/src/botan/src/lib/pubkey/x25519/donna.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Based on curve25519-donna-c64.c from https://github.com/agl/curve25519-donna |
3 | | * revision 80ad9b9930c9baef5829dd2a235b6b7646d32a8e |
4 | | * |
5 | | * Further changes |
6 | | * (C) 2014,2018 Jack Lloyd |
7 | | * |
8 | | * Botan is released under the Simplified BSD License (see license.txt) |
9 | | */ |
10 | | |
11 | | /* Copyright 2008, Google Inc. |
12 | | * All rights reserved. |
13 | | * |
14 | | * Code released into the public domain. |
15 | | * |
16 | | * curve25519-donna: Curve25519 elliptic curve, public key function |
17 | | * |
18 | | * https://code.google.com/p/curve25519-donna/ |
19 | | * |
20 | | * Adam Langley <agl@imperialviolet.org> |
21 | | * |
22 | | * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to> |
23 | | * |
24 | | * More information about curve25519 can be found here |
25 | | * https://cr.yp.to/ecdh.html |
26 | | * |
27 | | * djb's sample implementation of curve25519 is written in a special assembly |
28 | | * language called qhasm and uses the floating point registers. |
29 | | * |
30 | | * This is, almost, a clean room reimplementation from the curve25519 paper. It |
31 | | * uses many of the tricks described therein. Only the crecip function is taken |
32 | | * from the sample implementation. |
33 | | */ |
34 | | |
35 | | #include <botan/x25519.h> |
36 | | |
37 | | #include <botan/internal/ct_utils.h> |
38 | | #include <botan/internal/donna128.h> |
39 | | #include <botan/internal/loadstor.h> |
40 | | #include <botan/internal/mul128.h> |
41 | | |
42 | | namespace Botan { |
43 | | |
44 | | namespace { |
45 | | |
46 | | #if !defined(BOTAN_TARGET_HAS_NATIVE_UINT128) |
47 | | typedef donna128 uint128_t; |
48 | | #endif |
49 | | |
50 | | /* Sum two numbers: output += in */ |
51 | 0 | inline void fsum(uint64_t out[5], const uint64_t in[5]) { |
52 | 0 | out[0] += in[0]; |
53 | 0 | out[1] += in[1]; |
54 | 0 | out[2] += in[2]; |
55 | 0 | out[3] += in[3]; |
56 | 0 | out[4] += in[4]; |
57 | 0 | } |
58 | | |
59 | | /* Find the difference of two numbers: out = in - out |
60 | | * (note the order of the arguments!) |
61 | | * |
62 | | * Assumes that out[i] < 2**52 |
63 | | * On return, out[i] < 2**55 |
64 | | */ |
65 | 0 | inline void fdifference_backwards(uint64_t out[5], const uint64_t in[5]) { |
66 | | /* 152 is 19 << 3 */ |
67 | 0 | const uint64_t two54m152 = (static_cast<uint64_t>(1) << 54) - 152; |
68 | 0 | const uint64_t two54m8 = (static_cast<uint64_t>(1) << 54) - 8; |
69 | |
|
70 | 0 | out[0] = in[0] + two54m152 - out[0]; |
71 | 0 | out[1] = in[1] + two54m8 - out[1]; |
72 | 0 | out[2] = in[2] + two54m8 - out[2]; |
73 | 0 | out[3] = in[3] + two54m8 - out[3]; |
74 | 0 | out[4] = in[4] + two54m8 - out[4]; |
75 | 0 | } |
76 | | |
77 | 0 | inline void fadd_sub(uint64_t x[5], uint64_t y[5]) { |
