/src/wolfssl/wolfcrypt/src/sm2.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* sm2.c |
2 | | * |
3 | | * Copyright (C) 2006-2023 wolfSSL Inc. |
4 | | * |
5 | | * This file is part of wolfSSL. |
6 | | * |
7 | | * wolfSSL is free software; you can redistribute it and/or modify |
8 | | * it under the terms of the GNU General Public License as published by |
9 | | * the Free Software Foundation; either version 2 of the License, or |
10 | | * (at your option) any later version. |
11 | | * |
12 | | * wolfSSL is distributed in the hope that it will be useful, |
13 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | | * GNU General Public License for more details. |
16 | | * |
17 | | * You should have received a copy of the GNU General Public License |
18 | | * along with this program; if not, write to the Free Software |
19 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA |
20 | | */ |
21 | | |
22 | | /* Based on 'SM2 Digital Signature Algorithm draft-shen-sm2-ecdsa-02' |
23 | | * https://datatracker.ietf.org/doc/html/draft-shen-sm2-ecdsa-02 |
24 | | */ |
25 | | |
26 | | #ifdef HAVE_CONFIG_H |
27 | | #include <config.h> |
28 | | #endif |
29 | | |
30 | | #include <wolfssl/wolfcrypt/settings.h> |
31 | | |
32 | | #if defined(WOLFSSL_SM2) && defined(HAVE_ECC) |
33 | | |
34 | | #include <wolfssl/wolfcrypt/sm2.h> |
35 | | #include <wolfssl/wolfcrypt/sp.h> |
36 | | #include <wolfssl/wolfcrypt/error-crypt.h> |
37 | | #include <wolfssl/wolfcrypt/hash.h> |
38 | | #include <wolfssl/wolfcrypt/coding.h> |
39 | | #include <wolfssl/wolfcrypt/asn.h> |
40 | | #include <wolfssl/wolfcrypt/logging.h> |
41 | | #include <wolfssl/wolfcrypt/logging.h> |
42 | | |
43 | | #ifdef NO_INLINE |
44 | | #include <wolfssl/wolfcrypt/misc.h> |
45 | | #else |
46 | | #define WOLFSSL_MISC_INCLUDED |
47 | | #include <wolfcrypt/src/misc.c> |
48 | | #endif |
49 | | |
50 | | /* Maximum number of signature generations to attempt before giving up. */ |
51 | 0 | #define ECC_SM2_MAX_SIG_GEN 64 |
52 | | |
53 | | #ifndef NO_HASH_WRAPPER |
54 | | /* Convert hex string to binary and hash it. |
55 | | * |
56 | | * @param [in] hash Hash algorithm object. |
57 | | * @param [in] hashType Type of hash to perform. |
58 | | * @param [in] hexIn Hexadecimal string. |
59 | | * @param [in] hexSz Number of characters to hash. |
60 | | * @param [in] tmp Buffer to encode into. |
61 | | * @return 0 on success |
62 | | * @return MEMORY_E on dynamic memory allocation failure. |
63 | | */ |
64 | | static int ecc_sm2_digest_hashin(wc_HashAlg* hash, enum wc_HashType hashType, |
65 | | const char* hexIn, int hexSz, byte* tmp) |
66 | 0 | { |
67 | 0 | int err = 0; |
68 | 0 | word32 tmpSz; |
69 | | |
70 | | /* Number of bytes in binary as type word32. */ |
71 | 0 | tmpSz = (word32)hexSz; |
72 | 0 | if (err == 0) { |
73 | | /* Convert hexadecimal string to binary. */ |
74 | 0 | err = Base16_Decode((const byte*)hexIn, tmpSz, tmp, &tmpSz); |
75 | 0 | } |
76 | 0 | if (err == 0) { |
77 | | /* Update the hash with the binary data. */ |
78 | 0 | err = wc_HashUpdate(hash, hashType, tmp, tmpSz); |
79 | 0 | } |
80 | |
|
81 | 0 | return err; |
82 | 0 | } |
83 | | |
84 | | /* Calculate ZA with hash type specified for sign/verify. |
85 | | * |
86 | | * 5.1.4.4: |
87 | | * ZA=H256(ENTLA || IDA || a || b || xG || yG || xA || yA) |
88 | | * |
89 | | * @param [in] id ID of A to be hashed. |
90 | | * @param [in] idSz Size of ID of A in bytes. |
91 | | * @param [in] hash Hash algorithm object. |
92 | | * @param [in] hashType Hash type to use. |
93 | | * @param [in] key SM2 ECC key that has already been setup. |
94 | | * @param [out] out Buffer to hold final digest. |
95 | | * @return 0 on success. |
96 | | * @return Negative on failure. |
97 | | */ |
98 | | static int _ecc_sm2_calc_za(const byte *id, word16 idSz, |
99 | | wc_HashAlg* hash, enum wc_HashType hashType, ecc_key* key, byte* out) |
100 | 0 | { |
101 | 0 | int err = 0; |
102 | 0 | byte entla[2]; /* RFC draft states ID size is always encoded in 2 bytes. */ |
103 | 0 | word16 sz = 0; |
104 | 0 | #ifdef WOLFSSL_SMALL_STACK |
105 | 0 | byte* xA = NULL; |
106 | 0 | byte* yA = NULL; |
107 | | #else |
108 | | /* Modify if more than one SM2 curve. */ |
109 | | byte xA[33]; |
110 | | byte yA[33]; |
111 | | #endif |
112 | 0 | word32 xASz; |
113 | 0 | word32 yASz; |
114 | | |
115 | | /* Get ID of A size in bits. */ |
116 | 0 | sz = idSz * WOLFSSL_BIT_SIZE; |
117 | | /* Set big-endian 16-bit word. */ |
118 | 0 | entla[0] = (byte)(sz >> WOLFSSL_BIT_SIZE); |
119 | 0 | entla[1] = (byte)(sz & 0xFF); |
120 | |
|
121 | | #ifdef DEBUG_ECC_SM2 |
122 | | WOLFSSL_MSG("ENTLA"); |
123 | | WOLFSSL_BUFFER(entla, 2); |
124 | | #endif |
125 | | |
126 | | /* Get ordinate size. */ |
127 | 0 | xASz = yASz = (word32)wc_ecc_size(key); |
