/src/gmp-6.2.1/mpn/get_str.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mpn_get_str -- Convert {UP,USIZE} to a base BASE string in STR. | 
2  |  |  | 
3  |  |    Contributed to the GNU project by Torbjorn Granlund.  | 
4  |  |  | 
5  |  |    THE FUNCTIONS IN THIS FILE, EXCEPT mpn_get_str, ARE INTERNAL WITH MUTABLE  | 
6  |  |    INTERFACES.  IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  | 
7  |  |    IN FACT, IT IS ALMOST GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A  | 
8  |  |    FUTURE GNU MP RELEASE.  | 
9  |  |  | 
10  |  | Copyright 1991-2017 Free Software Foundation, Inc.  | 
11  |  |  | 
12  |  | This file is part of the GNU MP Library.  | 
13  |  |  | 
14  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
15  |  | it under the terms of either:  | 
16  |  |  | 
17  |  |   * the GNU Lesser General Public License as published by the Free  | 
18  |  |     Software Foundation; either version 3 of the License, or (at your  | 
19  |  |     option) any later version.  | 
20  |  |  | 
21  |  | or  | 
22  |  |  | 
23  |  |   * the GNU General Public License as published by the Free Software  | 
24  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
25  |  |     later version.  | 
26  |  |  | 
27  |  | or both in parallel, as here.  | 
28  |  |  | 
29  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
30  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
31  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
32  |  | for more details.  | 
33  |  |  | 
34  |  | You should have received copies of the GNU General Public License and the  | 
35  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
36  |  | see https://www.gnu.org/licenses/.  */  | 
37  |  |  | 
38  |  | #include "gmp-impl.h"  | 
39  |  | #include "longlong.h"  | 
40  |  |  | 
41  |  | /* Conversion of U {up,un} to a string in base b.  Internally, we convert to | 
42  |  |    base B = b^m, the largest power of b that fits a limb.  Basic algorithms:  | 
43  |  |  | 
44  |  |   A) Divide U repeatedly by B, generating a quotient and remainder, until the  | 
45  |  |      quotient becomes zero.  The remainders hold the converted digits.  Digits  | 
46  |  |      come out from right to left.  (Used in mpn_bc_get_str.)  | 
47  |  |  | 
48  |  |   B) Divide U by b^g, for g such that 1/b <= U/b^g < 1, generating a fraction.  | 
49  |  |      Then develop digits by multiplying the fraction repeatedly by b.  Digits  | 
50  |  |      come out from left to right.  (Currently not used herein, except for in  | 
51  |  |      code for converting single limbs to individual digits.)  | 
52  |  |  | 
53  |  |   C) Compute B^1, B^2, B^4, ..., B^s, for s such that B^s is just above  | 
54  |  |      sqrt(U).  Then divide U by B^s, generating quotient and remainder.  | 
55  |  |      Recursively convert the quotient, then the remainder, using the  | 
56  |  |      precomputed powers.  Digits come out from left to right.  (Used in  | 
57  |  |      mpn_dc_get_str.)  | 
58  |  |  | 
