/src/libbpf/src/relo_core.c
Line | Count | Source (jump to first uncovered line) |
1 | | // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) |
2 | | /* Copyright (c) 2019 Facebook */ |
3 | | |
4 | | #ifdef __KERNEL__ |
5 | | #include <linux/bpf.h> |
6 | | #include <linux/btf.h> |
7 | | #include <linux/string.h> |
8 | | #include <linux/bpf_verifier.h> |
9 | | #include "relo_core.h" |
10 | | |
11 | | static const char *btf_kind_str(const struct btf_type *t) |
12 | | { |
13 | | return btf_type_str(t); |
14 | | } |
15 | | |
16 | | static bool is_ldimm64_insn(struct bpf_insn *insn) |
17 | | { |
18 | | return insn->code == (BPF_LD | BPF_IMM | BPF_DW); |
19 | | } |
20 | | |
21 | | static const struct btf_type * |
22 | | skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id) |
23 | | { |
24 | | return btf_type_skip_modifiers(btf, id, res_id); |
25 | | } |
26 | | |
27 | | static const char *btf__name_by_offset(const struct btf *btf, u32 offset) |
28 | | { |
29 | | return btf_name_by_offset(btf, offset); |
30 | | } |
31 | | |
32 | | static s64 btf__resolve_size(const struct btf *btf, u32 type_id) |
33 | | { |
34 | | const struct btf_type *t; |
35 | | int size; |
36 | | |
37 | | t = btf_type_by_id(btf, type_id); |
38 | | t = btf_resolve_size(btf, t, &size); |
39 | | if (IS_ERR(t)) |
40 | | return PTR_ERR(t); |
41 | | return size; |
42 | | } |
43 | | |
44 | | enum libbpf_print_level { |
45 | | LIBBPF_WARN, |
46 | | LIBBPF_INFO, |
47 | | LIBBPF_DEBUG, |
48 | | }; |
49 | | |
50 | | #undef pr_warn |
51 | | #undef pr_info |
52 | | #undef pr_debug |
53 | | #define pr_warn(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) |
54 | | #define pr_info(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) |
55 | | #define pr_debug(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) |
56 | | #define libbpf_print(level, fmt, ...) bpf_log((void *)prog_name, fmt, ##__VA_ARGS__) |
57 | | #else |
58 | | #include <stdio.h> |
59 | | #include <string.h> |
60 | | #include <errno.h> |
61 | | #include <ctype.h> |
62 | | #include <linux/err.h> |
63 | | |
64 | | #include "libbpf.h" |
65 | | #include "bpf.h" |
66 | | #include "btf.h" |
67 | | #include "str_error.h" |
68 | | #include "libbpf_internal.h" |
69 | | #endif |
70 | | |
71 | | static bool is_flex_arr(const struct btf *btf, |
72 | | const struct bpf_core_accessor *acc, |
73 | | const struct btf_array *arr) |
74 | 0 | { |
75 | 0 | const struct btf_type *t; |
76 | | |
77 | | /* not a flexible array, if not inside a struct or has non-zero size */ |
78 | 0 | if (!acc->name || arr->nelems > 0) |
79 | 0 | return false; |
80 | | |
81 | | /* has to be the last member of enclosing struct */ |
82 | 0 | t = btf_type_by_id(btf, acc->type_id); |
83 | 0 | return acc->idx == btf_vlen(t) - 1; |
84 | 0 | } |
85 | | |
86 | | static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) |
87 | 0 | { |
88 | 0 | switch (kind) { |
89 | 0 | case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off"; |
90 | 0 | case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz"; |
91 | 0 | case BPF_CORE_FIELD_EXISTS: return "field_exists"; |
92 | 0 | case BPF_CORE_FIELD_SIGNED: return "signed"; |
93 | 0 | case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64"; |
94 | 0 | case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64"; |
95 | 0 | case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id"; |
96 | 0 | case BPF_CORE_TYPE_ID_TARGET: return "target_type_id"; |
97 | 0 | case BPF_CORE_TYPE_EXISTS: return "type_exists"; |
98 | 0 | case BPF_CORE_TYPE_MATCHES: return "type_matches"; |
99 | 0 | case BPF_CORE_TYPE_SIZE: return "type_size"; |
100 | 0 | case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists"; |
101 | 0 | case BPF_CORE_ENUMVAL_VALUE: return "enumval_value"; |
102 | 0 | default: return "unknown"; |
103 | 0 | } |
104 | 0 | } |
105 | | |
106 | | static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) |
107 | 0 | { |
108 | 0 | switch (kind) { |
109 | 0 | case BPF_CORE_FIELD_BYTE_OFFSET: |
110 | 0 | case BPF_CORE_FIELD_BYTE_SIZE: |
111 | 0 | case BPF_CORE_FIELD_EXISTS: |
112 | 0 | case BPF_CORE_FIELD_SIGNED: |
113 | 0 | case BPF_CORE_FIELD_LSHIFT_U64: |
114 | 0 | case BPF_CORE_FIELD_RSHIFT_U64: |
115 | 0 | return true; |
116 | 0 | default: |
117 | 0 | return false; |
118 | 0 | } |
119 | 0 | } |
120 | | |
121 | | static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) |
122 | 0 | { |
123 | 0 | switch (kind) { |
124 | 0 | case BPF_CORE_TYPE_ID_LOCAL: |
125 | 0 | case BPF_CORE_TYPE_ID_TARGET: |
126 | 0 | case BPF_CORE_TYPE_EXISTS: |
127 | 0 | case BPF_CORE_TYPE_MATCHES: |
128 | 0 | case BPF_CORE_TYPE_SIZE: |
129 | 0 | return true; |
130 | 0 | default: |
131 | 0 | return false; |
132 | 0 | } |
133 | 0 | } |
134 | | |
135 | | static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) |
136 | 0 | { |
137 | 0 | switch (kind) { |
138 | 0 | case BPF_CORE_ENUMVAL_EXISTS: |
139 | 0 | case BPF_CORE_ENUMVAL_VALUE: |
140 | 0 | return true; |
141 | 0 | default: |
142 | 0 | return false; |
143 | 0 | } |
144 | 0 | } |
145 | | |
146 | | int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, |
147 | | const struct btf *targ_btf, __u32 targ_id, int level) |
148 | 0 | { |
149 | 0 | const struct btf_type *local_type, *targ_type; |
150 | 0 | int depth = 32; /* max recursion depth */ |
151 | | |
152 | | /* caller made sure that names match (ignoring flavor suffix) */ |
153 | 0 | local_type = btf_type_by_id(local_btf, local_id); |
154 | 0 | targ_type = btf_type_by_id(targ_btf, targ_id); |
155 | 0 | if (!btf_kind_core_compat(local_type, targ_type)) |
156 | 0 | return 0; |
157 | | |
158 | 0 | recur: |
159 | 0 | depth--; |
160 | 0 | if (depth < 0) |
161 | 0 | return -EINVAL; |
162 | | |
163 | 0 | local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); |
164 | 0 | targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); |
165 | 0 | if (!local_type || !targ_type) |
166 | 0 | return -EINVAL; |
167 | | |
168 | 0 | if (!btf_kind_core_compat(local_type, targ_type)) |
169 | 0 | return 0; |
170 | | |
171 | 0 | switch (btf_kind(local_type)) { |
172 | 0 | case BTF_KIND_UNKN: |
173 | 0 | case BTF_KIND_STRUCT: |
174 | 0 | case BTF_KIND_UNION: |
175 | 0 | case BTF_KIND_ENUM: |
176 | 0 | case BTF_KIND_FWD: |
177 | 0 | case BTF_KIND_ENUM64: |
178 | 0 | return 1; |
179 | 0 | case BTF_KIND_INT: |
180 | | /* just reject deprecated bitfield-like integers; all other |
181 | | * integers are by default compatible between each other |
182 | | */ |
183 | 0 | return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; |
184 | 0 | case BTF_KIND_PTR: |
185 | 0 | local_id = local_type->type; |
186 | 0 | targ_id = targ_type->type; |
187 | 0 | goto recur; |
188 | 0 | case BTF_KIND_ARRAY: |
189 | 0 | local_id = btf_array(local_type)->type; |
190 | 0 | targ_id = btf_array(targ_type)->type; |
191 | 0 | goto recur; |
192 | 0 | case BTF_KIND_FUNC_PROTO: { |
193 | 0 | struct btf_param *local_p = btf_params(local_type); |
194 | 0 | struct btf_param *targ_p = btf_params(targ_type); |
195 | 0 | __u16 local_vlen = btf_vlen(local_type); |
196 | 0 | __u16 targ_vlen = btf_vlen(targ_type); |
197 | 0 | int i, err; |
198 | |
|
199 | 0 | if (local_vlen != targ_vlen) |
200 | 0 | return 0; |
201 | | |
202 | 0 | for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { |
203 | 0 | if (level <= 0) |
204 | 0 | return -EINVAL; |
205 | | |
206 | 0 | skip_mods_and_typedefs(local_btf, local_p->type, &local_id); |
207 | 0 | skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); |
208 | 0 | err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, |
209 | 0 | level - 1); |
210 | 0 | if (err <= 0) |
211 | 0 | return err; |
212 | 0 | } |
213 | | |
214 | | /* tail recurse for return type check */ |
215 | 0 | skip_mods_and_typedefs(local_btf, local_type->type, &local_id); |
216 | 0 | skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); |
217 | 0 | goto recur; |
218 | 0 | } |
219 | 0 | default: |
220 | 0 | pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", |
221 | 0 | btf_kind_str(local_type), local_id, targ_id); |
222 | 0 | return 0; |
223 | 0 | } |
224 | 0 | } |
225 | | |
226 | | /* |
227 | | * Turn bpf_core_relo into a low- and high-level spec representation, |
228 | | * validating correctness along the way, as well as calculating resulting |
229 | | * field bit offset, specified by accessor string. Low-level spec captures |
230 | | * every single level of nestedness, including traversing anonymous |