128 | 0 | #ifdef WOLFSSL_SMALL_STACK |
129 | | /* Allocate memory for the x-ordinate. */ |
130 | 0 | xA = (byte*)XMALLOC(xASz + 1, key->heap, DYNAMIC_TYPE_TMP_BUFFER); |
131 | 0 | if (xA == NULL) { |
132 | 0 | err = MEMORY_E; |
133 | 0 | } |
134 | 0 | if (err == 0) { |
135 | | /* Allocate memory for the y-ordinate. */ |
136 | 0 | yA = (byte*)XMALLOC(yASz + 1, key->heap, DYNAMIC_TYPE_TMP_BUFFER); |
137 | 0 | if (yA == NULL) { |
138 | 0 | err = MEMORY_E; |
139 | 0 | } |
140 | 0 | } |
141 | 0 | #endif |
142 | | |
143 | |
|
144 | 0 | if (err == 0) { |
145 | | /* Initialize hash algorithm object. */ |
146 | 0 | err = wc_HashInit_ex(hash, hashType, key->heap, 0); |
147 | 0 | } |
148 | 0 | if (err == 0) { |
149 | | /* Hash the ENTLA - length of ID of A. */ |
150 | 0 | err = wc_HashUpdate(hash, hashType, (byte*)&entla, 2); |
151 | 0 | } |
152 | 0 | if (err == 0) { |
153 | | /* Hash the ID of A. */ |
154 | 0 | err = wc_HashUpdate(hash, hashType, id, idSz); |
155 | 0 | } |
156 | |
|
157 | 0 | if (err == 0) { |
158 | | /* Hash the a coefficient of the curve. */ |
159 | 0 | err = ecc_sm2_digest_hashin(hash, hashType, key->dp->Af, |
160 | 0 | (int)XSTRLEN(key->dp->Af), xA); |
161 | 0 | } |
162 | 0 | if (err == 0) { |
163 | | /* Hash the b coefficient of the curve. */ |
164 | 0 | err = ecc_sm2_digest_hashin(hash, hashType, key->dp->Bf, |
165 | 0 | (int)XSTRLEN(key->dp->Bf), xA); |
166 | 0 | } |
167 | 0 | if (err == 0) { |
168 | | /* Hash the x-ordinate of the base point. */ |
169 | 0 | err = ecc_sm2_digest_hashin(hash, hashType, key->dp->Gx, |
170 | 0 | (int)XSTRLEN(key->dp->Gx), xA); |
171 | 0 | } |
172 | 0 | if (err == 0) { |
173 | | /* Hash the y-ordinate of the base point. */ |
174 | 0 | err = ecc_sm2_digest_hashin(hash, hashType, key->dp->Gy, |
175 | 0 | (int)XSTRLEN(key->dp->Gy), xA); |
176 | 0 | } |
177 | |
|
178 | 0 | if (err == 0) { |
179 | | /* Get the x and y ordinates. */ |
180 | 0 | err = wc_ecc_export_public_raw(key, xA, &xASz, yA, &yASz); |
181 | 0 | } |
182 | 0 | if (err == 0) { |
183 | | /* Hash the x-ordinate of the public key. */ |
184 | 0 | err = wc_HashUpdate(hash, hashType, xA, xASz); |
185 | 0 | } |
186 | 0 | #ifdef WOLFSSL_SMALL_STACK |
187 | 0 | XFREE(xA, key->heap, DYNAMIC_TYPE_TMP_BUFFER); |
188 | 0 | #endif |
189 | |
|
190 | 0 | if (err == 0) { |
191 | | /* Hash the y-ordinate of the public key. */ |
192 | 0 | err = wc_HashUpdate(hash, hashType, yA, yASz); |
193 | 0 | } |
194 | 0 | #ifdef WOLFSSL_SMALL_STACK |
195 | 0 | XFREE(yA, key->heap, DYNAMIC_TYPE_TMP_BUFFER); |
196 | 0 | #endif |
197 | |
|
198 | 0 | if (err == 0) { |
199 | | /* Output the hash - ZA. */ |
200 | 0 | err = wc_HashFinal(hash, hashType, out); |
201 | 0 | } |
202 | | #ifdef DEBUG_ECC_SM2 |
203 | | if (err == 0) { |
204 | | WOLFSSL_MSG("ZA"); |
205 | | WOLFSSL_BUFFER(out, wc_HashGetDigestSize(hashType)); |
206 | | } |
207 | | #endif |
208 | |
|
209 | 0 | return err; |
210 | 0 | } |
211 | | |
212 | | /* Calculate SM2 hash of the type specified for sign/verify. |
213 | | * |
214 | | * 5.2.1, A2: |
215 | | * Hash Out = Hash(ZA || M) |
216 | | * |
217 | | * @param [in] za ZA to be hashed. |
218 | | * @param [in] zaSz Size of ZA in bytes. |
219 | | * @param [in] msg Message to be signed. |
220 | | * @param [in] msgSz Size of message in bytes. |
221 | | * @param [in] hash Hash algorithm object. |
222 | | * @param [in] hashType Hash type to use. |
223 | | * @param [out] out Buffer to hold final digest. |
224 | | * @return 0 on success. |
225 | | * @return Negative on failure. |
226 | | */ |
227 | | static int _ecc_sm2_calc_msg_hash(const byte* za, int zaSz, const byte* msg, |
228 | | int msgSz, wc_HashAlg* hash, enum wc_HashType hashType, byte* out) |
229 | 0 | { |
230 | 0 | int err; |
231 | | |
232 | | /* Initialize the hash for new operation. */ |
233 | 0 | err = wc_HashInit_ex(hash, hashType, NULL, 0); |
234 | 0 | if (err == 0) { |
235 | | /* Hash ZA. */ |
236 | 0 | err = wc_HashUpdate(hash, hashType, za, (word32)zaSz); |
237 | 0 | } |
238 | 0 | if (err == 0) { |
239 | | /* Hash the message. */ |
240 | 0 | err = wc_HashUpdate(hash, hashType, msg, (word32)msgSz); |
241 | 0 | } |
242 | 0 | if (err == 0) { |
243 | | /* Output the hash. */ |
244 | 0 | err = wc_HashFinal(hash, hashType, out); |
245 | 0 | } |
246 | | #ifdef DEBUG_ECC_SM2 |
247 | | if (err == 0) { |
248 | | WOLFSSL_MSG("Hv(ZA || M)"); |
249 | | WOLFSSL_BUFFER(out, wc_HashGetDigestSize(hashType)); |
250 | | } |
251 | | #endif |
252 | |
|
253 | 0 | return err; |
254 | 0 | } |
255 | | |
256 | | /* Create SM2 hash of the type specified for sign/verify. |
257 | | * |
258 | | * 5.1.4.4: |
259 | | * ZA=H256(ENTLA || IDA || a || b || xG || yG || xA || yA) |
260 | | * 5.2.1: |
261 | | * A1: M~=ZA || M |
262 | | * A2: e=Hv(M~) |
263 | | * |
