/src/gmp-6.2.1/mpn/mulmod_bnm1.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mulmod_bnm1.c -- multiplication mod B^n-1.  | 
2  |  |  | 
3  |  |    Contributed to the GNU project by Niels Möller, Torbjorn Granlund and  | 
4  |  |    Marco Bodrato.  | 
5  |  |  | 
6  |  |    THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY  | 
7  |  |    SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST  | 
8  |  |    GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
9  |  |  | 
10  |  | Copyright 2009, 2010, 2012, 2013 Free Software Foundation, Inc.  | 
11  |  |  | 
12  |  | This file is part of the GNU MP Library.  | 
13  |  |  | 
14  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
15  |  | it under the terms of either:  | 
16  |  |  | 
17  |  |   * the GNU Lesser General Public License as published by the Free  | 
18  |  |     Software Foundation; either version 3 of the License, or (at your  | 
19  |  |     option) any later version.  | 
20  |  |  | 
21  |  | or  | 
22  |  |  | 
23  |  |   * the GNU General Public License as published by the Free Software  | 
24  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
25  |  |     later version.  | 
26  |  |  | 
27  |  | or both in parallel, as here.  | 
28  |  |  | 
29  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
30  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
31  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
32  |  | for more details.  | 
33  |  |  | 
34  |  | You should have received copies of the GNU General Public License and the  | 
35  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
36  |  | see https://www.gnu.org/licenses/.  */  | 
37  |  |  | 
38  |  |  | 
39  |  | #include "gmp-impl.h"  | 
40  |  | #include "longlong.h"  | 
41  |  |  | 
42  |  | /* Inputs are {ap,rn} and {bp,rn}; output is {rp,rn}, computation is | 
43  |  |    mod B^rn - 1, and values are semi-normalised; zero is represented  | 
44  |  |    as either 0 or B^n - 1.  Needs a scratch of 2rn limbs at tp.  | 
45  |  |    tp==rp is allowed. */  | 
46  |  | void  | 
47  |  | mpn_bc_mulmod_bnm1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn,  | 
48  |  |         mp_ptr tp)  | 
49  | 0  | { | 
50  | 0  |   mp_limb_t cy;  | 
51  |  | 
  | 
52  | 0  |   ASSERT (0 < rn);  | 
53  |  |  | 
54  | 0  |   mpn_mul_n (tp, ap, bp, rn);  | 
55  | 0  |   cy = mpn_add_n (rp, tp, tp + rn, rn);  | 
56  |  |   /* If cy == 1, then the value of rp is at most B^rn - 2, so there can  | 
57  |  |    * be no overflow when adding in the carry. */  | 
58  | 0  |   MPN_INCR_U (rp, rn, cy);  | 
59  | 0  | }  | 
60  |  |  | 
61  |  |  | 
62  |  | /* Inputs are {ap,rn+1} and {bp,rn+1}; output is {rp,rn+1}, in | 
63  |  |    semi-normalised representation, computation is mod B^rn + 1. Needs  | 
64  |  |    a scratch area of 2rn + 2 limbs at tp; tp == rp is allowed.  | 
65  |  |    Output is normalised. */  | 
66  |  | static void  | 
67  |  | mpn_bc_mulmod_bnp1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn,  | 