231 | | * struct/union members. High-level one only captures semantically meaningful |
232 | | * "turning points": named fields and array indicies. |
233 | | * E.g., for this case: |
234 | | * |
235 | | * struct sample { |
236 | | * int __unimportant; |
237 | | * struct { |
238 | | * int __1; |
239 | | * int __2; |
240 | | * int a[7]; |
241 | | * }; |
242 | | * }; |
243 | | * |
244 | | * struct sample *s = ...; |
245 | | * |
246 | | * int x = &s->a[3]; // access string = '0:1:2:3' |
247 | | * |
248 | | * Low-level spec has 1:1 mapping with each element of access string (it's |
249 | | * just a parsed access string representation): [0, 1, 2, 3]. |
250 | | * |
251 | | * High-level spec will capture only 3 points: |
252 | | * - initial zero-index access by pointer (&s->... is the same as &s[0]...); |
253 | | * - field 'a' access (corresponds to '2' in low-level spec); |
254 | | * - array element #3 access (corresponds to '3' in low-level spec). |
255 | | * |
256 | | * Type-based relocations (TYPE_EXISTS/TYPE_MATCHES/TYPE_SIZE, |
257 | | * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their |
258 | | * spec and raw_spec are kept empty. |
259 | | * |
260 | | * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access |
261 | | * string to specify enumerator's value index that need to be relocated. |
262 | | */ |
263 | | int bpf_core_parse_spec(const char *prog_name, const struct btf *btf, |
264 | | const struct bpf_core_relo *relo, |
265 | | struct bpf_core_spec *spec) |
266 | 0 | { |
267 | 0 | int access_idx, parsed_len, i; |
268 | 0 | struct bpf_core_accessor *acc; |
269 | 0 | const struct btf_type *t; |
270 | 0 | const char *name, *spec_str; |
271 | 0 | __u32 id, name_off; |
272 | 0 | __s64 sz; |
273 | |
|
274 | 0 | spec_str = btf__name_by_offset(btf, relo->access_str_off); |
275 | 0 | if (str_is_empty(spec_str) || *spec_str == ':') |
276 | 0 | return -EINVAL; |
277 | | |
278 | 0 | memset(spec, 0, sizeof(*spec)); |
279 | 0 | spec->btf = btf; |
280 | 0 | spec->root_type_id = relo->type_id; |
281 | 0 | spec->relo_kind = relo->kind; |
282 | | |
283 | | /* type-based relocations don't have a field access string */ |
284 | 0 | if (core_relo_is_type_based(relo->kind)) { |
285 | 0 | if (strcmp(spec_str, "0")) |
286 | 0 | return -EINVAL; |
287 | 0 | return 0; |
288 | 0 | } |
289 | | |
290 | | /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ |
291 | 0 | while (*spec_str) { |
292 | 0 | if (*spec_str == ':') |
293 | 0 | ++spec_str; |
294 | 0 | if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) |
295 | 0 | return -EINVAL; |
296 | 0 | if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) |
297 | 0 | return -E2BIG; |
298 | 0 | spec_str += parsed_len; |
299 | 0 | spec->raw_spec[spec->raw_len++] = access_idx; |
300 | 0 | } |
301 | | |
302 | 0 | if (spec->raw_len == 0) |
303 | 0 | return -EINVAL; |
304 | | |
305 | 0 | t = skip_mods_and_typedefs(btf, relo->type_id, &id); |
306 | 0 | if (!t) |
307 | 0 | return -EINVAL; |
308 | | |
309 | 0 | access_idx = spec->raw_spec[0]; |
310 | 0 | acc = &spec->spec[0]; |
311 | 0 | acc->type_id = id; |
312 | 0 | acc->idx = access_idx; |
313 | 0 | spec->len++; |
314 | |
|
315 | 0 | if (core_relo_is_enumval_based(relo->kind)) { |
316 | 0 | if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) |
317 | 0 | return -EINVAL; |
318 | | |
319 | | /* record enumerator name in a first accessor */ |
320 | 0 | name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off |
321 | 0 | : btf_enum64(t)[access_idx].name_off; |
322 | 0 | acc->name = btf__name_by_offset(btf, name_off); |
323 | 0 | return 0; |
324 | 0 | } |
325 | | |
326 | 0 | if (!core_relo_is_field_based(relo->kind)) |
327 | 0 | return -EINVAL; |
328 | | |
329 | 0 | sz = btf__resolve_size(btf, id); |
330 | 0 | if (sz < 0) |
331 | 0 | return sz; |
332 | 0 | spec->bit_offset = access_idx * sz * 8; |
333 | |
|
334 | 0 | for (i = 1; i < spec->raw_len; i++) { |
335 | 0 | t = skip_mods_and_typedefs(btf, id, &id); |
336 | 0 | if (!t) |
337 | 0 | return -EINVAL; |
338 | | |
339 | 0 | access_idx = spec->raw_spec[i]; |
340 | 0 | acc = &spec->spec[spec->len]; |
341 | |
|
342 | 0 | if (btf_is_composite(t)) { |
343 | 0 | const struct btf_member *m; |
344 | 0 | __u32 bit_offset; |
345 | |
|
346 | 0 | if (access_idx >= btf_vlen(t)) |
347 | 0 | return -EINVAL; |
348 | | |
349 | 0 | bit_offset = btf_member_bit_offset(t, access_idx); |
350 | 0 | spec->bit_offset += bit_offset; |
351 | |
|
352 | 0 | m = btf_members(t) + access_idx; |
353 | 0 | if (m->name_off) { |
354 | 0 | name = btf__name_by_offset(btf, m->name_off); |
355 | 0 | if (str_is_empty(name)) |
356 | 0 | return -EINVAL; |
357 | | |
358 | 0 | acc->type_id = id; |
359 | 0 | acc->idx = access_idx; |
360 | 0 | acc->name = name; |
361 | 0 | spec->len++; |
362 | 0 | } |
363 | | |
364 | 0 | id = m->type; |
365 | 0 | } else if (btf_is_array(t)) { |
366 | 0 | const struct btf_array *a = btf_array(t); |
367 | 0 | bool flex; |
368 | |
|
369 | 0 | t = skip_mods_and_typedefs(btf, a->type, &id); |
370 | 0 | if (!t) |
371 | 0 | return -EINVAL; |
372 | | |
373 | 0 | flex = is_flex_arr(btf, acc - 1, a); |
374 | 0 | if (!flex && access_idx >= a->nelems) |
375 | 0 | return -EINVAL; |
376 | | |
377 | 0 | spec->spec[spec->len].type_id = id; |
378 | 0 | spec->spec[spec->len].idx = access_idx; |
379 | 0 | spec->len++; |
380 | |
|
381 | 0 | sz = btf__resolve_size(btf, id); |
382 | 0 | if (sz < 0) |
383 | 0 | return sz; |
384 | 0 | spec->bit_offset += access_idx * sz * 8; |
385 | 0 | } else { |
386 | 0 | pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", |
387 | 0 | prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t)); |
388 | 0 | return -EINVAL; |
389 | 0 | } |
390 | 0 | } |
391 | | |
392 | 0 | return 0; |
393 | 0 | } |
394 | | |
395 | | /* Check two types for compatibility for the purpose of field access |
396 | | * relocation. const/volatile/restrict and typedefs are skipped to ensure we |
397 | | * are relocating semantically compatible entities: |
398 | | * - any two STRUCTs/UNIONs are compatible and can be mixed; |
399 | | * - any two FWDs are compatible, if their names match (modulo flavor suffix); |
400 | | * - any two PTRs are always compatible; |
401 | | * - for ENUMs, names should be the same (ignoring flavor suffix) or at |
402 | | * least one of enums should be anonymous; |
403 | | * - for ENUMs, check sizes, names are ignored; |
404 | | * - for INT, size and signedness are ignored; |
405 | | * - any two FLOATs are always compatible; |
406 | | * - for ARRAY, dimensionality is ignored, element types are checked for |
407 | | * compatibility recursively; |
408 | | * - everything else shouldn't be ever a target of relocation. |
409 | | * These rules are not set in stone and probably will be adjusted as we get |
410 | | * more experience with using BPF CO-RE relocations. |
411 | | */ |
412 | | static int bpf_core_fields_are_compat(const struct btf *local_btf, |
413 | | __u32 local_id, |
414 | | const struct btf *targ_btf, |
415 | | __u32 targ_id) |
416 | 0 | { |
417 | 0 | const struct btf_type *local_type, *targ_type; |
418 | |
|
419 | 0 | recur: |
420 | 0 | local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); |
421 | 0 | targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); |
422 | 0 | if (!local_type || !targ_type) |
423 | 0 | return -EINVAL; |
424 | | |
425 | 0 | if (btf_is_composite(local_type) && btf_is_composite(targ_type)) |
426 | 0 | return 1; |
427 | 0 | if (!btf_kind_core_compat(local_type, targ_type)) |
428 | 0 | return 0; |
429 | | |
430 | 0 | switch (btf_kind(local_type)) { |
431 | 0 | case BTF_KIND_PTR: |
432 | 0 | case BTF_KIND_FLOAT: |
433 | 0 | return 1; |
434 | 0 | case BTF_KIND_FWD: |
435 | 0 | case BTF_KIND_ENUM64: |
436 | 0 | case BTF_KIND_ENUM: { |
437 | 0 | const char *local_name, *targ_name; |
438 | 0 | size_t local_len, targ_len; |
439 | |
|
440 | 0 | local_name = btf__name_by_offset(local_btf, |
441 | 0 | local_type->name_off); |
442 | 0 | targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); |
443 | 0 | local_len = bpf_core_essential_name_len(local_name); |
444 | 0 | targ_len = bpf_core_essential_name_len(targ_name); |
445 | | /* one of them is anonymous or both w/ same flavor-less names */ |
446 | 0 | return local_len == 0 || targ_len == 0 || |
447 | 0 | (local_len == targ_len && |
448 | 0 | strncmp(local_name, targ_name, local_len) == 0); |
449 | 0 | } |
450 | 0 | case BTF_KIND_INT: |