59  |  |   When using algorithm C, algorithm B might be suitable for basecase code,  | 
60  |  |   since the required b^g power will be readily accessible.  | 
61  |  |  | 
62  |  |   Optimization ideas:  | 
63  |  |   1. The recursive function of (C) could use less temporary memory.  The powtab  | 
64  |  |      allocation could be trimmed with some computation, and the tmp area could  | 
65  |  |      be reduced, or perhaps eliminated if up is reused for both quotient and  | 
66  |  |      remainder (it is currently used just for remainder).  | 
67  |  |   2. Store the powers of (C) in normalized form, with the normalization count.  | 
68  |  |      Quotients will usually need to be left-shifted before each divide, and  | 
69  |  |      remainders will either need to be left-shifted of right-shifted.  | 
70  |  |   3. In the code for developing digits from a single limb, we could avoid using  | 
71  |  |      a full umul_ppmm except for the first (or first few) digits, provided base  | 
72  |  |      is even.  Subsequent digits can be developed using plain multiplication.  | 
73  |  |      (This saves on register-starved machines (read x86) and on all machines  | 
74  |  |      that generate the upper product half using a separate instruction (alpha,  | 
75  |  |      powerpc, IA-64) or lacks such support altogether (sparc64, hppa64).  | 
76  |  |   4. Separate mpn_dc_get_str basecase code from code for small conversions. The  | 
77  |  |      former code will have the exact right power readily available in the  | 
78  |  |      powtab parameter for dividing the current number into a fraction.  Convert  | 
79  |  |      that using algorithm B.  | 
80  |  |   5. Completely avoid division.  Compute the inverses of the powers now in  | 
81  |  |      powtab instead of the actual powers.  | 
82  |  |   6. Decrease powtab allocation for even bases.  E.g. for base 10 we could save  | 
83  |  |      about 30% (1-log(5)/log(10)).  | 
84  |  |  | 
85  |  |   Basic structure of (C):  | 
86  |  |     mpn_get_str:  | 
87  |  |       if POW2_P (n)  | 
88  |  |   ...  | 
89  |  |       else  | 
90  |  |   if (un < GET_STR_PRECOMPUTE_THRESHOLD)  | 
91  |  |     mpn_bx_get_str (str, base, up, un);  | 
92  |  |   else  | 
93  |  |     precompute_power_tables  | 
94  |  |     mpn_dc_get_str  | 
95  |  |  | 
96  |  |     mpn_dc_get_str:  | 
97  |  |   mpn_tdiv_qr  | 
98  |  |   if (qn < GET_STR_DC_THRESHOLD)  | 
99  |  |     mpn_bc_get_str  | 
100  |  |   else  | 
101  |  |     mpn_dc_get_str  | 
102  |  |   if (rn < GET_STR_DC_THRESHOLD)  | 
103  |  |     mpn_bc_get_str  | 
104  |  |   else  | 
105  |  |     mpn_dc_get_str  | 
106  |  |  | 
107  |  |  | 
108  |  |   The reason for the two threshold values is the cost of  | 
109  |  |   precompute_power_tables.  GET_STR_PRECOMPUTE_THRESHOLD will be  | 
110  |  |   considerably larger than GET_STR_DC_THRESHOLD.  */  | 
111  |  |  | 
112  |  |  | 
113  |  | /* The x86s and m68020 have a quotient and remainder "div" instruction and  | 