68  |  |         mp_ptr tp)  | 
69  | 0  | { | 
70  | 0  |   mp_limb_t cy;  | 
71  |  | 
  | 
72  | 0  |   ASSERT (0 < rn);  | 
73  |  |  | 
74  | 0  |   mpn_mul_n (tp, ap, bp, rn + 1);  | 
75  | 0  |   ASSERT (tp[2*rn+1] == 0);  | 
76  | 0  |   ASSERT (tp[2*rn] < GMP_NUMB_MAX);  | 
77  | 0  |   cy = tp[2*rn] + mpn_sub_n (rp, tp, tp+rn, rn);  | 
78  | 0  |   rp[rn] = 0;  | 
79  | 0  |   MPN_INCR_U (rp, rn+1, cy);  | 
80  | 0  | }  | 
81  |  |  | 
82  |  |  | 
83  |  | /* Computes {rp,MIN(rn,an+bn)} <- {ap,an}*{bp,bn} Mod(B^rn-1) | 
84  |  |  *  | 
85  |  |  * The result is expected to be ZERO if and only if one of the operand  | 
86  |  |  * already is. Otherwise the class [0] Mod(B^rn-1) is represented by  | 
87  |  |  * B^rn-1. This should not be a problem if mulmod_bnm1 is used to  | 
88  |  |  * combine results and obtain a natural number when one knows in  | 
89  |  |  * advance that the final value is less than (B^rn-1).  | 
90  |  |  * Moreover it should not be a problem if mulmod_bnm1 is used to  | 
91  |  |  * compute the full product with an+bn <= rn, because this condition  | 
92  |  |  * implies (B^an-1)(B^bn-1) < (B^rn-1) .  | 
93  |  |  *  | 
94  |  |  * Requires 0 < bn <= an <= rn and an + bn > rn/2  | 
95  |  |  * Scratch need: rn + (need for recursive call OR rn + 4). This gives  | 
96  |  |  *  | 
97  |  |  * S(n) <= rn + MAX (rn + 4, S(n/2)) <= 2rn + 4  | 
98  |  |  */  | 
99  |  | void  | 
100  |  | mpn_mulmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an, mp_srcptr bp, mp_size_t bn, mp_ptr tp)  | 
101  | 0  | { | 
102  | 0  |   ASSERT (0 < bn);  | 
103  | 0  |   ASSERT (bn <= an);  | 
104  | 0  |   ASSERT (an <= rn);  | 
105  |  |  | 
106  | 0  |   if ((rn & 1) != 0 || BELOW_THRESHOLD (rn, MULMOD_BNM1_THRESHOLD))  | 
107  | 0  |     { | 
108  | 0  |       if (UNLIKELY (bn < rn))  | 
109  | 0  |   { | 
110  | 0  |     if (UNLIKELY (an + bn <= rn))  | 
111  | 0  |       { | 
112  | 0  |         mpn_mul (rp, ap, an, bp, bn);  | 
113  | 0  |       }  | 
114  | 0  |     else  | 
115  | 0  |       { | 
116  | 0  |         mp_limb_t cy;  | 
117  | 0  |         mpn_mul (tp, ap, an, bp, bn);  | 
118  | 0  |         cy = mpn_add (rp, tp, rn, tp + rn, an + bn - rn);  | 
119  | 0  |         MPN_INCR_U (rp, rn, cy);  | 
120  | 0  |       }  | 
121  | 0  |   }  | 
122  | 0  |       else  | 
123  | 0  |   mpn_bc_mulmod_bnm1 (rp, ap, bp, rn, tp);  | 
124  | 0  |     }  | 
125  | 0  |   else  | 
126  | 0  |     { | 
127  | 0  |       mp_size_t n;  | 
128  | 0  |       mp_limb_t cy;  | 
129  | 0  |       mp_limb_t hi;  | 
130  |  | 
  | 
131  | 0  |       n = rn >> 1;  | 
132  |  |  | 
133  |  |       /* We need at least an + bn >= n, to be able to fit one of the  | 
134  |  |    recursive products at rp. Requiring strict inequality makes  | 
135  |  |    the code slightly simpler. If desired, we could avoid this  | 
136  |  |    restriction by initially halving rn as long as rn is even and  | 
137  |  |    an + bn <= rn/2. */  | 
138  |  | 
  | 