451 | | /* just reject deprecated bitfield-like integers; all other |
452 | | * integers are by default compatible between each other |
453 | | */ |
454 | 0 | return btf_int_offset(local_type) == 0 && |
455 | 0 | btf_int_offset(targ_type) == 0; |
456 | 0 | case BTF_KIND_ARRAY: |
457 | 0 | local_id = btf_array(local_type)->type; |
458 | 0 | targ_id = btf_array(targ_type)->type; |
459 | 0 | goto recur; |
460 | 0 | default: |
461 | 0 | return 0; |
462 | 0 | } |
463 | 0 | } |
464 | | |
465 | | /* |
466 | | * Given single high-level named field accessor in local type, find |
467 | | * corresponding high-level accessor for a target type. Along the way, |
468 | | * maintain low-level spec for target as well. Also keep updating target |
469 | | * bit offset. |
470 | | * |
471 | | * Searching is performed through recursive exhaustive enumeration of all |
472 | | * fields of a struct/union. If there are any anonymous (embedded) |
473 | | * structs/unions, they are recursively searched as well. If field with |
474 | | * desired name is found, check compatibility between local and target types, |
475 | | * before returning result. |
476 | | * |
477 | | * 1 is returned, if field is found. |
478 | | * 0 is returned if no compatible field is found. |
479 | | * <0 is returned on error. |
480 | | */ |
481 | | static int bpf_core_match_member(const struct btf *local_btf, |
482 | | const struct bpf_core_accessor *local_acc, |
483 | | const struct btf *targ_btf, |
484 | | __u32 targ_id, |
485 | | struct bpf_core_spec *spec, |
486 | | __u32 *next_targ_id) |
487 | 0 | { |
488 | 0 | const struct btf_type *local_type, *targ_type; |
489 | 0 | const struct btf_member *local_member, *m; |
490 | 0 | const char *local_name, *targ_name; |
491 | 0 | __u32 local_id; |
492 | 0 | int i, n, found; |
493 | |
|
494 | 0 | targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); |
495 | 0 | if (!targ_type) |
496 | 0 | return -EINVAL; |
497 | 0 | if (!btf_is_composite(targ_type)) |
498 | 0 | return 0; |
499 | | |
500 | 0 | local_id = local_acc->type_id; |
501 | 0 | local_type = btf_type_by_id(local_btf, local_id); |
502 | 0 | local_member = btf_members(local_type) + local_acc->idx; |
503 | 0 | local_name = btf__name_by_offset(local_btf, local_member->name_off); |
504 | |
|
505 | 0 | n = btf_vlen(targ_type); |
506 | 0 | m = btf_members(targ_type); |
507 | 0 | for (i = 0; i < n; i++, m++) { |
508 | 0 | __u32 bit_offset; |
509 | |
|
510 | 0 | bit_offset = btf_member_bit_offset(targ_type, i); |
511 | | |
512 | | /* too deep struct/union/array nesting */ |
513 | 0 | if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) |
514 | 0 | return -E2BIG; |
515 | | |
516 | | /* speculate this member will be the good one */ |
517 | 0 | spec->bit_offset += bit_offset; |
518 | 0 | spec->raw_spec[spec->raw_len++] = i; |
519 | |
|
520 | 0 | targ_name = btf__name_by_offset(targ_btf, m->name_off); |
521 | 0 | if (str_is_empty(targ_name)) { |
522 | | /* embedded struct/union, we need to go deeper */ |
523 | 0 | found = bpf_core_match_member(local_btf, local_acc, |
524 | 0 | targ_btf, m->type, |
525 | 0 | spec, next_targ_id); |
526 | 0 | if (found) /* either found or error */ |
527 | 0 | return found; |
528 | 0 | } else if (strcmp(local_name, targ_name) == 0) { |
529 | | /* matching named field */ |
530 | 0 | struct bpf_core_accessor *targ_acc; |
531 | |
|
532 | 0 | targ_acc = &spec->spec[spec->len++]; |
533 | 0 | targ_acc->type_id = targ_id; |
534 | 0 | targ_acc->idx = i; |
535 | 0 | targ_acc->name = targ_name; |
536 | |
|
537 | 0 | *next_targ_id = m->type; |
538 | 0 | found = bpf_core_fields_are_compat(local_btf, |
539 | 0 | local_member->type, |
540 | 0 | targ_btf, m->type); |
541 | 0 | if (!found) |
542 | 0 | spec->len--; /* pop accessor */ |
543 | 0 | return found; |
544 | 0 | } |
545 | | /* member turned out not to be what we looked for */ |
546 | 0 | spec->bit_offset -= bit_offset; |
547 | 0 | spec->raw_len--; |
548 | 0 | } |
549 | | |
550 | 0 | return 0; |
551 | 0 | } |
552 | | |
553 | | /* |
554 | | * Try to match local spec to a target type and, if successful, produce full |
555 | | * target spec (high-level, low-level + bit offset). |
556 | | */ |
557 | | static int bpf_core_spec_match(struct bpf_core_spec *local_spec, |
558 | | const struct btf *targ_btf, __u32 targ_id, |
559 | | struct bpf_core_spec *targ_spec) |
560 | 0 | { |
561 | 0 | const struct btf_type *targ_type; |
562 | 0 | const struct bpf_core_accessor *local_acc; |
563 | 0 | struct bpf_core_accessor *targ_acc; |
564 | 0 | int i, sz, matched; |
565 | 0 | __u32 name_off; |
566 | |
|
567 | 0 | memset(targ_spec, 0, sizeof(*targ_spec)); |
568 | 0 | targ_spec->btf = targ_btf; |
569 | 0 | targ_spec->root_type_id = targ_id; |
570 | 0 | targ_spec->relo_kind = local_spec->relo_kind; |
571 | |
|
572 | 0 | if (core_relo_is_type_based(local_spec->relo_kind)) { |
573 | 0 | if (local_spec->relo_kind == BPF_CORE_TYPE_MATCHES) |
574 | 0 | return bpf_core_types_match(local_spec->btf, |
575 | 0 | local_spec->root_type_id, |
576 | 0 | targ_btf, targ_id); |
577 | 0 | else |
578 | 0 | return bpf_core_types_are_compat(local_spec->btf, |
579 | 0 | local_spec->root_type_id, |
580 | 0 | targ_btf, targ_id); |
581 | 0 | } |
582 | | |
583 | 0 | local_acc = &local_spec->spec[0]; |
584 | 0 | targ_acc = &targ_spec->spec[0]; |
585 | |
|
586 | 0 | if (core_relo_is_enumval_based(local_spec->relo_kind)) { |
587 | 0 | size_t local_essent_len, targ_essent_len; |
588 | 0 | const char *targ_name; |
589 | | |
590 | | /* has to resolve to an enum */ |
591 | 0 | targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); |
592 | 0 | if (!btf_is_any_enum(targ_type)) |
593 | 0 | return 0; |
594 | | |
595 | 0 | local_essent_len = bpf_core_essential_name_len(local_acc->name); |
596 | |
|
597 | 0 | for (i = 0; i < btf_vlen(targ_type); i++) { |
598 | 0 | if (btf_is_enum(targ_type)) |
599 | 0 | name_off = btf_enum(targ_type)[i].name_off; |
600 | 0 | else |
601 | 0 | name_off = btf_enum64(targ_type)[i].name_off; |
602 | |
|
603 | 0 | targ_name = btf__name_by_offset(targ_spec->btf, name_off); |
604 | 0 | targ_essent_len = bpf_core_essential_name_len(targ_name); |
605 | 0 | if (targ_essent_len != local_essent_len) |
606 | 0 | continue; |
607 | 0 | if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { |
608 | 0 | targ_acc->type_id = targ_id; |
609 | 0 | targ_acc->idx = i; |
610 | 0 | targ_acc->name = targ_name; |
611 | 0 | targ_spec->len++; |
612 | 0 | targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; |
613 | 0 | targ_spec->raw_len++; |
614 | 0 | return 1; |
615 | 0 | } |
616 | 0 | } |
617 | 0 | return 0; |
618 | 0 | } |
619 | | |
620 | 0 | if (!core_relo_is_field_based(local_spec->relo_kind)) |
621 | 0 | return -EINVAL; |
622 | | |
623 | 0 | for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { |
624 | 0 | targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, |
625 | 0 | &targ_id); |
626 | 0 | if (!targ_type) |
627 | 0 | return -EINVAL; |
628 | | |
629 | 0 | if (local_acc->name) { |
630 | 0 | matched = bpf_core_match_member(local_spec->btf, |
631 | 0 | local_acc, |
632 | 0 | targ_btf, targ_id, |
633 | 0 | targ_spec, &targ_id); |
634 | 0 | if (matched <= 0) |
635 | 0 | return matched; |
636 | 0 | } else { |
637 | | /* for i=0, targ_id is already treated as array element |
638 | | * type (because it's the original struct), for others |
639 | | * we should find array element type first |
640 | | */ |
641 | 0 | if (i > 0) { |
642 | 0 | const struct btf_array *a; |
643 | 0 | bool flex; |
644 | |
|
645 | 0 | if (!btf_is_array(targ_type)) |
646 | 0 | return 0; |
647 | | |
648 | 0 | a = btf_array(targ_type); |
649 | 0 | flex = is_flex_arr(targ_btf, targ_acc - 1, a); |
650 | 0 | if (!flex && local_acc->idx >= a->nelems) |
651 | 0 | return 0; |
652 | 0 | if (!skip_mods_and_typedefs(targ_btf, a->type, |
653 | 0 | &targ_id)) |
654 | 0 | return -EINVAL; |
655 | 0 | } |
656 | | |
657 | | /* too deep struct/union/array nesting */ |
658 | 0 | if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) |
659 | 0 | return -E2BIG; |
660 | | |
661 | 0 | targ_acc->type_id = targ_id; |
662 | 0 | targ_acc->idx = local_acc->idx; |
663 | 0 | targ_acc->name = NULL; |
664 | 0 | targ_spec->len++; |
665 | 0 | targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; |
666 | 0 | targ_spec->raw_len++; |
667 | |
|
668 | 0 | sz = btf__resolve_size(targ_btf, targ_id); |
669 | 0 | if (sz < 0) |
670 | 0 | return sz; |
