key_size != sizeof(int)) {
7242
0
        pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7243
0
          i, map->name, sizeof(int));
7244
0
        return -EINVAL;
7245
0
      }
7246
0
      targ_map = bpf_object__find_map_by_name(obj, name);
7247
0
      if (!targ_map) {
7248
0
        pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7249
0
          i, name);
7250
0
        return -ESRCH;
7251
0
      }
7252
18.4E
    } else if (is_prog_array) {
7253
0
      targ_prog = bpf_object__find_program_by_name(obj, name);
7254
0
      if (!targ_prog) {
7255
0
        pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7256
0
          i, name);
7257
0
        return -ESRCH;
7258
0
      }
7259
0
      if (targ_prog->sec_idx != sym->st_shndx ||
7260
0
          targ_prog->sec_insn_off * 8 != sym->st_value ||
7261
0
          prog_is_subprog(obj, targ_prog)) {
7262
0
        pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7263
0
          i, name);
7264
0
        return -LIBBPF_ERRNO__RELOC;
7265
0
      }
7266
18.4E
    } else {
7267
18.4E
      return -EINVAL;
7268
18.4E
    }
7269
7270
0
    var = btf__type_by_id(obj->btf, vi->type);
7271
0
    def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7272
0
    if (btf_vlen(def) == 0)
7273
0
      return -EINVAL;
7274
0
    member = btf_members(def) + btf_vlen(def) - 1;
7275
0
    mname = btf__name_by_offset(obj->btf, member->name_off);
7276
0
    if (strcmp(mname, "values"))
7277
0
      return -EINVAL;
7278
7279
0
    moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7280
0
    if (rel->r_offset - vi->offset < moff)
7281
0
      return -EINVAL;
7282
7283
0
    moff = rel->r_offset - vi->offset - moff;
7284
    /* here we use BPF pointer size, which is always 64 bit, as we
7285
     * are parsing ELF that was built for BPF target
7286
     */
7287
0
    if (moff % bpf_ptr_sz)
7288
0
      return -EINVAL;
7289
0
    moff /= bpf_ptr_sz;
7290
0
    if (moff >= map->init_slots_sz) {
7291
0
      new_sz = moff + 1;
7292
0
      tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7293
0
      if (!tmp)
7294
0
        return -ENOMEM;
7295
0
      map->init_slots = tmp;
7296
0
      memset(map->init_slots + map->init_slots_sz, 0,
7297
0
             (new_sz - map->init_slots_sz) * host_ptr_sz);
7298
0
      map->init_slots_sz = new_sz;
7299
0
    }
7300
0
    map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7301
7302
0
    pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7303
0
       i, map->name, moff, type, name);
7304
0
  }
7305
7306
8
  return 0;
7307
28
}
7308
7309
static int bpf_object__collect_relos(struct bpf_object *obj)
7310
2.21k
{
7311
2.21k
  int i, err;
7312
7313
17.9k
  for (i = 0; i < obj->efile.sec_cnt; i++) {
7314
16.1k
    struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7315
16.1k
    Elf64_Shdr *shdr;
7316
16.1k
    Elf_Data *data;
7317
16.1k
    int idx;
7318
7319
16.1k
    if (sec_desc->sec_type != SEC_RELO)
7320
15.1k
      continue;
7321
7322
1.02k
    shdr = sec_desc->shdr;
7323
1.02k
    data = sec_desc->data;
7324
1.02k
    idx = shdr->sh_info;
7325
7326
1.02k
    if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7327
0
      pr_warn("internal error at %d\n", __LINE__);
7328
0
      return -LIBBPF_ERRNO__INTERNAL;
7329
0
    }
7330
7331
1.02k
    if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7332
8
      err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7333
1.01k
    else if (idx == obj->efile.btf_maps_shndx)
7334
28
      err = bpf_object__collect_map_relos(obj, shdr, data);
7335
991
    else
7336
991
      err = bpf_object__collect_prog_relos(obj, shdr, data);
7337
1.02k
    if (err)
7338
494
      return err;
7339
1.02k
  }
7340
7341
1.72k
  bpf_object__sort_relos(obj);
7342
1.72k
  return 0;
7343
2.21k
}
7344
7345
static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7346
0
{
7347
0
  if (BPF_CLASS(insn->code) == BPF_JMP &&
7348
0
      BPF_OP(insn->code) == BPF_CALL &&
7349
0
      BPF_SRC(insn->code) == BPF_K &&
7350
0
      insn->src_reg == 0 &&
7351
0
      insn->dst_reg == 0) {
7352
0
        *func_id = insn->imm;
7353
0
        return true;
7354
0
  }
7355
0
  return false;
7356
0
}
7357
7358
static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7359
0
{
7360
0
  struct bpf_insn *insn = prog->insns;
7361
0
  enum bpf_func_id func_id;
7362
0
  int i;
7363
7364
0
  if (obj->gen_loader)
7365
0
    return 0;
7366
7367
0
  for (i = 0; i < prog->insns_cnt; i++, insn++) {
7368
0
    if (!insn_is_helper_call(insn, &func_id))
7369
0
      continue;
7370
7371
    /* on kernels that don't yet support
7372
     * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7373
     * to bpf_probe_read() which works well for old kernels
7374
     */
7375
0
    switch (func_id) {
7376
0
    case BPF_FUNC_probe_read_kernel:
7377
0
    case BPF_FUNC_probe_read_user:
7378
0
      if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7379
0
        insn->imm = BPF_FUNC_probe_read;
7380
0
      break;
7381
0
    case BPF_FUNC_probe_read_kernel_str:
7382
0
    case BPF_FUNC_probe_read_user_str:
7383
0
      if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7384
0
        insn->imm = BPF_FUNC_probe_read_str;
7385
0
      break;
7386
0
    default:
7387
0
      break;
7388
0
    }
7389
0
  }
7390
0
  return 0;
7391
0
}
7392
7393
static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7394
             int *btf_obj_fd, int *btf_type_id);
7395
7396
/* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7397
static int libbpf_prepare_prog_load(struct bpf_program *prog,
7398
            struct bpf_prog_load_opts *opts, long cookie)
7399
0
{
7400
0
  enum sec_def_flags def = cookie;
7401
7402
  /* old kernels might not support specifying expected_attach_type */
7403
0
  if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7404
0
    opts->expected_attach_type = 0;
7405
7406
0
  if (def & SEC_SLEEPABLE)
7407
0
    opts->prog_flags |= BPF_F_SLEEPABLE;
7408
7409
0
  if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7410
0
    opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7411
7412
  /* special check for usdt to use uprobe_multi link */
7413
0
  if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
7414
    /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
7415
     * in prog, and expected_attach_type we set in kernel is from opts, so we
7416
     * update both.
7417
     */
7418
0
    prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7419
0
    opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7420
0
  }
7421
7422
0
  if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7423
0
    int btf_obj_fd = 0, btf_type_id = 0, err;
7424
0
    const char *attach_name;
7425
7426
0
    attach_name = strchr(prog->sec_name, '/');
7427
0
    if (!attach_name) {
7428
      /* if BPF program is annotated with just SEC("fentry")
7429
       * (or similar) without declaratively specifying
7430
       * target, then it is expected that target will be
7431
       * specified with bpf_program__set_attach_target() at
7432
       * runtime before BPF object load step. If not, then
7433
       * there is nothing to load into the kernel as BPF
7434
       * verifier won't be able to validate BPF program
7435
       * correctness anyways.
7436
       */
7437
0
      pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7438
0
        prog->name);
7439
0
      return -EINVAL;
7440
0
    }
7441
0
    attach_name++; /* skip over / */
7442
7443
0
    err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7444
0
    if (err)
7445
0
      return err;
7446
7447
    /* cache resolved BTF FD and BTF type ID in the prog */
7448
0
    prog->attach_btf_obj_fd = btf_obj_fd;
7449
0
    prog->attach_btf_id = btf_type_id;
7450
7451
    /* but by now libbpf common logic is not utilizing
7452
     * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7453
     * this callback is called after opts were populated by
7454
     * libbpf, so this callback has to update opts explicitly here
7455
     */
7456
0
    opts->attach_btf_obj_fd = btf_obj_fd;
7457
0
    opts->attach_btf_id = btf_type_id;
7458
0
  }
7459
0
  return 0;
7460
0
}
7461
7462
static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7463
7464
static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7465
        struct bpf_insn *insns, int insns_cnt,
7466
        const char *license, __u32 kern_version, int *prog_fd)
7467
0
{
7468
0
  LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7469
0
  const char *prog_name = NULL;
7470
0
  size_t log_buf_size = 0;
7471
0
  char *log_buf = NULL, *tmp;
7472
0
  bool own_log_buf = true;
7473
0
  __u32 log_level = prog->log_level;
7474
0
  int ret, err;
7475
7476
  /* Be more helpful by rejecting programs that can't be validated early
7477
   * with more meaningful and actionable error message.
7478
   */
7479
0
  switch (prog->type) {
7480
0
  case BPF_PROG_TYPE_UNSPEC:
7481
    /*
7482
     * The program type must be set.  Most likely we couldn't find a proper
7483
     * section definition at load time, and thus we didn't infer the type.
7484
     */
7485
0
    pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7486
0
      prog->name, prog->sec_name);
7487
0
    return -EINVAL;
7488
0
  case BPF_PROG_TYPE_STRUCT_OPS:
7489
0
    if (prog->attach_btf_id == 0) {
7490
0
      pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7491
0
        prog->name);
7492
0
      return -EINVAL;
7493
0
    }
7494
0
    break;
7495
0
  default:
7496
0
    break;
7497
0
  }
7498
7499
0
  if (!insns || !insns_cnt)
7500
0
    return -EINVAL;
7501
7502
0
  if (kernel_supports(obj, FEAT_PROG_NAME))
7503
0
    prog_name = prog->name;
7504
0
  load_attr.attach_prog_fd = prog->attach_prog_fd;
7505
0
  load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7506
0
  load_attr.attach_btf_id = prog->attach_btf_id;
7507
0
  load_attr.kern_version = kern_version;
7508
0
  load_attr.prog_ifindex = prog->prog_ifindex;
7509
0
  load_attr.expected_attach_type = prog->expected_attach_type;
7510
7511
  /* specify func_info/line_info only if kernel supports them */
7512
0
  if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7513
0
    load_attr.prog_btf_fd = btf__fd(obj->btf);
7514
0
    load_attr.func_info = prog->func_info;
7515
0
    load_attr.func_info_rec_size = prog->func_info_rec_size;
7516
0
    load_attr.func_info_cnt = prog->func_info_cnt;
7517
0
    load_attr.line_info = prog->line_info;
7518
0
    load_attr.line_info_rec_size = prog->line_info_rec_size;
7519
0
    load_attr.line_info_cnt = prog->line_info_cnt;
7520
0
  }
7521
0
  load_attr.log_level = log_level;
7522
0
  load_attr.prog_flags = prog->prog_flags;
7523
0
  load_attr.fd_array = obj->fd_array;
7524
7525
0
  load_attr.token_fd = obj->token_fd;
7526
0
  if (obj->token_fd)
7527
0
    load_attr.prog_flags |= BPF_F_TOKEN_FD;
7528
7529
  /* adjust load_attr if sec_def provides custom preload callback */
7530
0
  if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7531
0
    err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7532
0
    if (err < 0) {
7533
0
      pr_warn("prog '%s': failed to prepare load attributes: %s\n",
7534
0
        prog->name, errstr(err));
7535
0
      return err;
7536
0
    }
7537
0
    insns = prog->insns;
7538
0
    insns_cnt = prog->insns_cnt;
7539
0
  }
7540
7541
0
  if (obj->gen_loader) {
7542
0
    bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7543
0
           license, insns, insns_cnt, &load_attr,
7544
0
           prog - obj->programs);
7545
0
    *prog_fd = -1;
7546
0
    return 0;
7547
0
  }
7548
7549
0
retry_load:
7550
  /* if log_level is zero, we don't request logs initially even if
7551
   * custom log_buf is specified; if the program load fails, then we'll
7552
   * bump log_level to 1 and use either custom log_buf or we'll allocate
7553
   * our own and retry the load to get details on what failed
7554
   */
7555
0
  if (log_level) {
7556
0
    if (prog->log_buf) {
7557
0
      log_buf = prog->log_buf;
7558
0
      log_buf_size = prog->log_size;
7559
0
      own_log_buf = false;
7560
0
    } else if (obj->log_buf) {
7561
0
      log_buf = obj->log_buf;
7562
0
      log_buf_size = obj->log_size;
7563
0
      own_log_buf = false;
7564
0
    } else {
7565
0
      log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7566
0
      tmp = realloc(log_buf, log_buf_size);
7567
0
      if (!tmp) {
7568
0
        ret = -ENOMEM;
7569
0
        goto out;
7570
0
      }
7571
0
      log_buf = tmp;
7572
0
      log_buf[0] = '\0';
7573
0
      own_log_buf = true;
7574
0
    }
7575
0
  }
7576
7577
0
  load_attr.log_buf = log_buf;
7578
0
  load_attr.log_size = log_buf_size;
7579
0
  load_attr.log_level = log_level;
7580
7581
0
  ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7582
0
  if (ret >= 0) {
7583
0
    if (log_level && own_log_buf) {
7584
0
      pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7585
0
         prog->name, log_buf);
7586
0
    }
7587
7588
0
    if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7589
0
      struct bpf_map *map;
7590
0
      int i;
7591
7592
0
      for (i = 0; i < obj->nr_maps; i++) {
7593
0
        map = &prog->obj->maps[i];
7594
0
        if (map->libbpf_type != LIBBPF_MAP_RODATA)
7595
0
          continue;
7596
7597
0
        if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7598
0
          pr_warn("prog '%s': failed to bind map '%s': %s\n",
7599
0
            prog->name, map->real_name, errstr(errno));
7600
          /* Don't fail hard if can't bind rodata. */
7601
0
        }
7602
0
      }
7603
0
    }
7604
7605
0
    *prog_fd = ret;
7606
0
    ret = 0;
7607
0
    goto out;
7608
0
  }
7609
7610
0
  if (log_level == 0) {
7611
0
    log_level = 1;
7612
0
    goto retry_load;
7613
0
  }
7614
  /* On ENOSPC, increase log buffer size and retry, unless custom
7615
   * log_buf is specified.
7616
   * Be careful to not overflow u32, though. Kernel's log buf size limit
7617
   * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7618
   * multiply by 2 unless we are sure we'll fit within 32 bits.
7619
   * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7620
   */
7621
0
  if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7622
0
    goto retry_load;
7623
7624
0
  ret = -errno;
7625
7626
  /* post-process verifier log to improve error descriptions */
7627
0
  fixup_verifier_log(prog, log_buf, log_buf_size);
7628
7629
0
  pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno));
7630
0
  pr_perm_msg(ret);
7631
7632
0
  if (own_log_buf && log_buf && log_buf[0] != '\0') {
7633
0
    pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7634
0
      prog->name, log_buf);
7635
0
  }
7636
7637
0
out:
7638
0
  if (own_log_buf)
7639
0
    free(log_buf);
7640
0
  return ret;
7641
0
}
7642
7643
static char *find_prev_line(char *buf, char *cur)
7644
0
{
7645
0
  char *p;
7646
7647
0
  if (cur == buf) /* end of a log buf */
7648
0
    return NULL;
7649
7650
0
  p = cur - 1;
7651
0
  while (p - 1 >= buf && *(p - 1) != '\n')
7652
0
    p--;
7653
7654
0
  return p;
7655
0
}
7656
7657
static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7658
          char *orig, size_t orig_sz, const char *patch)
7659
0
{
7660
  /* size of the remaining log content to the right from the to-be-replaced part */
7661
0
  size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7662
0
  size_t patch_sz = strlen(patch);
7663
7664
0
  if (patch_sz != orig_sz) {
7665
    /* If patch line(s) are longer than original piece of verifier log,
7666
     * shift log contents by (patch_sz - orig_sz) bytes to the right
7667
     * starting from after to-be-replaced part of the log.
7668
     *
7669
     * If patch line(s) are shorter than original piece of verifier log,
7670
     * shift log contents by (orig_sz - patch_sz) bytes to the left
7671
     * starting from after to-be-replaced part of the log
7672
     *
7673
     * We need to be careful about not overflowing available
7674
     * buf_sz capacity. If that's the case, we'll truncate the end
7675
     * of the original log, as necessary.
7676
     */
7677
0
    if (patch_sz > orig_sz) {
7678
0
      if (orig + patch_sz >= buf + buf_sz) {
7679
        /* patch is big enough to cover remaining space completely */
7680
0
        patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7681
0
        rem_sz = 0;
7682
0
      } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7683
        /* patch causes part of remaining log to be truncated */
7684
0
        rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7685
0
      }
7686
0
    }
7687
    /* shift remaining log to the right by calculated amount */
7688
0
    memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7689
0
  }
7690
7691
0
  memcpy(orig, patch, patch_sz);
7692
0
}
7693
7694
static void fixup_log_failed_core_relo(struct bpf_program *prog,
7695
               char *buf, size_t buf_sz, size_t log_sz,
7696
               char *line1, char *line2, char *line3)
7697
0
{
7698
  /* Expected log for failed and not properly guarded CO-RE relocation:
7699
   * line1 -> 123: (85) call unknown#195896080
7700
   * line2 -> invalid func unknown#195896080
7701
   * line3 -> <anything else or end of buffer>
7702
   *
7703
   * "123" is the index of the instruction that was poisoned. We extract
7704
   * instruction index to find corresponding CO-RE relocation and
7705
   * replace this part of the log with more relevant information about
7706
   * failed CO-RE relocation.
7707
   */
7708
0
  const struct bpf_core_relo *relo;
7709
0
  struct bpf_core_spec spec;
7710
0
  char patch[512], spec_buf[256];
7711
0
  int insn_idx, err, spec_len;
7712
7713
0
  if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7714
0
    return;
7715
7716
0
  relo = find_relo_core(prog, insn_idx);
7717
0
  if (!relo)
7718
0
    return;
7719
7720
0
  err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7721
0
  if (err)
7722
0
    return;
7723
7724
0
  spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7725
0
  snprintf(patch, sizeof(patch),
7726
0
     "%d: <invalid CO-RE relocation>\n"
7727
0
     "failed to resolve CO-RE relocation %s%s\n",
7728
0
     insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7729
7730
0
  patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7731
0
}
7732
7733
static void fixup_log_missing_map_load(struct bpf_program *prog,
7734
               char *buf, size_t buf_sz, size_t log_sz,
7735
               char *line1, char *line2, char *line3)
7736
0
{
7737
  /* Expected log for failed and not properly guarded map reference:
7738
   * line1 -> 123: (85) call unknown#2001000345
7739
   * line2 -> invalid func unknown#2001000345
7740
   * line3 -> <anything else or end of buffer>
7741
   *
7742
   * "123" is the index of the instruction that was poisoned.
7743
   * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7744
   */
7745
0
  struct bpf_object *obj = prog->obj;
7746
0
  const struct bpf_map *map;
7747
0
  int insn_idx, map_idx;
7748
0
  char patch[128];
7749
7750
0
  if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7751
0
    return;
7752
7753
0
  map_idx -= POISON_LDIMM64_MAP_BASE;
7754
0
  if (map_idx < 0 || map_idx >= obj->nr_maps)
7755
0
    return;
7756
0
  map = &obj->maps[map_idx];
7757
7758
0
  snprintf(patch, sizeof(patch),
7759
0
     "%d: <invalid BPF map reference>\n"
7760
0
     "BPF map '%s' is referenced but wasn't created\n",
7761
0
     insn_idx, map->name);
7762
7763
0
  patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7764
0
}
7765
7766
static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7767
           char *buf, size_t buf_sz, size_t log_sz,
7768
           char *line1, char *line2, char *line3)
7769
0
{
7770
  /* Expected log for failed and not properly guarded kfunc call:
7771
   * line1 -> 123: (85) call unknown#2002000345
7772
   * line2 -> invalid func unknown#2002000345
7773
   * line3 -> <anything else or end of buffer>
7774
   *
7775
   * "123" is the index of the instruction that was poisoned.
7776
   * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7777
   */
7778
0
  struct bpf_object *obj = prog->obj;
7779
0
  const struct extern_desc *ext;
7780
0
  int insn_idx, ext_idx;
7781
0
  char patch[128];
7782
7783
0
  if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7784
0
    return;
7785
7786
0
  ext_idx -= POISON_CALL_KFUNC_BASE;
7787
0
  if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7788
0
    return;
7789
0
  ext = &obj->externs[ext_idx];
7790
7791
0
  snprintf(patch, sizeof(patch),
7792
0
     "%d: <invalid kfunc call>\n"
7793
0
     "kfunc '%s' is referenced but wasn't resolved\n",
7794
0
     insn_idx, ext->name);
7795
7796
0
  patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7797
0
}
7798
7799
static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7800
0
{
7801
  /* look for familiar error patterns in last N lines of the log */
7802
0
  const size_t max_last_line_cnt = 10;
7803
0
  char *prev_line, *cur_line, *next_line;
7804
0
  size_t log_sz;
7805
0
  int i;
7806
7807
0
  if (!buf)
7808
0
    return;
7809
7810
0
  log_sz = strlen(buf) + 1;
7811
0
  next_line = buf + log_sz - 1;
7812
7813
0
  for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7814
0
    cur_line = find_prev_line(buf, next_line);
7815
0
    if (!cur_line)
7816
0
      return;
7817
7818
0
    if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7819
0
      prev_line = find_prev_line(buf, cur_line);
7820
0
      if (!prev_line)
7821
0
        continue;
7822
7823
      /* failed CO-RE relocation case */
7824
0
      fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7825
0
               prev_line, cur_line, next_line);
7826
0
      return;
7827
0
    } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7828
0
      prev_line = find_prev_line(buf, cur_line);
7829
0
      if (!prev_line)
7830
0
        continue;
7831
7832
      /* reference to uncreated BPF map */
7833
0
      fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7834
0
               prev_line, cur_line, next_line);
7835
0
      return;
7836
0
    } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7837
0
      prev_line = find_prev_line(buf, cur_line);
7838
0
      if (!prev_line)
7839
0
        continue;
7840
7841
      /* reference to unresolved kfunc */
7842
0
      fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7843
0
                 prev_line, cur_line, next_line);
7844
0
      return;
7845
0
    }
7846
0
  }
7847
0
}
7848
7849
static int bpf_program_record_relos(struct bpf_program *prog)
7850
0
{
7851
0
  struct bpf_object *obj = prog->obj;
7852
0
  int i;
7853
7854
0
  for (i = 0; i < prog->nr_reloc; i++) {
7855
0
    struct reloc_desc *relo = &prog->reloc_desc[i];
7856
0
    struct extern_desc *ext = &obj->externs[relo->ext_idx];
7857
0
    int kind;
7858
7859
0
    switch (relo->type) {
7860
0
    case RELO_EXTERN_LD64:
7861
0
      if (ext->type != EXT_KSYM)
7862
0
        continue;
7863
0
      kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7864
0
        BTF_KIND_VAR : BTF_KIND_FUNC;
7865
0
      bpf_gen__record_extern(obj->gen_loader, ext->name,
7866
0
                 ext->is_weak, !ext->ksym.type_id,
7867
0
                 true, kind, relo->insn_idx);
7868
0
      break;
7869
0
    case RELO_EXTERN_CALL:
7870
0
      bpf_gen__record_extern(obj->gen_loader, ext->name,
7871
0
                 ext->is_weak, false, false, BTF_KIND_FUNC,
7872
0
                 relo->insn_idx);
7873
0
      break;
7874
0
    case RELO_CORE: {
7875
0
      struct bpf_core_relo cr = {
7876
0
        .insn_off = relo->insn_idx * 8,
7877
0
        .type_id = relo->core_relo->type_id,
7878
0
        .access_str_off = relo->core_relo->access_str_off,
7879
0
        .kind = relo->core_relo->kind,
7880
0
      };
7881
7882
0
      bpf_gen__record_relo_core(obj->gen_loader, &cr);
7883
0
      break;
7884
0
    }
7885
0
    default:
7886
0
      continue;
7887
0
    }
7888
0
  }
7889
0
  return 0;
7890
0
}
7891
7892
static int
7893
bpf_object__load_progs(struct bpf_object *obj, int log_level)
7894
0
{
7895
0
  struct bpf_program *prog;
7896
0
  size_t i;
7897
0
  int err;
7898
7899
0
  for (i = 0; i < obj->nr_programs; i++) {
7900
0
    prog = &obj->programs[i];
7901
0
    if (prog_is_subprog(obj, prog))
7902
0
      continue;
7903
0
    if (!prog->autoload) {
7904
0
      pr_debug("prog '%s': skipped loading\n", prog->name);
7905
0
      continue;
7906
0
    }
7907
0
    prog->log_level |= log_level;
7908
7909
0
    if (obj->gen_loader)
7910
0
      bpf_program_record_relos(prog);
7911
7912
0
    err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7913
0
             obj->license, obj->kern_version, &prog->fd);
7914
0
    if (err) {
7915
0
      pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err));
7916
0
      return err;
7917
0
    }
7918
0
  }
7919
7920
0
  bpf_object__free_relocs(obj);
7921
0
  return 0;
7922
0
}
7923
7924
static int bpf_object_prepare_progs(struct bpf_object *obj)
7925
0
{
7926
0
  struct bpf_program *prog;
7927
0
  size_t i;
7928
0
  int err;
7929
7930
0
  for (i = 0; i < obj->nr_programs; i++) {
7931
0
    prog = &obj->programs[i];
7932
0
    err = bpf_object__sanitize_prog(obj, prog);
7933
0
    if (err)
7934
0
      return err;
7935
0
  }
7936
0
  return 0;
7937
0
}
7938
7939
static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7940
7941
static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7942
2.21k
{
7943
2.21k
  struct bpf_program *prog;
7944
2.21k
  int err;
7945
7946
5.40k
  bpf_object__for_each_program(prog, obj) {
7947
5.40k
    prog->sec_def = find_sec_def(prog->sec_name);
7948
5.40k
    if (!prog->sec_def) {
7949
      /* couldn't guess, but user might manually specify */
7950
4.37k
      pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7951
4.37k
        prog->name, prog->sec_name);
7952
4.37k
      continue;
7953
4.37k
    }
7954
7955
1.03k
    prog->type = prog->sec_def->prog_type;
7956
1.03k
    prog->expected_attach_type = prog->sec_def->expected_attach_type;
7957
7958
    /* sec_def can have custom callback which should be called
7959
     * after bpf_program is initialized to adjust its properties
7960
     */
7961
1.03k
    if (prog->sec_def->prog_setup_fn) {
7962
0
      err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7963
0
      if (err < 0) {
7964
0
        pr_warn("prog '%s': failed to initialize: %s\n",
7965
0
          prog->name, errstr(err));
7966
0
        return err;
7967
0
      }
7968
0
    }
7969
1.03k
  }
7970
7971
2.21k
  return 0;
7972
2.21k
}
7973
7974
static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7975
            const char *obj_name,
7976
            const struct bpf_object_open_opts *opts)
7977
11.5k
{
7978
11.5k
  const char *kconfig, *btf_tmp_path, *token_path;
7979
11.5k
  struct bpf_object *obj;
7980
11.5k
  int err;
7981
11.5k
  char *log_buf;
7982
11.5k
  size_t log_size;
7983
11.5k
  __u32 log_level;
7984
7985
11.5k
  if (obj_buf && !obj_name)
7986
0
    return ERR_PTR(-EINVAL);
7987
7988
11.5k
  if (elf_version(EV_CURRENT) == EV_NONE) {
7989
0
    pr_warn("failed to init libelf for %s\n",
7990
0
      path ? : "(mem buf)");
7991
0
    return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7992
0
  }
7993
7994
11.5k
  if (!OPTS_VALID(opts, bpf_object_open_opts))
7995
0
    return ERR_PTR(-EINVAL);
7996
7997
11.5k
  obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name;
7998
11.5k
  if (obj_buf) {
7999
11.5k
    path = obj_name;
8000
11.5k
    pr_debug("loading object '%s' from buffer\n", obj_name);
8001
18.4E
  } else {
8002
18.4E
    pr_debug("loading object from %s\n", path);
8003
18.4E
  }
8004
8005
0
  log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
8006
0
  log_size = OPTS_GET(opts, kernel_log_size, 0);
8007
0
  log_level = OPTS_GET(opts, kernel_log_level, 0);
8008
0