264 | | * @param [in] id ID of A to be hashed. |
265 | | * @param [in] idSz Size of ID of A in bytes. |
266 | | * @param [in] msg Message to be signed. |
267 | | * @param [in] msgSz Size of message in bytes. |
268 | | * @param [in] hashType Hash type to use. |
269 | | * @param [out] out Buffer to hold final digest. |
270 | | * @param [in] outSz Size of output buffer in bytes. |
271 | | * @param [in] key SM2 ECC key that has already been setup. |
272 | | * @return 0 on success. |
273 | | * @return BAD_FUNC_ARG when key, out, msg or id is NULL. |
274 | | * @return BAD_FUNC_ARG when hash type is not supported. |
275 | | * @return BUFFER_E when hash size is larger than output size. |
276 | | * @return MEMORY_E on dynamic memory allocation failure. |
277 | | */ |
278 | | int wc_ecc_sm2_create_digest(const byte *id, word16 idSz, |
279 | | const byte* msg, int msgSz, enum wc_HashType hashType, byte* out, int outSz, |
280 | | ecc_key* key) |
281 | 0 | { |
282 | 0 | int err = 0; |
283 | 0 | int hashSz = 0; |
284 | 0 | #ifdef WOLFSSL_SMALL_STACK |
285 | 0 | wc_HashAlg* hash = NULL; |
286 | | #else |
287 | | wc_HashAlg hash[1]; |
288 | | #endif |
289 | | |
290 | | /* Validate parameters. */ |
291 | 0 | if ((key == NULL) || (key->dp == NULL) || (out == NULL) || (msg == NULL) || |
292 | 0 | (id == NULL)) { |
293 | 0 | err = BAD_FUNC_ARG; |
294 | 0 | } |
295 | | /* Get hash size. */ |
296 | 0 | if ((err == 0) && ((hashSz = wc_HashGetDigestSize(hashType)) < 0)) { |
297 | 0 | err = BAD_FUNC_ARG; |
298 | 0 | } |
299 | | /* Check hash size fits in output. */ |
300 | 0 | if ((err == 0) && (hashSz > outSz)) { |
301 | 0 | err = BUFFER_E; |
302 | 0 | } |
303 | |
|
304 | 0 | #ifdef WOLFSSL_SMALL_STACK |
305 | 0 | if (err == 0) { |
306 | 0 | hash = (wc_HashAlg*)XMALLOC(sizeof(wc_HashAlg), key->heap, |
307 | 0 | DYNAMIC_TYPE_HASHES); |
308 | 0 | if (hash == NULL) { |
309 | 0 | err = MEMORY_E; |
310 | 0 | } |
311 | 0 | } |
312 | 0 | #endif |
313 | | |
314 | | /* Calculate ZA. */ |
315 | 0 | if (err == 0) { |
316 | 0 | err = _ecc_sm2_calc_za(id, idSz, hash, hashType, key, out); |
317 | 0 | } |
318 | | /* Calculate message hash. */ |
319 | 0 | if (err == 0) { |
320 | 0 | err = _ecc_sm2_calc_msg_hash(out, hashSz, msg, msgSz, hash, hashType, |
321 | 0 | out); |
322 | 0 | } |
323 | | |
324 | | /* Dispose of allocated data. */ |
325 | 0 | (void)wc_HashFree(hash, hashType); |
326 | 0 | #ifdef WOLFSSL_SMALL_STACK |
327 | 0 | XFREE(hash, key->heap, DYNAMIC_TYPE_HASHES); |
328 | 0 | #endif |
329 | 0 | return err; |
330 | 0 | } |
331 | | #endif /* NO_HASH_WRAPPER */ |
332 | | |
333 | | /* Make a key on the SM2 curve. |
334 | | * |
335 | | * @param [in] rng Random number generator. |
336 | | * @param [out] key ECC key to hold generated key. |
337 | | * @param [in] flags Flags to set against ECC key. |
338 | | * @return 0 on success. |
339 | | */ |
340 | | int wc_ecc_sm2_make_key(WC_RNG* rng, ecc_key* key, int flags) |
341 | 0 | { |
342 | 0 | return wc_ecc_make_key_ex2(rng, 32, key, ECC_SM2P256V1, flags); |
343 | 0 | } |
344 | | |
345 | | /* Create a shared secret from the private key and peer's public key. |
346 | | * |
347 | | * @param [in] priv Private key. |
348 | | * @param [in] pub Peer's public key. |
349 | | * @param [out] out Array containing secret. |
350 | | * @param [in, out] outLen On in, length of array in bytes. |
351 | | * On out, number of bytes in secret. |
352 | | */ |
353 | | int wc_ecc_sm2_shared_secret(ecc_key* priv, ecc_key* pub, byte* out, |
354 | | word32* outLen) |
355 | 0 | { |
356 | 0 | return wc_ecc_shared_secret(priv, pub, out, outLen); |
357 | 0 | } |
358 | | |
359 | | #ifdef HAVE_ECC_SIGN |
360 | | #ifndef WOLFSSL_SP_MATH |
361 | | /* Calculate r and s of signature. |
362 | | * |
363 | | * @param [in] x Private key. |
364 | | * @param [in] px Ephemeral point's x-ordinate. |
365 | | * @param [in] k Ephemeral private key. |
366 | | * @param [in] e Hash of message. |
367 | | * @param [in] order Order of curve. |
368 | | * @param [in] b Blinding value. |
369 | | * @param [out] r 'r' value of signature. |
370 | | * @param [out] s 's' value of signature. |
371 | | * @return MP_OKAY on success. |
372 | | * @return MP_MEM when dynamic memory allocation fails. |
373 | | */ |
374 | | static int _ecc_sm2_calc_r_s(mp_int* x, mp_int* px, mp_int* k, mp_int* e, |
375 | | mp_int* order, mp_int* b, mp_int* r, mp_int* s) |
376 | 0 | { |
377 | 0 | int err; |
378 | | |
379 | | /* r = p->x + e */ |
380 | 0 | err = mp_addmod_ct(px, e, order, r); |
381 | | /* Check r != 0 */ |
382 | 0 | if ((err == MP_OKAY) && mp_iszero(r)) { |
383 | 0 | err = MP_ZERO_E; |
384 | 0 | } |
385 | | /* Calc r + k */ |
386 | 0 | if (err == MP_OKAY) { |
387 | 0 | err = mp_addmod_ct(r, k, order, s); |
388 | 0 | } |
