Line | Count | Source (jump to first uncovered line) |
1 | | /* mpz_and -- Logical and. |
2 | | |
3 | | Copyright 1991, 1993, 1994, 1996, 1997, 2000, 2001, 2003, 2005, 2012, |
4 | | 2015-2018 Free Software Foundation, Inc. |
5 | | |
6 | | This file is part of the GNU MP Library. |
7 | | |
8 | | The GNU MP Library is free software; you can redistribute it and/or modify |
9 | | it under the terms of either: |
10 | | |
11 | | * the GNU Lesser General Public License as published by the Free |
12 | | Software Foundation; either version 3 of the License, or (at your |
13 | | option) any later version. |
14 | | |
15 | | or |
16 | | |
17 | | * the GNU General Public License as published by the Free Software |
18 | | Foundation; either version 2 of the License, or (at your option) any |
19 | | later version. |
20 | | |
21 | | or both in parallel, as here. |
22 | | |
23 | | The GNU MP Library is distributed in the hope that it will be useful, but |
24 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
25 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
26 | | for more details. |
27 | | |
28 | | You should have received copies of the GNU General Public License and the |
29 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
30 | | see https://www.gnu.org/licenses/. */ |
31 | | |
32 | | #include "gmp-impl.h" |
33 | | |
34 | | void |
35 | | mpz_and (mpz_ptr res, mpz_srcptr op1, mpz_srcptr op2) |
36 | 34 | { |
37 | 34 | mp_srcptr op1_ptr, op2_ptr; |
38 | 34 | mp_size_t op1_size, op2_size; |
39 | 34 | mp_ptr res_ptr; |
40 | 34 | mp_size_t res_size; |
41 | 34 | mp_size_t i; |
42 | | |
43 | 34 | op1_size = SIZ(op1); |
44 | 34 | op2_size = SIZ(op2); |
45 | | |
46 | 34 | if (op1_size < op2_size) |
47 | 16 | { |
48 | 16 | MPZ_SRCPTR_SWAP (op1, op2); |
49 | 16 | MP_SIZE_T_SWAP (op1_size, op2_size); |
50 | 16 | } |
51 | | |
52 | 34 | op1_ptr = PTR(op1); |
53 | 34 | op2_ptr = PTR(op2); |
54 | | |
55 | 34 | if (op2_size >= 0) |
56 | 34 | { |
57 | | /* First loop finds the size of the result. */ |
58 | 103 | for (i = op2_size; --i >= 0;) |
59 | 90 | if ((op1_ptr[i] & op2_ptr[i]) != 0) |
60 | 21 | { |
61 | 21 | res_size = i + 1; |
62 | | /* Handle allocation, now then we know exactly how much space is |
63 | | needed for the result. */ |
64 | | /* Don't re-read op1_ptr and op2_ptr. Since res_size <= |
65 | | MIN(op1_size, op2_size), res is not changed when op1 |
66 | | is identical to res or op2 is identical to res. */ |
67 | 21 | SIZ (res) = res_size; |
68 | 21 | mpn_and_n (MPZ_NEWALLOC (res, res_size), op1_ptr, op2_ptr, res_size); |
69 | 21 | return; |
70 | 21 | } |
71 | | |
72 | 13 | SIZ (res) = 0; |
73 | 13 | } |
74 | 0 | else |
75 | 0 | { |
76 | 0 | TMP_DECL; |
77 | |
|
78 | 0 | op2_size = -op2_size; |
79 | 0 | TMP_MARK; |
80 | 0 | if (op1_size < 0) |
81 | 0 | { |
82 | 0 | mp_ptr opx, opy; |
83 | | |
84 | | /* Both operands are negative, so will be the result. |
85 | | -((-OP1) & (-OP2)) = -(~(OP1 - 1) & ~(OP2 - 1)) = |
86 | | = ~(~(OP1 - 1) & ~(OP2 - 1)) + 1 = |
87 | | = ((OP1 - 1) | (OP2 - 1)) + 1 */ |
88 | | |
89 | | /* It might seem as we could end up with an (invalid) result with |
90 | | a leading zero-limb here when one of the operands is of the |
91 | | type 1,,0,,..,,.0. But some analysis shows that we surely |
92 | | would get carry into the zero-limb in this situation... */ |
93 | |
|
94 | 0 | op1_size = -op1_size; |
95 | |
|
96 | 0 | TMP_ALLOC_LIMBS_2 (opx, op1_size, opy, op2_size); |
97 | 0 | mpn_sub_1 (opx, op1_ptr, op1_size, (mp_limb_t) 1); |
98 | 0 | op1_ptr = opx; |
99 | |
|
100 | 0 | mpn_sub_1 (opy, op2_ptr, op2_size, (mp_limb_t) 1); |
101 | 0 | op2_ptr = opy; |
102 | |
|
103 | 0 | res_ptr = MPZ_NEWALLOC (res, 1 + op2_size); |
104 | | /* Don't re-read OP1_PTR and OP2_PTR. They point to temporary |
105 | | space--never to the space PTR(res) used to point to before |
106 | | reallocation. */ |
107 | |
|
108 | 0 | MPN_COPY (res_ptr + op1_size, op2_ptr + op1_size, |
109 | 0 | op2_size - op1_size); |
110 | 0 | mpn_ior_n (res_ptr, op1_ptr, op2_ptr, op1_size); |
111 | 0 | TMP_FREE; |
112 | 0 | res_size = op2_size; |
113 | |
|
114 | 0 | res_ptr[res_size] = 0; |
115 | 0 | MPN_INCR_U (res_ptr, res_size + 1, (mp_limb_t) 1); |