  if (log_size > UINT_MAX)
8009
0
    return ERR_PTR(-EINVAL);
8010
0
  if (log_size && !log_buf)
8011
0
    return ERR_PTR(-EINVAL);
8012
8013
0
  token_path = OPTS_GET(opts, bpf_token_path, NULL);
8014
  /* if user didn't specify bpf_token_path explicitly, check if
8015
   * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
8016
   * option
8017
   */
8018
0
  if (!token_path)
8019
11.5k
    token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
8020
0
  if (token_path && strlen(token_path) >= PATH_MAX)
8021
0
    return ERR_PTR(-ENAMETOOLONG);
8022
8023
0
  obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
8024
0
  if (IS_ERR(obj))
8025
0
    return obj;
8026
8027
0
  obj->log_buf = log_buf;
8028
0
  obj->log_size = log_size;
8029
0
  obj->log_level = log_level;
8030
8031
0
  if (token_path) {
8032
0
    obj->token_path = strdup(token_path);
8033
0
    if (!obj->token_path) {
8034
0
      err = -ENOMEM;
8035
0
      goto out;
8036
0
    }
8037
0
  }
8038
8039
0
  btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
8040
0
  if (btf_tmp_path) {
8041
0
    if (strlen(btf_tmp_path) >= PATH_MAX) {
8042
0
      err = -ENAMETOOLONG;
8043
0
      goto out;
8044
0
    }
8045
0
    obj->btf_custom_path = strdup(btf_tmp_path);
8046
0
    if (!obj->btf_custom_path) {
8047
0
      err = -ENOMEM;
8048
0
      goto out;
8049
0
    }
8050
0
  }
8051
8052
0
  kconfig = OPTS_GET(opts, kconfig, NULL);
8053
0
  if (kconfig) {
8054
0
    obj->kconfig = strdup(kconfig);
8055
0
    if (!obj->kconfig) {
8056
0
      err = -ENOMEM;
8057
0
      goto out;
8058
0
    }
8059
0
  }
8060
8061
0
  err = bpf_object__elf_init(obj);
8062
18.4E
  err = err ? : bpf_object__elf_collect(obj);
8063
18.4E
  err = err ? : bpf_object__collect_externs(obj);
8064
18.4E
  err = err ? : bpf_object_fixup_btf(obj);
8065
18.4E
  err = err ? : bpf_object__init_maps(obj, opts);
8066
18.4E
  err = err ? : bpf_object_init_progs(obj, opts);
8067
18.4E
  err = err ? : bpf_object__collect_relos(obj);
8068
18.4E
  if (err)
8069
9.85k
    goto out;
8070
8071
18.4E
  bpf_object__elf_finish(obj);
8072
8073
18.4E
  return obj;
8074
9.85k
out:
8075
9.85k
  bpf_object__close(obj);
8076
9.85k
  return ERR_PTR(err);
8077
18.4E
}
8078
8079
struct bpf_object *
8080
bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8081
0
{
8082
0
  if (!path)
8083
0
    return libbpf_err_ptr(-EINVAL);
8084
8085
0
  return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts));
8086
0
}
8087
8088
struct bpf_object *bpf_object__open(const char *path)
8089
0
{
8090
0
  return bpf_object__open_file(path, NULL);
8091
0
}
8092
8093
struct bpf_object *
8094
bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8095
         const struct bpf_object_open_opts *opts)
8096
11.5k
{
8097
11.5k
  char tmp_name[64];
8098
8099
11.5k
  if (!obj_buf || obj_buf_sz == 0)
8100
0
    return libbpf_err_ptr(-EINVAL);
8101
8102
  /* create a (quite useless) default "name" for this memory buffer object */
8103
11.5k
  snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz);
8104
8105
11.5k
  return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts));
8106
11.5k
}
8107
8108
static int bpf_object_unload(struct bpf_object *obj)
8109
11.5k
{
8110
11.5k
  size_t i;
8111
8112
11.5k
  if (!obj)
8113
0
    return libbpf_err(-EINVAL);
8114
8115
14.4k
  for (i = 0; i < obj->nr_maps; i++) {
8116
2.84k
    zclose(obj->maps[i].fd);
8117
2.84k
    if (obj->maps[i].st_ops)
8118
60
      zfree(&obj->maps[i].st_ops->kern_vdata);
8119
2.84k
  }
8120
8121
20.8k
  for (i = 0; i < obj->nr_programs; i++)
8122
9.26k
    bpf_program__unload(&obj->programs[i]);
8123
8124
11.5k
  return 0;
8125
11.5k
}
8126
8127
static int bpf_object__sanitize_maps(struct bpf_object *obj)
8128
0
{
8129
0
  struct bpf_map *m;
8130
8131
0
  bpf_object__for_each_map(m, obj) {
8132
0
    if (!bpf_map__is_internal(m))
8133
0
      continue;
8134
0
    if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8135
0
      m->def.map_flags &= ~BPF_F_MMAPABLE;
8136
0
  }
8137
8138
0
  return 0;
8139
0
}
8140
8141
typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8142
           const char *sym_name, void *ctx);
8143
8144
static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8145
0
{
8146
0
  char sym_type, sym_name[500];
8147
0
  unsigned long long sym_addr;
8148
0
  int ret, err = 0;
8149
0
  FILE *f;
8150
8151
0
  f = fopen("/proc/kallsyms", "re");
8152
0
  if (!f) {
8153
0
    err = -errno;
8154
0
    pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err));
8155
0
    return err;
8156
0
  }
8157
8158
0
  while (true) {
8159
0
    ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8160
0
           &sym_addr, &sym_type, sym_name);
8161
0
    if (ret == EOF && feof(f))
8162
0
      break;
8163
0
    if (ret != 3) {
8164
0
      pr_warn("failed to read kallsyms entry: %d\n", ret);
8165
0
      err = -EINVAL;
8166
0
      break;
8167
0
    }
8168
8169
0
    err = cb(sym_addr, sym_type, sym_name, ctx);
8170
0
    if (err)
8171
0
      break;
8172
0
  }
8173
8174
0
  fclose(f);
8175
0
  return err;
8176
0
}
8177
8178
static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8179
           const char *sym_name, void *ctx)
8180
0
{
8181
0
  struct bpf_object *obj = ctx;
8182
0
  const struct btf_type *t;
8183
0
  struct extern_desc *ext;
8184
0
  char *res;
8185
8186
0
  res = strstr(sym_name, ".llvm.");
8187
0
  if (sym_type == 'd' && res)
8188
0
    ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8189
0
  else
8190
0
    ext = find_extern_by_name(obj, sym_name);
8191
0
  if (!ext || ext->type != EXT_KSYM)
8192
0
    return 0;
8193
8194
0
  t = btf__type_by_id(obj->btf, ext->btf_id);
8195
0
  if (!btf_is_var(t))
8196
0
    return 0;
8197
8198
0
  if (ext->is_set && ext->ksym.addr != sym_addr) {
8199
0
    pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8200
0
      sym_name, ext->ksym.addr, sym_addr);
8201
0
    return -EINVAL;
8202
0
  }
8203
0
  if (!ext->is_set) {
8204
0
    ext->is_set = true;
8205
0
    ext->ksym.addr = sym_addr;
8206
0
    pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8207
0
  }
8208
0
  return 0;
8209
0
}
8210
8211
static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8212
0
{
8213
0
  return libbpf_kallsyms_parse(kallsyms_cb, obj);
8214
0
}
8215
8216
static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8217
          __u16 kind, struct btf **res_btf,
8218
          struct module_btf **res_mod_btf)
8219
0
{
8220
0
  struct module_btf *mod_btf;
8221
0
  struct btf *btf;
8222
0
  int i, id, err;
8223
8224
0
  btf = obj->btf_vmlinux;
8225
0
  mod_btf = NULL;
8226
0
  id = btf__find_by_name_kind(btf, ksym_name, kind);
8227
8228
0
  if (id == -ENOENT) {
8229
0
    err = load_module_btfs(obj);
8230
0
    if (err)
8231
0
      return err;
8232
8233
0
    for (i = 0; i < obj->btf_module_cnt; i++) {
8234
      /* we assume module_btf's BTF FD is always >0 */
8235
0
      mod_btf = &obj->btf_modules[i];
8236
0
      btf = mod_btf->btf;
8237
0
      id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8238
0
      if (id != -ENOENT)
8239
0
        break;
8240
0
    }
8241
0
  }
8242
0
  if (id <= 0)
8243
0
    return -ESRCH;
8244
8245
0
  *res_btf = btf;
8246
0
  *res_mod_btf = mod_btf;
8247
0
  return id;
8248
0
}
8249
8250
static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8251
                 struct extern_desc *ext)
8252
0
{
8253
0
  const struct btf_type *targ_var, *targ_type;
8254
0
  __u32 targ_type_id, local_type_id;
8255
0
  struct module_btf *mod_btf = NULL;
8256
0
  const char *targ_var_name;
8257
0
  struct btf *btf = NULL;
8258
0
  int id, err;
8259
8260
0
  id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8261
0
  if (id < 0) {
8262
0
    if (id == -ESRCH && ext->is_weak)
8263
0
      return 0;
8264
0
    pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8265
0
      ext->name);
8266
0
    return id;
8267
0
  }
8268
8269
  /* find local type_id */
8270
0
  local_type_id = ext->ksym.type_id;
8271
8272
  /* find target type_id */
8273
0
  targ_var = btf__type_by_id(btf, id);
8274
0
  targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8275
0
  targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8276
8277
0
  err = bpf_core_types_are_compat(obj->btf, local_type_id,
8278
0
          btf, targ_type_id);
8279
0
  if (err <= 0) {
8280
0
    const struct btf_type *local_type;
8281
0
    const char *targ_name, *local_name;
8282
8283
0
    local_type = btf__type_by_id(obj->btf, local_type_id);
8284
0
    local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8285
0
    targ_name = btf__name_by_offset(btf, targ_type->name_off);
8286
8287
0
    pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8288
0
      ext->name, local_type_id,
8289
0
      btf_kind_str(local_type), local_name, targ_type_id,
8290
0
      btf_kind_str(targ_type), targ_name);
8291
0
    return -EINVAL;
8292
0
  }
8293
8294
0
  ext->is_set = true;
8295
0
  ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8296
0
  ext->ksym.kernel_btf_id = id;
8297
0
  pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8298
0
     ext->name, id, btf_kind_str(targ_var), targ_var_name);
8299
8300
0
  return 0;
8301
0
}
8302
8303
static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8304
            struct extern_desc *ext)
8305
0
{
8306
0
  int local_func_proto_id, kfunc_proto_id, kfunc_id;
8307
0
  struct module_btf *mod_btf = NULL;
8308
0
  const struct btf_type *kern_func;
8309
0
  struct btf *kern_btf = NULL;
8310
0
  int ret;
8311
8312
0
  local_func_proto_id = ext->ksym.type_id;
8313
8314
0
  kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8315
0
            &mod_btf);
8316
0
  if (kfunc_id < 0) {
8317
0
    if (kfunc_id == -ESRCH && ext->is_weak)
8318
0
      return 0;
8319
0
    pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8320
0
      ext->name);
8321
0
    return kfunc_id;
8322
0
  }
8323
8324
0
  kern_func = btf__type_by_id(kern_btf, kfunc_id);
8325
0
  kfunc_proto_id = kern_func->type;
8326
8327
0
  ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8328
0
          kern_btf, kfunc_proto_id);
8329
0
  if (ret <= 0) {
8330
0
    if (ext->is_weak)
8331
0
      return 0;
8332
8333
0
    pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8334
0
      ext->name, local_func_proto_id,
8335
0
      mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8336
0
    return -EINVAL;
8337
0
  }
8338
8339
  /* set index for module BTF fd in fd_array, if unset */
8340
0
  if (mod_btf && !mod_btf->fd_array_idx) {
8341
    /* insn->off is s16 */
8342
0
    if (obj->fd_array_cnt == INT16_MAX) {
8343
0
      pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8344
0
        ext->name, mod_btf->fd_array_idx);
8345
0
      return -E2BIG;
8346
0
    }
8347
    /* Cannot use index 0 for module BTF fd */
8348
0
    if (!obj->fd_array_cnt)
8349
0
      obj->fd_array_cnt = 1;
8350
8351
0
    ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8352
0
          obj->fd_array_cnt + 1);
8353
0
    if (ret)
8354
0
      return ret;
8355
0
    mod_btf->fd_array_idx = obj->fd_array_cnt;
8356
    /* we assume module BTF FD is always >0 */
8357
0
    obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8358
0
  }
8359
8360
0
  ext->is_set = true;
8361
0
  ext->ksym.kernel_btf_id = kfunc_id;
8362
0
  ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8363
  /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8364
   * populates FD into ld_imm64 insn when it's used to point to kfunc.
8365
   * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8366
   * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8367
   */
8368
0
  ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8369
0
  pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8370
0
     ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8371
8372
0
  return 0;
8373
0
}
8374
8375
static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8376
0
{
8377
0
  const struct btf_type *t;
8378
0
  struct extern_desc *ext;
8379
0
  int i, err;
8380
8381
0
  for (i = 0; i < obj->nr_extern; i++) {
8382
0
    ext = &obj->externs[i];
8383
0
    if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8384
0
      continue;
8385
8386
0
    if (obj->gen_loader) {
8387
0
      ext->is_set = true;
8388
0
      ext->ksym.kernel_btf_obj_fd = 0;
8389
0
      ext->ksym.kernel_btf_id = 0;
8390
0
      continue;
8391
0
    }
8392
0
    t = btf__type_by_id(obj->btf, ext->btf_id);
8393
0
    if (btf_is_var(t))
8394
0
      err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8395
0
    else
8396
0
      err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8397
0
    if (err)
8398
0
      return err;
8399
0
  }
8400
0
  return 0;
8401
0
}
8402
8403
static int bpf_object__resolve_externs(struct bpf_object *obj,
8404
               const char *extra_kconfig)
8405
0
{
8406
0
  bool need_config = false, need_kallsyms = false;
8407
0
  bool need_vmlinux_btf = false;
8408
0
  struct extern_desc *ext;
8409
0
  void *kcfg_data = NULL;
8410
0
  int err, i;
8411
8412
0
  if (obj->nr_extern == 0)
8413
0
    return 0;
8414
8415
0
  if (obj->kconfig_map_idx >= 0)
8416
0
    kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8417
8418
0
  for (i = 0; i < obj->nr_extern; i++) {
8419
0
    ext = &obj->externs[i];
8420
8421
0
    if (ext->type == EXT_KSYM) {
8422
0
      if (ext->ksym.type_id)
8423
0
        need_vmlinux_btf = true;
8424
0
      else
8425
0
        need_kallsyms = true;
8426
0
      continue;
8427
0
    } else if (ext->type == EXT_KCFG) {
8428
0
      void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8429
0
      __u64 value = 0;
8430
8431
      /* Kconfig externs need actual /proc/config.gz */
8432
0
      if (str_has_pfx(ext->name, "CONFIG_")) {
8433
0
        need_config = true;
8434
0
        continue;
8435
0
      }
8436
8437
      /* Virtual kcfg externs are customly handled by libbpf */
8438
0
      if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8439
0
        value = get_kernel_version();
8440
0
        if (!value) {
8441
0
          pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8442
0
          return -EINVAL;
8443
0
        }
8444
0
      } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8445
0
        value = kernel_supports(obj, FEAT_BPF_COOKIE);
8446
0
      } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8447
0
        value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8448
0
      } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8449
        /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8450
         * __kconfig externs, where LINUX_ ones are virtual and filled out
8451
         * customly by libbpf (their values don't come from Kconfig).
8452
         * If LINUX_xxx variable is not recognized by libbpf, but is marked
8453
         * __weak, it defaults to zero value, just like for CONFIG_xxx
8454
         * externs.
8455
         */
8456
0
        pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8457
0
        return -EINVAL;
8458
0
      }
8459
8460
0
      err = set_kcfg_value_num(ext, ext_ptr, value);
8461
0
      if (err)
8462
0
        return err;
8463
0
      pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8464
0
         ext->name, (long long)value);
8465
0
    } else {
8466
0
      pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8467
0
      return -EINVAL;
8468
0
    }
8469
0
  }
8470
0
  if (need_config && extra_kconfig) {
8471
0
    err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8472
0
    if (err)
8473
0
      return -EINVAL;
8474
0
    need_config = false;
8475
0
    for (i = 0; i < obj->nr_extern; i++) {
8476
0
      ext = &obj->externs[i];
8477
0
      if (ext->type == EXT_KCFG && !ext->is_set) {
8478
0
        need_config = true;
8479
0
        break;
8480
0
      }
8481
0
    }
8482
0
  }
8483
0
  if (need_config) {
8484
0
    err = bpf_object__read_kconfig_file(obj, kcfg_data);
8485
0
    if (err)
8486
0
      return -EINVAL;
8487
0
  }
8488
0
  if (need_kallsyms) {
8489
0
    err = bpf_object__read_kallsyms_file(obj);
8490
0
    if (err)
8491
0
      return -EINVAL;
8492
0
  }
8493
0
  if (need_vmlinux_btf) {
8494
0
    err = bpf_object__resolve_ksyms_btf_id(obj);
8495
0
    if (err)
8496
0
      return -EINVAL;
8497
0
  }
8498
0
  for (i = 0; i < obj->nr_extern; i++) {
8499
0
    ext = &obj->externs[i];
8500
8501
0
    if (!ext->is_set && !ext->is_weak) {
8502
0
      pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8503
0
      return -ESRCH;
8504
0
    } else if (!ext->is_set) {
8505
0
      pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8506
0
         ext->name);
8507
0
    }
8508
0
  }
8509
8510
0
  return 0;
8511
0
}
8512
8513
static void bpf_map_prepare_vdata(const struct bpf_map *map)
8514
0
{
8515
0
  const struct btf_type *type;
8516
0
  struct bpf_struct_ops *st_ops;
8517
0
  __u32 i;
8518
8519
0
  st_ops = map->st_ops;
8520
0
  type = btf__type_by_id(map->obj->btf, st_ops->type_id);
8521
0
  for (i = 0; i < btf_vlen(type); i++) {
8522
0
    struct bpf_program *prog = st_ops->progs[i];
8523
0
    void *kern_data;
8524
0
    int prog_fd;
8525
8526
0
    if (!prog)
8527
0
      continue;
8528
8529
0
    prog_fd = bpf_program__fd(prog);
8530
0
    kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8531
0
    *(unsigned long *)kern_data = prog_fd;
8532
0
  }
8533
0
}
8534
8535
static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8536
0
{
8537
0
  struct bpf_map *map;
8538
0
  int i;
8539
8540
0
  for (i = 0; i < obj->nr_maps; i++) {
8541
0
    map = &obj->maps[i];
8542
8543
0
    if (!bpf_map__is_struct_ops(map))
8544
0
      continue;
8545
8546
0
    if (!map->autocreate)
8547
0
      continue;
8548
8549
0
    bpf_map_prepare_vdata(map);
8550
0
  }
8551
8552
0
  return 0;
8553
0
}
8554
8555
static void bpf_object_unpin(struct bpf_object *obj)
8556
0
{
8557
0
  int i;
8558
8559
  /* unpin any maps that were auto-pinned during load */
8560
0
  for (i = 0; i < obj->nr_maps; i++)
8561
0
    if (obj->maps[i].pinned && !obj->maps[i].reused)
8562
0
      bpf_map__unpin(&obj->maps[i], NULL);
8563
0
}
8564
8565
static void bpf_object_post_load_cleanup(struct bpf_object *obj)
8566
11.5k
{
8567
11.5k
  int i;
8568
8569
  /* clean up fd_array */
8570
11.5k
  zfree(&obj->fd_array);
8571
8572
  /* clean up module BTFs */
8573
11.5k
  for (i = 0; i < obj->btf_module_cnt; i++) {
8574
0
    close(obj->btf_modules[i].fd);
8575
0
    btf__free(obj->btf_modules[i].btf);
8576
0
    free(obj->btf_modules[i].name);
8577
0
  }
8578
11.5k
  obj->btf_module_cnt = 0;
8579
11.5k
  zfree(&obj->btf_modules);
8580
8581
  /* clean up vmlinux BTF */
8582
11.5k
  btf__free(obj->btf_vmlinux);
8583
11.5k
  obj->btf_vmlinux = NULL;
8584
11.5k
}
8585
8586
static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path)
8587
0
{
8588
0
  int err;
8589
8590
0
  if (obj->state >= OBJ_PREPARED) {
8591
0
    pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name);
8592
0
    return -EINVAL;
8593
0
  }
8594
8595
0
  err = bpf_object_prepare_token(obj);
8596
0
  err = err ? : bpf_object__probe_loading(obj);
8597
0
  err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8598
0
  err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8599
0
  err = err ? : bpf_object__sanitize_maps(obj);
8600
0
  err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8601
0
  err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8602
0
  err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8603
0
  err = err ? : bpf_object__sanitize_and_load_btf(obj);
8604
0
  err = err ? : bpf_object__create_maps(obj);
8605
0
  err = err ? : bpf_object_prepare_progs(obj);
8606
8607
0
  if (err) {
8608
0
    bpf_object_unpin(obj);
8609
0
    bpf_object_unload(obj);
8610
0
    obj->state = OBJ_LOADED;
8611
0
    return err;
8612
0
  }
8613
8614
0
  obj->state = OBJ_PREPARED;
8615
0
  return 0;
8616
0
}
8617
8618
static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8619
0
{
8620
0
  int err;
8621
8622
0
  if (!obj)
8623
0
    return libbpf_err(-EINVAL);
8624
8625
0
  if (obj->state >= OBJ_LOADED) {
8626
0
    pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8627
0
    return libbpf_err(-EINVAL);
8628
0
  }
8629
8630
  /* Disallow kernel loading programs of non-native endianness but
8631
   * permit cross-endian creation of "light skeleton".
8632
   */
8633
0
  if (obj->gen_loader) {
8634
0
    bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8635
0
  } else if (!is_native_endianness(obj)) {
8636
0
    pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name);
8637
0
    return libbpf_err(-LIBBPF_ERRNO__ENDIAN);
8638
0
  }
8639
8640
0
  if (obj->state < OBJ_PREPARED) {
8641
0
    err = bpf_object_prepare(obj, target_btf_path);
8642
0
    if (err)
8643
0
      return libbpf_err(err);
8644
0
  }
8645
0
  err = bpf_object__load_progs(obj, extra_log_level);
8646
0
  err = err ? : bpf_object_init_prog_arrays(obj);
8647
0
  err = err ? : bpf_object_prepare_struct_ops(obj);
8648
8649
0
  if (obj->gen_loader) {
8650
    /* reset FDs */
8651
0
    if (obj->btf)
8652
0
      btf__set_fd(obj->btf, -1);
8653
0
    if (!err)
8654
0
      err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8655
0
  }
8656
8657
0
  bpf_object_post_load_cleanup(obj);
8658
0
  obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */
8659
8660
0
  if (err) {
8661
0
    bpf_object_unpin(obj);
8662
0
    bpf_object_unload(obj);
8663
0
    pr_warn("failed to load object '%s'\n", obj->path);
8664
0
    return libbpf_err(err);
8665
0
  }
8666
8667
0
  return 0;
8668
0
}
8669
8670
int bpf_object__prepare(struct bpf_object *obj)
8671
0
{
8672
0
  return libbpf_err(bpf_object_prepare(obj, NULL));
8673
0
}
8674
8675
int bpf_object__load(struct bpf_object *obj)
8676
0
{
8677
0
  return bpf_object_load(obj, 0, NULL);
8678
0
}
8679
8680
static int make_parent_dir(const char *path)
8681
0
{
8682
0
  char *dname, *dir;
8683
0
  int err = 0;
8684
8685
0
  dname = strdup(path);
8686
0
  if (dname == NULL)
8687
0
    return -ENOMEM;
8688
8689
0
  dir = dirname(dname);
8690
0
  if (mkdir(dir, 0700) && errno != EEXIST)
8691
0
    err = -errno;
8692
8693
0
  free(dname);
8694
0
  if (err) {
8695
0
    pr_warn("failed to mkdir %s: %s\n", path, errstr(err));
8696
0
  }
8697
0
  return err;
8698
0
}
8699
8700
static int check_path(const char *path)
8701
0
{
8702
0
  struct statfs st_fs;
8703
0
  char *dname, *dir;
8704
0
  int err = 0;
8705
8706
0
  if (path == NULL)
8707
0
    return -EINVAL;
8708
8709
0
  dname = strdup(path);
8710
0
  if (dname == NULL)
8711
0
    return -ENOMEM;
8712
8713
0
  dir = dirname(dname);
8714
0
  if (statfs(dir, &st_fs)) {
8715
0
    pr_warn("failed to statfs %s: %s\n", dir, errstr(errno));
8716
0
    err = -errno;
8717
0
  }
8718
0
  free(dname);
8719
8720
0
  if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8721
0
    pr_warn("specified path %s is not on BPF FS\n", path);
8722
0
    err = -EINVAL;
8723
0
  }
8724
8725
0
  return err;
8726
0
}
8727
8728
int bpf_program__pin(struct bpf_program *prog, const char *path)
8729
0
{
8730
0
  int err;
8731
8732
0
  if (prog->fd < 0) {
8733
0
    pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8734
0
    return libbpf_err(-EINVAL);
8735
0
  }
8736
8737
0
  err = make_parent_dir(path);
8738
0
  if (err)
8739
0
    return libbpf_err(err);
8740
8741
0
  err = check_path(path);
8742
0
  if (err)
8743
0
    return libbpf_err(err);
8744
8745
0
  if (bpf_obj_pin(prog->fd, path)) {
8746
0
    err = -errno;
8747
0
    pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err));
8748
0
    return libbpf_err(err);
8749
0
  }
8750
8751
0
  pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8752
0
  return 0;
8753
0
}
8754
8755
int bpf_program__unpin(struct bpf_program *prog, const char *path)
8756
0
{
8757
0
  int err;
8758
8759
0
  if (prog->fd < 0) {
8760
0
    pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8761
0
    return libbpf_err(-EINVAL);
8762
0
  }
8763
8764
0
  err = check_path(path);
8765
0
  if (err)
8766
0
    return libbpf_err(err);
8767
8768
0
  err = unlink(path);
8769
0
  if (err)
8770
0
    return libbpf_err(-errno);
8771
8772
0
  pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8773
0
  return 0;
8774
0
}
8775
8776
int bpf_map__pin(struct bpf_map *map, const char *path)
8777
0
{
8778
0
  int err;
8779
8780
0
  if (map == NULL) {
8781
0
    pr_warn("invalid map pointer\n");
8782
0
    return libbpf_err(-EINVAL);
8783
0
  }
8784
8785
0
  if (map->fd < 0) {
8786
0
    pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8787
0
    return libbpf_err(-EINVAL);
8788
0
  }
8789
8790
0
  if (map->pin_path) {
8791
0
    if (path && strcmp(path, map->pin_path)) {
8792
0
      pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8793
0
        bpf_map__name(map), map->pin_path, path);
8794
0
      return libbpf_err(-EINVAL);
8795
0
    } else if (map->pinned) {
8796
0
      pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8797
0
         bpf_map__name(map), map->pin_path);
8798
0
      return 0;
8799
0
    }
8800
0
  } else {
8801
0
    if (!path) {
8802
0
      pr_warn("missing a path to pin map '%s' at\n",
8803
0
        bpf_map__name(map));
8804
0
      return libbpf_err(-EINVAL);
8805
0
    } else if (map->pinned) {
8806
0
      pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8807
0
      return libbpf_err(-EEXIST);
8808
0
    }
8809
8810
0
    map->pin_path = strdup(path);
8811
0
    if (!map->pin_path) {
8812
0
      err = -errno;
8813
0
      goto out_err;
8814
0
    }
8815
0
  }
8816
8817
0
  err = make_parent_dir(map->pin_path);
8818
0
  if (err)
8819
0
    return libbpf_err(err);
8820
8821
0
  err = check_path(map->pin_path);
8822
0
  if (err)
8823
0
    return libbpf_err(err);
8824
8825
0
  if (bpf_obj_pin(map->fd, map->pin_path)) {
8826
0
    err = -errno;
8827
0
    goto out_err;
8828
0
  }
8829
8830
0
  map->pinned = true;
8831
0
  pr_debug("pinned map '%s'\n", map->pin_path);
8832
8833
0
  return 0;
8834
8835
0
out_err:
8836
0
  pr_warn("failed to pin map: %s\n", errstr(err));
8837
0
  return libbpf_err(err);
8838
0
}
8839
8840
int bpf_map__unpin(struct bpf_map *map, const char *path)
8841
0
{
8842
0
  int err;
8843
8844
0
  if (map == NULL) {
8845
0
    pr_warn("invalid map pointer\n");
8846
0
    return libbpf_err(-EINVAL);
8847
0
  }
8848
8849
0
  if (map->pin_path) {
8850
0
    if (path && strcmp(path, map->pin_path)) {
8851
0
      pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8852
0
        bpf_map__name(map), map->pin_path, path);
8853
0
      return libbpf_err(-EINVAL);
8854
0
    }
8855
0
    path = map->pin_path;
8856
0
  } else if (!path) {
8857
0
    pr_warn("no path to unpin map '%s' from\n",
8858
0
      bpf_map__name(map));
8859
0
    return libbpf_err(-EINVAL);
8860
0
  }
8861
8862
0
  err = check_path(path);
8863
0
  if (err)
8864
0
    return libbpf_err(err);
8865
8866
0
  err = unlink(path);
8867
0
  if (err != 0)
8868
0
    return libbpf_err(-errno);
8869
8870
0
  map->pinned = false;
8871
0
  pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8872
8873
0
  return 0;
8874
0
}
8875
8876
int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8877
1
{
8878
1
  char *new = NULL;
8879
8880
1
  if (path) {
8881
1
    new = strdup(path);
8882
1
    if (!new)
8883
0
      return libbpf_err(-errno);
8884
1
  }
8885
8886
1
  free(map->pin_path);
8887
1
  map->pin_path = new;
8888
1
  return 0;
8889
1
}
8890
8891
__alias(bpf_map__pin_path)
8892
const char *bpf_map__get_pin_path(const struct bpf_map *map);
8893
8894
const char *bpf_map__pin_path(const struct bpf_map *map)
8895
0
{
8896
0
  return map->pin_path;
8897
0
}
8898
8899
bool bpf_map__is_pinned(const struct bpf_map *map)
8900
0
{
8901
0
  return map->pinned;
8902
0
}
8903
8904
static void sanitize_pin_path(char *s)
8905
0
{
8906
  /* bpffs disallows periods in path names */
8907
0
  while (*s) {
8908
0
    if (*s == '.')