671 | 0 | targ_spec->bit_offset += local_acc->idx * sz * 8; |
672 | 0 | } |
673 | 0 | } |
674 | | |
675 | 0 | return 1; |
676 | 0 | } |
677 | | |
678 | | static int bpf_core_calc_field_relo(const char *prog_name, |
679 | | const struct bpf_core_relo *relo, |
680 | | const struct bpf_core_spec *spec, |
681 | | __u64 *val, __u32 *field_sz, __u32 *type_id, |
682 | | bool *validate) |
683 | 0 | { |
684 | 0 | const struct bpf_core_accessor *acc; |
685 | 0 | const struct btf_type *t; |
686 | 0 | __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id, elem_id; |
687 | 0 | const struct btf_member *m; |
688 | 0 | const struct btf_type *mt; |
689 | 0 | bool bitfield; |
690 | 0 | __s64 sz; |
691 | |
|
692 | 0 | *field_sz = 0; |
693 | |
|
694 | 0 | if (relo->kind == BPF_CORE_FIELD_EXISTS) { |
695 | 0 | *val = spec ? 1 : 0; |
696 | 0 | return 0; |
697 | 0 | } |
698 | | |
699 | 0 | if (!spec) |
700 | 0 | return -EUCLEAN; /* request instruction poisoning */ |
701 | | |
702 | 0 | acc = &spec->spec[spec->len - 1]; |
703 | 0 | t = btf_type_by_id(spec->btf, acc->type_id); |
704 | | |
705 | | /* a[n] accessor needs special handling */ |
706 | 0 | if (!acc->name) { |
707 | 0 | if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) { |
708 | 0 | *val = spec->bit_offset / 8; |
709 | | /* remember field size for load/store mem size; |
710 | | * note, for arrays we care about individual element |
711 | | * sizes, not the overall array size |
712 | | */ |
713 | 0 | t = skip_mods_and_typedefs(spec->btf, acc->type_id, &elem_id); |
714 | 0 | while (btf_is_array(t)) |
715 | 0 | t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id); |
716 | 0 | sz = btf__resolve_size(spec->btf, elem_id); |
717 | 0 | if (sz < 0) |
718 | 0 | return -EINVAL; |
719 | 0 | *field_sz = sz; |
720 | 0 | *type_id = acc->type_id; |
721 | 0 | } else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) { |
722 | 0 | sz = btf__resolve_size(spec->btf, acc->type_id); |
723 | 0 | if (sz < 0) |
724 | 0 | return -EINVAL; |
725 | 0 | *val = sz; |
726 | 0 | } else { |
727 | 0 | pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", |
728 | 0 | prog_name, relo->kind, relo->insn_off / 8); |
729 | 0 | return -EINVAL; |
730 | 0 | } |
731 | 0 | if (validate) |
732 | 0 | *validate = true; |
733 | 0 | return 0; |
734 | 0 | } |
735 | | |
736 | 0 | m = btf_members(t) + acc->idx; |
737 | 0 | mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); |
738 | 0 | bit_off = spec->bit_offset; |
739 | 0 | bit_sz = btf_member_bitfield_size(t, acc->idx); |
740 | |
|
741 | 0 | bitfield = bit_sz > 0; |
742 | 0 | if (bitfield) { |
743 | 0 | byte_sz = mt->size; |
744 | 0 | byte_off = bit_off / 8 / byte_sz * byte_sz; |
745 | | /* figure out smallest int size necessary for bitfield load */ |
746 | 0 | while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { |
747 | 0 | if (byte_sz >= 8) { |
748 | | /* bitfield can't be read with 64-bit read */ |
749 | 0 | pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", |
750 | 0 | prog_name, relo->kind, relo->insn_off / 8); |
751 | 0 | return -E2BIG; |
752 | 0 | } |
753 | 0 | byte_sz *= 2; |
754 | 0 | byte_off = bit_off / 8 / byte_sz * byte_sz; |
755 | 0 | } |
756 | 0 | } else { |
757 | 0 | sz = btf__resolve_size(spec->btf, field_type_id); |
758 | 0 | if (sz < 0) |
759 | 0 | return -EINVAL; |
760 | 0 | byte_sz = sz; |
761 | 0 | byte_off = spec->bit_offset / 8; |
762 | 0 | bit_sz = byte_sz * 8; |
763 | 0 | } |
764 | | |
765 | | /* for bitfields, all the relocatable aspects are ambiguous and we |
766 | | * might disagree with compiler, so turn off validation of expected |
767 | | * value, except for signedness |
768 | | */ |
769 | 0 | if (validate) |
770 | 0 | *validate = !bitfield; |
771 | |
|
772 | 0 | switch (relo->kind) { |
773 | 0 | case BPF_CORE_FIELD_BYTE_OFFSET: |
774 | 0 | *val = byte_off; |
775 | 0 | if (!bitfield) { |
776 | | /* remember field size for load/store mem size; |
777 | | * note, for arrays we care about individual element |
778 | | * sizes, not the overall array size |
779 | | */ |
780 | 0 | t = skip_mods_and_typedefs(spec->btf, field_type_id, &elem_id); |
781 | 0 | while (btf_is_array(t)) |
782 | 0 | t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id); |
783 | 0 | sz = btf__resolve_size(spec->btf, elem_id); |
784 | 0 | if (sz < 0) |
785 | 0 | return -EINVAL; |
786 | 0 | *field_sz = sz; |
787 | 0 | *type_id = field_type_id; |
788 | 0 | } |
789 | 0 | break; |
790 | 0 | case BPF_CORE_FIELD_BYTE_SIZE: |
791 | 0 | *val = byte_sz; |
792 | 0 | break; |
793 | 0 | case BPF_CORE_FIELD_SIGNED: |
794 | 0 | *val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) || |
795 | 0 | (btf_is_int(mt) && (btf_int_encoding(mt) & BTF_INT_SIGNED)); |
796 | 0 | if (validate) |
797 | 0 | *validate = true; /* signedness is never ambiguous */ |
798 | 0 | break; |
799 | 0 | case BPF_CORE_FIELD_LSHIFT_U64: |
800 | 0 | #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
801 | 0 | *val = 64 - (bit_off + bit_sz - byte_off * 8); |
802 | | #else |
803 | | *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); |
804 | | #endif |
805 | 0 | break; |
806 | 0 | case BPF_CORE_FIELD_RSHIFT_U64: |
807 | 0 | *val = 64 - bit_sz; |
808 | 0 | if (validate) |
809 | 0 | *validate = true; /* right shift is never ambiguous */ |
810 | 0 | break; |
811 | 0 | case BPF_CORE_FIELD_EXISTS: |
812 | 0 | default: |
813 | 0 | return -EOPNOTSUPP; |
814 | 0 | } |
815 | | |
816 | 0 | return 0; |
817 | 0 | } |
818 | | |
819 | | static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, |
820 | | const struct bpf_core_spec *spec, |
821 | | __u64 *val, bool *validate) |
822 | 0 | { |
823 | 0 | __s64 sz; |
824 | | |
825 | | /* by default, always check expected value in bpf_insn */ |
826 | 0 | if (validate) |
827 | 0 | *validate = true; |
828 | | |
829 | | /* type-based relos return zero when target type is not found */ |
830 | 0 | if (!spec) { |
831 | 0 | *val = 0; |
832 | 0 | return 0; |
833 | 0 | } |
834 | | |
835 | 0 | switch (relo->kind) { |
836 | 0 | case BPF_CORE_TYPE_ID_TARGET: |
837 | 0 | *val = spec->root_type_id; |
838 | | /* type ID, embedded in bpf_insn, might change during linking, |
839 | | * so enforcing it is pointless |
840 | | */ |
841 | 0 | if (validate) |
842 | 0 | *validate = false; |
843 | 0 | break; |
844 | 0 | case BPF_CORE_TYPE_EXISTS: |
845 | 0 | case BPF_CORE_TYPE_MATCHES: |
846 | 0 | *val = 1; |
847 | 0 | break; |
848 | 0 | case BPF_CORE_TYPE_SIZE: |
849 | 0 | sz = btf__resolve_size(spec->btf, spec->root_type_id); |
850 | 0 | if (sz < 0) |
851 | 0 | return -EINVAL; |
852 | 0 | *val = sz; |
853 | 0 | break; |
854 | 0 | case BPF_CORE_TYPE_ID_LOCAL: |
855 | | /* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */ |
856 | 0 | default: |
857 | 0 | return -EOPNOTSUPP; |
858 | 0 | } |
859 | | |
860 | 0 | return 0; |
861 | 0 | } |
862 | | |
863 | | static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, |
864 | | const struct bpf_core_spec *spec, |
865 | | __u64 *val) |
866 | 0 | { |
867 | 0 | const struct btf_type *t; |
868 | |
|
869 | 0 | switch (relo->kind) { |
870 | 0 | case BPF_CORE_ENUMVAL_EXISTS: |
871 | 0 | *val = spec ? 1 : 0; |
872 | 0 | break; |
873 | 0 | case BPF_CORE_ENUMVAL_VALUE: |
874 | 0 | if (!spec) |
875 | 0 | return -EUCLEAN; /* request instruction poisoning */ |
876 | 0 | t = btf_type_by_id(spec->btf, spec->spec[0].type_id); |
877 | 0 | if (btf_is_enum(t)) |
878 | 0 | *val = btf_enum(t)[spec->spec[0].idx].val; |
879 | 0 | else |
880 | 0 | *val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx); |
881 | 0 | break; |
882 | 0 | default: |
883 | 0 | return -EOPNOTSUPP; |
884 | 0 | } |
885 | | |
886 | 0 | return 0; |
887 | 0 | } |
888 | | |
889 | | /* Calculate original and target relocation values, given local and target |
890 | | * specs and relocation kind. These values are calculated for each candidate. |
891 | | * If there are multiple candidates, resulting values should all be consistent |
892 | | * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. |
893 | | * If instruction has to be poisoned, *poison will be set to true. |
894 | | */ |
895 | | static int bpf_core_calc_relo(const char *prog_name, |
896 | | const struct bpf_core_relo *relo, |
897 | | int relo_idx, |
898 | | const struct bpf_core_spec *local_spec, |
899 | | const struct bpf_core_spec *targ_spec, |
900 | | struct bpf_core_relo_res *res) |
901 | 0 | { |
902 | 0 | int err = -EOPNOTSUPP; |
903 | |
|