139  | 0  |       ASSERT (an + bn > n);  | 
140  |  |  | 
141  |  |       /* Compute xm = a*b mod (B^n - 1), xp = a*b mod (B^n + 1)  | 
142  |  |    and crt together as  | 
143  |  |  | 
144  |  |    x = -xp * B^n + (B^n + 1) * [ (xp + xm)/2 mod (B^n-1)]  | 
145  |  |       */  | 
146  |  |  | 
147  | 0  | #define a0 ap  | 
148  | 0  | #define a1 (ap + n)  | 
149  | 0  | #define b0 bp  | 
150  | 0  | #define b1 (bp + n)  | 
151  |  |  | 
152  | 0  | #define xp  tp  /* 2n + 2 */  | 
153  |  |       /* am1  maybe in {xp, n} */ | 
154  |  |       /* bm1  maybe in {xp + n, n} */ | 
155  | 0  | #define sp1 (tp + 2*n + 2)  | 
156  |  |       /* ap1  maybe in {sp1, n + 1} */ | 
157  |  |       /* bp1  maybe in {sp1 + n + 1, n + 1} */ | 
158  |  |  | 
159  | 0  |       { | 
160  | 0  |   mp_srcptr am1, bm1;  | 
161  | 0  |   mp_size_t anm, bnm;  | 
162  | 0  |   mp_ptr so;  | 
163  |  | 
  | 
164  | 0  |   bm1 = b0;  | 
165  | 0  |   bnm = bn;  | 
166  | 0  |   if (LIKELY (an > n))  | 
167  | 0  |     { | 
168  | 0  |       am1 = xp;  | 
169  | 0  |       cy = mpn_add (xp, a0, n, a1, an - n);  | 
170  | 0  |       MPN_INCR_U (xp, n, cy);  | 
171  | 0  |       anm = n;  | 
172  | 0  |       so = xp + n;  | 
173  | 0  |       if (LIKELY (bn > n))  | 
174  | 0  |         { | 
175  | 0  |     bm1 = so;  | 
176  | 0  |     cy = mpn_add (so, b0, n, b1, bn - n);  | 
177  | 0  |     MPN_INCR_U (so, n, cy);  | 
178  | 0  |     bnm = n;  | 
179  | 0  |     so += n;  | 
180  | 0  |         }  | 
181  | 0  |     }  | 
182  | 0  |   else  | 
183  | 0  |     { | 
184  | 0  |       so = xp;  | 
185  | 0  |       am1 = a0;  | 
186  | 0  |       anm = an;  | 
187  | 0  |     }  | 
188  |  |  | 
189  | 0  |   mpn_mulmod_bnm1 (rp, n, am1, anm, bm1, bnm, so);  | 
190  | 0  |       }  | 
191  |  |  | 
192  | 0  |       { | 
193  | 0  |   int       k;  | 
194  | 0  |   mp_srcptr ap1, bp1;  | 
195  | 0  |   mp_size_t anp, bnp;  | 
196  |  | 
  | 
197  | 0  |   bp1 = b0;  | 
198  | 0  |   bnp = bn;  | 
199  | 0  |   if (LIKELY (an > n)) { | 
200  | 0  |     ap1 = sp1;  | 
201  | 0  |     cy = mpn_sub (sp1, a0, n, a1, an - n);  | 
202  | 0  |     sp1[n] = 0;  | 
203  | 0  |     MPN_INCR_U (sp1, n + 1, cy);  | 
204  | 0  |     anp = n + ap1[n];  | 
205  | 0  |     if (LIKELY (bn > n)) { | 
206  | 0  |       bp1 = sp1 + n + 1;  | 
207  | 0  |       cy = mpn_sub (sp1 + n + 1, b0, n, b1, bn - n);  | 
208  | 0  |       sp1[2*n+1] = 0;  | 
209  | 0  |       MPN_INCR_U (sp1 + n + 1, n + 1, cy);  | 
210  | 0  |       bnp = n + bp1[n];  | 
211  | 0  |     }  | 
212  | 0  |   } else { | 
213  | 0  |     ap1 = a0;  | 
214  | 0  |     anp = an;  | 
215  | 0  |   }  | 
216  |  |  | 
217  | 0  |   if (BELOW_THRESHOLD (n, MUL_FFT_MODF_THRESHOLD))  | 
218  | 0  |     k=0;  | 
219  | 0  |   else  | 
220  | 0  |     { | 
221  | 0  |       int mask;  | 
222  | 0  |       k = mpn_fft_best_k (n, 0);  | 
223  | 0  |       mask = (1<<k) - 1;  | 
224  | 0  |       while (n & mask) {k--; mask >>=1;}; | 
225  | 0  |     }  | 
226  | 0  |   if (k >= FFT_FIRST_K)  | 