389 | | /* Check r + k != 0 */ |
390 | 0 | if ((err == MP_OKAY) && mp_iszero(s)) { |
391 | 0 | err = MP_ZERO_E; |
392 | 0 | } |
393 | | |
394 | | /* s = x.r */ |
395 | 0 | if (err == MP_OKAY) { |
396 | 0 | err = mp_mulmod(r, x, order, s); |
397 | 0 | } |
398 | | |
399 | | /* x' = x + 1 */ |
400 | 0 | if (err == MP_OKAY) { |
401 | 0 | err = mp_add_d(x, 1, x); |
402 | 0 | } |
403 | | /* x'' = x'.b = (x+1).b */ |
404 | 0 | if (err == MP_OKAY) { |
405 | 0 | err = mp_mulmod(x, b, order, x); |
406 | 0 | } |
407 | | /* x''' = 1/x'' = 1/((x+1).b) */ |
408 | 0 | if (err == MP_OKAY) { |
409 | 0 | err = mp_invmod(x, order, x); |
410 | 0 | } |
411 | | |
412 | | /* k' = k * x''' = k / ((x+1).b) */ |
413 | 0 | if (err == MP_OKAY) { |
414 | 0 | err = mp_mulmod(k, x, order, k); |
415 | 0 | } |
416 | | |
417 | | /* s' = s * x''' = x.r / ((x+1).b) */ |
418 | 0 | if (err == MP_OKAY) { |
419 | 0 | err = mp_mulmod(s, x, order, s); |
420 | 0 | } |
421 | | /* s'' = k' - s' = (k - x.r) / ((x+1).b) */ |
422 | 0 | if (err == MP_OKAY) { |
423 | 0 | err = mp_submod_ct(k, s, order, s); |
424 | 0 | } |
425 | | /* s''' = s'' * b = (k - x.r) / (x+1) */ |
426 | 0 | if (err == MP_OKAY) { |
427 | 0 | err = mp_mulmod(s, b, order, s); |
428 | 0 | } |
429 | |
|
430 | 0 | return err; |
431 | 0 | } |
432 | | #endif |
433 | | |
434 | | /* Calculate the signature from the hash with a key on the SM2 curve. |
435 | | * |
436 | | * Use wc_ecc_sm2_create_digest to calculate the digest. |
437 | | * |
438 | | * @param [in] hash Array of bytes holding hash value. |
439 | | * @param [in] hashSz Size of hash in bytes. |
440 | | * @param [in] rng Random number generator. |
441 | | * @param [in] key ECC private key. |
442 | | * @param [out] r 'r' part of signature as an MP integer. |
443 | | * @param [out] s 's' part of signature as an MP integer. |
444 | | * @return MP_OKAY on success. |
445 | | * @return ECC_BAD_ARGE_E when hash, r, s, key or rng is NULL. |
446 | | * @return ECC_BAD_ARGE_E when key is not on SM2 curve. |
447 | | */ |
448 | | int wc_ecc_sm2_sign_hash_ex(const byte* hash, word32 hashSz, WC_RNG* rng, |
449 | | ecc_key* key, mp_int* r, mp_int* s) |
450 | 0 | { |
451 | 0 | int err = MP_OKAY; |
452 | 0 | #ifndef WOLFSSL_SP_MATH |
453 | 0 | mp_int* x = NULL; |
454 | 0 | mp_int* e = NULL; |
455 | 0 | mp_int* b = NULL; |
456 | 0 | mp_int* order = NULL; |
457 | 0 | #ifdef WOLFSSL_SMALL_STACK |
458 | 0 | ecc_key* pub = NULL; |
459 | 0 | mp_int* data = NULL; |
460 | | #else |
461 | | ecc_key pub[1]; |
462 | | mp_int data[4]; |
463 | | #endif |
464 | 0 | int i; |
465 | 0 | #endif |
466 | | |
467 | | /* Validate parameters. */ |
468 | 0 | if ((hash == NULL) || (r == NULL) || (s == NULL) || (key == NULL) || |
469 | 0 | (key->dp == NULL) || (rng == NULL)) { |
470 | 0 | err = BAD_FUNC_ARG; |
471 | 0 | } |
472 | | /* SM2 signature must be with a key on the SM2 curve. */ |
473 | 0 | if ((err == MP_OKAY) && (key->dp->id != ECC_SM2P256V1) && |
474 | 0 | (key->idx != ECC_CUSTOM_IDX)) { |
475 | 0 | err = BAD_FUNC_ARG; |
476 | 0 | } |
477 | |
|
478 | | #if defined(WOLFSSL_HAVE_SP_ECC) && defined(WOLFSSL_SP_SM2) |
479 | | if ((err == MP_OKAY) && (key->dp->id == ECC_SM2P256V1)) { |
480 | | /* Use optimized code in SP to perform signing. */ |
481 | | SAVE_VECTOR_REGISTERS(return _svr_ret;); |
482 | | err = sp_ecc_sign_sm2_256(hash, hashSz, rng, key->k, r, s, NULL, |
483 | | key->heap); |
484 | | RESTORE_VECTOR_REGISTERS(); |
485 | | return err; |
486 | | } |
487 | | #endif |
488 | |
|
489 | 0 | #ifndef WOLFSSL_SP_MATH |
490 | 0 | #ifdef WOLFSSL_SMALL_STACK |
491 | 0 | if (err == MP_OKAY) { |
492 | | /* Allocate ECC key. */ |
493 | 0 | pub = (ecc_key*)XMALLOC(sizeof(ecc_key), key->heap, DYNAMIC_TYPE_ECC); |
494 | 0 | if (pub == NULL) { |
495 | 0 | err = MEMORY_E; |
496 | 0 | } |
497 | 0 | } |
498 | 0 | if (err == MP_OKAY) { |
499 | | /* Allocate MP integers. */ |
500 | 0 | data = (mp_int*)XMALLOC(sizeof(mp_int) * 4, key->heap, |
501 | 0 | DYNAMIC_TYPE_ECC); |
502 | 0 | if (data == NULL) { |
503 | 0 | err = MEMORY_E; |
504 | 0 | } |
505 | 0 | } |
506 | 0 | #endif |
507 | 0 | if (err == MP_OKAY) { |
508 | 0 | x = data; |
509 | 0 | e = data + 1; |
510 | 0 | b = data + 2; |
511 | 0 | order = data + 3; |
512 | 0 | } |
513 | | |
514 | | /* Initialize MP integers needed. */ |
515 | 0 | if (err == MP_OKAY) { |
516 | 0 | err = mp_init_multi(x, e, b, order, NULL, NULL); |
517 | 0 | } |
518 | 0 | if (err == MP_OKAY) { |
519 | | /* Initialize ephemeral key. */ |
520 | 0 | err = wc_ecc_init_ex(pub, key->heap, INVALID_DEVID); |
521 | 0 | if (err == MP_OKAY) { |
522 | | /* Load the order into an MP integer for generating blinding value. |
523 | | */ |
524 | 0 | err = mp_read_radix(order, key->dp->order, MP_RADIX_HEX); |
525 | 0 | } |
526 | 0 | if (err == MP_OKAY) { |
