/src/gmp-6.2.1/mpn/hgcd_appr.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* hgcd_appr.c.  | 
2  |  |  | 
3  |  |    THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY  | 
4  |  |    SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST  | 
5  |  |    GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
6  |  |  | 
7  |  | Copyright 2011, 2012 Free Software Foundation, Inc.  | 
8  |  |  | 
9  |  | This file is part of the GNU MP Library.  | 
10  |  |  | 
11  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
12  |  | it under the terms of either:  | 
13  |  |  | 
14  |  |   * the GNU Lesser General Public License as published by the Free  | 
15  |  |     Software Foundation; either version 3 of the License, or (at your  | 
16  |  |     option) any later version.  | 
17  |  |  | 
18  |  | or  | 
19  |  |  | 
20  |  |   * the GNU General Public License as published by the Free Software  | 
21  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
22  |  |     later version.  | 
23  |  |  | 
24  |  | or both in parallel, as here.  | 
25  |  |  | 
26  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
27  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
28  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
29  |  | for more details.  | 
30  |  |  | 
31  |  | You should have received copies of the GNU General Public License and the  | 
32  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
33  |  | see https://www.gnu.org/licenses/.  */  | 
34  |  |  | 
35  |  | #include "gmp-impl.h"  | 
36  |  | #include "longlong.h"  | 
37  |  |  | 
38  |  | /* Identical to mpn_hgcd_itch. FIXME: Do we really need to add  | 
39  |  |    HGCD_THRESHOLD at the end? */  | 
40  |  | mp_size_t  | 
41  |  | mpn_hgcd_appr_itch (mp_size_t n)  | 
42  | 0  | { | 
43  | 0  |   if (BELOW_THRESHOLD (n, HGCD_APPR_THRESHOLD))  | 
44  | 0  |     return n;  | 
45  | 0  |   else  | 
46  | 0  |     { | 
47  | 0  |       unsigned k;  | 
48  | 0  |       int count;  | 
49  | 0  |       mp_size_t nscaled;  | 
50  |  |  | 
51  |  |       /* Get the recursion depth. */  | 
52  | 0  |       nscaled = (n - 1) / (HGCD_APPR_THRESHOLD - 1);  | 
53  | 0  |       count_leading_zeros (count, nscaled);  | 
54  | 0  |       k = GMP_LIMB_BITS - count;  | 
55  |  | 
  | 
56  | 0  |       return 20 * ((n+3) / 4) + 22 * k + HGCD_THRESHOLD;  | 
57  | 0  |     }  | 
58  | 0  | }  | 
59  |  |  | 
60  |  | /* Destroys inputs. */  | 
61  |  | int  | 
62  |  | mpn_hgcd_appr (mp_ptr ap, mp_ptr bp, mp_size_t n,  | 
63  |  |          struct hgcd_matrix *M, mp_ptr tp)  | 
64  | 0  | { | 
65  | 0  |   mp_size_t s;  | 
66  | 0  |   int success = 0;  | 
67  |  | 
  | 
68  | 0  |   ASSERT (n > 0);  | 
69  |  |  | 
70  | 0  |   ASSERT ((ap[n-1] | bp[n-1]) != 0);  | 
71  |  |  | 
72  | 0  |   if (n <= 2)  | 
73  |  |     /* Implies s = n. A fairly uninteresting case but exercised by the  | 
74  |  |        random inputs of the testsuite. */  | 
75  | 0  |     return 0;  | 
76  |  |  | 
77  | 0  |   ASSERT ((n+1)/2 - 1 < M->alloc);  | 
78  |  |  | 
79  |  |   /* We aim for reduction of to GMP_NUMB_BITS * s bits. But each time  | 
80  |  |      we discard some of the least significant limbs, we must keep one  | 
81  |  |      additional bit to account for the truncation error. We maintain  | 
82  |  |      the GMP_NUMB_BITS * s - extra_bits as the current target size. */  | 
83  |  |  | 
84  | 0  |   s = n/2 + 1;  | 