78 | | // TODO merge these and avoid the tmp array |
79 | 0 | uint64_t tmp[5]; |
80 | 0 | copy_mem(tmp, y, 5); |
81 | 0 | fsum(y, x); |
82 | 0 | fdifference_backwards(x, tmp); // does x - z |
83 | 0 | } |
84 | | |
85 | | const uint64_t MASK_63 = 0x7ffffffffffff; |
86 | | |
87 | | /* Multiply a number by a scalar: out = in * scalar */ |
88 | 0 | inline void fscalar_product(uint64_t out[5], const uint64_t in[5], const uint64_t scalar) { |
89 | 0 | uint128_t a = uint128_t(in[0]) * scalar; |
90 | 0 | out[0] = a & MASK_63; |
91 | |
|
92 | 0 | a = uint128_t(in[1]) * scalar + carry_shift(a, 51); |
93 | 0 | out[1] = a & MASK_63; |
94 | |
|
95 | 0 | a = uint128_t(in[2]) * scalar + carry_shift(a, 51); |
96 | 0 | out[2] = a & MASK_63; |
97 | |
|
98 | 0 | a = uint128_t(in[3]) * scalar + carry_shift(a, 51); |
99 | 0 | out[3] = a & MASK_63; |
100 | |
|
101 | 0 | a = uint128_t(in[4]) * scalar + carry_shift(a, 51); |
102 | 0 | out[4] = a & MASK_63; |
103 | |
|
104 | 0 | out[0] += carry_shift(a, 51) * 19; |
105 | 0 | } |
106 | | |
107 | | /* Multiply two numbers: out = in2 * in |
108 | | * |
109 | | * out must be distinct to both inputs. The inputs are reduced coefficient |
110 | | * form, the output is not. |
111 | | * |
112 | | * Assumes that in[i] < 2**55 and likewise for in2. |
113 | | * On return, out[i] < 2**52 |
114 | | */ |
115 | 0 | inline void fmul(uint64_t out[5], const uint64_t in[5], const uint64_t in2[5]) { |
116 | 0 | const uint128_t s0 = in2[0]; |
117 | 0 | const uint128_t s1 = in2[1]; |
118 | 0 | const uint128_t s2 = in2[2]; |
119 | 0 | const uint128_t s3 = in2[3]; |
120 | 0 | const uint128_t s4 = in2[4]; |
121 | |
|
122 | 0 | uint64_t r0 = in[0]; |
123 | 0 | uint64_t r1 = in[1]; |
124 | 0 | uint64_t r2 = in[2]; |
125 | 0 | uint64_t r3 = in[3]; |
126 | 0 | uint64_t r4 = in[4]; |
127 | |
|
128 | 0 | uint128_t t0 = r0 * s0; |
129 | 0 | uint128_t t1 = r0 * s1 + r1 * s0; |
130 | 0 | uint128_t t2 = r0 * s2 + r2 * s0 + r1 * s1; |
131 | 0 | uint128_t t3 = r0 * s3 + r3 * s0 + r1 * s2 + r2 * s1; |
132 | 0 | uint128_t t4 = r0 * s4 + r4 * s0 + r3 * s1 + r1 * s3 + r2 * s2; |
133 | |
|
134 | 0 | r4 *= 19; |
135 | 0 | r1 *= 19; |
136 | 0 | r2 *= 19; |
137 | 0 | r3 *= 19; |
138 | |
|
139 | 0 | t0 += r4 * s1 + r1 * s4 + r2 * s3 + r3 * s2; |
140 | 0 | t1 += r4 * s2 + r2 * s4 + r3 * s3; |
141 | 0 | t2 += r4 * s3 + r3 * s4; |
142 | 0 | t3 += r4 * s4; |
143 | |
|
144 | 0 | r0 = t0 & MASK_63; |
145 | 0 | t1 += carry_shift(t0, 51); |
146 | 0 | r1 = t1 & MASK_63; |
147 | 0 | t2 += carry_shift(t1, 51); |
148 | 0 | r2 = t2 & MASK_63; |
149 | 0 | t3 += carry_shift(t2, 51); |
150 | 0 | r3 = t3 & MASK_63; |
151 | 0 | t4 += carry_shift(t3, 51); |
152 | 0 | r4 = t4 & MASK_63; |
153 | 0 | uint64_t c = carry_shift(t4, 51); |
154 | |
|
155 | 0 | r0 += c * 19; |
156 | 0 | c = r0 >> 51; |
157 | 0 | r0 = r0 & MASK_63; |
158 | 0 | r1 += c; |