227  | 0  |     xp[n] = mpn_mul_fft (xp, n, ap1, anp, bp1, bnp, k);  | 
228  | 0  |   else if (UNLIKELY (bp1 == b0))  | 
229  | 0  |     { | 
230  | 0  |       ASSERT (anp + bnp <= 2*n+1);  | 
231  | 0  |       ASSERT (anp + bnp > n);  | 
232  | 0  |       ASSERT (anp >= bnp);  | 
233  | 0  |       mpn_mul (xp, ap1, anp, bp1, bnp);  | 
234  | 0  |       anp = anp + bnp - n;  | 
235  | 0  |       ASSERT (anp <= n || xp[2*n]==0);  | 
236  | 0  |       anp-= anp > n;  | 
237  | 0  |       cy = mpn_sub (xp, xp, n, xp + n, anp);  | 
238  | 0  |       xp[n] = 0;  | 
239  | 0  |       MPN_INCR_U (xp, n+1, cy);  | 
240  | 0  |     }  | 
241  | 0  |   else  | 
242  | 0  |     mpn_bc_mulmod_bnp1 (xp, ap1, bp1, n, xp);  | 
243  | 0  |       }  | 
244  |  |  | 
245  |  |       /* Here the CRT recomposition begins.  | 
246  |  |  | 
247  |  |    xm <- (xp + xm)/2 = (xp + xm)B^n/2 mod (B^n-1)  | 
248  |  |    Division by 2 is a bitwise rotation.  | 
249  |  |  | 
250  |  |    Assumes xp normalised mod (B^n+1).  | 
251  |  |  | 
252  |  |    The residue class [0] is represented by [B^n-1]; except when  | 
253  |  |    both input are ZERO.  | 
254  |  |       */  | 
255  |  |  | 
256  | 0  | #if HAVE_NATIVE_mpn_rsh1add_n || HAVE_NATIVE_mpn_rsh1add_nc  | 
257  | 0  | #if HAVE_NATIVE_mpn_rsh1add_nc  | 
258  | 0  |       cy = mpn_rsh1add_nc(rp, rp, xp, n, xp[n]); /* B^n = 1 */  | 
259  | 0  |       hi = cy << (GMP_NUMB_BITS - 1);  | 
260  | 0  |       cy = 0;  | 
261  |  |       /* next update of rp[n-1] will set cy = 1 only if rp[n-1]+=hi  | 
262  |  |    overflows, i.e. a further increment will not overflow again. */  | 
263  |  | #else /* ! _nc */  | 
264  |  |       cy = xp[n] + mpn_rsh1add_n(rp, rp, xp, n); /* B^n = 1 */  | 
265  |  |       hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */  | 
266  |  |       cy >>= 1;  | 
267  |  |       /* cy = 1 only if xp[n] = 1 i.e. {xp,n} = ZERO, this implies that | 
268  |  |    the rsh1add was a simple rshift: the top bit is 0. cy=1 => hi=0. */  | 
269  |  | #endif  | 
270  | 0  | #if GMP_NAIL_BITS == 0  | 
271  | 0  |       add_ssaaaa(cy, rp[n-1], cy, rp[n-1], 0, hi);  | 
272  |  | #else  | 
273  |  |       cy += (hi & rp[n-1]) >> (GMP_NUMB_BITS-1);  | 
274  |  |       rp[n-1] ^= hi;  | 
275  |  | #endif  | 
276  |  | #else /* ! HAVE_NATIVE_mpn_rsh1add_n */  | 
277  |  | #if HAVE_NATIVE_mpn_add_nc  | 
278  |  |       cy = mpn_add_nc(rp, rp, xp, n, xp[n]);  | 
279  |  | #else /* ! _nc */  | 
280  |  |       cy = xp[n] + mpn_add_n(rp, rp, xp, n); /* xp[n] == 1 implies {xp,n} == ZERO */ | 
281  |  | #endif  | 
282  |  |       cy += (rp[0]&1);  | 
283  |  |       mpn_rshift(rp, rp, n, 1);  | 
284  |  |       ASSERT (cy <= 2);  | 
285  |  |       hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */  | 
286  |  |       cy >>= 1;  | 
287  |  |       /* We can have cy != 0 only if hi = 0... */  | 
288  |  |       ASSERT ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0);  | 
289  |  |       rp[n-1] |= hi;  | 
