/src/gmp-6.2.1/mpn/perfpow.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mpn_perfect_power_p -- mpn perfect power detection.  | 
2  |  |  | 
3  |  |    Contributed to the GNU project by Martin Boij.  | 
4  |  |  | 
5  |  | Copyright 2009, 2010, 2012, 2014 Free Software Foundation, Inc.  | 
6  |  |  | 
7  |  | This file is part of the GNU MP Library.  | 
8  |  |  | 
9  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
10  |  | it under the terms of either:  | 
11  |  |  | 
12  |  |   * the GNU Lesser General Public License as published by the Free  | 
13  |  |     Software Foundation; either version 3 of the License, or (at your  | 
14  |  |     option) any later version.  | 
15  |  |  | 
16  |  | or  | 
17  |  |  | 
18  |  |   * the GNU General Public License as published by the Free Software  | 
19  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
20  |  |     later version.  | 
21  |  |  | 
22  |  | or both in parallel, as here.  | 
23  |  |  | 
24  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
25  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
26  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
27  |  | for more details.  | 
28  |  |  | 
29  |  | You should have received copies of the GNU General Public License and the  | 
30  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
31  |  | see https://www.gnu.org/licenses/.  */  | 
32  |  |  | 
33  |  | #include "gmp-impl.h"  | 
34  |  | #include "longlong.h"  | 
35  |  |  | 
36  | 0  | #define SMALL 20  | 
37  | 0  | #define MEDIUM 100  | 
38  |  |  | 
39  |  | /* Return non-zero if {np,nn} == {xp,xn} ^ k. | 
40  |  |    Algorithm:  | 
41  |  |        For s = 1, 2, 4, ..., s_max, compute the s least significant limbs of  | 
42  |  |        {xp,xn}^k. Stop if they don't match the s least significant limbs of | 
43  |  |        {np,nn}. | 
44  |  |  | 
45  |  |    FIXME: Low xn limbs can be expected to always match, if computed as a mod  | 
46  |  |    B^{xn} root. So instead of using mpn_powlo, compute an approximation of the | 
47  |  |    most significant (normalized) limb of {xp,xn} ^ k (and an error bound), and | 
48  |  |    compare to {np, nn}. Or use an even cruder approximation based on fix-point | 
49  |  |    base 2 logarithm.  */  | 
50  |  | static int  | 
51  |  | pow_equals (mp_srcptr np, mp_size_t n,  | 
52  |  |       mp_srcptr xp,mp_size_t xn,  | 
53  |  |       mp_limb_t k, mp_bitcnt_t f,  | 
54  |  |       mp_ptr tp)  | 
55  | 0  | { | 
56  | 0  |   mp_bitcnt_t y, z;  | 
57  | 0  |   mp_size_t bn;  | 
58  | 0  |   mp_limb_t h, l;  | 
59  |  | 
  | 
60  | 0  |   ASSERT (n > 1 || (n == 1 && np[0] > 1));  | 
61  | 0  |   ASSERT (np[n - 1] > 0);  | 
62  | 0  |   ASSERT (xn > 0);  | 
63  |  |  | 
64  | 0  |   if (xn == 1 && xp[0] == 1)  | 
65  | 0  |     return 0;  | 
66  |  |  | 
67  | 0  |   z = 1 + (n >> 1);  | 
68  | 0  |   for (bn = 1; bn < z; bn <<= 1)  | 
69  | 0  |     { | 
70  | 0  |       mpn_powlo (tp, xp, &k, 1, bn, tp + bn);  | 
71  | 0  |       if (mpn_cmp (tp, np, bn) != 0)  | 
72  | 0  |   return 0;  | 
73  | 0  |     }  | 
74  |  |  | 
75  |  |   /* Final check. Estimate the size of {xp,xn}^k before computing the power | 