904 | 0 | res->orig_val = 0; |
905 | 0 | res->new_val = 0; |
906 | 0 | res->poison = false; |
907 | 0 | res->validate = true; |
908 | 0 | res->fail_memsz_adjust = false; |
909 | 0 | res->orig_sz = res->new_sz = 0; |
910 | 0 | res->orig_type_id = res->new_type_id = 0; |
911 | |
|
912 | 0 | if (core_relo_is_field_based(relo->kind)) { |
913 | 0 | err = bpf_core_calc_field_relo(prog_name, relo, local_spec, |
914 | 0 | &res->orig_val, &res->orig_sz, |
915 | 0 | &res->orig_type_id, &res->validate); |
916 | 0 | err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec, |
917 | 0 | &res->new_val, &res->new_sz, |
918 | 0 | &res->new_type_id, NULL); |
919 | 0 | if (err) |
920 | 0 | goto done; |
921 | | /* Validate if it's safe to adjust load/store memory size. |
922 | | * Adjustments are performed only if original and new memory |
923 | | * sizes differ. |
924 | | */ |
925 | 0 | res->fail_memsz_adjust = false; |
926 | 0 | if (res->orig_sz != res->new_sz) { |
927 | 0 | const struct btf_type *orig_t, *new_t; |
928 | |
|
929 | 0 | orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id); |
930 | 0 | new_t = btf_type_by_id(targ_spec->btf, res->new_type_id); |
931 | | |
932 | | /* There are two use cases in which it's safe to |
933 | | * adjust load/store's mem size: |
934 | | * - reading a 32-bit kernel pointer, while on BPF |
935 | | * size pointers are always 64-bit; in this case |
936 | | * it's safe to "downsize" instruction size due to |
937 | | * pointer being treated as unsigned integer with |
938 | | * zero-extended upper 32-bits; |
939 | | * - reading unsigned integers, again due to |
940 | | * zero-extension is preserving the value correctly. |
941 | | * |
942 | | * In all other cases it's incorrect to attempt to |
943 | | * load/store field because read value will be |
944 | | * incorrect, so we poison relocated instruction. |
945 | | */ |
946 | 0 | if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) |
947 | 0 | goto done; |
948 | 0 | if (btf_is_int(orig_t) && btf_is_int(new_t) && |
949 | 0 | btf_int_encoding(orig_t) != BTF_INT_SIGNED && |
950 | 0 | btf_int_encoding(new_t) != BTF_INT_SIGNED) |
951 | 0 | goto done; |
952 | | |
953 | | /* mark as invalid mem size adjustment, but this will |
954 | | * only be checked for LDX/STX/ST insns |
955 | | */ |
956 | 0 | res->fail_memsz_adjust = true; |
957 | 0 | } |
958 | 0 | } else if (core_relo_is_type_based(relo->kind)) { |
959 | 0 | err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate); |
960 | 0 | err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL); |
961 | 0 | } else if (core_relo_is_enumval_based(relo->kind)) { |
962 | 0 | err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); |
963 | 0 | err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); |
964 | 0 | } |
965 | | |
966 | 0 | done: |
967 | 0 | if (err == -EUCLEAN) { |
968 | | /* EUCLEAN is used to signal instruction poisoning request */ |
969 | 0 | res->poison = true; |
970 | 0 | err = 0; |
971 | 0 | } else if (err == -EOPNOTSUPP) { |
972 | | /* EOPNOTSUPP means unknown/unsupported relocation */ |
973 | 0 | pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", |
974 | 0 | prog_name, relo_idx, core_relo_kind_str(relo->kind), |
975 | 0 | relo->kind, relo->insn_off / 8); |
976 | 0 | } |
977 | |
|
978 | 0 | return err; |
979 | 0 | } |
980 | | |
981 | | /* |
982 | | * Turn instruction for which CO_RE relocation failed into invalid one with |
983 | | * distinct signature. |
984 | | */ |
985 | | static void bpf_core_poison_insn(const char *prog_name, int relo_idx, |
986 | | int insn_idx, struct bpf_insn *insn) |
987 | 0 | { |
988 | 0 | pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", |
989 | 0 | prog_name, relo_idx, insn_idx); |
990 | 0 | insn->code = BPF_JMP | BPF_CALL; |
991 | 0 | insn->dst_reg = 0; |
992 | 0 | insn->src_reg = 0; |
993 | 0 | insn->off = 0; |
994 | | /* if this instruction is reachable (not a dead code), |
995 | | * verifier will complain with the following message: |
996 | | * invalid func unknown#195896080 |
997 | | */ |
998 | 0 | insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ |
999 | 0 | } |
1000 | | |
1001 | | static int insn_bpf_size_to_bytes(struct bpf_insn *insn) |
1002 | 0 | { |
1003 | 0 | switch (BPF_SIZE(insn->code)) { |
1004 | 0 | case BPF_DW: return 8; |
1005 | 0 | case BPF_W: return 4; |
1006 | 0 | case BPF_H: return 2; |
1007 | 0 | case BPF_B: return 1; |
1008 | 0 | default: return -1; |
1009 | 0 | } |
1010 | 0 | } |
1011 | | |
1012 | | static int insn_bytes_to_bpf_size(__u32 sz) |
1013 | 0 | { |
1014 | 0 | switch (sz) { |
1015 | 0 | case 8: return BPF_DW; |
1016 | 0 | case 4: return BPF_W; |
1017 | 0 | case 2: return BPF_H; |
1018 | 0 | case 1: return BPF_B; |
1019 | 0 | default: return -1; |
1020 | 0 | } |
1021 | 0 | } |
1022 | | |
1023 | | /* |
1024 | | * Patch relocatable BPF instruction. |
1025 | | * |
1026 | | * Patched value is determined by relocation kind and target specification. |
1027 | | * For existence relocations target spec will be NULL if field/type is not found. |
1028 | | * Expected insn->imm value is determined using relocation kind and local |
1029 | | * spec, and is checked before patching instruction. If actual insn->imm value |
1030 | | * is wrong, bail out with error. |
1031 | | * |
1032 | | * Currently supported classes of BPF instruction are: |
1033 | | * 1. rX = <imm> (assignment with immediate operand); |
1034 | | * 2. rX += <imm> (arithmetic operations with immediate operand); |
1035 | | * 3. rX = <imm64> (load with 64-bit immediate value); |
1036 | | * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; |
1037 | | * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; |
1038 | | * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. |
1039 | | */ |
1040 | | int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn, |
1041 | | int insn_idx, const struct bpf_core_relo *relo, |
1042 | | int relo_idx, const struct bpf_core_relo_res *res) |
1043 | 0 | { |
1044 | 0 | __u64 orig_val, new_val; |
1045 | 0 | __u8 class; |
1046 | |
|
1047 | 0 | class = BPF_CLASS(insn->code); |
1048 | |
|
1049 | 0 | if (res->poison) { |
1050 | 0 | poison: |
1051 | | /* poison second part of ldimm64 to avoid confusing error from |
1052 | | * verifier about "unknown opcode 00" |
1053 | | */ |
1054 | 0 | if (is_ldimm64_insn(insn)) |
1055 | 0 | bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1); |
1056 | 0 | bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn); |
1057 | 0 | return 0; |
1058 | 0 | } |
1059 | | |
1060 | 0 | orig_val = res->orig_val; |
1061 | 0 | new_val = res->new_val; |
1062 | |
|
1063 | 0 | switch (class) { |
1064 | 0 | case BPF_ALU: |
1065 | 0 | case BPF_ALU64: |
1066 | 0 | if (BPF_SRC(insn->code) != BPF_K) |
1067 | 0 | return -EINVAL; |
1068 | 0 | if (res->validate && insn->imm != orig_val) { |
1069 | 0 | pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n", |
1070 | 0 | prog_name, relo_idx, |
1071 | 0 | insn_idx, insn->imm, (unsigned long long)orig_val, |
1072 | 0 | (unsigned long long)new_val); |
1073 | 0 | return -EINVAL; |
1074 | 0 | } |
1075 | 0 | orig_val = insn->imm; |
1076 | 0 | insn->imm = new_val; |
1077 | 0 | pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n", |
1078 | 0 | prog_name, relo_idx, insn_idx, |
1079 | 0 | (unsigned long long)orig_val, (unsigned long long)new_val); |
1080 | 0 | break; |
1081 | 0 | case BPF_LDX: |
1082 | 0 | case BPF_ST: |
1083 | 0 | case BPF_STX: |
1084 | 0 | if (res->validate && insn->off != orig_val) { |
1085 | 0 | pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n", |
1086 | 0 | prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val, |
1087 | 0 | (unsigned long long)new_val); |
1088 | 0 | return -EINVAL; |
1089 | 0 | } |
1090 | 0 | if (new_val > SHRT_MAX) { |
1091 | 0 | pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n", |
1092 | 0 | prog_name, relo_idx, insn_idx, (unsigned long long)new_val); |
1093 | 0 | return -ERANGE; |
1094 | 0 | } |
1095 | 0 | if (res->fail_memsz_adjust) { |
1096 | 0 | pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " |
1097 | 0 | "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", |
1098 | 0 | prog_name, relo_idx, insn_idx); |
1099 | 0 | goto poison; |
1100 | 0 | } |
1101 | | |
1102 | 0 | orig_val = insn->off; |
1103 | 0 | insn->off = new_val; |
1104 | 0 | pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n", |
1105 | 0 | prog_name, relo_idx, insn_idx, (unsigned long long)orig_val, |