159 | 0 | c = r1 >> 51; |
160 | 0 | r1 = r1 & MASK_63; |
161 | 0 | r2 += c; |
162 | |
|
163 | 0 | out[0] = r0; |
164 | 0 | out[1] = r1; |
165 | 0 | out[2] = r2; |
166 | 0 | out[3] = r3; |
167 | 0 | out[4] = r4; |
168 | 0 | } |
169 | | |
170 | 0 | inline void fsquare(uint64_t out[5], const uint64_t in[5], size_t count = 1) { |
171 | 0 | uint64_t r0 = in[0]; |
172 | 0 | uint64_t r1 = in[1]; |
173 | 0 | uint64_t r2 = in[2]; |
174 | 0 | uint64_t r3 = in[3]; |
175 | 0 | uint64_t r4 = in[4]; |
176 | |
|
177 | 0 | for(size_t i = 0; i != count; ++i) { |
178 | 0 | const uint64_t d0 = r0 * 2; |
179 | 0 | const uint64_t d1 = r1 * 2; |
180 | 0 | const uint64_t d2 = r2 * 2 * 19; |
181 | 0 | const uint64_t d419 = r4 * 19; |
182 | 0 | const uint64_t d4 = d419 * 2; |
183 | |
|
184 | 0 | uint128_t t0 = uint128_t(r0) * r0 + uint128_t(d4) * r1 + uint128_t(d2) * (r3); |
185 | 0 | uint128_t t1 = uint128_t(d0) * r1 + uint128_t(d4) * r2 + uint128_t(r3) * (r3 * 19); |
186 | 0 | uint128_t t2 = uint128_t(d0) * r2 + uint128_t(r1) * r1 + uint128_t(d4) * (r3); |
187 | 0 | uint128_t t3 = uint128_t(d0) * r3 + uint128_t(d1) * r2 + uint128_t(r4) * (d419); |
188 | 0 | uint128_t t4 = uint128_t(d0) * r4 + uint128_t(d1) * r3 + uint128_t(r2) * (r2); |
189 | |
|
190 | 0 | r0 = t0 & MASK_63; |
191 | 0 | t1 += carry_shift(t0, 51); |
192 | 0 | r1 = t1 & MASK_63; |
193 | 0 | t2 += carry_shift(t1, 51); |
194 | 0 | r2 = t2 & MASK_63; |
195 | 0 | t3 += carry_shift(t2, 51); |
196 | 0 | r3 = t3 & MASK_63; |
197 | 0 | t4 += carry_shift(t3, 51); |
198 | 0 | r4 = t4 & MASK_63; |
199 | 0 | uint64_t c = carry_shift(t4, 51); |
200 | |
|
201 | 0 | r0 += c * 19; |
202 | 0 | c = r0 >> 51; |
203 | 0 | r0 = r0 & MASK_63; |
204 | 0 | r1 += c; |
205 | 0 | c = r1 >> 51; |
206 | 0 | r1 = r1 & MASK_63; |
207 | 0 | r2 += c; |
208 | 0 | } |
209 | |
|
210 | 0 | out[0] = r0; |
211 | 0 | out[1] = r1; |
212 | 0 | out[2] = r2; |
213 | 0 | out[3] = r3; |
214 | 0 | out[4] = r4; |
215 | 0 | } |
216 | | |
217 | | /* Take a little-endian, 32-byte number and expand it into polynomial form */ |
218 | 0 | inline void fexpand(uint64_t* out, const uint8_t* in) { |
219 | 0 | out[0] = load_le<uint64_t>(in, 0) & MASK_63; |
220 | 0 | out[1] = (load_le<uint64_t>(in + 6, 0) >> 3) & MASK_63; |
221 | 0 | out[2] = (load_le<uint64_t>(in + 12, 0) >> 6) & MASK_63; |
222 | 0 | out[3] = (load_le<uint64_t>(in + 19, 0) >> 1) & MASK_63; |
223 | 0 | out[4] = (load_le<uint64_t>(in + 24, 0) >> 12) & MASK_63; |
224 | 0 | } |
225 | | |
226 | | /* Take a fully reduced polynomial form number and contract it into a |
227 | | * little-endian, 32-byte array |
228 | | */ |
229 | 0 | inline void fcontract(uint8_t* out, const uint64_t input[5]) { |
230 | 0 | uint128_t t0 = input[0]; |
231 | 0 | uint128_t t1 = input[1]; |
232 | 0 | uint128_t t2 = input[2]; |
233 | 0 | uint128_t t3 = input[3]; |
234 | 0 | uint128_t t4 = input[4]; |