527 | | /* Convert hash to a number. */ |
528 | 0 | err = mp_read_unsigned_bin(e, hash, hashSz); |
529 | 0 | } |
530 | 0 | if (err == MP_OKAY) { |
531 | | /* Reduce the hash value to that of the order once. */ |
532 | 0 | err = mp_mod(e, order, e); |
533 | 0 | } |
534 | 0 | if (err == MP_OKAY) { |
535 | 0 | do { |
536 | | /* Generate blinding value. */ |
537 | 0 | err = wc_ecc_gen_k(rng, 32, b, order); |
538 | 0 | } |
539 | 0 | while (err == MP_ZERO_E); |
540 | | |
541 | | /* Try generating a signature a number of times. */ |
542 | 0 | for (i = 0; (err == MP_OKAY) && (i < ECC_SM2_MAX_SIG_GEN); i++) { |
543 | | /* Make a new ephemeral key. */ |
544 | 0 | err = wc_ecc_sm2_make_key(rng, pub, WC_ECC_FLAG_NONE); |
545 | 0 | if (err == MP_OKAY) { |
546 | | /* Copy the private key into temporary. */ |
547 | 0 | err = mp_copy(wc_ecc_key_get_priv(key), x); |
548 | 0 | } |
549 | 0 | if (err == MP_OKAY) { |
550 | | /* Calculate R and S. */ |
551 | 0 | err = _ecc_sm2_calc_r_s(x, pub->pubkey.x, |
552 | 0 | wc_ecc_key_get_priv(pub), e, order, b, r, s); |
553 | 0 | } |
554 | | /* Done if it worked. */ |
555 | 0 | if (err == MP_OKAY) { |
556 | 0 | break; |
557 | 0 | } |
558 | | /* Try again if random values not usable. */ |
559 | 0 | if (err == MP_ZERO_E) { |
560 | 0 | err = MP_OKAY; |
561 | 0 | } |
562 | 0 | } |
563 | | |
564 | | /* Dispose of emphemeral key. */ |
565 | 0 | wc_ecc_free(pub); |
566 | 0 | } |
567 | | |
568 | | /* Dispose of temproraries - x and b are sensitive data. */ |
569 | 0 | mp_forcezero(x); |
570 | 0 | mp_forcezero(b); |
571 | 0 | mp_free(e); |
572 | 0 | mp_free(order); |
573 | 0 | } |
574 | |
|
575 | 0 | #ifdef WOLFSSL_SMALL_STACK |
576 | 0 | XFREE(pub, key->heap, DYNAMIC_TYPE_ECC); |
577 | 0 | XFREE(data, key->heap, DYNAMIC_TYPE_ECC); |
578 | 0 | #endif |
579 | | #else |
580 | | (void)hashSz; |
581 | | |
582 | | err = NOT_COMPILED_IN; |
583 | | #endif |
584 | |
|
585 | 0 | return err; |
586 | 0 | } |
587 | | |
588 | | /* Calculate the signature from the hash with a key on the SM2 curve. |
589 | | * |
590 | | * Use wc_ecc_sm2_create_digest to calculate the digest. |
591 | | * |
592 | | * @param [in] hash Array of bytes holding hash value. |
593 | | * @param [in] hashSz Size of hash in bytes. |
594 | | * @param [in] rng Random number generator. |
595 | | * @param [in] key ECC private key. |
596 | | * @param [out] sig DER encoded DSA signature. |
597 | | * @param [out] sigSz On in, size of signature buffer in bytes. |
598 | | * On out, length of signature in bytes. |
599 | | * @return MP_OKAY on success. |
600 | | * @return ECC_BAD_ARGE_E when hash, r, s, key or rng is NULL. |
601 | | * @return ECC_BAD_ARGE_E when key is not on SM2 curve. |
602 | | */ |
603 | | int wc_ecc_sm2_sign_hash(const byte* hash, word32 hashSz, byte* sig, |
604 | | word32 *sigSz, WC_RNG* rng, ecc_key* key) |
605 | 0 | { |
606 | 0 | int err = MP_OKAY; |
607 | 0 | #if !defined(WOLFSSL_ASYNC_CRYPT) || !defined(WC_ASYNC_ENABLE_ECC) |
608 | 0 | #ifdef WOLFSSL_SMALL_STACK |
609 | 0 | mp_int *r = NULL, *s = NULL; |
610 | | #else |
611 | | mp_int r[1], s[1]; |
612 | | #endif |
613 | 0 | #endif |
614 | | |
615 | | /* Validate parameters. */ |
616 | 0 | if ((hash == NULL) || (sig == NULL) || (sigSz == NULL) || (key == NULL) || |
617 | 0 | (key->dp == NULL) || (rng == NULL)) { |
618 | 0 | err = BAD_FUNC_ARG; |
619 | 0 | } |
620 | | /* SM2 signature must be with a key on the SM2 curve. */ |
621 | 0 | if ((err == MP_OKAY) && (key->dp->id != ECC_SM2P256V1) && |
622 | 0 | (key->idx != ECC_CUSTOM_IDX)) { |
623 | 0 | err = BAD_FUNC_ARG; |
624 | 0 | } |
625 | |
|
626 | 0 | #ifdef WOLFSSL_SMALL_STACK |
627 | 0 | if (err == MP_OKAY) { |
628 | | /* Allocate MP integers. */ |
629 | 0 | r = (mp_int*)XMALLOC(sizeof(mp_int), key->heap, DYNAMIC_TYPE_ECC); |
630 | 0 | if (r == NULL) |
631 | 0 | err = MEMORY_E; |
632 | 0 | } |
633 | 0 | if (err == MP_OKAY) { |
634 | 0 | s = (mp_int*)XMALLOC(sizeof(mp_int), key->heap, DYNAMIC_TYPE_ECC); |
635 | 0 | if (s == NULL) { |
636 | 0 | err = MEMORY_E; |
637 | 0 | } |
638 | 0 | } |
639 | 0 | #endif |
640 | | /* Clear out MP integers. */ |
641 | 0 | #ifdef WOLFSSL_SMALL_STACK |
642 | 0 | if (r != NULL) |
643 | 0 | #endif |
644 | 0 | XMEMSET(r, 0, sizeof(mp_int)); |
645 | 0 | #ifdef WOLFSSL_SMALL_STACK |
646 | 0 | if (s != NULL) |
647 | 0 | #endif |
648 | 0 | XMEMSET(s, 0, sizeof(mp_int)); |
649 | | |
650 | | /* Initialize MP integers. */ |
651 | 0 | if (err == MP_OKAY) |
652 | 0 | err = mp_init_multi(r, s, NULL, NULL, NULL, NULL); |
653 | | /* Generate signature into numbers. */ |
654 | 0 | if (err == MP_OKAY) |
655 | 0 | err = wc_ecc_sm2_sign_hash_ex(hash, hashSz, rng, key, r, s); |
656 | | |
657 | | /* Encode r and s in DER DSA signature format. */ |