1106 | 0 | (unsigned long long)new_val); |
1107 | |
|
1108 | 0 | if (res->new_sz != res->orig_sz) { |
1109 | 0 | int insn_bytes_sz, insn_bpf_sz; |
1110 | |
|
1111 | 0 | insn_bytes_sz = insn_bpf_size_to_bytes(insn); |
1112 | 0 | if (insn_bytes_sz != res->orig_sz) { |
1113 | 0 | pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", |
1114 | 0 | prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); |
1115 | 0 | return -EINVAL; |
1116 | 0 | } |
1117 | | |
1118 | 0 | insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); |
1119 | 0 | if (insn_bpf_sz < 0) { |
1120 | 0 | pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", |
1121 | 0 | prog_name, relo_idx, insn_idx, res->new_sz); |
1122 | 0 | return -EINVAL; |
1123 | 0 | } |
1124 | | |
1125 | 0 | insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); |
1126 | 0 | pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", |
1127 | 0 | prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz); |
1128 | 0 | } |
1129 | 0 | break; |
1130 | 0 | case BPF_LD: { |
1131 | 0 | __u64 imm; |
1132 | |
|
1133 | 0 | if (!is_ldimm64_insn(insn) || |
1134 | 0 | insn[0].src_reg != 0 || insn[0].off != 0 || |
1135 | 0 | insn[1].code != 0 || insn[1].dst_reg != 0 || |
1136 | 0 | insn[1].src_reg != 0 || insn[1].off != 0) { |
1137 | 0 | pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", |
1138 | 0 | prog_name, relo_idx, insn_idx); |
1139 | 0 | return -EINVAL; |
1140 | 0 | } |
1141 | | |
1142 | 0 | imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32); |
1143 | 0 | if (res->validate && imm != orig_val) { |
1144 | 0 | pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n", |
1145 | 0 | prog_name, relo_idx, |
1146 | 0 | insn_idx, (unsigned long long)imm, |
1147 | 0 | (unsigned long long)orig_val, (unsigned long long)new_val); |
1148 | 0 | return -EINVAL; |
1149 | 0 | } |
1150 | | |
1151 | 0 | insn[0].imm = new_val; |
1152 | 0 | insn[1].imm = new_val >> 32; |
1153 | 0 | pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n", |
1154 | 0 | prog_name, relo_idx, insn_idx, |
1155 | 0 | (unsigned long long)imm, (unsigned long long)new_val); |
1156 | 0 | break; |
1157 | 0 | } |
1158 | 0 | default: |
1159 | 0 | pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", |
1160 | 0 | prog_name, relo_idx, insn_idx, insn->code, |
1161 | 0 | insn->src_reg, insn->dst_reg, insn->off, insn->imm); |
1162 | 0 | return -EINVAL; |
1163 | 0 | } |
1164 | | |
1165 | 0 | return 0; |
1166 | 0 | } |
1167 | | |
1168 | | /* Output spec definition in the format: |
1169 | | * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, |
1170 | | * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b |
1171 | | */ |
1172 | | int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec) |
1173 | 0 | { |
1174 | 0 | const struct btf_type *t; |
1175 | 0 | const char *s; |
1176 | 0 | __u32 type_id; |
1177 | 0 | int i, len = 0; |
1178 | |
|
1179 | 0 | #define append_buf(fmt, args...) \ |
1180 | 0 | ({ \ |
1181 | 0 | int r; \ |
1182 | 0 | r = snprintf(buf, buf_sz, fmt, ##args); \ |
1183 | 0 | len += r; \ |
1184 | 0 | if (r >= buf_sz) \ |
1185 | 0 | r = buf_sz; \ |
1186 | 0 | buf += r; \ |
1187 | 0 | buf_sz -= r; \ |
1188 | 0 | }) |
1189 | |
|
1190 | 0 | type_id = spec->root_type_id; |
1191 | 0 | t = btf_type_by_id(spec->btf, type_id); |
1192 | 0 | s = btf__name_by_offset(spec->btf, t->name_off); |
1193 | |
|
1194 | 0 | append_buf("<%s> [%u] %s %s", |
1195 | 0 | core_relo_kind_str(spec->relo_kind), |
1196 | 0 | type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); |
1197 | |
|
1198 | 0 | if (core_relo_is_type_based(spec->relo_kind)) |
1199 | 0 | return len; |
1200 | | |
1201 | 0 | if (core_relo_is_enumval_based(spec->relo_kind)) { |
1202 | 0 | t = skip_mods_and_typedefs(spec->btf, type_id, NULL); |
1203 | 0 | if (btf_is_enum(t)) { |
1204 | 0 | const struct btf_enum *e; |
1205 | 0 | const char *fmt_str; |
1206 | |
|
1207 | 0 | e = btf_enum(t) + spec->raw_spec[0]; |
1208 | 0 | s = btf__name_by_offset(spec->btf, e->name_off); |
1209 | 0 | fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u"; |
1210 | 0 | append_buf(fmt_str, s, e->val); |
1211 | 0 | } else { |
1212 | 0 | const struct btf_enum64 *e; |
1213 | 0 | const char *fmt_str; |
1214 | |
|
1215 | 0 | e = btf_enum64(t) + spec->raw_spec[0]; |
1216 | 0 | s = btf__name_by_offset(spec->btf, e->name_off); |
1217 | 0 | fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu"; |
1218 | 0 | append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e)); |
1219 | 0 | } |
1220 | 0 | return len; |
1221 | 0 | } |
1222 | | |
1223 | 0 | if (core_relo_is_field_based(spec->relo_kind)) { |
1224 | 0 | for (i = 0; i < spec->len; i++) { |
1225 | 0 | if (spec->spec[i].name) |
1226 | 0 | append_buf(".%s", spec->spec[i].name); |
1227 | 0 | else if (i > 0 || spec->spec[i].idx > 0) |
1228 | 0 | append_buf("[%u]", spec->spec[i].idx); |
1229 | 0 | } |
1230 | |
|
1231 | 0 | append_buf(" ("); |
1232 | 0 | for (i = 0; i < spec->raw_len; i++) |
1233 | 0 | append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); |
1234 | |
|
1235 | 0 | if (spec->bit_offset % 8) |
1236 | 0 | append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8); |
1237 | 0 | else |
1238 | 0 | append_buf(" @ offset %u)", spec->bit_offset / 8); |
1239 | 0 | return len; |
1240 | 0 | } |
1241 | | |
1242 | 0 | return len; |
1243 | 0 | #undef append_buf |
1244 | 0 | } |
1245 | | |
1246 | | /* |
1247 | | * Calculate CO-RE relocation target result. |
1248 | | * |
1249 | | * The outline and important points of the algorithm: |
1250 | | * 1. For given local type, find corresponding candidate target types. |
1251 | | * Candidate type is a type with the same "essential" name, ignoring |
1252 | | * everything after last triple underscore (___). E.g., `sample`, |
1253 | | * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates |
1254 | | * for each other. Names with triple underscore are referred to as |
1255 | | * "flavors" and are useful, among other things, to allow to |
1256 | | * specify/support incompatible variations of the same kernel struct, which |
1257 | | * might differ between different kernel versions and/or build |
1258 | | * configurations. |
1259 | | * |
1260 | | * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C |
1261 | | * converter, when deduplicated BTF of a kernel still contains more than |
1262 | | * one different types with the same name. In that case, ___2, ___3, etc |
1263 | | * are appended starting from second name conflict. But start flavors are |
1264 | | * also useful to be defined "locally", in BPF program, to extract same |
1265 | | * data from incompatible changes between different kernel |
1266 | | * versions/configurations. For instance, to handle field renames between |
1267 | | * kernel versions, one can use two flavors of the struct name with the |
1268 | | * same common name and use conditional relocations to extract that field, |
1269 | | * depending on target kernel version. |
1270 | | * 2. For each candidate type, try to match local specification to this |
1271 | | * candidate target type. Matching involves finding corresponding |
1272 | | * high-level spec accessors, meaning that all named fields should match, |
1273 | | * as well as all array accesses should be within the actual bounds. Also, |
1274 | | * types should be compatible (see bpf_core_fields_are_compat for details). |
1275 | | * 3. It is supported and expected that there might be multiple flavors |
1276 | | * matching the spec. As long as all the specs resolve to the same set of |
1277 | | * offsets across all candidates, there is no error. If there is any |
1278 | | * ambiguity, CO-RE relocation will fail. This is necessary to accommodate |
1279 | | * imperfection of BTF deduplication, which can cause slight duplication of |
1280 | | * the same BTF type, if some directly or indirectly referenced (by |
1281 | | * pointer) type gets resolved to different actual types in different |
1282 | | * object files. If such a situation occurs, deduplicated BTF will end up |
1283 | | * with two (or more) structurally identical types, which differ only in |
1284 | | * types they refer to through pointer. This should be OK in most cases and |
1285 | | * is not an error. |
1286 | | * 4. Candidate types search is performed by linearly scanning through all |
1287 | | * types in target BTF. It is anticipated that this is overall more |