8909
0
      *s = '_';
8910
0
    s++;
8911
0
  }
8912
0
}
8913
8914
int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8915
0
{
8916
0
  struct bpf_map *map;
8917
0
  int err;
8918
8919
0
  if (!obj)
8920
0
    return libbpf_err(-ENOENT);
8921
8922
0
  if (obj->state < OBJ_PREPARED) {
8923
0
    pr_warn("object not yet loaded; load it first\n");
8924
0
    return libbpf_err(-ENOENT);
8925
0
  }
8926
8927
0
  bpf_object__for_each_map(map, obj) {
8928
0
    char *pin_path = NULL;
8929
0
    char buf[PATH_MAX];
8930
8931
0
    if (!map->autocreate)
8932
0
      continue;
8933
8934
0
    if (path) {
8935
0
      err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8936
0
      if (err)
8937
0
        goto err_unpin_maps;
8938
0
      sanitize_pin_path(buf);
8939
0
      pin_path = buf;
8940
0
    } else if (!map->pin_path) {
8941
0
      continue;
8942
0
    }
8943
8944
0
    err = bpf_map__pin(map, pin_path);
8945
0
    if (err)
8946
0
      goto err_unpin_maps;
8947
0
  }
8948
8949
0
  return 0;
8950
8951
0
err_unpin_maps:
8952
0
  while ((map = bpf_object__prev_map(obj, map))) {
8953
0
    if (!map->pin_path)
8954
0
      continue;
8955
8956
0
    bpf_map__unpin(map, NULL);
8957
0
  }
8958
8959
0
  return libbpf_err(err);
8960
0
}
8961
8962
int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8963
0
{
8964
0
  struct bpf_map *map;
8965
0
  int err;
8966
8967
0
  if (!obj)
8968
0
    return libbpf_err(-ENOENT);
8969
8970
0
  bpf_object__for_each_map(map, obj) {
8971
0
    char *pin_path = NULL;
8972
0
    char buf[PATH_MAX];
8973
8974
0
    if (path) {
8975
0
      err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8976
0
      if (err)
8977
0
        return libbpf_err(err);
8978
0
      sanitize_pin_path(buf);
8979
0
      pin_path = buf;
8980
0
    } else if (!map->pin_path) {
8981
0
      continue;
8982
0
    }
8983
8984
0
    err = bpf_map__unpin(map, pin_path);
8985
0
    if (err)
8986
0
      return libbpf_err(err);
8987
0
  }
8988
8989
0
  return 0;
8990
0
}
8991
8992
int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8993
0
{
8994
0
  struct bpf_program *prog;
8995
0
  char buf[PATH_MAX];
8996
0
  int err;
8997
8998
0
  if (!obj)
8999
0
    return libbpf_err(-ENOENT);
9000
9001
0
  if (obj->state < OBJ_LOADED) {
9002
0
    pr_warn("object not yet loaded; load it first\n");
9003
0
    return libbpf_err(-ENOENT);
9004
0
  }
9005
9006
0
  bpf_object__for_each_program(prog, obj) {
9007
0
    err = pathname_concat(buf, sizeof(buf), path, prog->name);
9008
0
    if (err)
9009
0
      goto err_unpin_programs;
9010
9011
0
    err = bpf_program__pin(prog, buf);
9012
0
    if (err)
9013
0
      goto err_unpin_programs;
9014
0
  }
9015
9016
0
  return 0;
9017
9018
0
err_unpin_programs:
9019
0
  while ((prog = bpf_object__prev_program(obj, prog))) {
9020
0
    if (pathname_concat(buf, sizeof(buf), path, prog->name))
9021
0
      continue;
9022
9023
0
    bpf_program__unpin(prog, buf);
9024
0
  }
9025
9026
0
  return libbpf_err(err);
9027
0
}
9028
9029
int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
9030
0
{
9031
0
  struct bpf_program *prog;
9032
0
  int err;
9033
9034
0
  if (!obj)
9035
0
    return libbpf_err(-ENOENT);
9036
9037
0
  bpf_object__for_each_program(prog, obj) {
9038
0
    char buf[PATH_MAX];
9039
9040
0
    err = pathname_concat(buf, sizeof(buf), path, prog->name);
9041
0
    if (err)
9042
0
      return libbpf_err(err);
9043
9044
0
    err = bpf_program__unpin(prog, buf);
9045
0
    if (err)
9046
0
      return libbpf_err(err);
9047
0
  }
9048
9049
0
  return 0;
9050
0
}
9051
9052
int bpf_object__pin(struct bpf_object *obj, const char *path)
9053
0
{
9054
0
  int err;
9055
9056
0
  err = bpf_object__pin_maps(obj, path);
9057
0
  if (err)
9058
0
    return libbpf_err(err);
9059
9060
0
  err = bpf_object__pin_programs(obj, path);
9061
0
  if (err) {
9062
0
    bpf_object__unpin_maps(obj, path);
9063
0
    return libbpf_err(err);
9064
0
  }
9065
9066
0
  return 0;
9067
0
}
9068
9069
int bpf_object__unpin(struct bpf_object *obj, const char *path)
9070
0
{
9071
0
  int err;
9072
9073
0
  err = bpf_object__unpin_programs(obj, path);
9074
0
  if (err)
9075
0
    return libbpf_err(err);
9076
9077
0
  err = bpf_object__unpin_maps(obj, path);
9078
0
  if (err)
9079
0
    return libbpf_err(err);
9080
9081
0
  return 0;
9082
0
}
9083
9084
static void bpf_map__destroy(struct bpf_map *map)
9085
2.84k
{
9086
2.84k
  if (map->inner_map) {
9087
0
    bpf_map__destroy(map->inner_map);
9088
0
    zfree(&map->inner_map);
9089
0
  }
9090
9091
2.84k
  zfree(&map->init_slots);
9092
2.84k
  map->init_slots_sz = 0;
9093
9094
2.84k
  if (map->mmaped && map->mmaped != map->obj->arena_data)
9095
1.80k
    munmap(map->mmaped, bpf_map_mmap_sz(map));
9096
2.84k
  map->mmaped = NULL;
9097
9098
2.84k
  if (map->st_ops) {
9099
60
    zfree(&map->st_ops->data);
9100
60
    zfree(&map->st_ops->progs);
9101
60
    zfree(&map->st_ops->kern_func_off);
9102
60
    zfree(&map->st_ops);
9103
60
  }
9104
9105
2.84k
  zfree(&map->name);
9106
2.84k
  zfree(&map->real_name);
9107
2.84k
  zfree(&map->pin_path);
9108
9109
2.84k
  if (map->fd >= 0)
9110
0
    zclose(map->fd);
9111
2.84k
}
9112
9113
void bpf_object__close(struct bpf_object *obj)
9114
11.5k
{
9115
11.5k
  size_t i;
9116
9117
11.5k
  if (IS_ERR_OR_NULL(obj))
9118
0
    return;
9119
9120
  /*
9121
   * if user called bpf_object__prepare() without ever getting to
9122
   * bpf_object__load(), we need to clean up stuff that is normally
9123
   * cleaned up at the end of loading step
9124
   */
9125
11.5k
  bpf_object_post_load_cleanup(obj);
9126
9127
11.5k
  usdt_manager_free(obj->usdt_man);
9128
11.5k
  obj->usdt_man = NULL;
9129
9130
11.5k
  bpf_gen__free(obj->gen_loader);
9131
11.5k
  bpf_object__elf_finish(obj);
9132
11.5k
  bpf_object_unload(obj);
9133
11.5k
  btf__free(obj->btf);
9134
11.5k
  btf__free(obj->btf_vmlinux);
9135
11.5k
  btf_ext__free(obj->btf_ext);
9136
9137
14.4k
  for (i = 0; i < obj->nr_maps; i++)
9138
2.84k
    bpf_map__destroy(&obj->maps[i]);
9139
9140
11.5k
  zfree(&obj->btf_custom_path);
9141
11.5k
  zfree(&obj->kconfig);
9142
9143
15.1k
  for (i = 0; i < obj->nr_extern; i++) {
9144
3.56k
    zfree(&obj->externs[i].name);
9145
3.56k
    zfree(&obj->externs[i].essent_name);
9146
3.56k
  }
9147
9148
11.5k
  zfree(&obj->externs);
9149
11.5k
  obj->nr_extern = 0;
9150
9151
11.5k
  zfree(&obj->maps);
9152
11.5k
  obj->nr_maps = 0;
9153
9154
11.5k
  if (obj->programs && obj->nr_programs) {
9155
9.91k
    for (i = 0; i < obj->nr_programs; i++)
9156
9.26k
      bpf_program__exit(&obj->programs[i]);
9157
648
  }
9158
11.5k
  zfree(&obj->programs);
9159
9160
11.5k
  zfree(&obj->feat_cache);
9161
11.5k
  zfree(&obj->token_path);
9162
11.5k
  if (obj->token_fd > 0)
9163
0
    close(obj->token_fd);
9164
9165
11.5k
  zfree(&obj->arena_data);
9166
9167
11.5k
  free(obj);
9168
11.5k
}
9169
9170
const char *bpf_object__name(const struct bpf_object *obj)
9171
0
{
9172
0
  return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9173
0
}
9174
9175
unsigned int bpf_object__kversion(const struct bpf_object *obj)
9176
0
{
9177
0
  return obj ? obj->kern_version : 0;
9178
0
}
9179
9180
int bpf_object__token_fd(const struct bpf_object *obj)
9181
0
{
9182
0
  return obj->token_fd ?: -1;
9183
0
}
9184
9185
struct btf *bpf_object__btf(const struct bpf_object *obj)
9186
0
{
9187
0
  return obj ? obj->btf : NULL;
9188
0
}
9189
9190
int bpf_object__btf_fd(const struct bpf_object *obj)
9191
0
{
9192
0
  return obj->btf ? btf__fd(obj->btf) : -1;
9193
0
}
9194
9195
int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9196
0
{
9197
0
  if (obj->state >= OBJ_LOADED)
9198
0
    return libbpf_err(-EINVAL);
9199
9200
0
  obj->kern_version = kern_version;
9201
9202
0
  return 0;
9203
0
}
9204
9205
int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9206
0
{
9207
0
  struct bpf_gen *gen;
9208
9209
0
  if (!opts)
9210
0
    return libbpf_err(-EFAULT);
9211
0
  if (!OPTS_VALID(opts, gen_loader_opts))
9212
0
    return libbpf_err(-EINVAL);
9213
0
  gen = calloc(sizeof(*gen), 1);
9214
0
  if (!gen)
9215
0
    return libbpf_err(-ENOMEM);
9216
0
  gen->opts = opts;
9217
0
  gen->swapped_endian = !is_native_endianness(obj);
9218
0
  obj->gen_loader = gen;
9219
0
  return 0;
9220
0
}
9221
9222
static struct bpf_program *
9223
__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9224
        bool forward)
9225
9.75k
{
9226
9.75k
  size_t nr_programs = obj->nr_programs;
9227
9.75k
  ssize_t idx;
9228
9229
9.75k
  if (!nr_programs)
9230
1.66k
    return NULL;
9231
9232
8.08k
  if (!p)
9233
    /* Iter from the beginning */
9234
545
    return forward ? &obj->programs[0] :
9235
545
      &obj->programs[nr_programs - 1];
9236
9237
7.53k
  if (p->obj != obj) {
9238
0
    pr_warn("error: program handler doesn't match object\n");
9239
0
    return errno = EINVAL, NULL;
9240
0
  }
9241
9242
7.53k
  idx = (p - obj->programs) + (forward ? 1 : -1);
9243
7.53k
  if (idx >= obj->nr_programs || idx < 0)
9244
545
    return NULL;
9245
6.99k
  return &obj->programs[idx];
9246
7.53k
}
9247
9248
struct bpf_program *
9249
bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9250
7.62k
{
9251
7.62k
  struct bpf_program *prog = prev;
9252
9253
9.75k
  do {
9254
9.75k
    prog = __bpf_program__iter(prog, obj, true);
9255
9.75k
  } while (prog && prog_is_subprog(obj, prog));
9256
9257
7.62k
  return prog;
9258
7.62k
}
9259
9260
struct bpf_program *
9261
bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9262
0
{
9263
0
  struct bpf_program *prog = next;
9264
9265
0
  do {
9266
0
    prog = __bpf_program__iter(prog, obj, false);
9267
0
  } while (prog && prog_is_subprog(obj, prog));
9268
9269
0
  return prog;
9270
0
}
9271
9272
void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9273
0
{
9274
0
  prog->prog_ifindex = ifindex;
9275
0
}
9276
9277
const char *bpf_program__name(const struct bpf_program *prog)
9278
0
{
9279
0
  return prog->name;
9280
0
}
9281
9282
const char *bpf_program__section_name(const struct bpf_program *prog)
9283
0
{
9284
0
  return prog->sec_name;
9285
0
}
9286
9287
bool bpf_program__autoload(const struct bpf_program *prog)
9288
0
{
9289
0
  return prog->autoload;
9290
0
}
9291
9292
int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9293
0
{
9294
0
  if (prog->obj->state >= OBJ_LOADED)
9295
0
    return libbpf_err(-EINVAL);
9296
9297
0
  prog->autoload = autoload;
9298
0
  return 0;
9299
0
}
9300
9301
bool bpf_program__autoattach(const struct bpf_program *prog)
9302
0
{
9303
0
  return prog->autoattach;
9304
0
}
9305
9306
void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9307
0
{
9308
0
  prog->autoattach = autoattach;
9309
0
}
9310
9311
const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9312
0
{
9313
0
  return prog->insns;
9314
0
}
9315
9316
size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9317
0
{
9318
0
  return prog->insns_cnt;
9319
0
}
9320
9321
int bpf_program__set_insns(struct bpf_program *prog,
9322
         struct bpf_insn *new_insns, size_t new_insn_cnt)
9323
0
{
9324
0
  struct bpf_insn *insns;
9325
9326
0
  if (prog->obj->state >= OBJ_LOADED)
9327
0
    return libbpf_err(-EBUSY);
9328
9329
0
  insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9330
  /* NULL is a valid return from reallocarray if the new count is zero */
9331
0
  if (!insns && new_insn_cnt) {
9332
0
    pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9333
0
    return libbpf_err(-ENOMEM);
9334
0
  }
9335
0
  memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9336
9337
0
  prog->insns = insns;
9338
0
  prog->insns_cnt = new_insn_cnt;
9339
0
  return 0;
9340
0
}
9341
9342
int bpf_program__fd(const struct bpf_program *prog)
9343
0
{
9344
0
  if (!prog)
9345
0
    return libbpf_err(-EINVAL);
9346
9347
0
  if (prog->fd < 0)
9348
0
    return libbpf_err(-ENOENT);
9349
9350
0
  return prog->fd;
9351
0
}
9352
9353
__alias(bpf_program__type)
9354
enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9355
9356
enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9357
0
{
9358
0
  return prog->type;
9359
0
}
9360
9361
static size_t custom_sec_def_cnt;
9362
static struct bpf_sec_def *custom_sec_defs;
9363
static struct bpf_sec_def custom_fallback_def;
9364
static bool has_custom_fallback_def;
9365
static int last_custom_sec_def_handler_id;
9366
9367
int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9368
0
{
9369
0
  if (prog->obj->state >= OBJ_LOADED)
9370
0
    return libbpf_err(-EBUSY);
9371
9372
  /* if type is not changed, do nothing */
9373
0
  if (prog->type == type)
9374
0
    return 0;
9375
9376
0
  prog->type = type;
9377
9378
  /* If a program type was changed, we need to reset associated SEC()
9379
   * handler, as it will be invalid now. The only exception is a generic
9380
   * fallback handler, which by definition is program type-agnostic and
9381
   * is a catch-all custom handler, optionally set by the application,
9382
   * so should be able to handle any type of BPF program.
9383
   */
9384
0
  if (prog->sec_def != &custom_fallback_def)
9385
0
    prog->sec_def = NULL;
9386
0
  return 0;
9387
0
}
9388
9389
__alias(bpf_program__expected_attach_type)
9390
enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9391
9392
enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9393
0
{
9394
0
  return prog->expected_attach_type;
9395
0
}
9396
9397
int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9398
             enum bpf_attach_type type)
9399
0
{
9400
0
  if (prog->obj->state >= OBJ_LOADED)
9401
0
    return libbpf_err(-EBUSY);
9402
9403
0
  prog->expected_attach_type = type;
9404
0
  return 0;
9405
0
}
9406
9407
__u32 bpf_program__flags(const struct bpf_program *prog)
9408
0
{
9409
0
  return prog->prog_flags;
9410
0
}
9411
9412
int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9413
0
{
9414
0
  if (prog->obj->state >= OBJ_LOADED)
9415
0
    return libbpf_err(-EBUSY);
9416
9417
0
  prog->prog_flags = flags;
9418
0
  return 0;
9419
0
}
9420
9421
__u32 bpf_program__log_level(const struct bpf_program *prog)
9422
0
{
9423
0
  return prog->log_level;
9424
0
}
9425
9426
int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9427
0
{
9428
0
  if (prog->obj->state >= OBJ_LOADED)
9429
0
    return libbpf_err(-EBUSY);
9430
9431
0
  prog->log_level = log_level;
9432
0
  return 0;
9433
0
}
9434
9435
const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9436
0
{
9437
0
  *log_size = prog->log_size;
9438
0
  return prog->log_buf;
9439
0
}
9440
9441
int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9442
0
{
9443
0
  if (log_size && !log_buf)
9444
0
    return libbpf_err(-EINVAL);
9445
0
  if (prog->log_size > UINT_MAX)
9446
0
    return libbpf_err(-EINVAL);
9447
0
  if (prog->obj->state >= OBJ_LOADED)
9448
0
    return libbpf_err(-EBUSY);
9449
9450
0
  prog->log_buf = log_buf;
9451
0
  prog->log_size = log_size;
9452
0
  return 0;
9453
0
}
9454
9455
struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog)
9456
0
{
9457
0
  if (prog->func_info_rec_size != sizeof(struct bpf_func_info))
9458
0
    return libbpf_err_ptr(-EOPNOTSUPP);
9459
0
  return prog->func_info;
9460
0
}
9461
9462
__u32 bpf_program__func_info_cnt(const struct bpf_program *prog)
9463
0
{
9464
0
  return prog->func_info_cnt;
9465
0
}
9466
9467
struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog)
9468
0
{
9469
0
  if (prog->line_info_rec_size != sizeof(struct bpf_line_info))
9470
0
    return libbpf_err_ptr(-EOPNOTSUPP);
9471
0
  return prog->line_info;
9472
0
}
9473
9474
__u32 bpf_program__line_info_cnt(const struct bpf_program *prog)
9475
0
{
9476
0
  return prog->line_info_cnt;
9477
0
}
9478
9479
#define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {          \
9480
  .sec = (char *)sec_pfx,               \
9481
  .prog_type = BPF_PROG_TYPE_##ptype,           \
9482
  .expected_attach_type = atype,              \
9483
  .cookie = (long)(flags),              \
9484
  .prog_prepare_load_fn = libbpf_prepare_prog_load,       \
9485
  __VA_ARGS__                 \
9486
}
9487
9488
static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9489
static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9490
static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9491
static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9492
static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9493
static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9494
static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9495
static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9496
static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9497
static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9498
static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9499
static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9500
9501
static const struct bpf_sec_def section_defs[] = {
9502
  SEC_DEF("socket",   SOCKET_FILTER, 0, SEC_NONE),
9503
  SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9504
  SEC_DEF("sk_reuseport",   SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9505
  SEC_DEF("kprobe+",    KPROBE, 0, SEC_NONE, attach_kprobe),
9506
  SEC_DEF("uprobe+",    KPROBE, 0, SEC_NONE, attach_uprobe),
9507
  SEC_DEF("uprobe.s+",    KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9508
  SEC_DEF("kretprobe+",   KPROBE, 0, SEC_NONE, attach_kprobe),
9509
  SEC_DEF("uretprobe+",   KPROBE, 0, SEC_NONE, attach_uprobe),
9510
  SEC_DEF("uretprobe.s+",   KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9511
  SEC_DEF("kprobe.multi+",  KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9512
  SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9513
  SEC_DEF("kprobe.session+",  KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9514
  SEC_DEF("uprobe.multi+",  KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9515
  SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9516
  SEC_DEF("uprobe.session+",  KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi),
9517
  SEC_DEF("uprobe.multi.s+",  KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9518
  SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9519
  SEC_DEF("uprobe.session.s+",  KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi),
9520
  SEC_DEF("ksyscall+",    KPROBE, 0, SEC_NONE, attach_ksyscall),
9521
  SEC_DEF("kretsyscall+",   KPROBE, 0, SEC_NONE, attach_ksyscall),
9522
  SEC_DEF("usdt+",    KPROBE, 0, SEC_USDT, attach_usdt),
9523
  SEC_DEF("usdt.s+",    KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9524
  SEC_DEF("tc/ingress",   SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9525
  SEC_DEF("tc/egress",    SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9526
  SEC_DEF("tcx/ingress",    SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9527
  SEC_DEF("tcx/egress",   SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9528
  SEC_DEF("tc",     SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9529
  SEC_DEF("classifier",   SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9530
  SEC_DEF("action",   SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9531
  SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9532
  SEC_DEF("netkit/peer",    SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9533
  SEC_DEF("tracepoint+",    TRACEPOINT, 0, SEC_NONE, attach_tp),
9534
  SEC_DEF("tp+",      TRACEPOINT, 0, SEC_NONE, attach_tp),
9535
  SEC_DEF("raw_tracepoint+",  RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9536
  SEC_DEF("raw_tp+",    RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9537
  SEC_DEF("raw_tracepoint.w+",  RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9538
  SEC_DEF("raw_tp.w+",    RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9539
  SEC_DEF("tp_btf+",    TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9540
  SEC_DEF("fentry+",    TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9541
  SEC_DEF("fmod_ret+",    TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9542
  SEC_DEF("fexit+",   TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9543
  SEC_DEF("fentry.s+",    TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9544
  SEC_DEF("fmod_ret.s+",    TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9545
  SEC_DEF("fexit.s+",   TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9546
  SEC_DEF("freplace+",    EXT, 0, SEC_ATTACH_BTF, attach_trace),
9547
  SEC_DEF("lsm+",     LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9548
  SEC_DEF("lsm.s+",   LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9549
  SEC_DEF("lsm_cgroup+",    LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9550
  SEC_DEF("iter+",    TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9551
  SEC_DEF("iter.s+",    TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9552
  SEC_DEF("syscall",    SYSCALL, 0, SEC_SLEEPABLE),
9553
  SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9554
  SEC_DEF("xdp/devmap",   XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9555
  SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9556
  SEC_DEF("xdp/cpumap",   XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9557
  SEC_DEF("xdp.frags",    XDP, BPF_XDP, SEC_XDP_FRAGS),
9558
  SEC_DEF("xdp",      XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9559
  SEC_DEF("perf_event",   PERF_EVENT, 0, SEC_NONE),
9560
  SEC_DEF("lwt_in",   LWT_IN, 0, SEC_NONE),
9561
  SEC_DEF("lwt_out",    LWT_OUT, 0, SEC_NONE),
9562
  SEC_DEF("lwt_xmit",   LWT_XMIT, 0, SEC_NONE),
9563
  SEC_DEF("lwt_seg6local",  LWT_SEG6LOCAL, 0, SEC_NONE),
9564
  SEC_DEF("sockops",    SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9565
  SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9566
  SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9567
  SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9568
  SEC_DEF("sk_skb",   SK_SKB, 0, SEC_NONE),
9569
  SEC_DEF("sk_msg",   SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9570
  SEC_DEF("lirc_mode2",   LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9571
  SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9572
  SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9573
  SEC_DEF("cgroup_skb/egress",  CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9574
  SEC_DEF("cgroup/skb",   CGROUP_SKB, 0, SEC_NONE),
9575
  SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9576
  SEC_DEF("cgroup/sock_release",  CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9577
  SEC_DEF("cgroup/sock",    CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9578
  SEC_DEF("cgroup/post_bind4",  CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9579
  SEC_DEF("cgroup/post_bind6",  CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9580
  SEC_DEF("cgroup/bind4",   CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9581
  SEC_DEF("cgroup/bind6",   CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9582
  SEC_DEF("cgroup/connect4",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9583
  SEC_DEF("cgroup/connect6",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9584
  SEC_DEF("cgroup/connect_unix",  CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9585
  SEC_DEF("cgroup/sendmsg4",  CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9586
  SEC_DEF("cgroup/sendmsg6",  CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9587
  SEC_DEF("cgroup/sendmsg_unix",  CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9588
  SEC_DEF("cgroup/recvmsg4",  CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9589
  SEC_DEF("cgroup/recvmsg6",  CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9590
  SEC_DEF("cgroup/recvmsg_unix",  CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9591
  SEC_DEF("cgroup/getpeername4",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9592
  SEC_DEF("cgroup/getpeername6",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9593
  SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9594
  SEC_DEF("cgroup/getsockname4",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9595
  SEC_DEF("cgroup/getsockname6",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9596
  SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9597
  SEC_DEF("cgroup/sysctl",  CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9598
  SEC_DEF("cgroup/getsockopt",  CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9599
  SEC_DEF("cgroup/setsockopt",  CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9600
  SEC_DEF("cgroup/dev",   CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9601
  SEC_DEF("struct_ops+",    STRUCT_OPS, 0, SEC_NONE),
9602
  SEC_DEF("struct_ops.s+",  STRUCT_OPS, 0, SEC_SLEEPABLE),
9603
  SEC_DEF("sk_lookup",    SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9604
  SEC_DEF("netfilter",    NETFILTER, BPF_NETFILTER, SEC_NONE),
9605
};
9606
9607
int libbpf_register_prog_handler(const char *sec,
9608
         enum bpf_prog_type prog_type,
9609
         enum bpf_attach_type exp_attach_type,
9610
         const struct libbpf_prog_handler_opts *opts)
9611
0
{
9612
0
  struct bpf_sec_def *sec_def;
9613
9614
0
  if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9615
0
    return libbpf_err(-EINVAL);
9616
9617
0
  if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9618
0
    return libbpf_err(-E2BIG);
9619
9620
0
  if (sec) {
9621
0
    sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9622
0
                sizeof(*sec_def));
9623
0
    if (!sec_def)
9624
0
      return libbpf_err(-ENOMEM);
9625
9626
0
    custom_sec_defs = sec_def;
9627
0
    sec_def = &custom_sec_defs[custom_sec_def_cnt];
9628
0
  } else {
9629
0
    if (has_custom_fallback_def)
9630
0
      return libbpf_err(-EBUSY);
9631
9632
0
    sec_def = &custom_fallback_def;
9633
0
  }
9634
9635
0
  sec_def->sec = sec ? strdup(sec) : NULL;
9636
0
  if (sec && !sec_def->sec)
9637
0
    return libbpf_err(-ENOMEM);
9638
9639
0
  sec_def->prog_type = prog_type;
9640
0
  sec_def->expected_attach_type = exp_attach_type;
9641
0
  sec_def->cookie = OPTS_GET(opts, cookie, 0);
9642
9643
0
  sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9644
0
  sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9645
0
  sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9646
9647
0
  sec_def->handler_id = ++last_custom_sec_def_handler_id;
9648
9649
0
  if (sec)
9650
0
    custom_sec_def_cnt++;
9651
0
  else
9652
0
    has_custom_fallback_def = true;
9653
9654
0
  return sec_def->handler_id;
9655
0
}
9656
9657
int libbpf_unregister_prog_handler(int handler_id)
9658
0
{
9659
0
  struct bpf_sec_def *sec_defs;
9660
0
  int i;
9661
9662
0
  if (handler_id <= 0)
9663
0
    return libbpf_err(-EINVAL);
9664
9665
0
  if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9666
0
    memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9667
0
    has_custom_fallback_def = false;
9668
0
    return 0;
9669
0
  }
9670
9671
0
  for (i = 0; i < custom_sec_def_cnt; i++) {
9672
0
    if (custom_sec_defs[i].handler_id == handler_id)
9673
0
      break;
9674
0
  }
9675
9676
0
  if (i == custom_sec_def_cnt)
9677
0
    return libbpf_err(-ENOENT);
9678
9679
0
  free(custom_sec_defs[i].sec);
9680
0
  for (i = i + 1; i < custom_sec_def_cnt; i++)
9681
0
    custom_sec_defs[i - 1] = custom_sec_defs[i];
9682
0
  custom_sec_def_cnt--;
9683
9684
  /* try to shrink the array, but it's ok if we couldn't */
9685
0
  sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9686
  /* if new count is zero, reallocarray can return a valid NULL result;
9687
   * in this case the previous pointer will be freed, so we *have to*
9688
   * reassign old pointer to the new value (even if it's NULL)
9689
   */
9690
0
  if (sec_defs || custom_sec_def_cnt == 0)
9691
0
    custom_sec_defs = sec_defs;
9692
9693
0
  return 0;
9694
0
}
9695
9696
static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9697
517k
{
9698
517k
  size_t len = strlen(sec_def->sec);
9699
9700
  /* "type/" always has to have proper SEC("type/extras") form */
9701
517k
  if (sec_def->sec[len - 1] == '/') {
9702
0
    if (str_has_pfx(sec_name, sec_def->sec))
9703
0
      return true;
9704
0
    return false;
9705
0
  }
9706
9707
  /* "type+" means it can be either exact SEC("type") or
9708
   * well-formed SEC("type/extras") with proper '/' separator
9709
   */
9710
517k
  if (sec_def->sec[len - 1] == '+') {
9711
210k
    len--;
9712
    /* not even a prefix */
9713
210k
    if (strncmp(sec_name, sec_def->sec, len) != 0)
9714
208k
      return false;
9715
    /* exact match or has '/' separator */
9716
1.77k
    if (sec_name[len] == '\0' || sec_name[len] == '/')
9717
836
      return true;
9718
943
    return false;
9719
1.77k
  }
9720
9721
306k
  return strcmp(sec_name, sec_def->sec) == 0;
9722
517k
}
9723
9724
static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9725
5.40k
{
9726
5.40k
  const struct bpf_sec_def *sec_def;
9727
5.40k
  int i, n;
9728
9729
5.40k
  n = custom_sec_def_cnt;
9730
5.40k
  for (i = 0; i < n; i++) {
9731
0
    sec_def = &custom_sec_defs[i];
9732
0
    if (sec_def_matches(sec_def, sec_name))
9733
0
      return sec_def;
9734
0
  }
9735
9736
5.40k
  n = ARRAY_SIZE(section_defs);
9737
521k
  for (i = 0; i < n; i++) {
9738
517k
    sec_def = &section_defs[i];
9739
517k
    if (sec_def_matches(sec_def, sec_name))
9740
1.03k
      return sec_def;
9741
517k
  }
9742
9743
4.37k
  if (has_custom_fallback_def)
9744
0
    return &custom_fallback_def;
9745
9746
4.37k
  return NULL;
9747
4.37k
}
9748
9749
0
#define MAX_TYPE_NAME_SIZE 32
9750
9751
static char *libbpf_get_type_names(bool attach_type)
9752
0
{
9753
0
  int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9754
0
  char *buf;
9755
9756
0
  buf = malloc(len);
9757
0
  if (!buf)
9758
0
    return NULL;
9759
9760
0
  buf[0] = '\0';
9761
  /* Forge string buf with all available names */
9762
0
  for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9763
0
    const struct bpf_sec_def *sec_def = &section_defs[i];
9764
9765
0
    if (attach_type) {
9766
0
      if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9767
0
        continue;
9768
9769
0
      if (!(sec_def->cookie & SEC_ATTACHABLE))
9770
0
        continue;
9771
0
    }
9772
9773
0
    if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9774
0
      free(buf);
9775
0
      return NULL;
9776
0
    }
9777
0
    strcat(buf, " ");
9778
0
    strcat(buf, section_defs[i].sec);
9779
0
  }
9780
9781
0
  return buf;
9782
0
}
9783
9784
int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9785
           enum bpf_attach_type *expected_attach_type)
9786
0
{
9787
0
  const struct bpf_sec_def *sec_def;
9788
0
  char *type_names;
9789
9790
0
  if (!name)
9791
0
    return libbpf_err(-EINVAL);
9792
9793
0
  sec_def = find_sec_def(name);
9794
0
  if (sec_def) {
9795
0
    *prog_type = sec_def->prog_type;
9796
0
    *expected_attach_type = sec_def->expected_attach_type;
9797
0
    return 0;
9798
0
  }
9799
9800
0
  pr_debug("failed to guess program type from ELF section '%s'\n", name);
9801
0
  type_names = libbpf_get_type_names(false);
9802
0
  if (type_names != NULL) {
9803
0
    pr_debug("supported section(type) names are:%s\n", type_names);
9804
0
    free(type_names);
9805
0
  }
9806
9807
0
  return libbpf_err(-ESRCH);
9808
0
}
9809
9810
const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9811
0
{
9812
0
  if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9813
0
    return NULL;
9814
9815
0
  return attach_type_name[t];
9816
0
}
9817
9818
const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9819
0
{
9820
0
  if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9821
0
    return NULL;
9822
9823
0
  return link_type_name[t];
9824
0
}
9825
9826
const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9827
0
{
9828
0
  if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9829
0
    return NULL;
9830
9831
0
  return map_type_name[t];
9832
0
}
9833
9834
const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9835
0
{
9836
0
  if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9837
0
    return NULL;
9838
9839
0
  return prog_type_name[t];
9840
0
}
9841
9842
static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9843
                 int sec_idx,
9844
                 size_t offset)
9845
6
{
9846
6
  struct bpf_map *map;
9847
6
  size_t i;
9848
9849
21
  for (i = 0; i < obj->nr_maps; i++) {
9850
15
    map = &obj->maps[i];
9851
15
    if (!bpf_map__is_struct_ops(map))
9852
15
      continue;
9853
0
    if (map->sec_idx == sec_idx &&
9854
0
        map->sec_offset <= offset &&
9855
0
        offset - map->sec_offset < map->def.value_size)
9856
0
      return map;
9857
0
  }
9858
9859
6
  return NULL;
9860
6
}
9861
9862
/* Collect the reloc from ELF, populate the st_ops->progs[], and update
9863
 * st_ops->data for shadow type.