658 | 0 | if (err == MP_OKAY) |
659 | 0 | err = StoreECC_DSA_Sig(sig, sigSz, r, s); |
660 | | |
661 | | /* Dispose of temporaries. */ |
662 | 0 | mp_clear(r); |
663 | 0 | mp_clear(s); |
664 | |
|
665 | 0 | #ifdef WOLFSSL_SMALL_STACK |
666 | | /* Free allocated data. */ |
667 | 0 | XFREE(s, key->heap, DYNAMIC_TYPE_ECC); |
668 | 0 | XFREE(r, key->heap, DYNAMIC_TYPE_ECC); |
669 | 0 | #endif |
670 | |
|
671 | 0 | return err; |
672 | 0 | } |
673 | | #endif |
674 | | |
675 | | #ifdef HAVE_ECC_VERIFY |
676 | | #ifndef WOLFSSL_SP_MATH |
677 | | /* Scalar multiply two scalars against respective points and add result. |
678 | | * |
679 | | * @param [in] mG First point to multiply. |
680 | | * @param [in] u1 First scalar. |
681 | | * @param [in] mQ Second point to multiply. |
682 | | * @param [in] u2 Second scalar. |
683 | | * @param [out] mR Point to store result in. |
684 | | * @param [in] a Coefficient a of the curve. |
685 | | * @param [in] modulus Modulus of curve. |
686 | | * @param [in] heap Dynamic memory allocation hint. |
687 | | * @return MP_OKAY on success. |
688 | | * @return MP_VAL when a parameter is invalid. |
689 | | * @return MP_MEM when dynamic memory allocation fails. |
690 | | */ |
691 | | static int ecc_sm2_mul2add(ecc_point* mG, mp_int* u1, ecc_point* mQ, mp_int* u2, |
692 | | ecc_point* mR, mp_int* a, mp_int* modulus, void* heap) |
693 | 0 | { |
694 | 0 | int err; |
695 | | #ifndef ECC_SHAMIR |
696 | | mp_digit mp = 0; |
697 | | |
698 | | /* Calculate the Montgomery multiplier. */ |
699 | | err = mp_montgomery_setup(modulus, &mp); |
700 | | if ((err == 0) && (!mp_iszero(u1))) { |
701 | | /* Compute mR = u1 * mG + u2 * mQ */ |
702 | | |
703 | | /* mG = u1 * mG */ |
704 | | err = wc_ecc_mulmod_ex(u1, mG, mG, a, modulus, 0, heap); |
705 | | if (err == MP_OKAY) { |
706 | | /* mQ = u2 * mQ */ |
707 | | err = wc_ecc_mulmod_ex(u2, mQ, mR, a, modulus, 0, heap); |
708 | | } |
709 | | |
710 | | if (err == MP_OKAY) { |
711 | | /* mR = mQ + mG */ |
712 | | err = ecc_projective_add_point(mR, mG, mR, a, modulus, mp); |
713 | | } |
714 | | if (err == MP_OKAY && mp_iszero(mR->z)) { |
715 | | /* When all zero then should have done a double instead. */ |
716 | | if (mp_iszero(mR->x) && mp_iszero(mR->y)) { |
717 | | /* mR = mQ * 2 (mG = mQ) */ |
718 | | err = ecc_projective_dbl_point(mQ, mR, a, modulus, mp); |
719 | | } |
720 | | else { |
721 | | /* When only Z zero then result is infinity. */ |
722 | | err = mp_set(mR->x, 0); |
723 | | if (err == MP_OKAY) |
724 | | err = mp_set(mR->y, 0); |
725 | | if (err == MP_OKAY) |
726 | | err = mp_set(mR->z, 1); |
727 | | } |
728 | | } |
729 | | } |
730 | | else if (err == 0) { |
731 | | /* Compute mR = 0 * mG + u2 * mQ => mR = u2 * mQ */ |
732 | | err = wc_ecc_mulmod_ex(u2, mQ, mR, a, modulus, 0, heap); |
733 | | } |
734 | | |
735 | | /* Convert from Jacobian to affine. */ |
736 | | if (err == MP_OKAY) { |
737 | | err = ecc_map(mR, modulus, mp); |
738 | | } |
739 | | #else |
740 | | /* Use Shamir's trick to compute u1 * mG + u2 * mQ using half the doubles. |
741 | | */ |
742 | 0 | err = ecc_mul2add(mG, u1, mQ, u2, mR, a, modulus, heap); |
743 | 0 | #endif /* ECC_SHAMIR */ |
744 | |
|
745 | 0 | return err; |
746 | 0 | } |
747 | | #endif /* !WOLFSSL_SP_MATH */ |
748 | | |
749 | | /* Verify digest of hash(ZA || M) using key on SM2 curve and R and S. |
750 | | * |
751 | | * res gets set to 1 on successful verify and 0 on failure |
752 | | * |
753 | | * Use wc_ecc_sm2_create_digest to calculate the digest. |
754 | | * |
755 | | * @param [in] r MP integer holding r part of signature. |
756 | | * @param [in] s MP integer holding s part of signature. |
757 | | * @param [in] hash Array of bytes holding hash value. |
758 | | * @param [in] hashSz Size of hash in bytes. |
759 | | * @param [out] res 1 on successful verify and 0 on failure. |
760 | | * @param [in] key Public key on SM2 curve. |
761 | | * @return 0 on success (note this is even when successfully finding verify is |
762 | | * incorrect) |
763 | | * @return BAD_FUNC_ARG when key, res, r, s or hash is NULL. |
764 | | * @return MP_VAL when r + s = 0. |
765 | | * @return MEMORY_E on dynamic memory allocation failure. |
766 | | * @return MP_MEM when dynamic memory allocation fails. |
767 | | */ |
768 | | int wc_ecc_sm2_verify_hash_ex(mp_int *r, mp_int *s, const byte *hash, |
769 | | word32 hashSz, int *res, ecc_key *key) |
770 | 0 | { |
771 | 0 | int err = MP_OKAY; |
772 | 0 | #ifndef WOLFSSL_SP_MATH |
773 | 0 | ecc_point* PO = NULL; |
774 | 0 | ecc_point* G = NULL; |
775 | 0 | mp_int* t = NULL; |
776 | 0 | mp_int* e = NULL; |
777 | 0 | mp_int* prime = NULL; |
778 | 0 | mp_int* Af = NULL; |
779 | 0 | mp_int* order = NULL; |
780 | 0 | #ifdef WOLFSSL_SMALL_STACK |
781 | 0 | mp_int* data = NULL; |
782 | | #else |