116 | 0 | res_size += res_ptr[res_size]; |
117 | |
|
118 | 0 | SIZ(res) = -res_size; |
119 | 0 | } |
120 | 0 | else |
121 | 0 | { |
122 | | #if ANDNEW |
123 | | mp_size_t op2_lim; |
124 | | mp_size_t count; |
125 | | |
126 | | /* OP2 must be negated as with infinite precision. |
127 | | |
128 | | Scan from the low end for a non-zero limb. The first non-zero |
129 | | limb is simply negated (two's complement). Any subsequent |
130 | | limbs are one's complemented. Of course, we don't need to |
131 | | handle more limbs than there are limbs in the other, positive |
132 | | operand as the result for those limbs is going to become zero |
133 | | anyway. */ |
134 | | |
135 | | /* Scan for the least significant non-zero OP2 limb, and zero the |
136 | | result meanwhile for those limb positions. (We will surely |
137 | | find a non-zero limb, so we can write the loop with one |
138 | | termination condition only.) */ |
139 | | for (i = 0; op2_ptr[i] == 0; i++) |
140 | | res_ptr[i] = 0; |
141 | | op2_lim = i; |
142 | | |
143 | | if (op1_size <= op2_size) |
144 | | { |
145 | | /* The ones-extended OP2 is >= than the zero-extended OP1. |
146 | | RES_SIZE <= OP1_SIZE. Find the exact size. */ |
147 | | for (i = op1_size - 1; i > op2_lim; i--) |
148 | | if ((op1_ptr[i] & ~op2_ptr[i]) != 0) |
149 | | break; |
150 | | res_size = i + 1; |
151 | | for (i = res_size - 1; i > op2_lim; i--) |
152 | | res_ptr[i] = op1_ptr[i] & ~op2_ptr[i]; |
153 | | res_ptr[op2_lim] = op1_ptr[op2_lim] & -op2_ptr[op2_lim]; |
154 | | /* Yes, this *can* happen! */ |
155 | | MPN_NORMALIZE (res_ptr, res_size); |
156 | | } |
157 | | else |
158 | | { |
159 | | /* The ones-extended OP2 is < than the zero-extended OP1. |
160 | | RES_SIZE == OP1_SIZE, since OP1 is normalized. */ |
161 | | res_size = op1_size; |
162 | | MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size, op1_size - op2_size); |
163 | | for (i = op2_size - 1; i > op2_lim; i--) |
164 | | res_ptr[i] = op1_ptr[i] & ~op2_ptr[i]; |
165 | | res_ptr[op2_lim] = op1_ptr[op2_lim] & -op2_ptr[op2_lim]; |
166 | | } |
167 | | #else |
168 | | |
169 | | /* OP1 is positive and zero-extended, |
170 | | OP2 is negative and ones-extended. |
171 | | The result will be positive. |
172 | | OP1 & -OP2 = OP1 & ~(OP2 - 1). */ |
173 | |
|
174 | 0 | mp_ptr opx; |
175 | |
|
176 | 0 | opx = TMP_ALLOC_LIMBS (op2_size); |
177 | 0 | mpn_sub_1 (opx, op2_ptr, op2_size, (mp_limb_t) 1); |
178 | 0 | op2_ptr = opx; |
179 | |
|
180 | 0 | if (op1_size > op2_size) |
181 | 0 | { |
182 | | /* The result has the same size as OP1, since OP1 is normalized |
183 | | and longer than the ones-extended OP2. */ |
184 | 0 | res_size = op1_size; |
185 | | |
186 | | /* Handle allocation, now then we know exactly how much space is |
187 | | needed for the result. */ |
188 | 0 | res_ptr = MPZ_NEWALLOC (res, res_size); |
189 | | /* Don't re-read OP1_PTR or OP2_PTR. Since res_size = op1_size, |
190 | | op1 is not changed if it is identical to res. |
191 | | OP2_PTR points to temporary space. */ |
192 | |
|
193 | 0 | mpn_andn_n (res_ptr, op1_ptr, op2_ptr, op2_size); |
194 | 0 | MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size, res_size - op2_size); |
195 | 0 | } |
196 | 0 | else |
197 | 0 | { |
198 | | /* Find out the exact result size. Ignore the high limbs of OP2, |
199 | | OP1 is zero-extended and would make the result zero. */ |
200 | 0 | res_size = 0; |
201 | 0 | for (i = op1_size; --i >= 0;) |
202 | 0 | if ((op1_ptr[i] & ~op2_ptr[i]) != 0) |
203 | 0 | { |
204 | 0 | res_size = i + 1; |
205 | | /* Handle allocation, now then we know exactly how much |
206 | | space is needed for the result. */ |
207 | | /* Don't re-read OP1_PTR. Since res_size <= op1_size, |
208 | | op1 is not changed if it is identical to res. Don't |
209 | | re-read OP2_PTR. It points to temporary space--never |
210 | | to the space PTR(res) used to point to before |
211 | | reallocation. */ |
212 | 0 | mpn_andn_n (MPZ_NEWALLOC (res, res_size), op1_ptr, op2_ptr, res_size); |
213 | |
|
214 | 0 | break; |
215 | 0 | } |
216 | 0 | } |
217 | 0 | #endif |
218 | 0 | SIZ(res) = res_size; |
219 | 0 | TMP_FREE; |
220 | 0 | } |
221 | 0 | } |
222 | 34 | } |