114  |  |    gcc recognises an adjacent "/" and "%" can be combined using that.  | 
115  |  |    Elsewhere "/" and "%" are either separate instructions, or separate  | 
116  |  |    libgcc calls (which unfortunately gcc as of version 3.0 doesn't combine).  | 
117  |  |    A multiply and subtract should be faster than a "%" in those cases.  */  | 
118  |  | #if HAVE_HOST_CPU_FAMILY_x86            \  | 
119  |  |   || HAVE_HOST_CPU_m68020               \  | 
120  |  |   || HAVE_HOST_CPU_m68030               \  | 
121  |  |   || HAVE_HOST_CPU_m68040               \  | 
122  |  |   || HAVE_HOST_CPU_m68060               \  | 
123  |  |   || HAVE_HOST_CPU_m68360 /* CPU32 */  | 
124  |  | #define udiv_qrnd_unnorm(q,r,n,d)       \  | 
125  |  |   do {                                  \ | 
126  |  |     mp_limb_t  __q = (n) / (d);         \  | 
127  |  |     mp_limb_t  __r = (n) % (d);         \  | 
128  |  |     (q) = __q;                          \  | 
129  |  |     (r) = __r;                          \  | 
130  |  |   } while (0)  | 
131  |  | #else  | 
132  |  | #define udiv_qrnd_unnorm(q,r,n,d)       \  | 
133  | 145k  |   do {                                  \ | 
134  | 145k  |     mp_limb_t  __q = (n) / (d);         \  | 
135  | 145k  |     mp_limb_t  __r = (n) - __q*(d);     \  | 
136  | 145k  |     (q) = __q;                          \  | 
137  | 145k  |     (r) = __r;                          \  | 
138  | 145k  |   } while (0)  | 
139  |  | #endif  | 
140  |  |  | 
141  |  |  | 
142  |  | /* Convert {up,un} to a string in base base, and put the result in str. | 
143  |  |    Generate len characters, possibly padding with zeros to the left.  If len is  | 
144  |  |    zero, generate as many characters as required.  Return a pointer immediately  | 
145  |  |    after the last digit of the result string.  Complexity is O(un^2); intended  | 
146  |  |    for small conversions.  */  | 
147  |  | static unsigned char *  | 
148  |  | mpn_bc_get_str (unsigned char *str, size_t len,  | 
149  |  |     mp_ptr up, mp_size_t un, int base)  | 
150  | 13.1k  | { | 
151  | 13.1k  |   mp_limb_t rl, ul;  | 
152  | 13.1k  |   unsigned char *s;  | 
153  | 13.1k  |   size_t l;  | 
154  |  |   /* Allocate memory for largest possible string, given that we only get here  | 
155  |  |      for operands with un < GET_STR_PRECOMPUTE_THRESHOLD and that the smallest  | 
156  |  |      base is 3.  7/11 is an approximation to 1/log2(3).  */  | 
157  |  | #if TUNE_PROGRAM_BUILD  | 
158  |  | #define BUF_ALLOC (GET_STR_THRESHOLD_LIMIT * GMP_LIMB_BITS * 7 / 11)  | 
159  |  | #else  | 
160  | 26.3k  | #define BUF_ALLOC (GET_STR_PRECOMPUTE_THRESHOLD * GMP_LIMB_BITS * 7 / 11)  | 
161  | 13.1k  | #endif  | 
162  | 13.1k  |   unsigned char buf[BUF_ALLOC];  | 
163  |  | #if TUNE_PROGRAM_BUILD  | 
164  |  |   mp_limb_t rp[GET_STR_THRESHOLD_LIMIT];  | 
165  |  | #else  | 
166  | 13.1k  |   mp_limb_t rp[GET_STR_PRECOMPUTE_THRESHOLD];  | 
167  | 13.1k  | #endif  | 
168  |  |  | 
169  | 13.1k  |   if (base == 10)  | 