9864
 */
9865
static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9866
              Elf64_Shdr *shdr, Elf_Data *data)
9867
8
{
9868
8
  const struct btf_type *type;
9869
8
  const struct btf_member *member;
9870
8
  struct bpf_struct_ops *st_ops;
9871
8
  struct bpf_program *prog;
9872
8
  unsigned int shdr_idx;
9873
8
  const struct btf *btf;
9874
8
  struct bpf_map *map;
9875
8
  unsigned int moff, insn_idx;
9876
8
  const char *name;
9877
8
  __u32 member_idx;
9878
8
  Elf64_Sym *sym;
9879
8
  Elf64_Rel *rel;
9880
8
  int i, nrels;
9881
9882
8
  btf = obj->btf;
9883
8
  nrels = shdr->sh_size / shdr->sh_entsize;
9884
18.4E
  for (i = 0; i < nrels; i++) {
9885
7
    rel = elf_rel_by_idx(data, i);
9886
7
    if (!rel) {
9887
0
      pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9888
0
      return -LIBBPF_ERRNO__FORMAT;
9889
0
    }
9890
9891
7
    sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9892
7
    if (!sym) {
9893
1
      pr_warn("struct_ops reloc: symbol %zx not found\n",
9894
1
        (size_t)ELF64_R_SYM(rel->r_info));
9895
1
      return -LIBBPF_ERRNO__FORMAT;
9896
1
    }
9897
9898
6
    name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9899
6
    map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9900
6
    if (!map) {
9901
6
      pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9902
6
        (size_t)rel->r_offset);
9903
6
      return -EINVAL;
9904
6
    }
9905
9906
18.4E
    moff = rel->r_offset - map->sec_offset;
9907
18.4E
    shdr_idx = sym->st_shndx;
9908
18.4E
    st_ops = map->st_ops;
9909
18.4E
    pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9910
18.4E
       map->name,
9911
18.4E
       (long long)(rel->r_info >> 32),
9912
18.4E
       (long long)sym->st_value,
9913
18.4E
       shdr_idx, (size_t)rel->r_offset,
9914
18.4E
       map->sec_offset, sym->st_name, name);
9915
9916
18.4E
    if (shdr_idx >= SHN_LORESERVE) {
9917
0
      pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9918
0
        map->name, (size_t)rel->r_offset, shdr_idx);
9919
0
      return -LIBBPF_ERRNO__RELOC;
9920
0
    }
9921
18.4E
    if (sym->st_value % BPF_INSN_SZ) {
9922
0
      pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9923
0
        map->name, (unsigned long long)sym->st_value);
9924
0
      return -LIBBPF_ERRNO__FORMAT;
9925
0
    }
9926
18.4E
    insn_idx = sym->st_value / BPF_INSN_SZ;
9927
9928
18.4E
    type = btf__type_by_id(btf, st_ops->type_id);
9929
18.4E
    member = find_member_by_offset(type, moff * 8);
9930
18.4E
    if (!member) {
9931
0
      pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9932
0
        map->name, moff);
9933
0
      return -EINVAL;
9934
0
    }
9935
18.4E
    member_idx = member - btf_members(type);
9936
18.4E
    name = btf__name_by_offset(btf, member->name_off);
9937
9938
18.4E
    if (!resolve_func_ptr(btf, member->type, NULL)) {
9939
0
      pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9940
0
        map->name, name);
9941
0
      return -EINVAL;
9942
0
    }
9943
9944
18.4E
    prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9945
18.4E
    if (!prog) {
9946
0
      pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9947
0
        map->name, shdr_idx, name);
9948
0
      return -EINVAL;
9949
0
    }
9950
9951
    /* prevent the use of BPF prog with invalid type */
9952
18.4E
    if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9953
0
      pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9954
0
        map->name, prog->name);
9955
0
      return -EINVAL;
9956
0
    }
9957
9958
18.4E
    st_ops->progs[member_idx] = prog;
9959
9960
    /* st_ops->data will be exposed to users, being returned by
9961
     * bpf_map__initial_value() as a pointer to the shadow
9962
     * type. All function pointers in the original struct type
9963
     * should be converted to a pointer to struct bpf_program
9964
     * in the shadow type.
9965
     */
9966
18.4E
    *((struct bpf_program **)(st_ops->data + moff)) = prog;
9967
18.4E
  }
9968
9969
18.4E
  return 0;
9970
8
}
9971
9972
0
#define BTF_TRACE_PREFIX "btf_trace_"
9973
0
#define BTF_LSM_PREFIX "bpf_lsm_"
9974
0
#define BTF_ITER_PREFIX "bpf_iter_"
9975
#define BTF_MAX_NAME_SIZE 128
9976
9977
void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9978
        const char **prefix, int *kind)
9979
0
{
9980
0
  switch (attach_type) {
9981
0
  case BPF_TRACE_RAW_TP:
9982
0
    *prefix = BTF_TRACE_PREFIX;
9983
0
    *kind = BTF_KIND_TYPEDEF;
9984
0
    break;
9985
0
  case BPF_LSM_MAC:
9986
0
  case BPF_LSM_CGROUP:
9987
0
    *prefix = BTF_LSM_PREFIX;
9988
0
    *kind = BTF_KIND_FUNC;
9989
0
    break;
9990
0
  case BPF_TRACE_ITER:
9991
0
    *prefix = BTF_ITER_PREFIX;
9992
0
    *kind = BTF_KIND_FUNC;
9993
0
    break;
9994
0
  default:
9995
0
    *prefix = "";
9996
0
    *kind = BTF_KIND_FUNC;
9997
0
  }
9998
0
}
9999
10000
static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
10001
           const char *name, __u32 kind)
10002
0
{
10003
0
  char btf_type_name[BTF_MAX_NAME_SIZE];
10004
0
  int ret;
10005
10006
0
  ret = snprintf(btf_type_name, sizeof(btf_type_name),
10007
0
           "%s%s", prefix, name);
10008
  /* snprintf returns the number of characters written excluding the
10009
   * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
10010
   * indicates truncation.
10011
   */
10012
0
  if (ret < 0 || ret >= sizeof(btf_type_name))
10013
0
    return -ENAMETOOLONG;
10014
0
  return btf__find_by_name_kind(btf, btf_type_name, kind);
10015
0
}
10016
10017
static inline int find_attach_btf_id(struct btf *btf, const char *name,
10018
             enum bpf_attach_type attach_type)
10019
0
{
10020
0
  const char *prefix;
10021
0
  int kind;
10022
10023
0
  btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
10024
0
  return find_btf_by_prefix_kind(btf, prefix, name, kind);
10025
0
}
10026
10027
int libbpf_find_vmlinux_btf_id(const char *name,
10028
             enum bpf_attach_type attach_type)
10029
0
{
10030
0
  struct btf *btf;
10031
0
  int err;
10032
10033
0
  btf = btf__load_vmlinux_btf();
10034
0
  err = libbpf_get_error(btf);
10035
0
  if (err) {
10036
0
    pr_warn("vmlinux BTF is not found\n");
10037
0
    return libbpf_err(err);
10038
0
  }
10039
10040
0
  err = find_attach_btf_id(btf, name, attach_type);
10041
0
  if (err <= 0)
10042
0
    pr_warn("%s is not found in vmlinux BTF\n", name);
10043
10044
0
  btf__free(btf);
10045
0
  return libbpf_err(err);
10046
0
}
10047
10048
static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd)
10049
0
{
10050
0
  struct bpf_prog_info info;
10051
0
  __u32 info_len = sizeof(info);
10052
0
  struct btf *btf;
10053
0
  int err;
10054
10055
0
  memset(&info, 0, info_len);
10056
0
  err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
10057
0
  if (err) {
10058
0
    pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n",
10059
0
      attach_prog_fd, errstr(err));
10060
0
    return err;
10061
0
  }
10062
10063
0
  err = -EINVAL;
10064
0
  if (!info.btf_id) {
10065
0
    pr_warn("The target program doesn't have BTF\n");
10066
0
    goto out;
10067
0
  }
10068
0
  btf = btf_load_from_kernel(info.btf_id, NULL, token_fd);
10069
0
  err = libbpf_get_error(btf);
10070
0
  if (err) {
10071
0
    pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err));
10072
0
    goto out;
10073
0
  }
10074
0
  err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
10075
0
  btf__free(btf);
10076
0
  if (err <= 0) {
10077
0
    pr_warn("%s is not found in prog's BTF\n", name);
10078
0
    goto out;
10079
0
  }
10080
0
out:
10081
0
  return err;
10082
0
}
10083
10084
static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
10085
            enum bpf_attach_type attach_type,
10086
            int *btf_obj_fd, int *btf_type_id)
10087
0
{
10088
0
  int ret, i, mod_len;
10089
0
  const char *fn_name, *mod_name = NULL;
10090
10091
0
  fn_name = strchr(attach_name, ':');
10092
0
  if (fn_name) {
10093
0
    mod_name = attach_name;
10094
0
    mod_len = fn_name - mod_name;
10095
0
    fn_name++;
10096
0
  }
10097
10098
0
  if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
10099
0
    ret = find_attach_btf_id(obj->btf_vmlinux,
10100
0
           mod_name ? fn_name : attach_name,
10101
0
           attach_type);
10102
0
    if (ret > 0) {
10103
0
      *btf_obj_fd = 0; /* vmlinux BTF */
10104
0
      *btf_type_id = ret;
10105
0
      return 0;
10106
0
    }
10107
0
    if (ret != -ENOENT)
10108
0
      return ret;
10109
0
  }
10110
10111
0
  ret = load_module_btfs(obj);
10112
0
  if (ret)
10113
0
    return ret;
10114
10115
0
  for (i = 0; i < obj->btf_module_cnt; i++) {
10116
0
    const struct module_btf *mod = &obj->btf_modules[i];
10117
10118
0
    if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
10119
0
      continue;
10120
10121
0
    ret = find_attach_btf_id(mod->btf,
10122
0
           mod_name ? fn_name : attach_name,
10123
0
           attach_type);
10124
0
    if (ret > 0) {
10125
0
      *btf_obj_fd = mod->fd;
10126
0
      *btf_type_id = ret;
10127
0
      return 0;
10128
0
    }
10129
0
    if (ret == -ENOENT)
10130
0
      continue;
10131
10132
0
    return ret;
10133
0
  }
10134
10135
0
  return -ESRCH;
10136
0
}
10137
10138
static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
10139
             int *btf_obj_fd, int *btf_type_id)
10140
0
{
10141
0
  enum bpf_attach_type attach_type = prog->expected_attach_type;
10142
0
  __u32 attach_prog_fd = prog->attach_prog_fd;
10143
0
  int err = 0;
10144
10145
  /* BPF program's BTF ID */
10146
0
  if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
10147
0
    if (!attach_prog_fd) {
10148
0
      pr_warn("prog '%s': attach program FD is not set\n", prog->name);
10149
0
      return -EINVAL;
10150
0
    }
10151
0
    err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd);
10152
0
    if (err < 0) {
10153
0
      pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n",
10154
0
        prog->name, attach_prog_fd, attach_name, errstr(err));
10155
0
      return err;
10156
0
    }
10157
0
    *btf_obj_fd = 0;
10158
0
    *btf_type_id = err;
10159
0
    return 0;
10160
0
  }
10161
10162
  /* kernel/module BTF ID */
10163
0
  if (prog->obj->gen_loader) {
10164
0
    bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
10165
0
    *btf_obj_fd = 0;
10166
0
    *btf_type_id = 1;
10167
0
  } else {
10168
0
    err = find_kernel_btf_id(prog->obj, attach_name,
10169
0
           attach_type, btf_obj_fd,
10170
0
           btf_type_id);
10171
0
  }
10172
0
  if (err) {
10173
0
    pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n",
10174
0
      prog->name, attach_name, errstr(err));
10175
0
    return err;
10176
0
  }
10177
0
  return 0;
10178
0
}
10179
10180
int libbpf_attach_type_by_name(const char *name,
10181
             enum bpf_attach_type *attach_type)
10182
0
{
10183
0
  char *type_names;
10184
0
  const struct bpf_sec_def *sec_def;
10185
10186
0
  if (!name)
10187
0
    return libbpf_err(-EINVAL);
10188
10189
0
  sec_def = find_sec_def(name);
10190
0
  if (!sec_def) {
10191
0
    pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
10192
0
    type_names = libbpf_get_type_names(true);
10193
0
    if (type_names != NULL) {
10194
0
      pr_debug("attachable section(type) names are:%s\n", type_names);
10195
0
      free(type_names);
10196
0
    }
10197
10198
0
    return libbpf_err(-EINVAL);
10199
0
  }
10200
10201
0
  if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10202
0
    return libbpf_err(-EINVAL);
10203
0
  if (!(sec_def->cookie & SEC_ATTACHABLE))
10204
0
    return libbpf_err(-EINVAL);
10205
10206
0
  *attach_type = sec_def->expected_attach_type;
10207
0
  return 0;
10208
0
}
10209
10210
int bpf_map__fd(const struct bpf_map *map)
10211
0
{
10212
0
  if (!map)
10213
0
    return libbpf_err(-EINVAL);
10214
0
  if (!map_is_created(map))
10215
0
    return -1;
10216
0
  return map->fd;
10217
0
}
10218
10219
static bool map_uses_real_name(const struct bpf_map *map)
10220
1
{
10221
  /* Since libbpf started to support custom .data.* and .rodata.* maps,
10222
   * their user-visible name differs from kernel-visible name. Users see
10223
   * such map's corresponding ELF section name as a map name.
10224
   * This check distinguishes .data/.rodata from .data.* and .rodata.*
10225
   * maps to know which name has to be returned to the user.
10226
   */
10227
1
  if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10228
0
    return true;
10229
1
  if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10230
0
    return true;
10231
1
  return false;
10232
1
}
10233
10234
const char *bpf_map__name(const struct bpf_map *map)
10235
1
{
10236
1
  if (!map)
10237
0
    return NULL;
10238
10239
1
  if (map_uses_real_name(map))
10240
0
    return map->real_name;
10241
10242
1
  return map->name;
10243
1
}
10244
10245
enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10246
0
{
10247
0
  return map->def.type;
10248
0
}
10249
10250
int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10251
0
{
10252
0
  if (map_is_created(map))
10253
0
    return libbpf_err(-EBUSY);
10254
0
  map->def.type = type;
10255
0
  return 0;
10256
0
}
10257
10258
__u32 bpf_map__map_flags(const struct bpf_map *map)
10259
0
{
10260
0
  return map->def.map_flags;
10261
0
}
10262
10263
int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10264
0
{
10265
0
  if (map_is_created(map))
10266
0
    return libbpf_err(-EBUSY);
10267
0
  map->def.map_flags = flags;
10268
0
  return 0;
10269
0
}
10270
10271
__u64 bpf_map__map_extra(const struct bpf_map *map)
10272
0
{
10273
0
  return map->map_extra;
10274
0
}
10275
10276
int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10277
0
{
10278
0
  if (map_is_created(map))
10279
0
    return libbpf_err(-EBUSY);
10280
0
  map->map_extra = map_extra;
10281
0
  return 0;
10282
0
}
10283
10284
__u32 bpf_map__numa_node(const struct bpf_map *map)
10285
0
{
10286
0
  return map->numa_node;
10287
0
}
10288
10289
int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10290
0
{
10291
0
  if (map_is_created(map))
10292
0
    return libbpf_err(-EBUSY);
10293
0
  map->numa_node = numa_node;
10294
0
  return 0;
10295
0
}
10296
10297
__u32 bpf_map__key_size(const struct bpf_map *map)
10298
0
{
10299
0
  return map->def.key_size;
10300
0
}
10301
10302
int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10303
0
{
10304
0
  if (map_is_created(map))
10305
0
    return libbpf_err(-EBUSY);
10306
0
  map->def.key_size = size;
10307
0
  return 0;
10308
0
}
10309
10310
__u32 bpf_map__value_size(const struct bpf_map *map)
10311
0
{
10312
0
  return map->def.value_size;
10313
0
}
10314
10315
static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10316
0
{
10317
0
  struct btf *btf;
10318
0
  struct btf_type *datasec_type, *var_type;
10319
0
  struct btf_var_secinfo *var;
10320
0
  const struct btf_type *array_type;
10321
0
  const struct btf_array *array;
10322
0
  int vlen, element_sz, new_array_id;
10323
0
  __u32 nr_elements;
10324
10325
  /* check btf existence */
10326
0
  btf = bpf_object__btf(map->obj);
10327
0
  if (!btf)
10328
0
    return -ENOENT;
10329
10330
  /* verify map is datasec */
10331
0
  datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10332
0
  if (!btf_is_datasec(datasec_type)) {
10333
0
    pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10334
0
      bpf_map__name(map));
10335
0
    return -EINVAL;
10336
0
  }
10337
10338
  /* verify datasec has at least one var */
10339
0
  vlen = btf_vlen(datasec_type);
10340
0
  if (vlen == 0) {
10341
0
    pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10342
0
      bpf_map__name(map));
10343
0
    return -EINVAL;
10344
0
  }
10345
10346
  /* verify last var in the datasec is an array */
10347
0
  var = &btf_var_secinfos(datasec_type)[vlen - 1];
10348
0
  var_type = btf_type_by_id(btf, var->type);
10349
0
  array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10350
0
  if (!btf_is_array(array_type)) {
10351
0
    pr_warn("map '%s': cannot be resized, last var must be an array\n",
10352
0
      bpf_map__name(map));
10353
0
    return -EINVAL;
10354
0
  }
10355
10356
  /* verify request size aligns with array */
10357
0
  array = btf_array(array_type);
10358
0
  element_sz = btf__resolve_size(btf, array->type);
10359
0
  if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10360
0
    pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10361
0
      bpf_map__name(map), element_sz, size);
10362
0
    return -EINVAL;
10363
0
  }
10364
10365
  /* create a new array based on the existing array, but with new length */
10366
0
  nr_elements = (size - var->offset) / element_sz;
10367
0
  new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10368
0
  if (new_array_id < 0)
10369
0
    return new_array_id;
10370
10371
  /* adding a new btf type invalidates existing pointers to btf objects,
10372
   * so refresh pointers before proceeding
10373
   */
10374
0
  datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10375
0
  var = &btf_var_secinfos(datasec_type)[vlen - 1];
10376
0
  var_type = btf_type_by_id(btf, var->type);
10377
10378
  /* finally update btf info */
10379
0
  datasec_type->size = size;
10380
0
  var->size = size - var->offset;
10381
0
  var_type->type = new_array_id;
10382
10383
0
  return 0;
10384
0
}
10385
10386
int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10387
0
{
10388
0
  if (map_is_created(map))
10389
0
    return libbpf_err(-EBUSY);
10390
10391
0
  if (map->mmaped) {
10392
0
    size_t mmap_old_sz, mmap_new_sz;
10393
0
    int err;
10394
10395
0
    if (map->def.type != BPF_MAP_TYPE_ARRAY)
10396
0
      return libbpf_err(-EOPNOTSUPP);
10397
10398
0
    mmap_old_sz = bpf_map_mmap_sz(map);
10399
0
    mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10400
0
    err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10401
0
    if (err) {
10402
0
      pr_warn("map '%s': failed to resize memory-mapped region: %s\n",
10403
0
        bpf_map__name(map), errstr(err));
10404
0
      return libbpf_err(err);
10405
0
    }
10406
0
    err = map_btf_datasec_resize(map, size);
10407
0
    if (err && err != -ENOENT) {
10408
0
      pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n",
10409
0
        bpf_map__name(map), errstr(err));
10410
0
      map->btf_value_type_id = 0;
10411
0
      map->btf_key_type_id = 0;
10412
0
    }
10413
0
  }
10414
10415
0
  map->def.value_size = size;
10416
0
  return 0;
10417
0
}
10418
10419
__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10420
0
{
10421
0
  return map ? map->btf_key_type_id : 0;
10422
0
}
10423
10424
__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10425
0
{
10426
0
  return map ? map->btf_value_type_id : 0;
10427
0
}
10428
10429
int bpf_map__set_initial_value(struct bpf_map *map,
10430
             const void *data, size_t size)
10431
0
{
10432
0
  size_t actual_sz;
10433
10434
0
  if (map_is_created(map))
10435
0
    return libbpf_err(-EBUSY);
10436
10437
0
  if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10438
0
    return libbpf_err(-EINVAL);
10439
10440
0
  if (map->def.type == BPF_MAP_TYPE_ARENA)
10441
0
    actual_sz = map->obj->arena_data_sz;
10442
0
  else
10443
0
    actual_sz = map->def.value_size;
10444
0
  if (size != actual_sz)
10445
0
    return libbpf_err(-EINVAL);
10446
10447
0
  memcpy(map->mmaped, data, size);
10448
0
  return 0;
10449
0
}
10450
10451
void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10452
0
{
10453
0
  if (bpf_map__is_struct_ops(map)) {
10454
0
    if (psize)
10455
0
      *psize = map->def.value_size;
10456
0
    return map->st_ops->data;
10457
0
  }
10458
10459
0
  if (!map->mmaped)
10460
0
    return NULL;
10461
10462
0
  if (map->def.type == BPF_MAP_TYPE_ARENA)
10463
0
    *psize = map->obj->arena_data_sz;
10464
0
  else
10465
0
    *psize = map->def.value_size;
10466
10467
0
  return map->mmaped;
10468
0
}
10469
10470
bool bpf_map__is_internal(const struct bpf_map *map)
10471
513
{
10472
513
  return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10473
513
}
10474
10475
__u32 bpf_map__ifindex(const struct bpf_map *map)
10476
0
{
10477
0
  return map->map_ifindex;
10478
0
}
10479
10480
int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10481
0
{
10482
0
  if (map_is_created(map))
10483
0
    return libbpf_err(-EBUSY);
10484
0
  map->map_ifindex = ifindex;
10485
0
  return 0;
10486
0
}
10487
10488
int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10489
0
{
10490
0
  if (!bpf_map_type__is_map_in_map(map->def.type)) {
10491
0
    pr_warn("error: unsupported map type\n");
10492
0
    return libbpf_err(-EINVAL);
10493
0
  }
10494
0
  if (map->inner_map_fd != -1) {
10495
0
    pr_warn("error: inner_map_fd already specified\n");
10496
0
    return libbpf_err(-EINVAL);
10497
0
  }
10498
0
  if (map->inner_map) {
10499
0
    bpf_map__destroy(map->inner_map);
10500
0
    zfree(&map->inner_map);
10501
0
  }
10502
0
  map->inner_map_fd = fd;
10503
0
  return 0;
10504
0
}
10505
10506
static struct bpf_map *
10507
__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10508
0
{
10509
0
  ssize_t idx;
10510
0
  struct bpf_map *s, *e;
10511
10512
0
  if (!obj || !obj->maps)
10513
0
    return errno = EINVAL, NULL;
10514
10515
0
  s = obj->maps;
10516
0
  e = obj->maps + obj->nr_maps;
10517
10518
0
  if ((m < s) || (m >= e)) {
10519
0
    pr_warn("error in %s: map handler doesn't belong to object\n",
10520
0
       __func__);
10521
0
    return errno = EINVAL, NULL;
10522
0
  }
10523
10524
0
  idx = (m - obj->maps) + i;
10525
0
  if (idx >= obj->nr_maps || idx < 0)
10526
0
    return NULL;
10527
0
  return &obj->maps[idx];
10528
0
}
10529
10530
struct bpf_map *
10531
bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10532
0
{
10533
0
  if (prev == NULL && obj != NULL)
10534
0
    return obj->maps;
10535
10536
0
  return __bpf_map__iter(prev, obj, 1);
10537
0
}
10538
10539
struct bpf_map *
10540
bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10541
0
{
10542
0
  if (next == NULL && obj != NULL) {
10543
0
    if (!obj->nr_maps)
10544
0
      return NULL;
10545
0
    return obj->maps + obj->nr_maps - 1;
10546
0
  }
10547
10548
0
  return __bpf_map__iter(next, obj, -1);
10549
0
}
10550
10551
struct bpf_map *
10552
bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10553
0
{
10554
0
  struct bpf_map *pos;
10555
10556
0
  bpf_object__for_each_map(pos, obj) {
10557
    /* if it's a special internal map name (which always starts
10558
     * with dot) then check if that special name matches the
10559
     * real map name (ELF section name)
10560
     */
10561
0
    if (name[0] == '.') {
10562
0
      if (pos->real_name && strcmp(pos->real_name, name) == 0)
10563
0
        return pos;
10564
0
      continue;
10565
0
    }
10566
    /* otherwise map name has to be an exact match */
10567
0
    if (map_uses_real_name(pos)) {
10568
0
      if (strcmp(pos->real_name, name) == 0)
10569
0
        return pos;
10570
0
      continue;
10571
0
    }
10572
0
    if (strcmp(pos->name, name) == 0)
10573
0
      return pos;
10574
0
  }
10575
0
  return errno = ENOENT, NULL;
10576
0
}
10577
10578
int
10579
bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10580
0
{
10581
0
  return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10582
0
}
10583
10584
static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10585
         size_t value_sz, bool check_value_sz)
10586
0
{
10587
0
  if (!map_is_created(map)) /* map is not yet created */
10588
0
    return -ENOENT;
10589
10590
0
  if (map->def.key_size != key_sz) {
10591
0
    pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10592
0
      map->name, key_sz, map->def.key_size);
10593
0
    return -EINVAL;
10594
0
  }
10595
10596
0
  if (map->fd < 0) {
10597
0
    pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10598
0
    return -EINVAL;
10599
0
  }
10600
10601
0
  if (!check_value_sz)
10602
0
    return 0;
10603
10604
0
  switch (map->def.type) {
10605
0
  case BPF_MAP_TYPE_PERCPU_ARRAY:
10606
0
  case BPF_MAP_TYPE_PERCPU_HASH:
10607
0
  case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10608
0
  case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10609
0
    int num_cpu = libbpf_num_possible_cpus();
10610
0
    size_t elem_sz = roundup(map->def.value_size, 8);
10611
10612
0
    if (value_sz != num_cpu * elem_sz) {
10613
0
      pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10614
0
        map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10615
0
      return -EINVAL;
10616
0
    }
10617
0
    break;
10618
0
  }
10619
0
  default:
10620
0
    if (map->def.value_size != value_sz) {
10621
0
      pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10622
0
        map->name, value_sz, map->def.value_size);
10623
0
      return -EINVAL;
10624
0
    }
10625
0
    break;
10626
0
  }
10627
0
  return 0;
10628
0
}
10629
10630
int bpf_map__lookup_elem(const struct bpf_map *map,
10631
       const void *key, size_t key_sz,
10632
       void *value, size_t value_sz, __u64 flags)
10633
0
{
10634
0
  int err;
10635
10636
0
  err = validate_map_op(map, key_sz, value_sz, true);
10637
0
  if (err)
10638
0
    return libbpf_err(err);
10639
10640
0
  return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10641
0
}
10642
10643
int bpf_map__update_elem(const struct bpf_map *map,
10644
       const void *key, size_t key_sz,
10645
       const void *value, size_t value_sz, __u64 flags)
10646
0
{
10647
0
  int err;
10648
10649
0
  err = validate_map_op(map, key_sz, value_sz, true);
10650
0
  if (err)
10651
0
    return libbpf_err(err);
10652
10653
0
  return bpf_map_update_elem(map->fd, key, value, flags);
10654
0
}
10655
10656
int bpf_map__delete_elem(const struct bpf_map *map,
10657
       const void *key, size_t key_sz, __u64 flags)
10658
0
{
10659
0
  int err;
10660
10661
0
  err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10662
0
  if (err)
10663
0
    return libbpf_err(err);
10664
10665
0
  return bpf_map_delete_elem_flags(map->fd, key, flags);
10666
0
}
10667
10668
int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10669
            const void *key, size_t key_sz,
10670
            void *value, size_t value_sz, __u64 flags)
10671
0
{
10672
0
  int err;
10673
10674
0
  err = validate_map_op(map, key_sz, value_sz, true);
10675
0
  if (err)
10676
0
    return libbpf_err(err);
10677
10678
0
  return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10679
0
}
10680
10681
int bpf_map__get_next_key(const struct bpf_map *map,
10682
        const void *cur_key, void *next_key, size_t key_sz)
10683
0
{
10684
0
  int err;
10685
10686
0
  err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10687
0
  if (err)
10688
0
    return libbpf_err(err);
10689
10690
0
  return bpf_map_get_next_key(map->fd, cur_key, next_key);
10691
0
}
10692
10693
long libbpf_get_error(const void *ptr)
10694
16.5k
{
10695
16.5k
  if (!IS_ERR_OR_NULL(ptr))
10696
5.44k
    return 0;
10697
10698
11.1k
  if (IS_ERR(ptr))
10699
0
    errno = -PTR_ERR(ptr);
10700
10701
  /* If ptr == NULL, then errno should be already set by the failing
10702
   * API, because libbpf never returns NULL on success and it now always
10703
   * sets errno on error. So no extra errno handling for ptr == NULL
10704
   * case.