76  |  |      with full precision.  Optimization: It might pay off to make a more  | 
77  |  |      accurate estimation of the logarithm of {xp,xn}, rather than using the | 
78  |  |      index of the MSB.  */  | 
79  |  |  | 
80  | 0  |   MPN_SIZEINBASE_2EXP(y, xp, xn, 1);  | 
81  | 0  |   y -= 1;  /* msb_index (xp, xn) */  | 
82  |  | 
  | 
83  | 0  |   umul_ppmm (h, l, k, y);  | 
84  | 0  |   h -= l == 0;  --l;  /* two-limb decrement */  | 
85  |  | 
  | 
86  | 0  |   z = f - 1; /* msb_index (np, n) */  | 
87  | 0  |   if (h == 0 && l <= z)  | 
88  | 0  |     { | 
89  | 0  |       mp_limb_t *tp2;  | 
90  | 0  |       mp_size_t i;  | 
91  | 0  |       int ans;  | 
92  | 0  |       mp_limb_t size;  | 
93  | 0  |       TMP_DECL;  | 
94  |  | 
  | 
95  | 0  |       size = l + k;  | 
96  | 0  |       ASSERT_ALWAYS (size >= k);  | 
97  |  |  | 
98  | 0  |       TMP_MARK;  | 
99  | 0  |       y = 2 + size / GMP_LIMB_BITS;  | 
100  | 0  |       tp2 = TMP_ALLOC_LIMBS (y);  | 
101  |  | 
  | 
102  | 0  |       i = mpn_pow_1 (tp, xp, xn, k, tp2);  | 
103  | 0  |       if (i == n && mpn_cmp (tp, np, n) == 0)  | 
104  | 0  |   ans = 1;  | 
105  | 0  |       else  | 
106  | 0  |   ans = 0;  | 
107  | 0  |       TMP_FREE;  | 
108  | 0  |       return ans;  | 
109  | 0  |     }  | 
110  |  |  | 
111  | 0  |   return 0;  | 
112  | 0  | }  | 
113  |  |  | 
114  |  |  | 
115  |  | /* Return non-zero if N = {np,n} is a kth power. | 
116  |  |    I = {ip,n} = N^(-1) mod B^n.  */ | 
117  |  | static int  | 
118  |  | is_kth_power (mp_ptr rp, mp_srcptr np,  | 
119  |  |         mp_limb_t k, mp_srcptr ip,  | 
120  |  |         mp_size_t n, mp_bitcnt_t f,  | 
121  |  |         mp_ptr tp)  | 
122  | 0  | { | 
123  | 0  |   mp_bitcnt_t b;  | 
124  | 0  |   mp_size_t rn, xn;  | 
125  |  | 
  | 
126  | 0  |   ASSERT (n > 0);  | 
127  | 0  |   ASSERT ((k & 1) != 0 || k == 2);  | 
128  | 0  |   ASSERT ((np[0] & 1) != 0);  | 
129  |  |  | 
130  | 0  |   if (k == 2)  | 
131  | 0  |     { | 
132  | 0  |       b = (f + 1) >> 1;  | 
133  | 0  |       rn = 1 + b / GMP_LIMB_BITS;  | 
134  | 0  |       if (mpn_bsqrtinv (rp, ip, b, tp) != 0)  | 
135  | 0  |   { | 
136  | 0  |     rp[rn - 1] &= (CNST_LIMB(1) << (b % GMP_LIMB_BITS)) - 1;  | 
137  | 0  |     xn = rn;  | 
138  | 0  |     MPN_NORMALIZE (rp, xn);  | 
139  | 0  |     if (pow_equals (np, n, rp, xn, k, f, tp) != 0)  | 
140  | 0  |       return 1;  | 
141  |  |  | 
142  |  |     /* Check if (2^b - r)^2 == n */  | 
143  | 0  |     mpn_neg (rp, rp, rn);  | 
144  | 0  |     rp[rn - 1] &= (CNST_LIMB(1) << (b % GMP_LIMB_BITS)) - 1;  | 
145  | 0  |     MPN_NORMALIZE (rp, rn);  | 
146  | 0  |     if (pow_equals (np, n, rp, rn, k, f, tp) != 0)  | 
147  | 0  |       return 1;  | 
148  | 0  |   }  | 
149  | 0  |     }  | 
150  | 0  |   else  | 
151  | 0  |     { | 
152  | 0  |       b = 1 + (f - 1) / k;  | 
153  | 0  |       rn = 1 + (b - 1) / GMP_LIMB_BITS;  | 
154  | 0  |       mpn_brootinv (rp, ip, rn, k, tp);  | 
155  | 0  |       if ((b % GMP_LIMB_BITS) != 0)  | 
156  | 0  |   rp[rn - 1] &= (CNST_LIMB(1) << (b % GMP_LIMB_BITS)) - 1;  | 
157  | 0  |       MPN_NORMALIZE (rp, rn);  | 
158  | 0  |       if (pow_equals (np, n, rp, rn, k, f, tp) != 0)  | 
159  | 0  |   return 1;  | 
160  | 0  |     }  | 