170  | 13.1k  |     { | 
171  |  |       /* Special case code for base==10 so that the compiler has a chance to  | 
172  |  |    optimize things.  */  | 
173  |  |  | 
174  | 13.1k  |       MPN_COPY (rp + 1, up, un);  | 
175  |  |  | 
176  | 13.1k  |       s = buf + BUF_ALLOC;  | 
177  | 132k  |       while (un > 1)  | 
178  | 119k  |   { | 
179  | 119k  |     int i;  | 
180  | 119k  |     mp_limb_t frac, digit;  | 
181  | 119k  |     MPN_DIVREM_OR_PREINV_DIVREM_1 (rp, (mp_size_t) 1, rp + 1, un,  | 
182  | 119k  |            MP_BASES_BIG_BASE_10,  | 
183  | 119k  |            MP_BASES_BIG_BASE_INVERTED_10,  | 
184  | 119k  |            MP_BASES_NORMALIZATION_STEPS_10);  | 
185  | 119k  |     un -= rp[un] == 0;  | 
186  | 119k  |     frac = (rp[0] + 1) << GMP_NAIL_BITS;  | 
187  | 119k  |     s -= MP_BASES_CHARS_PER_LIMB_10;  | 
188  |  | #if HAVE_HOST_CPU_FAMILY_x86  | 
189  |  |     /* The code below turns out to be a bit slower for x86 using gcc.  | 
190  |  |        Use plain code.  */  | 
191  |  |     i = MP_BASES_CHARS_PER_LIMB_10;  | 
192  |  |     do  | 
193  |  |       { | 
194  |  |         umul_ppmm (digit, frac, frac, 10);  | 
195  |  |         *s++ = digit;  | 
196  |  |       }  | 
197  |  |     while (--i);  | 
198  |  | #else  | 
199  |  |     /* Use the fact that 10 in binary is 1010, with the lowest bit 0.  | 
200  |  |        After a few umul_ppmm, we will have accumulated enough low zeros  | 
201  |  |        to use a plain multiply.  */  | 
202  | 119k  |     if (MP_BASES_NORMALIZATION_STEPS_10 == 0)  | 
203  | 119k  |       { | 
204  | 119k  |         umul_ppmm (digit, frac, frac, 10);  | 
205  | 119k  |         *s++ = digit;  | 
206  | 119k  |       }  | 
207  | 119k  |     if (MP_BASES_NORMALIZATION_STEPS_10 <= 1)  | 
208  | 119k  |       { | 
209  | 119k  |         umul_ppmm (digit, frac, frac, 10);  | 
210  | 119k  |         *s++ = digit;  | 
211  | 119k  |       }  | 
212  | 119k  |     if (MP_BASES_NORMALIZATION_STEPS_10 <= 2)  | 
213  | 119k  |       { | 
214  | 119k  |         umul_ppmm (digit, frac, frac, 10);  | 
215  | 119k  |         *s++ = digit;  | 
216  | 119k  |       }  | 
217  | 119k  |     if (MP_BASES_NORMALIZATION_STEPS_10 <= 3)  | 
218  | 119k  |       { | 
219  | 119k  |         umul_ppmm (digit, frac, frac, 10);  | 
220  | 119k  |         *s++ = digit;  | 
221  | 119k  |       }  | 
222  | 119k  |     i = (MP_BASES_CHARS_PER_LIMB_10 - ((MP_BASES_NORMALIZATION_STEPS_10 < 4)  | 
223  | 119k  |                ? (4-MP_BASES_NORMALIZATION_STEPS_10)  | 
224  | 119k  |                : 0));  | 
225  | 119k  |     frac = (frac + 0xf) >> 4;  | 
226  | 119k  |     do  | 
227  | 1.78M  |       { | 
228  | 1.78M  |         frac *= 10;  | 
229  | 1.78M  |         digit = frac >> (GMP_LIMB_BITS - 4);  | 
230  | 1.78M  |         *s++ = digit;  | 
231  | 1.78M  |         frac &= (~(mp_limb_t) 0) >> 4;  | 
232  | 1.78M  |       }  | 
233  | 1.78M  |     while (--i);  | 
234  | 119k  | #endif  | 