10705
   */
10706
11.1k
  return -errno;
10707
16.5k
}
10708
10709
/* Replace link's underlying BPF program with the new one */
10710
int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10711
0
{
10712
0
  int ret;
10713
0
  int prog_fd = bpf_program__fd(prog);
10714
10715
0
  if (prog_fd < 0) {
10716
0
    pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10717
0
      prog->name);
10718
0
    return libbpf_err(-EINVAL);
10719
0
  }
10720
10721
0
  ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10722
0
  return libbpf_err_errno(ret);
10723
0
}
10724
10725
/* Release "ownership" of underlying BPF resource (typically, BPF program
10726
 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10727
 * link, when destructed through bpf_link__destroy() call won't attempt to
10728
 * detach/unregisted that BPF resource. This is useful in situations where,
10729
 * say, attached BPF program has to outlive userspace program that attached it
10730
 * in the system. Depending on type of BPF program, though, there might be
10731
 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10732
 * exit of userspace program doesn't trigger automatic detachment and clean up
10733
 * inside the kernel.
10734
 */
10735
void bpf_link__disconnect(struct bpf_link *link)
10736
0
{
10737
0
  link->disconnected = true;
10738
0
}
10739
10740
int bpf_link__destroy(struct bpf_link *link)
10741
0
{
10742
0
  int err = 0;
10743
10744
0
  if (IS_ERR_OR_NULL(link))
10745
0
    return 0;
10746
10747
0
  if (!link->disconnected && link->detach)
10748
0
    err = link->detach(link);
10749
0
  if (link->pin_path)
10750
0
    free(link->pin_path);
10751
0
  if (link->dealloc)
10752
0
    link->dealloc(link);
10753
0
  else
10754
0
    free(link);
10755
10756
0
  return libbpf_err(err);
10757
0
}
10758
10759
int bpf_link__fd(const struct bpf_link *link)
10760
0
{
10761
0
  return link->fd;
10762
0
}
10763
10764
const char *bpf_link__pin_path(const struct bpf_link *link)
10765
0
{
10766
0
  return link->pin_path;
10767
0
}
10768
10769
static int bpf_link__detach_fd(struct bpf_link *link)
10770
0
{
10771
0
  return libbpf_err_errno(close(link->fd));
10772
0
}
10773
10774
struct bpf_link *bpf_link__open(const char *path)
10775
0
{
10776
0
  struct bpf_link *link;
10777
0
  int fd;
10778
10779
0
  fd = bpf_obj_get(path);
10780
0
  if (fd < 0) {
10781
0
    fd = -errno;
10782
0
    pr_warn("failed to open link at %s: %d\n", path, fd);
10783
0
    return libbpf_err_ptr(fd);
10784
0
  }
10785
10786
0
  link = calloc(1, sizeof(*link));
10787
0
  if (!link) {
10788
0
    close(fd);
10789
0
    return libbpf_err_ptr(-ENOMEM);
10790
0
  }
10791
0
  link->detach = &bpf_link__detach_fd;
10792
0
  link->fd = fd;
10793
10794
0
  link->pin_path = strdup(path);
10795
0
  if (!link->pin_path) {
10796
0
    bpf_link__destroy(link);
10797
0
    return libbpf_err_ptr(-ENOMEM);
10798
0
  }
10799
10800
0
  return link;
10801
0
}
10802
10803
int bpf_link__detach(struct bpf_link *link)
10804
0
{
10805
0
  return bpf_link_detach(link->fd) ? -errno : 0;
10806
0
}
10807
10808
int bpf_link__pin(struct bpf_link *link, const char *path)
10809
0
{
10810
0
  int err;
10811
10812
0
  if (link->pin_path)
10813
0
    return libbpf_err(-EBUSY);
10814
0
  err = make_parent_dir(path);
10815
0
  if (err)
10816
0
    return libbpf_err(err);
10817
0
  err = check_path(path);
10818
0
  if (err)
10819
0
    return libbpf_err(err);
10820
10821
0
  link->pin_path = strdup(path);
10822
0
  if (!link->pin_path)
10823
0
    return libbpf_err(-ENOMEM);
10824
10825
0
  if (bpf_obj_pin(link->fd, link->pin_path)) {
10826
0
    err = -errno;
10827
0
    zfree(&link->pin_path);
10828
0
    return libbpf_err(err);
10829
0
  }
10830
10831
0
  pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10832
0
  return 0;
10833
0
}
10834
10835
int bpf_link__unpin(struct bpf_link *link)
10836
0
{
10837
0
  int err;
10838
10839
0
  if (!link->pin_path)
10840
0
    return libbpf_err(-EINVAL);
10841
10842
0
  err = unlink(link->pin_path);
10843
0
  if (err != 0)
10844
0
    return -errno;
10845
10846
0
  pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10847
0
  zfree(&link->pin_path);
10848
0
  return 0;
10849
0
}
10850
10851
struct bpf_link_perf {
10852
  struct bpf_link link;
10853
  int perf_event_fd;
10854
  /* legacy kprobe support: keep track of probe identifier and type */
10855
  char *legacy_probe_name;
10856
  bool legacy_is_kprobe;
10857
  bool legacy_is_retprobe;
10858
};
10859
10860
static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10861
static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10862
10863
static int bpf_link_perf_detach(struct bpf_link *link)
10864
0
{
10865
0
  struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10866
0
  int err = 0;
10867
10868
0
  if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10869
0
    err = -errno;
10870
10871
0
  if (perf_link->perf_event_fd != link->fd)
10872
0
    close(perf_link->perf_event_fd);
10873
0
  close(link->fd);
10874
10875
  /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10876
0
  if (perf_link->legacy_probe_name) {
10877
0
    if (perf_link->legacy_is_kprobe) {
10878
0
      err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10879
0
               perf_link->legacy_is_retprobe);
10880
0
    } else {
10881
0
      err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10882
0
               perf_link->legacy_is_retprobe);
10883
0
    }
10884
0
  }
10885
10886
0
  return err;
10887
0
}
10888
10889
static void bpf_link_perf_dealloc(struct bpf_link *link)
10890
0
{
10891
0
  struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10892
10893
0
  free(perf_link->legacy_probe_name);
10894
0
  free(perf_link);
10895
0
}
10896
10897
struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10898
                 const struct bpf_perf_event_opts *opts)
10899
0
{
10900
0
  struct bpf_link_perf *link;
10901
0
  int prog_fd, link_fd = -1, err;
10902
0
  bool force_ioctl_attach;
10903
10904
0
  if (!OPTS_VALID(opts, bpf_perf_event_opts))
10905
0
    return libbpf_err_ptr(-EINVAL);
10906
10907
0
  if (pfd < 0) {
10908
0
    pr_warn("prog '%s': invalid perf event FD %d\n",
10909
0
      prog->name, pfd);
10910
0
    return libbpf_err_ptr(-EINVAL);
10911
0
  }
10912
0
  prog_fd = bpf_program__fd(prog);
10913
0
  if (prog_fd < 0) {
10914
0
    pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
10915
0
      prog->name);
10916
0
    return libbpf_err_ptr(-EINVAL);
10917
0
  }
10918
10919
0
  link = calloc(1, sizeof(*link));
10920
0
  if (!link)
10921
0
    return libbpf_err_ptr(-ENOMEM);
10922
0
  link->link.detach = &bpf_link_perf_detach;
10923
0
  link->link.dealloc = &bpf_link_perf_dealloc;
10924
0
  link->perf_event_fd = pfd;
10925
10926
0
  force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10927
0
  if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10928
0
    DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10929
0
      .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10930
10931
0
    link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10932
0
    if (link_fd < 0) {
10933
0
      err = -errno;
10934
0
      pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n",
10935
0
        prog->name, pfd, errstr(err));
10936
0
      goto err_out;
10937
0
    }
10938
0
    link->link.fd = link_fd;
10939
0
  } else {
10940
0
    if (OPTS_GET(opts, bpf_cookie, 0)) {
10941
0
      pr_warn("prog '%s': user context value is not supported\n", prog->name);
10942
0
      err = -EOPNOTSUPP;
10943
0
      goto err_out;
10944
0
    }
10945
10946
0
    if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10947
0
      err = -errno;
10948
0
      pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10949
0
        prog->name, pfd, errstr(err));
10950
0
      if (err == -EPROTO)
10951
0
        pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10952
0
          prog->name, pfd);
10953
0
      goto err_out;
10954
0
    }
10955
0
    link->link.fd = pfd;
10956
0
  }
10957
0
  if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10958
0
    err = -errno;
10959
0
    pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10960
0
      prog->name, pfd, errstr(err));
10961
0
    goto err_out;
10962
0
  }
10963
10964
0
  return &link->link;
10965
0
err_out:
10966
0
  if (link_fd >= 0)
10967
0
    close(link_fd);
10968
0
  free(link);
10969
0
  return libbpf_err_ptr(err);
10970
0
}
10971
10972
struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10973
0
{
10974
0
  return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10975
0
}
10976
10977
/*
10978
 * this function is expected to parse integer in the range of [0, 2^31-1] from
10979
 * given file using scanf format string fmt. If actual parsed value is
10980
 * negative, the result might be indistinguishable from error
10981
 */
10982
static int parse_uint_from_file(const char *file, const char *fmt)
10983
0
{
10984
0
  int err, ret;
10985
0
  FILE *f;
10986
10987
0
  f = fopen(file, "re");
10988
0
  if (!f) {
10989
0
    err = -errno;
10990
0
    pr_debug("failed to open '%s': %s\n", file, errstr(err));
10991
0
    return err;
10992
0
  }
10993
0
  err = fscanf(f, fmt, &ret);
10994
0
  if (err != 1) {
10995
0
    err = err == EOF ? -EIO : -errno;
10996
0
    pr_debug("failed to parse '%s': %s\n", file, errstr(err));
10997
0
    fclose(f);
10998
0
    return err;
10999
0
  }
11000
0
  fclose(f);
11001
0
  return ret;
11002
0
}
11003
11004
static int determine_kprobe_perf_type(void)
11005
0
{
11006
0
  const char *file = "/sys/bus/event_source/devices/kprobe/type";
11007
11008
0
  return parse_uint_from_file(file, "%d\n");
11009
0
}
11010
11011
static int determine_uprobe_perf_type(void)
11012
0
{
11013
0
  const char *file = "/sys/bus/event_source/devices/uprobe/type";
11014
11015
0
  return parse_uint_from_file(file, "%d\n");
11016
0
}
11017
11018
static int determine_kprobe_retprobe_bit(void)
11019
0
{
11020
0
  const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
11021
11022
0
  return parse_uint_from_file(file, "config:%d\n");
11023
0
}
11024
11025
static int determine_uprobe_retprobe_bit(void)
11026
0
{
11027
0
  const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
11028
11029
0
  return parse_uint_from_file(file, "config:%d\n");
11030
0
}
11031
11032
0
#define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
11033
0
#define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
11034
11035
static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
11036
         uint64_t offset, int pid, size_t ref_ctr_off)
11037
0
{
11038
0
  const size_t attr_sz = sizeof(struct perf_event_attr);
11039
0
  struct perf_event_attr attr;
11040
0
  int type, pfd;
11041
11042
0
  if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
11043
0
    return -EINVAL;
11044
11045
0
  memset(&attr, 0, attr_sz);
11046
11047
0
  type = uprobe ? determine_uprobe_perf_type()
11048
0
          : determine_kprobe_perf_type();
11049
0
  if (type < 0) {
11050
0
    pr_warn("failed to determine %s perf type: %s\n",
11051
0
      uprobe ? "uprobe" : "kprobe",
11052
0
      errstr(type));
11053
0
    return type;
11054
0
  }
11055
0
  if (retprobe) {
11056
0
    int bit = uprobe ? determine_uprobe_retprobe_bit()
11057
0
         : determine_kprobe_retprobe_bit();
11058
11059
0
    if (bit < 0) {
11060
0
      pr_warn("failed to determine %s retprobe bit: %s\n",
11061
0
        uprobe ? "uprobe" : "kprobe",
11062
0
        errstr(bit));
11063
0
      return bit;
11064
0
    }
11065
0
    attr.config |= 1 << bit;
11066
0
  }
11067
0
  attr.size = attr_sz;
11068
0
  attr.type = type;
11069
0
  attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11070
0
  attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
11071
0
  attr.config2 = offset;     /* kprobe_addr or probe_offset */
11072
11073
  /* pid filter is meaningful only for uprobes */
11074
0
  pfd = syscall(__NR_perf_event_open, &attr,
11075
0
          pid < 0 ? -1 : pid /* pid */,
11076
0
          pid == -1 ? 0 : -1 /* cpu */,
11077
0
          -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11078
0
  return pfd >= 0 ? pfd : -errno;
11079
0
}
11080
11081
static int append_to_file(const char *file, const char *fmt, ...)
11082
0
{
11083
0
  int fd, n, err = 0;
11084
0
  va_list ap;
11085
0
  char buf[1024];
11086
11087
0
  va_start(ap, fmt);
11088
0
  n = vsnprintf(buf, sizeof(buf), fmt, ap);
11089
0
  va_end(ap);
11090
11091
0
  if (n < 0 || n >= sizeof(buf))
11092
0
    return -EINVAL;
11093
11094
0
  fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
11095
0
  if (fd < 0)
11096
0
    return -errno;
11097
11098
0
  if (write(fd, buf, n) < 0)
11099
0
    err = -errno;
11100
11101
0
  close(fd);
11102
0
  return err;
11103
0
}
11104
11105
0
#define DEBUGFS "/sys/kernel/debug/tracing"
11106
0
#define TRACEFS "/sys/kernel/tracing"
11107
11108
static bool use_debugfs(void)
11109
0
{
11110
0
  static int has_debugfs = -1;
11111
11112
0
  if (has_debugfs < 0)
11113
0
    has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
11114
11115
0
  return has_debugfs == 1;
11116
0
}
11117
11118
static const char *tracefs_path(void)
11119
0
{
11120
0
  return use_debugfs() ? DEBUGFS : TRACEFS;
11121
0
}
11122
11123
static const char *tracefs_kprobe_events(void)
11124
0
{
11125
0
  return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
11126
0
}
11127
11128
static const char *tracefs_uprobe_events(void)
11129
0
{
11130
0
  return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
11131
0
}
11132
11133
static const char *tracefs_available_filter_functions(void)
11134
0
{
11135
0
  return use_debugfs() ? DEBUGFS"/available_filter_functions"
11136
0
           : TRACEFS"/available_filter_functions";
11137
0
}
11138
11139
static const char *tracefs_available_filter_functions_addrs(void)
11140
0
{
11141
0
  return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
11142
0
           : TRACEFS"/available_filter_functions_addrs";
11143
0
}
11144
11145
static void gen_probe_legacy_event_name(char *buf, size_t buf_sz,
11146
          const char *name, size_t offset)
11147
0
{
11148
0
  static int index = 0;
11149
0
  int i;
11150
11151
0
  snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(),
11152
0
     __sync_fetch_and_add(&index, 1), name, offset);
11153
11154
  /* sanitize name in the probe name */
11155
0
  for (i = 0; buf[i]; i++) {
11156
0
    if (!isalnum(buf[i]))
11157
0
      buf[i] = '_';
11158
0
  }
11159
0
}
11160
11161
static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
11162
           const char *kfunc_name, size_t offset)
11163
0
{
11164
0
  return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
11165
0
            retprobe ? 'r' : 'p',
11166
0
            retprobe ? "kretprobes" : "kprobes",
11167
0
            probe_name, kfunc_name, offset);
11168
0
}
11169
11170
static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
11171
0
{
11172
0
  return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
11173
0
            retprobe ? "kretprobes" : "kprobes", probe_name);
11174
0
}
11175
11176
static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11177
0
{
11178
0
  char file[256];
11179
11180
0
  snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11181
0
     tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
11182
11183
0
  return parse_uint_from_file(file, "%d\n");
11184
0
}
11185
11186
static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
11187
           const char *kfunc_name, size_t offset, int pid)
11188
0
{
11189
0
  const size_t attr_sz = sizeof(struct perf_event_attr);
11190
0
  struct perf_event_attr attr;
11191
0
  int type, pfd, err;
11192
11193
0
  err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11194
0
  if (err < 0) {
11195
0
    pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11196
0
      kfunc_name, offset,
11197
0
      errstr(err));
11198
0
    return err;
11199
0
  }
11200
0
  type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11201
0
  if (type < 0) {
11202
0
    err = type;
11203
0
    pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11204
0
      kfunc_name, offset,
11205
0
      errstr(err));
11206
0
    goto err_clean_legacy;
11207
0
  }
11208
11209
0
  memset(&attr, 0, attr_sz);
11210
0
  attr.size = attr_sz;
11211
0
  attr.config = type;
11212
0
  attr.type = PERF_TYPE_TRACEPOINT;
11213
11214
0
  pfd = syscall(__NR_perf_event_open, &attr,
11215
0
          pid < 0 ? -1 : pid, /* pid */
11216
0
          pid == -1 ? 0 : -1, /* cpu */
11217
0
          -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11218
0
  if (pfd < 0) {
11219
0
    err = -errno;
11220
0
    pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11221
0
      errstr(err));
11222
0
    goto err_clean_legacy;
11223
0
  }
11224
0
  return pfd;
11225
11226
0
err_clean_legacy:
11227
  /* Clear the newly added legacy kprobe_event */
11228
0
  remove_kprobe_event_legacy(probe_name, retprobe);
11229
0
  return err;
11230
0
}
11231
11232
static const char *arch_specific_syscall_pfx(void)
11233
0
{
11234
0
#if defined(__x86_64__)
11235
0
  return "x64";
11236
#elif defined(__i386__)
11237
  return "ia32";
11238
#elif defined(__s390x__)
11239
  return "s390x";
11240
#elif defined(__s390__)
11241
  return "s390";
11242
#elif defined(__arm__)
11243
  return "arm";
11244
#elif defined(__aarch64__)
11245
  return "arm64";
11246
#elif defined(__mips__)
11247
  return "mips";
11248
#elif defined(__riscv)
11249
  return "riscv";
11250
#elif defined(__powerpc__)
11251
  return "powerpc";
11252
#elif defined(__powerpc64__)
11253
  return "powerpc64";
11254
#else
11255
  return NULL;
11256
#endif
11257
0
}
11258
11259
int probe_kern_syscall_wrapper(int token_fd)
11260
0
{
11261
0
  char syscall_name[64];
11262
0
  const char *ksys_pfx;
11263
11264
0
  ksys_pfx = arch_specific_syscall_pfx();
11265
0
  if (!ksys_pfx)
11266
0
    return 0;
11267
11268
0
  snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11269
11270
0
  if (determine_kprobe_perf_type() >= 0) {
11271
0
    int pfd;
11272
11273
0
    pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11274
0
    if (pfd >= 0)
11275
0
      close(pfd);
11276
11277
0
    return pfd >= 0 ? 1 : 0;
11278
0
  } else { /* legacy mode */
11279
0
    char probe_name[MAX_EVENT_NAME_LEN];
11280
11281
0
    gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11282
0
    if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11283
0
      return 0;
11284
11285
0
    (void)remove_kprobe_event_legacy(probe_name, false);
11286
0
    return 1;
11287
0
  }
11288
0
}
11289
11290
struct bpf_link *
11291
bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11292
        const char *func_name,
11293
        const struct bpf_kprobe_opts *opts)
11294
0
{
11295
0
  DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11296
0
  enum probe_attach_mode attach_mode;
11297
0
  char *legacy_probe = NULL;
11298
0
  struct bpf_link *link;
11299
0
  size_t offset;
11300
0
  bool retprobe, legacy;
11301
0
  int pfd, err;
11302
11303
0
  if (!OPTS_VALID(opts, bpf_kprobe_opts))
11304
0
    return libbpf_err_ptr(-EINVAL);
11305
11306
0
  attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11307
0
  retprobe = OPTS_GET(opts, retprobe, false);
11308
0
  offset = OPTS_GET(opts, offset, 0);
11309
0
  pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11310
11311
0
  legacy = determine_kprobe_perf_type() < 0;
11312
0
  switch (attach_mode) {
11313
0
  case PROBE_ATTACH_MODE_LEGACY:
11314
0
    legacy = true;
11315
0
    pe_opts.force_ioctl_attach = true;
11316
0
    break;
11317
0
  case PROBE_ATTACH_MODE_PERF:
11318
0
    if (legacy)
11319
0
      return libbpf_err_ptr(-ENOTSUP);
11320
0
    pe_opts.force_ioctl_attach = true;
11321
0
    break;
11322
0
  case PROBE_ATTACH_MODE_LINK:
11323
0
    if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11324
0
      return libbpf_err_ptr(-ENOTSUP);
11325
0
    break;
11326
0
  case PROBE_ATTACH_MODE_DEFAULT:
11327
0
    break;
11328
0
  default:
11329
0
    return libbpf_err_ptr(-EINVAL);
11330
0
  }
11331
11332
0
  if (!legacy) {
11333
0
    pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11334
0
              func_name, offset,
11335
0
              -1 /* pid */, 0 /* ref_ctr_off */);
11336
0
  } else {
11337
0
    char probe_name[MAX_EVENT_NAME_LEN];
11338
11339
0
    gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
11340
0
              func_name, offset);
11341
11342
0
    legacy_probe = strdup(probe_name);
11343
0
    if (!legacy_probe)
11344
0
      return libbpf_err_ptr(-ENOMEM);
11345
11346
0
    pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11347
0
                offset, -1 /* pid */);
11348
0
  }
11349
0
  if (pfd < 0) {
11350
0
    err = -errno;
11351
0
    pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11352
0
      prog->name, retprobe ? "kretprobe" : "kprobe",
11353
0
      func_name, offset,
11354
0
      errstr(err));
11355
0
    goto err_out;
11356
0
  }
11357
0
  link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11358
0
  err = libbpf_get_error(link);
11359
0
  if (err) {
11360
0
    close(pfd);
11361
0
    pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11362
0
      prog->name, retprobe ? "kretprobe" : "kprobe",
11363
0
      func_name, offset,
11364
0
      errstr(err));
11365
0
    goto err_clean_legacy;
11366
0
  }
11367
0
  if (legacy) {
11368
0
    struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11369
11370
0
    perf_link->legacy_probe_name = legacy_probe;
11371
0
    perf_link->legacy_is_kprobe = true;
11372
0
    perf_link->legacy_is_retprobe = retprobe;
11373
0
  }
11374
11375
0
  return link;
11376
11377
0
err_clean_legacy:
11378
0
  if (legacy)
11379
0
    remove_kprobe_event_legacy(legacy_probe, retprobe);
11380
0
err_out:
11381
0
  free(legacy_probe);
11382
0
  return libbpf_err_ptr(err);
11383
0
}
11384
11385
struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11386
              bool retprobe,
11387
              const char *func_name)
11388
0
{
11389
0
  DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11390
0
    .retprobe = retprobe,
11391
0
  );
11392
11393
0
  return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11394
0
}
11395
11396
struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11397
                const char *syscall_name,
11398
                const struct bpf_ksyscall_opts *opts)
11399
0
{
11400
0
  LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11401
0
  char func_name[128];
11402
11403
0
  if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11404
0
    return libbpf_err_ptr(-EINVAL);
11405
11406
0
  if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11407
    /* arch_specific_syscall_pfx() should never return NULL here
11408
     * because it is guarded by kernel_supports(). However, since
11409
     * compiler does not know that we have an explicit conditional
11410
     * as well.
11411
     */
11412
0
    snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11413
0
       arch_specific_syscall_pfx() ? : "", syscall_name);
11414
0
  } else {
11415
0
    snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11416
0
  }
11417
11418
0
  kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11419
0
  kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11420
11421
0
  return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11422
0
}
11423
11424
/* Adapted from perf/util/string.c */
11425
bool glob_match(const char *str, const char *pat)
11426
0
{
11427
0
  while (*str && *pat && *pat != '*') {
11428
0
    if (*pat == '?') {      /* Matches any single character */
11429
0
      str++;
11430
0
      pat++;
11431
0
      continue;
11432
0
    }
11433
0
    if (*str != *pat)
11434
0
      return false;
11435
0
    str++;
11436
0
    pat++;
11437
0
  }
11438
  /* Check wild card */
11439
0
  if (*pat == '*') {
11440
0
    while (*pat == '*')
11441
0
      pat++;
11442
0
    if (!*pat) /* Tail wild card matches all */
11443
0
      return true;
11444
0
    while (*str)
11445
0
      if (glob_match(str++, pat))
11446
0
        return true;
11447
0
  }
11448
0
  return !*str && !*pat;
11449
0
}
11450
11451
struct kprobe_multi_resolve {
11452
  const char *pattern;
11453
  unsigned long *addrs;
11454
  size_t cap;
11455
  size_t cnt;
11456
};
11457
11458
struct avail_kallsyms_data {
11459
  char **syms;
11460
  size_t cnt;
11461
  struct kprobe_multi_resolve *res;
11462
};
11463
11464
static int avail_func_cmp(const void *a, const void *b)
11465
0
{
11466
0
  return strcmp(*(const char **)a, *(const char **)b);
11467
0
}
11468
11469
static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11470
           const char *sym_name, void *ctx)
11471
0
{
11472
0
  struct avail_kallsyms_data *data = ctx;
11473
0
  struct kprobe_multi_resolve *res = data->res;
11474
0
  int err;
11475
11476
0
  if (!glob_match(sym_name, res->pattern))
11477
0
    return 0;
11478
11479
0
  if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) {
11480
    /* Some versions of kernel strip out .llvm.<hash> suffix from
11481
     * function names reported in available_filter_functions, but
11482
     * don't do so for kallsyms. While this is clearly a kernel
11483
     * bug (fixed by [0]) we try to accommodate that in libbpf to
11484
     * make multi-kprobe usability a bit better: if no match is
11485
     * found, we will strip .llvm. suffix and try one more time.
11486
     *
11487
     *   [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG")
11488
     */
11489
0
    char sym_trim[256], *psym_trim = sym_trim, *sym_sfx;
11490
11491
0
    if (!(sym_sfx = strstr(sym_name, ".llvm.")))
