/src/gmp-6.2.1/mpn/hgcd_jacobi.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* hgcd_jacobi.c.  | 
2  |  |  | 
3  |  |    THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY  | 
4  |  |    SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST  | 
5  |  |    GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
6  |  |  | 
7  |  | Copyright 2003-2005, 2008, 2011, 2012 Free Software Foundation, Inc.  | 
8  |  |  | 
9  |  | This file is part of the GNU MP Library.  | 
10  |  |  | 
11  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
12  |  | it under the terms of either:  | 
13  |  |  | 
14  |  |   * the GNU Lesser General Public License as published by the Free  | 
15  |  |     Software Foundation; either version 3 of the License, or (at your  | 
16  |  |     option) any later version.  | 
17  |  |  | 
18  |  | or  | 
19  |  |  | 
20  |  |   * the GNU General Public License as published by the Free Software  | 
21  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
22  |  |     later version.  | 
23  |  |  | 
24  |  | or both in parallel, as here.  | 
25  |  |  | 
26  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
27  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
28  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
29  |  | for more details.  | 
30  |  |  | 
31  |  | You should have received copies of the GNU General Public License and the  | 
32  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
33  |  | see https://www.gnu.org/licenses/.  */  | 
34  |  |  | 
35  |  | #include "gmp-impl.h"  | 
36  |  | #include "longlong.h"  | 
37  |  |  | 
38  |  | /* This file is almost a copy of hgcd.c, with some added calls to  | 
39  |  |    mpn_jacobi_update */  | 
40  |  |  | 
41  |  | struct hgcd_jacobi_ctx  | 
42  |  | { | 
43  |  |   struct hgcd_matrix *M;  | 
44  |  |   unsigned *bitsp;  | 
45  |  | };  | 
46  |  |  | 
47  |  | static void  | 
48  |  | hgcd_jacobi_hook (void *p, mp_srcptr gp, mp_size_t gn,  | 
49  |  |       mp_srcptr qp, mp_size_t qn, int d)  | 
50  | 0  | { | 
51  | 0  |   ASSERT (!gp);  | 
52  | 0  |   ASSERT (d >= 0);  | 
53  |  |  | 
54  | 0  |   MPN_NORMALIZE (qp, qn);  | 
55  | 0  |   if (qn > 0)  | 
56  | 0  |     { | 
57  | 0  |       struct hgcd_jacobi_ctx *ctx = (struct hgcd_jacobi_ctx *) p;  | 
58  |  |       /* NOTES: This is a bit ugly. A tp area is passed to  | 
59  |  |    gcd_subdiv_step, which stores q at the start of that area. We  | 
60  |  |    now use the rest. */  | 
61  | 0  |       mp_ptr tp = (mp_ptr) qp + qn;  | 
62  |  | 
  | 
63  | 0  |       mpn_hgcd_matrix_update_q (ctx->M, qp, qn, d, tp);  | 
64  | 0  |       *ctx->bitsp = mpn_jacobi_update (*ctx->bitsp, d, qp[0] & 3);  | 
65  | 0  |     }  | 
66  | 0  | }  | 
67  |  |  | 
68  |  | /* Perform a few steps, using some of mpn_hgcd2, subtraction and  | 
69  |  |    division. Reduces the size by almost one limb or more, but never  | 
70  |  |    below the given size s. Return new size for a and b, or 0 if no  | 
71  |  |    more steps are possible.  | 
72  |  |  | 
73  |  |    If hgcd2 succeeds, needs temporary space for hgcd_matrix_mul_1, M->n  | 
74  |  |    limbs, and hgcd_mul_matrix1_inverse_vector, n limbs. If hgcd2  | 
75  |  |    fails, needs space for the quotient, qn <= n - s + 1 limbs, for and  | 
76  |  |    hgcd_matrix_update_q, qn + (size of the appropriate column of M) <=  | 