235  | 119k  |     s -= MP_BASES_CHARS_PER_LIMB_10;  | 
236  | 119k  |   }  | 
237  |  |  | 
238  | 13.1k  |       ul = rp[1];  | 
239  | 158k  |       while (ul != 0)  | 
240  | 145k  |   { | 
241  | 145k  |     udiv_qrnd_unnorm (ul, rl, ul, 10);  | 
242  | 145k  |     *--s = rl;  | 
243  | 145k  |   }  | 
244  | 13.1k  |     }  | 
245  | 0  |   else /* not base 10 */  | 
246  | 0  |     { | 
247  | 0  |       unsigned chars_per_limb;  | 
248  | 0  |       mp_limb_t big_base, big_base_inverted;  | 
249  | 0  |       unsigned normalization_steps;  | 
250  |  | 
  | 
251  | 0  |       chars_per_limb = mp_bases[base].chars_per_limb;  | 
252  | 0  |       big_base = mp_bases[base].big_base;  | 
253  | 0  |       big_base_inverted = mp_bases[base].big_base_inverted;  | 
254  | 0  |       count_leading_zeros (normalization_steps, big_base);  | 
255  |  |  | 
256  | 0  |       MPN_COPY (rp + 1, up, un);  | 
257  |  |  | 
258  | 0  |       s = buf + BUF_ALLOC;  | 
259  | 0  |       while (un > 1)  | 
260  | 0  |   { | 
261  | 0  |     int i;  | 
262  | 0  |     mp_limb_t frac;  | 
263  | 0  |     MPN_DIVREM_OR_PREINV_DIVREM_1 (rp, (mp_size_t) 1, rp + 1, un,  | 
264  | 0  |            big_base, big_base_inverted,  | 
265  | 0  |            normalization_steps);  | 
266  | 0  |     un -= rp[un] == 0;  | 
267  | 0  |     frac = (rp[0] + 1) << GMP_NAIL_BITS;  | 
268  | 0  |     s -= chars_per_limb;  | 
269  | 0  |     i = chars_per_limb;  | 
270  | 0  |     do  | 
271  | 0  |       { | 
272  | 0  |         mp_limb_t digit;  | 
273  | 0  |         umul_ppmm (digit, frac, frac, base);  | 
274  | 0  |         *s++ = digit;  | 
275  | 0  |       }  | 
276  | 0  |     while (--i);  | 
277  | 0  |     s -= chars_per_limb;  | 
278  | 0  |   }  | 
279  |  | 
  | 
280  | 0  |       ul = rp[1];  | 
281  | 0  |       while (ul != 0)  | 
282  | 0  |   { | 
283  | 0  |     udiv_qrnd_unnorm (ul, rl, ul, base);  | 
284  | 0  |     *--s = rl;  | 
285  | 0  |   }  | 
286  | 0  |     }  | 
287  |  |  | 
288  | 13.1k  |   l = buf + BUF_ALLOC - s;  | 
289  | 91.3k  |   while (l < len)  | 
290  | 78.1k  |     { | 
291  | 78.1k  |       *str++ = 0;  | 
292  | 78.1k  |       len--;  | 
293  | 78.1k  |     }  | 
294  | 2.42M  |   while (l != 0)  | 
295  | 2.41M  |     { | 
296  | 2.41M  |       *str++ = *s++;  | 
297  | 2.41M  |       l--;  | 
298  | 2.41M  |     }  | 
299  | 13.1k  |   return str;  | 
300  | 13.1k  | }  | 
301  |  |  | 
302  |  |  | 
303  |  | /* Convert {UP,UN} to a string with a base as represented in POWTAB, and put | 
304  |  |    the string in STR.  Generate LEN characters, possibly padding with zeros to  | 
305  |  |    the left.  If LEN is zero, generate as many characters as required.  | 
306  |  |    Return a pointer immediately after the last digit of the result string.  | 
307  |  |    This uses divide-and-conquer and is intended for large conversions.  */  | 
308  |  | static unsigned char *  | 
309  |  | mpn_dc_get_str (unsigned char *str, size_t len,  | 
310  |  |     mp_ptr up, mp_size_t un,  | 