11492
0
      return 0;
11493
11494
    /* psym_trim vs sym_trim dance is done to avoid pointer vs array
11495
     * coercion differences and get proper `const char **` pointer
11496
     * which avail_func_cmp() expects
11497
     */
11498
0
    snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name);
11499
0
    if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11500
0
      return 0;
11501
0
  }
11502
11503
0
  err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11504
0
  if (err)
11505
0
    return err;
11506
11507
0
  res->addrs[res->cnt++] = (unsigned long)sym_addr;
11508
0
  return 0;
11509
0
}
11510
11511
static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11512
0
{
11513
0
  const char *available_functions_file = tracefs_available_filter_functions();
11514
0
  struct avail_kallsyms_data data;
11515
0
  char sym_name[500];
11516
0
  FILE *f;
11517
0
  int err = 0, ret, i;
11518
0
  char **syms = NULL;
11519
0
  size_t cap = 0, cnt = 0;
11520
11521
0
  f = fopen(available_functions_file, "re");
11522
0
  if (!f) {
11523
0
    err = -errno;
11524
0
    pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err));
11525
0
    return err;
11526
0
  }
11527
11528
0
  while (true) {
11529
0
    char *name;
11530
11531
0
    ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11532
0
    if (ret == EOF && feof(f))
11533
0
      break;
11534
11535
0
    if (ret != 1) {
11536
0
      pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11537
0
      err = -EINVAL;
11538
0
      goto cleanup;
11539
0
    }
11540
11541
0
    if (!glob_match(sym_name, res->pattern))
11542
0
      continue;
11543
11544
0
    err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11545
0
    if (err)
11546
0
      goto cleanup;
11547
11548
0
    name = strdup(sym_name);
11549
0
    if (!name) {
11550
0
      err = -errno;
11551
0
      goto cleanup;
11552
0
    }
11553
11554
0
    syms[cnt++] = name;
11555
0
  }
11556
11557
  /* no entries found, bail out */
11558
0
  if (cnt == 0) {
11559
0
    err = -ENOENT;
11560
0
    goto cleanup;
11561
0
  }
11562
11563
  /* sort available functions */
11564
0
  qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11565
11566
0
  data.syms = syms;
11567
0
  data.res = res;
11568
0
  data.cnt = cnt;
11569
0
  libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11570
11571
0
  if (res->cnt == 0)
11572
0
    err = -ENOENT;
11573
11574
0
cleanup:
11575
0
  for (i = 0; i < cnt; i++)
11576
0
    free((char *)syms[i]);
11577
0
  free(syms);
11578
11579
0
  fclose(f);
11580
0
  return err;
11581
0
}
11582
11583
static bool has_available_filter_functions_addrs(void)
11584
0
{
11585
0
  return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11586
0
}
11587
11588
static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11589
0
{
11590
0
  const char *available_path = tracefs_available_filter_functions_addrs();
11591
0
  char sym_name[500];
11592
0
  FILE *f;
11593
0
  int ret, err = 0;
11594
0
  unsigned long long sym_addr;
11595
11596
0
  f = fopen(available_path, "re");
11597
0
  if (!f) {
11598
0
    err = -errno;
11599
0
    pr_warn("failed to open %s: %s\n", available_path, errstr(err));
11600
0
    return err;
11601
0
  }
11602
11603
0
  while (true) {
11604
0
    ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11605
0
    if (ret == EOF && feof(f))
11606
0
      break;
11607
11608
0
    if (ret != 2) {
11609
0
      pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11610
0
        ret);
11611
0
      err = -EINVAL;
11612
0
      goto cleanup;
11613
0
    }
11614
11615
0
    if (!glob_match(sym_name, res->pattern))
11616
0
      continue;
11617
11618
0
    err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11619
0
          sizeof(*res->addrs), res->cnt + 1);
11620
0
    if (err)
11621
0
      goto cleanup;
11622
11623
0
    res->addrs[res->cnt++] = (unsigned long)sym_addr;
11624
0
  }
11625
11626
0
  if (res->cnt == 0)
11627
0
    err = -ENOENT;
11628
11629
0
cleanup:
11630
0
  fclose(f);
11631
0
  return err;
11632
0
}
11633
11634
struct bpf_link *
11635
bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11636
              const char *pattern,
11637
              const struct bpf_kprobe_multi_opts *opts)
11638
0
{
11639
0
  LIBBPF_OPTS(bpf_link_create_opts, lopts);
11640
0
  struct kprobe_multi_resolve res = {
11641
0
    .pattern = pattern,
11642
0
  };
11643
0
  enum bpf_attach_type attach_type;
11644
0
  struct bpf_link *link = NULL;
11645
0
  const unsigned long *addrs;
11646
0
  int err, link_fd, prog_fd;
11647
0
  bool retprobe, session, unique_match;
11648
0
  const __u64 *cookies;
11649
0
  const char **syms;
11650
0
  size_t cnt;
11651
11652
0
  if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11653
0
    return libbpf_err_ptr(-EINVAL);
11654
11655
0
  prog_fd = bpf_program__fd(prog);
11656
0
  if (prog_fd < 0) {
11657
0
    pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11658
0
      prog->name);
11659
0
    return libbpf_err_ptr(-EINVAL);
11660
0
  }
11661
11662
0
  syms    = OPTS_GET(opts, syms, false);
11663
0
  addrs   = OPTS_GET(opts, addrs, false);
11664
0
  cnt     = OPTS_GET(opts, cnt, false);
11665
0
  cookies = OPTS_GET(opts, cookies, false);
11666
0
  unique_match = OPTS_GET(opts, unique_match, false);
11667
11668
0
  if (!pattern && !addrs && !syms)
11669
0
    return libbpf_err_ptr(-EINVAL);
11670
0
  if (pattern && (addrs || syms || cookies || cnt))
11671
0
    return libbpf_err_ptr(-EINVAL);
11672
0
  if (!pattern && !cnt)
11673
0
    return libbpf_err_ptr(-EINVAL);
11674
0
  if (!pattern && unique_match)
11675
0
    return libbpf_err_ptr(-EINVAL);
11676
0
  if (addrs && syms)
11677
0
    return libbpf_err_ptr(-EINVAL);
11678
11679
0
  if (pattern) {
11680
0
    if (has_available_filter_functions_addrs())
11681
0
      err = libbpf_available_kprobes_parse(&res);
11682
0
    else
11683
0
      err = libbpf_available_kallsyms_parse(&res);
11684
0
    if (err)
11685
0
      goto error;
11686
11687
0
    if (unique_match && res.cnt != 1) {
11688
0
      pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n",
11689
0
        prog->name, pattern, res.cnt);
11690
0
      err = -EINVAL;
11691
0
      goto error;
11692
0
    }
11693
11694
0
    addrs = res.addrs;
11695
0
    cnt = res.cnt;
11696
0
  }
11697
11698
0
  retprobe = OPTS_GET(opts, retprobe, false);
11699
0
  session  = OPTS_GET(opts, session, false);
11700
11701
0
  if (retprobe && session)
11702
0
    return libbpf_err_ptr(-EINVAL);
11703
11704
0
  attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
11705
11706
0
  lopts.kprobe_multi.syms = syms;
11707
0
  lopts.kprobe_multi.addrs = addrs;
11708
0
  lopts.kprobe_multi.cookies = cookies;
11709
0
  lopts.kprobe_multi.cnt = cnt;
11710
0
  lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11711
11712
0
  link = calloc(1, sizeof(*link));
11713
0
  if (!link) {
11714
0
    err = -ENOMEM;
11715
0
    goto error;
11716
0
  }
11717
0
  link->detach = &bpf_link__detach_fd;
11718
11719
0
  link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
11720
0
  if (link_fd < 0) {
11721
0
    err = -errno;
11722
0
    pr_warn("prog '%s': failed to attach: %s\n",
11723
0
      prog->name, errstr(err));
11724
0
    goto error;
11725
0
  }
11726
0
  link->fd = link_fd;
11727
0
  free(res.addrs);
11728
0
  return link;
11729
11730
0
error:
11731
0
  free(link);
11732
0
  free(res.addrs);
11733
0
  return libbpf_err_ptr(err);
11734
0
}
11735
11736
static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11737
0
{
11738
0
  DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11739
0
  unsigned long offset = 0;
11740
0
  const char *func_name;
11741
0
  char *func;
11742
0
  int n;
11743
11744
0
  *link = NULL;
11745
11746
  /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11747
0
  if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11748
0
    return 0;
11749
11750
0
  opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11751
0
  if (opts.retprobe)
11752
0
    func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11753
0
  else
11754
0
    func_name = prog->sec_name + sizeof("kprobe/") - 1;
11755
11756
0
  n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11757
0
  if (n < 1) {
11758
0
    pr_warn("kprobe name is invalid: %s\n", func_name);
11759
0
    return -EINVAL;
11760
0
  }
11761
0
  if (opts.retprobe && offset != 0) {
11762
0
    free(func);
11763
0
    pr_warn("kretprobes do not support offset specification\n");
11764
0
    return -EINVAL;
11765
0
  }
11766
11767
0
  opts.offset = offset;
11768
0
  *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11769
0
  free(func);
11770
0
  return libbpf_get_error(*link);
11771
0
}
11772
11773
static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11774
0
{
11775
0
  LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11776
0
  const char *syscall_name;
11777
11778
0
  *link = NULL;
11779
11780
  /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11781
0
  if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11782
0
    return 0;
11783
11784
0
  opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11785
0
  if (opts.retprobe)
11786
0
    syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11787
0
  else
11788
0
    syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11789
11790
0
  *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11791
0
  return *link ? 0 : -errno;
11792
0
}
11793
11794
static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11795
0
{
11796
0
  LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11797
0
  const char *spec;
11798
0
  char *pattern;
11799
0
  int n;
11800
11801
0
  *link = NULL;
11802
11803
  /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11804
0
  if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11805
0
      strcmp(prog->sec_name, "kretprobe.multi") == 0)
11806
0
    return 0;
11807
11808
0
  opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11809
0
  if (opts.retprobe)
11810
0
    spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11811
0
  else
11812
0
    spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11813
11814
0
  n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11815
0
  if (n < 1) {
11816
0
    pr_warn("kprobe multi pattern is invalid: %s\n", spec);
11817
0
    return -EINVAL;
11818
0
  }
11819
11820
0
  *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11821
0
  free(pattern);
11822
0
  return libbpf_get_error(*link);
11823
0
}
11824
11825
static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
11826
         struct bpf_link **link)
11827
0
{
11828
0
  LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
11829
0
  const char *spec;
11830
0
  char *pattern;
11831
0
  int n;
11832
11833
0
  *link = NULL;
11834
11835
  /* no auto-attach for SEC("kprobe.session") */
11836
0
  if (strcmp(prog->sec_name, "kprobe.session") == 0)
11837
0
    return 0;
11838
11839
0
  spec = prog->sec_name + sizeof("kprobe.session/") - 1;
11840
0
  n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11841
0
  if (n < 1) {
11842
0
    pr_warn("kprobe session pattern is invalid: %s\n", spec);
11843
0
    return -EINVAL;
11844
0
  }
11845
11846
0
  *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11847
0
  free(pattern);
11848
0
  return *link ? 0 : -errno;
11849
0
}
11850
11851
static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11852
0
{
11853
0
  char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11854
0
  LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11855
0
  int n, ret = -EINVAL;
11856
11857
0
  *link = NULL;
11858
11859
0
  n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11860
0
       &probe_type, &binary_path, &func_name);
11861
0
  switch (n) {
11862
0
  case 1:
11863
    /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11864
0
    ret = 0;
11865
0
    break;
11866
0
  case 3:
11867
0
    opts.session = str_has_pfx(probe_type, "uprobe.session");
11868
0
    opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi");
11869
11870
0
    *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11871
0
    ret = libbpf_get_error(*link);
11872
0
    break;
11873
0
  default:
11874
0
    pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11875
0
      prog->sec_name);
11876
0
    break;
11877
0
  }
11878
0
  free(probe_type);
11879
0
  free(binary_path);
11880
0
  free(func_name);
11881
0
  return ret;
11882
0
}
11883
11884
static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11885
            const char *binary_path, size_t offset)
11886
0
{
11887
0
  return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11888
0
            retprobe ? 'r' : 'p',
11889
0
            retprobe ? "uretprobes" : "uprobes",
11890
0
            probe_name, binary_path, offset);
11891
0
}
11892
11893
static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11894
0
{
11895
0
  return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11896
0
            retprobe ? "uretprobes" : "uprobes", probe_name);
11897
0
}
11898
11899
static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11900
0
{
11901
0
  char file[512];
11902
11903
0
  snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11904
0
     tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11905
11906
0
  return parse_uint_from_file(file, "%d\n");
11907
0
}
11908
11909
static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11910
           const char *binary_path, size_t offset, int pid)
11911
0
{
11912
0
  const size_t attr_sz = sizeof(struct perf_event_attr);
11913
0
  struct perf_event_attr attr;
11914
0
  int type, pfd, err;
11915
11916
0
  err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11917
0
  if (err < 0) {
11918
0
    pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n",
11919
0
      binary_path, (size_t)offset, errstr(err));
11920
0
    return err;
11921
0
  }
11922
0
  type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11923
0
  if (type < 0) {
11924
0
    err = type;
11925
0
    pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n",
11926
0
      binary_path, offset, errstr(err));
11927
0
    goto err_clean_legacy;
11928
0
  }
11929
11930
0
  memset(&attr, 0, attr_sz);
11931
0
  attr.size = attr_sz;
11932
0
  attr.config = type;
11933
0
  attr.type = PERF_TYPE_TRACEPOINT;
11934
11935
0
  pfd = syscall(__NR_perf_event_open, &attr,
11936
0
          pid < 0 ? -1 : pid, /* pid */
11937
0
          pid == -1 ? 0 : -1, /* cpu */
11938
0
          -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11939
0
  if (pfd < 0) {
11940
0
    err = -errno;
11941
0
    pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err));
11942
0
    goto err_clean_legacy;
11943
0
  }
11944
0
  return pfd;
11945
11946
0
err_clean_legacy:
11947
  /* Clear the newly added legacy uprobe_event */
11948
0
  remove_uprobe_event_legacy(probe_name, retprobe);
11949
0
  return err;
11950
0
}
11951
11952
/* Find offset of function name in archive specified by path. Currently
11953
 * supported are .zip files that do not compress their contents, as used on
11954
 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11955
 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11956
 * library functions.
11957
 *
11958
 * An overview of the APK format specifically provided here:
11959
 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11960
 */
11961
static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11962
                const char *func_name)
11963
0
{
11964
0
  struct zip_archive *archive;
11965
0
  struct zip_entry entry;
11966
0
  long ret;
11967
0
  Elf *elf;
11968
11969
0
  archive = zip_archive_open(archive_path);
11970
0
  if (IS_ERR(archive)) {
11971
0
    ret = PTR_ERR(archive);
11972
0
    pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11973
0
    return ret;
11974
0
  }
11975
11976
0
  ret = zip_archive_find_entry(archive, file_name, &entry);
11977
0
  if (ret) {
11978
0
    pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11979
0
      archive_path, ret);
11980
0
    goto out;
11981
0
  }
11982
0
  pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11983
0
     (unsigned long)entry.data_offset);
11984
11985
0
  if (entry.compression) {
11986
0
    pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11987
0
      archive_path);
11988
0
    ret = -LIBBPF_ERRNO__FORMAT;
11989
0
    goto out;
11990
0
  }
11991
11992
0
  elf = elf_memory((void *)entry.data, entry.data_length);
11993
0
  if (!elf) {
11994
0
    pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11995
0
      elf_errmsg(-1));
11996
0
    ret = -LIBBPF_ERRNO__LIBELF;
11997
0
    goto out;
11998
0
  }
11999
12000
0
  ret = elf_find_func_offset(elf, file_name, func_name);
12001
0
  if (ret > 0) {
12002
0
    pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
12003
0
       func_name, file_name, archive_path, entry.data_offset, ret,
12004
0
       ret + entry.data_offset);
12005
0
    ret += entry.data_offset;
12006
0
  }
12007
0
  elf_end(elf);
12008
12009
0
out:
12010
0
  zip_archive_close(archive);
12011
0
  return ret;
12012
0
}
12013
12014
static const char *arch_specific_lib_paths(void)
12015
0
{
12016
  /*
12017
   * Based on https://packages.debian.org/sid/libc6.
12018
   *
12019
   * Assume that the traced program is built for the same architecture
12020
   * as libbpf, which should cover the vast majority of cases.
12021
   */
12022
0
#if defined(__x86_64__)
12023
0
  return "/lib/x86_64-linux-gnu";
12024
#elif defined(__i386__)
12025
  return "/lib/i386-linux-gnu";
12026
#elif defined(__s390x__)
12027
  return "/lib/s390x-linux-gnu";
12028
#elif defined(__s390__)
12029
  return "/lib/s390-linux-gnu";
12030
#elif defined(__arm__) && defined(__SOFTFP__)
12031
  return "/lib/arm-linux-gnueabi";
12032
#elif defined(__arm__) && !defined(__SOFTFP__)
12033
  return "/lib/arm-linux-gnueabihf";
12034
#elif defined(__aarch64__)
12035
  return "/lib/aarch64-linux-gnu";
12036
#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
12037
  return "/lib/mips64el-linux-gnuabi64";
12038
#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
12039
  return "/lib/mipsel-linux-gnu";
12040
#elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
12041
  return "/lib/powerpc64le-linux-gnu";
12042
#elif defined(__sparc__) && defined(__arch64__)
12043
  return "/lib/sparc64-linux-gnu";
12044
#elif defined(__riscv) && __riscv_xlen == 64
12045
  return "/lib/riscv64-linux-gnu";
12046
#else
12047
  return NULL;
12048
#endif
12049
0
}
12050
12051
/* Get full path to program/shared library. */
12052
static int resolve_full_path(const char *file, char *result, size_t result_sz)
12053
0
{
12054
0
  const char *search_paths[3] = {};
12055
0
  int i, perm;
12056
12057
0
  if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
12058
0
    search_paths[0] = getenv("LD_LIBRARY_PATH");
12059
0
    search_paths[1] = "/usr/lib64:/usr/lib";
12060
0
    search_paths[2] = arch_specific_lib_paths();
12061
0
    perm = R_OK;
12062
0
  } else {
12063
0
    search_paths[0] = getenv("PATH");
12064
0
    search_paths[1] = "/usr/bin:/usr/sbin";
12065
0
    perm = R_OK | X_OK;
12066
0
  }
12067
12068
0
  for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
12069
0
    const char *s;
12070
12071
0
    if (!search_paths[i])
12072
0
      continue;
12073
0
    for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
12074
0
      char *next_path;
12075
0
      int seg_len;
12076
12077
0
      if (s[0] == ':')
12078
0
        s++;
12079
0
      next_path = strchr(s, ':');
12080
0
      seg_len = next_path ? next_path - s : strlen(s);
12081
0
      if (!seg_len)
12082
0
        continue;
12083
0
      snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
12084
      /* ensure it has required permissions */
12085
0
      if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
12086
0
        continue;
12087
0
      pr_debug("resolved '%s' to '%s'\n", file, result);
12088
0
      return 0;
12089
0
    }
12090
0
  }
12091
0
  return -ENOENT;
12092
0
}
12093
12094
struct bpf_link *
12095
bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
12096
         pid_t pid,
12097
         const char *path,
12098
         const char *func_pattern,
12099
         const struct bpf_uprobe_multi_opts *opts)
12100
0
{
12101
0
  const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
12102
0
  LIBBPF_OPTS(bpf_link_create_opts, lopts);
12103
0
  unsigned long *resolved_offsets = NULL;
12104
0
  enum bpf_attach_type attach_type;
12105
0
  int err = 0, link_fd, prog_fd;
12106
0
  struct bpf_link *link = NULL;
12107
0
  char full_path[PATH_MAX];
12108
0
  bool retprobe, session;
12109
0
  const __u64 *cookies;
12110
0
  const char **syms;
12111
0
  size_t cnt;
12112
12113
0
  if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
12114
0
    return libbpf_err_ptr(-EINVAL);
12115
12116
0
  prog_fd = bpf_program__fd(prog);
12117
0
  if (prog_fd < 0) {
12118
0
    pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12119
0
      prog->name);
12120
0
    return libbpf_err_ptr(-EINVAL);
12121
0
  }
12122
12123
0
  syms = OPTS_GET(opts, syms, NULL);
12124
0
  offsets = OPTS_GET(opts, offsets, NULL);
12125
0
  ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
12126
0
  cookies = OPTS_GET(opts, cookies, NULL);
12127
0
  cnt = OPTS_GET(opts, cnt, 0);
12128
0
  retprobe = OPTS_GET(opts, retprobe, false);
12129
0
  session  = OPTS_GET(opts, session, false);
12130
12131
  /*
12132
   * User can specify 2 mutually exclusive set of inputs:
12133
   *
12134
   * 1) use only path/func_pattern/pid arguments
12135
   *
12136
   * 2) use path/pid with allowed combinations of:
12137
   *    syms/offsets/ref_ctr_offsets/cookies/cnt
12138
   *
12139
   *    - syms and offsets are mutually exclusive
12140
   *    - ref_ctr_offsets and cookies are optional
12141
   *
12142
   * Any other usage results in error.
12143
   */
12144
12145
0
  if (!path)
12146
0
    return libbpf_err_ptr(-EINVAL);
12147
0
  if (!func_pattern && cnt == 0)
12148
0
    return libbpf_err_ptr(-EINVAL);
12149
12150
0
  if (func_pattern) {
12151
0
    if (syms || offsets || ref_ctr_offsets || cookies || cnt)
12152
0
      return libbpf_err_ptr(-EINVAL);
12153
0
  } else {
12154
0
    if (!!syms == !!offsets)
12155
0
      return libbpf_err_ptr(-EINVAL);
12156
0
  }
12157
12158
0
  if (retprobe && session)
12159
0
    return libbpf_err_ptr(-EINVAL);
12160
12161
0
  if (func_pattern) {
12162
0
    if (!strchr(path, '/')) {
12163
0
      err = resolve_full_path(path, full_path, sizeof(full_path));
12164
0
      if (err) {
12165
0
        pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12166
0
          prog->name, path, errstr(err));
12167
0
        return libbpf_err_ptr(err);
12168
0
      }
12169
0
      path = full_path;
12170
0
    }
12171
12172
0
    err = elf_resolve_pattern_offsets(path, func_pattern,
12173
0
              &resolved_offsets, &cnt);
12174
0
    if (err < 0)
12175
0
      return libbpf_err_ptr(err);
12176
0
    offsets = resolved_offsets;
12177
0
  } else if (syms) {
12178
0
    err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
12179
0
    if (err < 0)
12180
0
      return libbpf_err_ptr(err);
12181
0
    offsets = resolved_offsets;
12182
0
  }
12183
12184
0
  attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI;
12185
12186
0
  lopts.uprobe_multi.path = path;
12187
0
  lopts.uprobe_multi.offsets = offsets;
12188
0
  lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
12189
0
  lopts.uprobe_multi.cookies = cookies;
12190
0
  lopts.uprobe_multi.cnt = cnt;
12191
0
  lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0;
12192
12193
0
  if (pid == 0)
12194
0
    pid = getpid();
12195
0
  if (pid > 0)
12196
0
    lopts.uprobe_multi.pid = pid;
12197
12198
0
  link = calloc(1, sizeof(*link));
12199
0
  if (!link) {
12200
0
    err = -ENOMEM;
12201
0
    goto error;
12202
0
  }
12203
0
  link->detach = &bpf_link__detach_fd;
12204
12205
0
  link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
12206
0
  if (link_fd < 0) {
12207
0
    err = -errno;
12208
0
    pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
12209
0
      prog->name, errstr(err));
12210
0
    goto error;
12211
0
  }
12212
0
  link->fd = link_fd;
12213
0
  free(resolved_offsets);
12214
0
  return link;
12215
12216
0
error:
12217
0
  free(resolved_offsets);
12218
0
  free(link);
12219
0
  return libbpf_err_ptr(err);
12220
0
}
12221
12222
LIBBPF_API struct bpf_link *
12223
bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12224
        const char *binary_path, size_t func_offset,
12225
        const struct bpf_uprobe_opts *opts)
12226
0
{
12227
0
  const char *archive_path = NULL, *archive_sep = NULL;
12228
0
  char *legacy_probe = NULL;
12229
0
  DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12230
0
  enum probe_attach_mode attach_mode;
12231
0
  char full_path[PATH_MAX];
12232
0
  struct bpf_link *link;
12233
0
  size_t ref_ctr_off;
12234
0
  int pfd, err;
12235
0
  bool retprobe, legacy;
12236
0
  const char *func_name;
12237
12238
0
  if (!OPTS_VALID(opts, bpf_uprobe_opts))
12239
0
    return libbpf_err_ptr(-EINVAL);
12240
12241
0
  attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12242
0
  retprobe = OPTS_GET(opts, retprobe, false);
12243
0
  ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12244
0
  pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12245
12246
0
  if (!binary_path)
12247
0
    return libbpf_err_ptr(-EINVAL);
12248
12249
  /* Check if "binary_path" refers to an archive. */
12250
0
  archive_sep = strstr(binary_path, "!/");
12251
0
  if (archive_sep) {
12252
0
    full_path[0] = '\0';
12253
0
    libbpf_strlcpy(full_path, binary_path,
12254
0
             min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12255
0
    archive_path = full_path;
12256
0
    binary_path = archive_sep + 2;
12257
0
  } else if (!strchr(binary_path, '/')) {
12258
0
    err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12259
0
    if (err) {
12260
0
      pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12261
0
        prog->name, binary_path, errstr(err));
12262
0
      return libbpf_err_ptr(err);
12263
0
    }
12264
0
    binary_path = full_path;
12265
0
  }
12266
0
  func_name = OPTS_GET(opts, func_name, NULL);
12267
0
  if (func_name) {
12268
0
    long sym_off;
12269
12270
0
    if (archive_path) {
12271
0
      sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12272
0
                    func_name);
12273
0
      binary_path = archive_path;
12274
0
    } else {
12275
0
      sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12276
0
    }
12277
0
    if (sym_off < 0)
12278
0
      return libbpf_err_ptr(sym_off);
12279
0
    func_offset += sym_off;
12280
0
  }
12281
12282
0
  legacy = determine_uprobe_perf_type() < 0;
12283
0
  switch (attach_mode) {
12284
0
  case PROBE_ATTACH_MODE_LEGACY:
12285
0
    legacy = true;
12286
0
    pe_opts.force_ioctl_attach = true;
12287
0
    break;
12288
0
  case PROBE_ATTACH_MODE_PERF:
12289
0
    if (legacy)
12290
0
      return libbpf_err_ptr(-ENOTSUP);
12291
0
    pe_opts.force_ioctl_attach = true;
12292
0
    break;
12293
0
  case PROBE_ATTACH_MODE_LINK:
12294
0
    if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12295
0
      return libbpf_err_ptr(-ENOTSUP);
12296
0
    break;
12297
0
  case PROBE_ATTACH_MODE_DEFAULT:
12298
0
    break;
12299
0
  default:
12300
0
    return libbpf_err_ptr(-EINVAL);
12301
0
  }
12302
12303
0
  if (!legacy) {
12304
0
    pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12305
0
              func_offset, pid, ref_ctr_off);
12306
0
  } else {
12307
0
    char probe_name[MAX_EVENT_NAME_LEN];
12308
12309
0
    if (ref_ctr_off)
12310
0
      return libbpf_err_ptr(-EINVAL);
12311
12312
0
    gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
12313
0
              strrchr(binary_path, '/') ? : binary_path,
12314
0
              func_offset);
12315
12316
0
    legacy_probe = strdup(probe_name);
12317
0
    if (!legacy_probe)
12318
0
      return libbpf_err_ptr(-ENOMEM);
12319
12320
0
    pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12321
0
                binary_path, func_offset, pid);
12322
0
  }
12323
0
  if (pfd < 0) {
12324
0
    err = -errno;
12325
0
    pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12326
0
      prog->name, retprobe ? "uretprobe" : "uprobe",
12327
0
      binary_path, func_offset,
12328
0
      errstr(err));
12329
0
    goto err_out;
12330
0
  }
12331
12332
0
  link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12333
0
  err = libbpf_get_error(link);
12334
0
  if (err) {
12335
0
    close(pfd);
12336
0
    pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12337
0
      prog->name, retprobe ? "uretprobe" : "uprobe",
12338
0
      binary_path, func_offset,
12339
0
      errstr(err));
12340
0
    goto err_clean_legacy;
12341
0
  }
12342
0
  if (legacy) {
12343
0
    struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12344
12345
0
    perf_link->legacy_probe_name = legacy_probe;
12346
0
    perf_link->legacy_is_kprobe = false;
12347
0
    perf_link->legacy_is_retprobe = retprobe;
12348
0
  }
12349
0
  return link;
12350
12351
0
err_clean_legacy:
12352
0
  if (legacy)
12353
0
    remove_uprobe_event_legacy(legacy_probe, retprobe);
12354
0
err_out:
12355
0
  free(legacy_probe);
12356
0
  return libbpf_err_ptr(err);
12357
0
}
12358
12359
/* Format of u[ret]probe section definition supporting auto-attach:
12360
 * u[ret]probe/binary:function[+offset]
12361
 *
12362
 * binary can be an absolute/relative path or a filename; the latter is resolved to a
12363
 * full binary path via bpf_program__attach_uprobe_opts.
12364
 *
12365
 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12366
 * specified (and auto-attach is not possible) or the above format is specified for
12367
 * auto-attach.
12368
 */
12369
static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12370
0
{
12371
0
  DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12372
0
  char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12373
0
  int n, c, ret = -EINVAL;
12374
0
  long offset = 0;
12375
12376
0
  *link = NULL;
12377
12378
0
  n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12379
0
       &probe_type, &binary_path, &func_name);
12380
0
  switch (n) {
12381
0
  case 1:
12382
    /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12383
0
    ret = 0;
12384
0
    break;
12385
0
  case 2:
12386
0
    pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12387
0
      prog->name, prog->sec_name);
12388
0
    break;
12389
0
  case 3:
12390
    /* check if user specifies `+offset`, if yes, this should be
12391
     * the last part of the string, make sure sscanf read to EOL
12392
     */
12393
0
    func_off = strrchr(func_name, '+');
12394
0
    if (func_off) {
12395
0
      n = sscanf(func_off, "+%li%n", &offset, &c);
12396
0
      if (n == 1 && *(func_off + c) == '\0')
12397
0
        func_off[0] = '\0';
12398
0
      else
12399
0
        offset = 0;
12400
0
    }
12401
0
    opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12402
0
        strcmp(probe_type, "uretprobe.s") == 0;
12403
0
    if (opts.retprobe && offset != 0) {
12404
0
      pr_warn("prog '%s': uretprobes do not support offset specification\n",
12405
0
        prog->name);
12406
0
      break;
12407
0
    }
12408
0
    opts.func_name = func_name;
12409
0
    *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12410
0
    ret = libbpf_get_error(*link);
12411
0
    break;
12412
0
  default:
12413
0
    pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12414
0
      prog->sec_name);
12415
0
    break;
12416
0
  }
12417
0
  free(probe_type);
12418
0
  free(binary_path);
12419
0
  free(func_name);
12420
12421
0
  return ret;
12422
0
}
12423
12424
struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12425
              bool retprobe, pid_t pid,
12426
              const char *binary_path,
12427
              size_t func_offset)
12428
0
{
12429
0
  DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12430
12431
0
  return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12432
0
}
12433
12434
struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12435
            pid_t pid, const char *binary_path,
12436
            const char *usdt_provider, const char *usdt_name,
12437
            const struct bpf_usdt_opts *opts)
12438
0
{
12439
0
  char resolved_path[512];
12440
0
  struct bpf_object *obj = prog->obj;
12441
0
  struct bpf_link *link;
12442
0
  __u64 usdt_cookie;
12443
0
  int err;
12444
12445
0
  if (!OPTS_VALID(opts, bpf_uprobe_opts))
12446
0
    return libbpf_err_ptr(-EINVAL);
12447
12448
0
  if (bpf_program__fd(prog) < 0) {
12449
0
    pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12450
0
      prog->name);
12451
0
    return libbpf_err_ptr(-EINVAL);
12452
0
  }
12453
12454
0
  if (!binary_path)
12455
0
    return libbpf_err_ptr(-EINVAL);
12456
12457
0
  if (!strchr(binary_path, '/')) {
12458
0
    err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12459
0
    if (err) {
12460
0
      pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12461
0
        prog->name, binary_path, errstr(err));
12462
0
      return libbpf_err_ptr(err);
12463
0
    }
12464
0
    binary_path = resolved_path;
12465
0
  }
12466
12467
  /* USDT manager is instantiated lazily on first USDT attach. It will
12468
   * be destroyed together with BPF object in bpf_object__close().