77  |  |    resulting size of M.  | 
78  |  |  | 
79  |  |    If N is the input size to the calling hgcd, then s = floor(N/2) +  | 
80  |  |    1, M->n < N, qn + matrix size <= n - s + 1 + n - s = 2 (n - s) + 1  | 
81  |  |    < N, so N is sufficient.  | 
82  |  | */  | 
83  |  |  | 
84  |  | static mp_size_t  | 
85  |  | hgcd_jacobi_step (mp_size_t n, mp_ptr ap, mp_ptr bp, mp_size_t s,  | 
86  |  |       struct hgcd_matrix *M, unsigned *bitsp, mp_ptr tp)  | 
87  | 0  | { | 
88  | 0  |   struct hgcd_matrix1 M1;  | 
89  | 0  |   mp_limb_t mask;  | 
90  | 0  |   mp_limb_t ah, al, bh, bl;  | 
91  |  | 
  | 
92  | 0  |   ASSERT (n > s);  | 
93  |  |  | 
94  | 0  |   mask = ap[n-1] | bp[n-1];  | 
95  | 0  |   ASSERT (mask > 0);  | 
96  |  |  | 
97  | 0  |   if (n == s + 1)  | 
98  | 0  |     { | 
99  | 0  |       if (mask < 4)  | 
100  | 0  |   goto subtract;  | 
101  |  |  | 
102  | 0  |       ah = ap[n-1]; al = ap[n-2];  | 
103  | 0  |       bh = bp[n-1]; bl = bp[n-2];  | 
104  | 0  |     }  | 
105  | 0  |   else if (mask & GMP_NUMB_HIGHBIT)  | 
106  | 0  |     { | 
107  | 0  |       ah = ap[n-1]; al = ap[n-2];  | 
108  | 0  |       bh = bp[n-1]; bl = bp[n-2];  | 
109  | 0  |     }  | 
110  | 0  |   else  | 
111  | 0  |     { | 
112  | 0  |       int shift;  | 
113  |  | 
  | 
114  | 0  |       count_leading_zeros (shift, mask);  | 
115  | 0  |       ah = MPN_EXTRACT_NUMB (shift, ap[n-1], ap[n-2]);  | 
116  | 0  |       al = MPN_EXTRACT_NUMB (shift, ap[n-2], ap[n-3]);  | 
117  | 0  |       bh = MPN_EXTRACT_NUMB (shift, bp[n-1], bp[n-2]);  | 
118  | 0  |       bl = MPN_EXTRACT_NUMB (shift, bp[n-2], bp[n-3]);  | 
119  | 0  |     }  | 
120  |  |  | 
121  |  |   /* Try an mpn_hgcd2 step */  | 
122  | 0  |   if (mpn_hgcd2_jacobi (ah, al, bh, bl, &M1, bitsp))  | 
123  | 0  |     { | 
124  |  |       /* Multiply M <- M * M1 */  | 
125  | 0  |       mpn_hgcd_matrix_mul_1 (M, &M1, tp);  | 
126  |  |  | 
127  |  |       /* Can't swap inputs, so we need to copy. */  | 
128  | 0  |       MPN_COPY (tp, ap, n);  | 
129  |  |       /* Multiply M1^{-1} (a;b) */ | 
130  | 0  |       return mpn_matrix22_mul1_inverse_vector (&M1, ap, tp, bp, n);  | 
131  | 0  |     }  | 
132  |  |  | 
133  | 0  |  subtract:  | 
134  | 0  |   { | 
135  | 0  |     struct hgcd_jacobi_ctx ctx;  | 
136  | 0  |     ctx.M = M;  | 
137  | 0  |     ctx.bitsp = bitsp;  | 
138  |  | 
  | 
139  | 0  |     return mpn_gcd_subdiv_step (ap, bp, n, s, hgcd_jacobi_hook, &ctx, tp);  | 
140  | 0  |   }  | 
141  | 0  | }  | 
142  |  |  | 
143  |  | /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M  | 
144  |  |    with elements of size at most (n+1)/2 - 1. Returns new size of a,  | 
145  |  |    b, or zero if no reduction is possible. */  | 
146  |  |  | 
147  |  | /* Same scratch requirements as for mpn_hgcd. */  | 
148  |  | mp_size_t  | 
149  |  | mpn_hgcd_jacobi (mp_ptr ap, mp_ptr bp, mp_size_t n,  | 
150  |  |      struct hgcd_matrix *M, unsigned *bitsp, mp_ptr tp)  | 
151  | 0  | { | 
152  | 0  |   mp_size_t s = n/2 + 1;  | 
153  |  | 
  | 
154  | 0  |   mp_size_t nn;  | 
155  | 0  |   int success = 0;  | 
156  |  | 
  | 
157  | 0  |   if (n <= s)  | 
158  |  |     /* Happens when n <= 2, a fairly uninteresting case but exercised  | 
159  |  |        by the random inputs of the testsuite. */  | 
160  | 0  |     return 0;  | 