85  | 0  |   if (BELOW_THRESHOLD (n, HGCD_APPR_THRESHOLD))  | 
86  | 0  |     { | 
87  | 0  |       unsigned extra_bits = 0;  | 
88  |  | 
  | 
89  | 0  |       while (n > 2)  | 
90  | 0  |   { | 
91  | 0  |     mp_size_t nn;  | 
92  |  | 
  | 
93  | 0  |     ASSERT (n > s);  | 
94  | 0  |     ASSERT (n <= 2*s);  | 
95  |  |  | 
96  | 0  |     nn = mpn_hgcd_step (n, ap, bp, s, M, tp);  | 
97  | 0  |     if (!nn)  | 
98  | 0  |       break;  | 
99  |  |  | 
100  | 0  |     n = nn;  | 
101  | 0  |     success = 1;  | 
102  |  |  | 
103  |  |     /* We can truncate and discard the lower p bits whenever nbits <=  | 
104  |  |        2*sbits - p. To account for the truncation error, we must  | 
105  |  |        adjust  | 
106  |  |  | 
107  |  |        sbits <-- sbits + 1 - p,  | 
108  |  |  | 
109  |  |        rather than just sbits <-- sbits - p. This adjustment makes  | 
110  |  |        the produced matrix slightly smaller than it could be. */  | 
111  |  | 
  | 
112  | 0  |     if (GMP_NUMB_BITS * (n + 1) + 2 * extra_bits <= 2*GMP_NUMB_BITS * s)  | 
113  | 0  |       { | 
114  | 0  |         mp_size_t p = (GMP_NUMB_BITS * (2*s - n) - 2*extra_bits) / GMP_NUMB_BITS;  | 
115  |  | 
  | 
116  | 0  |         if (extra_bits == 0)  | 
117  | 0  |     { | 
118  |  |       /* We cross a limb boundary and bump s. We can't do that  | 
119  |  |          if the result is that it makes makes min(U, V)  | 
120  |  |          smaller than 2^{GMP_NUMB_BITS} s. */ | 
121  | 0  |       if (s + 1 == n  | 
122  | 0  |           || mpn_zero_p (ap + s + 1, n - s - 1)  | 
123  | 0  |           || mpn_zero_p (bp + s + 1, n - s - 1))  | 
124  | 0  |         continue;  | 
125  |  |  | 
126  | 0  |       extra_bits = GMP_NUMB_BITS - 1;  | 
127  | 0  |       s++;  | 
128  | 0  |     }  | 
129  | 0  |         else  | 
130  | 0  |     { | 
131  | 0  |       extra_bits--;  | 
132  | 0  |     }  | 
133  |  |  | 
134  |  |         /* Drop the p least significant limbs */  | 
135  | 0  |         ap += p; bp += p; n -= p; s -= p;  | 
136  | 0  |       }  | 
137  | 0  |   }  | 
138  |  |  | 
139  | 0  |       ASSERT (s > 0);  | 
140  |  |  | 
141  | 0  |       if (extra_bits > 0)  | 
142  | 0  |   { | 
143  |  |     /* We can get here only of we have dropped at least one of the least  | 
144  |  |        significant bits, so we can decrement ap and bp. We can then shift  | 
145  |  |        left extra bits using mpn_rshift. */  | 
146  |  |     /* NOTE: In the unlikely case that n is large, it would be preferable  | 
147  |  |        to do an initial subdiv step to reduce the size before shifting,  | 
148  |  |        but that would mean duplicating mpn_gcd_subdiv_step with a bit  | 
149  |  |        count rather than a limb count. */  | 
150  | 0  |     ap--; bp--;  | 
151  | 0  |     ap[0] = mpn_rshift (ap+1, ap+1, n, GMP_NUMB_BITS - extra_bits);  | 
152  | 0  |     bp[0] = mpn_rshift (bp+1, bp+1, n, GMP_NUMB_BITS - extra_bits);  | 
153  | 0  |     n += (ap[n] | bp[n]) > 0;  | 
154  |  | 
  | 
155  | 0  |     ASSERT (success);  | 
156  |  |  | 
157  | 0  |     while (n > 2)  | 
158  | 0  |       { | 
159  | 0  |         mp_size_t nn;  | 
160  |  | 
  | 
161  | 0  |         ASSERT (n > s);  | 
162  | 0  |         ASSERT (n <= 2*s);  | 
163  |  |  | 
164  | 0  |         nn = mpn_hgcd_step (n, ap, bp, s, M, tp);  | 
165  |  | 
  | 
166  | 0  |         if (!nn)  | 
167  | 0  |     return 1;  | 
168  |  |  | 
169  | 0  |         n = nn;  | 
170  | 0  |       }  | 
171  | 0  |   }  | 