311  |  |     const powers_t *powtab, mp_ptr tmp)  | 
312  | 21.3k  | { | 
313  | 21.3k  |   if (BELOW_THRESHOLD (un, GET_STR_DC_THRESHOLD))  | 
314  | 11.0k  |     { | 
315  | 11.0k  |       if (un != 0)  | 
316  | 11.0k  |   str = mpn_bc_get_str (str, len, up, un, powtab->base);  | 
317  | 0  |       else  | 
318  | 0  |   { | 
319  | 0  |     while (len != 0)  | 
320  | 0  |       { | 
321  | 0  |         *str++ = 0;  | 
322  | 0  |         len--;  | 
323  | 0  |       }  | 
324  | 0  |   }  | 
325  | 11.0k  |     }  | 
326  | 10.3k  |   else  | 
327  | 10.3k  |     { | 
328  | 10.3k  |       mp_ptr pwp, qp, rp;  | 
329  | 10.3k  |       mp_size_t pwn, qn;  | 
330  | 10.3k  |       mp_size_t sn;  | 
331  |  |  | 
332  | 10.3k  |       pwp = powtab->p;  | 
333  | 10.3k  |       pwn = powtab->n;  | 
334  | 10.3k  |       sn = powtab->shift;  | 
335  |  |  | 
336  | 10.3k  |       if (un < pwn + sn || (un == pwn + sn && mpn_cmp (up + sn, pwp, un - sn) < 0))  | 
337  | 0  |   { | 
338  | 0  |     str = mpn_dc_get_str (str, len, up, un, powtab - 1, tmp);  | 
339  | 0  |   }  | 
340  | 10.3k  |       else  | 
341  | 10.3k  |   { | 
342  | 10.3k  |     qp = tmp;   /* (un - pwn + 1) limbs for qp */  | 
343  | 10.3k  |     rp = up;    /* pwn limbs for rp; overwrite up area */  | 
344  |  |  | 
345  | 10.3k  |     mpn_tdiv_qr (qp, rp + sn, 0L, up + sn, un - sn, pwp, pwn);  | 
346  | 10.3k  |     qn = un - sn - pwn; qn += qp[qn] != 0;    /* quotient size */  | 
347  |  |  | 
348  | 10.3k  |     ASSERT (qn < pwn + sn || (qn == pwn + sn && mpn_cmp (qp + sn, pwp, pwn) < 0));  | 
349  |  |  | 
350  | 10.3k  |     if (len != 0)  | 
351  | 7.84k  |       len = len - powtab->digits_in_base;  | 
352  |  |  | 
353  | 10.3k  |     str = mpn_dc_get_str (str, len, qp, qn, powtab - 1, tmp + qn);  | 
354  | 10.3k  |     str = mpn_dc_get_str (str, powtab->digits_in_base, rp, pwn + sn, powtab - 1, tmp);  | 
355  | 10.3k  |   }  | 
356  | 10.3k  |     }  | 
357  | 21.3k  |   return str;  | 
358  | 21.3k  | }  | 
359  |  |  | 
360  |  | /* There are no leading zeros on the digits generated at str, but that's not  | 
361  |  |    currently a documented feature.  The current mpz_out_str and mpz_get_str  | 
362  |  |    rely on it.  */  | 
363  |  |  | 
364  |  | size_t  | 
365  |  | mpn_get_str (unsigned char *str, int base, mp_ptr up, mp_size_t un)  | 
366  | 3.92k  | { | 
367  | 3.92k  |   mp_ptr powtab_mem;  | 
368  | 3.92k  |   powers_t powtab[GMP_LIMB_BITS];  | 
369  | 3.92k  |   int pi;  | 
370  | 3.92k  |   size_t out_len;  | 
371  | 3.92k  |   mp_ptr tmp;  | 
372  | 3.92k  |   size_t ndig;  | 
373  | 3.92k  |   mp_size_t xn;  | 
374  | 3.92k  |   TMP_DECL;  | 
375  |  |  | 
376  |  |   /* Special case zero, as the code below doesn't handle it.  */  | 
377  | 3.92k  |   if (un == 0)  | 
378  | 1.03k  |     { | 
379  | 1.03k  |       str[0] = 0;  | 
380  | 1.03k  |       return 1;  | 
381  | 1.03k  |     }  | 
382  |  |  | 
383  | 2.88k  |   if (POW2_P (base))  | 
384  | 0  |     { | 