161  | 0  |   MPN_ZERO (rp, rn); /* Untrash rp */  | 
162  | 0  |   return 0;  | 
163  | 0  | }  | 
164  |  |  | 
165  |  | static int  | 
166  |  | perfpow (mp_srcptr np, mp_size_t n,  | 
167  |  |    mp_limb_t ub, mp_limb_t g,  | 
168  |  |    mp_bitcnt_t f, int neg)  | 
169  | 0  | { | 
170  | 0  |   mp_ptr ip, tp, rp;  | 
171  | 0  |   mp_limb_t k;  | 
172  | 0  |   int ans;  | 
173  | 0  |   mp_bitcnt_t b;  | 
174  | 0  |   gmp_primesieve_t ps;  | 
175  | 0  |   TMP_DECL;  | 
176  |  | 
  | 
177  | 0  |   ASSERT (n > 0);  | 
178  | 0  |   ASSERT ((np[0] & 1) != 0);  | 
179  | 0  |   ASSERT (ub > 0);  | 
180  |  |  | 
181  | 0  |   TMP_MARK;  | 
182  | 0  |   gmp_init_primesieve (&ps);  | 
183  | 0  |   b = (f + 3) >> 1;  | 
184  |  | 
  | 
185  | 0  |   TMP_ALLOC_LIMBS_3 (ip, n, rp, n, tp, 5 * n);  | 
186  |  | 
  | 
187  | 0  |   MPN_ZERO (rp, n);  | 
188  |  |  | 
189  |  |   /* FIXME: It seems the inverse in ninv is needed only to get non-inverted  | 
190  |  |      roots. I.e., is_kth_power computes n^{1/2} as (n^{-1})^{-1/2} and | 
191  |  |      similarly for nth roots. It should be more efficient to compute n^{1/2} as | 
192  |  |      n * n^{-1/2}, with a mullo instead of a binvert. And we can do something | 
193  |  |      similar for kth roots if we switch to an iteration converging to n^{1/k - | 
194  |  |      1}, and we can then eliminate this binvert call. */  | 
195  | 0  |   mpn_binvert (ip, np, 1 + (b - 1) / GMP_LIMB_BITS, tp);  | 
196  | 0  |   if (b % GMP_LIMB_BITS)  | 
197  | 0  |     ip[(b - 1) / GMP_LIMB_BITS] &= (CNST_LIMB(1) << (b % GMP_LIMB_BITS)) - 1;  | 
198  |  | 
  | 
199  | 0  |   if (neg)  | 
200  | 0  |     gmp_nextprime (&ps);  | 
201  |  | 
  | 
202  | 0  |   ans = 0;  | 
203  | 0  |   if (g > 0)  | 
204  | 0  |     { | 
205  | 0  |       ub = MIN (ub, g + 1);  | 
206  | 0  |       while ((k = gmp_nextprime (&ps)) < ub)  | 
207  | 0  |   { | 
208  | 0  |     if ((g % k) == 0)  | 
209  | 0  |       { | 
210  | 0  |         if (is_kth_power (rp, np, k, ip, n, f, tp) != 0)  | 
211  | 0  |     { | 
212  | 0  |       ans = 1;  | 
213  | 0  |       goto ret;  | 
214  | 0  |     }  | 
215  | 0  |       }  | 
216  | 0  |   }  | 
217  | 0  |     }  | 
218  | 0  |   else  | 
219  | 0  |     { | 
220  | 0  |       while ((k = gmp_nextprime (&ps)) < ub)  | 
221  | 0  |   { | 
222  | 0  |     if (is_kth_power (rp, np, k, ip, n, f, tp) != 0)  | 
223  | 0  |       { | 
224  | 0  |         ans = 1;  | 
225  | 0  |         goto ret;  | 
226  | 0  |       }  | 
227  | 0  |   }  | 
228  | 0  |     }  | 
229  | 0  |  ret:  | 
230  | 0  |   TMP_FREE;  | 
231  | 0  |   return ans;  | 
232  | 0  | }  | 
233  |  |  | 
234  |  | static const unsigned short nrtrial[] = { 100, 500, 1000 }; | 
235  |  |  | 
236  |  | /* Table of (log_{p_i} 2) values, where p_i is the (nrtrial[i] + 1)'th prime | 
237  |  |    number.  */  | 
238  |  | static const double logs[] =  | 
239  |  |   { 0.1099457228193620, 0.0847016403115322, 0.0772048195144415 }; | 
240  |  |  | 
241  |  | int  | 
242  |  | mpn_perfect_power_p (mp_srcptr np, mp_size_t n)  | 
243  | 0  | { | 
244  | 0  |   mp_limb_t *nc, factor, g;  | 
245  | 0  |   mp_limb_t exp, d;  | 
246  | 0  |   mp_bitcnt_t twos, count;  | 