12469
   */
12470
0
  if (IS_ERR(obj->usdt_man))
12471
0
    return libbpf_ptr(obj->usdt_man);
12472
0
  if (!obj->usdt_man) {
12473
0
    obj->usdt_man = usdt_manager_new(obj);
12474
0
    if (IS_ERR(obj->usdt_man))
12475
0
      return libbpf_ptr(obj->usdt_man);
12476
0
  }
12477
12478
0
  usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12479
0
  link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12480
0
          usdt_provider, usdt_name, usdt_cookie);
12481
0
  err = libbpf_get_error(link);
12482
0
  if (err)
12483
0
    return libbpf_err_ptr(err);
12484
0
  return link;
12485
0
}
12486
12487
static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12488
0
{
12489
0
  char *path = NULL, *provider = NULL, *name = NULL;
12490
0
  const char *sec_name;
12491
0
  int n, err;
12492
12493
0
  sec_name = bpf_program__section_name(prog);
12494
0
  if (strcmp(sec_name, "usdt") == 0) {
12495
    /* no auto-attach for just SEC("usdt") */
12496
0
    *link = NULL;
12497
0
    return 0;
12498
0
  }
12499
12500
0
  n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12501
0
  if (n != 3) {
12502
0
    pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12503
0
      sec_name);
12504
0
    err = -EINVAL;
12505
0
  } else {
12506
0
    *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12507
0
             provider, name, NULL);
12508
0
    err = libbpf_get_error(*link);
12509
0
  }
12510
0
  free(path);
12511
0
  free(provider);
12512
0
  free(name);
12513
0
  return err;
12514
0
}
12515
12516
static int determine_tracepoint_id(const char *tp_category,
12517
           const char *tp_name)
12518
0
{
12519
0
  char file[PATH_MAX];
12520
0
  int ret;
12521
12522
0
  ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12523
0
           tracefs_path(), tp_category, tp_name);
12524
0
  if (ret < 0)
12525
0
    return -errno;
12526
0
  if (ret >= sizeof(file)) {
12527
0
    pr_debug("tracepoint %s/%s path is too long\n",
12528
0
       tp_category, tp_name);
12529
0
    return -E2BIG;
12530
0
  }
12531
0
  return parse_uint_from_file(file, "%d\n");
12532
0
}
12533
12534
static int perf_event_open_tracepoint(const char *tp_category,
12535
              const char *tp_name)
12536
0
{
12537
0
  const size_t attr_sz = sizeof(struct perf_event_attr);
12538
0
  struct perf_event_attr attr;
12539
0
  int tp_id, pfd, err;
12540
12541
0
  tp_id = determine_tracepoint_id(tp_category, tp_name);
12542
0
  if (tp_id < 0) {
12543
0
    pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12544
0
      tp_category, tp_name,
12545
0
      errstr(tp_id));
12546
0
    return tp_id;
12547
0
  }
12548
12549
0
  memset(&attr, 0, attr_sz);
12550
0
  attr.type = PERF_TYPE_TRACEPOINT;
12551
0
  attr.size = attr_sz;
12552
0
  attr.config = tp_id;
12553
12554
0
  pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12555
0
          -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12556
0
  if (pfd < 0) {
12557
0
    err = -errno;
12558
0
    pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12559
0
      tp_category, tp_name,
12560
0
      errstr(err));
12561
0
    return err;
12562
0
  }
12563
0
  return pfd;
12564
0
}
12565
12566
struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12567
                 const char *tp_category,
12568
                 const char *tp_name,
12569
                 const struct bpf_tracepoint_opts *opts)
12570
0
{
12571
0
  DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12572
0
  struct bpf_link *link;
12573
0
  int pfd, err;
12574
12575
0
  if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12576
0
    return libbpf_err_ptr(-EINVAL);
12577
12578
0
  pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12579
12580
0
  pfd = perf_event_open_tracepoint(tp_category, tp_name);
12581
0
  if (pfd < 0) {
12582
0
    pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12583
0
      prog->name, tp_category, tp_name,
12584
0
      errstr(pfd));
12585
0
    return libbpf_err_ptr(pfd);
12586
0
  }
12587
0
  link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12588
0
  err = libbpf_get_error(link);
12589
0
  if (err) {
12590
0
    close(pfd);
12591
0
    pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12592
0
      prog->name, tp_category, tp_name,
12593
0
      errstr(err));
12594
0
    return libbpf_err_ptr(err);
12595
0
  }
12596
0
  return link;
12597
0
}
12598
12599
struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12600
            const char *tp_category,
12601
            const char *tp_name)
12602
0
{
12603
0
  return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12604
0
}
12605
12606
static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12607
0
{
12608
0
  char *sec_name, *tp_cat, *tp_name;
12609
12610
0
  *link = NULL;
12611
12612
  /* no auto-attach for SEC("tp") or SEC("tracepoint") */
12613
0
  if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12614
0
    return 0;
12615
12616
0
  sec_name = strdup(prog->sec_name);
12617
0
  if (!sec_name)
12618
0
    return -ENOMEM;
12619
12620
  /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12621
0
  if (str_has_pfx(prog->sec_name, "tp/"))
12622
0
    tp_cat = sec_name + sizeof("tp/") - 1;
12623
0
  else
12624
0
    tp_cat = sec_name + sizeof("tracepoint/") - 1;
12625
0
  tp_name = strchr(tp_cat, '/');
12626
0
  if (!tp_name) {
12627
0
    free(sec_name);
12628
0
    return -EINVAL;
12629
0
  }
12630
0
  *tp_name = '\0';
12631
0
  tp_name++;
12632
12633
0
  *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12634
0
  free(sec_name);
12635
0
  return libbpf_get_error(*link);
12636
0
}
12637
12638
struct bpf_link *
12639
bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12640
          const char *tp_name,
12641
          struct bpf_raw_tracepoint_opts *opts)
12642
0
{
12643
0
  LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12644
0
  struct bpf_link *link;
12645
0
  int prog_fd, pfd;
12646
12647
0
  if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12648
0
    return libbpf_err_ptr(-EINVAL);
12649
12650
0
  prog_fd = bpf_program__fd(prog);
12651
0
  if (prog_fd < 0) {
12652
0
    pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12653
0
    return libbpf_err_ptr(-EINVAL);
12654
0
  }
12655
12656
0
  link = calloc(1, sizeof(*link));
12657
0
  if (!link)
12658
0
    return libbpf_err_ptr(-ENOMEM);
12659
0
  link->detach = &bpf_link__detach_fd;
12660
12661
0
  raw_opts.tp_name = tp_name;
12662
0
  raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12663
0
  pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12664
0
  if (pfd < 0) {
12665
0
    pfd = -errno;
12666
0
    free(link);
12667
0
    pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12668
0
      prog->name, tp_name, errstr(pfd));
12669
0
    return libbpf_err_ptr(pfd);
12670
0
  }
12671
0
  link->fd = pfd;
12672
0
  return link;
12673
0
}
12674
12675
struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12676
                const char *tp_name)
12677
0
{
12678
0
  return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12679
0
}
12680
12681
static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12682
0
{
12683
0
  static const char *const prefixes[] = {
12684
0
    "raw_tp",
12685
0
    "raw_tracepoint",
12686
0
    "raw_tp.w",
12687
0
    "raw_tracepoint.w",
12688
0
  };
12689
0
  size_t i;
12690
0
  const char *tp_name = NULL;
12691
12692
0
  *link = NULL;
12693
12694
0
  for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12695
0
    size_t pfx_len;
12696
12697
0
    if (!str_has_pfx(prog->sec_name, prefixes[i]))
12698
0
      continue;
12699
12700
0
    pfx_len = strlen(prefixes[i]);
12701
    /* no auto-attach case of, e.g., SEC("raw_tp") */
12702
0
    if (prog->sec_name[pfx_len] == '\0')
12703
0
      return 0;
12704
12705
0
    if (prog->sec_name[pfx_len] != '/')
12706
0
      continue;
12707
12708
0
    tp_name = prog->sec_name + pfx_len + 1;
12709
0
    break;
12710
0
  }
12711
12712
0
  if (!tp_name) {
12713
0
    pr_warn("prog '%s': invalid section name '%s'\n",
12714
0
      prog->name, prog->sec_name);
12715
0
    return -EINVAL;
12716
0
  }
12717
12718
0
  *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12719
0
  return libbpf_get_error(*link);
12720
0
}
12721
12722
/* Common logic for all BPF program types that attach to a btf_id */
12723
static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12724
               const struct bpf_trace_opts *opts)
12725
0
{
12726
0
  LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12727
0
  struct bpf_link *link;
12728
0
  int prog_fd, pfd;
12729
12730
0
  if (!OPTS_VALID(opts, bpf_trace_opts))
12731
0
    return libbpf_err_ptr(-EINVAL);
12732
12733
0
  prog_fd = bpf_program__fd(prog);
12734
0
  if (prog_fd < 0) {
12735
0
    pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12736
0
    return libbpf_err_ptr(-EINVAL);
12737
0
  }
12738
12739
0
  link = calloc(1, sizeof(*link));
12740
0
  if (!link)
12741
0
    return libbpf_err_ptr(-ENOMEM);
12742
0
  link->detach = &bpf_link__detach_fd;
12743
12744
  /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12745
0
  link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12746
0
  pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12747
0
  if (pfd < 0) {
12748
0
    pfd = -errno;
12749
0
    free(link);
12750
0
    pr_warn("prog '%s': failed to attach: %s\n",
12751
0
      prog->name, errstr(pfd));
12752
0
    return libbpf_err_ptr(pfd);
12753
0
  }
12754
0
  link->fd = pfd;
12755
0
  return link;
12756
0
}
12757
12758
struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12759
0
{
12760
0
  return bpf_program__attach_btf_id(prog, NULL);
12761
0
}
12762
12763
struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12764
            const struct bpf_trace_opts *opts)
12765
0
{
12766
0
  return bpf_program__attach_btf_id(prog, opts);
12767
0
}
12768
12769
struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12770
0
{
12771
0
  return bpf_program__attach_btf_id(prog, NULL);
12772
0
}
12773
12774
static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12775
0
{
12776
0
  *link = bpf_program__attach_trace(prog);
12777
0
  return libbpf_get_error(*link);
12778
0
}
12779
12780
static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12781
0
{
12782
0
  *link = bpf_program__attach_lsm(prog);
12783
0
  return libbpf_get_error(*link);
12784
0
}
12785
12786
static struct bpf_link *
12787
bpf_program_attach_fd(const struct bpf_program *prog,
12788
          int target_fd, const char *target_name,
12789
          const struct bpf_link_create_opts *opts)
12790
0
{
12791
0
  enum bpf_attach_type attach_type;
12792
0
  struct bpf_link *link;
12793
0
  int prog_fd, link_fd;
12794
12795
0
  prog_fd = bpf_program__fd(prog);
12796
0
  if (prog_fd < 0) {
12797
0
    pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12798
0
    return libbpf_err_ptr(-EINVAL);
12799
0
  }
12800
12801
0
  link = calloc(1, sizeof(*link));
12802
0
  if (!link)
12803
0
    return libbpf_err_ptr(-ENOMEM);
12804
0
  link->detach = &bpf_link__detach_fd;
12805
12806
0
  attach_type = bpf_program__expected_attach_type(prog);
12807
0
  link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12808
0
  if (link_fd < 0) {
12809
0
    link_fd = -errno;
12810
0
    free(link);
12811
0
    pr_warn("prog '%s': failed to attach to %s: %s\n",
12812
0
      prog->name, target_name,
12813
0
      errstr(link_fd));
12814
0
    return libbpf_err_ptr(link_fd);
12815
0
  }
12816
0
  link->fd = link_fd;
12817
0
  return link;
12818
0
}
12819
12820
struct bpf_link *
12821
bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12822
0
{
12823
0
  return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12824
0
}
12825
12826
struct bpf_link *
12827
bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12828
0
{
12829
0
  return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12830
0
}
12831
12832
struct bpf_link *
12833
bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
12834
0
{
12835
0
  return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
12836
0
}
12837
12838
struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12839
0
{
12840
  /* target_fd/target_ifindex use the same field in LINK_CREATE */
12841
0
  return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12842
0
}
12843
12844
struct bpf_link *
12845
bpf_program__attach_cgroup_opts(const struct bpf_program *prog, int cgroup_fd,
12846
        const struct bpf_cgroup_opts *opts)
12847
0
{
12848
0
  LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12849
0
  __u32 relative_id;
12850
0
  int relative_fd;
12851
12852
0
  if (!OPTS_VALID(opts, bpf_cgroup_opts))
12853
0
    return libbpf_err_ptr(-EINVAL);
12854
12855
0
  relative_id = OPTS_GET(opts, relative_id, 0);
12856
0
  relative_fd = OPTS_GET(opts, relative_fd, 0);
12857
12858
0
  if (relative_fd && relative_id) {
12859
0
    pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12860
0
      prog->name);
12861
0
    return libbpf_err_ptr(-EINVAL);
12862
0
  }
12863
12864
0
  link_create_opts.cgroup.expected_revision = OPTS_GET(opts, expected_revision, 0);
12865
0
  link_create_opts.cgroup.relative_fd = relative_fd;
12866
0
  link_create_opts.cgroup.relative_id = relative_id;
12867
0
  link_create_opts.flags = OPTS_GET(opts, flags, 0);
12868
12869
0
  return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", &link_create_opts);
12870
0
}
12871
12872
struct bpf_link *
12873
bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12874
      const struct bpf_tcx_opts *opts)
12875
0
{
12876
0
  LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12877
0
  __u32 relative_id;
12878
0
  int relative_fd;
12879
12880
0
  if (!OPTS_VALID(opts, bpf_tcx_opts))
12881
0
    return libbpf_err_ptr(-EINVAL);
12882
12883
0
  relative_id = OPTS_GET(opts, relative_id, 0);
12884
0
  relative_fd = OPTS_GET(opts, relative_fd, 0);
12885
12886
  /* validate we don't have unexpected combinations of non-zero fields */
12887
0
  if (!ifindex) {
12888
0
    pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12889
0
      prog->name);
12890
0
    return libbpf_err_ptr(-EINVAL);
12891
0
  }
12892
0
  if (relative_fd && relative_id) {
12893
0
    pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12894
0
      prog->name);
12895
0
    return libbpf_err_ptr(-EINVAL);
12896
0
  }
12897
12898
0
  link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12899
0
  link_create_opts.tcx.relative_fd = relative_fd;
12900
0
  link_create_opts.tcx.relative_id = relative_id;
12901
0
  link_create_opts.flags = OPTS_GET(opts, flags, 0);
12902
12903
  /* target_fd/target_ifindex use the same field in LINK_CREATE */
12904
0
  return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12905
0
}
12906
12907
struct bpf_link *
12908
bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12909
         const struct bpf_netkit_opts *opts)
12910
0
{
12911
0
  LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12912
0
  __u32 relative_id;
12913
0
  int relative_fd;
12914
12915
0
  if (!OPTS_VALID(opts, bpf_netkit_opts))
12916
0
    return libbpf_err_ptr(-EINVAL);
12917
12918
0
  relative_id = OPTS_GET(opts, relative_id, 0);
12919
0
  relative_fd = OPTS_GET(opts, relative_fd, 0);
12920
12921
  /* validate we don't have unexpected combinations of non-zero fields */
12922
0
  if (!ifindex) {
12923
0
    pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12924
0
      prog->name);
12925
0
    return libbpf_err_ptr(-EINVAL);
12926
0
  }
12927
0
  if (relative_fd && relative_id) {
12928
0
    pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12929
0
      prog->name);
12930
0
    return libbpf_err_ptr(-EINVAL);
12931
0
  }
12932
12933
0
  link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12934
0
  link_create_opts.netkit.relative_fd = relative_fd;
12935
0
  link_create_opts.netkit.relative_id = relative_id;
12936
0
  link_create_opts.flags = OPTS_GET(opts, flags, 0);
12937
12938
0
  return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12939
0
}
12940
12941
struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12942
                int target_fd,
12943
                const char *attach_func_name)
12944
0
{
12945
0
  int btf_id;
12946
12947
0
  if (!!target_fd != !!attach_func_name) {
12948
0
    pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12949
0
      prog->name);
12950
0
    return libbpf_err_ptr(-EINVAL);
12951
0
  }
12952
12953
0
  if (prog->type != BPF_PROG_TYPE_EXT) {
12954
0
    pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n",
12955
0
      prog->name);
12956
0
    return libbpf_err_ptr(-EINVAL);
12957
0
  }
12958
12959
0
  if (target_fd) {
12960
0
    LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12961
12962
0
    btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd);
12963
0
    if (btf_id < 0)
12964
0
      return libbpf_err_ptr(btf_id);
12965
12966
0
    target_opts.target_btf_id = btf_id;
12967
12968
0
    return bpf_program_attach_fd(prog, target_fd, "freplace",
12969
0
               &target_opts);
12970
0
  } else {
12971
    /* no target, so use raw_tracepoint_open for compatibility
12972
     * with old kernels
12973
     */
12974
0
    return bpf_program__attach_trace(prog);
12975
0
  }
12976
0
}
12977
12978
struct bpf_link *
12979
bpf_program__attach_iter(const struct bpf_program *prog,
12980
       const struct bpf_iter_attach_opts *opts)
12981
0
{
12982
0
  DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12983
0
  struct bpf_link *link;
12984
0
  int prog_fd, link_fd;
12985
0
  __u32 target_fd = 0;
12986
12987
0
  if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12988
0
    return libbpf_err_ptr(-EINVAL);
12989
12990
0
  link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12991
0
  link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12992
12993
0
  prog_fd = bpf_program__fd(prog);
12994
0
  if (prog_fd < 0) {
12995
0
    pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12996
0
    return libbpf_err_ptr(-EINVAL);
12997
0
  }
12998
12999
0
  link = calloc(1, sizeof(*link));
13000
0
  if (!link)
13001
0
    return libbpf_err_ptr(-ENOMEM);
13002
0
  link->detach = &bpf_link__detach_fd;
13003
13004
0
  link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
13005
0
          &link_create_opts);
13006
0
  if (link_fd < 0) {
13007
0
    link_fd = -errno;
13008
0
    free(link);
13009
0
    pr_warn("prog '%s': failed to attach to iterator: %s\n",
13010
0
      prog->name, errstr(link_fd));
13011
0
    return libbpf_err_ptr(link_fd);
13012
0
  }
13013
0
  link->fd = link_fd;
13014
0
  return link;
13015
0
}
13016
13017
static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
13018
0
{
13019
0
  *link = bpf_program__attach_iter(prog, NULL);
13020
0
  return libbpf_get_error(*link);
13021
0
}
13022
13023
struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
13024
                 const struct bpf_netfilter_opts *opts)
13025
0
{
13026
0
  LIBBPF_OPTS(bpf_link_create_opts, lopts);
13027
0
  struct bpf_link *link;
13028
0
  int prog_fd, link_fd;
13029
13030
0
  if (!OPTS_VALID(opts, bpf_netfilter_opts))
13031
0
    return libbpf_err_ptr(-EINVAL);
13032
13033
0
  prog_fd = bpf_program__fd(prog);
13034
0
  if (prog_fd < 0) {
13035
0
    pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13036
0
    return libbpf_err_ptr(-EINVAL);
13037
0
  }
13038
13039
0
  link = calloc(1, sizeof(*link));
13040
0
  if (!link)
13041
0
    return libbpf_err_ptr(-ENOMEM);
13042
13043
0
  link->detach = &bpf_link__detach_fd;
13044
13045
0
  lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
13046
0
  lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
13047
0
  lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
13048
0
  lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
13049
13050
0
  link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
13051
0
  if (link_fd < 0) {
13052
0
    link_fd = -errno;
13053
0
    free(link);
13054
0
    pr_warn("prog '%s': failed to attach to netfilter: %s\n",
13055
0
      prog->name, errstr(link_fd));
13056
0
    return libbpf_err_ptr(link_fd);
13057
0
  }
13058
0
  link->fd = link_fd;
13059
13060
0
  return link;
13061
0
}
13062
13063
struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
13064
0
{
13065
0
  struct bpf_link *link = NULL;
13066
0
  int err;
13067
13068
0
  if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13069
0
    return libbpf_err_ptr(-EOPNOTSUPP);
13070
13071
0
  if (bpf_program__fd(prog) < 0) {
13072
0
    pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
13073
0
      prog->name);
13074
0
    return libbpf_err_ptr(-EINVAL);
13075
0
  }
13076
13077
0
  err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
13078
0
  if (err)
13079
0
    return libbpf_err_ptr(err);
13080
13081
  /* When calling bpf_program__attach() explicitly, auto-attach support
13082
   * is expected to work, so NULL returned link is considered an error.
13083
   * This is different for skeleton's attach, see comment in
13084
   * bpf_object__attach_skeleton().
13085
   */
13086
0
  if (!link)
13087
0
    return libbpf_err_ptr(-EOPNOTSUPP);
13088
13089
0
  return link;
13090
0
}
13091
13092
struct bpf_link_struct_ops {
13093
  struct bpf_link link;
13094
  int map_fd;
13095
};
13096
13097
static int bpf_link__detach_struct_ops(struct bpf_link *link)
13098
0
{
13099
0
  struct bpf_link_struct_ops *st_link;
13100
0
  __u32 zero = 0;
13101
13102
0
  st_link = container_of(link, struct bpf_link_struct_ops, link);
13103
13104
0
  if (st_link->map_fd < 0)
13105
    /* w/o a real link */
13106
0
    return bpf_map_delete_elem(link->fd, &zero);
13107
13108
0
  return close(link->fd);
13109
0
}
13110
13111
struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
13112
0
{
13113
0
  struct bpf_link_struct_ops *link;
13114
0
  __u32 zero = 0;
13115
0
  int err, fd;
13116
13117
0
  if (!bpf_map__is_struct_ops(map)) {
13118
0
    pr_warn("map '%s': can't attach non-struct_ops map\n", map->name);
13119
0
    return libbpf_err_ptr(-EINVAL);
13120
0
  }
13121
13122
0
  if (map->fd < 0) {
13123
0
    pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
13124
0
    return libbpf_err_ptr(-EINVAL);
13125
0
  }
13126
13127
0
  link = calloc(1, sizeof(*link));
13128
0
  if (!link)
13129
0
    return libbpf_err_ptr(-EINVAL);
13130
13131
  /* kern_vdata should be prepared during the loading phase. */
13132
0
  err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13133
  /* It can be EBUSY if the map has been used to create or
13134
   * update a link before.  We don't allow updating the value of
13135
   * a struct_ops once it is set.  That ensures that the value
13136
   * never changed.  So, it is safe to skip EBUSY.
13137
   */
13138
0
  if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
13139
0
    free(link);
13140
0
    return libbpf_err_ptr(err);
13141
0
  }
13142
13143
0
  link->link.detach = bpf_link__detach_struct_ops;
13144
13145
0
  if (!(map->def.map_flags & BPF_F_LINK)) {
13146
    /* w/o a real link */
13147
0
    link->link.fd = map->fd;
13148
0
    link->map_fd = -1;
13149
0
    return &link->link;
13150
0
  }
13151
13152
0
  fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
13153
0
  if (fd < 0) {
13154
0
    free(link);
13155
0
    return libbpf_err_ptr(fd);
13156
0
  }
13157
13158
0
  link->link.fd = fd;
13159
0
  link->map_fd = map->fd;
13160
13161
0
  return &link->link;
13162
0
}
13163
13164
/*
13165
 * Swap the back struct_ops of a link with a new struct_ops map.
13166
 */
13167
int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
13168
0
{
13169
0
  struct bpf_link_struct_ops *st_ops_link;
13170
0
  __u32 zero = 0;
13171
0
  int err;
13172
13173
0
  if (!bpf_map__is_struct_ops(map))
13174
0
    return libbpf_err(-EINVAL);
13175
13176
0
  if (map->fd < 0) {
13177
0
    pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
13178
0
    return libbpf_err(-EINVAL);
13179
0
  }
13180
13181
0
  st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
13182
  /* Ensure the type of a link is correct */
13183
0
  if (st_ops_link->map_fd < 0)
13184
0
    return libbpf_err(-EINVAL);
13185
13186
0
  err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13187
  /* It can be EBUSY if the map has been used to create or
13188
   * update a link before.  We don't allow updating the value of
13189
   * a struct_ops once it is set.  That ensures that the value
13190
   * never changed.  So, it is safe to skip EBUSY.