235 | |
|
236 | 0 | for(size_t i = 0; i != 2; ++i) { |
237 | 0 | t1 += t0 >> 51; |
238 | 0 | t0 &= MASK_63; |
239 | 0 | t2 += t1 >> 51; |
240 | 0 | t1 &= MASK_63; |
241 | 0 | t3 += t2 >> 51; |
242 | 0 | t2 &= MASK_63; |
243 | 0 | t4 += t3 >> 51; |
244 | 0 | t3 &= MASK_63; |
245 | 0 | t0 += (t4 >> 51) * 19; |
246 | 0 | t4 &= MASK_63; |
247 | 0 | } |
248 | | |
249 | | /* now t is between 0 and 2^255-1, properly carried. */ |
250 | | /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */ |
251 | |
|
252 | 0 | t0 += 19; |
253 | |
|
254 | 0 | t1 += t0 >> 51; |
255 | 0 | t0 &= MASK_63; |
256 | 0 | t2 += t1 >> 51; |
257 | 0 | t1 &= MASK_63; |
258 | 0 | t3 += t2 >> 51; |
259 | 0 | t2 &= MASK_63; |
260 | 0 | t4 += t3 >> 51; |
261 | 0 | t3 &= MASK_63; |
262 | 0 | t0 += (t4 >> 51) * 19; |
263 | 0 | t4 &= MASK_63; |
264 | | |
265 | | /* now between 19 and 2^255-1 in both cases, and offset by 19. */ |
266 | |
|
267 | 0 | t0 += 0x8000000000000 - 19; |
268 | 0 | t1 += 0x8000000000000 - 1; |
269 | 0 | t2 += 0x8000000000000 - 1; |
270 | 0 | t3 += 0x8000000000000 - 1; |
271 | 0 | t4 += 0x8000000000000 - 1; |
272 | | |
273 | | /* now between 2^255 and 2^256-20, and offset by 2^255. */ |
274 | |
|
275 | 0 | t1 += t0 >> 51; |
276 | 0 | t0 &= MASK_63; |
277 | 0 | t2 += t1 >> 51; |
278 | 0 | t1 &= MASK_63; |
279 | 0 | t3 += t2 >> 51; |
280 | 0 | t2 &= MASK_63; |
281 | 0 | t4 += t3 >> 51; |
282 | 0 | t3 &= MASK_63; |
283 | 0 | t4 &= MASK_63; |
284 | |
|
285 | 0 | store_le(out, |
286 | 0 | combine_lower(t0, 0, t1, 51), |
287 | 0 | combine_lower(t1, 13, t2, 38), |
288 | 0 | combine_lower(t2, 26, t3, 25), |
289 | 0 | combine_lower(t3, 39, t4, 12)); |
290 | 0 | } |
291 | | |
292 | | /* Input: Q, Q', Q-Q' |
293 | | * Out: 2Q, Q+Q' |
294 | | * |
295 | | * result.two_q (2*Q): long form |
296 | | * result.q_plus_q_dash (Q + Q): long form |
297 | | * in_q: short form, destroyed |
298 | | * in_q_dash: short form, destroyed |
299 | | * in_q_minus_q_dash: short form, preserved |
300 | | */ |
301 | | void fmonty(uint64_t result_two_q_x[5], |
302 | | uint64_t result_two_q_z[5], |
303 | | uint64_t result_q_plus_q_dash_x[5], |
304 | | uint64_t result_q_plus_q_dash_z[5], |
305 | | uint64_t in_q_x[5], |
306 | | uint64_t in_q_z[5], |
307 | | uint64_t in_q_dash_x[5], |
308 | | uint64_t in_q_dash_z[5], |
309 | 0 | const uint64_t q_minus_q_dash[5]) { |
310 | 0 | uint64_t zzz[5]; |
311 | 0 | uint64_t xx[5]; |
312 | 0 | uint64_t zz[5]; |
313 | 0 | uint64_t xxprime[5]; |
314 | 0 | uint64_t zzprime[5]; |
315 | 0 | uint64_t zzzprime[5]; |
316 | |
|
317 | 0 | fadd_sub(in_q_z, in_q_x); |
318 | 0 | fadd_sub(in_q_dash_z, in_q_dash_x); |
319 | |
|
320 | 0 | fmul(xxprime, in_q_dash_x, in_q_z); |
321 | 0 | fmul(zzprime, in_q_dash_z, in_q_x); |
322 | |
|
323 | 0 | fadd_sub(zzprime, xxprime); |
324 | |
|
325 | 0 | fsquare(result_q_plus_q_dash_x, xxprime); |