1288 | | * efficient memory-wise and not significantly worse (if not better) |
1289 | | * CPU-wise compared to prebuilding a map from all local type names to |
1290 | | * a list of candidate type names. It's also sped up by caching resolved |
1291 | | * list of matching candidates per each local "root" type ID, that has at |
1292 | | * least one bpf_core_relo associated with it. This list is shared |
1293 | | * between multiple relocations for the same type ID and is updated as some |
1294 | | * of the candidates are pruned due to structural incompatibility. |
1295 | | */ |
1296 | | int bpf_core_calc_relo_insn(const char *prog_name, |
1297 | | const struct bpf_core_relo *relo, |
1298 | | int relo_idx, |
1299 | | const struct btf *local_btf, |
1300 | | struct bpf_core_cand_list *cands, |
1301 | | struct bpf_core_spec *specs_scratch, |
1302 | | struct bpf_core_relo_res *targ_res) |
1303 | 0 | { |
1304 | 0 | struct bpf_core_spec *local_spec = &specs_scratch[0]; |
1305 | 0 | struct bpf_core_spec *cand_spec = &specs_scratch[1]; |
1306 | 0 | struct bpf_core_spec *targ_spec = &specs_scratch[2]; |
1307 | 0 | struct bpf_core_relo_res cand_res; |
1308 | 0 | const struct btf_type *local_type; |
1309 | 0 | const char *local_name; |
1310 | 0 | __u32 local_id; |
1311 | 0 | char spec_buf[256]; |
1312 | 0 | int i, j, err; |
1313 | |
|
1314 | 0 | local_id = relo->type_id; |
1315 | 0 | local_type = btf_type_by_id(local_btf, local_id); |
1316 | 0 | local_name = btf__name_by_offset(local_btf, local_type->name_off); |
1317 | 0 | if (!local_name) |
1318 | 0 | return -EINVAL; |
1319 | | |
1320 | 0 | err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec); |
1321 | 0 | if (err) { |
1322 | 0 | const char *spec_str; |
1323 | |
|
1324 | 0 | spec_str = btf__name_by_offset(local_btf, relo->access_str_off); |
1325 | 0 | pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", |
1326 | 0 | prog_name, relo_idx, local_id, btf_kind_str(local_type), |
1327 | 0 | str_is_empty(local_name) ? "<anon>" : local_name, |
1328 | 0 | spec_str ?: "<?>", err); |
1329 | 0 | return -EINVAL; |
1330 | 0 | } |
1331 | | |
1332 | 0 | bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec); |
1333 | 0 | pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf); |
1334 | | |
1335 | | /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ |
1336 | 0 | if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) { |
1337 | | /* bpf_insn's imm value could get out of sync during linking */ |
1338 | 0 | memset(targ_res, 0, sizeof(*targ_res)); |
1339 | 0 | targ_res->validate = false; |
1340 | 0 | targ_res->poison = false; |
1341 | 0 | targ_res->orig_val = local_spec->root_type_id; |
1342 | 0 | targ_res->new_val = local_spec->root_type_id; |
1343 | 0 | return 0; |
1344 | 0 | } |
1345 | | |
1346 | | /* libbpf doesn't support candidate search for anonymous types */ |
1347 | 0 | if (str_is_empty(local_name)) { |
1348 | 0 | pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", |
1349 | 0 | prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); |
1350 | 0 | return -EOPNOTSUPP; |
1351 | 0 | } |
1352 | | |
1353 | 0 | for (i = 0, j = 0; i < cands->len; i++) { |
1354 | 0 | err = bpf_core_spec_match(local_spec, cands->cands[i].btf, |
1355 | 0 | cands->cands[i].id, cand_spec); |
1356 | 0 | if (err < 0) { |
1357 | 0 | bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec); |
1358 | 0 | pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n", |
1359 | 0 | prog_name, relo_idx, i, spec_buf, err); |
1360 | 0 | return err; |
1361 | 0 | } |
1362 | | |
1363 | 0 | bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec); |
1364 | 0 | pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name, |
1365 | 0 | relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf); |
1366 | |
|
1367 | 0 | if (err == 0) |
1368 | 0 | continue; |
1369 | | |
1370 | 0 | err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res); |
1371 | 0 | if (err) |
1372 | 0 | return err; |
1373 | | |
1374 | 0 | if (j == 0) { |
1375 | 0 | *targ_res = cand_res; |
1376 | 0 | *targ_spec = *cand_spec; |
1377 | 0 | } else if (cand_spec->bit_offset != targ_spec->bit_offset) { |
1378 | | /* if there are many field relo candidates, they |
1379 | | * should all resolve to the same bit offset |
1380 | | */ |
1381 | 0 | pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", |
1382 | 0 | prog_name, relo_idx, cand_spec->bit_offset, |
1383 | 0 | targ_spec->bit_offset); |
1384 | 0 | return -EINVAL; |
1385 | 0 | } else if (cand_res.poison != targ_res->poison || |
1386 | 0 | cand_res.new_val != targ_res->new_val) { |
1387 | | /* all candidates should result in the same relocation |
1388 | | * decision and value, otherwise it's dangerous to |
1389 | | * proceed due to ambiguity |
1390 | | */ |
1391 | 0 | pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n", |
1392 | 0 | prog_name, relo_idx, |
1393 | 0 | cand_res.poison ? "failure" : "success", |
1394 | 0 | (unsigned long long)cand_res.new_val, |
1395 | 0 | targ_res->poison ? "failure" : "success", |
1396 | 0 | (unsigned long long)targ_res->new_val); |
1397 | 0 | return -EINVAL; |
1398 | 0 | } |
1399 | | |
1400 | 0 | cands->cands[j++] = cands->cands[i]; |
1401 | 0 | } |
1402 | | |
1403 | | /* |
1404 | | * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field |
1405 | | * existence checks or kernel version/config checks, it's expected |
1406 | | * that we might not find any candidates. In this case, if field |
1407 | | * wasn't found in any candidate, the list of candidates shouldn't |
1408 | | * change at all, we'll just handle relocating appropriately, |
1409 | | * depending on relo's kind. |
1410 | | */ |
1411 | 0 | if (j > 0) |
1412 | 0 | cands->len = j; |
1413 | | |
1414 | | /* |
1415 | | * If no candidates were found, it might be both a programmer error, |
1416 | | * as well as expected case, depending whether instruction w/ |
1417 | | * relocation is guarded in some way that makes it unreachable (dead |
1418 | | * code) if relocation can't be resolved. This is handled in |
1419 | | * bpf_core_patch_insn() uniformly by replacing that instruction with |
1420 | | * BPF helper call insn (using invalid helper ID). If that instruction |
1421 | | * is indeed unreachable, then it will be ignored and eliminated by |
1422 | | * verifier. If it was an error, then verifier will complain and point |
1423 | | * to a specific instruction number in its log. |
1424 | | */ |
1425 | 0 | if (j == 0) { |
1426 | 0 | pr_debug("prog '%s': relo #%d: no matching targets found\n", |
1427 | 0 | prog_name, relo_idx); |
1428 | | |
1429 | | /* calculate single target relo result explicitly */ |
1430 | 0 | err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res); |
1431 | 0 | if (err) |
1432 | 0 | return err; |
1433 | 0 | } |
1434 | | |
1435 | 0 | return 0; |
1436 | 0 | } |
1437 | | |
1438 | | static bool bpf_core_names_match(const struct btf *local_btf, size_t local_name_off, |
1439 | | const struct btf *targ_btf, size_t targ_name_off) |
1440 | 0 | { |
1441 | 0 | const char *local_n, *targ_n; |
1442 | 0 | size_t local_len, targ_len; |
1443 | |
|
1444 | 0 | local_n = btf__name_by_offset(local_btf, local_name_off); |
1445 | 0 | targ_n = btf__name_by_offset(targ_btf, targ_name_off); |
1446 | |
|
1447 | 0 | if (str_is_empty(targ_n)) |
1448 | 0 | return str_is_empty(local_n); |
1449 | | |
1450 | 0 | targ_len = bpf_core_essential_name_len(targ_n); |
1451 | 0 | local_len = bpf_core_essential_name_len(local_n); |
1452 | |
|
1453 | 0 | return targ_len == local_len && strncmp(local_n, targ_n, local_len) == 0; |
1454 | 0 | } |
1455 | | |
1456 | | static int bpf_core_enums_match(const struct btf *local_btf, const struct btf_type *local_t, |
1457 | | const struct btf *targ_btf, const struct btf_type *targ_t) |
1458 | 0 | { |
1459 | 0 | __u16 local_vlen = btf_vlen(local_t); |
1460 | 0 | __u16 targ_vlen = btf_vlen(targ_t); |
1461 | 0 | int i, j; |
1462 | |
|
1463 | 0 | if (local_t->size != targ_t->size) |
1464 | 0 | return 0; |
1465 | | |
1466 | 0 | if (local_vlen > targ_vlen) |
1467 | 0 | return 0; |
1468 | | |
1469 | | /* iterate over the local enum's variants and make sure each has |
1470 | | * a symbolic name correspondent in the target |
1471 | | */ |
1472 | 0 | for (i = 0; i < local_vlen; i++) { |
1473 | 0 | bool matched = false; |
1474 | 0 | __u32 local_n_off, targ_n_off; |
1475 | |
|
1476 | 0 | local_n_off = btf_is_enum(local_t) ? btf_enum(local_t)[i].name_off : |
1477 | 0 | btf_enum64(local_t)[i].name_off; |