783 | | mp_int data[5]; |
784 | | #endif |
785 | 0 | #endif |
786 | | |
787 | | /* Validate parameters. */ |
788 | 0 | if ((key == NULL) || (key->dp == NULL) || (res == NULL) || (r == NULL) || |
789 | 0 | (s == NULL) || (hash == NULL)) { |
790 | 0 | err = BAD_FUNC_ARG; |
791 | 0 | } |
792 | | /* SM2 signature must be with a key on the SM2 curve. */ |
793 | 0 | if ((err == MP_OKAY) && (key->dp->id != ECC_SM2P256V1) && |
794 | 0 | (key->idx != ECC_CUSTOM_IDX)) { |
795 | 0 | err = BAD_FUNC_ARG; |
796 | 0 | } |
797 | |
|
798 | | #if defined(WOLFSSL_HAVE_SP_ECC) && defined(WOLFSSL_SP_SM2) |
799 | | if ((err == MP_OKAY) && (key->dp->id == ECC_SM2P256V1)) { |
800 | | /* Use optimized code in SP to perform verification. */ |
801 | | SAVE_VECTOR_REGISTERS(return _svr_ret;); |
802 | | err = sp_ecc_verify_sm2_256(hash, hashSz, key->pubkey.x, |
803 | | key->pubkey.y, key->pubkey.z, r, s, res, key->heap); |
804 | | RESTORE_VECTOR_REGISTERS(); |
805 | | return err; |
806 | | } |
807 | | #endif |
808 | |
|
809 | 0 | #ifndef WOLFSSL_SP_MATH |
810 | 0 | if (res != NULL) { |
811 | | /* Assume failure. */ |
812 | 0 | *res = 0; |
813 | 0 | } |
814 | |
|
815 | 0 | #ifdef WOLFSSL_SMALL_STACK |
816 | 0 | if (err == MP_OKAY) { |
817 | | /* Allocate temporary MP integer. */ |
818 | 0 | data = (mp_int*)XMALLOC(sizeof(mp_int) * 5, key->heap, |
819 | 0 | DYNAMIC_TYPE_ECC); |
820 | 0 | if (data == NULL) { |
821 | 0 | err = MEMORY_E; |
822 | 0 | } |
823 | 0 | } |
824 | 0 | #endif |
825 | 0 | if (err == MP_OKAY) { |
826 | 0 | t = data; |
827 | 0 | e = data + 1; |
828 | 0 | prime = data + 2; |
829 | 0 | Af = data + 3; |
830 | 0 | order = data + 4; |
831 | 0 | } |
832 | |
|
833 | 0 | if (err == MP_OKAY) { |
834 | | /* Initialize temporary MP integers. */ |
835 | 0 | err = mp_init_multi(e, t, prime, Af, order, NULL); |
836 | 0 | } |
837 | 0 | if (err == MP_OKAY) { |
838 | | /* Get order. */ |
839 | 0 | err = mp_read_radix(order, key->dp->order, MP_RADIX_HEX); |
840 | 0 | } |
841 | | /* B5: calculate t = (r' + s') modn -- if t is 0 then failed */ |
842 | 0 | if (err == MP_OKAY) { |
843 | | /* t = r + s */ |
844 | 0 | err = mp_addmod(r, s, order, t); |
845 | 0 | } |
846 | 0 | if (err == MP_OKAY) { |
847 | | /* Check sum is valid. */ |
848 | 0 | if (mp_iszero(t) == MP_YES) |
849 | 0 | err = MP_VAL; |
850 | 0 | } |
851 | | #ifdef DEBUG_ECC_SM2 |
852 | | mp_dump("t = ", t, 0); |
853 | | #endif |
854 | | |
855 | | /* B6: calculate the point (x1', y1')=[s']G + [t]PA */ |
856 | 0 | if (err == MP_OKAY) { |
857 | | /* Create two new points. */ |
858 | 0 | PO = wc_ecc_new_point_h(key->heap); |
859 | 0 | if (PO == NULL) { |
860 | 0 | err = MEMORY_E; |
861 | 0 | } |
862 | 0 | } |
863 | 0 | if (err == MP_OKAY) { |
864 | 0 | G = wc_ecc_new_point_h(key->heap); |
865 | 0 | if (G == NULL) { |
866 | 0 | err = MEMORY_E; |
867 | 0 | } |
868 | 0 | } |
869 | |
|
870 | 0 | if (err == MP_OKAY) { |
871 | | /* Get the base point x-ordinate for SM2 curve. */ |
872 | 0 | err = mp_read_radix(G->x, key->dp->Gx, MP_RADIX_HEX); |
873 | 0 | } |
874 | 0 | if (err == MP_OKAY) { |
875 | | /* Get the base point y-ordinate for SM2 curve. */ |
876 | 0 | err = mp_read_radix(G->y, key->dp->Gy, MP_RADIX_HEX); |
877 | 0 | } |
878 | 0 | if (err == MP_OKAY) { |
879 | | /* Base point is in affine so z-ordinate is one. */ |
880 | 0 | err = mp_set(G->z, 1); |
881 | 0 | } |
882 | 0 | if (err == MP_OKAY) { |
883 | | /* Get a coefficient of SM2 curve. */ |
884 | 0 | err = mp_read_radix(Af, key->dp->Af, MP_RADIX_HEX); |
885 | 0 | } |
886 | 0 | if (err == MP_OKAY) { |
887 | | /* Get a prime of SM2 curve. */ |
888 | 0 | err = mp_read_radix(prime, key->dp->prime, MP_RADIX_HEX); |
889 | 0 | } |
890 | | #ifdef DEBUG_ECC_SM2 |
891 | | printf("\n"); |
892 | | mp_dump("G->x = ", G->x, 0); |
893 | | mp_dump("G->y = ", G->y, 0); |
894 | | mp_dump("s = ", s, 0); |
895 | | mp_dump("P->x = ", key->pubkey.x, 0); |
896 | | mp_dump("P->y = ", key->pubkey.y, 0); |
897 | | mp_dump("t = ", t, 0); |
898 | | mp_dump("Af = ", Af, 0); |
899 | | mp_dump("prime= ", prime, 0); |
900 | | #endif |
901 | 0 | if (err == MP_OKAY) { |
902 | | /* [s']G + [t]PA */ |
903 | 0 | err = ecc_sm2_mul2add(G, s, &(key->pubkey), t, PO, Af, prime, |
904 | 0 | key->heap); |
905 | 0 | } |
906 | | #ifdef DEBUG_ECC_SM2 |
907 | | mp_dump("PO->x = ", PO->x, 0); |
908 | | mp_dump("PO->y = ", PO->y, 0); |
909 | | printf("\n\n"); |
910 | | #endif |
911 | | |
912 | | |
913 | | /* B7: calculate R=(e'+x1') modn, if R=r then passed */ |
914 | 0 | if (err == MP_OKAY) { |
915 | | /* Convert hash to an MP integer. */ |
916 | 0 | err = mp_read_unsigned_bin(e, hash, hashSz); |
917 | 0 | } |
918 | 0 | if (err == MP_OKAY) { |
919 | | /* e' + x1' */ |
920 | 0 | err = mp_addmod(e, PO->x, order, t); |
921 | 0 | } |