161  |  |  | 
162  | 0  |   ASSERT ((ap[n-1] | bp[n-1]) > 0);  | 
163  |  |  | 
164  | 0  |   ASSERT ((n+1)/2 - 1 < M->alloc);  | 
165  |  |  | 
166  | 0  |   if (ABOVE_THRESHOLD (n, HGCD_THRESHOLD))  | 
167  | 0  |     { | 
168  | 0  |       mp_size_t n2 = (3*n)/4 + 1;  | 
169  | 0  |       mp_size_t p = n/2;  | 
170  |  | 
  | 
171  | 0  |       nn = mpn_hgcd_jacobi (ap + p, bp + p, n - p, M, bitsp, tp);  | 
172  | 0  |       if (nn > 0)  | 
173  | 0  |   { | 
174  |  |     /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)  | 
175  |  |        = 2 (n - 1) */  | 
176  | 0  |     n = mpn_hgcd_matrix_adjust (M, p + nn, ap, bp, p, tp);  | 
177  | 0  |     success = 1;  | 
178  | 0  |   }  | 
179  | 0  |       while (n > n2)  | 
180  | 0  |   { | 
181  |  |     /* Needs n + 1 storage */  | 
182  | 0  |     nn = hgcd_jacobi_step (n, ap, bp, s, M, bitsp, tp);  | 
183  | 0  |     if (!nn)  | 
184  | 0  |       return success ? n : 0;  | 
185  | 0  |     n = nn;  | 
186  | 0  |     success = 1;  | 
187  | 0  |   }  | 
188  |  |  | 
189  | 0  |       if (n > s + 2)  | 
190  | 0  |   { | 
191  | 0  |     struct hgcd_matrix M1;  | 
192  | 0  |     mp_size_t scratch;  | 
193  |  | 
  | 
194  | 0  |     p = 2*s - n + 1;  | 
195  | 0  |     scratch = MPN_HGCD_MATRIX_INIT_ITCH (n-p);  | 
196  |  | 
  | 
197  | 0  |     mpn_hgcd_matrix_init(&M1, n - p, tp);  | 
198  | 0  |     nn = mpn_hgcd_jacobi (ap + p, bp + p, n - p, &M1, bitsp, tp + scratch);  | 
199  | 0  |     if (nn > 0)  | 
200  | 0  |       { | 
201  |  |         /* We always have max(M) > 2^{-(GMP_NUMB_BITS + 1)} max(M1) */ | 
202  | 0  |         ASSERT (M->n + 2 >= M1.n);  | 
203  |  |  | 
204  |  |         /* Furthermore, assume M ends with a quotient (1, q; 0, 1),  | 
205  |  |      then either q or q + 1 is a correct quotient, and M1 will  | 
206  |  |      start with either (1, 0; 1, 1) or (2, 1; 1, 1). This  | 
207  |  |      rules out the case that the size of M * M1 is much  | 
208  |  |      smaller than the expected M->n + M1->n. */  | 
209  |  |  | 
210  | 0  |         ASSERT (M->n + M1.n < M->alloc);  | 
211  |  |  | 
212  |  |         /* Needs 2 (p + M->n) <= 2 (2*s - n2 + 1 + n2 - s - 1)  | 
213  |  |      = 2*s <= 2*(floor(n/2) + 1) <= n + 2. */  | 
214  | 0  |         n = mpn_hgcd_matrix_adjust (&M1, p + nn, ap, bp, p, tp + scratch);  | 
215  |  |  | 
216  |  |         /* We need a bound for of M->n + M1.n. Let n be the original  | 
217  |  |      input size. Then  | 
218  |  |  | 
219  |  |      ceil(n/2) - 1 >= size of product >= M.n + M1.n - 2  | 
220  |  |  | 
221  |  |      and it follows that  | 
222  |  |  | 
223  |  |      M.n + M1.n <= ceil(n/2) + 1  | 
224  |  |  | 
225  |  |      Then 3*(M.n + M1.n) + 5 <= 3 * ceil(n/2) + 8 is the  | 
226  |  |      amount of needed scratch space. */  | 
227  | 0  |         mpn_hgcd_matrix_mul (M, &M1, tp + scratch);  | 
228  | 0  |         success = 1;  | 
229  | 0  |       }  | 
230  | 0  |   }  | 
231  | 0  |     }  | 
232  |  |  | 
233  | 0  |   for (;;)  | 
234  | 0  |     { | 
235  |  |       /* Needs s+3 < n */  | 
236  | 0  |       nn = hgcd_jacobi_step (n, ap, bp, s, M, bitsp, tp);  | 
237  | 0  |       if (!nn)  | 
238  | 0  |   return success ? n : 0;  | 
239  |  |  | 
240  | 0  |       n = nn;  | 
241  | 0  |       success = 1;  | 
242  | 0  |     }  | 
243  | 0  | }  |