385  |  |       /* The base is a power of 2.  Convert from most significant end.  */  | 
386  | 0  |       mp_limb_t n1, n0;  | 
387  | 0  |       int bits_per_digit = mp_bases[base].big_base;  | 
388  | 0  |       int cnt;  | 
389  | 0  |       int bit_pos;  | 
390  | 0  |       mp_size_t i;  | 
391  | 0  |       unsigned char *s = str;  | 
392  | 0  |       mp_bitcnt_t bits;  | 
393  |  | 
  | 
394  | 0  |       n1 = up[un - 1];  | 
395  | 0  |       count_leading_zeros (cnt, n1);  | 
396  |  |  | 
397  |  |       /* BIT_POS should be R when input ends in least significant nibble,  | 
398  |  |    R + bits_per_digit * n when input ends in nth least significant  | 
399  |  |    nibble. */  | 
400  |  |  | 
401  | 0  |       bits = (mp_bitcnt_t) GMP_NUMB_BITS * un - cnt + GMP_NAIL_BITS;  | 
402  | 0  |       cnt = bits % bits_per_digit;  | 
403  | 0  |       if (cnt != 0)  | 
404  | 0  |   bits += bits_per_digit - cnt;  | 
405  | 0  |       bit_pos = bits - (mp_bitcnt_t) (un - 1) * GMP_NUMB_BITS;  | 
406  |  |  | 
407  |  |       /* Fast loop for bit output.  */  | 
408  | 0  |       i = un - 1;  | 
409  | 0  |       for (;;)  | 
410  | 0  |   { | 
411  | 0  |     bit_pos -= bits_per_digit;  | 
412  | 0  |     while (bit_pos >= 0)  | 
413  | 0  |       { | 
414  | 0  |         *s++ = (n1 >> bit_pos) & ((1 << bits_per_digit) - 1);  | 
415  | 0  |         bit_pos -= bits_per_digit;  | 
416  | 0  |       }  | 
417  | 0  |     i--;  | 
418  | 0  |     if (i < 0)  | 
419  | 0  |       break;  | 
420  | 0  |     n0 = (n1 << -bit_pos) & ((1 << bits_per_digit) - 1);  | 
421  | 0  |     n1 = up[i];  | 
422  | 0  |     bit_pos += GMP_NUMB_BITS;  | 
423  | 0  |     *s++ = n0 | (n1 >> bit_pos);  | 
424  | 0  |   }  | 
425  |  | 
  | 
426  | 0  |       return s - str;  | 
427  | 0  |     }  | 
428  |  |  | 
429  |  |   /* General case.  The base is not a power of 2.  */  | 
430  |  |  | 
431  | 2.88k  |   if (BELOW_THRESHOLD (un, GET_STR_PRECOMPUTE_THRESHOLD))  | 
432  | 2.13k  |     return mpn_bc_get_str (str, (size_t) 0, up, un, base) - str;  | 
433  |  |  | 
434  | 748  |   TMP_MARK;  | 
435  |  |  | 
436  |  |   /* Allocate one large block for the powers of big_base.  */  | 
437  | 748  |   powtab_mem = TMP_BALLOC_LIMBS (mpn_str_powtab_alloc (un));  | 
438  |  |  | 
439  |  |   /* Compute a table of powers, were the largest power is >= sqrt(U).  */  | 
440  | 748  |   DIGITS_IN_BASE_PER_LIMB (ndig, un, base);  | 
441  | 748  |   xn = 1 + ndig / mp_bases[base].chars_per_limb; /* FIXME: scalar integer division */  | 
442  |  |  | 
443  | 748  |   pi = 1 + mpn_compute_powtab (powtab, powtab_mem, xn, base);  | 
444  |  |  | 
445  |  |   /* Using our precomputed powers, now in powtab[], convert our number.  */  | 
446  | 748  |   tmp = TMP_BALLOC_LIMBS (mpn_dc_get_str_itch (un));  | 
447  | 748  |   out_len = mpn_dc_get_str (str, 0, up, un, powtab + (pi - 1), tmp) - str;  | 
448  | 748  |   TMP_FREE;  | 
449  |  |  | 
450  | 748  |   return out_len;  | 
451  | 2.88k  | }  |