922 | | /* Calculated value must be same as r. */ |
923 | 0 | if (err == MP_OKAY && mp_cmp(t, r) == MP_EQ) { |
924 | 0 | *res = 1; |
925 | 0 | } |
926 | | |
927 | | /* Dispose of allocated points. */ |
928 | 0 | if (PO != NULL) { |
929 | 0 | wc_ecc_del_point_h(PO, key->heap); |
930 | 0 | } |
931 | 0 | if (G != NULL) { |
932 | 0 | wc_ecc_del_point_h(G, key->heap); |
933 | 0 | } |
934 | | |
935 | | /* Dispose of allocated MP integers. */ |
936 | 0 | if (e != NULL) { |
937 | 0 | mp_free(e); |
938 | 0 | } |
939 | 0 | if (t != NULL) { |
940 | 0 | mp_free(t); |
941 | 0 | } |
942 | 0 | if (prime != NULL) { |
943 | 0 | mp_free(prime); |
944 | 0 | } |
945 | 0 | if (Af != NULL) { |
946 | 0 | mp_free(Af); |
947 | 0 | } |
948 | 0 | if (order != NULL) { |
949 | 0 | mp_free(order); |
950 | 0 | } |
951 | |
|
952 | 0 | #ifdef WOLFSSL_SMALL_STACK |
953 | | /* Free allocated data. */ |
954 | 0 | XFREE(data, key->heap, DYNAMIC_TYPE_ECC); |
955 | 0 | #endif |
956 | | #else |
957 | | (void)hashSz; |
958 | | |
959 | | err = NOT_COMPILED_IN; |
960 | | #endif |
961 | |
|
962 | 0 | return err; |
963 | 0 | } |
964 | | |
965 | | |
966 | | #ifndef NO_ASN |
967 | | /* Verify digest of hash(ZA || M) using key on SM2 curve and encoded signature. |
968 | | * |
969 | | * res gets set to 1 on successful verify and 0 on failure |
970 | | * |
971 | | * Use wc_ecc_sm2_create_digest to calculate the digest. |
972 | | * |
973 | | * @param [in] sig DER encoded DSA signature. |
974 | | * @param [in] sigSz Length of signature in bytes. |
975 | | * @param [in] hash Array of bytes holding hash value. |
976 | | * @param [in] hashSz Size of hash in bytes. |
977 | | * @param [out] res 1 on successful verify and 0 on failure. |
978 | | * @param [in] key Public key on SM2 curve. |
979 | | * @return 0 on success (note this is even when successfully finding verify is |
980 | | * incorrect) |
981 | | * @return BAD_FUNC_ARG when key, res, sig or hash is NULL. |
982 | | * @return MP_VAL when r + s = 0. |
983 | | * @return MEMORY_E on dynamic memory allocation failure. |
984 | | * @return MP_MEM when dynamic memory allocation fails. |
985 | | */ |
986 | | int wc_ecc_sm2_verify_hash(const byte* sig, word32 sigSz, const byte* hash, |
987 | | word32 hashSz, int* res, ecc_key* key) |
988 | 0 | { |
989 | 0 | int err = 0; |
990 | 0 | #ifdef WOLFSSL_SMALL_STACK |
991 | 0 | mp_int* r = NULL; |
992 | 0 | mp_int* s = NULL; |
993 | | #else |
994 | | mp_int r[1]; |
995 | | mp_int s[1]; |
996 | | #endif |
997 | | |
998 | | /* Validate parameters. */ |
999 | 0 | if ((sig == NULL) || (hash == NULL) || (res == NULL) || (key == NULL) || |
1000 | 0 | (key->dp == NULL)) { |
1001 | 0 | err = BAD_FUNC_ARG; |
1002 | 0 | } |
1003 | | /* SM2 signature must be with a key on the SM2 curve. */ |
1004 | 0 | if ((err == MP_OKAY) && (key->dp->id != ECC_SM2P256V1) && |
1005 | 0 | (key->idx != ECC_CUSTOM_IDX)) { |
1006 | 0 | err = BAD_FUNC_ARG; |
1007 | 0 | } |
1008 | |
|
1009 | 0 | #ifdef WOLFSSL_SMALL_STACK |
1010 | 0 | if (err == 0) { |
1011 | | /* Allocate MP integers. */ |
1012 | 0 | r = (mp_int*)XMALLOC(sizeof(mp_int), key->heap, DYNAMIC_TYPE_ECC); |
1013 | 0 | if (r == NULL) { |
1014 | 0 | err = MEMORY_E; |
1015 | 0 | } |
1016 | 0 | else { |
1017 | 0 | XMEMSET(r, 0, sizeof(*r)); |
1018 | 0 | } |
1019 | 0 | } |
1020 | 0 | if (err == MP_OKAY) { |
1021 | 0 | s = (mp_int*)XMALLOC(sizeof(mp_int), key->heap, DYNAMIC_TYPE_ECC); |
1022 | 0 | if (s == NULL) { |
1023 | 0 | err = MEMORY_E; |
1024 | 0 | } |
1025 | 0 | else { |
1026 | 0 | XMEMSET(s, 0, sizeof(*s)); |
1027 | 0 | } |
1028 | 0 | } |
1029 | | #else |
1030 | | XMEMSET(r, 0, sizeof(*r)); |
1031 | | XMEMSET(s, 0, sizeof(*s)); |
1032 | | #endif |
1033 | |
|
1034 | 0 | if (err == 0) { |
1035 | | /* Decode the signature into R and S. */ |
1036 | 0 | err = DecodeECC_DSA_Sig(sig, sigSz, r, s); |
1037 | 0 | } |
1038 | 0 | if (err == 0) { |
1039 | | /* Verify the signature with hash, key, R and S. */ |
1040 | 0 | err = wc_ecc_sm2_verify_hash_ex(r, s, hash, hashSz, res, key); |
1041 | 0 | } |
1042 | | |
1043 | | /* Dispose of allocated data. */ |
1044 | 0 | #ifdef WOLFSSL_SMALL_STACK |
1045 | 0 | if (r != NULL) |
1046 | 0 | #endif |
1047 | 0 | { |
1048 | 0 | mp_free(r); |
1049 | 0 | } |
1050 | 0 | #ifdef WOLFSSL_SMALL_STACK |
1051 | 0 | if (s != NULL) |
1052 | 0 | #endif |
1053 | 0 | { |
1054 | 0 | mp_free(s); |
1055 | 0 | } |
1056 | |
|
1057 | 0 | #ifdef WOLFSSL_SMALL_STACK |
1058 | | /* Free allocated data. */ |
1059 | 0 | XFREE(s, key->heap, DYNAMIC_TYPE_ECC); |
1060 | 0 | XFREE(r, key->heap, DYNAMIC_TYPE_ECC); |
1061 | 0 | #endif |
1062 | |
|
1063 | 0 | return err; |
1064 | 0 | } |
1065 | | #endif /* NO_ASN */ |
1066 | | #endif /* HAVE_ECC_VERIFY */ |
1067 | | |
1068 | | #endif /* WOLFSSL_SM2 && HAVE_ECC */ |