326 | 0 | fsquare(zzzprime, zzprime); |
327 | 0 | fmul(result_q_plus_q_dash_z, zzzprime, q_minus_q_dash); |
328 | |
|
329 | 0 | fsquare(xx, in_q_x); |
330 | 0 | fsquare(zz, in_q_z); |
331 | 0 | fmul(result_two_q_x, xx, zz); |
332 | |
|
333 | 0 | fdifference_backwards(zz, xx); // does zz = xx - zz |
334 | 0 | fscalar_product(zzz, zz, 121665); |
335 | 0 | fsum(zzz, xx); |
336 | |
|
337 | 0 | fmul(result_two_q_z, zz, zzz); |
338 | 0 | } |
339 | | |
340 | | /* |
341 | | * Maybe swap the contents of two uint64_t arrays (@a and @b), |
342 | | * Param @iswap is assumed to be either 0 or 1 |
343 | | * |
344 | | * This function performs the swap without leaking any side-channel |
345 | | * information. |
346 | | */ |
347 | 0 | inline void swap_conditional(uint64_t a[5], uint64_t b[5], uint64_t c[5], uint64_t d[5], uint64_t iswap) { |
348 | 0 | const uint64_t swap = 0 - iswap; |
349 | |
|
350 | 0 | for(size_t i = 0; i < 5; ++i) { |
351 | 0 | const uint64_t x0 = swap & (a[i] ^ b[i]); |
352 | 0 | const uint64_t x1 = swap & (c[i] ^ d[i]); |
353 | 0 | a[i] ^= x0; |
354 | 0 | b[i] ^= x0; |
355 | 0 | c[i] ^= x1; |
356 | 0 | d[i] ^= x1; |
357 | 0 | } |
358 | 0 | } |
359 | | |
360 | | /* Calculates nQ where Q is the x-coordinate of a point on the curve |
361 | | * |
362 | | * resultx/resultz: the x/z coordinate of the resulting curve point (short form) |
363 | | * n: a little endian, 32-byte number |
364 | | * q: a point of the curve (short form) |
365 | | */ |
366 | 0 | void cmult(uint64_t resultx[5], uint64_t resultz[5], const uint8_t n[32], const uint64_t q[5]) { |
367 | 0 | uint64_t a[5] = {0}; // nqpqx |
368 | 0 | uint64_t b[5] = {1}; // npqpz |
369 | 0 | uint64_t c[5] = {1}; // nqx |
370 | 0 | uint64_t d[5] = {0}; // nqz |
371 | 0 | uint64_t e[5] = {0}; // npqqx2 |
372 | 0 | uint64_t f[5] = {1}; // npqqz2 |
373 | 0 | uint64_t g[5] = {0}; // nqx2 |
374 | 0 | uint64_t h[5] = {1}; // nqz2 |
375 | |
|
376 | 0 | copy_mem(a, q, 5); |
377 | |
|
378 | 0 | for(size_t i = 0; i < 32; ++i) { |
379 | 0 | const uint64_t bit0 = (n[31 - i] >> 7) & 1; |
380 | 0 | const uint64_t bit1 = (n[31 - i] >> 6) & 1; |
381 | 0 | const uint64_t bit2 = (n[31 - i] >> 5) & 1; |
382 | 0 | const uint64_t bit3 = (n[31 - i] >> 4) & 1; |
383 | 0 | const uint64_t bit4 = (n[31 - i] >> 3) & 1; |
384 | 0 | const uint64_t bit5 = (n[31 - i] >> 2) & 1; |
385 | 0 | const uint64_t bit6 = (n[31 - i] >> 1) & 1; |
386 | 0 | const uint64_t bit7 = (n[31 - i] >> 0) & 1; |
387 | |
|
388 | 0 | swap_conditional(c, a, d, b, bit0); |
389 | 0 | fmonty(g, h, e, f, c, d, a, b, q); |
390 | |
|
391 | 0 | swap_conditional(g, e, h, f, bit0 ^ bit1); |
392 | 0 | fmonty(c, d, a, b, g, h, e, f, q); |
393 | |
|
394 | 0 | swap_conditional(c, a, d, b, bit1 ^ bit2); |
395 | 0 | fmonty(g, h, e, f, c, d, a, b, q); |
396 | |
|
397 | 0 | swap_conditional(g, e, h, f, bit2 ^ bit3); |