13191
   */
13192
0
  if (err && err != -EBUSY)
13193
0
    return err;
13194
13195
0
  err = bpf_link_update(link->fd, map->fd, NULL);
13196
0
  if (err < 0)
13197
0
    return err;
13198
13199
0
  st_ops_link->map_fd = map->fd;
13200
13201
0
  return 0;
13202
0
}
13203
13204
typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
13205
                void *private_data);
13206
13207
static enum bpf_perf_event_ret
13208
perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
13209
           void **copy_mem, size_t *copy_size,
13210
           bpf_perf_event_print_t fn, void *private_data)
13211
0
{
13212
0
  struct perf_event_mmap_page *header = mmap_mem;
13213
0
  __u64 data_head = ring_buffer_read_head(header);
13214
0
  __u64 data_tail = header->data_tail;
13215
0
  void *base = ((__u8 *)header) + page_size;
13216
0
  int ret = LIBBPF_PERF_EVENT_CONT;
13217
0
  struct perf_event_header *ehdr;
13218
0
  size_t ehdr_size;
13219
13220
0
  while (data_head != data_tail) {
13221
0
    ehdr = base + (data_tail & (mmap_size - 1));
13222
0
    ehdr_size = ehdr->size;
13223
13224
0
    if (((void *)ehdr) + ehdr_size > base + mmap_size) {
13225
0
      void *copy_start = ehdr;
13226
0
      size_t len_first = base + mmap_size - copy_start;
13227
0
      size_t len_secnd = ehdr_size - len_first;
13228
13229
0
      if (*copy_size < ehdr_size) {
13230
0
        free(*copy_mem);
13231
0
        *copy_mem = malloc(ehdr_size);
13232
0
        if (!*copy_mem) {
13233
0
          *copy_size = 0;
13234
0
          ret = LIBBPF_PERF_EVENT_ERROR;
13235
0
          break;
13236
0
        }
13237
0
        *copy_size = ehdr_size;
13238
0
      }
13239
13240
0
      memcpy(*copy_mem, copy_start, len_first);
13241
0
      memcpy(*copy_mem + len_first, base, len_secnd);
13242
0
      ehdr = *copy_mem;
13243
0
    }
13244
13245
0
    ret = fn(ehdr, private_data);
13246
0
    data_tail += ehdr_size;
13247
0
    if (ret != LIBBPF_PERF_EVENT_CONT)
13248
0
      break;
13249
0
  }
13250
13251
0
  ring_buffer_write_tail(header, data_tail);
13252
0
  return libbpf_err(ret);
13253
0
}
13254
13255
struct perf_buffer;
13256
13257
struct perf_buffer_params {
13258
  struct perf_event_attr *attr;
13259
  /* if event_cb is specified, it takes precendence */
13260
  perf_buffer_event_fn event_cb;
13261
  /* sample_cb and lost_cb are higher-level common-case callbacks */
13262
  perf_buffer_sample_fn sample_cb;
13263
  perf_buffer_lost_fn lost_cb;
13264
  void *ctx;
13265
  int cpu_cnt;
13266
  int *cpus;
13267
  int *map_keys;
13268
};
13269
13270
struct perf_cpu_buf {
13271
  struct perf_buffer *pb;
13272
  void *base; /* mmap()'ed memory */
13273
  void *buf; /* for reconstructing segmented data */
13274
  size_t buf_size;
13275
  int fd;
13276
  int cpu;
13277
  int map_key;
13278
};
13279
13280
struct perf_buffer {
13281
  perf_buffer_event_fn event_cb;
13282
  perf_buffer_sample_fn sample_cb;
13283
  perf_buffer_lost_fn lost_cb;
13284
  void *ctx; /* passed into callbacks */
13285
13286
  size_t page_size;
13287
  size_t mmap_size;
13288
  struct perf_cpu_buf **cpu_bufs;
13289
  struct epoll_event *events;
13290
  int cpu_cnt; /* number of allocated CPU buffers */
13291
  int epoll_fd; /* perf event FD */
13292
  int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13293
};
13294
13295
static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13296
              struct perf_cpu_buf *cpu_buf)
13297
0
{
13298
0
  if (!cpu_buf)
13299
0
    return;
13300
0
  if (cpu_buf->base &&
13301
0
      munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13302
0
    pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13303
0
  if (cpu_buf->fd >= 0) {
13304
0
    ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13305
0
    close(cpu_buf->fd);
13306
0
  }
13307
0
  free(cpu_buf->buf);
13308
0
  free(cpu_buf);
13309
0
}
13310
13311
void perf_buffer__free(struct perf_buffer *pb)
13312
0
{
13313
0
  int i;
13314
13315
0
  if (IS_ERR_OR_NULL(pb))
13316
0
    return;
13317
0
  if (pb->cpu_bufs) {
13318
0
    for (i = 0; i < pb->cpu_cnt; i++) {
13319
0
      struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13320
13321
0
      if (!cpu_buf)
13322
0
        continue;
13323
13324
0
      bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13325
0
      perf_buffer__free_cpu_buf(pb, cpu_buf);
13326
0
    }
13327
0
    free(pb->cpu_bufs);
13328
0
  }
13329
0
  if (pb->epoll_fd >= 0)
13330
0
    close(pb->epoll_fd);
13331
0
  free(pb->events);
13332
0
  free(pb);
13333
0
}
13334
13335
static struct perf_cpu_buf *
13336
perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13337
        int cpu, int map_key)
13338
0
{
13339
0
  struct perf_cpu_buf *cpu_buf;
13340
0
  int err;
13341
13342
0
  cpu_buf = calloc(1, sizeof(*cpu_buf));
13343
0
  if (!cpu_buf)
13344
0
    return ERR_PTR(-ENOMEM);
13345
13346
0
  cpu_buf->pb = pb;
13347
0
  cpu_buf->cpu = cpu;
13348
0
  cpu_buf->map_key = map_key;
13349
13350
0
  cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13351
0
            -1, PERF_FLAG_FD_CLOEXEC);
13352
0
  if (cpu_buf->fd < 0) {
13353
0
    err = -errno;
13354
0
    pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13355
0
      cpu, errstr(err));
13356
0
    goto error;
13357
0
  }
13358
13359
0
  cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13360
0
           PROT_READ | PROT_WRITE, MAP_SHARED,
13361
0
           cpu_buf->fd, 0);
13362
0
  if (cpu_buf->base == MAP_FAILED) {
13363
0
    cpu_buf->base = NULL;
13364
0
    err = -errno;
13365
0
    pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13366
0
      cpu, errstr(err));
13367
0
    goto error;
13368
0
  }
13369
13370
0
  if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13371
0
    err = -errno;
13372
0
    pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13373
0
      cpu, errstr(err));
13374
0
    goto error;
13375
0
  }
13376
13377
0
  return cpu_buf;
13378
13379
0
error:
13380
0
  perf_buffer__free_cpu_buf(pb, cpu_buf);
13381
0
  return (struct perf_cpu_buf *)ERR_PTR(err);
13382
0
}
13383
13384
static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13385
                struct perf_buffer_params *p);
13386
13387
struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13388
             perf_buffer_sample_fn sample_cb,
13389
             perf_buffer_lost_fn lost_cb,
13390
             void *ctx,
13391
             const struct perf_buffer_opts *opts)
13392
0
{
13393
0
  const size_t attr_sz = sizeof(struct perf_event_attr);
13394
0
  struct perf_buffer_params p = {};
13395
0
  struct perf_event_attr attr;
13396
0
  __u32 sample_period;
13397
13398
0
  if (!OPTS_VALID(opts, perf_buffer_opts))
13399
0
    return libbpf_err_ptr(-EINVAL);
13400
13401
0
  sample_period = OPTS_GET(opts, sample_period, 1);
13402
0
  if (!sample_period)
13403
0
    sample_period = 1;
13404
13405
0
  memset(&attr, 0, attr_sz);
13406
0
  attr.size = attr_sz;
13407
0
  attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13408
0
  attr.type = PERF_TYPE_SOFTWARE;
13409
0
  attr.sample_type = PERF_SAMPLE_RAW;
13410
0
  attr.wakeup_events = sample_period;
13411
13412
0
  p.attr = &attr;
13413
0
  p.sample_cb = sample_cb;
13414
0
  p.lost_cb = lost_cb;
13415
0
  p.ctx = ctx;
13416
13417
0
  return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13418
0
}
13419
13420
struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13421
           struct perf_event_attr *attr,
13422
           perf_buffer_event_fn event_cb, void *ctx,
13423
           const struct perf_buffer_raw_opts *opts)
13424
0
{
13425
0
  struct perf_buffer_params p = {};
13426
13427
0
  if (!attr)
13428
0
    return libbpf_err_ptr(-EINVAL);
13429
13430
0
  if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13431
0
    return libbpf_err_ptr(-EINVAL);
13432
13433
0
  p.attr = attr;
13434
0
  p.event_cb = event_cb;
13435
0
  p.ctx = ctx;
13436
0
  p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13437
0
  p.cpus = OPTS_GET(opts, cpus, NULL);
13438
0
  p.map_keys = OPTS_GET(opts, map_keys, NULL);
13439
13440
0
  return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13441
0
}
13442
13443
static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13444
                struct perf_buffer_params *p)
13445
0
{
13446
0
  const char *online_cpus_file = "/sys/devices/system/cpu/online";
13447
0
  struct bpf_map_info map;
13448
0
  struct perf_buffer *pb;
13449
0
  bool *online = NULL;
13450
0
  __u32 map_info_len;
13451
0
  int err, i, j, n;
13452
13453
0
  if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13454
0
    pr_warn("page count should be power of two, but is %zu\n",
13455
0
      page_cnt);
13456
0
    return ERR_PTR(-EINVAL);
13457
0
  }
13458
13459
  /* best-effort sanity checks */
13460
0
  memset(&map, 0, sizeof(map));
13461
0
  map_info_len = sizeof(map);
13462
0
  err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13463
0
  if (err) {
13464
0
    err = -errno;
13465
    /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13466
     * -EBADFD, -EFAULT, or -E2BIG on real error
13467
     */
13468
0
    if (err != -EINVAL) {
13469
0
      pr_warn("failed to get map info for map FD %d: %s\n",
13470
0
        map_fd, errstr(err));
13471
0
      return ERR_PTR(err);
13472
0
    }
13473
0
    pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13474
0
       map_fd);
13475
0
  } else {
13476
0
    if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13477
0
      pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13478
0
        map.name);
13479
0
      return ERR_PTR(-EINVAL);
13480
0
    }
13481
0
  }
13482
13483
0
  pb = calloc(1, sizeof(*pb));
13484
0
  if (!pb)
13485
0
    return ERR_PTR(-ENOMEM);
13486
13487
0
  pb->event_cb = p->event_cb;
13488
0
  pb->sample_cb = p->sample_cb;
13489
0
  pb->lost_cb = p->lost_cb;
13490
0
  pb->ctx = p->ctx;
13491
13492
0
  pb->page_size = getpagesize();
13493
0
  pb->mmap_size = pb->page_size * page_cnt;
13494
0
  pb->map_fd = map_fd;
13495
13496
0
  pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13497
0
  if (pb->epoll_fd < 0) {
13498
0
    err = -errno;
13499
0
    pr_warn("failed to create epoll instance: %s\n",
13500
0
      errstr(err));
13501
0
    goto error;
13502
0
  }
13503
13504
0
  if (p->cpu_cnt > 0) {
13505
0
    pb->cpu_cnt = p->cpu_cnt;
13506
0
  } else {
13507
0
    pb->cpu_cnt = libbpf_num_possible_cpus();
13508
0
    if (pb->cpu_cnt < 0) {
13509
0
      err = pb->cpu_cnt;
13510
0
      goto error;
13511
0
    }
13512
0
    if (map.max_entries && map.max_entries < pb->cpu_cnt)
13513
0
      pb->cpu_cnt = map.max_entries;
13514
0
  }
13515
13516
0
  pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13517
0
  if (!pb->events) {
13518
0
    err = -ENOMEM;
13519
0
    pr_warn("failed to allocate events: out of memory\n");
13520
0
    goto error;
13521
0
  }
13522
0
  pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13523
0
  if (!pb->cpu_bufs) {
13524
0
    err = -ENOMEM;
13525
0
    pr_warn("failed to allocate buffers: out of memory\n");
13526
0
    goto error;
13527
0
  }
13528
13529
0
  err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13530
0
  if (err) {
13531
0
    pr_warn("failed to get online CPU mask: %s\n", errstr(err));
13532
0
    goto error;
13533
0
  }
13534
13535
0
  for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13536
0
    struct perf_cpu_buf *cpu_buf;
13537
0
    int cpu, map_key;
13538
13539
0
    cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13540
0
    map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13541
13542
    /* in case user didn't explicitly requested particular CPUs to
13543
     * be attached to, skip offline/not present CPUs
13544
     */
13545
0
    if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13546
0
      continue;
13547
13548
0
    cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13549
0
    if (IS_ERR(cpu_buf)) {
13550
0
      err = PTR_ERR(cpu_buf);
13551
0
      goto error;
13552
0
    }
13553
13554
0
    pb->cpu_bufs[j] = cpu_buf;
13555
13556
0
    err = bpf_map_update_elem(pb->map_fd, &map_key,
13557
0
            &cpu_buf->fd, 0);
13558
0
    if (err) {
13559
0
      err = -errno;
13560
0
      pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13561
0
        cpu, map_key, cpu_buf->fd,
13562
0
        errstr(err));
13563
0
      goto error;
13564
0
    }
13565
13566
0
    pb->events[j].events = EPOLLIN;
13567
0
    pb->events[j].data.ptr = cpu_buf;
13568
0
    if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13569
0
            &pb->events[j]) < 0) {
13570
0
      err = -errno;
13571
0
      pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13572
0
        cpu, cpu_buf->fd,
13573
0
        errstr(err));
13574
0
      goto error;
13575
0
    }
13576
0
    j++;
13577
0
  }
13578
0
  pb->cpu_cnt = j;
13579
0
  free(online);
13580
13581
0
  return pb;
13582
13583
0
error:
13584
0
  free(online);
13585
0
  if (pb)
13586
0
    perf_buffer__free(pb);
13587
0
  return ERR_PTR(err);
13588
0
}
13589
13590
struct perf_sample_raw {
13591
  struct perf_event_header header;
13592
  uint32_t size;
13593
  char data[];
13594
};
13595
13596
struct perf_sample_lost {
13597
  struct perf_event_header header;
13598
  uint64_t id;
13599
  uint64_t lost;
13600
  uint64_t sample_id;
13601
};
13602
13603
static enum bpf_perf_event_ret
13604
perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13605
0
{
13606
0
  struct perf_cpu_buf *cpu_buf = ctx;
13607
0
  struct perf_buffer *pb = cpu_buf->pb;
13608
0
  void *data = e;
13609
13610
  /* user wants full control over parsing perf event */
13611
0
  if (pb->event_cb)
13612
0
    return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13613
13614
0
  switch (e->type) {
13615
0
  case PERF_RECORD_SAMPLE: {
13616
0
    struct perf_sample_raw *s = data;
13617
13618
0
    if (pb->sample_cb)
13619
0
      pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13620
0
    break;
13621
0
  }
13622
0
  case PERF_RECORD_LOST: {
13623
0
    struct perf_sample_lost *s = data;
13624
13625
0
    if (pb->lost_cb)
13626
0
      pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13627
0
    break;
13628
0
  }
13629
0
  default:
13630
0
    pr_warn("unknown perf sample type %d\n", e->type);
13631
0
    return LIBBPF_PERF_EVENT_ERROR;
13632
0
  }
13633
0
  return LIBBPF_PERF_EVENT_CONT;
13634
0
}
13635
13636
static int perf_buffer__process_records(struct perf_buffer *pb,
13637
          struct perf_cpu_buf *cpu_buf)
13638
0
{
13639
0
  enum bpf_perf_event_ret ret;
13640
13641
0
  ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13642
0
             pb->page_size, &cpu_buf->buf,
13643
0
             &cpu_buf->buf_size,
13644
0
             perf_buffer__process_record, cpu_buf);
13645
0
  if (ret != LIBBPF_PERF_EVENT_CONT)
13646
0
    return ret;
13647
0
  return 0;
13648
0
}
13649
13650
int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13651
0
{
13652
0
  return pb->epoll_fd;
13653
0
}
13654
13655
int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13656
0
{
13657
0
  int i, cnt, err;
13658
13659
0
  cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13660
0
  if (cnt < 0)
13661
0
    return -errno;
13662
13663
0
  for (i = 0; i < cnt; i++) {
13664
0
    struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13665
13666
0
    err = perf_buffer__process_records(pb, cpu_buf);
13667
0
    if (err) {
13668
0
      pr_warn("error while processing records: %s\n", errstr(err));
13669
0
      return libbpf_err(err);
13670
0
    }
13671
0
  }
13672
0
  return cnt;
13673
0
}
13674
13675
/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13676
 * manager.
13677
 */
13678
size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13679
0
{
13680
0
  return pb->cpu_cnt;
13681
0
}
13682
13683
/*
13684
 * Return perf_event FD of a ring buffer in *buf_idx* slot of
13685
 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13686
 * select()/poll()/epoll() Linux syscalls.
13687
 */
13688
int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13689
0
{
13690
0
  struct perf_cpu_buf *cpu_buf;
13691
13692
0
  if (buf_idx >= pb->cpu_cnt)
13693
0
    return libbpf_err(-EINVAL);
13694
13695
0
  cpu_buf = pb->cpu_bufs[buf_idx];
13696
0
  if (!cpu_buf)
13697
0
    return libbpf_err(-ENOENT);
13698
13699
0
  return cpu_buf->fd;
13700
0
}
13701
13702
int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13703
0
{
13704
0
  struct perf_cpu_buf *cpu_buf;
13705
13706
0
  if (buf_idx >= pb->cpu_cnt)
13707
0
    return libbpf_err(-EINVAL);
13708
13709
0
  cpu_buf = pb->cpu_bufs[buf_idx];
13710
0
  if (!cpu_buf)
13711
0
    return libbpf_err(-ENOENT);
13712
13713
0
  *buf = cpu_buf->base;
13714
0
  *buf_size = pb->mmap_size;
13715
0
  return 0;
13716
0
}
13717
13718
/*
13719
 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13720
 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13721
 * consume, do nothing and return success.
13722
 * Returns:
13723
 *   - 0 on success;
13724
 *   - <0 on failure.
13725
 */
13726
int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13727
0
{
13728
0
  struct perf_cpu_buf *cpu_buf;
13729
13730
0
  if (buf_idx >= pb->cpu_cnt)
13731
0
    return libbpf_err(-EINVAL);
13732
13733
0
  cpu_buf = pb->cpu_bufs[buf_idx];
13734
0
  if (!cpu_buf)
13735
0
    return libbpf_err(-ENOENT);
13736
13737
0
  return perf_buffer__process_records(pb, cpu_buf);
13738
0
}
13739
13740
int perf_buffer__consume(struct perf_buffer *pb)
13741
0
{
13742
0
  int i, err;
13743
13744
0
  for (i = 0; i < pb->cpu_cnt; i++) {
13745
0
    struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13746
13747
0
    if (!cpu_buf)
13748
0
      continue;
13749
13750
0
    err = perf_buffer__process_records(pb, cpu_buf);
13751
0
    if (err) {
13752
0
      pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n",
13753
0
        i, errstr(err));
13754
0
      return libbpf_err(err);
13755
0
    }
13756
0
  }
13757
0
  return 0;
13758
0
}
13759
13760
int bpf_program__set_attach_target(struct bpf_program *prog,
13761
           int attach_prog_fd,
13762
           const char *attach_func_name)
13763
0
{
13764
0
  int btf_obj_fd = 0, btf_id = 0, err;
13765
13766
0
  if (!prog || attach_prog_fd < 0)
13767
0
    return libbpf_err(-EINVAL);
13768
13769
0
  if (prog->obj->state >= OBJ_LOADED)
13770
0
    return libbpf_err(-EINVAL);
13771
13772
0
  if (attach_prog_fd && !attach_func_name) {
13773
    /* remember attach_prog_fd and let bpf_program__load() find
13774
     * BTF ID during the program load
13775
     */
13776
0
    prog->attach_prog_fd = attach_prog_fd;
13777
0
    return 0;
13778
0
  }
13779
13780
0
  if (attach_prog_fd) {
13781
0
    btf_id = libbpf_find_prog_btf_id(attach_func_name,
13782
0
             attach_prog_fd, prog->obj->token_fd);
13783
0
    if (btf_id < 0)
13784
0
      return libbpf_err(btf_id);
13785
0
  } else {
13786
0
    if (!attach_func_name)
13787
0
      return libbpf_err(-EINVAL);
13788
13789
    /* load btf_vmlinux, if not yet */
13790
0
    err = bpf_object__load_vmlinux_btf(prog->obj, true);
13791
0
    if (err)
13792
0
      return libbpf_err(err);
13793
0
    err = find_kernel_btf_id(prog->obj, attach_func_name,
13794
0
           prog->expected_attach_type,
13795
0
           &btf_obj_fd, &btf_id);
13796
0
    if (err)
13797
0
      return libbpf_err(err);
13798
0
  }
13799
13800
0
  prog->attach_btf_id = btf_id;
13801
0
  prog->attach_btf_obj_fd = btf_obj_fd;
13802
0
  prog->attach_prog_fd = attach_prog_fd;
13803
0
  return 0;
13804
0
}
13805
13806
int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13807
0
{
13808
0
  int err = 0, n, len, start, end = -1;
13809
0
  bool *tmp;
13810
13811
0
  *mask = NULL;
13812
0
  *mask_sz = 0;
13813
13814
  /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13815
0
  while (*s) {
13816
0
    if (*s == ',' || *s == '\n') {
13817
0
      s++;
13818
0
      continue;
13819
0
    }
13820
0
    n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13821
0
    if (n <= 0 || n > 2) {
13822
0
      pr_warn("Failed to get CPU range %s: %d\n", s, n);
13823
0
      err = -EINVAL;
13824
0
      goto cleanup;
13825
0
    } else if (n == 1) {
13826
0
      end = start;
13827
0
    }
13828
0
    if (start < 0 || start > end) {
13829
0
      pr_warn("Invalid CPU range [%d,%d] in %s\n",
13830
0
        start, end, s);
13831
0
      err = -EINVAL;
13832
0
      goto cleanup;
13833
0
    }
13834
0
    tmp = realloc(*mask, end + 1);
13835
0
    if (!tmp) {
13836
0
      err = -ENOMEM;
13837
0
      goto cleanup;
13838
0
    }
13839
0
    *mask = tmp;
13840
0
    memset(tmp + *mask_sz, 0, start - *mask_sz);
13841
0
    memset(tmp + start, 1, end - start + 1);
13842
0
    *mask_sz = end + 1;
13843
0
    s += len;
13844
0
  }
13845
0
  if (!*mask_sz) {
13846
0
    pr_warn("Empty CPU range\n");
13847
0
    return -EINVAL;
13848
0
  }
13849
0
  return 0;
13850
0
cleanup:
13851
0
  free(*mask);
13852
0
  *mask = NULL;
13853
0
  return err;
13854
0
}
13855
13856
int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13857
0
{
13858
0
  int fd, err = 0, len;
13859
0
  char buf[128];
13860
13861
0
  fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13862
0
  if (fd < 0) {
13863
0
    err = -errno;
13864
0
    pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err));
13865
0
    return err;
13866
0
  }
13867
0
  len = read(fd, buf, sizeof(buf));
13868
0
  close(fd);
13869
0
  if (len <= 0) {
13870
0
    err = len ? -errno : -EINVAL;
13871
0
    pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err));
13872
0
    return err;
13873
0
  }
13874
0
  if (len >= sizeof(buf)) {
13875
0
    pr_warn("CPU mask is too big in file %s\n", fcpu);
13876
0
    return -E2BIG;
13877
0
  }
13878
0
  buf[len] = '\0';
13879
13880
0
  return parse_cpu_mask_str(buf, mask, mask_sz);
13881
0
}
13882
13883
int libbpf_num_possible_cpus(void)
13884
0
{
13885
0
  static const char *fcpu = "/sys/devices/system/cpu/possible";
13886
0
  static int cpus;
13887
0
  int err, n, i, tmp_cpus;
13888
0
  bool *mask;
13889
13890
0
  tmp_cpus = READ_ONCE(cpus);
13891
0
  if (tmp_cpus > 0)
13892
0
    return tmp_cpus;
13893
13894
0
  err = parse_cpu_mask_file(fcpu, &mask, &n);
13895
0
  if (err)
13896
0
    return libbpf_err(err);
13897
13898
0
  tmp_cpus = 0;
13899
0
  for (i = 0; i < n; i++) {
13900
0
    if (mask[i])
13901
0
      tmp_cpus++;
13902
0
  }
13903
0
  free(mask);
13904
13905
0
  WRITE_ONCE(cpus, tmp_cpus);
13906
0
  return tmp_cpus;
13907
0
}
13908
13909
static int populate_skeleton_maps(const struct bpf_object *obj,
13910
          struct bpf_map_skeleton *maps,
13911
          size_t map_cnt, size_t map_skel_sz)
13912
0
{
13913
0
  int i;
13914
13915
0
  for (i = 0; i < map_cnt; i++) {
13916
0
    struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
13917
0
    struct bpf_map **map = map_skel->map;
13918
0
    const char *name = map_skel->name;
13919
0
    void **mmaped = map_skel->mmaped;
13920
13921
0
    *map = bpf_object__find_map_by_name(obj, name);
13922
0
    if (!*map) {
13923
0
      pr_warn("failed to find skeleton map '%s'\n", name);
13924
0
      return -ESRCH;
13925
0
    }
13926
13927
    /* externs shouldn't be pre-setup from user code */
13928
0
    if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13929
0
      *mmaped = (*map)->mmaped;
13930
0
  }
13931
0
  return 0;
13932
0
}
13933
13934
static int populate_skeleton_progs(const struct bpf_object *obj,
13935
           struct bpf_prog_skeleton *progs,
13936
           size_t prog_cnt, size_t prog_skel_sz)
13937
0
{
13938
0
  int i;
13939
13940
0
  for (i = 0; i < prog_cnt; i++) {
13941
0
    struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
13942
0
    struct bpf_program **prog = prog_skel->prog;
13943
0
    const char *name = prog_skel->name;
13944
13945
0
    *prog = bpf_object__find_program_by_name(obj, name);
13946
0
    if (!*prog) {
13947
0
      pr_warn("failed to find skeleton program '%s'\n", name);
13948
0
      return -ESRCH;
13949
0
    }
13950
0
  }
13951
0
  return 0;
13952
0
}
13953
13954
int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13955
            const struct bpf_object_open_opts *opts)
13956
0
{
13957
0
  struct bpf_object *obj;
13958
0
  int err;
13959
13960
0
  obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts);
13961
0
  if (IS_ERR(obj)) {
13962
0
    err = PTR_ERR(obj);
13963
0
    pr_warn("failed to initialize skeleton BPF object '%s': %s\n",
13964
0
      s->name, errstr(err));
13965
0
    return libbpf_err(err);
13966
0
  }
13967
13968
0
  *s->obj = obj;
13969
0
  err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
13970
0
  if (err) {
13971
0
    pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err));
13972
0
    return libbpf_err(err);
13973
0
  }
13974
13975
0
  err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13976
0
  if (err) {
13977
0
    pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err));
13978
0
    return libbpf_err(err);
13979
0
  }
13980
13981
0
  return 0;
13982
0
}
13983
13984
int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13985
0
{
13986
0
  int err, len, var_idx, i;
13987
0
  const char *var_name;
13988
0
  const struct bpf_map *map;
13989
0
  struct btf *btf;
13990
0
  __u32 map_type_id;
13991
0
  const struct btf_type *map_type, *var_type;
13992
0
  const struct bpf_var_skeleton *var_skel;
13993
0
  struct btf_var_secinfo *var;
13994
13995
0
  if (!s->obj)
13996
0
    return libbpf_err(-EINVAL);
13997
13998
0
  btf = bpf_object__btf(s->obj);
13999
0
  if (!btf) {
14000
0
    pr_warn("subskeletons require BTF at runtime (object %s)\n",
14001
0
      bpf_object__name(s->obj));
14002
0
    return libbpf_err(-errno);
14003
0
  }
14004
14005
0
  err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
14006
0
  if (err) {
14007
0
    pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
14008
0
    return libbpf_err(err);
14009
0
  }
14010
14011
0
  err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
14012
0
  if (err) {
14013
0
    pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
14014
0
    return libbpf_err(err);
14015
0
  }
14016
14017
0
  for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
14018
0
    var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
14019
0
    map = *var_skel->map;
14020
0
    map_type_id = bpf_map__btf_value_type_id(map);
14021
0
    map_type = btf__type_by_id(btf, map_type_id);
14022
14023
0
    if (!btf_is_datasec(map_type)) {
14024
0
      pr_warn("type for map '%1$s' is not a datasec: %2$s\n",
14025
0
        bpf_map__name(map),
14026
0
        __btf_kind_str(btf_kind(map_type)));
14027
0
      return libbpf_err(-EINVAL);
14028
0
    }
14029
14030
0
    len = btf_vlen(map_type);
14031
0
    var = btf_var_secinfos(map_type);
14032
0
    for (i = 0; i < len; i++, var++) {
14033
0
      var_type = btf__type_by_id(btf, var->type);
14034
0
      var_name = btf__name_by_offset(btf, var_type->name_off);
14035
0
      if (strcmp(var_name, var_skel->name) == 0) {
14036
0
        *var_skel->addr = map->mmaped + var->offset;
14037
0
        break;
14038
0
      }
14039
0
    }
14040
0
  }
14041
0
  return 0;
14042
0
}
14043
14044
void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
14045
0
{
14046
0
  if (!s)
14047
0
    return;
14048
0
  free(s->maps);
14049
0
  free(s->progs);
14050
0
  free(s->vars);
14051
0
  free(s);
14052
0
}
14053
14054
int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
14055
0
{
14056
0
  int i, err;
14057
14058
0
  err = bpf_object__load(*s->obj);
14059
0
  if (err) {
14060
0
    pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err));
14061
0
    return libbpf_err(err);
14062
0
  }
14063
14064
0
  for (i = 0; i < s->map_cnt; i++) {
14065
0
    struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14066
0
    struct bpf_map *map = *map_skel->map;
14067
14068
0
    if (!map_skel->mmaped)
14069
0
      continue;
14070
14071
0
    *map_skel->mmaped = map->mmaped;
14072
0
  }
14073
14074
0
  return 0;
14075
0
}
14076
14077
int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
14078
0
{
14079
0
  int i, err;
14080
14081
0
  for (i = 0; i < s->prog_cnt; i++) {
14082
0
    struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14083
0
    struct bpf_program *prog = *prog_skel->prog;
14084
0
    struct bpf_link **link = prog_skel->link;
14085
14086
0
    if (!prog->autoload || !prog->autoattach)
14087
0
      continue;
14088
14089
    /* auto-attaching not supported for this program */
14090
0
    if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
14091
0
      continue;
14092
14093
    /* if user already set the link manually, don't attempt auto-attach */
14094
0
    if (*link)
14095
0
      continue;
14096
14097
0
    err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
14098
0
    if (err) {
14099
0
      pr_warn("prog '%s': failed to auto-attach: %s\n",
14100
0
        bpf_program__name(prog), errstr(err));
14101
0
      return libbpf_err(err);
14102
0
    }
14103
14104
    /* It's possible that for some SEC() definitions auto-attach
14105
     * is supported in some cases (e.g., if definition completely
14106
     * specifies target information), but is not in other cases.
14107
     * SEC("uprobe") is one such case. If user specified target
14108
     * binary and function name, such BPF program can be
14109
     * auto-attached. But if not, it shouldn't trigger skeleton's
14110
     * attach to fail. It should just be skipped.
14111
     * attach_fn signals such case with returning 0 (no error) and
14112
     * setting link to NULL.
14113
     */
14114
0
  }
14115
14116
14117
0
  for (i = 0; i < s->map_cnt; i++) {
14118
0
    struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14119
0
    struct bpf_map *map = *map_skel->map;
14120
0
    struct bpf_link **link;
14121
14122
0
    if (!map->autocreate || !map->autoattach)
14123
0
      continue;
14124
14125
    /* only struct_ops maps can be attached */
14126
0
    if (!bpf_map__is_struct_ops(map))
14127
0
      continue;
14128
14129
    /* skeleton is created with earlier version of bpftool, notify user */
14130
0
    if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) {
14131
0
      pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n",
14132
0
        bpf_map__name(map));
14133
0
      continue;
14134
0
    }
14135
14136
0
    link = map_skel->link;
14137
0
    if (!link) {
14138
0
      pr_warn("map '%s': BPF map skeleton link is uninitialized\n",
14139
0
        bpf_map__name(map));
14140
0
      continue;
14141
0
    }
14142
14143
0
    if (*link)
14144
0
      continue;
14145
14146
0
    *link = bpf_map__attach_struct_ops(map);
14147
0
    if (!*link) {
14148
0
      err = -errno;
14149
0
      pr_warn("map '%s': failed to auto-attach: %s\n",
14150
0
        bpf_map__name(map), errstr(err));
14151
0
      return libbpf_err(err);
14152
0
    }
14153
0
  }
14154
14155
0
  return 0;
14156
0
}
14157
14158
void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
14159
0
{
14160
0
  int i;
14161
14162
0
  for (i = 0; i < s->prog_cnt; i++) {
14163
0
    struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14164
0
    struct bpf_link **link = prog_skel->link;
14165
14166
0
    bpf_link__destroy(*link);
14167
0
    *link = NULL;
14168
0
  }
14169
14170
0
  if (s->map_skel_sz < sizeof(struct bpf_map_skeleton))
14171
0
    return;
14172
14173
0
  for (i = 0; i < s->map_cnt; i++) {
14174
0
    struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14175
0
    struct bpf_link **link = map_skel->link;
14176
14177
0
    if (link) {
14178
0
      bpf_link__destroy(*link);
14179
0
      *link = NULL;
14180
0
    }
14181
0
  }
14182
0
}
14183
14184
void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
14185
0
{
14186
0
  if (!s)
14187
0
    return;
14188
14189
0
  bpf_object__detach_skeleton(s);
14190
0
  if (s->obj)
14191
0
    bpf_object__close(*s->obj);
14192
0
  free(s->maps);
14193
0
  free(s->progs);
14194
0
  free(s);
14195
0
}