247  | 0  |   int ans, where, neg, trial;  | 
248  | 0  |   TMP_DECL;  | 
249  |  | 
  | 
250  | 0  |   neg = n < 0;  | 
251  | 0  |   if (neg)  | 
252  | 0  |     { | 
253  | 0  |       n = -n;  | 
254  | 0  |     }  | 
255  |  | 
  | 
256  | 0  |   if (n == 0 || (n == 1 && np[0] == 1)) /* Valgrind doesn't like  | 
257  |  |              (n <= (np[0] == 1)) */  | 
258  | 0  |     return 1;  | 
259  |  |  | 
260  | 0  |   TMP_MARK;  | 
261  |  | 
  | 
262  | 0  |   count = 0;  | 
263  |  | 
  | 
264  | 0  |   twos = mpn_scan1 (np, 0);  | 
265  | 0  |   if (twos != 0)  | 
266  | 0  |     { | 
267  | 0  |       mp_size_t s;  | 
268  | 0  |       if (twos == 1)  | 
269  | 0  |   { | 
270  | 0  |     return 0;  | 
271  | 0  |   }  | 
272  | 0  |       s = twos / GMP_LIMB_BITS;  | 
273  | 0  |       if (s + 1 == n && POW2_P (np[s]))  | 
274  | 0  |   { | 
275  | 0  |     return ! (neg && POW2_P (twos));  | 
276  | 0  |   }  | 
277  | 0  |       count = twos % GMP_LIMB_BITS;  | 
278  | 0  |       n -= s;  | 
279  | 0  |       np += s;  | 
280  | 0  |       if (count > 0)  | 
281  | 0  |   { | 
282  | 0  |     nc = TMP_ALLOC_LIMBS (n);  | 
283  | 0  |     mpn_rshift (nc, np, n, count);  | 
284  | 0  |     n -= (nc[n - 1] == 0);  | 
285  | 0  |     np = nc;  | 
286  | 0  |   }  | 
287  | 0  |     }  | 
288  | 0  |   g = twos;  | 
289  |  | 
  | 
290  | 0  |   trial = (n > SMALL) + (n > MEDIUM);  | 
291  |  | 
  | 
292  | 0  |   where = 0;  | 
293  | 0  |   factor = mpn_trialdiv (np, n, nrtrial[trial], &where);  | 
294  |  | 
  | 
295  | 0  |   if (factor != 0)  | 
296  | 0  |     { | 
297  | 0  |       if (count == 0) /* We did not allocate nc yet. */  | 
298  | 0  |   { | 
299  | 0  |     nc = TMP_ALLOC_LIMBS (n);  | 
300  | 0  |   }  | 
301  |  |  | 
302  |  |       /* Remove factors found by trialdiv.  Optimization: If remove  | 
303  |  |    define _itch, we can allocate its scratch just once */  | 
304  |  | 
  | 
305  | 0  |       do  | 
306  | 0  |   { | 
307  | 0  |     binvert_limb (d, factor);  | 
308  |  |  | 
309  |  |     /* After the first round we always have nc == np */  | 
310  | 0  |     exp = mpn_remove (nc, &n, np, n, &d, 1, ~(mp_bitcnt_t)0);  | 
311  |  | 
  | 
312  | 0  |     if (g == 0)  | 
313  | 0  |       g = exp;  | 
314  | 0  |     else  | 
315  | 0  |       g = mpn_gcd_1 (&g, 1, exp);  | 
316  |  | 
  | 
317  | 0  |     if (g == 1)  | 
318  | 0  |       { | 
319  | 0  |         ans = 0;  | 
320  | 0  |         goto ret;  | 
321  | 0  |       }  | 
322  |  |  | 
323  | 0  |     if ((n == 1) & (nc[0] == 1))  | 
324  | 0  |       { | 
325  | 0  |         ans = ! (neg && POW2_P (g));  | 
326  | 0  |         goto ret;  | 
327  | 0  |       }  | 
328  |  |  | 
329  | 0  |     np = nc;  | 
330  | 0  |     factor = mpn_trialdiv (np, n, nrtrial[trial], &where);  | 
331  | 0  |   }  | 
332  | 0  |       while (factor != 0);  | 
333  | 0  |     }  | 
334  |  |  | 
335  | 0  |   MPN_SIZEINBASE_2EXP(count, np, n, 1);   /* log (np) + 1 */  | 
336  | 0  |   d = (mp_limb_t) (count * logs[trial] + 1e-9) + 1;  | 
337  | 0  |   ans = perfpow (np, n, d, g, count, neg);  | 
338  |  | 
  | 
339  | 0  |  ret:  | 
340  | 0  |   TMP_FREE;  | 
341  | 0  |   return ans;  | 
342  | 0  | }  |