290  |  |       /* ... rp[n-1] + cy can not overflow, the following INCR is correct. */  | 
291  |  | #endif  | 
292  | 0  |       ASSERT (cy <= 1);  | 
293  |  |       /* Next increment can not overflow, read the previous comments about cy. */  | 
294  | 0  |       ASSERT ((cy == 0) || ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0));  | 
295  | 0  |       MPN_INCR_U(rp, n, cy);  | 
296  |  |  | 
297  |  |       /* Compute the highest half:  | 
298  |  |    ([(xp + xm)/2 mod (B^n-1)] - xp ) * B^n  | 
299  |  |        */  | 
300  | 0  |       if (UNLIKELY (an + bn < rn))  | 
301  | 0  |   { | 
302  |  |     /* Note that in this case, the only way the result can equal  | 
303  |  |        zero mod B^{rn} - 1 is if one of the inputs is zero, and | 
304  |  |        then the output of both the recursive calls and this CRT  | 
305  |  |        reconstruction is zero, not B^{rn} - 1. Which is good, | 
306  |  |        since the latter representation doesn't fit in the output  | 
307  |  |        area.*/  | 
308  | 0  |     cy = mpn_sub_n (rp + n, rp, xp, an + bn - n);  | 
309  |  |  | 
310  |  |     /* FIXME: This subtraction of the high parts is not really  | 
311  |  |        necessary, we do it to get the carry out, and for sanity  | 
312  |  |        checking. */  | 
313  | 0  |     cy = xp[n] + mpn_sub_nc (xp + an + bn - n, rp + an + bn - n,  | 
314  | 0  |            xp + an + bn - n, rn - (an + bn), cy);  | 
315  | 0  |     ASSERT (an + bn == rn - 1 ||  | 
316  | 0  |       mpn_zero_p (xp + an + bn - n + 1, rn - 1 - (an + bn)));  | 
317  | 0  |     cy = mpn_sub_1 (rp, rp, an + bn, cy);  | 
318  | 0  |     ASSERT (cy == (xp + an + bn - n)[0]);  | 
319  | 0  |   }  | 
320  | 0  |       else  | 
321  | 0  |   { | 
322  | 0  |     cy = xp[n] + mpn_sub_n (rp + n, rp, xp, n);  | 
323  |  |     /* cy = 1 only if {xp,n+1} is not ZERO, i.e. {rp,n} is not ZERO. | 
324  |  |        DECR will affect _at most_ the lowest n limbs. */  | 
325  | 0  |     MPN_DECR_U (rp, 2*n, cy);  | 
326  | 0  |   }  | 
327  | 0  | #undef a0  | 
328  | 0  | #undef a1  | 
329  | 0  | #undef b0  | 
330  | 0  | #undef b1  | 
331  | 0  | #undef xp  | 
332  | 0  | #undef sp1  | 
333  | 0  |     }  | 
334  | 0  | }  | 
335  |  |  | 
336  |  | mp_size_t  | 
337  |  | mpn_mulmod_bnm1_next_size (mp_size_t n)  | 
338  | 0  | { | 
339  | 0  |   mp_size_t nh;  | 
340  |  | 
  | 
341  | 0  |   if (BELOW_THRESHOLD (n,     MULMOD_BNM1_THRESHOLD))  | 
342  | 0  |     return n;  | 
343  | 0  |   if (BELOW_THRESHOLD (n, 4 * (MULMOD_BNM1_THRESHOLD - 1) + 1))  | 
344  | 0  |     return (n + (2-1)) & (-2);  | 
345  | 0  |   if (BELOW_THRESHOLD (n, 8 * (MULMOD_BNM1_THRESHOLD - 1) + 1))  | 
346  | 0  |     return (n + (4-1)) & (-4);  | 
347  |  |  | 
348  | 0  |   nh = (n + 1) >> 1;  | 
349  |  | 
  | 
350  | 0  |   if (BELOW_THRESHOLD (nh, MUL_FFT_MODF_THRESHOLD))  | 
351  | 0  |     return (n + (8-1)) & (-8);  | 
352  |  |  | 
353  | 0  |   return 2 * mpn_fft_next_size (nh, mpn_fft_best_k (nh, 0));  | 
354  | 0  | }  |