398 | 0 | fmonty(c, d, a, b, g, h, e, f, q); |
399 | |
|
400 | 0 | swap_conditional(c, a, d, b, bit3 ^ bit4); |
401 | 0 | fmonty(g, h, e, f, c, d, a, b, q); |
402 | |
|
403 | 0 | swap_conditional(g, e, h, f, bit4 ^ bit5); |
404 | 0 | fmonty(c, d, a, b, g, h, e, f, q); |
405 | |
|
406 | 0 | swap_conditional(c, a, d, b, bit5 ^ bit6); |
407 | 0 | fmonty(g, h, e, f, c, d, a, b, q); |
408 | |
|
409 | 0 | swap_conditional(g, e, h, f, bit6 ^ bit7); |
410 | 0 | fmonty(c, d, a, b, g, h, e, f, q); |
411 | |
|
412 | 0 | swap_conditional(c, a, d, b, bit7); |
413 | 0 | } |
414 | |
|
415 | 0 | copy_mem(resultx, c, 5); |
416 | 0 | copy_mem(resultz, d, 5); |
417 | 0 | } |
418 | | |
419 | | // ----------------------------------------------------------------------------- |
420 | | // Shamelessly copied from djb's code, tightened a little |
421 | | // ----------------------------------------------------------------------------- |
422 | 0 | void crecip(uint64_t out[5], const uint64_t z[5]) { |
423 | 0 | uint64_t a[5]; |
424 | 0 | uint64_t b[5]; |
425 | 0 | uint64_t c[5]; |
426 | 0 | uint64_t t0[5]; |
427 | |
|
428 | 0 | fsquare(a, z); // 2 |
429 | 0 | fsquare(t0, a, 2); // 8 |
430 | 0 | fmul(b, t0, z); // 9 |
431 | 0 | fmul(a, b, a); // 11 |
432 | 0 | fsquare(t0, a); // 22 |
433 | 0 | fmul(b, t0, b); // 2^5 - 2^0 = 31 |
434 | 0 | fsquare(t0, b, 5); // 2^10 - 2^5 |
435 | 0 | fmul(b, t0, b); // 2^10 - 2^0 |
436 | 0 | fsquare(t0, b, 10); // 2^20 - 2^10 |
437 | 0 | fmul(c, t0, b); // 2^20 - 2^0 |
438 | 0 | fsquare(t0, c, 20); // 2^40 - 2^20 |
439 | 0 | fmul(t0, t0, c); // 2^40 - 2^0 |
440 | 0 | fsquare(t0, t0, 10); // 2^50 - 2^10 |
441 | 0 | fmul(b, t0, b); // 2^50 - 2^0 |
442 | 0 | fsquare(t0, b, 50); // 2^100 - 2^50 |
443 | 0 | fmul(c, t0, b); // 2^100 - 2^0 |
444 | 0 | fsquare(t0, c, 100); // 2^200 - 2^100 |
445 | 0 | fmul(t0, t0, c); // 2^200 - 2^0 |
446 | 0 | fsquare(t0, t0, 50); // 2^250 - 2^50 |
447 | 0 | fmul(t0, t0, b); // 2^250 - 2^0 |
448 | 0 | fsquare(t0, t0, 5); // 2^255 - 2^5 |
449 | 0 | fmul(out, t0, a); // 2^255 - 21 |
450 | 0 | } |
451 | | |
452 | | } // namespace |
453 | | |
454 | 0 | void curve25519_donna(uint8_t mypublic[32], const uint8_t secret[32], const uint8_t basepoint[32]) { |
455 | 0 | CT::poison(secret, 32); |
456 | 0 | CT::poison(basepoint, 32); |
457 | |
|
458 | 0 | uint64_t bp[5], x[5], z[5], zmone[5]; |
459 | 0 | uint8_t e[32]; |
460 | |
|
461 | 0 | copy_mem(e, secret, 32); |
462 | 0 | e[0] &= 248; |
463 | 0 | e[31] &= 127; |
464 | 0 | e[31] |= 64; |
465 | |
|
466 | 0 | fexpand(bp, basepoint); |
467 | 0 | cmult(x, z, e, bp); |
468 | 0 | crecip(zmone, z); |
469 | 0 | fmul(z, x, zmone); |
470 | 0 | fcontract(mypublic, z); |
471 | |
|
472 | 0 | CT::unpoison(secret, 32); |
473 | 0 | CT::unpoison(basepoint, 32); |
474 | 0 | CT::unpoison(mypublic, 32); |
475 | 0 | } |
476 | | |
477 | | } // namespace Botan |