1478 | |
|
1479 | 0 | for (j = 0; j < targ_vlen; j++) { |
1480 | 0 | targ_n_off = btf_is_enum(targ_t) ? btf_enum(targ_t)[j].name_off : |
1481 | 0 | btf_enum64(targ_t)[j].name_off; |
1482 | |
|
1483 | 0 | if (bpf_core_names_match(local_btf, local_n_off, targ_btf, targ_n_off)) { |
1484 | 0 | matched = true; |
1485 | 0 | break; |
1486 | 0 | } |
1487 | 0 | } |
1488 | |
|
1489 | 0 | if (!matched) |
1490 | 0 | return 0; |
1491 | 0 | } |
1492 | 0 | return 1; |
1493 | 0 | } |
1494 | | |
1495 | | static int bpf_core_composites_match(const struct btf *local_btf, const struct btf_type *local_t, |
1496 | | const struct btf *targ_btf, const struct btf_type *targ_t, |
1497 | | bool behind_ptr, int level) |
1498 | 0 | { |
1499 | 0 | const struct btf_member *local_m = btf_members(local_t); |
1500 | 0 | __u16 local_vlen = btf_vlen(local_t); |
1501 | 0 | __u16 targ_vlen = btf_vlen(targ_t); |
1502 | 0 | int i, j, err; |
1503 | |
|
1504 | 0 | if (local_vlen > targ_vlen) |
1505 | 0 | return 0; |
1506 | | |
1507 | | /* check that all local members have a match in the target */ |
1508 | 0 | for (i = 0; i < local_vlen; i++, local_m++) { |
1509 | 0 | const struct btf_member *targ_m = btf_members(targ_t); |
1510 | 0 | bool matched = false; |
1511 | |
|
1512 | 0 | for (j = 0; j < targ_vlen; j++, targ_m++) { |
1513 | 0 | if (!bpf_core_names_match(local_btf, local_m->name_off, |
1514 | 0 | targ_btf, targ_m->name_off)) |
1515 | 0 | continue; |
1516 | | |
1517 | 0 | err = __bpf_core_types_match(local_btf, local_m->type, targ_btf, |
1518 | 0 | targ_m->type, behind_ptr, level - 1); |
1519 | 0 | if (err < 0) |
1520 | 0 | return err; |
1521 | 0 | if (err > 0) { |
1522 | 0 | matched = true; |
1523 | 0 | break; |
1524 | 0 | } |
1525 | 0 | } |
1526 | | |
1527 | 0 | if (!matched) |
1528 | 0 | return 0; |
1529 | 0 | } |
1530 | 0 | return 1; |
1531 | 0 | } |
1532 | | |
1533 | | /* Check that two types "match". This function assumes that root types were |
1534 | | * already checked for name match. |
1535 | | * |
1536 | | * The matching relation is defined as follows: |
1537 | | * - modifiers and typedefs are stripped (and, hence, effectively ignored) |
1538 | | * - generally speaking types need to be of same kind (struct vs. struct, union |
1539 | | * vs. union, etc.) |
1540 | | * - exceptions are struct/union behind a pointer which could also match a |
1541 | | * forward declaration of a struct or union, respectively, and enum vs. |
1542 | | * enum64 (see below) |
1543 | | * Then, depending on type: |
1544 | | * - integers: |
1545 | | * - match if size and signedness match |
1546 | | * - arrays & pointers: |
1547 | | * - target types are recursively matched |
1548 | | * - structs & unions: |
1549 | | * - local members need to exist in target with the same name |
1550 | | * - for each member we recursively check match unless it is already behind a |
1551 | | * pointer, in which case we only check matching names and compatible kind |
1552 | | * - enums: |
1553 | | * - local variants have to have a match in target by symbolic name (but not |
1554 | | * numeric value) |
1555 | | * - size has to match (but enum may match enum64 and vice versa) |
1556 | | * - function pointers: |
1557 | | * - number and position of arguments in local type has to match target |
1558 | | * - for each argument and the return value we recursively check match |
1559 | | */ |
1560 | | int __bpf_core_types_match(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf, |
1561 | | __u32 targ_id, bool behind_ptr, int level) |
1562 | 0 | { |
1563 | 0 | const struct btf_type *local_t, *targ_t; |
1564 | 0 | int depth = 32; /* max recursion depth */ |
1565 | 0 | __u16 local_k, targ_k; |
1566 | |
|
1567 | 0 | if (level <= 0) |
1568 | 0 | return -EINVAL; |
1569 | | |
1570 | 0 | recur: |
1571 | 0 | depth--; |
1572 | 0 | if (depth < 0) |
1573 | 0 | return -EINVAL; |
1574 | | |
1575 | 0 | local_t = skip_mods_and_typedefs(local_btf, local_id, &local_id); |
1576 | 0 | targ_t = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); |
1577 | 0 | if (!local_t || !targ_t) |
1578 | 0 | return -EINVAL; |
1579 | | |
1580 | | /* While the name check happens after typedefs are skipped, root-level |
1581 | | * typedefs would still be name-matched as that's the contract with |
1582 | | * callers. |
1583 | | */ |
1584 | 0 | if (!bpf_core_names_match(local_btf, local_t->name_off, targ_btf, targ_t->name_off)) |
1585 | 0 | return 0; |
1586 | | |
1587 | 0 | local_k = btf_kind(local_t); |
1588 | 0 | targ_k = btf_kind(targ_t); |
1589 | |
|
1590 | 0 | switch (local_k) { |
1591 | 0 | case BTF_KIND_UNKN: |
1592 | 0 | return local_k == targ_k; |
1593 | 0 | case BTF_KIND_FWD: { |
1594 | 0 | bool local_f = BTF_INFO_KFLAG(local_t->info); |
1595 | |
|
1596 | 0 | if (behind_ptr) { |
1597 | 0 | if (local_k == targ_k) |
1598 | 0 | return local_f == BTF_INFO_KFLAG(targ_t->info); |
1599 | | |
1600 | | /* for forward declarations kflag dictates whether the |
1601 | | * target is a struct (0) or union (1) |
1602 | | */ |
1603 | 0 | return (targ_k == BTF_KIND_STRUCT && !local_f) || |
1604 | 0 | (targ_k == BTF_KIND_UNION && local_f); |
1605 | 0 | } else { |
1606 | 0 | if (local_k != targ_k) |
1607 | 0 | return 0; |
1608 | | |
1609 | | /* match if the forward declaration is for the same kind */ |
1610 | 0 | return local_f == BTF_INFO_KFLAG(targ_t->info); |
1611 | 0 | } |
1612 | 0 | } |
1613 | 0 | case BTF_KIND_ENUM: |
1614 | 0 | case BTF_KIND_ENUM64: |
1615 | 0 | if (!btf_is_any_enum(targ_t)) |
1616 | 0 | return 0; |
1617 | | |
1618 | 0 | return bpf_core_enums_match(local_btf, local_t, targ_btf, targ_t); |
1619 | 0 | case BTF_KIND_STRUCT: |
1620 | 0 | case BTF_KIND_UNION: |
1621 | 0 | if (behind_ptr) { |
1622 | 0 | bool targ_f = BTF_INFO_KFLAG(targ_t->info); |
1623 | |
|
1624 | 0 | if (local_k == targ_k) |
1625 | 0 | return 1; |
1626 | | |
1627 | 0 | if (targ_k != BTF_KIND_FWD) |
1628 | 0 | return 0; |
1629 | | |
1630 | 0 | return (local_k == BTF_KIND_UNION) == targ_f; |
1631 | 0 | } else { |
1632 | 0 | if (local_k != targ_k) |
1633 | 0 | return 0; |
1634 | | |
1635 | 0 | return bpf_core_composites_match(local_btf, local_t, targ_btf, targ_t, |
1636 | 0 | behind_ptr, level); |
1637 | 0 | } |
1638 | 0 | case BTF_KIND_INT: { |
1639 | 0 | __u8 local_sgn; |
1640 | 0 | __u8 targ_sgn; |
1641 | |
|
1642 | 0 | if (local_k != targ_k) |
1643 | 0 | return 0; |
1644 | | |
1645 | 0 | local_sgn = btf_int_encoding(local_t) & BTF_INT_SIGNED; |
1646 | 0 | targ_sgn = btf_int_encoding(targ_t) & BTF_INT_SIGNED; |
1647 | |
|
1648 | 0 | return local_t->size == targ_t->size && local_sgn == targ_sgn; |
1649 | 0 | } |
1650 | 0 | case BTF_KIND_PTR: |
1651 | 0 | if (local_k != targ_k) |
1652 | 0 | return 0; |
1653 | | |
1654 | 0 | behind_ptr = true; |
1655 | |
|
1656 | 0 | local_id = local_t->type; |
1657 | 0 | targ_id = targ_t->type; |
1658 | 0 | goto recur; |
1659 | 0 | case BTF_KIND_ARRAY: { |
1660 | 0 | const struct btf_array *local_array = btf_array(local_t); |
1661 | 0 | const struct btf_array *targ_array = btf_array(targ_t); |
1662 | |
|
1663 | 0 | if (local_k != targ_k) |
1664 | 0 | return 0; |
1665 | | |
1666 | 0 | if (local_array->nelems != targ_array->nelems) |
1667 | 0 | return 0; |
1668 | | |
1669 | 0 | local_id = local_array->type; |
1670 | 0 | targ_id = targ_array->type; |
1671 | 0 | goto recur; |
1672 | 0 | } |
1673 | 0 | case BTF_KIND_FUNC_PROTO: { |
1674 | 0 | struct btf_param *local_p = btf_params(local_t); |
1675 | 0 | struct btf_param *targ_p = btf_params(targ_t); |
1676 | 0 | __u16 local_vlen = btf_vlen(local_t); |
1677 | 0 | __u16 targ_vlen = btf_vlen(targ_t); |
1678 | 0 | int i, err; |
1679 | |
|
1680 | 0 | if (local_k != targ_k) |
1681 | 0 | return 0; |
1682 | | |
1683 | 0 | if (local_vlen != targ_vlen) |
1684 | 0 | return 0; |
1685 | | |
1686 | 0 | for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { |
1687 | 0 | err = __bpf_core_types_match(local_btf, local_p->type, targ_btf, |
1688 | 0 | targ_p->type, behind_ptr, level - 1); |
1689 | 0 | if (err <= 0) |
1690 | 0 | return err; |
1691 | 0 | } |
1692 | | |
1693 | | /* tail recurse for return type check */ |
1694 | 0 | local_id = local_t->type; |
1695 | 0 | targ_id = targ_t->type; |
1696 | 0 | goto recur; |
1697 | 0 | } |
1698 | 0 | default: |
1699 | 0 | pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", |
1700 | 0 | btf_kind_str(local_t), local_id, targ_id); |
1701 | 0 | return 0; |
1702 | 0 | } |
1703 | 0 | } |