172  |  |  | 
173  | 0  |       if (n == 2)  | 
174  | 0  |   { | 
175  | 0  |     struct hgcd_matrix1 M1;  | 
176  | 0  |     ASSERT (s == 1);  | 
177  |  |  | 
178  | 0  |     if (mpn_hgcd2 (ap[1], ap[0], bp[1], bp[0], &M1))  | 
179  | 0  |       { | 
180  |  |         /* Multiply M <- M * M1 */  | 
181  | 0  |         mpn_hgcd_matrix_mul_1 (M, &M1, tp);  | 
182  | 0  |         success = 1;  | 
183  | 0  |       }  | 
184  | 0  |   }  | 
185  | 0  |       return success;  | 
186  | 0  |     }  | 
187  | 0  |   else  | 
188  | 0  |     { | 
189  | 0  |       mp_size_t n2 = (3*n)/4 + 1;  | 
190  | 0  |       mp_size_t p = n/2;  | 
191  | 0  |       mp_size_t nn;  | 
192  |  | 
  | 
193  | 0  |       nn = mpn_hgcd_reduce (M, ap, bp, n, p, tp);  | 
194  | 0  |       if (nn)  | 
195  | 0  |   { | 
196  | 0  |     n = nn;  | 
197  |  |     /* FIXME: Discard some of the low limbs immediately? */  | 
198  | 0  |     success = 1;  | 
199  | 0  |   }  | 
200  |  | 
  | 
201  | 0  |       while (n > n2)  | 
202  | 0  |   { | 
203  | 0  |     mp_size_t nn;  | 
204  |  |  | 
205  |  |     /* Needs n + 1 storage */  | 
206  | 0  |     nn = mpn_hgcd_step (n, ap, bp, s, M, tp);  | 
207  | 0  |     if (!nn)  | 
208  | 0  |       return success;  | 
209  |  |  | 
210  | 0  |     n = nn;  | 
211  | 0  |     success = 1;  | 
212  | 0  |   }  | 
213  | 0  |       if (n > s + 2)  | 
214  | 0  |   { | 
215  | 0  |     struct hgcd_matrix M1;  | 
216  | 0  |     mp_size_t scratch;  | 
217  |  | 
  | 
218  | 0  |     p = 2*s - n + 1;  | 
219  | 0  |     scratch = MPN_HGCD_MATRIX_INIT_ITCH (n-p);  | 
220  |  | 
  | 
221  | 0  |     mpn_hgcd_matrix_init(&M1, n - p, tp);  | 
222  | 0  |     if (mpn_hgcd_appr (ap + p, bp + p, n - p, &M1, tp + scratch))  | 
223  | 0  |       { | 
224  |  |         /* We always have max(M) > 2^{-(GMP_NUMB_BITS + 1)} max(M1) */ | 
225  | 0  |         ASSERT (M->n + 2 >= M1.n);  | 
226  |  |  | 
227  |  |         /* Furthermore, assume M ends with a quotient (1, q; 0, 1),  | 
228  |  |      then either q or q + 1 is a correct quotient, and M1 will  | 
229  |  |      start with either (1, 0; 1, 1) or (2, 1; 1, 1). This  | 
230  |  |      rules out the case that the size of M * M1 is much  | 
231  |  |      smaller than the expected M->n + M1->n. */  | 
232  |  |  | 
233  | 0  |         ASSERT (M->n + M1.n < M->alloc);  | 
234  |  |  | 
235  |  |         /* We need a bound for of M->n + M1.n. Let n be the original  | 
236  |  |      input size. Then  | 
237  |  |  | 
238  |  |      ceil(n/2) - 1 >= size of product >= M.n + M1.n - 2  | 
239  |  |  | 
240  |  |      and it follows that  | 
241  |  |  | 
242  |  |      M.n + M1.n <= ceil(n/2) + 1  | 
243  |  |  | 
244  |  |      Then 3*(M.n + M1.n) + 5 <= 3 * ceil(n/2) + 8 is the  | 
245  |  |      amount of needed scratch space. */  | 
246  | 0  |         mpn_hgcd_matrix_mul (M, &M1, tp + scratch);  | 
247  | 0  |         return 1;  | 
248  | 0  |       }  | 
249  | 0  |   }  | 
250  |  |  | 
251  | 0  |       for(;;)  | 
252  | 0  |   { | 
253  | 0  |     mp_size_t nn;  | 
254  |  | 
  | 
255  | 0  |     ASSERT (n > s);  | 
256  | 0  |     ASSERT (n <= 2*s);  | 
257  |  |  | 
258  | 0  |     nn = mpn_hgcd_step (n, ap, bp, s, M, tp);  | 
259  |  | 
  | 
260  | 0  |     if (!nn)  | 
261  | 0  |       return success;  | 
262  |  |  | 
263  | 0  |     n = nn;  | 
264  | 0  |     success = 1;  | 
265  | 0  |   }  | 
266  | 0  |     }  | 
267  | 0  | }  |